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Abstract—A leading approach to enhancing the performance
and scalability of permissionless blockchains is to use the payment
channel, which allows two users to perform off-chain payments
with almost unlimited frequency. By linking payment channels
together to form a payment channel network, users connected
by a path of channels can perform off-chain payments rapidly.
However, payment channels risk encountering fund depletion,
which threatens the availability of both the payment channel and
network. The most recent method needs a cycle-based channel
rebalancing procedure, which requires a fair leader and users
with rebalancing demands forming directed cycles in the network.
Therefore, its large-scale applications are restricted.

In this work, we introduce Shaduf, a novel non-cycle off-
chain rebalancing protocol that offers a new solution for users
to shift coins between channels directly without relying on the
cycle setting. Shaduf can be applied to more general rebalanc-
ing scenarios. We provide the details of Shaduf and formally
prove its security under the Universal Composability framework.
Our prototype demonstrates its feasibility and the experimental
evaluation shows that Shaduf enhances the Lighting Network
performance in payment success ratio and volume. Moreover, our
protocol prominently reduces users’ deposits in channels while
maintaining the same amount of payments.

I. INTRODUCTION

Blockchain has seen rapid development over the last
decade, enabling secure transactions in a distributed and trust-
less setting. Complex transaction logic is also supported with
the help of so-called smart contracts, which can be regarded
as program codes executed on the blockchain. However, the
scalability issue still limits the deployment of blockchain, due
to the inherent consensus mechanism to achieve a consistent
view on transactions among all peers. For example, Bitcoin
processes tens of transactions per second and requires around
one hour to confirm a transaction.

A novel solution, called payment channels, has been intro-
duced to address the scalability challenge. A payment channel
allows two users to deposit funds to a co-maintained ledger and
perform payments without broadcasting and recording them on
the blockchain. It is guaranteed that users could refund coins
in the two-party ledger to the blockchain at any time. Since
payments require only approval from channel users rather than
all peers of the blockchain, they are conducted quickly and
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confirmed immediately, only limited by the communication
bandwidth and latency.

Payment channels are extended to the network, in which
users sharing no channels can perform multi-hop payments
leveraging paths of existing channels. With other users as
relays of payments, users do not have to open channels to
each other, thereby reducing costs in maintaining channels.
Lightning Network (LN) [21], for example, is a practical
payment channel network deployed upon Bitcoin.

Users in payment channels face the problem of fund
depletion [13]. As payment flows in both directions over
a channel are not equal, funds gradually accumulate in the
direction of the higher flow. Eventually, the channel becomes
depleted and fails payments in that direction, undermining the
off-chain network throughput. Current solutions for refunding
the depleted channel fall into two categories. The first one is
to refund the single channel using on-chain coins. A trivial ap-
proach is to close and reopen the channel, which requires two
costly and time-consuming on-chain transactions. LOOP (see
https://lightning.engineering/loop/) reduces the refund costs to
one on-chain transaction. Both approaches need interactions
with the blockchain each time of channel refunding, which
can be regarded as “one-time on-chain execution, one-time
refunding”. The second solution is to refund the channel by
reallocating deposits in adjacent channels, also called “rebal-
ance”. It recovers the channel from depletion without perform-
ing transactions on the blockchain, exemplified by Revive [13].
Relying on circular paths in the payment channel network,
Revive instructs coins to flow along the path, therefore users’
coins are rebalanced from well-funded channels to poorly-
funded channels. The whole process is executed off-chain,
thus being cost-free for unlimited times of rebalancing and
relieving the transaction load on the underlying blockchain.
These features make Revive act well in scenarios where users
have stable and circular rebalancing relations.

Nevertheless, Revive suffers from low feasibility in large-
scale applications, such as LN, because of the lack of auton-
omy. Specifically, to achieve a successful off-chain rebalanc-
ing, the following requirements need to be met. (1) For users
with the demand of rebalancing, both the channels they want
to rebalance and the direction of desired coin flows can form
directed cycles in the payment channel network. (2) A fair
leader is necessary to collect users’ rebalancing demands, find
the directed cycles, and generate the rebalancing transactions
for cycles justly. (3) Once a rebalancing cycle is established, all
cycle users would cooperate with the rebalancing procedure. If
any of these requirements are not satisfied, Revive will fail. To
make matters worse, even if the rebalancing succeeds, only the
minimum rebalancing amount among the cycle users could be
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TABLE I: Comparison of channel refunding solutions.

# On-Chain TXs for
n Times Refunding

Wait Time for
1 Time Refunding Leader Bitcoin-compatible

Usability
Non-cycle Users Cycle UsersSingle-channel Users Multiple-channel Users

Close-and-Reopen 2n 2∆ No need Yes
LOOP n ∆ No need Yes
Revive 0 instantly1 Fair2 Yes3

Shaduf 14 instantly1 No need No 5

∆ denotes the blockchain delay, which is the maximum time required for one transaction to be recorded on the blockchain.
: unusable; : usable when requirements are met; : usable.

1 Instantly when involved users cooperate. In Revive, it includes users along the cycle. In Shaduf, it includes two adjacent users.
2 The leader treats users’ rebalancing requests equally.
3 With the atomic multi-channel update protocol introduced in [9], Revive could be deployed to Bitcoin-compatible platforms.
4 For one single pair of channels, Shaduf achieves 1-time on-chain binding, n-times off-chain refunding.
5 Although the single-channel users cannot be off-chain rebalanced, their channels could help other users to rebalance. In the LN snapshot used in the evaluation
(Section VI-B), the single-channel users account for around 45%.

achieved. In other words, one user’s rebalanced amounts are
limited by the amounts of other users in the cycle.

Contributions and roadmap. This work addresses the
aforementioned shortcomings with a protocol we call Shaduf,
which overcomes the limitations of Revive and can be applied
to more general rebalancing scenarios. Our contributions in-
clude,

• Novel solution for payment channel rebalancing. We in-
troduce Shaduf, a non-cycle off-chain channel rebalancing
scheme, which allows users to perform unlimited times
of off-chain coin shifts between channels after one-time
on-chain binding. Compared with Revive, Shaduf does
not rely on cycles in the network. Even better, since only
the user’s own channels and adjacent users are involved,
Shaduf is resistant to uncooperative participants and not
restricted by others’ demands. The comparison between
current approaches and Shaduf is shown in Table I. An
additional benefit brought by the autonomy of rebalancing
is that Shaduf reduces the deposits of channel users and
maintains the payment amount (Section III and V).

• Formal security proof. We formalize the security proper-
ties of Shaduf using the ideal/real world paradigm in the
Universal Composability (UC) framework and provide the
formal security proof according to our definition (Section
IV and V, and Appendix B).

• Implementation and valid evaluation. We provide a proof-
of-concept implementation of Shaduf on Ethereum to
show the required one-time binding is cheap compared
with the unlimited times of rebalancing brought by it.
Besides, an experimental evaluation demonstrates that
Shaduf outperforms LN and Revive. Particularly, under
different application strategies, Shaduf increases by 6% -
28% in terms of payment success ratio and volume, and
reduces users’ deposits by 37% - 75% while maintaining
the same network performance (Section VI).

II. PRELIMINARIES

A. Blockchain and Smart Contracts

The blockchain is an append-only transaction ledger and
maintains users’ balances. Let ∆ be the blockchain delay, i.e.,
the time for a transaction to be recorded on the blockchain.

A smart contract is a piece of code executed on the
blockchain, receiving coins and handling them according to
predefined rules when triggered by users or other contracts.

Our scheme is constructed upon Turing-complete blockchains
such as Ethereum.

B. Payment Channel

There are three phases in the lifetime of a payment channel:
open, update, and close, as shown in Figure 1.

1) Open: Two users, Alice and Bob, open a channel by
depositing funds into it. Firstly, Alice sends a coins to the
contract as her deposits in the channel. Upon receiving the
coins, the contract informs Bob of the opening event and waits
∆ time for his confirmation. If Bob confirms, the channel is
opened and the sent along b coins serve as his deposits in the
channel. Otherwise, Alice retrieves the coins she deposited.

2) Update: Two users update the channel state in pace with
off-chain payments. The channel state includes the allocation
of the channel capacity, i.e., a total of a + b coins, between
Alice and Bob, and a version that indicates the number of
updates and increases by 1 each update. A state is valid when
it is confirmed by both users, that is, users have exchanged
their signatures on the state.

Any user can initiate the update. For instance, when Alice
performs a payment, she increases the channel version, updates
the balance allocation, and sends the updated state to Bob
along with her signature on it. If Bob approves the state and
replies with his signature on it, the state becomes valid. The
process is completed without interacting with the blockchain.

Alice

Bob

...

Alice
Bob

Open Channel:

Update Channel:

Close Channel:

Blockchain

Fig. 1: Three phases of a payment channel, exemplified by
β whose users are Alice and Bob. Dashed boxes indicate on-
chain transactions and colored boxes represent the balances
of users in the channel. Two users first escrow a and b coins
to the contract C(β) respectively, thereby opening the channel.
After an arbitrary number of payments, they close the channel,
and the latest balances, an and bn, are refunded.
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(a) Payment via a path. (b) Payment via a hub.

Fig. 2: Two forms of multi-hop payments in the payment
channel network: payment via a path and via a hub. Lines
between users denote channels.

3) Close: Users could close the channel and withdraw their
balances to the blockchain. In particular, it happens when users
enter into a dispute, such as when Alice receives no response
after sending the updated state to Bob. The user who wants
to close the channel, suppose Alice, submits the request to
contract along with the latest valid channel state in her view.
The contract informs Bob of the closing and waits ∆ for
his latest channel state. Comparing received valid states, the
contract decides on the more recent one, i.e., the state with a
higher version, and dispenses funds accordingly.

C. Payment Channel Network

The payment channel network (PCN) is constituted by
payment channels, where users could perform payments taking
others as intermediaries. Figure 2a presents a typical payment
channel network structure, where channels are established
between users who perform payments frequently. For example,
C opens channels with B, D, and E. The users who share no
channels, such as A and E, can perform payments via a multi-
hop path connecting them. In this figure, A could pay E via
paths A-B-C-E and A-D-C-E. Here we ignore mechanisms
guaranteeing the security of the multi-hop payments and only
consider the path. When all users along the path have sufficient
balances, the payment can be completed.

However, it is non-trivial to find a fund-sufficient path
between users, because the balances of users in a channel are
invisible to others. Payment hub relieves the burden in finding
paths, as shown in Figure 2b. Users setup channels with the
hub, which in turn links any pair of users. Although the path
is easy to be settled, H needs to escrow a huge deposit to
channels to afford payments between these users, impeding its
deployment in large-scale networks.

D. Rebalancing in PCN

Payment channels face the challenge of fund depletion,
where funds in the channel (i.e., channel capacity) flow to one
user. It reduces a channel from bi-directional to unidirectional.
Refunding the depleted channel using on-chain coins needs
interactions with the blockchain, which is costly and requires at
least ∆ time wait before the channel is refunded. Considering
the case where one user serves in multiple channels, Revive
[13] proposes to refund a channel leveraging coins in adjacent
channels without interactions with the blockchain.

We illustrate how Revive works by taking the directed cycle
A→B→C→D→A in Figure 2a as an example. Assume each
user has adequate coins in the channel with the next user and
lacks funds in the channel with the previous user. Therefore,

each user has the demand to rebalance coins between its two
channels. Revive performs the coin flow along the directed
cycle, where each user sends coins to the next user and receives
coins from the previous one. To enable the cooperation of cycle
participants, only the minimum rebalancing demand of them
can be satisfied. After that, for each user, there are balanced
coins in its adjacent channels and the sum of coins in the two
channels remains unchanged.

Compared with Close-and-Reopen and LOOP, while Re-
vive is attractive for the cost-free feature and unlimited times
of rebalancing, it suffers from the lack of autonomy. Firstly,
it is only possible when users with the rebalancing demands
could form directed cycles in the network. Users, E, F , G
in Figure 2a and all users in Figure 2b, can neither take the
solution nor facilitate others’ rebalancing. Users, A, B, C, D
in Figure 2a could be rebalanced only when all of them have
the rebalancing demands in the consistent direction. Secondly,
the achievement and amount of rebalancing are both restricted
by the cycle participants, including the non-adjacent ones.
Therefore, Revive’s application in PCN is limited.

III. SHADUF OVERVIEW

While current solutions in rebalancing channels rely on a
set of participants who can form a cycle in the network, Shaduf
allows one user to shift coins between adjacent channels in
a non-cycle setting. In a nutshell, after one-time on-chain
binding, a user can shift coins between two bound channels
directly, for unlimited times and in both directions.

In this section, we first demonstrate the basic construction
and introduce the one-time channel binding. Then we describe
the rebalancing procedures and extend the structure in the
payment channel network. The formal and detailed description
of Shaduf is presented in Section IV and V.

A. Basic Construction Idea

Consider the basic structure where one user opens two
channels with different users, as shown below.

User I setup channel β with L, and channel γ with R.
Currently, I owns sufficient coins, say 18 coins, in β and 0
coins in γ. Since the money has been run out, I cannot initiate
payments in γ. In Shaduf, I refunds it leveraging coins in β,
depicted in the below example.

I shifts 5 coins from β to γ, with which I could perform
further payments in γ. The coin shift is completed off-chain
between the two channels directly, without the involvement
of the blockchain or other participants. Consequently, the
rebalancing is executed at no cost and of high efficiency.
Moreover, it can be extended to multiple times of coin shift
in both directions. For example, I can shift coins from β to γ
and shift them back later then.
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During the process, measures should be taken to guarantee
the balance security, i.e., honest users would not lose money
[7], [16]. For instance, to guarantee that there are sufficient
coins to be shifted out of one channel and these coins are
accepted in another channel for further payments, each coin
shift needs approval from the other two users. In addition, to
guarantee the off-chain rebalancing takes effect, the off-chain
shifted coins should be on-chain delivered at the time of claim.

B. Necessity of One-Time Channel Binding

Simple as it seems, the basic scheme suffers from the
“double-shifting attack”, where I colludes the other channel
user and shifts coins to multiple channels. For example, I
shifts 5 coins from β to γ and 21 coins to another channel
η, which is composed of I and P . A total of 26 coins are
shifted out of β, while there are only 25 coins in it, leading
to 1 coin loss at the time of claim in either γ or η.

Different from other off-chain operations that only concern
the balance allocation within one channel, the coin shifts in
our scheme change the funds reserved in the two channels.
More concretely, fund distribution between the two channels.
To solve this problem, it needs to be declared on the blockchain
before performing off-chain coin shifts that funds in β and γ
can be redistributed along with I’s coin shifts between them.
The process is called “bind”, whose introduction maintains
the low cost of basic construction and guarantees the balance
security. Two channels are bound when the bind is recorded
on the blockchain.

After the one-time bind, multiple times of off-chain coin
shifts in both directions are allowed. If any user wants to
claim the shifted coins, he could request the blockchain to
“unbind” the two channels. We refer to Section V for the
detailed description of the bind and unbind processes.

C. Rebalancing Procedures after Binding

After the channel binding, unlimited times of rebalancing
between two bound channels are enabled. In this way, a record
of coin shifts, called bind state, needs to be maintained by the
three users. Each time performing the coin shift, users need to
update the bind state and channel state, as shown in Figure 3.

Before describing the two phases, we first clarify the
contents of the bind state and channel state. Besides the
resulting coin shift between channels, two parts are included in
a bind state: the bind version which is increased by 1 each shift
to indicate the number of shifts, and the latest coin shift for the
security consideration which is explained later. In the channel
state, besides the channel version and balances of users, the
bind version is also included to indicate the latest bind state,
since the shifted coins are also part of the channel funds.

In the first phase, three users achieve agreement on the
updated bind state, which is initiated by I . Assume that I
wants to shift c coins from β to γ. I updates the bind state,
including recalculating the total coin shift, recording this shift
as the latest one, and increasing the bind version by 1. Then I
sends the new state to L and R for their approval (Step (1)).
From the view of L, it needs to be verified that I has more than
c coins, while R needs to ensure that there are no less than c
coins in β currently. Since the channel capacity is public and

Phase I: 

Phase II: 

1

2

3

4

5

End users send the confirmation to others

End users confirm the update

 initiates the channel state update in two channels

End users exchange the received message with 

 initiates the coin shift

Fig. 3: Flowchart of rebalancing between bound channels β
and γ, which are composed by users {L, I} and {I,R},
respectively. The first phase is bind state update, initiated by
I . The second phase is channel state update, initiated by I in
two channels separately. For a solid line, the arrow indicates
the recipient of the message, and the hollow circle indicates
the sender. For users who both send and receive messages at
a step, they are represented by solid circles.

the previous coins shifts are known, R could do the verification
locally. It is symmetrical when coins are shifted in the opposite
direction. When verification is passed, L and R reply to I with
signatures on the updated bind state. In addition, they forward
it to each other to inform that they acknowledged the update
(Step (2)). To avoid that L or R send different messages to I
and the other one, leading to an inconsistent view on whether
the update is confirmed, I exchanges the received message
with each other (Step (3)). Users proceed to the second phase
when the new bind state is approved by all of them.

In the second phase, users update the state of each channel.
Especially, the bind version and I’s balance recorded in the
channel state need to be recalculated. I initiates the channel
state update in the two channels separately (Step (4)). In the
updated channel state, I’s balance is increased by c in γ while
it is decreased by c in β, the channel version and the bind
version are all increased by 1. Receiving the correctly updated
channel state, the other user replies with the approval and
completes the rebalancing (Step (5)).

Now we discuss cases where the process halts and what
an honest user, denoted as P , should do. When it halts in
the first phase, if P has not sent the signature on the updated
bind state to others, the halt has no influence since the state
is invalid yet. If P has sent the signature but not received the
other’s signature, then it is not sure whether the coin shift takes
effect. At this point, P initiates a dispute on the blockchain,
which informs the other users to submit the latest bind state in
their view and decides the one with the highest version. From
the state, P knows whether the coin shift is effective. When it
halts in the second phase, it means that the bind state has been
updated but the channel state update is refused by the other
one in the channel. At that time, P sends the request of state
update to the blockchain along with the latest bind state (if
it has not been submitted) and channel state. The blockchain
would verify that the bind version included in the bind state
is 1 greater than that included in the channel state, indicating
I’s balance has not been updated. Then the blockchain updates
it according to the last coin shift recorded in the bind state,
completing the rebalancing.
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Fig. 4: Extension in payment channel network. Colored boxes
represent coins of users and the length corresponds to the
value. The dashed boxes upon a channel denote the bound
amounts and ▷◁ connects bound channels. B binds bβ coins in
β to bγ coins in γ, both values are higher than B’s balances
in the channels, denoted as b1 and b2, respectively. C binds
cγ coins in γ to cη coins in η, the former value is lower than
C’s balance c1 in γ and the latter is higher than c2 in η.

D. Extension in PCN

The basic structure introduced above has limited appli-
cation in the payment channel network. On the one hand,
among the three users of the two bound channels, only the
intermediate can shift coins in the two channels, while the
other two users cannot send or receive their coins to other
channels. On the other hand, the intermediate can only shift
coins between the two channels and cannot interact with a third
channel. The above limitations are caused by the fact that one
channel can only be bound to another channel. To relieve these
limitations, one channel needs to be allowed to bind multiple
channels, taking either end user as the intermediate.

Recall in the basic structure, it is required that the upper
limit of coins that can be shifted out of a channel is its capacity.
If the upper limit is set to be lower than the capacity, the
remaining amount of coins can be shifted to other channels.
In this way, one channel can be bound to multiple channels.
When two channels are bound, the upper limit of funds that
could be shifted to each other should be specified. In addition,
when one channel is bound to multiple channels, the sum of
coin shift limits to each channel should be no greater than
the channel capacity to guarantee the coins can eventually be
delivered. In the following, we demonstrate the extension in
two kinds of payment in the off-chain network, payments via
a path and a hub.

1) Payment via a path: Users without direct channels
can conduct off-chain payments leveraging other users as
intermediates. Figure 4 presents an example where A and D
conduct payments through B and C. Currently, B has b1 coins
in β and b2 coins in γ, and C has c1 coins in γ and c2 coins
in η. Assuming that A has sufficient coins in β, the coins that
can be paid by A to D is min(b2, c2).

The bind between the three channels are as follows: B
binds bβ coins of β to bγ coins of γ, C binds cγ coins of γ
to cη coins in η. We first analyze the bind between channels,
taking γ as an example. γ is bound to β taking B as the
intermediate and bγ as the upper limit of coins that can be
shifted out. Although the upper limit is bγ , B has only b2
coins, then B can shift at most min(b2, bγ) = b2 coins out of
γ. Here we assume there are no previous shifts. If there are,
such as a total of eβ coins from β to γ, or eγ coins from γ
to β, the coins that can be shifted are min(b2, bγ + eβ) or
min(b2, bγ − eγ). It holds the same for coin shift from γ to
η. Besides, due to the fact that the sum of the upper limits
bγ + cγ is less than the capacity b2 + c1, the remaining quota
can be utilized in binding other channels.

Fig. 5: Extension in payment hub network. C escrows c coins
in β, where c1 coins are for payments to M1 and c2 coins are
for M2. Out of the c coins, H binds c1 coins to γ1, and c2
coins to γ2. To deliver these payments, H escrows e1 coins
to γ1 and e2 coins to γ2, where e1 and e2 are the maximum
amount of a single payment to M1 and M2, respectively.

Since B can shift at most b1 coins from β to γ and C
can shift at most min(c1, cγ) = cγ coins from γ to η, the
amount that A could pay D is increased to min(b2 + b1, c2 +
cγ). Correspondingly, the amount that D can pay A increase
from min(c1, b1) to min(c1 + c2, b1 + b2). To sum up, with
the same amount of deposits in channels, a path with bind
facilitates more payments. In other words, users can bear the
same amount of payments with fewer deposits.

2) Payment via a hub: Users could conduct payments
through the payment hub. Here we focus on its typical and
important scenarios [18] such as point-of-sale payments and
retail shopping. Serving as one solution, the payment hub
categorizes connected users into consumers and merchants.
Figure 5 is a simplified situation, composed by consumer C,
hub H , and merchants M1 and M2. The payment flow is
unidirectional, from C to M1 and M2. C escrows c coins to β,
where a total of c1 coins are used to pay M1 and c2 coins are
for M2. Each time C initiates a payment to the merchant, say
M1, H receives the coins in β and sends the same amount of
coins to M1 in γ1. To accommodate these payments, H needs
to escrow c1 coins in γ1 and c2 coins in γ2. In summary, for
each user in the network, H needs to escrow the same amount
of coins in the network.

With binds between these channels, the required deposits
of H can be sharply decreased. H binds c1 coins of β to γ1
and c2 coins to γ2. At the same time, H escrows e1 coins
to γ1 and e2 coins to γ2, where e1 and e2 are the maximum
amount of a single payment to M1 and M2, respectively. Once
a payment from C to a merchant, say M1, completes, H shifts
the received coins in β to γ1. In this way, there are always
e1 coins in γ1, which are sufficient for further payments. The
deposits H needs to escrow in the network are decreased from
c to e1 + e2. The above solution can be naturally extended to
cases with multiple customers and merchants connecting to the
same hub. When the number of customers and merchants is
large, such as thousands or tens of thousands, the bind is more
effective in reducing H’s deposits in the network.

It is worth noting that the above analysis also demonstrates
that single-channel users in Shaduf, e.g. A in Figure 4 and C in
Figure 5, could help others, i.e. B and H , to achieve coin shift.
This is attractive since the former constitutes a large portion
of LN users, e.g. 45 percent in the snapshot.
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IV. FORMAL DEFINITION OF SHADUF

A. The Security Model

We formalize Shaduf utilizing the universal composability
(UC) [4] framework and deploy the version with global setup
(GUC) [5]. The model is defined over a fixed set of parties
P = {P1, ..., Pn}, taking the underlying blockchain as a
global ideal functionality L with maximal blockchain delay
∆. It specifies two worlds, the real world and the ideal world.
In the former world, the Shaduf protocol is executed by
parties, facing an adversary A and interacting with the contract
functionality F . In the latter one, the idealized functionality F
is executed through interactions with parties and the simulator
S which simulates behaviors of the adversary. All parties
receive inputs from the environment Z and send outputs to
it. Security is defined as the computational indistinguishability
between the outputs of Z running in the real world and in the
ideal world.

1) Adversary model: We consider an adversary A who
can corrupt arbitrary parties at the beginning of the protocol
execution. Corruption means that A gets all internal states of
corrupted parties and takes full control of them.

2) Security goals: Motivated by [7], [16], our main goal is
to guarantee the balance security of honest users, i.e., honest
users would not lose money. Intuitively, it includes two parts.
Firstly, the channel opening and state update are only valid
when both channel users agree. The channel binding and bind
state update also need the approval of three users in two bound
channels. Secondly, it requires that the channel unbinding and
closing could be completed within a reasonable time, and when
they are settled, the shifted coins between bound channels and
refunded balances from a channel is the latest in honest users’
view. Properties to be achieved are listed as follows.

Consensus on channel opening and channel update. Within
a channel, the opening and state update can only be executed
when both users agree. Channel opening takes time O(∆) to
achieve the agreement. When both users are honest, time spent
on channel state update is constant.

Consensus on channel binding and bind update. Between
two channels, the binding and state update takes effect only
when all involved three users agree. Channel binding takes
time O(∆). Bind state update takes constant time that is
independent of the blockchain delay when all users behave
honestly.

Guaranteed channel unbinding. For two bound channels, any
of the three users can request to unbind and settle the coin
shift between them. The process is guaranteed to be completed
within time O(∆) after the request.

Guaranteed channel closing. Any user in a channel can
request to close the channel at any time. The channel is closed
in O(∆) time once the request is made.

Guaranteed balance payout. The channel unbinding and
closing are settled following the latest states from the view
of honest users.

3) Communication network: We assume a synchronous
communication network and each party is aware of the current
time, which is measured in rounds. The delivery of a message

between two parties takes 1 round. It means that one message
sent in round r reaches the recipient in the beginning of
round r+1. In addition, parties communicate via authenticated
channels where the recipient can confirm the message source.
The adversary can see the message contents but cannot modify
or drop the messages. Other communications, e.g., with the
environment, take 0 rounds. For simplicity, computations also
take 0 rounds.

4) Ledger and contract functionalities: We take the formal-
ization of the underlying blockchain from [7]. It is formalized
as a global functionality L with respect to the blockchain delay
∆, denoted as L(∆). The functionality is shown below,

Ledger Functionality
Ledger initialization: Upon receiving (x1, ..., xn) ∈ Rn

≥0
from the environment Z , store the tuple.
Adding coins: Upon receiving (add, Pi, y), if Pi ∈ P and
y ∈ R≥0 then set xi := xi + y, else do nothing.
Removing coins: Upon receiving (remove, Pi, y), if Pi ∈
P and y ∈ R≥0 and xi ≥ y then set xi := xi − y, else do
nothing.

The value xi in tuple (x1, ..., xn) recorded in the ledger
indicates Pi’s balance and can be accessed by all parties,
the adversary, and the environment. The “add” and “remove”
operations are performed by the ideal functionality F in the
ideal world, and the contract functionality C in the real world.

We formalize the contract functionality C maintaining con-
tract instances, leading to C-hybrid real world. Each contract
is identified by its corresponding channel and C(β) denotes
the contract of channel β. Receiving messages from parties, C
accesses the ledger according to predefined procedures.

5) Security definition: Let λ be the security parameter.
With respect to the global ledger L(∆), denote the output of
the environment Z when interacting with the adversary A and
the protocol π in the C-hybrid world as EXECL(∆),C

π,Z,A (λ), and
Z’s output when interacting with the ideal functionality F and
the simulator S as EXECL(∆)

F,Z,S(λ). The security is formally
defined as follows.

Definition 1: Protocol π running in the C-hybrid world
UC-realizes the ideal functionality F with respect to a global
ledger L(∆), if for any PPT adversary A there exists a
simulator S such that

EXECL(∆),C
π,Z,A (λ) ≈ EXECL(∆)

F,Z,S(λ)

where ≈ denotes the computational indistinguishability.

B. Notation

The following notations are used to define the attributes of
the channel and the bind, and the communication between par-
ties. They are also used in the real world protocol description.

1) Channel: A payment channel β is defined by the
attribute tuple (β.id, β.users, β.balance, β.fund, β.bind,
β.allot). Regarding the attributes, β.id ∈ {0, 1}∗ is the channel
identifier, β.users = {β.Alice, β.Bob} is the set of channel
users, β.balance : β.users → R≥0 denotes the balances of
users, β.fund ∈ R≥0 is the deposits in the channel, β.bind
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records all binds of the channel, and β.allot is the remaining
amount of coins for binding other channels. In addition, we
define the function β.other-user : β.users→ β.users which
maps one user to another one. Specifically, β.other-user
(β.Alice) = β.Bob and β.other-user(β.Bob) = β.Alice.

A payment θ in the channel is defined as β.users → R
and θ(β.Alice) + θ(β.Bob) = 0. Applying payment θ to the
current channel balance. i.e., β.balance+ θ, derives balances
of users after the payment.

2) Bind: A bind Φ is defined by the attribute tuple (Φ.id,
Φ.users, Φ.channels, Φ.shift, Φ.reserve). About the at-
tributes, Φ.id ∈ {0, 1}∗ is the bind identifier, and Φ.users =
(Φ.Lara,Φ.Irene,Φ.Rock) is the set of users, where Φ.Irene
is the intermediate. Φ.channels = (Φ.ca,Φ.cp) is the set of
two bound channels, and Φ.ca consists of users Φ.Lara and
Φ.Irene, while Φ.cp takes Φ.Irene and Φ.Rock as its users.
Φ.shift : Φ.channels → R denotes the total shifted coins
between the channels and Φ.shift(Φ.ca) + Φ.shift(Φ.cp) = 0.
For example, if Φ.shift(Φ.ca) = c > 0, it indicates c coins
are shifted to Φ.ca from Φ.cp. Φ.reserve : Φ.channels →
R>0 indicates the upper limit of coin shift in each channel.
When Φ.reserve(Φ.ca) = c, it means that at most c coins
can be shifted from Φ.ca to Φ.cp. Furthermore, we define
Φ.end-users = {Φ.Lara,Φ.Rock} as the set of end users,
and the function Φ.other-users which maps one user to other
two users. To cite an example, Φ.other-users(Φ.Lara) =
{Φ.Irene,Φ.Rock}.

One coin shift θ̃ between two channels is defined as
Φ.channels → R and θ̃(Φ.ca) + θ̃(Φ.cp) = 0. When θ̃ is
executed, the resulting coin shift is updated to Φ.shift + θ̃.

3) Communication: We write the event that “send message
m to P in round r” as “m

r
↪−→ P ” and “receive message m

from P in round r” as “m
r←−↩ P ”, where P could be a party

or a contract. Especially, when P is a set of parties, the above
presentations denote sending or receiving the message to or
from each party in the set. Moreover, when the time is termed
as r ≤ r1, it means that the event is happened in round r
which is decided by the adversary but r1 is the upper bound.

C. Ideal Functionality of Shaduf

The ideal functionality F communicates with parties in
the set P , the simulator S, and the ledger L. All existing
channels are recorded in the set Γ. Before describing the
procedures of F , we discuss the restrictions on instructions
from the environment. We restrict that the environment would
not give instructions that are apparently wrong. For example,
the environment would never request a user to open a channel
that already exists or when the user has insufficient money
for the deposit. These restrictions are used to simplify the
protocol description and can be easily eliminated by adding
determinations on instructions from the environment. The full
restrictions are listed in Appendix A.

There are 6 procedures in F , as shown in Figure 6. Each
procedure is triggered by one message from parties, including
the procedure name and an identifier referring to the channel
or the bind. Procedure (A) Open handles the opening of
channel β when triggered by β.Alice. (B) Channel Update
performs the state update, or in other words, the payment,

within the channel when receiving a request from one user
and confirmed by another one. (C) Bind processes the bind
of two channels and is triggered by the intermediate. (D) Bind
Update executes the coin shift between two bound channels
when receiving requests from the intermediate and agreement
from the end users. (E) Unbind resolves the bind of two
channels when triggered by any user in them and completes
the final coin shift between them. (F) Close is triggered by
any channel user and refunds balances on the blockchain.

Now we analyze the achievement of desired security goals.

Consensus on channel opening and channel update. A
channel can only be opened when Alice applies and Bob
approves it. This means that two users have achieved agree-
ment on channel opening. From the time interval between
the message (opened) and the opening request, it is easy
to see the opening takes time O(∆). Similarly, the channel
state update is completed when both users agree. When both
users are honest, it takes 2 rounds to confirm the result.

Consensus on channel binding and bind update. The bind
of two channels is initiated by the intermediate and confirmed
by the end users. Channels are bound only when they all agree,
taking O(∆) time. Likewise, the bind state is updated when all
users confirm. It takes 3 rounds when all users behave honestly.

Guaranteed channel unbinding. The channel unbinding can
be triggered by any user of the two bound channels, and it is
guaranteed to be completed within 3∆ time.

Guaranteed channel closing. The channel closing can be
initiated by any user of the channel. When the channel is not
bound to other channels, the time needed to close the channel
is at most 3∆. Otherwise, the time is at most 5∆, among which
3∆ is used to unbind other channels.

Guaranteed balance payout. When two channels are un-
bound, the coin shift is settled according to its latest bind
state (Φ.shift in Figure 6 (E)). Similarly, when the channel
is closed, the latest balance allocation between two end users
is put on the blockchain (β.balance in Figure 6 (F)).

V. DETAILED DESCRIPTION OF SHADUF

In this section, we give a detailed description of Shaduf
protocol. Before the description, we first introduce the supple-
mentary notations on bind and channel. The protocol is shown
in Figure 7 and 8, and the contract functionality is shown in
Figure 9. Finally, we provide the security theorem.

A. Notation

Recall in Section III-C, parties maintain states of the bind
and the channel to perform off-chain coin shifts and payments.
In the formal description, the states are presented as follows,

1) Bind: The state of bind Φ is defined as Φ.state =
(Φ.version, Φ.shift, Φ.laShift, Φ.sig), where Φ.version is the
shift counter and increments by 1 each shift, Φ.shift is the total
coin shift and Φ.laShift is the latest coin shift between the two
bound channels, Φ.sig collects signatures from the three users
on this state. The state is called valid and can be submitted to
the blockchain when Φ.sig includes the signatures of all three
users. We denote the latest valid state of bind Φ that party P
is aware of as ΦP .state.
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Assume the following messages concerning the channel β and the bind Φ, with their identifiers, β.id and Φ.id, denoted as id
and ĩd, respectively. In the procedures (B) and (D), we denote the requested payment and coin shift as θ and θ̃, respectively.

(A) Open
Upon (open, β)

t←−↩ β.Alice, (remove, β.Alice, β.balance(β.Alice))
t1≤t+∆
↪−−−−−→ L, (opening, β)

t1
↪−→ β.Bob. If (open)

t1←−↩ β.Bob, send (remove, β.Bob, β.balance(β.Bob))
t2≤t1+∆
↪−−−−−−→ L, (opened)

t2
↪−→ β.users, add β to Γ, and stop. Otherwise,

upon (refund, β)
t3>t1+∆←−−−−−−↩ β.Alice, send (add, β.Alice, β.balance(β.Alice))

t4≤t3+∆
↪−−−−−−→ L, and stop.

(B) Channel Update
Upon (chan-update, id, θ)

t←−↩ P ∈ β.users, (chan-update-req, id, θ)
t+1
↪−−→ Q, where Q := β.other-user(P ). If

(chan-update-ok)
t+1←−−↩ Q, β.balance := β.balance + θ, (chan-updated)

t+2
↪−−→ P , and stop. Else, if P is honest,

denote θ as β’s pending update, execute procedure (F), and stop. Otherwise, stop.
(C) Bind

Upon (bind, Φ)
t←−↩ Φ.Irene, if Φ.Irene is honest, (bind-req, Φ)

t+1
↪−−→ end-users. Otherwise, for P ∈ Φ.end-users: if

(send-req, P )
t←−↩ S, (bind-req, Φ)

t+1
↪−−→ P . Do the following.

1) If (bind-ok)
t+1←−−↩ Φ.end-users, (bind-confirm)

t+2
↪−−→ Φ.Irene. Else, stop.

2) If (bind-confirmed)
t+2←−−↩ Φ.Irene, (bound)

t1≤t+2+∆
↪−−−−−−−→ Φ.users, for γ ∈ Φ.channels: add Φ to γ.bind, γ.allot =

γ.allot− Φ.reserve(γ), and stop. Else, (not-bound)
t+2+∆
↪−−−−→ Φ.end-users, and stop.

(D) Bind Update
Upon (bind-update, ĩd, θ̃)

t←−↩ Φ.Irene, if Φ.Irene is honest, (bind-update-req, ĩd, θ̃)
t+1
↪−−→ Φ.end-users. Otherwise,

for P ∈ Φ.end-users: if (send-req, P )
t←−↩ S, (bind-update-req, ĩd, θ̃)

t+1
↪−−→ P . Do the following,

1) If (bind-update-ok)
t1≤t+2
←−−−−↩ Φ.end-users, Φ.shift := Φ.shift + θ̃, (bind-updated)

t+3
↪−−→ Φ.users. For γ ∈

Φ.channels: γ.balance(Φ.Irene) := γ.balance(Φ.Irene) + θ̃(γ). Else, if Φ.Irene is honest, or (bind-update-ok)
t+1←−−↩ P ∈ Φ.end-users and P is honest, denote θ̃ as Φ’s pending update, go to procedure (E), and stop. Otherwise, stop.

2) For γ ∈ Φ.channels: if (bind-chan-not-updated, γ.id)
t2≤t+4
←−−−−↩ P ∈ γ.users and P is corrupted, (bind-chan-

not-updated, γ.id)
t2+1
↪−−−→ Q where Q := γ.other-user(P ), execute procedure (F), and stop. Else, stop.

(E) Unbind
Upon (unbind, ĩd)

t←−↩ P ∈ Φ.users, or be invoked by other procedures (let t be the current round), in round t1 ≤ t+∆, if Φ’s
pending update θ̃ is confirmed, Φ.shift := Φ.shift+θ̃, and for γ ∈ Φ.channels: γ.balance(Φ.Irene) := γ.balance(Φ.Irene)+
θ̃(γ). (unbound)

t2≤t1+2∆
↪−−−−−−→ Φ.users. For γ ∈ Φ.channels, do the following,

1) γ.fund := γ.fund +Φ.shift(γ), γ.allot = γ.allot +Φ.shift(γ) + Φ.reserve(γ), and remove Φ from γ.bind.

2) If (bind-chan-not-updated, γ.id)
t3≤t2+1
←−−−−−↩ P ∈ γ.users and P is corrupted, send (bind-chan-not-updated,

γ.id)
t3+1
↪−−−→ Q where Q := γ.other-user(P ), execute procedure (F) and stop. Else, stop.

(F) Close
Upon (close, id)

t←−↩ P ∈ β.users, or be invoked by other procedures (let t be the current round), in round t1 ≤ t+∆, if
β’s pending update θ is confirmed, β.balance := β.balance + θ. Do the following,
1) If β.bind = ∅, (add, β.Alice, β.balance(β.Alice))

t2≤t1+2∆
↪−−−−−−→ L, (add, β.Bob, β.balance(β.Bob))

t2
↪−→ L, (closed)

t2
↪−→ β.users, remove β from Γ, and stop.

2) Otherwise, for Φ ∈ β.bind: execute procedure (E). Let t3 be the current time. (add, β.Alice, β.balance(β.Alice))
t4≤t3+∆
↪−−−−−−→ L, (add, β.Bob, β.balance(β.Bob))

t4
↪−→ L, (closed)

t4
↪−→ β.users, remove β from Γ, and stop.

Fig. 6: Ideal functionality F

2) Channel: The state of channel β is represented as
β.state = (β.version, β.balance, β.biList, β.sig). Among
the attributes, β.version is the counter of state update and
increments by 1 each update, β.balance is balance allocation
between two users, β.biList : {0, 1}∗ → N∗ maps the identifier
of a bind to its version, and β.sig records signatures of
channel users on the state. Similarly, the state is valid when
β.sig contains signatures from both the users. And βP .state
represents the latest valid channel state from P ’s view.

B. Procedures of Shaduf

We start with describing the procedure of channel opening
as shown in Figure 7(A), with Figure 9(A) presenting contract
actions. β.Alice sends the opening request to the contract
instance C(β), which informs β.Bob of the opening event.
If β.Bob confirms it within ∆ time, the contract marks β as
opened and informs (opened) to them (Step (1), Figure 9(A)).
Otherwise, β.Alice sends (timeout) to the contract, which
returns back the coins (Step (2), Figure 9(A)).

The channel state update is performed off-chain between

8



Assume the following messages concerning the channel β and the bind Φ. We abbreviate Φ.Irene as I . In the procedure (B),
we denote the channel identifier as id, the initiator of the payment as P , and the other user as Q.

(A) Open
1) Upon (open, β)

t←−↩ Z , β.Alice sends (open, β)
t
↪−→ C(β), and goes to step 3.

2) Upon (opening, β)
τ←−↩ C(β), β.Bob sends (opening, β)

τ
↪−→ Z . If (open)

τ←−↩ Z , he sends (open)
τ
↪−→ C(β), outputs

(opened) upon receiving it from C(β), adds β to ΓB , and waits for messages concerning β. Otherwise, he stops.

3) If (opened)
t1≤t+2∆
←−−−−−−↩ C(β), β.Alice adds β to ΓA, outputs (opened), and waits for messages concerning β. Otherwise,

upon receiving (refund, β) from Z , she sends (timeout) to C(β), and stops.
(B) Channel Update

1) Upon (chan-update, id, θ)
t←−↩ Z , P generates signature σP on msg = (βP .version + 1, βP .balance + θ, βP .biList),

sends (chan-update, msg, σP )
t
↪−→ Q, and goes to step 3.

2) Upon (chan-update, msg = (ver, α, biList), σP )
τ←−↩ P where σP is P ’s signature on msg, Q proceeds as follows,

a) If ver ̸= βQ.version + 1, or biList ̸= βQ.biList, Q ignores the message and stops.
b) Otherwise, Q sends (chan-update-req, id, α − βQ.balance)

τ
↪−→ Z . If (chan-update-ok)

τ←−↩ Z , Q generates
signature σQ on msg, (chan-update, σQ)

τ
↪−→ P , and stops. Else, Q stops.

3) If (chan-update, σQ)
t+2←−−↩ Q where σQ is Q’s signature on msg, P outputs (chan-updated) and stops. Else, P

denotes θ as β’s pending update, initiates channel closing in procedure (F), and stops.
(C) Bind

1) Upon (bind, Φ)
t←−↩ Z , I generates signature σI on (Φ, t), sends (bind, Φ, t, σI )

t
↪−→ Φ.end-users, and goes to step 3.

2) Upon (bind, Φ, τ − 1, σI )
τ←−↩ I where σI is I’s signature on msg = (Φ, τ − 1), P ∈ Φ.end-users sends (bind-req,

Φ)
τ
↪−→ Z . If (bind-ok)

τ←−↩ Z , P generates signature σP on msg, (bind, σP )
τ
↪−→ I , and goes to step 4. Else, P stops.

3) If I receives the end users’ signatures on (Φ, t) in t+2, I sends (bind-confirm)
t+2
↪−−→ Z and if (bind-confirmed)

t+2←−−↩ Z , I sends (Φ, t,Σ)
t+2
↪−−→ C(Φ.ca) where Σ is the set of signatures, outputs (bound) upon receiving it from C(Φ.ca),

and for γ ∈ Φ.channels, I adds Φ to γI .bind, sets γ.allot = γ.allot− Φ.reserve(γ), and stops. Otherwise, I stops.

4) Denote P in channel γ ∈ Φ.channels. If (bound)
τ1≤τ+1+∆
←−−−−−−−↩ C(Φ.ca), P adds Φ to γP .bind, sets γ.allot = γ.allot −

Φ.reserve(γ), outputs (bound), and stops. Otherwise, P outputs (not-bound) and stops.

Fig. 7: Procedures (A) Open, (B) Channel Update, and (C) Bind.

the channel users. When user P receives the instruction to
update the channel state, P increments the update counter and
the balance allocation, and sends the updated state to the other
user, say Q, along with the signature (Step (1), Figure 7(B)).
Q verifies the correctness of the counter and the signature and
asks the environment whether the update is supported. If it
is, Q replies with the signature on the updated state, which
becomes valid then (Step (2), Figure 7(B)). If Q does not
respond, P is not sure whether the state is updated. Then P
marks the update as pending and initiates channel closing, from
which the result of update is derived.

The procedure of bind is shown in Figure 7(C) and the
contract operation appears in Steps (1-2) of Figure 9(B). To
bind two channels, users need to declare it on the blockchain.
It is required that the two contracts record the bind atomically.
If one contract confirms the bind while the other one not,
the eventual coin shift between the two channels cannot be
settled since the contract can only send or receive coins with
bound channels.1 To guarantee the above cases would not
happen, the setup of bind in one contract is triggered by
another contract, which in turn records the bind only when the
triggered contract returns confirmation. Specifically, users send

1It is also required that the contracts are secure, which can handle the
unbind request and deliver shifted coins to bound channels. It can be imple-
mented by checking whether the contract is of permitted implementations via
opcode EXTCODEHASH, see https://github.com/ethereum/EIPs/blob/master
/EIPS/eip-1052.md.

the bind request to the trigger channel contract, which verifies
the request and informs the triggered contract if correct (Step
(1a), Figure 9(B)). The triggered contract checks the bind and
replies confirmation if correct (Step (2), Figure 9(B)). After
that, the trigger contract records the bind and informs users
(Step (1a), Figure 9(B)). To specify the character of “trigger”
and “triggered” between the two contracts, we fix the contract
with a lower channel identifier value as “trigger” and the other
one as “triggered”. Their roles are the same when unbinding.

The request of bind Φ is submitted by the intermediate,
who needs to collect signatures of the other two users on the
request first (Step (1), Figure 7(C)). The request is in the form
of (Φ, t), where t is the timestamp to avoid the replay attack.
Besides, the timestamp is used to avoid the long time waiting
for end users to confirm the request’s effectiveness, especially
when the user has replied with the signature on it but the
request has not appeared on the blockchain. The timestamp
indicates that the request is only valid within time 2+∆, where
2 rounds are for the intermediate to collect signatures and
∆ rounds are for submission. Receiving the request from the
intermediate and confirmed by the environment, end users sign
the bind request and send the signatures to the intermediate
(Step (2), Figure 7(C)). They wait for at most 1+∆ rounds to
confirm whether the bind takes effect (Step (4), Figure 7(C)).

After the bind Φ is recorded on the blockchain, the inter-
mediate can shift coins between the two bound channels. The
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Assume the following messages concerning the channel β and the bind Φ, with their identifiers, β.id and Φ.id denoted as
id and ĩd, respectively. We denote the requested coin shift in the procedure (D) as θ̃ and abbreviate I := Φ.Irene. In the
procedures (E) and (F), we denote the initiator as P and the responder as Q.

(D) Bind Update
1) Upon (bind-update, ĩd, θ̃)

t←−↩ Z , I generates signature σI on msg = (ΦI .version + 1,ΦI .shift + θ̃, θ̃), sends
(bind-update, msg, σI )

t
↪−→ Φ.end-users, and goes to step 3.

2) Upon (bind-update, msg = (ver, shift, θ̃), σI )
τ←−↩ I where σI is I’s signature on msg, ver = ΦP .version + 1, and

shift = ΦP .shift + θ̃, P ∈ Φ.end-users sends (bind-update-req, ĩd, θ̃)
τ
↪−→ Z . If (bind-update-ok)

τ←−↩ Z , P
generates signature σP on msg, (bind-update, σP )

τ
↪−→ Φ.other-users(P ), and goes to step 4. Otherwise, P stops.

3) Upon (bind-update, σP )
t+2←−−↩ P ∈ Φ.end-users where σP is P ’s signature on msg, I forwards the message to the

other end user. In round t+3, if I has collected others’ signatures, I outputs (bind-updated), and for γ ∈ Φ.channels:
goes to step 5. Otherwise, I denotes θ̃ as Φ’s pending update, initiates unbinding in the procedure (E) and stops.

4) If (bind-update, σQ)
τ+1←−−↩ Q where Q is the other end user and σQ is Q’s signature on msg, P sends (bind-

update, σQ)
τ+1
↪−−→ I . In round τ +2, if P has collected Q’s signature, P outputs (bind-updated), and in P ’s channel

γ: goes to step 6. Otherwise, P denotes θ̃ as Φ’s pending update, initiates unbinding in procedure (E), and stops.
5) Denote the current round as t1. I updates her balance by θ̃(γ) and denotes the updated channel balance as γI .balance′,

adds 1 to γI .biList(ĩd) (sets to 1 if ĩd is not in the list) and denotes it as γI .biList′, generates signature σI on msg =
(γI .version+1, γI .balance′, γI .biList′), and sends it to the other channel user. If I receives the other’s signature, I stops.
Otherwise, I outputs (bind-chan-not-updated), initiates channel closing in procedure (F), and stops.

6) Denote the current round as τ1. P updates I’s balance by θ̃(γ) and denotes the updated channel balance as γP .balance′,
adds 1 to γP .biList(ĩd) (sets to 1 if ĩd is not in the list) and denotes it as γP .biList′. If P receives I’s signature on
msg = (γP .version + 1, γP .balance′, γP .biList′), P sends the signature on msg to I , and stops. Otherwise, P outputs
(bind-chan-not-updated), initiates channel closing in procedure (F), and stops.

(E) Unbind
1) Upon (unbind, ĩd)

t←−↩ Z , P sends (unbind, ĩd,ΦP .state)
t
↪−→ C(Φ.ca), waits for ∆ time, and goes to step 3.

2) Upon (unbinding, ĩd)
τ←−↩ C(Φ.ca), Q sends (unbind, ĩd,ΦQ.state)

τ
↪−→ C(Φ.ca), and goes to step 3.

3) For the channel γ ∈ Φ.channels where the party is in, proceed as follows,
a) If not received (unbound) from C(Φ.ca) within ∆ time, send (timeout, ĩd) to C(Φ.ca).
b) Upon receiving (unbound) from C(Φ.ca), remove Φ from γ.bind, update γ.fund and γ.allot as the contract C(γ),

and output (unbound).
c) If Φ’s pending update is confirmed and γ has not been initiated closing, go to step (5) of procedure (D) if the party is

I and step (6) otherwise. Stop the procedure.
(F) Close

1) Upon (close, id)
t←−↩ Z , P sends (close, βP .state)

t
↪−→ C(β). If β.bind = ∅, P waits for ∆ time and goes to step 3.

Otherwise, for Φ ∈ β.bind, P starts procedure (E). When all channels are unbound, P goes to step 4.
2) Upon (closing)

τ←−↩ C(β), Q sends (close, βQ.state)
τ
↪−→ C(β). If β.bind = ∅, Q goes to step 3. Otherwise, Q executes

procedure (E) for each bind in β.bind. When all channels are unbound, Q goes to step 4.
3) If the party received (closed) from C(β) within ∆ time, then output (closed) and stop. Otherwise, send

(close-resolve) to C(β) after ∆ time, output (closed) upon receiving it from C(β), and stop.
4) Send (close-resolve) to C(β), output (closed) upon receiving it from C(β), and stop.

Fig. 8: Procedures (D) Bind Update, (E) Unbind, and (F) Close.

process of coin shift is the same as described in Section III,
including two phases of bind state update (Steps (1-4), Figure
8(D)) and channel state update (Steps (5-6), Figure 8(D)). Here
we distinguish the second phase from the procedure (B). The
former updates the bind version and intermediate’s balance
recorded in the channel state, while the latter is to perform
payments in the channel. Besides different contents to be
updated, the former is initiated by the intermediate of bound
channels, and the latter could be initiated by any channel user.
When the first phase completes, this coin shift takes effect. If
it halts, users stop performing bind updates and initiates the
unbinding. If the second phase halts, users stop conducting
channel updates and initiate the channel closing.

The process of unbind is presented in Figure 8(E). Behav-
iors of the trigger and triggered contract are shown in Steps
(3) and (4) of Figure 9 respectively. Any user could initiate
the unbind (Step (1), Figure 8(E)) and the other users respond
with the latest bind state (Step (2), Figure 8(E)). They would
trigger the contract that timeout if it is not handled in a timely
manner (Step (3a), Figure 8(E)). From the aspect of the trigger
contract, when triggered by one user to unbind Φ, the contract
informs the other two users about the event and waits ∆ for
their responses (Step (3), Figure 9(B)). Finally, the contract
decides the latest state, i.e., the valid state with the highest
bind version, and triggers the other contract with the latest
state. In addition, the contract sends or receives coins according
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(A) The contract for channel opening
Upon (open, β)

τ←−↩ β.Alice, (remove, β.Alice, β.balance(β.Alice))
τ
↪−→ L, (opening, β)

τ
↪−→ β.Bob. Wait for one of the

following messages,

1) (open)
τ1≤τ+∆
←−−−−−↩ β.Bob: (remove, β.Bob, β.balance(β.Bob))

τ1
↪−→ L, (opened)

τ1
↪−→ β.users, and go to point (B).

2) (timeout)
τ2>τ+∆←−−−−−↩ β.Alice: (add, β.Alice, β.balance(β.Alice))

τ2
↪−→ L, and close the contract.

(B) The contract execution of channel β
Wait for the following messages:

1) (bind, Φ, t,Σ)
τ≤t+2+∆
←−−−−−−↩ Φ.Irene where β is Φ.ca and Σ are signatures of Φ.users on (Φ, t) :

a) If Φ /∈ β.bind and β.allot ≥ Φ.reserve(β), trigger (bind, Φ) of C(Φ.cp). If C(Φ.cp) returns (bound), add Φ to
β.bind, β.allot := β.allot− Φ.reserve(β), (bound)

τ
↪−→ Φ.users. /*binding validity verification*/

b) Otherwise, ignore the message.
2) (bind, Φ)

τ←−↩ C(Φ.ca) : If Φ /∈ β.bind and β.allot ≥ Φ.reserve(β), add Φ to β.bind, β.allot := β.allot−Φ.reserve(β),
return (bound). Otherwise, ignore the message. /*binding validity verification*/

3) (unbind, ĩd, W )
τ←−↩ P where ĩd is the identifier of Φ ∈ β.bind and β is Φ.ca : set Φ.toResp := Φ.other-users(P ),

(unbinding, ĩd)
τ
↪−→ Φ.toResp. If W is a valid state, set Φ.state := W . Wait for the following messages,

a) (unbind, ĩd, W ′)
τ1≤τ+∆
←−−−−−↩ P ′ where P ′ ∈ Φ.toResp : Remove P ′ from Φ.toResp. If W ′ is a valid state and

W ′.version > Φ.version, set Φ.state := W ′. If Φ.toResp = ∅, proceed procedure (C), remove Φ from β.bind, store
Φ.version and Φ.laShift, invoke (unbind, ĩd, Φ.state) of C(Φ.cp), and (unbound)

τ
↪−→ Φ.users.

b) (timeout, ĩd) after ∆ time : proceed procedure (C), remove Φ from β.bind, store Φ.version and Φ.laShift, invoke
(unbind, ĩd, Φ.state) of Φ.cp, and send (unbound) to Φ.users.

4) (unbind, ĩd, Φ.state)
τ←−↩ C(Φ.ca) : proceed procedure (C), remove Φ from β.bind, store Φ.version and Φ.laShift.

5) (close, M )
τ←−↩ P : if M is a valid state, set β.state := M . Denote P ′ := β.other-user(P ), (closing)

τ
↪−→ P ′, and

wait for the following messages,

a) (close, M ′)
τ1≤τ+∆
←−−−−−↩ P ′ : if M ′ is a valid state and M ′.version > β.version, set β.state := M ′. If β.bind = ∅, go

to procedure (D).
b) (close-resolve) after ∆ time : If β.bind = ∅, go to procedure (D).

(C) Subroutine for settling Φ’s coin shift
Let γ be the channel bound to β. Distinguish the following cases according to Φ.shift(β), denoted as amt,
1) If amt > 0 and amt ≤ Φ.reserve(γ), or amt < 0 and |amt| ≤ Φ.reserve(β), set β.fund := β.fund + amt, β.allot :=

β.allot + amt+Φ.reserve(β).
2) Otherwise, set β.allot := β.allot +Φ.reserve(β).

(D) Subroutine for channel closing
For each unbound Φ, if Φ.version = β.biList(Φ.id) + 1, or Φ.version = 1 and Φ.id /∈ β.biList, set β.balance(Φ.Irene) :=
β.balance(Φ.Irene) + Φ.laShift(β). Refund β.balance(β.Alice) coins to β.Alice and β.balance(β.Bob) coins to β.Bob,
send (closed) to β.users and close this contract.

Fig. 9: The contract functionality.

to Φ.shift recorded in the state, and withdraws the reserved
amounts in the bind (Figure 9(C)).

Procedure (F) in Figure 8 shows the procedure of channel
closing, corresponding to the contract procedures of Step (5)
in Figure 9. Users submit the closing request and the latest
channel state to the contract. If there are unbound channels,
users proceed procedure (E) for each bind. The contract
decides the latest channel state according to states submitted
by users. Before refunding coins to users, the contract checks
whether all binds have been dismissed. Besides, it needs to be
verified that for each bind Φ, whether the version recorded in
the channel state is consistent with that recorded in the contract
(Figure 9(D)). If not, the contract recalculates the balance of
Φ.Irene according to Φ.laShift. Finally, the contract refunds
coins to users and closes the channel.

Theorem 1: The protocol Shaduf running in the C-hybrid
world UC-realizes the ideal functionality F with respect to the

global ledger L(∆).

Proof: The proof is in Appendix B.

VI. IMPLEMENTATION AND EVALUATION

To illustrate the feasibility of Shaduf, we provide a proof
of concept implementation in Ethereum. We also conduct
an experimental evaluation of Shaduf’s performance in the
payment channel network, to compare it with Revive, in a
simulation of the Lighting Network. The source code is open
on Github2.

A. Implementation

Upon Ethereum, we implement the contract functionality
shown in Figure 9 using the Solidity programming language.

2https://github.com/Lonely-Programmer/Shaduf
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TABLE II: On-chain gas costs for executing Shaduf protocol,
where “opti” represents the optimistic case and “pess” repre-
sents the pessimistic case.

open bind unbind close
opti pess opti pess

Initiator 72342 292916 198069 277453 178108 206113
Responder 57934 0 112958 243299 62991 135396

We focus on the on-chain costs running the Shaduf protocol,
i.e., fees paid to miners when interacting with the contract.
In Ethereum, it is calculated by the gas, which depends on
the amount of data and the computation complexity of the
contract call. We set the gas price as 20 Gwei (as of June
2021). Due to the recent Ether price fluctuations, we use the
Nov 2020 exchange rate of 500 USD per Ether. Shaduf’s costs
are classified under each procedure and distinguished by the
role one user plays, the initiator and the responder. The contract
deployment costs 3.1M gas (31 USD). Since it can be mitigated
by technical ways [7], we only consider the Shaduf running
costs. Except for the channel state update and bind state update
which are executed off-chain, costs of the other 4 procedures
are displayed in Table II.

Costs of Shaduf. From Table II, channel opening costs the
initiator 72k gas (0.72 USD) and the responder 57k gas (0.57
USD). Initiator of a bind, i.e., intermediate of two bound
channels who submits the bind request to the blockchain, bears
the total bind costs of 292k gas (2.92 USD). The unbinding
could be initiated by any of its three users, and we measure the
cost of unbinding in two cases. In the optimistic case, after the
initiator submits the latest state to the contract, the other two
users respond accordingly. In the pessimistic case, either the
other two users do not respond in time thus the initiator needs
to trigger the contract to finish the unbinding, or an expired
state is submitted by the initiator thus the responder needs
to submit the latest state. Similarly, we measure the costs of
channel closing in both cases. The results show that the costs
of Shaduf are minimized when all users behave honestly. The
costliest procedure for both the initiator and the responder will
be less than 520k gas (5.20 USD) even in the pessimistic case.

Cost Comparison. Shaduf spends at most 813k gas (8.13
USD) for the bind and unbind procedures. Compared with
Close-and-Reopen which costs 307k gas (3.07 USD) each
time of channel refunding and LOOP which costs half the
gas, costs of 3 times Close-and-Reopen and 6 times LOOP
exceed Shaduf’s costs, while Shaduf enables unlimited times
of rebalancing after binding. Moreover, 3 times Close-and-
Reopen and 6 times LOOP need at least 6∆ time, while Shaduf
requires only ∆ for the one-time binding.

B. Evaluation

Generally, off-chain rebalancing methods have the potential
to enhance the off-chain network’s performance by enabling
payments that may fail in the payment channel networks,
such as the LN. Concretely, when performing a multi-hop
payment in the LN, the sender selects the shortest path to
the receiver from the network topology, and completes this
payment with the help of the path users. However, the payment
may fail due to any user, along the path, lacking coins in its
hop. Revive and Shaduf alleviate this problem by refunding

the depletion hop via coins in other channels, in global and
local manners, respectively. To clarify their actual effects, we
conduct the experimental evaluation and aim to answer the
following questions,
• Q1: How does Shaduf perform in the off-chain network,

in the respect of improving the network’s success ratio
and volume, and reducing users’ deposits in channels,
especially compared with LN and Revive?

• Q2: How does the binding strategy affect Shaduf’s per-
formance?

1) Evaluation setup: We setup the evaluation from two as-
pects, including the network topology and off-chain payments.

Network topology. Although Shaduf is constructed upon
Turing-complete blockchain platforms, we use the real and
the largest off-chain network, LN topology, to evaluate the
performance. We get the snapshot of LN topology on 2021-03-
31 (from https://ln.bigsun.xyz/), which contains 10,529 nodes
and 38,910 channels. Since the initial balance allocation within
each channel is invisible, we evenly assign the fund in each
channel to two channel users to bootstrap the network.

Off-chain payments simulation. Due to the fact that the
off-chain payments (including the occurrence and amount)
are invisible, to simulate the off-chain payments, we need
to simulate both the sender-receiver pairs and the payment
amounts between each pair.

• For choosing sender-receiver pairs, we consider two typ-
ical cases, uniform and skewed ones, separately. In the
uniform case, a user performs payments with each other
at the same probability. Therefore, senders and receivers
are uniformly sampled from the network. In the skewed
case, users such as customers pay more while merchants
receive more. To simulate it, inspired by [23], we sample
the sender and receiver from independent exponential
distributions. The skewness of distribution is represented
by the skewness factor, and a higher value indicates more
skewed payments.

• As for off-chain transaction values, we simulate them by
randomly sampling from the Bitcoin trace from 2021-
03-01 to 2021-03-31. Furthermore, since LN is mainly
used for high-frequency and low-amount transactions (or
so-called micro-payments), to make the evaluation more
compatible with the real off-chain network, we abandon
the values higher than the median of the channel capacity.
Finally, 2.65M transaction values are available.

2) Evaluation methodology: We design methods of evalu-
ation for Revive and Shaduf. For the former, we implement
the original Revive as suggested by [13], and optimize it to
promote the performance. For the latter, we propose three
different binding strategies.

Revive and its optimization. In Revive, the rebalancing
demand is resolved in a global manner, i.e., the user completes
the refund with other users who also have the refunding
demand, under the help of a global fair leader. We simulate the
rebalancing process in the following way. Firstly, each round of
Revive starts by collecting the failed payments and regarding
each user whose coins are insufficient for the payment to have
the refunding demand, i.e., shifting coins in other channels
to the current channel to continue the payment. Secondly,
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under skewed payment demands, with
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Fig. 10: Effect of Shaduf varying the channel capacity, payment skewness and the binding strategy.

since more demands mean a higher possibility of directed
cycles, to see the best performance of Revive, we assume
that the fair leader starts this round of rebalancing when the
number of demands reaches the maximum, i.e., 300 users or
1000 channels as suggested by [13]. After the generation of
rebalancing transactions by the fair leader, we assume that all
cycle users would cooperate with the rebalancing, after which
all the failed payments are retried.

The performance of Revive can be improved by relaxing
the refunding restrictions. A natural optimization of Revive
could be achieved by exploiting the shortest cycles in the
payment channel network. Instead of waiting for the other
refunding demands to form directed cycles, a channel with
rebalancing demand in the optimized Revive (OPT-Revive for
short) gets help from users in its shortest cycles. In this way,
the user is allowed to move coins in each other channel to the
required channel, until sufficient coins are collected.

Shaduf. The refunding demand is resolved in a local manner,
i.e., a user can shift coins within bound channels, with the
cooperation of the other two users in each pair of bound
channels. To simulate the case, we need to initiate the bindings
for each user. For binding amounts, funds in a channel are
evenly assigned to both end users to bind other channels,
i.e., the maximum of funds that can be shifted out. When the
channel is bound to multiple channels, the amount is equally
distributed among them. As for binding strategy, a user with x
channels can choose any subset from the C2

x pairs of bindings
as its strategy. Three reasonable choices, including “high-to-
low”, “random-bind” and “all-bind”, are described below.

In the first strategy, each user binds the channel with the
highest balance to the channel with the lowest balance, the
channel with the second-highest balance to the channel with
the second-lowest balance, and so on. In the second strategy,
a user with x channels chooses bindings randomly, with the
limitation that exactly ⌊0.5 ·x⌋ bindings are permitted. That is
to say, the first and second strategies share the same number of
bindings. In the third strategy, each pair of channels are bound.
We denote the three strategies as “HL-Shaduf”, “RB-Shaduf”
and “AB-Shaduf” respectively.

Ways of evaluation and comparison. Following the method-
ology and with the aforementioned evaluation setup, we carry
out the evaluation. More concretely,

• To answer the first question (Q1), we test Shaduf’s
performance with the “high-to-low” strategy, under the
uniform (labeled with ‘-uni’) and skewed (labeled with

‘-skew’) payment demands separately. Performances of
LN and (OPT-)Revive under the same setting are also
displayed for comparison. To derive Shaduf’s effect on
deposit reduction, we scale the channel capacity by a
factor and see at which scale would (OPT-)Revive and
Shaduf achieve the same performance as LN.

• To answer the second question (Q2), we vary Shaduf’s
binding strategy and test the performance under the uni-
form payments.

It should be noted that in each evaluation, 50,000 sender-
receiver pairs with corresponding payment values are chosen.
Since randomness is introduced in the simulation of off-chain
payments, we execute each evaluation 10 times and calculate
the average. Both the success ratio and volume are taken as
the metrics. Since the success volume is proportional to the
success ratio, we put the volume data in Appendix C.

3) Evaluation results:

Success ratio in uniform payments. We vary the channel
capacity from 1x to 25x and show the success ratio in
uniform payments in Figure 10a. While Revive’s performance
is slightly better than LN, OPT-Revive achieves around 7%
enhancement, and Shaduf achieves around 10% - 22% en-
hancement.

Success ratio in skewed payments. We test Shaduf’s perfor-
mance in skewed payments, under the fixed channel capacity
factor 10. We increase the skewness factor until LN’s success
ratio drops to 50%, which we regard as the minimum-usable
case. From the results displayed in Figure 10b, OPT-Revive
achieves 7.5% enhancement and Shaduf achieves around dou-
bled enhancement on average.

Deposit comparison in uniform payments. From Figure 10a,
we see at which scale would OPT-Revive and Shaduf achieves
the same success ratio of LN. For example, when the success
ratio is 70%, the capacity factors of LN, OPT-Revive, and
Shaduf are 15, 10, and 6, respectively. It means that OPT-
Revive and Shaduf achieve the same performance with 0.67x
and 0.4x capacity of LN. Correspondingly, they save 33% and
60% deposit respectively. On average, OPT-Revive and Shaduf
saves 31% and 60% of the capacity, respectively.

Deposit comparison in skewed payments. Facing skewed
payments, we consider the performances of OPT-Revive and
Shaduf under the skewness factor 8. We vary the channel
capacity and the results are displayed in Figure 10c. From the
results, Shaduf improves the success ratio of LN and Revive by
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12% on average. Correspondingly, 0.66x and 0.48x capacity is
required for OPT-Revive and Shaduf to perform as effectively
as LN, with 34% and 52% capacity saved. For example, when
the success ratio is around 62%, the capacity factors of LN,
OPT-Revive, and Shaduf are 20, 13, and 10, respectively.

Binding effect. Figure 10d shows the effect of the binding
strategy. Shaduf under the “high-to-low” strategy performs
better than the “random-bind” strategy, even under the same
number of bindings, while the “all-bind” strategy performs
best. In terms of the success ratio, the three strategies’ en-
hancements vary from 6% to 28%. Under the same success
ratio of LN, they achieve 37% - 75% deposit savings.

In summary, Shaduf’s performance fluctuates under dif-
ferent payment demands and binding strategies. In general,
Shaduf outperforms LN and Revive by 6% - 28% in success
ratio, and reduces users’ deposits by 37% - 75% under the
same success ratio. A more dedicated binding strategy would
further improve Shaduf’s effect.

VII. DISCUSSION

A. Choosing the Binding Strategy

Apart from the three binding strategies described above,
there are many other strategies for users to bind the channels.
While more bindings cost higher on-chain fees, i.e., $2.92
times the number of bindings, in general, more payments
would be enabled, from which the user would save the costs
for on-chain channel refunding and charge fees for facilitating
these payments. From another aspect, the deposit in channels
could be reduced while maintaining the same performance.
Therefore, users could trade off the costs and benefits of
bindings, then decide and adjust the bindings according to the
practical and dynamic demands.

B. Privacy Issue

In the Lightning Network, the channel privacy means that
the concrete fund allocation within one channel is invisible
to anyone outside the channel. In other words, from their
point of view, each channel user’s balance is random in the
range of 0 to the channel capacity. Recall that in Section
III-B, in order to guarantee the balance security, the on-chain
binding is required before performing off-chain coin shifts.
Furthermore, to enable one channel to be bound to multiple
channels, the upper limit of coin shifts is declared on the
blockchain. Therefore, the relation of binding and the upper
limit are public. Nevertheless, the privacy is not compromised
in Shaduf. By dividing users outside the channel into two
categories, i.e., blockchain observers and the user in its bound
channel, we provide the non-formal privacy analysis from their
perspectives, as shown below.

From the aspect of blockchain observers, no further in-
formation about the channel state is obtained since the coin
shifts between bound channels are also off-chain performed
among bound users. Moreover, the potential flowing-in coins
from bound channels actually increase the channel capacity.
Therefore, the range of each user’s balance is expanded.

Compared with blockchain observers, the user in the bound
channel knows the extra information, i.e., the concrete number
of shifted coins between them. When coins are shifted out, the

channel’s capacity seems to be reduced, shrinking the channel
users’ balance range. However, the channel privacy is retained
for two reasons. Firstly, the concrete balance allocation is
still unknown. Secondly, since one channel could be bound
to multiple channels, the user’s balance range is affected by
coins shifted from all bound channels.

In short, even though the binding relation and the upper
limit of coin shift are public, Shaduf does not compromise the
privacy. We leave the formal proof as the future work.

VIII. RELATED WORK

The issue of channel fund depletion is first proposed by
Revive [13]. With the atomic multi-channel update protocol
[9], Revive is Bitcoin-compatible and can be deployed to, for
example, LN. Spider [23] solves the problem in a different
way, which proposes a balanced routing scheme to avoid
fund depletion in channels facing skewed payment flows.
Similarly, to avoid payment failure due to depleted funds in
channels, Li et al. [14] plan the deposition in channels to
satisfy the payment demands. Both approaches aim to avoid
fund depletion, which are orthogonal to Revive and our work
since we provide solutions for channels that have already been
depleted. The two kinds of solutions can be combined to
achieve a better performance in maintaining balanced channels.

1) Payment channel: Many variants of the payment channel
have been extensively studied. Bolt [10] constructs anonymous
channels where payments in one channel are unlinkable. Pay-
ment channels are built upon multiple blockchain platforms
[20], [26], and extended to state channels where arbitrary state
transitions are enabled [1], [6], [8], [19].

2) Payment channel network: The routing strategies have
been studied in [15], [22], [23], [25]. Tumblebit [12] constructs
payment unlinkable PCH. Maintaining the privacy feature,
A2L [24] enhances Tumblebit’s efficiency and interoperability.
Malavolta et al. [17] report the wormhole attack and propose
the secure and privacy-preserving PCN construction. Sprites
[19] reduces the collateral costs of multi-hop payments. Egger
et al. [9] achieve the collateral reduction on Bitcoin-compatible
platforms. Aumayr et al. [3] build the secure and collateral-
reduced multi-hop payments in a single round. Perun [7] pro-
poses the concept of the virtual channel, via which users with
one-hop distance can perform off-chain payments directly. The
virtual channel is also enabled on Bitcoin-compatible platforms
[2]. Dziembowski et al. [8] connect arbitrary users directly
via virtual channels and build the state channel network. The
virtual channel is also extended to multi-party where multiple
parties can perform state transitions [6]. We refer readers
to [11] for a comprehensive understanding of the payment
channel and the network.

IX. CONCLUSION

In this paper, we have proposed a non-cycle off-chain
rebalancing scheme named Shaduf. It allows users to rebalance
depleted channels via exploiting coins from other channels
in more general cases. We formalize the protocol in the UC
framework and prove its security. Experimental evaluation
shows that Shaduf outperforms LN and Revive in raising the
performance of the off-chain payment network. We also remark
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that Shaduf is an orthogonal and compatible work to the well-
studied off-chain routing methods, therefore we believe the
joint applications of Shaduf with them will perform even better.
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APPENDIX A
RESTRICTIONS ON THE ENVIRONMENT

Restrictions on the environment are listed in the following.

• The environment would never ask a user to open a channel
that already exists, or when the user has insufficient coins
for the deposit.

• The environment would never ask a user to perform pay-
ments in the channel when the user has insufficient balance
to afford this payment.

• The environment would never request two already bound
channels to bind or two not-bound channels to unbind.

• The environment would never ask a user to shift coins
between channels that are not bound, or the coins re-
quested to shift exceed the upper limit. More concretely,
for the bind Φ between channels β and γ, the maximum
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Fig. 14: Success volume of the evaluation.

number of coins that could be shifted from β to γ is
min(Φ.reserve(β) + Φ.shift(β), β.balance(Φ.Irene)).

• The environment would never request a user to update the
channel state or bind state when the previous update is not
completed.

• The environment would never request a user to close a
channel that does not exist.

APPENDIX B
PROOF OF THEOREM 1

To achieve the indistinguishability between the ideal world
and the real world, the simulator S sends inputs to the ideal
functionality F observing behaviors of the corrupted parties
and sends messages to the corrupted parties on behalf of the
contract functionality C and the honest parties.

At the beginning, S corrupts the parties that A corrupts. S
also generates the public-private key pairs for all parties and
passes all public keys to the corrupted parties. For each cor-
rupted party, its private key is sent along. Simulation on each
procedure is shown in Figure 12 and 13. In each procedure, we
ignore cases where involved parties are all honest or corrupted,
since S simulates behaviors of the corrupted parties and we
aim to protect the balance security of the honest parties.

APPENDIX C
SUCCESS VOLUME OF EVALUATION

The total payment volumes in the evaluation is 94 BTC.
The data of success volume displayed in Figure 14a, 14b, 14c,
and 14d correspond to the four evaluation that is shown in
Figure 10a, 10b, 10c, and 10d, respectively.
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Assume the following messages concerning the channel β and the bind Φ, with their identifiers, β.id and Φ.id, denoted as id
and ĩd, respectively. In procedures (B) and (D), we denote the requested payment and coin shift as θ and θ̃, respectively. We
abbreviate A := β.Alice, B := β.Bob, I := Φ.Irene, and denote the initiator of channel update as P and the responder as Q.

(A) Open
Case A is honest and B is corrupt

Upon A sending (open, β)
t
↪−→ F , send (open, β)

t
↪−→ C(β) on behalf of A. Assume it reaches L in round τ ≤ t+∆. If B

sends (open)
τ
↪−→ C(β), send (open)

τ
↪−→ F on behalf of B. Otherwise, upon A sending (refund, β) to F , send (timeout)

to C(β) on behalf of A.
Case A is corrupt and B is honest

Upon A sending (open, β)
t
↪−→ C(β), send (open, β)

t
↪−→ F on behalf of A. Assume it reaches L in round τ ≤ t+∆. If B

sends (open)
τ
↪−→ F , send (open)

τ
↪−→ C(β) on behalf of B. Otherwise, upon B sending (timeout) to C(β), send (refund,

β) to F on behalf of B.
(B) Channel Update

Case P is honest and Q is corrupt
Upon P sending (chan-update, id, θ)

t
↪−→ F , generate signature σP on msg = (id, βP .version + 1, βP .balance +

θ, βP .biList), and send (chan-update, msg, σP )
t
↪−→ Q on behalf of P . If Q sends his signature on msg to P in round

t+ 1, send (chan-update-ok) to F on behalf of Q. Otherwise, initiate channel closing on behalf of P .
Case P is corrupt and Q is honest

Upon P sending (chan-update, msg = (ver, α, biList), σP )
t
↪−→ Q where σP is P ’s signature on msg, if ver =

βQ.version + 1 and biList = βQ.biList, (chan-update, id, α − βQ.balance)
t
↪−→ F on behalf of P . Else, stop. If Q

sends (chan-update-ok)
t+1
↪−−→ F , generate Q’s signature σQ on msg and send it to P on behalf of Q.

(C) Bind
Case I is honest

Upon I sending (bind, Φ)
t
↪−→ F , generate I’s signature σI on (Φ, t), send (bind, Φ, t, σI ) to Φ.end-users on behalf of I .

Proceed as follows,

1) For P ∈ Φ.end-users, if P is corrupt and sends (bind, σP )
t+1
↪−−→ I where σP is P ’s signature on (Φ, t), send (bind,

Φ)
t+1
↪−−→ F on behalf of P . If P is honest and sends (bind-ok)

t
↪−→ F , generate P ’s signature σP on (Φ, t), and send it

to I on behalf of P .
2) In round t+ 2, if I sends (bind-confirmed) to F , send (bind, Φ, t, σP , σI , σQ)

t+2
↪−−→ C(Φ.ca) on behalf of I .

Case I is corrupt
Upon I sending (bind, Φ, t, σI )

t
↪−→ P ∈ Φ.end-users and P is honest, send (bind, Φ)

t
↪−→ F on behalf of I , and send

(send-req, P ) to F . Proceed as follows,
1) For P ∈ Φ.end-users, if P is corrupt, send (bind-ok) to F in round t + 1 on behalf of P . Else, if P is honest and

sends (bind-ok) to F , generate P ’s signature σP on (Φ, t) and send (bind, σP ) to I on behalf of P .
2) In round t+2, if I sends (bind, Φ, t, Σ) to C(Φ.ca) where Σ is the set of users’ signatures on (Φ, t), (bind-confirmed)

t+2
↪−−→ F on behalf of I .

(D) Bind Update
Case I is honest

Upon I sending (bind-update, ĩd, θ̃)
t
↪−→ F , generate I’s signature σI on msg = (ΦI .version + 1,ΦI .shift + θ̃, θ̃),

(bind-update, msg, σI )
t
↪−→ Φ.end-users on behalf of I , and proceed as follows,

1) For P ∈ Φ.end-users, distinguish the following cases,

a) If P is honest and sends (bind-update-ok)
t
↪−→ F , generate P ’s signature σP on msg send (bind-update, σP )

t+1
↪−−→ Φ.other-users(P ) on behalf of P , and forward it to the other end user on behalf of I . In round t+2, if P receives
the other end user’s signature, forward it to I on behalf of P .

b) If P is corrupt and sends her signature on msg to I in round t+ 1, forward it to the other end user on behalf of I . If
P ’s signature is sent to I before round t+ 2, send (bind-update-ok) to F on behalf of P .

2) In round t+ 3, if I does not collect others’ signatures, initiate the unbinding in procedure (E) on behalf of I . Otherwise,
for γ ∈ Φ.channels:
a) Update I’s balance by θ̃ and denote the updated channel balance allocation as γI .balance′, add 1 to γI .biList(ĩd) (set to

1 if ĩd is not in the list) and denote it as γI .biList′. Generate I’s signature σI on msg = (γI .version+1, γI .balance′,
γI .biList′), and send (chan-update, σI ) to the other channel user, denoted as P , on behalf of I .

b) In round t + 4, if P is honest, generate P ’s signature on msg and send it to I on behalf of P . If P is corrupt and
does not send P ’s signature on msg to I , send (bind-chan-not-updated, γ.id) to F on behalf of P , and initiate
channel closing in procedure (E) on behalf of I .

Fig. 12: Simulation: (A) Open, (B) Channel Update, (C) Bind, and (D) Bind Update.
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Assume the following messages concerning the channel β and the bind Φ, with their identifiers, β.id, and Φ.id, denoted as
id and ĩd, respectively. In the procedures (E) Unbind and (F) Close, we denote the initiator as P and the responder as Q.

(D) Bind Update
Case I is corrupt

Upon I sending (bind-update, msg = (ver, shift, θ̃), σI )
t
↪−→ P ∈ Φ.end-users, where ver = Φ.version + 1, shift =

Φ.shift + θ̃, and σI is I’s signature on msg, (bind-update, ĩd, θ̃)
t
↪−→ F on behalf of I , and (send-req, P )

t
↪−→ F .

Proceed as follows,
1) For P ∈ Φ.end-users, distinguish the following cases,

a) If P is honest and sends (bind-update-ok)
t+1
↪−−→ F , generate P ’s signature σP on msg and send (bind-update,

σP )
t+1
↪−−→ Φ.other-users(P ) on behalf of P . If P receives the other end user’s signature on msg in round t+2, forward

the message to I on behalf of P .
b) If P is corrupt and P ’s signature is sent to the honest end user before round t + 2, send (bind-update-ok) to F

on behalf of P .
2) If the honest users do not collect others’ signatures, initiate unbinding on behalf of the honest users in procedure (E).

Otherwise, for each honest user P , in his channel γ ∈ Φ.channels, proceed as follows,
a) Update I’s balance by θ̃ and denote the updated channel balance allocation as γI .balance′, add 1 to γI .biList(ĩd) (set

to 1 if ĩd is not in the list) and denote it as γI .biList′.
b) If I sends (chan-update, σI )

t+3
↪−−→ P where σI is I’s signature on msg, generate P ’s signature σP on msg, and

send (chan-update, σP )
t+4
↪−−→ I on behalf of P . Otherwise, (bind-chan-not-updated, γ.id)

t+3
↪−−→ F on behalf

of I , and initiates channel closing in procedure (F) on behalf of P .
(E) Unbind

1) Distinguish the following cases,

a) If P is honest, upon P sending (unbind, ĩd)
t
↪−→ F , or be invoked by other procedures (let t be the current round),

(unbind, ĩd, ΦP .state)
t
↪−→ C(Φ.ca) on behalf of P . Denote it reaches L in round τ ≤ t+∆.

b) If P is corrupt, upon P sending (unbind, ĩd, W )
t
↪−→ C(Φ.ca), (unbind, ĩd)

t
↪−→ F on behalf of P . Denote it reaches

L in round τ ≤ t+∆. If the pending update is confirmed in W , send confirmation to F on behalf of P .
2) For Q ∈ Φ.other-users(P ), distinguish the following cases,

a) If Q is honest, send (unbind, ĩd, ΦQ.state)
τ
↪−→ C(Φ.ca) on behalf of Q.

b) If Q is corrupt and sends a state that confirms the pending state, send confirmation to F on behalf of Q.

3) If any corrupt user does not send message to C(Φ.ca), send (timeout, ĩd)
τ+∆
↪−−−→ C(Φ.ca) on behalf of honest users.

4) If the pending update is confirmed, for channel γ ∈ Φ.channels that has not been initiated closing: go to step (2) of the
simulation on procedure (D).

(F) Close
Case P is honest and Q is corrupt

Upon P sending (close, id)
t
↪−→ F , or be invoked by other procedures (let t be the current round), (close, βP .state)

t
↪−→ C(β) on behalf of P . Assume it reaches L in round τ ≤ t+∆. If Q sends a state with the pending update confirmed to
C(β) in round τ , send the confirmation to F on behalf of Q. Distinguish the following cases,
1) If β.bind = ∅ and Q sends no message to C(β), send (close-resolve) to C(β) on behalf of P in round τ +∆.
2) Otherwise, proceed as follows,

a) For each bind in β.bind, proceed procedure (E) in round t taking P as the initiator.
b) Let τ1 ≤ t+3∆ denote the round when all channels are unbound, send (close-resolve)

τ1
↪−→ C(β) on behalf of P .

Case P is corrupt and Q is honest
Upon P sending (close, W )

t
↪−→ C(β), send (close, id)

t
↪−→ F on behalf of P . Assume it reaches L in round τ ≤ t+∆.

If W confirms the pending channel update, send confirmation to F on behalf of P . Distinguish the following cases,
1) If β.bind = ∅, send (close, βQ.state)

τ
↪−→ C(β) on behalf of Q.

2) Otherwise, proceed as follows,
a) For each bind in β.bind, if the unbinding has not been initiated in round τ , go to procedure (E) taking Q as the initiator.
b) Let τ1 ≤ τ + 3∆ be the round when all channels are unbound, send (close-resolve)

τ1
↪−→ β on behalf of Q.

Fig. 13: Simulation: (D) Bind Update, (E) Unbind, and (F) Close.
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