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Abstract—Recently, cryptojacking malware has become an
easy way of reaching and profiting from a large number of
victims. Prior works studied the cryptojacking detection systems
focusing on both in-browser and host-based cryptojacking mal-
ware. However, none of these earlier works investigated different
attack configurations and network settings in this context. For
example, an attacker with an aggressive profit strategy may
increase computational resources to the maximum utilization to
benefit more in a short time, while a stealthy attacker may
want to stay undetected longer time on the victim’s device.
The accuracy of the detection mechanism may differ for an
aggressive and stealthy attacker. Not only profit strategies, but
also the cryptojacking malware type, the victim’s device as well
as various network settings where the network is fully or partially
compromised may play a key role in the performance evaluation
of the detection mechanisms. In addition, smart home networks
with multiple IoT devices are easily exploited by the attackers,
and they are equipped to mine cryptocurrency on behalf of the
attacker. However, no prior works investigated the impact of
cryptojacking malware on IoT devices and compromised smart
home networks. In this paper, we first propose an accurate
and efficient IoT cryptojacking detection mechanism based on
network traffic features, which can detect both in-browser and
host-based cryptojacking. Then, we focus on the cryptojacking
implementation problem on new device categories (e.g., IoT)
and designed several novel experiment scenarios to assess our
detection mechanism to cover the current attack surface of
the attackers. Particularly, we tested our mechanism in various
attack configurations and network settings. For this, we used a
dataset of network traces consisting of 6.4M network packets
and showed that our detection algorithm can obtain accuracy
as high as 99% with only one-hour of training data. To the
best of our knowledge, this work is the first study focusing on
IoT cryptojacking and the first study analyzing various attacker
behaviors and network settings in the area of cryptojacking
detection.

I. INTRODUCTION

Blockchain technology eliminates the central authority and
ensures the immutability of on-chain transactions with a
computational power-based consensus model. This consensus
model is known as Proof of Work (PoW), and it is used by
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several blockchain networks such as Bitcoin [1], Ethereum
[2], and Monero [3]. PoW consensus algorithms depend on
the computational power of the hardware such as CPU, GPU,
and dedicated chipsets designed to mine cryptocurrencies (e.g.,
ASIC miners). These components help miners to solve difficult
hash-based puzzles. Solving the hash-based puzzle consumes
a great amount of energy, and this energy cost is one of the
main expenses in cryptocurrency mining operations. In this
ecosystem, cryptojacking is an act of using victims’ processing
power without their knowledge and consent [4], [5]. There are
two main approaches that attackers abuse the computational
power of the victims for cryptojacking [4]. They either inject
the script into the website or spread the mining program
into the host machine. In both approaches, attackers exploit
system vulnerabilities as well as traditional methods like social
engineering techniques.

Cryptojacking attackers initially targeted personal comput-
ers by embedding the mining script inside popular websites
[4]. While the cryptojacking attacks gain more popularity and
target bigger attack domains [6]–[10], IoT devices became the
new favorite toy of the attackers [6], [11], [12] because of
their increasing usage in various different domains such as
healthcare, industry, home, offices. IoT devices are generally
resource-constrained, i.e., they are not profitable individually
for an attacker. Therefore, the attackers utilize techniques like
botnet attacks to take control of the IoT devices at scale and
equip them to perform cryptocurrency mining on behalf of
the attacker. The famous IoT botnet malware, Mirai [13],
performed a massive Distributed Denial of Service (DDoS)
attack in 2017, and some other attacks [12], [14], [15] followed
the footsteps of the Mirai botnet. Moreover, the attacker(s)
who performed Mirai botnet attack also used this network to
mine Bitcoin and turn the botnet network into a giant cryp-
tojacking mining pool. Just recently, another Mirai-inspired
botnet, LIQUOR IoT botnet [15] started to mine Monero on its
victims’ IoT devices. While the IoT industry and capabilities
of IoT devices continue evolving, it also gives attackers more
space to widen their attacking surface.

There are several reasons why IoT networks are indeed
lucrative targets compared to non-IoT networks (e.g., reg-
ular computers, servers, corporate computers). First of all,
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the diversity of the vendors, communication protocols, and
hardware makes it very difficult to develop standard/unified
defense solutions while greatly increasing the attack surface
for the attackers. Second, they are not easily configurable
due to their limited capabilities and resources. For example,
while the PCs, servers, or corporate devices can be easily
configured to avoid such attacks, the IoT devices constantly
communicate with the cloud for real-time and remote access
capabilities, which provides another attack surface to the
attackers to spread and keep the botnet network. Last but not
least, security flaws of IoT devices (e.g., default passwords,
no authentication) due to their rapidly growing market and
lack of security awareness makes them an ideal target for
cryptojacking malware attackers. Here, in this paper, we focus
on IoT devices, which can be targeted by both in-browser
and host-based cryptojacking malware. Therefore, we aim to
design a detection system that can detect both in-browser and
host-based IoT cryptojacking malware.

The detection of IoT cryptojacking is challenging because
most of the IoT devices do not allow to be programmed
to collect the hardware-level features [16]–[19] or browser-
specific features [16], [19]–[28]. However, the network traffic-
based features can be collected in a unified interface on
the router, i.e., the devices do not have to be programmed
or modified at all. Therefore, in this paper, we used in-
site network-based features to detect the IoT cryptojacking
malware and propose an accurate, lightweight, and easy-to-
implement cryptojacking detection system that can detect both
kinds of cryptojacking attacks without interfering with the
hardware or software of the devices inside the home network.

We performed an extensive set of experiments to design
and evaluate the optimum IoT cryptojacking detection mech-
anism. We first performed experiments to find the best-
ranked features, the most accurate classifier, and the optimum
training size. Then, we evaluated the effectiveness of our IoT
cryptojacking detection mechanism with 12 novel experiments
designed to assess various attacker behaviors and network
settings. For this, we implemented the cryptojacking malware
on IoT devices, a laptop, and a server in a safe setup. We
explained several practical issues we came across during the
implementation of cryptojacking on IoT devices in Section
V-C.
Contributions. We summarize the major contributions of this
paper as follows:

• We propose an accurate and efficient cryptojacking de-
tection algorithm targeting IoT networks. Since we use
network traffic-based features, our algorithm is capable
of detecting both in-browser and host-based cryptojacking
malware and can detect the cryptojacking malware with
99% accuracy with one-hour of training data without any
dependence on cloud or on-device features.

• To evaluate our algorithm, we designed several novel
experimental scenarios. We assessed both various attack
configurations (i.e., cryptojacking types, profit strategies,
victim devices, and throttle values) and network settings
(e.g., fully or partially compromised). To the best of

our knowledge, this paper is the first to analyze various
attack strategies and network settings in the area of
cryptojacking detection.

• To overcome some of the practical issues during the
implementation of cryptojacking malware on the IoT
devices, we used novel techniques, which can be adapted
by other studies in the future.

• In order to accelerate the research in this area, we released
both the dataset and code.1

Summary of findings. In addition to our lightweight and
highly accurate IoT detection mechanism, extensive experi-
ments we performed to assess various attacker behaviors and
network settings, which led to several interesting results worth
nothing:

• We found that the highest malicious packet generation
rate is 72% less than the least packet generation rate of
the benign dataset given in Table III. This shows that the
cryptojacking malware does not generate as many packets
as daily web browsing and application data.

• We found that while in-browser cryptojacking malware
uses evasion techniques such as limiting CPU and min-
imizing the network communication, host-based crypto-
jacking malware tries to take advantage of the victim’s
device at maximum computational power.

• We observed that an attacker targeting the server shows
higher accuracy than other victim devices types (i.e.,
laptop and IoT), i.e., there is a higher chance that the
cryptojacking attacker will be detected during an attack
targeting the server type device.

• We found that the malicious scenario with stealthy profit
strategy (i.e., 10% throttle) is less accurate than robust
(i.e., 50% throttle) and aggressive (i.e., 100% throttle)
attack scenarios. This means that the obfuscation methods
of the attackers can still create differences during the
detection phase.

Organization. The remainder of this paper is organized as
follows: In Section II, we give background information for
cryptocurrency mining, cryptojacking malware, and machine
learning tools we used in the experiments. Section III defines
the adversarial model and attack scenarios. Section IV presents
our modeling to convert the network traffic data into a binary
classification problem. Then, in Section V, we explain the
details of our data creation process and perform initial data
analysis on the raw dataset. Section VI reports the novel design
scenarios to evaluate our detection mechanism and the results.
Section VII discusses some of the challenges we came across
during the implementation of the IoT cryptojacking malware
and our novel techniques to overcome them. In Section VIII,
we present the related work. Finally, Section IX concludes the
paper.

1https://github.com/cslfiu/IoTCryptojacking
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II. BACKGROUND

A. Cryptocurrency Mining
Cryptocurrency mining is the process by which new cryp-

tocurrencies enter circulation and is a critical component of
the maintenance and continuity of the distributed blockchain
ledger. The immutability of a blockchain network is provided
by the consensus mechanism, which is cryptocurrency mining.
Cryptocurrency mining is based on a puzzle based on the
main features of cryptographic hash algorithms. These work-
based consensus models are generally known as Proof of Work
(PoW) consensus models.

Cryptocurrency mining is a laborious, costly process where
one’s reward depends on the luck factor. Work-based consen-
sus mechanisms benefit from the diffusion feature of the hash
algorithms to prevent miners from predicting hash values in a
systematical pattern, and this feature also maintains the luck
factor. However, due to the fact that miners are rewarded with
cryptocurrencies for their work, it is an important source of
income for many cryptocurrency investors. As the hardware
investment increases, the difficulty, cost, and risk increase,
while the chance of finding the block increases.

B. Cryptojacking Types
This section explains the details of different types of cryp-

tojacking malware and their similarities and differences.
1) In-browser cryptojacking: The fast development of web

technologies such as JavaScript (JS) programming language
libraries and WebAssembly (Wasm) open standards allow
web developers to interact with the computer components via
several instructions in the browser. The attackers also use these
technologies to implement in-browser cryptojacking malware.
For example, Wasm provides the capability to run low-level
instruction codes near-native speeds in browsers, and it is
supported by all major browsers [29], [30].

In-browser mining surged after the service providers
(e.g., Coinhive) started to distribute easy-to-use cryptojacking
scripts. With those scripts, the attackers can easily copy and
paste an HTML script to the source of the webpage via several
code injection vulnerabilities [31]. This piece of code creates a
communication pipeline for the mining process and starts the
mining process. In-browser cryptojacking scripts also include
an identification number of the script owner. With this ID,
service providers monitor the overall traffic coming from the
specific script owner and make the reward distribution. After
the mining process started, the communication continues to
receive the tasks and return the calculated results through
the already established channel. The rewards are given to the
account associated with the ID number periodically.

2) Host-based cryptojacking: Host-based cryptojacking
malware aims to hide itself into the computer system of
the victim’s host and performs cryptocurrency mining. The
main goal is placing the cryptojacking malware into the
computational device of the victim as long as possible and
keeping it profitable.

The attackers distribute and locate their host-based crypto-
jacking malware with third-party applications [32], [33], social

engineering methods [34], or using several vulnerabilities into
victims’ host system [35]. Attackers also use IoT botnets [36]
to perform cryptojacking attacks. IoT devices have limited
capabilities in terms of computational power. However, the
incentive of the attackers is similar to the botnets here, in
which the combined computational power of a large number
of IoT devices can be used to perform a meaningful amount
of cryptocurrency mining.

C. Machine Learning Tools

In this subsection, we explain the machine learning algo-
rithms and methods we used during our experiments.

1) Feature Extraction and Selection Tools: Feature extrac-
tion is a dataset size reduction operation where an initial raw
dataset is reduced to a more manageable and usable form
for processing. Feature extraction methods aim to combine
features with different property-based functions, effectively
reducing the size of data that classifiers need to process and
still describing the original dataset without any loss. There are
several open-source tools that calculate thousands of different
features automatically. In this paper, we used tsfresh [37]
automatic feature calculation tool.

Feature selection is the next step of the feature extraction
process. After the feature extraction tools calculate the fea-
tures, the tools sort them in terms of their significance level
[38] (also known as P-value) and build relevance table [39].
With this method, we can easily eliminate the less significant
features and improve our classification process.

2) Machine Learning Classifiers: Classification is the pro-
cess where the algorithms categorize data into a given number
of classes for the purpose of predicting the class of a given
data feed. We used several different classification models (e.g.,
Logreg, KNN, SVM, RF) to train our models and receive the
accuracy results in this paper.

There exist other cryptojacking detection and prevention
methods such as blacklisting and static analysis methods
like keyword detection. Blacklisting methods can be easily
bypassed by the attackers by changing their domains. Even
though most of the attackers obtain the source code for the
cryptojacking from the same service provider, the malware
can be easily embedded into their own websites. Moreover,
the blacklists are generally not updated. On the other hand,
the keyword-based detection systems cannot be used directly
to detect the binary cryptojacking malware and can be easily
bypassed using the obfuscation techniques. Additionally, IoT
devices require a constant communication with the cloud
and the cloud applications may use hosting services and
dynamic IPs. Therefore, blocking the Internet or whitelist-
ing/blacklisting the IP addresses regularly is not a feasible
approach. However, a ML-based detection system would be
more scalable and generalizable over time.

III. ADVERSARY MODEL AND ATTACK SCENARIOS

As mentioned before, IoT devices can be targeted by both
in-browser and host-based cryptojacking malware. Attackers
may also follow the path of different adversarial models and
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Fig. 1: Communication flow of C&C server-based cryptojack-
ing from the compromised IoT devices to the servers.

attack cases. We evaluated 7 attack cases and made 12 discrete
experiments to test the cryptojacking detection mechanism we
proposed in this paper. In this section, we explain how IoT
devices are targeted by cryptojacking malware and how we
track these adversaries in our experiments.

A. Cryptojacking with service providers

There are several different active service providers and
thousands of web pages hosting cryptojacking malware on the
Internet [4]. Attackers generally take advantage of code injec-
tion vulnerabilities [12] of the webpages and web applications
to inject their ready-to-use mining scripts provided by service
providers.

In recent years, IoT devices gain new capabilities to provide
better and more flexible frameworks to their users. These
capabilities allow developers to integrate new technologies and
run their code blocks via IoT frameworks. The attackers merge
these framework capabilities with known vulnerabilities and
abuse them to run their cryptojacking malware inside of these
devices. We implemented WebOS IoT cryptojacking malware
with LG’s WebOS development framework [40] and develop a
basic WebOS application that calls cryptojacking script when
the user starts running the application.

To be able to create a stable and controlled cryptojacking
environment, we prepared a website under a controlled server
and hosted several different active cryptojacking scripts. How-
ever, while some of the service providers can not provide
a stable mining framework, we chose Webmine [41] as our
main service provider. We ran the script with combinations of
different levels of computational hardware usage to observe
the characteristic outcomes of those scripts.

B. Cryptojacking with Command and Control (C&C) servers

A C&C is a computer controlled by the attacker to send
commands to compromised devices. Attackers generally host
these servers in cloud-based platforms for security and identity
secrecy reasons. In the cryptojacking domain, C&C servers are
working as a subset of a mining pool to receive and distribute
mining tasks from the mining pool to compromised devices.
Figure 1 represents a basic configuration of the C&C servers
connected to the mining pools. The first well-known incident
related to IoT botnets and cryptocurrency mining [12], [36]
happened in 2017 under the famous Mirai IoT botnet [4], [13],
[42].

In this paper, we focused on the communication pipeline
between the compromised device and the C&C server. To
demonstrate the process and data communication in this setup,
we created a C&C server that sent mining tasks between
different time periods. This time frequency can be changed
depending on the block frequency of the blockchain network.
In this work, we focused on Monero [3] and sent a mining task
package within every two minute frequency. We successfully
implemented this scenario with LG WebOS [40] Smart TV
and other platforms we used for testing purposes.

IV. IOT CRYPTOJACKING DETECTION VIA NETWORK
TRAFFIC

Network traffic classification and identification techniques
have gained a lot of popularity in the last several years and
it is a well-known technique to create user/device profiles on
both server and local network sides [43], [44]. In this paper,
we consider smart home network settings, where many IoT
and non-IoT devices are connected to a router to be able to
connect to the Internet. Each device can be identified via its
MAC address. Therefore, we define devices in the network
as (MAC0,MAC1, ...,MACn) for given n devices in the
network. We assume one or more devices in this network
are compromised by the attacker to perform cryptocurrency
mining on behalf of the attacker and our purpose is to detect
the devices performing by monitoring their network traffic for
a certain time duration. For this, we use machine learning
algorithms, which are trained with malicious and benign
data beforehand. Devices generate continuous network traffic,
which needs to be converted into a data format where the
machine learning algorithm can predict whether the device is
performing or not. Before converting packets into the proper
format, we filter each packet using the following filter:

(MACsrc == MACi) OR (MACdst == MACi) (1)

for a given device with MAC address of MACi. Then, we
extracted following metadata from each packet:

Pkti = [MACi, timestamp, packet length] (2)

At the end of this process, we obtain a series of packet
lengths arrived at a given time for every device. Finally, we
use a burst of 10 packets to calculate the features and we use
these features to train/test the machine learning algorithm.

V. DATASET COLLECTION

The data we focused on in the paper is the network com-
munication data between the IoT devices and cryptojacking
service providers. In this section, we explain the main dataset
collection and creation process by focusing on the topology,
tools, methodology, and other implementation details we used
for the IoT environment environment.

4



Home Network 
(1) 

Internet Router 

Internet  
Connection 

(2) 

Copy of the Network
Traffic 

(3) 

Connecting to service
providers / C&C

servers 
(4) 

Fig. 2: General flow of network data collection process.

A. Topology

Figure 2 demonstrates our reference topology. We created a
regular smart home network with several smart home devices,
IoT devices, and personal computers (1). Data collection was
performed under regular home-networking settings and all the
devices performed unauthorized mining under a controlled
environment. In our setup, all the devices in the home network
are connected to the Internet via a single Internet router (2)
similar to most home settings. There is also another computer
in the network dedicated to collecting all the Internet traffic
with port mirroring [45] and ARP rerouting/poisoning [46]
techniques (3). Finally, compromised devices in the network
connect to the cryptojacking service providers or C&C servers
of mining malware (4) to receive the tasks and return the
calculated results. In this topology, our purpose is to be
able to detect the compromised smart home devices that are
performing unauthorized cryptomining inside the network.

B. Devices

We performed our experiments on four different devices
representing varying computational power. Particularly, we
performed the experiments on Raspberry Pi, Laptop, Tower
Server, and LG Smart TV. Raspberry Pi and LG Smart TV
represent the IoT devices in a real-life network while Laptop
represents a regular device and Tower Server represents a
computationally powerful device. Table I shows the devices
we used during the experiments and their specifications.

Device Representation Hardware Operating System

Raspberry Pi IoT device Cortex-A72 64-bit SoC
4GB RAM Raspberry OS

LG Smart TV IoT device LG Quad Core Processor WebOS 2.0

Laptop Regular Device Intel Core i7 9th Generation CPU
16 GB DDR4 RAM Ubuntu 18.04 LTS

Tower Server Powerful Device Intel® Xeon® Gold 6314U Processor
192 GB DDR4 RAM Ubuntu 20.04

Router Internet Routing Atheros QCA9563 Processor OpenWRT V.19.07.1

TABLE I: Device list used in the experiments.

Moreover, we used TP-link Archer C7 V5 as our router in
the given topology in Figure 2. We also used Ettercap [47] to
manipulate the ARP protocol and forward the network traffic
to the data collection computer’s IP address. With this network
configuration, we were able to collect all networking data with
the Wireshark packet collector and analyzer [48].

C. Implementation Methodology
The implementation of in-browser and host-based crypto-

jacking differ in several ways. In the next subsections, we
explain the details of their implementations.

1) Implementing In-browser Cryptojacking: To be able to
implement in-browser cryptojacking under a safe environment,
we launched a basic WordPress [49] webpage which contains
several different cryptojacking malware. We placed different
HTML-based cryptojacking malware samples inside the source
code of different pages of the test website for our purposes.
After creating our experiment setup, we connected these pages
with our test device and collected network traffic data for at
least 12 hours for every use case scenario as explained in
Section III. We used the scripts distributed by Webmine.io [41]
and WebminePool [50] service providers for the in-browser
cryptocurrency mining.

2) Implementing Host-based Cryptojacking: Implementing
host-based cryptojacking on Raspberry Pi, Laptop, and Tower
Server is straightforward. We downloaded the cryptocurrency
mining binary MinerGate V1.7 [51] and run it on our test
device with our configurations. However, the implementation
of host-based cryptojacking on the LG Smart TV was more
challenging because the malware binary had to be placed on
the victim’s device and the victim’s device had to allow to
run the executable sample. We used the LG WebOS developer
framework [40] to develop a basic application that runs crypto-
jacking malware as long as the application was running. In our
scenario, we assumed that the malicious application could be
an IP TV or streaming application. As a C&C server, we used a
basic cloud server (i.e., 1 GB RAM, 1 Core CPU, and Ubuntu
Server 18.4). After we created the malicious application that
runs inside the WebOS-supported Smart TVs and the C&C
server setup, we implemented two different models for the
actual mining process as follows;

• Without connecting mining pool: We made the first
implementation with basic RandomX PoW algorithm
[3], [52]. When the application is activated, it sends a
connection request to the C&C server, after that, the C&C
server sends the mining tasks to the malicious application.
The mining task contains three variables, the hash value,
nonce value range, and the difficulty target. The Ran-
domX implementation inside the malicious application
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starts mining inside the Smart TV until new command
comes from the C&C server or finishes the nonce value
range or finds the hash and nonce value that meet with
the difficulty target.

• Connecting mining pool via API: The difference be-
tween this implementation and the previous one is that
the C&C server does not create mining tasks by itself, it
receives them from the mining pool via its API frame-
work and sends them over to the malicious application.

The only difference between the two methods is the entity
creating the mining tasks (C&C server vs. mining pool). The
messages exchanged between the C&C server and malicious
application are the same. Therefore, for our dataset, we used
Ant mining pool [53] and collected the data flow between the
malicious application and the C&C server. In terms of the at-
tackers, both methods have various advantages/disadvantages.
Attackers who run botnet platforms (i.e., botnet admins) with
anonymity priority may want to create a self-mining environ-
ment. However, running a self-mining environment requires
having a synchronized full node and a lot of extra labor to
maintain. On the other hand, using the mining pool API is a
lot more convenient and allows important extra flexibility to
the attackers while providing degraded anonymity. Please note
that both of the implementations we presented are just created
for proof-of-concept purposes.

D. Labeling

While Wireshark was collecting all networking data, we
ran all the attack scenarios we covered in Section III to
collect the networking data. The network traffic generated by
a device performing mining is labeled as malicious, while the
dataset that is collected by a device that is not performing
cryptocurrency mining is marked as benign.

E. Initial Data Analysis

We designed different scenarios to collect malicious data
with our controlled environment setup to assess the various
configurations that an attacker may use and network settings
that are possible in real-life smart home environments. More
details about the configurations and our results are given in
Section VI. On the other hand, for the first set of experiments,
we downloaded the benign dataset from a public repository
[54] and for the second set of experiments, we collected our
own benign dataset for the same set of devices that we used
for malicious data collection. The full details of the dataset
are presented in Table II, III, and XI.

1) Benign vs. Malicious: The main goal of this paper is to
be able to differentiate the malicious and benign networking
data from each other. For this purpose, we performed some
initial data analysis on the cryptojacking networking data and
list the outcomes as follows:

• Packets Per Second (PPS) rate is an important statistic
to differentiate between the malicious and benign data.
As we can observe from Table II, the highest PPS rate
is produced by the most powerful device we used while
it was running binary cryptojacking malware. However,

the highest malicious PPS rate is still 72% less than
the least PPS rate of the Benign Dataset given in Table
III. This shows that the cryptojacking malware does not
generate as many packets as daily web browsing and
application data. This is an important challenge for both
the data collection and analysis phases. We discussed this
challenge more in Section VII.

• Average Packet Size (APS) rate is the average size of all
inbound and outbound network packets. It is a meaningful
and relevant feature for purpose of the data discrimination
process. APS rate creates almost the same pattern as the
PPS rate. The highest malicious PPS rate is created by the
Raspberry Pi while performing in-browser mining with
webmine.io [41] service provider but the highest APS
rate of the malicious data is still 35% less than the least
APS rate of the benign data.

To sum up, network communication of cryptojacking mal-
ware and daily benign user shows very different characteristic
features. In the rest of this paper, we use this evaluated
knowledge.

2) Host-based vs. In-browser Cryptojacking: The attackers
mainly perform two different cryptojacking attacks to target
different domains, in-browser and host-based cryptojacking
attacks [4]. To be able to see the different patterns generated
by different devices under different attack scenarios, we per-
formed in-browser and binary cryptojacking on all devices we
used in this paper and summarize the results in Table II. We
can summarize our observations as follows:

• In-browser mining always tends to generate a very small
amount of PPS rate and APS rate on all devices.

• For different service providers of in-browser mining,
there is no significant difference between the two service
providers we used (i.e., Wembine.io and WebminePool).

• Binary mining samples do not seem to use the obfusca-
tion features used by the in-browser mining applications.
They do not have any intonation to minimize their com-
munication and keep themselves as stealth as possible.

• For both in-browser and binary mining patterns, we
can observe that in-browser mining always creates a very
little amount of network traffic. There is no significant
correlation between the hardware power, PPS rate, and
APS rate. However, binary mining shows a completely
different pattern where the APS and PPS rates are directly
correlated with the power of the device.

3) Raspberry vs. Laptop vs. Server: Finally, we made the
device-specific analysis to be able to see if there is any
relevant feature that may allow us to differentiate the devices
and understand which specific device category is infected by
cryptojacking malware. We summarize our observations as
follows:

• All devices give almost the same PPS and APS results for
in-browser mining applications. We can deduce from the
dataset outcomes, the service providers firstly receive the
capabilities of the victims’ host system and send mining
tasks in terms of the power of the victims’ host device.
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Dataset Name Cryptojacking
Type Device Software Attacker Currency Total time

(Minutes)
Packet
Count

Packets Per
Second (PPS)

Average Packet
Size (Bytes) (APS)

Raspberry Webmine.io Robust In-browser Raspberry Pi 4 Webmine.io Robust Monero 52 3621 1.2 479
Raspberry Webmine.io Aggressive In-browser Raspberry Pi 4 Webmine.io Aggressive Monero 735 14156 0.3 163
Raspberry WebminePool Stealthy In-browser Raspberry Pi 4 WebminePool Stealthy Monero 521 10285 0.3 146
Raspberry WebminePool Robust In-browser Raspberry Pi 4 WebminePool Robust Monero 527 7708 0.20 141

Raspberry WebminePool Aggressive In-browser Raspberry Pi 4 WebminePool Aggressive Monero 1080 24476 0.40 145
Server WebminePool Robust In-browser Server WebminePool Robust Monero 382 18460 0.8 498

Server WebminePool Aggressive In-browser Server WebminePool Aggressive Monero 60 3106 0.9 297
Desktop WebminePool Aggressive In-browser Desktop WebminePool Aggressive Monero 726 234892 5.4 3128

Raspberry Binary Host-based Raspberry Pi 4 MinerGate Aggressive Monero 983 22111 0.4 95
Server Binary Host-based Server MinerGate Aggressive Monero 1024 1213354 19.7 154

WebOS Host-based LG Smart TV AntMiningPool Aggressive Monero 61 43173 11.80 242
Total 6145 1558831

TABLE II: Malicious dataset sample sizes.

Dataset Name Domain Total time (Minutes) Packet Count Packets Per
Second (PPS)

Average Packet
Size (Bytes) (APS)

Bulk Data Internet Data 18 2204727 2636.50 1114.5
Web Multiple Internet Data 14.56 95388 91.78 567.25

Interactive Internet Data 20.33 26144 355.97 249
Video Internet Data 9.55 140009 243.33 956.3333333

Web Single Internet Data 12.08 51381 71.46 638
Total 74.52 2517649

TABLE III: Benign dataset sample sizes.

• For all devices performing binary mining, we observe
that the binary cryptojacking malware is correlated to the
power of the victims’ host system and both the PPS and
APS rates are directly affected by the power of victims’
host system as well.

To sum up, we found that while in-browser cryptojacking
malware is trying to keep itself under a low profile and prevent
high data density communication, host-based cryptojacking
malware is not behaving in this way and generating huge
network traffic. This is because of the method used by host-
based cryptojacking malware, in which they are generally
merged with other computationally heavy applications [4].
Therefore, the attackers are not worried about creating highly
visible network communication.

VI. EVALUATION

In this section, we designed four sets of experiments to
design and evaluate IoT cryptojacking detection mechanism
that is accurate, efficient, and works in varying configurations
and network settings.

• First, we performed a set of experiments to design the
optimum IoT detection mechanism with a highly accurate
prediction rate and minimum training size and time.

• Second, we performed experiments to assess the proposed
detection mechanism we designed in the first part for
different configurations such as different devices and
throttle values.

• Third, we performed a set of experiments to assess the
proposed mechanism in various smart home network
settings.

• Fourth, we performed a set of experiments to assess the
sensitivity of the proposed classifier.

We explain the details of these experiments and our results in
the following subsections.

A. Designing an IoT Cryptojacking Detection Mechanism

After the dataset collection and labeling process, we created
an overall dataset that contains the combination of all the
malicious datasets and a benign dataset with an equivalent
number of packets. Table IV presents the dataset sizes and the
total feature extraction and classification time of the overall
dataset.

Dataset Name Dataset size Total Classification
Time

Malicious 1557230
Benign 1556899 8.5 Hours

TABLE IV: The Overall Dataset Sample Sizes and total
Feature Extraction & Classification Time.

In this sub-section, our goal is to design an IoT detection
mechanism based on network traffic features and utilizing
Machine Learning (ML) classifier for the classification. For
this purpose, we performed the following steps:

• We use Feature Extraction to create feature vectors from
the raw dataset.

• We select the best features and remove irrelevant features
via a Feature Selection algorithm.

• We train and test several ML classifiers and decide which
one performs best.

• We test the best algorithm with varying training sizes to
optimize the training data and time as well as calculate
the prediction time to assess the algorithm’s feasibility in
a real-world application.

We explain the details of these experiments and their results
in the following subsections.

1) Feature Extraction: We used tsfresh [37] to extract
features from our dataset. The library tsfresh is a python
package that automatically calculating statistical features from
time-series data. In our case, we used ten packets for each
feature vector and it calculates 788 different statistical features
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from its wide selection of statistical features [55]. The features
we used to train our overall dataset and other experiments are
as follows:

• Timestamp is an important data extracted from every
packet, and we used it to sort the given packets. While
the mining process is running, data communication pat-
tern changes depending on several variables. After we
calculated the delta mean values of malicious and benign
traffic datasets, we observed an 11.4% difference between
the mean values. This significant time difference leads
us to use the timestamps of the network packages as a
feature. We also noted that the devices mostly transmit
stay-alive packets when no result is returned while they
return application data packets with payload. And, while
stay-alive packets are mostly transmitted periodically, the
interarrival time between the packets decreases signifi-
cantly while transferring application data packets.

• Packet length is another extracted data from every
packet. All the miners must return some positive or
negative result to the pool network. If the miner is
directly connected to the mining network, they need to
use several special protocols such as the stratum mining
communication protocol used by Ethereum.

2) Feature Selection: Feature selection is the process of
selecting a subset of relevant features for our models. The
relevancy scores of all features in our dataset are not the same.
To be able to optimize our extracted features and use only
the most relevant features, we calculated the P-value. P-value
[56] is a statistical model that calculates the probability of
finding an observation under the assumption that a particular
hypothesis is true. A smaller P-value (less than 0.05) is
considered statistically significant. We found 290 statistically
significant features for our datasets and train our models with
those features. We repeated the same process for the rest of
the experiments.

3) Classifier Selection: We implemented four Machine
Learning classifiers to test the accuracy of the features de-
scribed in the previous subsection. During the implementation
of these classifiers, we used 75% of the data to train and 25%
to test the classifier. We used the default parameters of scikit-
learn [57] for the first three set of experiments while we tested
the non-default parameters in Section VI-D3. We used 5-fold
Cross Validation (CV) for assessing the effectiveness of the
classifier and used Accuracy, Precision, Recall, F1 Score, and
Test roc as our metrics for all experiments.

Classifier Accuracy Precision Recall F1 Score Test ROC
Logreg 0.97 0.97 0.97 0.97 0.988
KNN 0.98 0.98 0.98 0.98 0.99
SVM 0.99 0.98 0.98 0.98 0.99
GNB 0.96 0.96 0.96 0.96 0.97

In this table, we used weighted average values calculated by scikit learn
libraries.

TABLE V: The Overall Dataset Classification Results.

The results of our overall dataset experiment are presented
in Table V. Our results showed that SVM performs the best

Dataset Dataset Sample Sizes
12 hours 6 Hours 3 Hours 1 Hour

Server Malicious 838627 419313 209656 69885
Benign 837701 418850 209425 69808

Desktop Malicious 234272 117136 58568 19522
Benign 234448 117224 58612 19537

Raspberry Malicious 7829 3914 1957 978
Benign 8265 4132 2066 1033

TABLE VI: Dataset sizes of timing experiments.

(a) (b)

(c) (d)

Fig. 3: (a) The accuracy, (b) prediction times for every one
feature vector during classification (in seconds), (c) classifica-
tion time used for training (in minutes), and (d) the time used
for feature extraction (in minutes) for each training size (i.e.,
1, 3, 6, and 12 hours).

among all the classifiers in terms of all metrics, aligning with
many other detection studies in the literature [4]. SVM is
a useful and well-designed classifier for supervised machine
learning and it is very effective when there is a clear margin of
separation. In addition, the SVM classifier is very stable, and
small changes in the dataset do not cause important changes in
results. Therefore, we decided to use SVM classifiers for our
further analysis and implementation of other use case scenarios
in the rest of the paper.

4) Training Size and Timing Results: In this section, we
performed experiments with varying training sizes. With this
experiment, we analyzed the effects of the dataset collection
time on classification accuracy and overall classification time.
To obtain a reference result, we firstly fit the times of repre-
sentative datasets to 12 hours by decreasing the size of the
original dataset and fit them into 12 hours, 6 hours, 3 hours,
and finally 1 hour and repeat the classification to measure
accuracy and time-based values for each training size. Figure
3 summarizes 4 different results we cover under this section.

• Accuracy is the first metric we checked after we rerun
the classification for every dataset. As can be seen from
the results in Figure 3a, the accuracy did not change
dramatically, and even when we only used less than 10%
of the original dataset such that we did not receive any
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result below 94%. In addition to this, our model achieved
to detect in-browser cryptojacking with 99% accuracy
with only one-hour long data collection. It shows that
the model we used is not extremely dependent on the
dataset size, and it can give accurate results even with a
shorter data collection duration.

• Prediction time for per feature vector represents how
much time we need to predict the class per feature
vector. This is a realistic metric we calculated to see how
long it would take to predict the result of the collected
dataset on a regular machine. After we evaluate our
experiments, we saw that the time needed to train per
feature vector is related to the size of the dataset. For
bigger datasets, it takes more time to evaluate per data.
However, after the feature extraction process, we receive
successful optimization results as low as 100-150 ms for
each vector.

• Feature extraction and classification time represents
the needed time for calculating features and classify these
features for each dataset. As can be seen from Figure 3c
and 3d, the total time needed for the feature extraction
and classification is directly correlated to the dataset size.
In addition to this, with the very low feature extraction
and classification time results, we still managed to get
near-perfect results.

Overall, the results show that we achieved to implement a
successful detection system without causing a lot of overhead
on the devices or inside the network. We can also conclude that
we can use slightly smaller datasets to train our model without
sacrificing our dataset’s accuracy level and trust factor.

B. Evaluation With Different Adversarial Behaviours

In this sub-section, our goal is to assess the IoT crypto-
jacking detection mechanism we designed in Section VI-A
with various attack configurations. An attacker can target
different victim devices, pursue different profit strategies or
have a choice of cryptojacking type of either in-browser or
host-based. We have extensively evaluated our mechanism
by performing a comprehensive set of experiments to test
these three configurations. All the scenarios and experiments
are implemented using the same feature extraction and selec-
tion process described in Section VI-A. This implementation
methodology allows us to observe the results of how effective
to use one feature set for different use case scenarios. We
created a balanced dataset for three scenarios to minimize the
effect of the imbalanced dataset issues. Table VII presents the
dataset sizes and sources we used to implement these three
scenarios. We used the SVM classifier for the model training
process. In the rest of this section, we summarized the detailed
experiment results for each scenario.

1) Scenario 1 - Server vs. Desktop vs. IoT: In this scenario,
we set up our environment with different kinds of devices.
Our goal is to see if there are any differences between the
detection accuracy of the cryptojacking malware running on
each device. For this purpose, we created a balanced dataset
for each device.

Attack Case Benign Malicious

Scenario 1
Server 1212596 1217322

Desktop 234448 234272
IoT 64064 65030

Scenario 2
Aggressive 1519162 1520681

Robust 27915 26669
Stealthy 9877 9880

Scenario 3 In-Browser 305986 305874
Host-Based 1250241 1251356

TABLE VII: Dataset sizes used in the experiments.

2) Scenario 2 - Profit Strategies: Throttle adjustment is
one of the major obfuscation methods used by the attackers
[4] and almost all of the active and inactive service providers
provide this option to their clients. With the throttle adjustment
feature, attackers can set the total hardware usage on victims’
hots devices. It makes this feature an important use case for
our detection mechanism. While increasing the throttle value
increases the profit, it also increases the likelihood of being
detected by the system. Our goal with this experiment is to see
if changing the throttle value has any impact on the detection
accuracy.

• Aggressive cryptojacking malware focuses on making a
maximum profit in minimum time. They are generally
seen on the websites visited for a short time (less than 2
minutes) such as e-commerce, dictionary, and legal/illegal
data downloading websites. The aggressive cryptojacking
malware parallels the mining task to use all the remaining
CPU power; therefore, it deteriorates the user experience
dramatically. Thus, the malware detection algorithms or
even the user can easily notice and detect the cryptojack-
ing malware. We set the throttle value to 100% to observe
such an attacker behavior.

• Robust cryptojacking malware employs multiple scripts
to keep working even if the primary service provider
fails. Service provider failure can occur not only on the
server-side, but also on the victim side. For example,
some extensions may block the connection to a service
provider. In this case, the script can continue mining
with other service providers via this strategy. We set the
throttle value to 50% to observe such an attacker behavior
as it only runs one of the scripts at a time.

• Stealthy cryptojacking malware aims not to be noticed
by the user and by threshold-based detection algorithms
deployed on the user side. It utilizes CPU limiting for
long-term profit and is widely seen on illegal media/con-
tent websites (e.g., illegal movie/series streamers, reading
content pages, forums), where the users tend to spend a
relatively longer time. It acts as an active content provider
by using the same amount of CPU power as online flash
games and media streamers. Therefore, it is hard to detect.
We set the throttle value to 10% to observe such an
attacker behavior.

3) Scenario 3 - In-Browser vs Binary: Host-based and in-
browser are the two main cryptojacking type. Our goal, in
this experiment, is to see if our detection system can success-
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fully classify the in-browser and the host-based cryptojacking
malware.

4) Results: Table VIII presents the accuracy results of all
three different attacker cases. In all three scenarios, we ob-
served some differences between the different configurations.

Attack Case Accuracy Precision Recall F1 Score Test ROC

Scenario 1
Server 0.99 0.99 0.99 0.99 0.99

Desktop 0.98 0.98 0.98 0.98 0.99
IoT 0.93 0.93 0.93 0.93 0.96

Scenario 2
Aggressive 0.98 0.98 0.98 0.98 0.99

Robust 0.87 0.87 0.87 0.87 0.94
Stealthy 0.91 0.92 0.91 0.91 0.98

Scenario 3 In-Browser 0.95 0.95 0.95 0.95 0.98
Host-Based 0.99 0.99 0.99 0.99 0.99

In this table, we used weighted average values calculated by scikit-learn
libraries.

TABLE VIII: Classification results of all scenarios.

In Scenario 1, we successfully received an almost perfect
score from all three experiments we made. However, the server
shows a higher accuracy among all victim device types, i.e.,
there is a higher chance that the cryptojacking attacker will be
detected during an attack targeting the server type device. In
Scenario 2, the malicious scenario with stealthy profit strategy
(i.e., 10% throttle) and robust profit strategy (i.e., 50% throttle)
are both less accurate than aggressive (i.e., 100% throttle)
attack scenario. As we mentioned in Section III, attackers
use these obfuscation methods to keep their miners safe from
the detection methods. While 87% or 91% accuracy values
can still be considered significantly high, it also means that
obfuscation methods of attackers can still create differences
during the detection phase. Finally, in Scenario 3, we can see
the effect of the combination of obfuscation methods on in-
browser cryptojacking detection samples. The general results
for in-browser cryptojacking malware are just one step behind
the host-based cryptojacking samples. While cryptojacking
malware has the ability to infect different devices, the proposed
malware detection system needs to be able to detect the
ongoing cryptojacking process without any device dependency.
We saw that our extracted features could achieve near-perfect
scores without any device dependency from the results of three
scenarios and eight discrete experiments.

C. Adversarial Models of Compromised Device Numbers in
Smart Home Network

In this section, we investigate different adversarial models
implemented inside a simulated network that can be seen
in smart home environments. We implemented four different
scenarios and presented their results in the rest of this section.

Test Case Malicious
Dataset Size

Benign
Dataset Size

Scenario 4 Fully compromised
(All) 1557230 1556899

Scenario 5 Partially compromised
(IoT + Laptop) 247143 246001

Scenario 6 Single compromised
(IoT) 12781 13746

Scenario 7 IoT compromised
(IoT + IoT) 47978 47801

TABLE IX: Dataset sizes and classification times of adversar-
ial model analysis scenarios.

1) Scenario 4 - Fully compromised: In this scenario, we
assume attacker(s) exploit all devices in the smart home
environment. This scenario could apply to several network-
based attacks. For this experiment, we used our overall dataset
(i.e., all malicious data we collected). We give the dataset sizes
in Table IX.

2) Scenario 5 - Partially compromised: Scenario 5 presents
two different devices from different categories exploited by
the attacker(s) with different cryptojacking attacks. While the
IoT device was exploited by host-based cryptojacking and
performed binary mining operations, the laptop device was
compromised with an in-browser cryptojacking attack. In this
scenario, most probably, one needs to consider two discrete
attacks performed by different malicious entities. Still, in this
scenario, both devices are using the same gateway (e.g., router,
ADSL modem, Ethernet port) for Internet communication.

3) Scenario 6 - Single compromised: While attackers use
specific vulnerabilities to inject their malware, there can be
only one or very few devices that may be exploited by that
specific vulnerabilities. When only one device in the network
is compromised by the attackers, it makes it harder to detect
the malicious device. Our goal, in this scenario, is to test the
attack case where only one IoT device is compromised.

4) Scenario 7 - IoT compromised: Our last scenario is
inspired by Scenario 3. In this scenario, we discussed what
if two IoT devices from different domains were exploited by
two different kinds of cryptojacking malware. To be able to
simulate this environment, we used an LG WebOS smart TV
exploited by a malicious application hosting the host-based
cryptojacking malware and a Raspberry Pi that is exploited
by the malicious webpage to perform in-browser mining. We
received a near-perfect score for our last experiment as well.

Test Case Accuracy Precision Recall F1-Score Test ROC

Scenario 4 Fully compromised
(Overall) 0.98 0.98 0.98 0.98 0.99

Scenario 5 Partially compromised
(IoT + Laptop) 0.98 0.98 0.98 0.98 0.99

Scenario 6 Single compromised
(IoT) 0.94 0.94 0.94 0.94 0.95

Scenario 7 IoT compromised
(IoT + IoT) 0.92 0.92 0.92 0.92 0.96

TABLE X: Results of network settings analysis scenarios.

5) Results: In this section, we designed and implemented
several scenarios to track a real home environment. We
presented the results of these four scenarios in Table X. In
Scenario 4, we assumed all of the devices are compromised.
In Scenario 5, we used two different types of compromised
devices that were exploited with different types of crypto-
jacking malware. In Scenario 6, only one device inside the
home network performing a very limited amount of mining
was compromised. Finally, in Scenario 7, we tried the same
scenario with two different IoT devices (Raspberry Pi and
WebOS Smart TV). The results of these last two scenarios
have importance because these two scenarios are reflecting
most of the Mirai [13] and other known IoT botnet [58]
attack scenarios. Our result shows that the fully compromised
scenario is the one most likely to be detected by our detection
mechanism while it is harder to detect when only IoT devices
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Dataset Name Device Activity Total time
(Minutes)

Packet
Count

Packets Per
Second (PPS)

Average Package
Size (Bytes) (APS)

Laptop idle benign Laptop Idle 10.24 113602 184.9 929
Laptop interactive benign Laptop Interactive 22.1 81681 61.6 668

Laptop webbrowsing benign Laptop Web Browsing 11.43 99235 144.7 764
Laptop download benign Laptop Download 4.19 442866 1761.6 925

Laptop video benign Laptop Video 32.45 29010 14.9 1109
Raspberry idle benign Raspberry Idle 30.25 73 0 113

Raspberry interactive benign Raspberry Interactive 17.27 104241 100.6 764
Raspberry webbrowsing benign Raspberry Web Browsing 23.22 123298 88.5 946

Raspberry download benign Raspberry Download 4.11 276808 1122.5 1267
Raspberry video benign Raspberry Video 31.26 57205 30.5 1177

Server idle benign Server Idle 20.21 13459 11.1 142
Server interactive benign Server Interactive 18.01 123728 114.5 1143

Server webbrowsing benign Server Web Browsing 14.37 43713 50.7 1233
Server download benign Server Download 4.15 564831 2268.4 3438

Server video benign Server Video 14.18 109487 128.7 1069
WebOS video benign WebOS Livestream and Video 4.07 177704 727.7 930

Total 261.51 2360886

TABLE XI: Our own benign dataset sample sizes.

are compromised, but we also see that all of the scenarios
show a significantly high accuracy (> 92%). This implies
that the detection model and feature set we implemented can
successfully detect various home environment attack scenarios.
Overall, the combination of our selected classifier and feature
set successfully detect the cryptojacking malware with high
accuracy without being affected by any of the known attempts
and obfuscation that may have been used by the attackers.

D. Classifier Sensitivity Evaluation

In this section, we performed more experiments to test the
sensitivity of the classifier. For this purpose, we collected our
own benign dataset using the devices given in Table I. Table
XI shows the statistics of our benign dataset. Similar to the
benign dataset we downloaded from a public repository [54],
the PPS and APS rate of the benign dataset is much larger
than the malicious dataset, which supports our finding about
the high network traffic rate of benign activities compared
to the cryptocurrency mining. On the other hand, in order
to verify our results in the previous section with our own
dataset, we repeated the same scenarios (Scenarios 1-7) and
presented the dataset size and results in Table XVI and XVII
in Appendix. Moreover, to test the sensitivity of our classifier,
we design three more experiments: 1) Imbalanced Dataset, 2)
Transferability, and 3) Non-default Parameters experiments.
In the rest of the section, we explain the details of these
experiments.

1) Scenario 8 - Imbalanced Dataset: We created the fol-
lowing datasets to test the imbalanced dataset scenarios:

• Timely Balanced: In this dataset, we used the four min-
utes data from all of the devices for both benign and
malicious samples.

• Timely Balanced with Oversampling: In this dataset, we
used the same dataset from the previous scenario (i.e.,
timely balanced) and used oversampling technique to
handle the imbalanced dataset.

• Same device: In this case, we used the network traffic
captured from the same device for both benign and

malicious cases. Particularly, we tested the following
cases:
– Server vs. Server
– Laptop vs. Laptop
– Raspberry vs. Raspberry
– WebOS vs. WebOS

All these cases resulted with various degree of imbalanced
datasets. Table XII shows the exact number of benign and
malicious dataset sizes for each cases. As can be seen from
the table, timely balanced scenario resulted with an extremely
imbalanced dataset with around ∼ 10k benign data and
∼ 1.5M malicious samples. We also used the oversampling
technique, which is a commonly used technique to handle the
imbalanced dataset. Moreover, we created imbalanced datasets
using the data collected from the same device for benign and
malicious samples.

Attack Case Benign Malicious

Scenario 8

Timely Balanced 1634689 9741
Timely Balanced with Oversampling 1634689 1634689

Same Device

Server vs. Server 290397 1217322
Laptop vs. Laptop 766394 234272

Raspberry vs. Raspberry 561625 64064
WebOS vs. WebOS 177704 41572

TABLE XII: Dataset sizes for the imbalanced dataset experi-
ments.

Table XIII shows the performance of our detection system
with different scenarios with imbalanced datasets. Our trained
model was able to detect and correctly classify all imbalanced
scenarios, achieving 98% overall accuracy.

Attack Case Accuracy Precision Recall F1-Score Test ROC

Scenario 8

Timely Balanced 0.99 0.99 0.99 0.99 0.96
Timely Balanced with Oversampling 0.98 0.98 0.98 0.98 0.98

Same Device

Server vs. Server 0.98 0.98 0.98 0.98 0.99
Laptop vs. Laptop 0.99 0.99 0.99 0.99 0.99

Raspberry vs. Raspberry 0.97 0.97 0.97 0.97 0.96
WebOS vs. WebOS 0.97 0.97 0.97 0.97 0.99

TABLE XIII: Imbalanced dataset experiment results.

2) Scenario 9 - Classifier Transferability: In this set of
experiments, we aim to measure the transferability of our
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model and see how our detection system works against
new/undiscovered attack surfaces. For this purpose, we trained
and tested our model with different cryptojacking malware as
well as different devices to test if our model is device- and
malware-agnostic. The results of these scenarios are important
to show if a pre-trained detection algorithm can be used for
other cryptojacking malware or devices.

Attack Case Training Dataset Testing Dataset
Name Size Name Size

Scenario 9

Service Provider-1 Webmine 12871 WebminePool 19643
Service Provider-2 WebminePool 19643 Webmine 12871

Binary-1 IoT 11745 WebOS 41572
Binary - In-Browser - 1 IoT 11745 IoT(Aggressive) 12871
Binary - In-Browser - 2 IoT 11745 IoT(Robust) 3519
Binary - In-Browser - 3 IoT 11745 IoT(Stealthy) 9880

In-Browser - 1 IoT (Aggressive) 12871 IoT (Stealthy) 9880
In-Browser - 2 IoT (Aggressive) 12871 IoT (Robust) 3519

TABLE XIV: Dataset names and sizes used in the transfer-
ability experiments.

Attack Case Accuracy Precision Recall F1-Score Test ROC

Scenario 9

Service Provider-1 0.87 0.92 0.87 0.88 0.93
Service Provider-2 0.69 0.92 0.69 0.75 0.97

Binary-1 0.87 0.84 0.87 0.81 0.99
Binary - In-Browser - 1 0.90 0.90 0.90 0.89 0.99
Binary - In-Browser - 2 0.99 0.99 0.99 0.99 0.99
Binary - In-Browser - 3 0.99 0.99 0.99 0.99 0.99

In-Browser - 1 0.99 0.99 0.99 0.99 0.99
In-Browser - 2 0.97 0.96 0.97 0.96 0.99

TABLE XV: Results of the transferability experiments.

As can be seen from Table XV, our proposed detection
system can detect cryptojacking malware without any platform
and service provider dependency. These results verify that
our machine learning-based detection system can provide an
effective protection with only using network traffic as our
features and can cover both the existing devices and new
devices that will be released by the manufacturers even if the
attackers are going to use new attack surfaces in the long run.

3) Scenario 10 - Non-default Parameters: In this section,
we tested our classifier (i.e., SVM) with non-default parame-
ters. We basically adjusted three parameters: Kernels, Regu-
larisation parameter (C), Gamma. Kernel is the main function
to transform low dimensional data into a higher-dimensional
data, while the regularisation parameter is a penalty parameter
used to tune between the decision boundary and classification
error. On the other hand, when gamma parameter is high,
nearby points will have a higher influence. We performed
experiments with various values of kernels, regularisation
parameter, and gamma. For these experiments, we selected
the robust cryptojacking dataset captured from an IoT device.
We present the results in Table XVIII in Appendix. Our results
show that different variables can change the results of the SVM
classifier dramatically. With the default parameters, the classi-
fier trained the model with 87% average score. However, after
we change the parameters and calculated the all possible 15
combinations, we received variety of training scores between
0.52-0.89. In addition to that, some of the parameters caused
over-fitting on dataset classification. However, we note that our
cryptojacking detection mechanism is highly configurable and
can be easily customized depending on the needs, conditions,

and features. Hence, the impact of the non-default parameters
can be easily minimized and optimized as in other ML-based
mechanisms.

VII. DISCUSSION

We found that the traffic between the mining server and
the client does not create heavy network data. Cryptojacking
service providers are specially designed not to create as much
communication as regular Internet communication. Table II
and III show the difference between the packet per minute of
cryptojacking malware and a regular Internet connection. In
addition to this, after we evaluated our tests on the service
providers we used [41], [50], we saw that average service
providers use different IP addresses during the mining opera-
tion to communicate with the victims’ client device and deliver
the mining task via encrypted application data. This behavior
of in-browser cryptojacking malware makes them harder to
track inside busy networks. Moreover, it is also an indicator of
the impracticability of IP and hosting-based static blacklisting
implementations.

Another challenge we faced during our data collection
process is the asymmetric communication between the client
and malicious IP addresses. In a normal data communication
process over the Internet, the data packets create some symme-
try between the client and the server, but in the cryptojacking
samples, there is no symmetry or pattern between the client
and server. 88% of communication packets were produced by
the client during the mining process and only 12% of packets
were created by malicious servers. This asymmetric commu-
nication makes it harder to analyze the collected data and keep
track of the communication pipelines between the client and
the malicious server using different IP addresses. Therefore, in
this paper, we investigated the detection of malicious device
performing cryptomining instead of identifying the malicious
IP. Identifying the malicious IP remains an open problem to
be further investigated.

VIII. RELATED WORK

After the surge of blockchain technologies and the
widespread usage of cryptojacking malware, cryptojacking
malware and detection methods drew the attention of academia
as a new research area. The research in this area can be
categorized under two main directions. The work proposed by
Tekiner et al. [4] is a systematization of knowledge study on
cryptojacking malware, which summarizes the techniques used
by the cryptojacking malware and reviews the cryptojacking
studies in the literature.

The first line of research in this area focused on analyzing
different aspects of the cryptojacking malware ecosystem. In
one of the first studies in the cryptojacking malware literature
[59], the authors investigated Bitcoin miner samples in the bi-
nary format. The increase in the cryptojacking malware attacks
and the price surge of cryptocurrencies in 2017 also attracted
researchers’ attention. Later, in [60], the authors analyzed 30k
websites using coinhive libraries to mine Monero. The studies
[61]–[63] analyzed the impact of cryptojacking malware on
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the consumer devices and users. In other studies, the authors
in [64] found a new attack type infected Microtik routers while
the studies in [65], [66] performed campaign analysis of the
cryptojacking samples.

The second line of research in this area focused on cryp-
tojacking malware detection methods [16], [19]–[28], [67].
Researchers used both static and dynamic features to detect
cryptojacking malware. The commonly used features are CPU
events [17], [18], [20], [22], [23], [26], [68]–[72], memory
activities [20], [22], [23], [67], JS compilation times [17],
[68], and network traffic [20]–[24], [73]. These features are
not feasible to be used to detect the cryptojacking malware
targeting IoT devices because most of the IoT devices do not
allow to be programmed to collect browser-specific features
(e.g., JS compilation/execution time) or hardware-based fea-
ture (e.g., HPC). On the other hand, the network traffic-based
features are ideal as the network traffic can be intercepted
on the way. Previously, network traffic data has been used
for malware detection in many studies. In [74], the authors
used HTTPS traffic for the malicious client detection in an
organization’s network through the neural networks. Similarly,
the authors in [75] used network traffic-based features to
identify the unknown malware families. Other examples of the
usage of network traffic-based features for malware detection
are as follows: malicious app detection in Android [76]–[78],
malware type detection [79]. On the other, some of the studies
that used network traffic for the IoT malware detection are as
follows: [80]–[82]. However, none of these studies specified
the malware family. Compared to these studies in the literature,
in our study, we used network traffic-based features to detect
IoT cryptojacking malware.

Similar to ours, the studies that are using network traffic
for cryptojacking detection are as follows: [20]–[24], [73]. The
studies in [20], [22], [23] collect the aggregated network traffic
features (e.g., the total number of bytes sent or received) from
the browser together with other resource consumption features
(e.g., memory). However, in our paper, we use only network
traffic features as the other features can not be collected from
IoT devices. On the other hand, the study in [24] collect the
network data in an emulated environment while we deployed
the miners on the real devices and collected both real malicious
and benign network data. Finally, the closest studies to ours
are [21], [73]. The study in [21] uses five, while the study in
[73] uses six network traffic features based on the incoming
and outgoing network traffic rates. Our paper differs from
these studies in many ways. First of all, they do not focus
on IoT devices; therefore, they do not have device diversity
while we implemented a cryptominer even on a smart TV.
Second, we tested with both in-browser (e.g., coinhive) and
host-based (e.g., MinerGate) cryptojacking samples while both
studies only experiment with host-based cryptojacking samples
only. With this, we also tested varying throttle values that
the attackers may use to see the potential attacker behavior
strategies. Last, we used a time-series data automatic feature
extraction tool, which created 788 different statistical features

from its wide selection of statistical features and provided a
near-perfect accuracy in general.

Cryptojacking detection studies can also be categorized as
in-browser cryptojacking detection [5], [16], [19]–[28], host-
based cryptojacking detection [19], [73], and cryptojacking
type-agnostic detection studies [18], [67], [71], [72], [83]. As
IoT devices can be targeted by both in-browser and host-based
cryptojacking malware, in this paper, we aim to design a type-
agnostic cryptojacking detection method.

IX. CONCLUSION

This paper proposed an accurate and efficient cryptojacking
detection mechanism based on the features extracted from
network traffic. Our mechanism was able to detect both in-
browser and host-based cryptojacking malware. We achieved
99% detection accuracy with one-hour network traffic data
used to train the machine learning classifier. We also designed
novel attack scenarios to test our mechanism in attack con-
figurations and home network settings. In addition, we also
analyzed cryptojacking attacks on several different platforms
to see the efficiency of our detection mechanism. We showed
how different configurations that the attacker may use and
different network settings that the mining would be performed
on affect the detection accuracy. Moreover, we shared the
network traffic we collected and the code publicly to accelerate
the research in this area.
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X. APPENDIX

In this section, we give the detailed results for the experi-
ments in Section VI-D.

Attack Case Benign Malicous

Scenario 1
Server 1217322 1240922

Desktop 234272 238996
IoT 64064 70664

Scenario 2
Aggressive 1520681 1537036

Robust 26669 29010
Stealthy 9880 13459

Scenario 3 In-Browser 305874 314906
Host-Based 1251356 1229399

Scenario 4 Fully compromised
(Overall) 1557230 1561443

Scenario 5 Partially compromised
(IoT + Laptop) 246853 247143

Scenario 6 Single compromised
(IoT) 13459 11745

Scenario 7 IoT compromised
(IoT + IoT) 47978 57205

TABLE XVI: Dataset sizes for all scenarios (Scenario 1-7)
with our own benign dataset described in Table XI.

Attack Case Accuracy Precision Recall F1 Score Test roc

Scenario 1
Server 0.99 0.99 0.99 0.99 0.99

Desktop 0.95 0.95 0.95 0.95 0.98
IoT 0.95 0.95 0.95 0.95 0.98

Scenario 2
Aggressive 0.93 0.93 0.93 0.93 0.93

Robust 0.95 0.95 0.95 0.95 0.95
Stealthy 0.88 0.88 0.88 0.87 0.92

Scenario 3 In-Browser 0.95 0.95 0.95 0.95 0.98
Host-Based 0.97 0.97 0.97 0.97 0.99

Scenario 4 Fully compromised
(Overall) 0.98 0.98 0.98 0.98 0.99

Scenario 5 Partially compromised
(IoT + Laptop) 0.97 0.97 0.97 0.97 0.99

Scenario 6 Single compromised
(IoT) 0.97 0.97 0.97 0.97 0.99

Scenario 7 IoT compromised
(IoT + IoT) 0.95 0.95 0.95 0.95 0.98

TABLE XVII: Classification results of all scenarios (Scenario
1-7) with our own benign dataset described in Table XI.

Classifier (SVM) Accuracy Precision Recall F1-Score Test ROC
Kernel C Gamma

Scenario 10

Linear 1 Scale 1.0 1.0 1.0 1.0 1.0
Poly 1 Scale 0.83 0.83 0.83 0.83 0.92
RBF 1 Scale 0.83 0.84 0.83 0.83 0.91

Sigmoid 1 Scale 0.72 0.72 0.72 0.72 0.76
Linear 1 Auto 1.0 1.0 1.0 1.0 1.0
Poly 1 Auto 0.88 0.88 0.88 0.88 0.93
RBF 1 Auto 0.66 0.80 0.66 0.61 0.70

Sigmoid 1 Auto 0.52 0.27 0.52 0.35 0.5
Linear 2 Scale 1.0 1.0 1.0 1.0 1.0
Poly 2 Scale 0.84 0.84 0.84 0.84 0.82
RBF 2 Scale 0.87 0.88 0.87 0.87 0.92

Sigmoid 2 Scale 0.73 0.73 0.73 0.73 0.76
Linear 2 Auto 1.0 1.0 1.0 1.0 1.0
Poly 2 Auto 0.88 0.88 0.88 0.88 0.93
RBF 2 Auto 0.66 0.80 0.66 0.61 0.70

Sigmoid 2 Auto 0.52 0.27 0.52 0.35 0.50

TABLE XVIII: Results of the non-default parameters experi-
ments described in Section VI-D3.
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