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Abstract—Machine learning models are critically susceptible
to evasion attacks from adversarial examples. Generally, ad-
versarial examples—modified inputs deceptively similar to the
original input—are constructed under whitebox access settings
by adversaries with full access to the model. However, recent
attacks have shown a remarkable reduction in the number of
queries to craft adversarial examples using blackbox attacks.
Particularly alarming is the now, practical, ability to exploit
simply the classification decision (hard-label only) from a trained
model’s access interface provided by a growing number of
Machine Learning as a Service (MLaaS) providers—including
Google, Microsoft, IBM—and used by a plethora of applications
incorporating these models. An adversary’s ability to exploit only
the predicted hard-label from a model-query to craft adversarial
examples is distinguished as a decision-based attack.

In our study, we first deep-dive into recent state-of-the-
art decision-based attacks in ICLR and S&P to highlight the
costly nature of discovering low distortion adversarial examples
employing approximate gradient estimation methods. We develop
a robust class of query efficient attacks capable of avoiding entrap-
ment in a local minimum and misdirection from noisy gradients
seen in gradient estimation methods. The attack method we
propose, RamBoAttack, exploits the notion of Randomized Block
Coordinate Descent to explore the hidden classifier manifold, tar-
geting perturbations to manipulate only localized input features
to address the issues of gradient estimation methods. Importantly,
the RamBoAttack is demonstrably more robust to the different
sample inputs available to an adversary and/or the targeted class.
Overall, for a given target class, RamBoAttack is demonstrated
to be more robust at achieving a lower distortion and higher
attack success rate within a given query budget. We curate our
results using the large-scale high-resolution ImageNet dataset
and open-source our attack, test samples and artifacts.

I. INTRODUCTION

Demonstrations of super human performance from Machine
Learning (ML) models, particularly Deep Neural Networks
(DNNs), are leading to the industrialization of Machine Learn-
ing exemplified by self-driving cars [10] and MLaaS from a
plethora of providers, including IBM Watson Visual Recog-
nition [4], Amazon Rekognition [1] or Microsoft’s Cognitive
Services [2]. Now, at the cost-per-service level, any system can
easily integrate intelligence into applications. The increasingly
inevitable, wide spread proliferation of machine learning in
systems are creating the incentives and new attack surfaces to
exploit, for malevolent actors.
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Fig. 1. An illustration of blackbox attack in the severely restricted threat
model of a decision-based attack. In a decision-based threat model, an
adversary with a source image and starting image from target class, crafts
a sample, query the model and observe the decision returned by the model.

Adversarial Attacks in White-box Settings. In particular,
machine learning models are critically vulnerable to evasion
attacks from carefully crafted adversarial examples. An adver-
sary crafts small perturbations, when added to an input, cause
a failure—simply misclassifying the input in an untargeted
attack or hijacking the decision of a model to generate a
decision pre-selected by the adversary [28] in a targeted attack.
Effective attack methods for generating adversarial examples
in white-box attacks, assuming full knowledge and access to
the machine learning models, exist [24], [21], [9], [30].

Adversarial Attacks in Blackbox Settings. In contrast, on
commercial and industrial systems, an attacker has limited or
no knowledge of model architecture, parameters or weights.
Access may be limited to only full or partial output scores.
Chen et al. [12] and Ilyas et al. [18] proposed methods to
exploit models revealing output scores to craft adversarial
examples under so-called score-based attacks. In the most
restricted threat model illustrated in Fig. 1, the information
exposed to an attacker is limited to the hard-label only—the
most confident label predicted or decision, for instance logo
or landmark detection on Google Cloud Vision [3].
Adversarial attacks in such a decision-based scenario are
the most restrictive and challenging attack setting given the
severely limited access to information, but, these settings
present a realistic and pragmatic threat model.
Decision-Based (Hard-Label) Adversarial Attacks. Recent
studies demonstrated the practicability of blackbox attacks
under the highly restrictive decision-based attack setting re-
lying solely on the label obtained from model queries. The
Boundary Attack of Brendel et al. [6] in ICLR demonstrated
the feasibility of an attack and obtained adversarial examples
comparable with state-of-the-art white-box attack methods in
both targeted and untargeted scenarios.
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For a realistic attack, achieving attack success with a limited
query budget is important because: i) MLaaS providers limit
the rate of queries to their services; ii) throttling at a service
provider limits large-scale attacks; and iii) a provider can
employ methods to recognize a large number of rapid queries
in succession with similar inputs to detect malicious activity
and thwart query inefficient attacks. Furthermore, from both
an attacker perspective and a defense perspective, reducing the
number of queries reduces the cost of mounting the attack as
well the time for evaluating the model and potential defenses1.

A. Our Motivation and Attack Focus

Recent studies formulated the decision-based attack as an
optimization problem to propose algorithms based on gradient
estimation methods [14], [11] and demonstrated attacks with
significantly reduced number of queries. However, the existing
attacks suffer from the following problems:

• Entrapment in a local minima. In gradient estimation
methods, as eluded to by Cheng et al. [14], the search
for an adversarial example can experience an entrapment
problem in a local minimum where extra queries ex-
pended by the attacker fails to achieve a lower distortion
adversarial example.

• Unreliabiilty of gradient estimations. Further, as the
magnitude of estimated gradients diminish on approach
to a local minima or a plateau, the estimated gradients
may become noisy and susceptible to misdirection.

• Sensitivity to the starting image. Then, intuitively, we can
expect that the initialization of optimization frameworks
with an available or intended starting image, a necessity
in decision-based attacks, to hinder an attacker from
reaching an imperceptible adversarial example. But, there
is no known method to determine a good starting image
prior to an attack. Thus, the success of an attack can be
expected to be sensitive to the available starting image; an
attempt to discover a better starting image or target class
through trial and error can not only lead to detection
and discovery by effectively increasing the numbers of
queries needed, but also limit the scope of the attack by
reducing the number of classes that can be targeted.

In general, developing decision-based attacks poses a chal-
lenging optimization problem because only binary information
from output labels are available to us from the target model
as opposed to output values from a function.

Therefore, we seek to understand the fragility of gradient
estimation methods and to develop a more robust and query
efficient attack. Consequently, we expend our efforts to answer
the following research questions (RQ) .

RQ1: How can we assess the robustness of decision-
based blackbox attacks to understand their fragility?
(Section II-C)

1For example, we consumed over 1,700 hours on two dedicated modern
GPUs with 48 GB memory to curate the results in our study.

RQ2: What is the impact of the source and starting
target class images accessible to an adversary on the
success of an attack? (Section II-D & extensive results
in Section IV-D)

RQ3: How can an adversary construct a robust and
query efficient attack for achieving low distortion adver-
sarial examples for any starting image from the targeted
class and avoid the pitfalls of gradient estimation based
attack methods? (Section III & IV)

B. Our Contributions

In our efforts to: i) address the RQs; ii) better understand
and assess the vulnerabilities of DNNs to adversarial attacks
in the pragmatic decision-based threat model; and iii) explore
more robust attacks, we summarize our contributions below:

1) Our study presents the first systematic investigation
of state-of-the-art decision-based attacks to understand
their robustness. Through extensive experiments, we
highlight the problem of hard cases where attackers
struggle to flip the prediction of images towards a target
class, even with increasing query budgets–see Fig. 2.

2) Motivated by our findings, we propose a new attack—
RamBoAttack—that is demonstrably more robust. We
propose a search algorithm analogous to Randomized
Block Coordinate Descent—BlockDescent—to address
the entrapment problem where gradient estimation fails
to provide a useful direction to descend and propose to
combine BlockDescent with gradient estimation frame-
works to attain query efficiency. In contrast to existing
approaches, BlockDescent focuses on altering local re-
gions of the input commensurate with the filter sizes
employed by DNNs to forge adversarial examples.

3) We provide new insights into query efficient mechanisms
for crafting adversarial perturbation to attack DNNs.
Our decision-based blackbox attack method relying on
localized alterations to inputs discovers effective adver-
sarial perturbations attempting to exploit the model’s
reliance on salient features of the target class to correctly
classify an input to a target label in the hard cases. We
illustrate clear correlations between perturbations found
and added to inputs, and salient regions on target class
images with the aid of a visual explanation tool.

4) Overall, RamBoAttack is a more robust and query
efficient approach for generating an adversarial example
of high attack success rate compared to existing coun-
terparts. Importantly, our attack method is significantly
less impacted by a starting image from a target class
accessible to an adversary.

5) Recognizing the need for reliable and reproducible eval-
uation strategies, we introduce two evaluation protocols
applied across CIFAR10 and ImageNet. We release
the datasets constructed for our extensive study to sup-
port future benchmarking of blackbox attacks under a
decision-based setting—https:// ramboattack.github.io/ .
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II. DECISION-BASED ATTACKS

In this section, we: i) formalize an adversarial attack as
an optimization problem; ii) revisit current state-of-the-art
methods; and iii) analyze the results to present some intuitions
into state-of-the-art attacks based on our observations.

A. Adversarial Threat Model

We adopt the threat model proposed in prior works [11],
[15], [6]. Under the decision-based blackbox setting, adver-
saries have no prior knowledge such as model architecture
or parameters but have limited access to the output of a
victim model—the model’s decision as illustrated in Fig. 1.
Furthermore, an adversary can make numerous queries to a
victim’s machine learning model via an access interface and
receive the model’s decision. The adversary must have at
least one image from a target class that is classified correctly
by the victim model if the adversary aims to carry out a
targeted attack. This image is the starting image used to
initialize the attack. The adversary also holds at least one
image from a source class correctly classified by the model.
The objective of the adversary is to discover the minimum
(imperceptible) perturbation—quantitatively measured by the
common distortion measure adopted in recent studies—to flip
the decision for the source image to the targeted class using
the minimum number of queries to the model.

B. Problem Formulation

Given a source image x ∈ RC×W×H its ground truth label
y from the label set Y = {1, 2, · · · ,K}, where K denote
the number of classes, C, W and H denotes the number of
channels, width and height of an image, respectively. Given
a pre-trained multi-class classification model f : x → y so
that f(x) = y, in a targeted attack, an adversary aims to
modify an input x to craft an optimal adversarial example
x∗ ∈ RC×W×H that is classified as the class label desired
by the adversary when used as an input for the victim model.
In an untargeted attack, an adversary manipulates input x to
change the decision of a classifier to any class label other than
its ground-truth label. To simplify the descriptions, we refer
to the desired class label as the target class while the class of
the input x is called the source class.

Measuring Distortion. l2-norm is widely adopted, in all of
the recent works as in [6], [7], [13], [14], [12], to measure
the distortion and similarity between a generated adversarial
example and the source sample. Therefore, in this paper, our
approach focuses on l2-norm. Then, let D(x,x∗) be the l2-
distance that measures the similarity between x and x∗.

Optimization Problem. The main aim of adversarial attacks
is to minimize the distortion measured by D while ensuring
the perturbed input data is classified as a target class—for
a targeted attack—or non-source class—for an untargeted
attack. Therefore, an adversarial attack can be formulated as
a constrained optimization problem:

min
x∗

D(x,x∗)

s.t. C(f(x∗)) = 1,

x,x∗ ∈ [0, 1]C×W×H ,

(1)

Here, C(f(x∗)) is an adversarial criterion that takes the value
1 if the attack requirement is satisfied and 0 otherwise. This
requirement is satisfied if f(x∗) 6= y for an untargeted attack
or f(x∗) = y∗ for a targeted attack (i.e. for the instance x∗

to be misclassified as targeted class label y∗).

C. Understanding Robustness

The two current query efficient attack methods employ
gradient approximation frameworks, whilst the earlier method
relied on a stochastic approach. We briefly summarize these
methods before delving into our systematic study to under-
stand their robustness.
Random Walk along a Decision Boundary. The first attack
under a decision-based threat model proposed by Brendel
et al. [6] initialized an image in a target class and in each
iteration, sampled a perturbation from a Gaussian distribution
and projected the perturbation onto a sphere around a source
image. If this perturbation yields an adversarial example, the
attack makes a small movement towards the source image
and repeats these steps until the decision boundary is reached.
Subsequently, by traveling along the decision boundary based
on sampling, projecting and moving towards the source image,
the adversarial example is refined until an adversarial example
with a desirable distortion is discovered.
Optimization Frameworks. In the absence of a means for
computing the gradient for solving (1), the attacks in [13]
and [14] attempt to solve the optimization problem using
methods to estimate the gradient. Cheng et al. [13] sam-
ples directions from a Gaussian distribution and applies a
zeroth-order gradient estimation method in their OPT-attack,
then Cheng et al. [14] leveraged their former optimization
framework and proposed a zeroth-order optimization algorithm
called Sign-OPT that is much faster to converge. Chen et
al. [11] introduced a different optimization framework named
HopSkipJumpAttack using a Monte Carlo method to find the
approximate gradient direction to descend.
Evaluating Robustness. To understand the robustness of
recent attack methods and illustrate the costly nature of
discovering low distortion adversarial examples with these
attacks, we propose an exhaustive but tractable experiment
using the relatively small number of classes albeit with a
significantly large validation set offered by CIFAR10 dataset.
The protocol for assessing robustness of each state-of-the-art
method described is carefully described in Appendix B.
Hard Cases. Empirically, we define a hard case as a pair of
source and starting images—the starting image is from a given
target class—where a given decision-based attack fails to yield
an adversarial example with a distortion below a desirable
threshold using a set query budget.
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Fig. 2. (Left) The number of hard cases from CIFAR10 found for Boundary Attack (BA), Sign-OPT and HopSkipJump categorized by different source and
target class (starting image) pairs at a distortion threshold = 0.9 and a 50,000 query budget. (Right) The line chart shows a significant difference between a
hard versus non-hard case; interestingly, increasing the query budget to even 100,000 does not yield a lower distortion adversarial example for the hard case.

D. Observations from Assessing Attacks

We make the following observations from our results sum-
marized in Figures 2 and 3.

Observation 1: Hard Cases. In decision-based attacks, spe-
cific classes and/or samples from classes are more difficult to
attack than others. As illustrated in Fig. 2(left), the current
attack methods are not uniformly effective against all pairs of
source and starting images from target classes.

Interestingly, any of the gradient estimation methods can
approximate the true gradient given enough queries (or sam-
ples) to the target model. However, solutions can become
entrapped in various local minima. Further, approaching a
local minimum or a plateau can considerably undermine the
quality of that approximation; for instance, estimated gradients
may become noisy when the gradient magnitude diminishes
whilst approaching a local minimum. As shown in Fig. 2
(right), even with 100K queries, the solutions based on the
gradient direction estimation methods do not improve the
distortion of the adversarial sample for the car classified as
a dog (Hard case).

Observation 2: Attack initialization. An attack algorithm’s
ability to find a low distortion adversarial example with a
given query budget is dependent on the starting image from
a target class selected for initializing the attack algorithm.
Interestingly, Chen et al. [11] in their S&P2020 paper briefly
noted the potential for an algorithm to get trapped in a bad
local minimum based on the starting image used to initialize
an attack. Our systematic study confirms this intuition.

In this case, the achievable distortion of an adversarial
example is highly dependent on the starting image and the
behavior of the algorithm. This observation is illustrated by
comparing the results of starting image 1 with image 2 for
different attack methods in Fig. 3 and by 100 samples ran-
domly selected from the hard set of each method—see Section
IV-C and IV-D for more details. The results demonstrates the
dependence of attack success on the starting image accessible
to an adversary.

Currently, there is no effective initialization method to
determine a good starting image, prior to mounting an attack.
Therefore, developing robust attack that is less sensitive to the
choice of starting image remains an open challenge.

Observation 3: Perturbation Region. Current attack ap-
proaches aim to perturb the whole image to traverse the deci-
sion boundary to find an adversarial example with minimum
distortion. In other words, these methods always manipulate
the whole image at a time and result in perturbations that
is spread over the entire image as illustrated by perturbation
heat maps in Fig. 3. Another interesting remark drawn from
these figures is that the main features (for example edges) of
the starting image remains super-imposed in an adversarial
example. However, most of the state-of-the-art classifiers in
computer vision utilize convolutional filters to extract local
patterns in an image; further, visual explanation tools demon-
strate the reliance of classifiers on key salient features of an
image. Therefore, whether an attack could achieve a lower
distortion adversarial example by targeting the filter operation
over local features in contrast to manipulation of the whole
image remains an interesting direction to explore.

E. An Intuition into Attack Methods

To understand and illustrate the underlying cause of the first
two observations, we use Boundary attack (BA) [6], Sign-
OPT [14] and HopSkipJump [11] to attack a Toy model. The
decision boundary of the Toy model in a 2D input space
illustrates a constraint of the optimization problem in (1).
This decision boundary is represented by g(z1, z2) = (z1 −
2)(z1 − 1)2(z1 + 1)3 − z2 = 0 where z1 and z2 denote two
coordinates of a point such as a starting point or a source
point as illustrated in Fig. 4. A point above the boundary is
classified as in target class; otherwise, it belongs to the source
class. The black dot (•) source point denotes a source class
example whilst black dot (•) starting point denotes a starting
target class example. All three methods are initialized with the
same starting point, we then employ the attacks to search for
an adversarial point within the target class and closest to the
source point; alternatively, we aim to solve the optimization
problem in (1), where the objective is to minimize the l2
distance to the source point subject to the constraint imposed
by the decision boundary, using these attack algorithms.

Fig. 4 illustrates several intermediate adversarial example
points denoted by blue dots and a final adversarial example
achieved by each method denoted by a yellow triangle for one
example attack execution. Given the stochastic nature of the
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10 different starting images from hard targets. It shows that all the attack methods are highly dependent on a starting image in hard cases.

algorithms, we execute each attack 100,000 times with differ-
ent random seeds. All of the methods, except HopSkipJump
fails to find the optimal solution—global minimum—and
HopSkipJump only managed to reach the optimal solution in
2.5 % of the attempts. As illustrated in Fig. 4, the approximate
gradient appears to be noisy and the methods traverses the
decision boundary in an incorrect direction towards the local
minimum rather than the global minimum. Although not
illustrated here, changing the starting coordinate can lead all
of these methods to discover the global minimum.

III. PROPOSED ATTACK FRAMEWORK

We observe that: i) gradient estimation methods in attacks
face an entrapment problem in a highly complex loss land-
scape; ii) current attacks focus on altering all of the coordinates
of an image simultaneously to forge a perturbation; and iii)
the success of current attacks are sensitive to the chosen or
available starting image possessed by an adversary.

We propose an analogous Randomized Block Coordinate
Descent method—named BlockDescent—that aims to manip-
ulate local features and target convolutional filter outputs by

modifying values of coordinates in a square-block region and
in different color channels with targeted perturbations. We
propose localized changes to affect convolutional filter outputs
and pixel values as a means of impacting on salient features
and may be even mimic salient features of the target. This
leads to potential redirection and escape from entrapment in
a bad local minimum with minimal but effective changes
to the image to mislead the classifier. In other words, we
propose taking a direct path along some coordinates towards a
source image whilst retaining the target class label to prevent
the problem encountered by gradient estimation methods—
entrapment in a local minimum as shown in Fig.4.

Further, when employing gradient estimation methods, the
gradient values decrease as we move closer to the source image
leading to increasingly larger number of perturbations needed
to converge. This issue is exacerbated if there is a plateau in the
decision boundary; now the gradient estimation methods are
as effective as a random search. We conjecture that the hard
cases are examples of where the gradient of the distortions are
generally small and, thus, leads to a local optima. However,
we observe that the gradient estimation methods are effective
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Fig. 4. 2D (z1 and z2) Input Space Example. An illustration of the execution of the three different decision based attack methods (Boundary, Sign-OPT
and HopSkipJump) to attack a toy model employing 2D inputs. The attacks result in different final solutions denoted by a yellow triangle (N). We executed
the algorithms 100,000 times; both Boundary Attack and Sign-OPT failed to find the global minimum (the Optimal Point closest to the Source point) and
HopSkipJump only found the global minimum 2.5% of the time. This illustrates the problem faced by current attack methods when attacking a machine
learning model whose decision boundary in the input space is multi-dimensional and highly complex for realistic and practical image inputs.
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Fig. 6. 2D (z1 and z2) Input Space Example. An illustration of our
RamBoAttack against the toy model in Fig. 4. If the first gradient estimation
method—GradEstimation in Algorithm 1—leads to entrapment in a local
minimum—denoted by x̃(1), · · · , x̃(4) at the start—there is no effective
mechanism to escape. However BlockDescent moves away from the local
minimum. This is illustrated by x̃(5), · · · , x̃(7) when the number of modified
coordinates is one in the 2D input space. Subsequently, the third component
applying a gradient estimation method searches for a better adversarial
example x̃(k) in the neighborhood region and reaches the nearly optimal
solution xa. In contrast to results in Fig. 4, when evaluating RamBoAttack
over 100,000 runs against the Toy model, we observed our attack to always
find the optimal or near optimal solution.

in two cases: (a) initial stages of optimizing Eq. (1) or (b)
at close proximity to the source image. In (a), the gradients
are sufficiently large to be estimated effectively, and in (b)
small changes and refinements (i.e. few perturbation iterations)
facilitate a decent to the optimum.

Consequently, we propose a new framework using gradi-
ent estimation for the initial descent—case (a)—supported
by BlockDescent to escape entrapment and noisy gradient
problems and refining the adversarial example supported by
a gradient estimation based descent to forge a robust and
query efficient attack. Importantly, BlockDescent is insensitive
to the choice of starting images, although it is effectively
initialized with a gradient estimation, because BlockDescent
manipulates blocks that causes a move away from the direction
set by a starting images. The new framework we propose,
RamBoAttack, is illustrated in Fig. 5.

Summary. Gradient estimation methods are fast but face
the potential problem of getting trapped in a bad local
minimum, particularly in hard cases. BlockDescent, on the
other hand, is slower—selecting to manipulate local regions—

but is capable of tackling the problems faced by gradient
estimation attacks. Therefore, we develop a hybrid framework
called RamBoAttack for query efficient decision-based attacks
that can exploit the merits of both approaches. In particular,
our derivative-free optimization method considers, for the first
time, an approach to manipulate blocks of coordinates in the
input image to influence the outcome of convolution operations
used in deep neural networks as a means for misguiding a
networks decision and generating adversarial examples with
minimal manipulations.

A. Approach

Our proposed attack thus comprises of BlockDescent and
two components of gradient estimation—GradEstimation—as
shown in Fig. 5 and described in Algorithm 1. The gradient
estimation algorithms used by these two components can be
the same or different from each other. When starting an
attack, particularly in targeted setting, the first component is
initialized with a starting image x̃ from a target class and
approaches the decision boundary via a binary search—the
first step in a gradient estimation method. We employ the
gradient estimation method to search for adversarial examples
until reaching its own local minimum. We call it a switch-
ing point xs because from this point, gradient estimation
method switches to BlockDescent. If the gradient estimation
method is entrapped in local minimum, BlockDescent helps
to move away from that local minimum. Subsequently, when
local changes are insufficient, the attack switches to the
third component to refine the adversarial example crafted by
BlockDescent which is considered as the second switching
point. This refinement aims to search for the final adversarial
example xa with a lower distortion.

Fig. 6 illustrates RamBoAttack against the Toy model used
in Section II-E and demonstrates the effectiveness of the
attack we propose. Particularly, the first gradient estimation
approach searches for and reaches the adversarial examples
x̃(1), x̃(2), x̃(3) at different steps towards approaching the
source point but is stuck at x̃(4) which is a local minimum
of the objective function D(x,x∗) subject to the constraint
defined by the decision boundary g(z1, z2). Henceforth, Block-
Descent searches for next adversarial examples x̃(5), · · · , x̃(7)

by modifying one coordinate at a time—in this 2D example—
by applying δ changes. Subsequently, the second gradient es-
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Algorithm 1: RamBoAttack

Input: source image x, starting image x̃, model f
gradient estimation function g1, g2, reduction scale λ,
input dimensions N ,square extension n,
block number m, query number T1, T2

1 xs ← GradEstimation (x, x̃, f, g1, T1)
2 xs ← BlockDescent (x,xs, f, λ,N, n,m)
3 xa ← GradEstimation (x,xs, f, g2, T2)
4 return xa

Algorithm 2: GradEstimation

Input: source image x, switching image xs, model f
gradient estimation function g, query number T

1 nq ← 0, switch← False
2 d← D(x,x′)
3 while not (switch) do
4 x′, i← g(f,x,x′)
5 nq ← nq + i
6 if nq > T then
7 ∆← d−D(x,x′), d← D(x,x′)
8 nq ← 0
9 if ∆ < εs then

10 switch← True
11 end while
12 return x′

timation method continues searching for adversarial examples
x̃(k) in the neighborhood areas until reaching the near optimal
xa. Most importantly, in contrast to experiment in Fig. 4
when evaluating RamBoAttack over 100,000 attacks on the
Toy model, our proposed attack always reached the optimal
or near optimal solution.
When to switch to BlockDescent? The gradient estimation
methods are designed to work alone rather than with other
methods. Therefore, we develop a sub-module GradEstimation
to call these methods and determine when to switch from
a gradient estimation method to BlockDescent. Empirically,
gradient estimation methods reach their local minimum when
they cannot find any better adversarial example after several
steps of searching. In practice, this can be determined by the
distortion reduction rate ∆ after every T queries—a time frame
to calculate ∆. However, in gradient estimation methods, the
number of queries per iteration is varied so we relax this
by accumulating the number of queries after each iteration.
Whenever it exceeds T , we compute ∆ and if this distortion
reduction rate is below a switching threshold εs, it switches to
BlockDescent (see Algorithm 2).

B. BlockDescent

We recognize that the architecture of most machine learning
models in computer vision is based on a Convolutional Neural
Network (CNN) built on convolution operations. These con-
volution operations are defined as c × q × q where q is the

Algorithm 3: BlockDescent

Input: source image x, switching image xs,model f
reduction scale λ, input dimension N
square extension n, block number m

1 k ← 0, nq ← 0, switch← False
2 δ ← Pi(|x− xs|), x̃(k) ← xs, Dnq ← D(x, x̃(k))
3 while not (switch) do
4 j ← 0
5 while j < N and not (switch) do
6 /* Craft a new sample */
7 x′ ← x̃(k)

8 for t = 1, 2, · · · ,m do
9 Uniformly select a set {c, w, h} at random

without replacement
10 x′Bt

← x′[c,w−n:w+n,h−n:h+n]
11 xBt ← x[c,w−n:w+n,h−n:h+n]
12 /* Perturbation region */
13 M ← sign(xBt − x′Bt

)
14 x′Bt

← x′Bt
+M × δ

15 end for
16 /* Evaluate crafted sample */
17 if Dnq > D(x,x′) then
18 nq ← nq + 1
19 if C(f(x′)) = 1 then
20 x̃(k+1) ← x′

21 k ← k + 1
22 Dnq ← D(x, x̃(k))
23 Compute ∆ using Equation 3
24 if ∆ < εs then
25 switch← True
26 j ← j +m
27 end while
28 δ ← δ

λ
29 end while
30 return x̃(k)

size of the filter and c is the number of channels to extract
local patterns of an image. Consequently, we hypothesize that
altering a block of coordinates as a square-shaped region
with an appropriate size can target significant filter outputs
potentially having a significant impact on the network’s deci-
sion. Perturbing these coordinates can result in an adversarial
example with fewer queries since we target regions of the
input to impact actual convolutional filters and potentially
discover salient features to mimic. Inspired by this, we adopt
a notion of square-block perturbation regions and introduce
BlockDescent that manipulates blocks of size n. BlockDescent
has two stages: i) crafting a sample; and ii) its evaluation as
described in Algorithm 3.

Crafting a Sample. In each iteration, the first stage of
BlockDescent aims to yield a sample x′ that is initialized
with x(k) which is an adversarial example at k-th step. To
increase convergent rate and reduce query number, BlockDe-
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scent modifies several blocks of coordinates concurrently. It
firstly selects m different coordinates across different channels
(R, G, B) of an image by choosing a set S = {S1, S2, · · · , Sm}
where St = {ct, wt, ht} is selected uniformly at random
such that ct ∈ [1, C], wt ∈ [1,W ] and ht ∈ [1, H], where
t = 1, 2, · · · ,m and C,W,H denote the number of channel,
width and height of an image. This random selection is
sampling without replacement and each selected coordinate
x′c,w,h is a center of a square block x′Bt

, where x′Bt
represents

x′[ct,wt−n:wt+n,ht−n:ht+n]
. Likewise, m corresponding blocks

xBt are yielded from the source image x. A mask M with the
same size as x′Bt

can be defined as M = sign(xBt−x′Bt
). This

mask is used to identify the direction of perturbation for each
element of a block x′Bt

. When each element of a block which
is a coordinate of an image is manipulated to move along
this direction, it tends to move towards to its corresponding
element in the source image. The sample x′ is crafted when
each of m blocks of coordinates is updated as below:

x′Bt
← x′Bt

+M × δ (2)

where δ is a scalar which denotes an amount of perturbation
for each element and it reduces by λ after each cycle. One cy-
cle is ended when all coordinates are selected for perturbation.
If δ is initialized with a small value, it is slow convergent and
results in query inefficiency from the beginning. Whilst, for
large initial δ, modifying blocks of coordinate almost leads to a
sample moving further from the source image from beginning
rather than moving closer. Consequently, it requires several
cycles until δ reduces to a suitable value. To tackle this issue,
we exploit the distribution of the absolute difference between
all coordinates of a sample and their corresponding coordinate
in a source image and use i-th percentile Pi of this distribution
to specify a proper initial δ. In Equation 2, only selected square
blocks are perturbed while the rest of x̃ remains unchanged.
Evaluate Crafted Sample. In the second stage, to ensure a
descent of distortion and improve query efficiency, a crafted
sample x′ is only evaluated by the victim model if it
moves closer to x. If the adversarial criteria is then satisfied
(C(f(x′)) = 1), the perturbation will make a change to update
the next adversarial example as x̃(k+1) = x′. Otherwise the
perturbation will be discarded.
Determining When to Switch to the Next Component. Sim-
ilar to the switching criterion of gradient estimation methods,
BlockDescent should switch to the next component when
it cannot find any better adversarial example that can be
empirically measured by distortion reduction rate ∆ per T
queries. However, we observe that BlockDescent is a gradient-
free optimization so ∆ is highly varied for each subsequent
query. As such we cannot simply apply the same criterion
as gradient estimation methods. Consequently, to determine
a better switching criterion for BlockDescent, we adopt a
smoothing technique based on Simple Moving Average to
measure the distortion reduction rate ∆. In practice, ∆ is
computed as follows:

∆← 1

T

nq−T∑
l=nq−2T

(Dl −D(l+T )) (3)

where Dl is a distance between x and x̃(k) at query l, nq
is nq-th query. If ∆ is smaller than a switching threshold εs,
BlockDescent switch to the next component.

IV. EXPERIMENTS AND EVALUATIONS

A. Experiment Settings and Summary

Attacks and Datasets. In this section, we evaluate the ef-
fectiveness of our RamBoAttack versus current state-of-the-art
attacks—Boundary attack (Boundary) [6], Sign-OPT [14] and
HopSkipJump [11] on two standard datasets: CIFAR10 [19]
and ImageNet [16]. All hyper-parameters of our RamBoAt-
tack are described in Appendix A and all of the evaluation
sets are described in Section IV-B, IV-C, Appendix B and C.
Models. For a fair comparison, for CIFAR10, we used the
CNN architecture used by Cheng et al. [13], [14] comprising
of of four convolutional layers, two max-pooling layers and
two fully connected layers. For evaluation on ImageNet, we
use a pre-trained ResNet-50 [17] provided by torchvision [22]
which obtains a 76.15% Top-1 test accuracy. In addition, all
images are normalized into pixel scale of [0, 1].
Evaluation Measures. To evaluate the performance of
method, prior works use different metrics such as a score
based on the median squared l2-norm [6] and median l2-norm
distortion versus the number of queries [14], [11]. However,
median metric is not able to highlight the existence of the
so-called hard cases and their impact on the performance of
an attack so the evaluation may be less reliable. Therefore, in
addition to median, we report average l2-norm distortion. We
also adopt Attack Success Rate (ASR) used in [11] to measures
the attack success of crafted adversarial samples, obtained with
a given query budget, at various distortion limits.
Gradient Estimation Selection for RamBoAttack. We ap-
ply two state-of-the-art gradient estimation methods, Hop-
SkipJump and Sign-OPT, and derive two RamBoAttack at-
tacks: i) RamBoAttack (HSJA), composed of HopSkipJump,
BlockDescent and Sign-OPT; and ii) RamBoAttack (SOPT),
composed of Sign-OPT and BlockDescent. We do not use
HopSkipJump for the second gradient descent stage because
we observe Sign-OPT to be more effective at refining adver-
sarial samples—as also observed in [14].
Experimental Regime. We summarize the extensive experi-
ments conducted with CIFA10 and ImageNet datasets. All
experiments are performed on one RTX TITAN GPU and one
2080Ti GPU. The total running time for all experiments is
approximately 1,826 hours.
• Robustness of RamBoAttack: Given the observations in

Section II-D, we aim to investigate the robustness of our
RamBoAttack by assessing the existence of a hard set for
our RamBoAttack. We execute the exhaustive evaluation
protocol used in Section II-D and compare results with
state-of-the-art attacks in Section IV-B.
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• Attacking Hard Sets: Most attacks demonstrate impres-
sive performance in non-hard cases whilst struggling with
hard cases. Therefore, we compare and demonstrate the
performance differences—in terms of query efficiency,
attack success rate and distortion—that exists on hard
evaluation sets in Section IV-C.

• Impact of the Starting Image: We observed the impact
of the starting image from the target class on the success
of the attack in Section II-D. Hence, the exhaustive
experimental evaluations in Section IV-D explores the
sensitivity of an attack’s success to the choice of the
attacker’s starting image. An important consideration to
evade detection when trial-and-error testing of starting
images are needed to find easy samples or when access
to samples (source or target class) are restricted.

• Attack Insights: We observed clear correlations between
perturbations yielded by our RamBoAttack and salient
regions of target images embedded inconspicuously in
adversarial examples. Section IV-E investigate these arti-
facts resulting from the localized perturbation method in
BlockDescent.

• Attacks Against Defended Models: Decision-based attacks
are able to fool standard models. This naturally leads to
the critical question of whether or not such attacks are
able to bypass defensed models. Thus, the experiments in
Section IV-F aim to investigate the robustness of decision-
based attacks against defense mechanisms.

• Validation on Balance Datasets: Constructing hard and
non-hard sets for all decision-based attack methods
through exhaustive evaluations to assess robustness is
extremely time consuming. Therefore, we propose a
reliable and reproducible attack evaluation strategy to
validate robustness. We differ the proposed evaluation
protocol and results to Appendix C and release all of
the constructed sets for comparisons in future studies.

• Untargeted Attack Validation: In addition to targeted
attacks, for completeness, we evaluate our RamBoAt-
tack and other state-of-the-art attacks on CIFAR10 and
ImageNet under the untargeted attack setting. We defer
these results to Appendix D.

B. Robustness of RamBoAttack
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Sign-OPT

RamBoAttack (SOPT)
RamBoAttack (HSJA)

Distortion

Fig. 7. The number of hard cases
found for Sign-OPT, HopSkipJump and
RamBoAttack over a range of distor-
tion thresholds with a budget of 50,000
queries (detailed results are in Appendix I
& Fig. 32).

We carry out a compre-
hensive experiment, sim-
ilar to that in Section
II-D. In this experiment
we use a range of dis-
tortion threshold of 0.7
to 1.1. Notably, both [11]
and [14] reported their
methods to achieve a dis-
tortion level below 0.3 af-
ter 10,000 queries; hence
our proposed values are
not guaranteed to discover
hard cases because the

smallest value, 0.7, is much higher than 0.3 achieved in other
studies. The main aim is to illustrate how our RamBoAttacks
are able to craft more adversarial example with distortions
below a range of distortions from 0.7 to 1.1 for each sample
of the entire CIFAR10 test set. We compare the performance
of the RamBoAttack with Sign-OPT and HopSkipJump. Fig.
7 shows a remarkably low number of hard cases for the
RamBoAttack. The total number of hard cases achieved for
our RamBoAttack is approximately 10 times lower for the
distortion ranges from 0.9 to 1.1. For distortion at 0.7 and
0.8, the number of hard cases drops approximately 2 times
and 5 times, respectively in comparison with the other attack
methods. Interestingly, as expected, hard pairs encountered by
Sign-OPT and HopSkipJump are resolved with RamBoAttack
as shown in Appendix I—see Fig. 32.

C. Attacking Hard Sets

Boundary Attack HopSkipJump & Sign-OPT 

K K K K K K K K K K

Number of queries Number of queries
D
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Hard set A
Non-hard set C

Sign-OPT HopSkipJump
Hard set B
Non-hard set C

Hard set B
Non-hard set C

Fig. 8. A distortion comparison versus queries for each method using their
own hard versus non-hard cases.

Evaluations on CIFAR10. From CIFAR10 test set, we
generate a hard set for Boundary Attack called hard-set A
and another hard set for both Sign-OPT and HopSkipJump
called hard-set B. The hard-set A and B are composed of 400
hard sample pairs of a source image and a starting image. A
hard sample is selected when a distortion between a source
image and its adversarial example found after 50,000 queries is
larger than or equal to 0.9. For a fair comparison, each method
is employed to craft an adversarial example for each source
image initialized with a given starting image. In addition, we
also construct a common non-hard set for all three attacks
called non-hard set C to compare and highlight the significant
difference between evaluation results on hard and non-hard
sets as shown in Fig. 8. In particular, Fig. 8 illustrates that the
average distortion versus queries on the common non-hard
set C achieved by these methods is significantly lower than
that obtained on theirs own hard set after 50,000 queries.

We evaluate our RamBoAttack on hard-set A & B. Fig. 9
shows that Boundary Attack, Sign-OPT and HopSkipJump do
not efficiently find an adversarial example with low distortion;
however, RamBoAttack can achieve better performance on
the hard-sets. We defer detailed evaluations on non-hard-
sets to Appendix C; as expected, RamBoAttack performs
comparably-well on these sets. Histogram charts in Fig. 10
demonstrate that for each hard-set, our attacks are able to find
lower distortion adversarial examples for most hard cases and
the distortion distribution on both hard-sets: i) are shifted to
smaller distortion regions; and ii) show significantly smaller
spread or variance.
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Fig. 9. Distortion (dist) on a log10 scale vs number of queries. The first row shows the results for our RamBoAttacks versus Boundary attack on hard-set A
whilst the second row illustrates the results for our RamBoAttacks versus HopSkipJump and Sign-OPT on hard-set B. Our RamBoAttacks are more query
efficient in hard cases. Hence our attack is demonstrably more robust and query efficient.
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Fig. 10. On both hard-set A and B selected from CIFAR10, the distortion
distribution yielded by our RamBoAttacks are shifted left and indicates an
overall smaller distortion compared to other attacks.
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Fig. 11. Distortion in a log10 scale vs number of queries on hard-set D.
Our RamBoAttack is more query efficient and achieves a higher ASR on this
hard-set. Hence, our attack is demonstrably more robust and query efficient.

Although we observe RamBoAttack to result in fewer hard
samples in comparison to other methods at various distortion
thresholds, we construct a hard set for RamBoAttack called
hard-set D based on the same criteria used to generate hard-
set A and B to assess if the hard-set for RamBoAttack could

somehow be easier for the other attack methods. The total
number of samples for this set is 115 sample pairs because
RamBoAttack has a much lower number of hard cases than
their counterparts (namely BA, HopSkipJump and Sign-OPT)
at a given distortion threshold as illustrated in Fig. 7. We
summarize the results from our evaluations in Fig. 11. As
expected, RamBoAttacks are more query efficient and are
able to craft lower mean and median distortion adversarial
examples as well as achieve higher attack success rates at both
query budgets. In particular, at distortion levels above 1.0,
in comparison to other attacks, RamBoAttacks obtain much
higher attack success rates—notably, with significant margins
at the lower query budget of 25K, since RamBoAttacks
employ BlockDescent when the gradient estimation method
is unable to make progress (potentially being stuck in a bad
local minimum), to discover better solutions and craft lower
distortion adversarial samples.
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Fig. 12. Distortion (dist) in a log10 scale vs number of queries on hard
ImageNet evaluation sets. The results on the hard-set show our RamBoAt-
tacks are more query efficient. Hence our attack is demonstrably more robust
and query efficient.

Evaluation on ImageNet. To demonstrate the robustness of
our attacks on a large scale model and dataset, we compose a
hard-set with 120 hard sample pairs from ImageNet. A hard
sample is selected when a distortion between a source image
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Fig. 13. On the hard-set selected from ImageNet, the distortion distributions
yielded by our RamBoAttacks indicate an overall smaller distortion compared
to other attacks. The distributions is shifted to the left and has significantly
less variance compared to other attacks.

and its adversarial example found after 50,000 queries by Sign-
OPT and HopSkipJump is larger than or equal to 15. Notably,
we do not compose a hard set for Boundary Attack because
it cannot yield low distortion adversarial examples efficiently
on large scale datasets. Fig. 12 demonstrates that our Ram-
BoAttacks outperform both Sign-OPT and HopSkipJump on
the hard-set. We defer detailed evaluations on non-hard-sets to
Appendix C; notably, RamBoAttacks achieve improved results
on the more complex ImageNet dataset. The histograms in
Fig. 13 show distortion distributions for our attacks shifted
significantly to smaller distortion regions with smaller variance
and fewer outliers compared to other attacks.

D. Impact of Various Starting Images
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Fig. 14. An illustration of the sensitivity of different attacks to various
starting images. Each method is evaluated on each subset and the charts
show the average and variance of distortion for each subset achieved by
different methods. y-axis denotes the average distortion while the size of each
bubble denotes the distortion variation. Compared with Boundary, Sign-OPT
and HopSkipJump attacks, our RamBoAttacks are much less sensitive to the
choice of a starting image.

In this experiment, we first compose subset A and B by
selecting 100 random hard sample pairs from hard-set A
and B, respectively (see Section IV-C for these sets). Our
RamBoAttacks are compared with Boundary attack on subset
A and with Sign-OPT and HopSkipJump, on subset B. In
Section IV-C, each method needs to yield an adversarial
example for a pair of a given source image and a given starting
image. In contrast, in this experiment, the given starting image
is replaced by 10 starting images randomly selected from the
CIFAR10 evaluation set and correctly classified by the model.
All evaluations are executed with a 50K query budget.

In Fig. 14, the size of a bubble denotes the standard
deviation while y-axis indicates average distortion. We can
see that our RamBoAttacks consistently achieve smaller mean
and standard deviation than Sign-OPT, HopSkipJump and
Boundary Attack on subset A and B. A robust method should
be less susceptible to the selection of a starting image and
yield a low distortion adversarial example most chosen starting
images. We can observe from Fig. 14 that our RamBoAttacks
are more robust than Sign-OPT, HopSkipJump and Boundary
attacks as a consequence of being less sensitive to the chosen
starting images. For completeness, we also carry out this
experiment on the non-hard subset C—please see Appendix E.

E. Attack Insights

Perturbation Regions. First, we develop a simple technique
to transform a perturbation with size C × W × H to a
Perturbation Heat Map (PHM) with size W × H that is
able to visualize perturbation magnitude of each pixel. This
transformation is defined as:

PHMi,j ← Ai,j/max(A), (4)

where Ai,j =
∑C
c=1 |(x − xa)c,i,j |; c ∈ [1, C], i ∈ [1,W ]

and j ∈ [1, H]. Second, since Grad-CAM [26] is a popular
visual explanation technique for visualizing salient features in
an input image to understand a CNN model’s decision, we
use it to investigate the adversarial perturbations generated by
our attack and the salient features in the target image largely
responsible for a model’s decision for the classification of an
input to a target class.

Grad CAM
Tool

Grad CAM result

Sign-OPT HopSkipJump Ours

Starting Image (    )Source Image (    )

Boundary

Fig. 15. Grad-CAM tool visualizes salient features of the starting image
or target class: digital watch. Perturbation heat map (PHM) visualizes
the normalized perturbation magnitude at each pixel. Comparing different
perturbations crafted by different attacks highlights that the localized pertur-
bations yielded by RamBoAttack concentrate on salient areas illustrated by
GRAD-CAM and embeds these targeted perturbations in the source image to
fool the classifier to predict the target class; even though, RamBoAttack does
not exploit the knowledge of salient regions to generate perturbations—see
additional examples in Appendix Fig. 29

In all methods, we observe the attacks to embed the target
image in the source image in a deceptive manner. However,
in hard cases, based on PHM and Grad-CAM outcomes, we
observe a strong connection between adversarial perturbations
found and salient regions in starting images as illustrated in
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Fig. 15 for RamBoAttacks. It shows that our RamBoAttacks
are able to discover and limit manipulations of pixels to salient
regions responsible for determining the classification decision
of an inputs to the target class to craft adversarial examples.
These salient regions consist of the most discriminative lo-
cal structures of a starting image against a source image.
Because BlockDescent is able to manipulate local regions,
RamBoAttacks are able to exploit only these discriminative
regions and employ less adversarial perturbations than Sign-
OPT and HopSkipJump to promote features of a starting image
and suppress the feature of the source image. Therefore, it
may shed light on why RamBoAttacks with the BlockDescent
core component are able to tackle the so-called hard cases.
Moreover, in hard cases, we observe that our RamBoAttacks
are able to yield perturbations with more semantic structures
when compared with Sign-OPT or HopSkipJump.

Visualization of ImageNet Hard versus Non-hard
Cases. Fig. 16 illustrates adversarial examples in non-hard
cases and hard cases yielded by Boundary Attack, Sign-OPT,
HopSkipJump and our RamBoAttack (HSJA) after 50K and
100K queries, respectively. The second row of Fig. 16 shows
each corresponding adversarial example and the third row
illustrates PHM of each adversarial example. The last row
shows the l2 distortion between each adversarial example and
the source image.

For the adversarial example of non-hard cases, all methods
are able to craft low distortion adversarial examples except
Boundary attack. These adversarial examples and their cor-
responding distortions are comparable. On the contrary, ad-
versarial examples in hard cases yielded by Boundary Attack,
Sign-OPT and HopSkipJump have noticeably higher distortion
than the one crafted by our attack. We observe Boundary
Attack, Sign-OPT and HopSkipJump to experience potential
entrapment when searching for a low distortion adversarial
example, even when the budget is increased to 100K queries.

Convergence. The problem considered in this paper is non-
convex and non-differentiable. As such, providing a guaran-
teed global minimum is not possible. However, our insight is
that the gradient estimation in blackbox attacks is unreliable
particularly in the vicinity of the local minima. To remedy the
problem, we propose RamBoAttack as a generic method to
overcome this issue. We employ a gradient estimation method
in the initial descent using any of the existing alternatives
(before BlockDescent) and subsequently in the refinement
stage (after BlockDescent). Hence, employing the gradient es-
timation in [14], for instance, would imply that the theoretical
convergence analysis therein is still valid for our method.

F. Attacks Against Defended Models

In this section, we evaluate the robustness of various attacks
against three different defense mechanisms including region-
based classification, adversarial training and defensive distil-
lation. We choose these defense methods due to their own
strengths; to illustrate, region-based classifiers can pragmati-
cally alleviate various adversarial attacks without sacrificing

classification accuracy on benign inputs [8] whilst adversar-
ial training [21], [29] is one of the most effective defense
mechanisms against adversarial attacks [5] and defensive dis-
tillation [25] employ’s a form of gradient masking.

For a baseline, we choose C&W attack [9], a state-of-the-art
white-box attack. The adversarial training based models used
in this experiment is trained with Projected Gradient Descent
(PGD) adversarial training proposed in [21]. The experiment
is conducted on the balance set withdrawn from CIFAR10
described in Appendix C. We evaluate our RamBoAttack
and current state-of-the-art decision-based attacks at different
query budgets: 5K, 10K and 25K.

Based on the results, deferred to Appendix F, we observe
that RamBoAttacks are more robust than Boudnary, Sign-OPT,
HopSkipJump and even C&W (white-box attack baseline)
when attacking a region-based classifier. In attacks against
models using adversarial training and defensive distillation,
RamBoAttacks are able to achieve comparable performance
to Sign-OPT and HopSkipJump but outperform Boundary and
C&W attack—white-box attack baseline.

V. RELATED WORK

Transfer Approaches. Malicious adversaries are able to
exploit transferability of adversarial example generated on an
ensemble DNN to attack against a target neural network as
shown by Liu et al. [20]. Papernot et al. [23] introduced
a transfer attack by training a surrogate model with output
queried from a target model. Even though this approach does
not require prior knowledge and full access to a model, it
must have access to a full or partial training dataset in order
that they can train a surrogate model to synthesize adversarial
examples. Moreover, for complex target models, the transfer
approach has limited effectiveness [27].

Random Search Approaches. In decision-based setting,
Brendel et al. [6] and Brunner et al. [7] proposed Bound-
ary Attack (BA) and Biased Boundary Attack (Biased BA)
respectively that require limited information and access to
a target DNN model such as top-k predicted labels. Instead
of searching on Gaussian distribution like BA, Biased BA
exploits low frequency perturbations based on Perlin Noise
and combines with regional masking as well as gradients
from surrogate models. Even though both of them work
surprisingly well, they do not gain query efficiency and require
a large number of queries to explore a high-dimensional space.
Another attack method introduced by Ilyas et al. [18] exploits
discretized score based on the ranking of the adversarial label.
However, since this method requires top k sorted label results
from a deep learning model to estimate the discretized score,
it cannot work in top 1 label scenario like BA or Bias BA.

Optimization Approaches. In score-based scenario, attackers
can query a deep learning model to receive probability outputs
or confident scores. Therefore, Chen et al. [12] can formulate
an optimization problem to directly optimize an objective
function based on these outputs. This method is considered
as a derivative-free optimization method. Nevertheless, in the
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Fig. 16. An illustration of a non-hard case (white stork to goldfish) versus a hard case (white stork to digital watch) on ImageNet.
Adversarial examples in non-hard cases and hard cases are yielded after 50K and 100K queries, respectively. Except for Boundary attack, adversarial examples
crafted by different attacks in non-hard cases are somewhat different whilst in the hard case, our RamBoAttack is clearly able to craft an adversarial example
with much smaller distortion than other attacks due to the ability of our BlockDescent formulation to target effective localized perturbations.

decision-based setting, adversaries have no access to confident
scores or class probability to gain gradient information. Hence,
the formulated optimization problem proposed by Chen et al.
[12] cannot be applied. In Section II-C we discuss in detail
optimization-based framework under decision-based setting
and refer the reader to the section for further details.

VI. CONCLUSION

Overall, we propose a new attack method in a decision
based setting; RamBoAttack. In contrast to modifying a whole
image as in current attacks, we exploit localized perturbations
to yield more effective and low distortion adversarial examples
in the so-called hard cases. Our empirical results demonstrate
that our attack outperforms current state-of-the-art attacks.
Interestingly, while the main proposed component, BlockDe-
scent, is able to significantly improve the performance and
robustness of attacks in the so-called hard cases, it does not
degrade performance in non-hard cases. As a result, validation
results on small and large scale evaluation sets demonstrate
that RamBoAttack is more robust and query efficient than
current state-of-the-art attacks.
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APPENDIX A
HYPER-PARAMETERS AND IMPACTS

Gradient Estimation: The main hyper-parameter nt used in
gradient estimation method is to control when the first compo-
nent terminates and switches to BlockDescent. In practice, we
keep track of query numbers executed and distortion between
the source image and a crafted sample per iteration. This
information is then used to determine distortion reduction rate
∆ over T queries. On CIFAR10, if applying HopSkipJump
or Sign-OPT to the first component, T = 500 or 400, respec-
tively while on ImageNet, T = 2000 or 1000, respectively.

BlockDescent: The hyper-parameters used are n = 1, initial
δ = Pi(|x − xs|), m = 1, λ = 1.2, εr = 0.01, εs = 0.01 for
GradEstimation, εs = 0.01 for BlockDescent, T = 500 and
Pi = P100. For the larger dataset, ImageNet, the changes
are: m = 16, λ = 2, εr = 0.1, εs = 1 for GradEstimation,
εs = 0.1 for BlockDescent, T = 1000 and Pi = P50.
The impact of parameter λ: The key parameter that may
influence BlockDescent is λ because it controls the step size
(or perturbation magnitude δ) for each cycle (see line 28 in
Algorithm 3). For example, λ is used to determine the step
from x(4) to x(5) in Fig. 6. If λ is small, δ reduces slightly and
thus remains relatively large after each cycle. Consequently
BlockDescent takes large movements that are likely to yield
large magnitude adversarial examples and/or miss the optimal
solution. Alternatively, it may cross the decision boundary into
an undesired class (source image class in a targeted attack).
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Fig. 17. A comparison between Ram-
BoAttack with different values of λ on
100 source and target class sample pairs
selected from ImageNet.

In contrast, if λ is large,
BlockDescent takes finer
steps to yield adversarial
samples whilst moving to-
wards the source image
and likely stay in the de-
sired class (target class in
a targeted attack) Never-
theless, the empirical result
with 100 pairs of source
and target class images
on ImageNet shown in
Fig. 17 illustrates that the

overall performance of RamBoAttack is not greatly affected by
λ and at λ = 2, RamBoAttack achieves the best performance.

APPENDIX B
PROPOSED ROBUSTNESS EVALUATION PROTOCOL

0 0

1

2

m

1

n

n samples
(source)

m classes
(target)

2
... ...

Starting image pool 
(different target classes)

Select 
the best

0

1

p

2
...

Fig. 18. The proposed evaluation pro-
tocol for assessing robustness under an
exhaustive evaluation setting. In this
mode, each sample from a dataset with
size of n is evaluated to obtain an
adversarial example for that sample ca-
pable of flipping its predicted label to m
different target classes from that dataset.
For each attack, a starting image is se-
lected from a pool of p starting images.

An attack method is
mounted to change the
true prediction of the DNN
from its ground truth label
for a given source sample
image to each of the differ-
ent different target classes.
For CIFAR10 with ten
classes, an attack method
selects each of the 1000
test set samples for a given
class as a source image and
attempts to find an adver-
sarial example for each of
the other target classes (of
which there are 9). Conse-
quently, we evaluate 90,000
pairs of source and starting

images. Since there is no effective method to choose a starting
image from a target class, for a fair evaluation, we apply the
same protocol used in [13], [14] to initialize an attack for
each method. We execute each attack with a query budget
of 50K queries. Then we identify hard cases of each attack
method against the victim model (detailed in Section IV-A).
This protocol can be generalized to other datasets by choosing
n samples and m different target classes from that dataset
where each target class has its own starting image as shown
in Fig. 18.

APPENDIX C
PROPOSED VALIDATION PROTOCOL FOR BALANCED SETS

AND RESULTS ON NON-HARD SETS

Evaluation protocol. The second research question highlights
a need to evaluate the overall performance of various blackbox
attacks under decision-based settings reliably. On CIFAR10,
most previous works propose to choose a random evaluation
set with randomly sampled images with label y and select
a random target label ỹ [14] or set ỹ = (y + 1) mod
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Fig. 19. The proposed evaluation protocol requires a balance dataset including
n source classes and a balance target set comprising of n corresponding
groups. On balance source set, all source classes have an equal number of
samples (k) while all n corresponding groups have an equal number of target
classes (m). These target classes are different within a group but can be
repeated in other groups. From these groups Gn, a starting image is selected
from a pool of p starting images.

10 [6], [7], [13]. Nonetheless, these selection schemes may
lead to an imbalanced dataset that is insufficient to evaluate the
effectiveness of the attack since it may lack the so called hard
cases that occur more frequently with specific pairs of classes.
As a result, it may lead to a bias in evaluation results and fail
to highlight potential weaknesses of an attack. Consequently,
were were motivated to propose a more robust and reliable
evaluation protocol and illustrate it in Fig. 19.
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Fig. 20. A comparison between three current state-of-the-art attacks and
RamBoAttacks on a balance set selected from CIFAR10.
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Fig. 21. A comparison between three current state-of-the-art attacks and
RamBoAttacks on a large scale balance set selected from ImageNet.

TABLE I
SUMMARY COMPARISON AMONG ATTACKS WITH RAMBOATTACK ON

SMALL AND LARGE SCALE BALANCE DATASETS.

Query Methods CIFAR10 ImageNet
budget Mean Std Median ASR(ε=0.3) Mean Std Median ASR

25K

Boundary 0.674 0.654 0.499 22.6% 31.80 18.43 32.88 5.5%
HopSkipJump 0.507 0.748 0.296 50.8% 11.91 8.39 10.87 51.4%

Sign-OPT 0.526 0.754 0.286 53.6% 14.21 11.52 9.81 46.3%

RamBo. (HSJA) 0.336 0.218 0.283 54.0% 11.33 8.0 8.62 53.1%
RamBo. (SOPT) 0.363 0.359 0.282 54.1% 11.25 9.47 9.62 57.5%

50K

Boundary 0.399 0.404 0.319 45.2% 23.73 15.65 20.71 16.6%
HopSkipJump 0.460 0.683 0.273 55.3% 7.09 5.11 4.87 82.0%

Sign-OPT 0.420 0.562 0.267 59.1% 7.79 7.84 5.87 73.3%

RamBo. (HSJA) 0.300 0.178 0.260 59.9% 4.80 3.70 3.92 93.1%
Rambo. (SOPT) 0.306 0.193 0.261 60.11% 5.02 4.57 3.84 92.3%

On balance sets: A balance set comprises of a balanced source
set and a balanced target set. Both sets are composed of N
different source classes and N corresponding groups. Each
group is composed of m different target classes and all source
and target classes are randomly chosen from all classes of a
test set. In addition, all target classes are different within a
group but can be repeated in other groups. Each source class
has n samples selected randomly from a test set. Adversaries
may have one or several images from each target class and
select one to initialize an attack. Each attack method aims to
craft an adversarial example for every selected sample from
each source class and flip its true prediction towards every
target class given in the corresponding group of balanced target
set. The total number of evaluation pairs is N × n ×m. For
instance, every sample of source class i (img: i1, i2, · · · , in)
is flipped towards each target class (class: i1, i2, · · · , im) in
the corresponding group i (see Fig. 19).

Balanced Set with CIFAR10. It is simple to carry out a
comprehensive evaluation over all classes, so we choose N=10,
n=10 and m=9. In addition, to demonstrate the query efficiency
and effectiveness of each attack, we employ a query budget
of 25K and 50K across all experiments. RamBoAttack obtain
slightly better median and mean distortion than HopSkipJump
and Sign-OPT at 25K and 50K, as shown in Table I. On the
standard deviation metric used to measure distortion variance
across an evaluation set, our RamBoAttack outperform Bound-
ary, HopSkipJump and Sign-OPT at query limit of 25K and
50K. In order words, our attack performs robustly across the
evaluation set.

Balanced Set with ImageNet. ImageNet has 1000 distinct
classes, hence carrying out a comprehensive evaluation like
on CIFAR10 requires huge computing resources and time.
Therefore, we choose N=200, n=1 m=5 and limit the query
budget to 25K and 50K. The average distortion (on a log10

scale) against the queries and attack success rate (ASR) at 25K
and 50K query budgets achieved by RamBoAttack is better
than Boundary, Sign-OPT and HopSkipJump attacks as seen
in shown in Fig. 21. As shown in Table I, on average dis-
tortion metric, RamBoAttacks obtain better result and achieve
significantly smaller standard deviation of distortion overall.
On non-hard sets: In this section, we evaluate the perfor-
mance of SignOPT, HopSkipJump and our RamBoAttacks on
both CIFAR10 and ImageNet non-hard set. The common
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Fig. 22. A comparison between three current state-of-the-art attacks and
RamBoAttacks on a non-hard set C selected from CIFAR10. In non-hard
cases, we perform comparably.
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Fig. 23. A comparison between three current state-of-the-art attacks and
RamBoAttacks on a non-hard set selected from ImageNet. In non-hard
cases, RamBoAttacks improve attack performance by yielding more effective
adversarial examples notable in ASR results.

non-hard set C drawn from CIFAR10 for all methods is
composed of 400 non-hard sample pairs. They are selected
such that a distortion between a source image and its ad-
versarial example found after 50K is smaller or equal 0.6.
Likewise, a non-hard set from ImageNet is composed of
120 non-hard sample pairs and the distortion threshold to
select these is is 7. Fig. 22 and 23 show that our attack has
comparable performance to SignOPT and HopSkipJump on
CIFAR10 non-hard subsets whilst demonstrating improved
attack performance by yielding more effective adversarial
examples, especially with a 50K query budget, as seen in the
higher attack success rates obtained by RamBoAttacks.

APPENDIX D
UNTAGETED ATTACK VALIDATION
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Fig. 24. Comparing between three state-of-the-art attacks and RamBoAttacks
on the balance set selected from CIFAR10 under an untargeted setting.

Here, we evaluate our RamBoAttack and other state-of-the-
art attacks on two different balanced sets from CIFAR10 and
ImageNet as described in Appendix C under an untargeted
scenario, for completeness. First, on the balance set from
CIFAR10, our attacks can achieve comparable performance
with Sign-OPT and HopSkipJump and obtain approximately
97% success rate at a distortion of 0.5 on a 25K query
budget (see Fig. 24); notably, our attack method outperforms
Boundary attack. In contrast, on the balance set selected
from ImageNet, we observe that our methods can achieve
comparable performance with Sign-OPT but outperform Hop-
SkipJump and Bourndary attacks as shown in Fig. 25.
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Fig. 25. Comparing between three current state-of-the-art attacks and Ram-
BoAttacks on the balance set from ImageNet under untargeted setting.

APPENDIX E
IMPACT OF STARTING IMAGES
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Fig. 26. An illustration of the sensitivity of different attacks to various chosen
starting images. Size of each circle denotes standard deviation and y-axis
indicates the mean distortion. The results are from the CIFAR10 balance set
and a non-hard subset from non-hard set C. Compared with Boundary, Sign-
OPT and HopSkipJump attacks, our RamBoAttacks are much less sensitive to
the choice of starting image in general. On non-hard cases, all of attacks can
achieve comparable results. Hence our attack is demonstrably more robust.

In this section, we first compose a non-hard subset with
100 random non-hard sample pairs selected from non-hard
set C. We also compose a balance subset from the balance set
described in Appendix C. We then evaluate our RamBoAt-
tack, Sign-OPT, HopSkipJump and Boundary attack on these
subsets. To conduct this experiment, for every source image,
a target class image is selected from 10 different randomly
selected starting images and these attacks are executed with a
query budget of 50K. We calculate the mean and standard de-
viation of distortion for each sample to measure the robustness
of each attack to yield adversarial examples for each source
image and 10 target class pairs.

In Fig. 26, size of each bubble denotes the standard devia-
tion while the y-axis indicates mean distortion value. We can
see that, on the non-hard subset, the RamBoAttacks are able to
achieve comparable result to all of the state-of-the-art methods.
On the balance subset, our RamBoAttacks can achieve sig-
nificantly less variance (smaller bubbles) at lower distortions
while most results achieved by Sign-OPT, HopSkipJump and
Boundary indicate larger variance (larger bubbles) and higher
distortions. Consequently, our RamBoAttacks are more robust
than Sign-OPT and HopSkipJump and less sensitive to the
chosen starting image.

APPENDIX F
ATTACKS AGAINST DEFENDED MODELS

In this section, we illustrate the results that we briefly
mention in Section IV-F. Fig. 27 shows that the average
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Fig. 27. Performance comparisons between different state-of-the-art attacks
and RamBoAttacks against a region-based classifier on CIFAR10. RamBoAt-
tacks outperforms other blackbox attacks and is able to craft significantly
more effective adversarial examples of lower distortion against the defense
method as seen by the higher ASR results against the defended models from
RamBoAttacks across all of the evaluations.
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Fig. 28. ASR comparison between white-box (employed as a baseline) and
current decision-based attacks versus our RamBoAttack against Adversarial
Training model and Defensive Distillation on CIFAR10 (using the balanced
set). Interestingly, RamBoAttacks are more effective than the white-box attack
method baseline, and are slightly more robust under different query settings
when compared to other decision-based blackbox attacks.

and median distortion (on a log10 scale) achieved by Ram-
BoAttacks are significantly lower than BA, Sign-OPT and
HopSkipJump. In addition, our attack outperform others in
terms of attack success rate (ASR) at 25K—i.e. achieves
higher ASR on defended models under different query budgets
and distortion thresholds. Based on these results, we observe
our attack is more robust than exiting attacks when mounting
an attack against region-based classifiers.

The reason for this is that existing attack methods need
to follow the decision boundary where region-based classi-
fiers are capable of correcting its prediction by uniformly
generating a large amount of data points at random and
returning the most frequent predicted label. This capability
of region-based classifiers prevents binary search in Sign-
OPT and HopSkipJump from specifying the boundary exactly
and results in noisy and coarse boundary estimations that
cause all attack methods aiming to walk along the boundary
to fail to estimate a useful gradient direction. Nevertheless,
our RamBoAttacks are able to break this defense mechanism
because the core component, BlockDescent, is a derivative-
free optimization method that does not need to determine the
boundary and estimate a gradient to determine a direction to
descend.

A. Results

Fig. 28 shows the attack success rate (ASR) at different
distortion levels and query limits for various attack methods
against an adversarially trained model and defensive distil-
lation model. Particularly, for adversarial training, our Ram-

BoAttacks can achieve comparable performance with Sign-
OPT and HopSkipJump while outperforming Boundary attack
within the query limits of 5K, 10K or 25K. In addition, we
compare the performance of our attack at different query
budgets with the whitebox attack—C&W—used as a baseline
for comparison. Notably, we do not execute C&W attack at
different query setting because it is a whitebox method and
use the best result produced by this attack.

We observe that our attacks are able to obtain a compa-
rable performance with the C&W attack at the 5K query
budget. When the query limit is up to 10K and higher, our
RamBoAttacks outperform the whitebox C&W baseline attack
method. Nevertheless, Adversarial Training is still effective at
reducing the ASR achieved by our method, even with a 25K
query budget. Success falls from around 99% (see Fig. 24)
to approximately 43% (see Fig. 28) at a distortion of 1.0 (l2
norm). Similarly, at a distortion of 0.3, the ASR decreases
from about 60% (see Fig. 24) to approximately 10% (see
Fig. 28). However, what we can observe is that as the distortion
increases, the attack is more effective. This is expected because
the attack budget of the adversary is increased beyond the
budget used for building the adversarially trained model.

Likewise, for defensive distillation, our RamBoAttacks
can achieve comparable performance with Sign-OPT and
HoSkipJump whilst outperforming Boundary attack and C&W
whitebox baseline attack at different query budgets. These
results confirm the results and findings presented in [11].

Grad CAM
Tool

Grad CAM result

Sign-OPT HopSkipJump Ours

Starting Image (    )Source Image (    )

Boundary

Fig. 29. Grad-CAM tool visualizes salient area of the starting image
Staffordshire bull terrier. Perturbation heat map (PHM) visual-
izes the normalized perturbation magnitude at each pixel. It shows that the
perturbation yielded by RamBoAttack is able to concentrate on salient areas
illustrated by GRAD-CAM even though RamBoAttack does not exploit the
knowledge of salient regions to perturb.

B. C&W Attack Configuration and Results Collection

For clarity, we firstly describe the configuration used for
the C&W attack. We adopt the PyTorch implementation of the
C&W method used in [13], [14]. In their implementation, they
use a learning rate of 0.1 and 1000 iterations for all evaluations
(see published code). To search for an adversarial example
for an image, the method performs a binary search step to
find a relevant constant c within a range from 0.01 to 1000
until a successful attack is achieved. With this configuration,
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the C&W attack is run once to always yield an adversarial
example for every instance. We record the distortion of the
adversarial example found.
C&W Results Collection. To construct ASR vs. distortion
results, at different distortion thresholds: i) we compute the
number of source images in the evaluation set meeting a given
distortion threshold (along the x-axis); ii) then divide this by
the total number of images in the evaluation set to compute
the ASR at each distortion value.
Blackbox Attack Results Collection. For the blackbox at-
tacks, we perform a blackbox attack for each evaluation-set
source image, using the set query budgets: 5K, 10K, and 25K.
We record the distortion achieved by each source image with a
set query budget. To construct ASR vs. distortion, at different
distortion thresholds with a given query budget: i) we compute
the number of source images in the evaluation set meeting
a given distortion threshold (along the x-axis); and ii) then
divide this by the total number of images in the evaluation set
to compute the ASR at each distortion value.
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Fig. 30. Visualization of different distortions produced by RamBoAttack. The
second example is from ImageNet with a starting image of a digital
watch gradually perturbed until it is similar to the source image white
stork—the final adversarial example crafted.

APPENDIX G
PERTURBATION REGIONS AND ATTACK INSIGHTS

In this section, we provide additional results on the connec-
tion between the adversarial perturbations yielded by Ram-
BoAttack and salient regions visualized by the Grad-CAM
tool. Effectively, all of the attack methods embedded the
target features within the source image where the changes
are effectively unnoticeable. However, Fig. 29 illustrates that
a high density of adversarial perturbations yielded by our
attack concentrates on a region that is matched to the salient
features visualized by the Grad-CAM tool. This is possible
because our attack methods employs localized changes to
search for adversarial examples and is able to effectively find
perturbations targeting salient features of the target class to
apply to the input source class image to fool the classifier to
classify the source image as the target class.

Further, to help visualize different level of l2 distortions, we
include Fig. 30. We illustrate two examples where we show-
case the sample adversarial examples crafted by RamBoAttack
during the progression of the attack.

APPENDIX H
ATTACK SUCCESS RATES VS QUERY BUDGETS

In this section, we show results at three different pertur-
bation budgets ε = 0.4 and 0.6 for hard-sets A and B from
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Fig. 31. The first and second columns illustrates ASR vs. queries for our
RamBoAttacks with respect to Boundary attack on hard-set A and with respect
to HopSkipJump and Sign-OPT on hard-set B. For a given query budget,
as expected, our RamBoAttacks yield similar ASR to Sign-OPT and HSJA
with very low query budgets and significantly higher ASR with budgets above
10K queries, where gradient estimation methods do not appear to improve the
adversarial example found with increasing numbers of queries. Similarly, the
third column illustrates ASR vs. queries for our RamBoAttacks with respect
to HopSkipJump and Sign-OPT on the hard-set I. Our RamBoAttacks are
more query efficient, more robust and are able to yield significantly higher
ASR under low distortion settings.

CIFAR10 and ε = 10 and 20 for the hard-set I selected
from ImageNet. The results demonstrate that our attack
is significantly more robust than other attacks within 4-11K
query budgets. From 11K, RamBoAttacks outperforms others.
The reason is that, around this region, the gradient estimation
method switches to BlockDescent, resulting in much higher
attack success rates compared to the baselines. Notably, on the
high-resolution benchmark task ImageNet, RamBoAttacks
achieve significantly better results compared to the baselines.

APPENDIX I
ROBUSTNESS OF RAMBOATTACK

Fig. 32 provides further detailed results on hard cases
encountered by different attack methods at distortion threshold
of 0.8, 0.9 and 1.0. Compared to Boundary, Sign-OPT and
HopSkipJump attacks, our RamBoAttacks achieve much lower
number of hard cases at all distortion thresholds.
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Fig. 32. The number of hard cases in CIFAR10 obtained from different
attack methods categorized by pairs of source and target classes (at distortion
threshold = 0.8, 0.9 and 1.0). RamBoAttacks are seen to nearly overcome
all of the hard cases encountered by other decision-based blackbox attack
methods; thus, demonstrating the robustness of our proposed attack.
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