
Packet-Level Open-World App Fingerprinting on
Wireless Traffic

Jianfeng Li1, Shuohan Wu1, Hao Zhou1, Xiapu Luo1∗, Ting Wang2, Yangyang Liu1 and Xiaobo Ma3
1The Hong Kong Polytechnic University, {csljianfeng, csswu, cshaoz, csxluo, csyyliu}@comp.polyu.edu.hk

2Pennsylvania State University, ting@psu.edu
3Xi’an Jiaotong University, xma.cs@xjtu.edu.cn

Abstract—Mobile apps have profoundly reshaped modern
lifestyles in different aspects. Several concerns are naturally
raised about the privacy risk of mobile apps. Despite the
prevalence of encrypted communication, app fingerprinting (AF)
attacks still pose a serious threat to users’ online privacy.
However, existing AF attacks are usually hampered by four
challenging issues, namely i) hidden destination, ii) invisible
boundary, iii) app multiplexing, and iv) open-world recognition,
when they are applied to wireless traffic. None of existing AF
attacks can address all these challenges. In this paper, we advance
a novel AF attack, dubbed PACKETPRINT, to recognize user
activities associated with the app of interest from encrypted
wireless traffic and tackle the above challenges by proposing two
novel models, i.e., sequential XGBoost and hierarchical bag-of-
words model. We conduct extensive experiments to evaluate the
proposed attack in a series of challenging scenarios, including
i) open-world setting, ii) packet loss and network congestion,
iii) simultaneous use of different apps, and iv) cross-dataset
recognition. The experimental results show that PACKETPRINT
can accurately recognize user activities associated with the apps
of interest. It achieves the average F1-score 0.884 for open-world
app recognition and the average F1-score 0.959 for in-app user
action recognition.

I. INTRODUCTION

Mobile devices, such as smartphones and tablets, are ubiq-
uitous in modern life. A myriad of mobile apps empower them
with the capabilities that profoundly reshape people’s lifestyle,
ranging from information retrieval to instant messaging, and
from shopping to entertainment. The recent prevalence of
online to offline apps, e.g., food delivery, further signalizes
this trend by bridging the gap between the online information
and physical businesses [1], [2].

Every coin has a flip side. Mobile apps offer users high-
quality services, accompanied by the collection, transmission,
storage, and even sharing of user data, raising serious privacy
concerns. For example, compromising apps’ cloud servers
may cause disastrous privacy leakage [3]–[5]. Such attacks
are basically due to software flaws. While threatening, these
flaws are scarce and, once found, will be immediately fixed to
avoid severe consequences. Data transmission channel can be

∗The corresponding author.

another vulnerable point. Despite the widespread adoption of
encrypted communication, mobile apps are still susceptible to
app fingerprinting (AF) attacks [6]–[14]. Adversaries recognize
user activities associated with the app of interest to infer
user privacy. Such a threat has been increasingly aggravated.
First, the rapid proliferation of appified IoT systems, such
as Smart home [15], [16], potentially extends cyber-space
attacks to the physical world. Therefore, leaking sensitive
information, such as user dynamics and installed IoT devices
with security flaws, may endanger not only the privacy but also
the safety of users [17]. Second, the COVID-19 pandemic has
unprecedentedly influenced personal living habits [18], [19].
People experienced the imposition of lockdown and had to
get used to doing everything online, from virtual meeting to
online education, potentially expanding the attack surface for
AF attacks.

Existing AF attacks [6]–[14] are generally carried out via
capturing TCP/IP traffic in the wireless access point (AP).
Unfortunately, their practicality is limited because the adver-
sary needs to comprise the AP or conspire with the network
administrator for the permission to capture TCP/IP traffic in
AP. Contrarily, a WiFi sniffer enables the adversary to pas-
sively capture 802.11 wireless frames between mobile devices
and the wireless AP over the air without being noticed. By
leveraging WiFi sniffer, the adversary needs neither controlling
the wireless AP nor the permission granted by the network
administrator, thereby lowering the barrier for AF attacks. For
example, the adversary can launch an AF attack outside the
door and recognize user activities associated with various apps,
e.g., Smart home apps, to infer indoor human dynamics for
reconnaissance purposes. However, existing AF attacks will
be hampered by four-fold challenges when they are applied
to wireless traffic, and none of them can fully solve these
challenges.

• Hidden Destination. Raw destination information, such as
IP address and domain name of the remote server, is hidden
because Internet-layer, transport-layer, and application-layer
data are encrypted and encapsulated in the frame body of
802.11 wireless frames. Consequently, AF attacks based on
IP address [6], [11] or traffic analysis techniques based on
DNS [20] are inapplicable to 802.11 wireless frames.

• Invisible Boundary. TCP/UDP network flows of mobile
traffic cannot be identified and extracted because transport-
layer endpoints are invisible in 802.11 wireless frames.
Therefore, AF attacks that need to extract network flows
as traffic samples [7]–[9], [11], [14] are unable to handle
802.11 wireless frames. An alternative solution widely used

Network and Distributed Systems Security (NDSS) Symposium 2022
24-28 April 2022, San Diego, CA, USA
ISBN 1-891562-74-6
https://dx.doi.org/10.14722/ndss.2022.24210
www.ndss-symposium.org

in website fingerprinting (WF) attacks [21]–[28] is extracting
traffic samples as segments of encrypted traffic separated by
obvious time gaps between packets. Unfortunately, such an
idea can hardly be borrowed by AF attacks because app
traffic is much more complex as it generally contains lots of
packet bursts mixed with background traffic during a long
time. As a result, it is very difficult to find a proper threshold
of time gap to separate traffic generated by different apps.

• App Multiplexing. Packets generated by different apps may
be strongly mixed together because mobile users may use
different apps simultaneously in the wild. For example, a
user may read news with Flipboard app while listening to
music with Apple music app. If the adversary wants to
analyze user activities associated with Flipboard, packets
generated by Apple music naturally become interleaved
noises that potentially undermine recognition accuracy. The
situation becomes even worse since Android 7 because two
apps can be in the foreground at the same time by split-
ting the screen [29]. Since 802.11 wireless frames conceal
Internet-layer and transport-layer endpoints in the encrypted
frame body, packets generated by different apps cannot be
grouped into different network flows for further recognition.
None of existing AF attacks can handle app multiplexing.

• Open-World Recognition. Most existing AF attacks [10]–
[12], [14] work under the closed-world assumption. That is,
apps presented in the recognition stage must also be present
during model training. Otherwise, when facing an app that
is unseen during model training, it will be erroneously
classified as a known app. In practice, it is impossible to
enumerate all apps and collect their traffic for model training
since both Android and iOS host more than 3.7 million
apps [30], [31]. A possible improvement is conducting open-
world recognition and training a one-vs.-rest binary classifier
for each app of interest. Open-world recognition is able to
handle apps that are unseen during model training because
they will be classified as the negative class for each classifier
rather than a known app of interest. Nonetheless, open-world
recognition is a non-trivial task. On one hand, the adversary
needs to involve as many apps as possible to collect their
traffic as negative samples for model training. On the other
hand, more apps involved as the negative class will result in a
more severe sample imbalance, which is commonly regarded
as a negative factor for machine learning models.

In this paper, we advance a novel AF attack, named
by PACKETPRINT, to recognize user activities associated with
the app of interest by tackling the above challenges. First,
PACKETPRINT capitalizes on features extracted from packet size
and packet direction instead of destination information, thereby
immune to hidden destination. Second, we make use of short-
term sequential pattern of packet size to achieve traffic seg-
mentation. Without relying on visible boundaries to segment
wireless traffic generated by different apps, PACKETPRINT is
capable of automatically locating all possible time periods
within which packets are probably generated by the app of
interest. Third, PACKETPRINT recognizes app traffic by lever-
aging structural patterns of packet arrivals. We conduct label-
aware feature mapping to extract structural patterns relevant to
the app of interest while adaptively ignoring those irrelevant
to it. Such as, PACKETPRINT is noise-tolerant and overcomes
app multiplexing. Lastly, PACKETPRINT carries out open-world

TABLE I: Comparing PACKETPRINT with existing AF attacks.

AF Attack Hidden
Destination

Invisible
Boundary

App
Multiplexing

Open-World
Recognition

Conti et al.
[11], [13] × × × ×

AppScanner
[7], [8] ✓ × × ✓

NetScope
[9] ✓ × × ×

MIMETIC
[14] ✓ × × ×

Liu et al.
[10] ✓ ✓ × ×

ActiveTracker
[12] ✓ ✓ × ×

FLOWPRINT
[6] × ✓ × ✓

PACKETPRINT
(Our Method) ✓ ✓ ✓ ✓

recognition by leveraging a distinguishable characterization of
packet arrivals, which synthesizes structural patterns at differ-
ent time scales and captures long-term contextual information.
It is worth noting that PACKETPRINT is not designed for zero-
shot traffic recognition. Therefore, apps of interest need to be
presented during the training stage. Table I demonstrates the
properties of PACKETPRINT and compares it to other AF attacks.
We summarize our contributions as follows.

• To the best of our knowledge, PACKETPRINT is the first AF
attack i) capable of dealing with unsegmented encrypted
traffic in the open-world setting, and ii) resilient to app
multiplexing. We release its source code and the datasets at
https://github.com/jflixjtu/PacketPrint.

• We address several challenging issues in the design of
PACKETPRINT, including hidden destination, invisible bound-
ary, app multiplexing, and open-world recognition. To solve
these technique challenges, we propose two novel models,
i.e., sequential XGBoost (S-XGBoost) and hierarchical bag-
of-words (H-BoW) model.

• We implement a prototype of PACKETPRINT and evaluate
it through extensive experiments. The experimental results
show that PACKETPRINT consistently outperforms baseline
methods. It achieves the average F1-score 0.884 for open-
world app recognition and the average F1-score 0.959 for
in-app user action recognition. Moreover, PACKETPRINT is
resilient to app multiplexing and transferable to carry out
cross-dataset recognition.

II. OVERVIEW

A. Threat Model

The adversary considered in this paper captures wireless
encrypted traffic using a WiFi sniffer. His goal is to recognize
user activities associated with the app of interest from wireless
encrypted traffic. Based on the training dataset, the adversary
can infer either coarse-grained information (i.e., which apps
are being used) [7], [8], [14] or fine-grained information (i.e.,
how a user is interacting with her apps) [9], [11]. For example,
if the adversary has the dataset of WhatsApp’s traffic, he can
decide whether a user is using WhatsApp or not according to
the features extracted from WhatsApp’s traffic. If the adversary

2

has the dataset of action-specific traffic of WhatsApp, he can
identify specific in-app user actions (e.g., making video call
on WhatsApp). We conduct experiments to demonstrate them
in § VI-C and § VI-G, respectively.

We assume that the adversary can trace back all 802.11
wireless frames that he captures to different mobile devices
according to source/destination MAC addresses extracted from
the frame header. However, he cannot obtain i) source/desti-
nation IP addresses from the IP header, ii) source/destination
ports from the transport-layer packet header, and iii) the
plaintext payload from the application-layer packet, because
such information is encrypted and encapsulated in the frame
body of 802.11 wireless frames.

Additionally, unlike most WF attacks [21]–[28], we don’t
assume that app traffic generated by different apps can be rea-
sonably segmented as samples based on inter-packet time gaps,
because packets generated by different apps and background
services may be strongly mixed together. We also don’t assume
that apps are executed one at a time as existing works [6], [12],
because mobile users may simultaneously use different apps
in the wild. Finally, we assume the AF attack in question is
conducted in the open-world setting. That is, it needs to handle
apps that are unseen during model training. More formally, we
define open-world setting along with closed-world setting as
follows. Let ST = {appi

T }
mT
i=1 (resp. SR = {appi

R}
mR
i=1) be

the set comprised of all apps presented during model training
(resp. in the recognition stage). In the closed-world setting, we
have SR ⊆ ST . In the open-world setting, SR might not be a
subset of ST but it could be. Similar open-world setting has
also been considered in existing works [6], [22], [24].

B. Workflow of PACKETPRINT

Without loss of generality, we assume that A is an app
of interest. PACKETPRINT recognizes user activities associated
with A from encrypted wireless traffic by tackling four major
challenges, including hidden destination (C1), invisible bound-
ary (C2), app multiplexing (C3), and open-world recognition
(C4). Fig. 1 illustrates how PACKETPRINT achieves this goal in
a pipelined workflow.

• Traffic Preprocessing (§ III): The adversary captures en-
crypted wireless traffic using a WiFi sniffer. PACKETPRINT

sidesteps C1 because it only extracts features from packet size
and packet direction, thereby no need to acquire destination in-
formation. To facilitate the downstream analysis, PACKETPRINT

first preprocesses wireless traffic through protocol filtering,
packet size normalization, and packet size filtering. Protocol
filtering aims to filter out Management-Type and Control-Type
frames and only leave Data-Type frames for further analysis,
because application-layer data are only encapsulated in Data-
Type frames. Packet size normalization aims to transform
802.11 wireless frame size to TCP/IP packet size by removing
the frame header and encryption overhead, depending on the
encryption protocol employed by the wireless AP. The first two
steps are consistent across all apps, while packet size filtering
is app-specific.

To conduct packet size filtering, we jointly consider both
packet size and packet direction, and construct an app-specific
list of directional packet sizes. We filter out the packet without
further analysis during the recognition stage if its directional

packet size is not in this list. Such a list is derived by solving
a combinational optimization problem over the training data
of A. Specifically, we specify a lower bound of packet arrival
rate associated with A and meanwhile minimize packet arrival
rate associated with other apps. By doing so, PACKETPRINT can
considerably reduce computational overhead for model training
and traffic recognition since the packets that need to analyze
are significantly reduced. Packet size filtering also brings
additional benefits. It mitigates interleaved noises caused by
C3 because many packets generated by other apps have been
filtered out.

• Traffic Segmentation (§ IV): To solve C2, PACKETPRINT

relies on neither transport-layer endpoints nor inter-packet time
gaps because such information is unavailable for encrypted
wireless traffic. Instead, PACKETPRINT segments samples for
user activity recognition by adaptively locating all possible
time periods within which packets are probably generated by
A. We refer to these time periods as target segments. To this
end, we propose a new metric, dubbed sequential similarity
(S-similarity), to characterize how likely a packet, say p, is
generated by A given its contextual packet size sequence.

We advance a novel model, named by sequential XGBoost
(S-XGBoost), to compute p’s S-similarity with A. As shown in
Fig. 1, S-XGBoost recursively involves p’s neighbor packets
within an increasing range to extract features that are informa-
tive in characterizing sequential patterns of packets generated
by A. Such a task is achieved by cascading addictive functions
fkj for 1 ≤ j ≤ J and 0 ≤ k ≤ N , each of which is
approximated by a decision tree and recursively trained to
gradually minimize the loss function over the training data.
We refer to packets that have high S-similarity with A as
anchor packets. As shown in Fig. 1, anchor packets are marked
with solid heads. Intuitively, anchor packets are expected to
be considerably denser within target segments, compared with
other time periods. Therefore, we locate target segments via
clustering analysis of anchor packets.

• Traffic Recognition (§ V): Target segments are identified
based on S-similarity, which only captures short-term patterns.
However, short-term patterns are insufficient to fully charac-
terize apps’ network behaviors because they focus on each
individual packet and its short-term sequential context rather
than characterize apps’ traffic integrally. Therefore, recognition
only based on S-similarity inclines to generate more false
positives, especially for the open-world setting, when faced
with apps that are unseen during model training. In other
words, some target segments obtained in the previous step
may be irrelevant to A. Therefore, PACKETPRINT recognizes
user activities associated with A by identifying all target
segments that are exactly relevant to A. To this end, we
propose another novel metric, dubbed componential similarity
(C-similarity), to quantify how likely packets within a target
segment are generated by A from the perspective of structural
characteristic. We refer to a target segment as a relevant
segment of A if its C-similarity with A is larger than the preset
similarity threshold. We identify user activities associated with
A exactly occur in relevant segments of A.

To compute C-similarity, we devise a hierarchical bag-
of-words (H-BoW) model to extract structural features from
packet arrival sequences at different time scales. H-BoW em-
ploys feature mappers M1, M2, and M3 to hierarchically map

3

Time

Time Time Time

Compute
Sequential Similarity

... ...

...

S
e

qu
e

nt
ia

l X
G

B
oo

st

Locate
Target Segment

... ...

Feature
Representation

Compute
Componential Similarity

Label-Aware Feature Mapping

Label-Aware Feature Mapping

Label-Aware Feature Mapping

Traffic RecognitionTraffic Segmentation

Recognize
App Traffic

Identify
Anchor Packet

Smartphone

WiFi
Sniffer

Traffic Preprocessing

Packet Size Filtering

App-Specific List Of
Directional Packet Size

802.11 Wireless Frame Sequence

Protocol Filtering

Packet Size
Normalization

The Adversary

Wireless AP

App

H
ie

ra
rc

h
ic

al
 B

ag
-o

f-
W

or
d

s

User Activities Associated withTarget
Segment

Target
Segment

Packet Sequence

Fig. 1: The architecture of PACKETPRINT. Each bar on the packet sequence stands for a packet and the height of the bar represents
its packet size. Bars with positive (resp. negative) height stands for packets sent from mobile devices (resp. the wireless AP) to
the wireless AP (resp. mobile devices).

structural patterns at smaller time scales to their compressed
representation, i.e., “words”, at a larger time scale. After
obtaining “words” through hierarchical feature mapping, we
take advantage of combinational optimization to efficiently
represent semantic features from these “words” and then
train a classifier with a probabilistic output to compute target
segments’ C-similarity with A. H-BoW’s advantages are two-
fold. First, feature mappers are constructed in a supervised
fashion, thereby automatically ignoring structural patterns ir-
relevant to A. Such as, H-BoW is noise-tolerant and thus
overcomes C3. Second, H-BoW generates a comprehensive
and distinguishable characterization of A due to its capability
of capturing structural features of packet arrivals at various
time scales during a long time period. Benefiting from such
a characterization, C-similarity is effective to reduce false
positives and address C4.

Besides app recognition, PACKETPRINT can also identify in-
app user actions in favor of a more fine-grained inference of
user behavior. To recognize in-app user actions of a certain
app, PACKETPRINT needs to collect wireless traffic generated
by these user actions and then train an S-XGBoost model and
an H-BoW model for each of them. In the recognition stage,
PACKETPRINT first identifies and locates encrypted wireless
traffic segments corresponding to this app. From these traffic
segments, PACKETPRINT further recognizes each in-app user
action independently.

III. TRAFFIC PREPROCESSING

PACKETPRINT first preprocesses wireless traffic through i)
protocol filtering, ii) packet size normalization, and iii) packet
size filtering.

A. Protocol Filtering

We first trace back 802.11 wireless frames to different
end-devices according to source/destination MAC address pair.
Next, we filter out Management-Type and Control-Type frames
and only leave Data-Type frames for further analysis, since
application-layer data are encapsulated in Data-Type frames.

Frame
Control

Duration
/ ID Address 1 Address 2 Address 3 Address 4

Sequence
Control Frame Body FCS

PN
0-1

2B
Res
1B

Res
5b

Ext IV
1b

Key ID
2b

PN
2-5

4B
Encapsulated IP Packet MIC

8B

Encrypted

CCMP Header

Fig. 2: An example of 802.11 wireless frame with WPA2.

B. Packet Size Normalization

PACKETPRINT recognizes app traffic by leveraging features
extracted from packet sizes. Therefore, the prerequisite for
accurate traffic recognition is correctly acquiring packet sizes.
In this paper, we define the packet size as the length of IP
packet encapsulated in an 802.11 wireless frame instead of the
length of the 802.11 wireless frame itself, because the former
is independent of security standards, e.g., WEP, WPA, and
WPA2, for wireless Internet connections. We extract the packet
size by subtracting the encryption overhead from the length of
frame body. For example, WPA2 employs CCM mode Protocol
(CCMP) as its encryption protocol. CCM is a derivation of
CTR mode [32], which is a stream cipher based on AES.
Encrypting the plaintext (i.e., encapsulated IP packet) yields
the ciphertext with the same length. As shown in Fig. 2, CCMP
also generates another 16-byte encryption overhead, including
an 8-byte CCMP header and an 8-byte message integrity code
(MIC) [33]. Consequently, we extract the packet size from
the 802.11 wireless frame with WPA2 by subtracting 16 bytes
from the length of frame body. For the 802.11 wireless frame
with WEP, the encryption overhead is 8 bytes. For the 802.11
wireless frame with WPA, the encryption overhead is 20 bytes.

C. Packet Size Filtering

The reason why we conduct packet size filtering is two-
fold. First, nowadays apps heavily rely on data-intensive net-
work services, such as live streaming and online backup, to

4

facilitate user experience, yielding a huge number of network
packets. Processing all packets is often computation-intensive.
Packet size filtering is a conceptually simple but effective
solution to reduce computational overhead in model training
and traffic recognition. Second, to recognize user activities
associated with A, network traffic generated by background
services and other apps naturally becomes “noise” that poten-
tially undermines recognition accuracy. The situation becomes
even worse in face of app multiplexing. Therefore, filtering
out packets that are less frequently generated by A than other
apps will mitigate interleaved noises.

We refer to packets sent (resp. received) by a mobile device
as outbound (resp. inbound) packets. When conducting packet
size filtering, not only packet size but also packet direction are
considered in favor of a more effective filtering. Specifically,
we denote by Sp = {si}Mi=1 a set comprised of all possible
directional packet sizes, where si is the ith directional packet
size. |si| represents the packet size, while sgn si represents the
direction, i.e., sgn si = 1 (resp. sgn si = −1) indicates it is
an outbound (resp. inbound) packet. The core task for packet
size filtering is constructing an app-specific list of directional
packet size SA

p ⊂ Sp, based on which we filter out the packet
without further analysis if its directional packet size is not in
SA
p . Intuitively, SA

p should exclude packet sizes that are more
frequently observed in other apps’ traffic as many as possible
while reserving sufficient packet sizes of A for downstream
analysis. For packets generated by A (resp. apps other than
A), we denote by r+(si) (resp. r−(si)) the average packet
arrival rate for the directional packet size si. Both r+(si)
and r−(si) can be readily estimated from the training data
of A. We formulate the construction of SA

p as a combinational
optimization problem:

min
z1,z2,...,z|Sp|

∑
si∈Sp

zi · r−(si),

st.
∑

si∈Sp

zi · r+(si) ≥ min

 ∑
si∈Sp

r+(si), Rmin

 ,

|Sp|∑
i=1

zi ≥Ms
min, zi ∈ {0, 1},

(1)

where zi is a binary variable indicating whether the directional
packet size si will be involved in SA

p , Rmin is the expected
minimum packet arrival rate of A, and Ms

min is the minimum
number of different directional packet sizes in SA

p . In this
paper, we set Rmin = 2 pkt/s and Ms

min = 200 by default.

The combinational optimization in Eqn. (1) can be solved
by integer programming, such as branch and price [34]. To
speed up the construction of SA

p , we solve Eqn. (1) in a greedy
fashion. Specifically, SA

p is initialized to contain all directional
packet sizes in Sp. We iteratively remove directional packet
sizes in SA

p with the maximum ratio of r−(si) to r+(si)
without violating constraints in Eqn. (1). The above process is
summarized as Algorithm 1 in § A-B.

IV. TRAFFIC SEGMENTATION

Traffic segmentation aims to locate target segments, namely
all possible time periods within which packets are probably
generated by A. We propose a new metric, sequential similarity
(S-similarity), to identify anchor packets that are further used

to locate target segments. To compute S-similarity, we advance
a novel model, dubbed sequential XGBoost (S-XGBoost). It
incrementally computes S-similarity of a packet by recursively
involving its neighbor packets within an increasing range to ex-
tract features that are informative in characterizing sequential
patterns of network traffic generated by A.

A. Sequential Similarity

Before a formal definition of S-similarity, we first define
N-gram sequential context. Let p = (p1, p2, . . . , pm) be a
sequence of network packets obtained through traffic pre-
processing (§ III). We denote by xi the directional packet
size of pi. Besides, we denote by yi a variable to indicate
whether or not pi is generated by A. If pi is generated by
A we have yi = 1 and otherwise yi = 0. We refer to
xN
i = (xi−N , . . . , xi, . . . , xi+N) as the N-gram sequential

context of pi, which captures short-term but ordered contextual
information for pi.

Definition 1. For a packet pi, its N-gram sequential similarity
with A is denoted by ΦA

N (pi) and defined as the probability
that it is generated by A given pi’s N-gram sequential context.
Formally, we have ΦA

N (pi) = Pr
(
yi = 1|xN

i

)
.

At first glance, ΦA
N (pi) can be computed by training a

classifier to output the probability that pi is generated by A
given the feature vector xN

i . However, such a straightforward
solution has two major drawbacks.

D1: It is susceptible to noises caused by app multiplexing
and background traffic, because xN

i is order-sensitive and thus
noises interleaved in the sequential context will change the
order of features in xN

i .

D2: It is easy to overfit training data, because the feature space
of N-gram sequential context can be very sparse for real-world
packet arrivals.

B. Sequential XGBoost

In this paper, we propose sequential XGBoost (S-XGBoost)
to overcome drawbacks D1 and D2. The vanilla version of XG-
Boost [35] is a tree boosting system where additive functions
approximated by binary decision trees are recursively added to
minimize the loss function. S-XGBoost generalizes this idea
to further minimize the loss function by taking advantage of
gradually extended sequential context.

• Computing S-Similarity. S-XGBoost computes S-similarity
by recursively involving x0

i ,x
1
i , . . . ,x

N
i . Specifically, ΦA

N (pi)

is computed by ΦA
N (pi) = eq(pi)

1+eq(pi)
, where q(pi) is the

cumulative confidence for yi = 1. We compute q(pi) =∑N
k=0 Fk(x

k
i), where Fk(x

k
i) denotes the confidence con-

tributed by xk
i . In here, Fk(x

k
i) =

∑J
j=1 f

k
j (x

k
i) is constructed

by synthesizing multiple additive functions, each of which is
approximated by a decision tree. fkj (·) is the jth decision
tree, which contains nkj leaves. Let Ct be the tth leaf on this
decision tree and vt be the value associated with Ct. We obtain
fkj (x

k
i) = vt if xk

i falls into Ct.

It is worth noting that Fk(x
k
i) is recursively added to mini-

mize the residual loss from F0(x
0
i), F1(x

1
i), . . . , Fk−1(x

k−1
i),

enabling an incremental improvement of estimation accuracy.

5

As such, S-XGBoost is inclined to exploit contextual informa-
tion closer to pi, which tends to be more resilient to noises than
that far from pi. For example, if there exist noise packets in xk

i ,
sequential context at a larger range, i.e., xk+1

i ,xk+2
i , . . . ,xN

i ,
will definitely be influenced but not vice versa. By doing so,
S-XGBoost mitigates the impact of noises (D1).

• Recursive Model Training. S-XGBoost is trained in a
recursive fashion. When training the decision tree fkj (·), we
minimize the loss function

Lk
j =

m∑
i=1

L

yi, k−1∑
r=0

Fr(x
r
i) +

j−1∑
s=0

fks (x
k
i) + fkj (x

k
i)

+Θ(fkj), (2)

where L(·) is the logistic loss and

Θ(fkj) = γnk
j +

1

2
λ

nk
j∑

t=1

∥vt∥2 (3)

is a regularization term that penalizes the complexity of fkj .
Introducing the regularization term effectively reduces the risk
of overfitting (D2) because i) the first term in Eqn. (3) allows
the decision tree to further split only if the splitting results in
substantial loss reduction and ii) the second term in Eqn. (3)
guarantees the smoothness of Fk(·). To speed up the training
process, we minimize Eqn. (2) in a greedy fashion (see § A-A
for details).

• Identifying Anchor Packet. For every packet in p =
(p1, p2, . . . , pm), S-XGBoost computes its S-similarity with
A. Given an S-similarity threshold ϕmin, we refer to pi is
an anchor packet if ΦA

N (pi) ≥ ϕmin. Anchor packets play an
important role in locating target segments.

C. Target Segment Location

Densely distributed anchor packets are strong indicators for
the presence of user activities associated with A. Therefore, we
locate target segments by clustering anchor packets. Specif-
ically, we use hierarchical agglomerative clustering because
it obviates the need to preset the cluster number, which is
unknown a prior. We choose single-linkage distance metric
(i.e., the minimum distance) to guide cluster merging. Given a
clustering threshold ϵ, clusters recursively merge in a bottom-
up manner until the distance between all clusters is larger than
ϵ. We denote by s1, s2, . . . , sm the resulting clusters. For every
cluster, the time period corresponding to it is identified as a
target segment for further analysis.

V. TRAFFIC RECOGNITION

To recognize user activities associated with A, PACKETPRINT

identifies all target segments that are exactly relevant to A and
excludes those irrelevant to A. To this end, we propose a met-
ric, dubbed componential similarity (C-similarity), to quantify
how likely packets within a target segment are generated by
A. To compute C-similarity, we devise a hierarchical bag-of-
words (H-BoW) model that extracts structural features from
packet arrival sequences at different time scales. By leveraging
C-similarity, PACKETPRINT carries out app traffic recognition.

A. Componential Similarity

Definition 2. For a target segment st, its componential similar-
ity with A is denoted by ΨA(st) and defined as the probability

Time

Time

Time

Packet-Level
Pattern

Burst-Level
Pattern

Behavior-Level
Pattern

(a) Hierarchical sliding windows.

+- + + +-

(b) Label-aware feature mapping.

Fig. 3: Examples of hierarchical sliding windows and label-
aware feature mapping.

that there exist packets in st generated by A. Formally, we
have ΨA(st) = Pr ({pj ∈ st : yj = 1} ≠ ∅|st).

The core challenge to compute ΨA(st) is how to effec-
tively extract features from st in response to the following
requirements:

R1: Distinguishable characterization. To reduce false positive
risk in an open-world recognition, features extracted from st
should be informative in distinguishing A from other apps
(even unseen apps during model training).

R2: Noise-tolerance. Features extracted from st should be
robust against interleaved noises caused by app multiplexing
and background traffic.

R3: Overfitting-resilience. Features need to be represented in
a compact form to avoid the downstream model overfitting
training data.

B. Hierarchical Bag-of-Words Model

We propose a hierarchical bag-of-words (H-BoW) model
in response to the above requirements. It is comprised of
two key components, i.e., label-aware feature mapping and
optimization-based feature representation.

• Label-Aware Feature Mapping. H-BoW extracts features
from structural patterns of packet arrivals at gradually ex-
panding time scales. Specifically, H-BoW considers i) packet-
level patterns, ii) burst-level patterns, and iii) behavior-level
patterns. The packet-level pattern describes directional packet
sizes of a packet together with the closest packets before and
after it, while the burst-level pattern concerns the combination
of various packet-level patterns within burst transmission.
The behavior-level patterns are related to user operations and
characterized by synthesizing packet-level patterns and burst-
level patterns within user operations.

As shown in Fig. 1, H-BoW recursively maps structural
patterns at a smaller time scale to a categorical variable, i.e.,
a “word”, at a larger time scale. For simplicity, we refer to
packet-level patterns, burst-level patterns, and behavior-level
patterns as structural patterns at the first, second, and third
time scales respectively. We denote by Ms the feature mapper
for patterns at the sth time scale. Fig. 3 illustrates how this
process is conducted. As shown in Fig. 3(a), the pattern at
the first time scale is derived from each packet while we
capture patterns at higher time scales using sliding windows.
Specifically, we set sliding windows T 2

t for the second time

6

scale (i.e., burst pattern) and sliding windows T 3
t for the third

time scale (i.e., behavior pattern). We empirically specify the
window size of T 2

t (resp. T 3
t) to be 1 second (resp. 5 seconds).

For both T 2
t and T 3

t , sliding step is set to be 1 second. By
leveraging hierarchical sliding windows, H-BoW is capable of
extracting structural patterns of packet arrivals at various time
scales during a long time period, enabling a distinguishable
characterization of A’s traffic (R1).

To achieve R2, we propose label-aware feature mapping
(LFM), which maps structural patterns of A’s packet arrivals
at a smaller time scale to categorical variables, i.e., “words”
at a larger time scale, while adaptively filtering out structural
patterns associated with other apps. As shown in Fig. 3(b),
LFM is based on a decision tree. Next, we will describe how
LFM is trained and why it makes H-BoW noise-tolerant.

• Recursive LFM Training. LFMs are recursively trained
from small time scales to the large. We initiate an empty
vocabulary V to record words generated afterward. We denote
by zst a feature vector that describes the structural pattern of
pt (resp. T s

t) for s = 1 (resp. s > 1). Recall that packet-level
pattern describes directional packet sizes of a packet together
with the closest packets before and after it. Formally, for the
packet pt, we characterize its structural pattern using pt’s 1-
gram sequential context (see § IV-A) and obtain z1t = x1

t . As
for a sliding window, say T s

t , we characterize its structural
pattern using tf-idf representation of words in T s

t . To this
end, we construct a set T s

train comprised of sliding windows
at the sth time scale extracted from packet arrival sequences
in A’s training dataset. Formally, we represent the structural
pattern of T s

t using a |V|-dimensional feature vector zst . zst (k)
is computed by

zst (k) = tfb(wk, T s
t) · idf(wk,T

s
train), (4)

where
tfb(wk, T s

t) = 1W (T s
t)(k), (5)

idf(wk,T
s
train) = log

|T s
train|

|{T s
i ∈ T s

train : k ∈W (T s
t)}|

, (6)

wk is the kth word in the current vocabulary V , W (T s
t) is a

function that returns a set comprised of indices of all words
within T s

t , and 1W (T s
t)(·) is an indicator function. We employ

Boolean “frequencies” when computing term frequency (tf) in
favor of a more robust representation of structural patterns.
After obtaining the feature vectors zst for 1 ≤ t ≤ ms, we
construct a set Ds

train = {(zst , yst)}
ms
t=1, where yst is the label

for zst . If there is any packet in T s
t generated by A, we have

yst = 1 (positive sample) and otherwise yst = 0 (negative
sample). We train a decision tree over Ds

train. This decision
tree acts as Ms(·), i.e., the feature mapper at the sth time
scale. Fig. 3(b) illustrates the basic idea of feature mapper. zst is
mapped to a unique leaf, i.e., Rs+1

3 on the decision tree. A leaf
dominated by positive samples is referred to as a positive leaf
and otherwise a negative leaf. All positive leaves constitute
a set Rs+1

+ and they will be added to the vocabulary as new
words, whereas negative leaves will be skipped. We summarize
the process of recursive LFM training as Algorithm 2 in § A-C.

Label-aware feature mapping facilitates an effective extrac-
tion of structural features. First, it focuses on positive leaves
and ignores negative leaves, thereby automatically filtering
out most structural patterns that frequently appear for apps

other than A. As such, H-BoW is noise-tolerant (R2). Second,
when mapping a feature vector zst to a categorical variable, the
feature space of zst is split into different regions with adaptive
resolution to maximize the distinguishability between A and
other apps. It again enhances H-BoW’s capabilities for R1.

• Feature Representation. The vocabulary V may contain
hundreds of words. If words in V are directly used as features,
the downstream model is prone to overfitting training data
due to the sparsity of samples in such a high dimensional
feature space. To reduce the overfitting risk, we derive a
more compact and efficient feature representation based on
combinational optimization. We denote by zt a nf -dimensional
feature vector of the target segment st. The feature vector zt
characterizes the presence/absence of words within st. Recall
that words in V are indicators of A. Intuitively, we expect
they appear in positive samples (i.e., the presence of user
activities associated with A) as frequent as possible while they
appear in negative samples (i.e., the absence of user activities
associated with A) as rare as possible. Therefore, we expect
positive samples’ feature vectors should contain much more
non-zero elements than those of negative samples. To optimize
the feature representation, we collect training samples from
historical packet arrival sequences generated by A as well as
other apps. Let s̃t be a packet arrival sequence and ỹt be the
label of s̃t. If s̃t is generated by A, we have ỹt = 1 (positive
sample) and otherwise ỹt = 0 (negative sample). We denote by
D+

train (resp. D−train) the set comprised of all positive samples
(resp. negative samples). Combining D+

train and D−train yields
Dtrain = D+

train ∪ D−train.

We formulate the feature representation as the following
optimization problem.

min
c1,c2,...,c|V|

− αQ̄+ + Q̄−,

st. Q̄+ =

∑
s̃t∈D+

train

∥∥∥∑k∈W (s̃t)
ck

∥∥∥
0

|D+
train|

,

Q̄− =

∑
s̃t∈D−

train

∥∥∥∑k∈W (s̃t)
ck

∥∥∥
0

|D−
train|

,

cj ∈ {0, 1}nf , ∥cj∥1 ≤ 1, ∀j ∈ [1, |V|],

(7)

where cj (for 1 ≤ j ≤ |V|) is a nf -dimensional binary vector,
α is a parameter that balances the importance between positive
samples and negative samples, and W (s̃t) is a function that
returns a set comprised of indices of all words within s̃t.
Essentially, Eqn. (7) aims at the optimal merging of words to
maximize the difference between positive samples and negative
samples. cj describes how wj will be merged with other words.
If cj(k) = 1, wj will become the kth new word after word
merging. If all elements in cj equal 0, wj will be discarded.

The combinational optimization in Eqn. (7) can be solved
by integer programming, such as branch and price [34]. To
speed up the training process, we solve it in a greedy fashion.
Specifically, we first initialize cj for 1 ≤ j ≤ |V| as a zero
vector. Next, we greedily search for the vector cj∗ and k∗

that result in maximum loss reduction when setting cj∗(k
∗) =

1. Such a process repeats until all words in V are merged
into at most nf new words or we cannot find a cj and k
that can reduce the loss function. We elaborate this process as
Algorithm 3 in § A-D. Given c1, c2, . . . , c|V|, one can readily
derive a new vocabulary V ′ = {w′k}

nf

k=1 after merging words

7

in V . We compute st’s feature vector zt by

zt(k) = tff (w′
k, st) · idf(w′

k,Dtrain), (8)

where
tff (w′

k, st) =
∑

j∈W (st)

cj(k), (9)

idf(w′
k,Dtrain) = log

|Dtrain|
|{s̃t ∈ Dtrain : tff (w′

k, s̃t) ≥ 1}|
. (10)

Optimization-based word merging facilitates an efficient
feature representation by substantially reducing feature dimen-
sion number, i.e., nf ≪ |V|, and thus solve R3. Benefits are
two-fold. First, such a compact feature representation effec-
tively reduces the overfitting risk during model training. For
this reason, we employ raw “frequency” in Eqn. (9) instead of
Boolean “frequency” that may lose some information. Second,
word merging also reduces computational overhead.

C. App Traffic Recognition

• Computing C-Similarity. For target segments located via
traffic segmentation (see § IV-C), we can compute their C-
similarity with A by training a classifier with a probabilistic
output, e.g., random forest and Logistic regression, which is
denoted by fC . In the training stage, we extract the feature
vector for each sample in Dtrain based on the proposed H-
BoW model. We then train fC over Dtrain to predict the
probability fC(z̃t) = Pr(ỹt = 1|z̃t), where z̃t is the feature
vector of the sample s̃t. In the recognition stage, we extract the
feature vector zt for the target segment st according to Eqn. (8)
and compute its C-similarity with A by ΨA(st) = fC(zt).

Given a C-similarity threshold ψmin, we recognize that user
activities associated with A occur during st if ΨA(st) ≥ ψmin.

VI. EVALUATION

We evaluate PACKETPRINT through extensive experiments.
Our experiments aim at answering five research questions.

• RQ1: Can PACKETPRINT accurately recognize apps of interest
from encrypted wireless traffic?

• RQ2: How will the recognition accuracy be affected by
practical network conditions, such as sniffer packet loss and
congestion-related packet loss?

• RQ3: To what extent is PACKETPRINT resilient to noise
packets due to app multiplexing?

• RQ4: Can PACKETPRINT trained on app traffic triggered by
automatic test tools recognize human-driven app traffic?

• RQ5: Can PACKETPRINT recognize more fine-grained in-app
user actions?

A. Data Collection

To answer the above research questions, we collect wireless
app traffic in our testbed.

• 802.11 Traffic Sniffing. As illustrated in Fig. 1, we set
up the wireless AP using a TP-LINK WiFi router, which
employs WPA2 for traffic encryption. All mobile devices
access Internet via this wireless AP. We deploy the WiFi
sniffer in a Windows PC equipped with Ralink 802.11ac
wireless LAN cards, which support over-the-air sniffing. The

sniffer captures and saves 802.11 traffic with the aid of
Omnipeek [36]. To carry out protocol filtering, it further filters
out Management-Type and Control-Type frames with a C#
library PacketDotNet.Ieee80211. A wireless AP may work on
different WiFi channels, while a single wireless LAN card
cannot simultaneously sniff on different WiFi channels. To
facilitate the data collection, we specify the wireless AP to
work on a fixed WiFi channel 149 and sniff on this channel.
Omnipeek also supports sniffing on multiple channels by
aggregating results from multiple wireless LAN cards, each
of which sniffs on a single channel.

• Dataset Construction. To answer RQ1 to RQ3, we construct
the Monkey500 dataset; to answer RQ4, we construct the
Human100 dataset. As for RQ5, we construct the IUA dataset.

Monkey500 dataset: We download 500 apps from Google
Play to generate app traffic. The selected apps are popular
according to the rank in Google play store. Besides, these
apps fall into 29 different categories to guarantee a reason-
able representativeness. When selecting apps, we skip various
mobile browsers, because network traffic generated by them is
essentially from mobile websites. To avoid potential legal risks,
we also skip apps that need to sign up with a credit card. We
generate app traffic instances by leveraging automatic test tools
Monkey [37] and RERAN [38]. Monkey can imitate various
users’ behaviors such as clicking the screen and inputting
texts, while RERAN can record and replay user behaviors
on Android smartphones. When starting an app, initialization,
such as login to account and preference settings, is often a
necessary step. Consequently, directly running monkey testing
may generate lots of useless user events if the test is stuck
in the initialization step. To avoid this situation, we manually
record scripts that complete login and preference settings with
the aid of RERAN and replay these scripts before monkey
tests. For every app, we generate 50 traffic instances. To
generate each traffic instance, we run the app on Google
Pixel 2 smartphones with Monkey, which generates pseudo-
random streams of user events to simulate user operations.
The maximum number of user events is set to be 5000. To
analyze how network congestion influences the performance
of PACKETPRINT, we generate another 10 traffic instances for
each app in a setting where we deliberately induce network
congestion by limiting the inbound/outbound network speed
on the wireless AP.

To evaluate PACKETPRINT, we collect 802.11 traffic sniffed
over the air. Additionally, we also capture and store in-
bound and outbound TCP/IP traffic of smartphones with Tcp-
dump [39]. Meanwhile, log files (in Android, we call them
logcat, the same as below) are saved. TCP/IP traffic and logcat
are merely used for establishing an accurate ground truth for
802.11 traffic, i.e., which app generates it. Specifically, we
first correlate 802.11 wireless frames with TCP/IP packets by
comparing packet sizes (see § III-B) and timestamps. Next,
we correlate TCP/IP packets with apps by comparing Internet-
layer and transport-layer endpoints of a packet with socket
operations recorded in logcat. By doing so, we can distinguish
802.11 wireless frames exactly generated by the app of interest
from those generated by background services. We elaborate the
above process in § B-A.

Human100 dataset: To evaluate if PACKETPRINT trained based
on Monkey-generated app traffic can also recognize human-

8

generated app traffic, we construct a dataset containing app
traffic generated by human users. Specifically, we randomly
choose 100 out of 500 apps and recruit 5 volunteers to man-
ually operate these apps to generate 5× 100 traffic instances,
each of which lasts for about 5 minutes.

IUA dataset: Besides user activities associated with the app of
interest, we also evaluate whether PACKETPRINT is competent
in recognizing more fine-grained in-app user actions. To this
end, we construct an in-app user action (IUA) dataset, which
contains in-app user actions of 13 popular mobile apps, such
as Youtube, Netflix, Wechat, and WhatsApp. We recruit 5
volunteers to manually trigger user actions listed in Table IV
and generate 5 traffic instances for each of them. We collect
802.11 traffic generated by different user actions. Meanwhile,
volunteers were required to record the start and end time of
their operations to establish the ground truth.

Note that we obtained IRB approval for the experiments
involving volunteers.

B. Baseline

To the best of our knowledge, PACKETPRINT is the first AF
attack i) capable of dealing with unsegmented encrypted traffic
in the open-world setting, and ii) resilient to app multiplexing.
Existing AF attacks [6]–[10], [40]–[51] have different threat
models from our work. For example, some AF attacks [7]–
[9], [14] assume network flows can be extracted. [6] considers
destination features and [52], [53] only handle unencrypted
data. To handle unsegmented encrypted traffic, a naive solution
is dividing traffic into sliding windows with the size of τ , ex-
tracting features for each window, and then training a classifier
to recognize user activities within each window. Although it
is difficult to make a direct comparison between PACKETPRINT

and existing AF attacks due to different threat models, features
used in the existing AF attacks can also be used in the
above sliding window approach. Specifically, we reuse features
of two state-of-the-art AF attacks, i.e., AppScanner [7] and
NetScope [9], to implement baseline methods. As for the
classifier, we compare various classifiers that achieve the best
accuracy in existing AF attacks and WF attacks, including
random forest (RF), support vector machine (SVM), k-nearest
neighbors (KNN) classifier, and find RF classifier performs
the best for almost all experiments. Therefore, we choose
the RF classifier with a probabilistic output to implement
baseline methods and specify a recognition threshold for traffic
recognition. Additionally, we also set varied sliding window
sizes, i.e., τ = 1, 10, 100 seconds, for baseline methods.

C. Closed-World Setting vs. Open-World Setting

In this experiment, we evaluate PACKETPRINT in both closed-
world and open-world settings.

• Experimental Setup. This experiment is based on Mon-
key500 dataset. Since PACKETPRINT trains an S-XGBoost and
a H-BoW model for every individual app, we construct a
training dataset and testing dataset for each app. Specifically,
we randomly distribute traffic instances of an app into two
subsets: training subset (40 instances) and testing subset (10
instances). To construct the training dataset of an app, say
A, besides training subset of itself, we randomly choose 40
apps other than A and involve traffic instances in their training

subset as negative samples. There are two testing datasets for
closed-world and open-world settings, respectively. For the
former, apps involved in the testing are the same as those in
the training. For the latter, we construct the testing dataset
by involving A and another 40 apps, which are absent in the
training dataset. In other words, apps considered for negative
samples in the testing are completely different from those for
model training. To mimic the random use of apps by humans in
the wild, we shuffle traffic instances in the testing dataset and
arrange them in a random order. To synthesize unsegmented
traffic for testing, we concatenate all traffic instances (410
traffic instances) and meanwhile record the time slots when
user activities associated with different apps start and stop.
We compare PACKETPRINT with baseline methods. Recall that
all these methods recognize time periods/windows where user
activities associated with A fall into. We refer to the median
arrival time of packets in these time periods/windows as their
reference time. If the reference time falls into a time slot of A
(resp. other apps), we report a true positive (resp. false positive)
case. If no reference time falls into a time slot of A (resp. other
apps), we report a false negative (resp. true negative) case. We
elaborate on the process of hyperparameter tuning in § B-B.

• Result. Table II reports the experimental results. For both
closed-world and open-world settings, PACKETPRINT consis-
tently outperforms all baseline methods in terms of precision,
recall, and F1-score. Compared with the baseline method
that achieves the highest F1-score, PACKETPRINT improves the
average F1-score from 0.822 to 0.935 in the closed-world
setting, while it improves the average F1-score from 0.778
to 0.884 in the open-world setting. Another observation is
that all methods perform better in the closed-world setting
due to a higher precision. The root cause is false positives
are more likely generated when facing apps that are unseen
during model training in the open-world setting.

• Initially Opened App. In a practical AF attack, the adver-
sary may start to sniff wireless traffic after the app of interest
is opened and thus cannot obtain the entire app traffic. It is
particularly common for apps with long-running behaviors.
We further explore whether PACKETPRINT is still effective in
this scenario, i.e., recognizing the app of interest when the
user is already using the app. Specifically, we assume that
PACKETPRINT starts to recognize the app of interest after this
app has been opened for 5 seconds. Here we only consider
the open-world setting because it is more challenging than the
closed-world setting. Fig. 4 reports the experimental results.
PACKETPRINT achieves similar average precision no matter
whether the app of interest is initially opened or not. The same
situation happens for baseline methods. Unlike the precision,
we observe a slight recall decline for PACKETPRINT, SW+RF-
A(10), and SW+RF-N(10), if the app is initially opened.
For example, the average recall for PACKETPRINT drops from
0.892 to 0.838. It reveals that app traffic during initialization
phase may exhibit app-specific patterns that are informative to
recognize apps.

Answer to RQ1: PACKETPRINT achieves reasonable accu-
racy in recognizing apps of interest from encrypted wireless
traffic. The average F1-score is 0.935 in the closed-world
and 0.884 in the open-world setting.

9

TABLE II: Evaluating PACKETPRINT in closed-world setting and open-world setting (mean±standard deviation).

Scenario
Setting Metric SW+RF (AppScanner features) SW+RF (NetScope features) PACKETPRINT

(Our method)τ = 1 τ = 10 τ = 100 τ = 1 τ = 10 τ = 100

Closed world
Precision 0.860± 0.170 0.893± 0.144 0.816± 0.191 0.775± 0.230 0.846± 0.178 0.819± 0.192 0.985± 0.053
Recall 0.748± 0.303 0.811± 0.239 0.678± 0.279 0.708± 0.319 0.812± 0.232 0.682± 0.291 0.909± 0.160
F1-score 0.742± 0.244 0.822± 0.187 0.698± 0.234 0.667± 0.249 0.794± 0.181 0.690± 0.247 0.935± 0.130

Open world
Precision 0.757± 0.245 0.816± 0.205 0.694± 0.253 0.703± 0.267 0.802± 0.215 0.723± 0.241 0.911± 0.150
Recall 0.752± 0.299 0.812± 0.236 0.679± 0.282 0.707± 0.321 0.808± 0.237 0.692± 0.282 0.892± 0.163
F1-score 0.681± 0.242 0.778± 0.190 0.629± 0.232 0.613± 0.244 0.764± 0.195 0.644± 0.235 0.884± 0.151

PACKETPRINT

SW+RF-A(1)

SW+RF-A(10)

SW+RF-A(100)

SW+RF-N(1)

SW+RF-N(10)

SW+RF-N(100)
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ec

isi
on

Sniffing before the app is opened
Sniffing after the app is opened

(a) Precision.

PACKETPRINT

SW+RF-A(1)

SW+RF-A(10)

SW+RF-A(100)

SW+RF-N(1)

SW+RF-N(10)

SW+RF-N(100)
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
ca

ll

Sniffing before the app is opened
Sniffing after the app is opened

(b) Recall.

Fig. 4: Recognizing initially opened apps. The mean is
marked with “+”. For simplicity, SW+RF-A(x) (resp. SW+RF-
N(x)) stands for the baseline method using AppScanner (resp.
NetScope) features (τ = x seconds).

D. Impact of Packet Loss

We next analyze how packet loss influences the perfor-
mance of PACKETPRINT. We focus on the following two major
factors that cause packet loss in a practical wireless AF attack.

• Sniffer Packet Loss. Since the WiFi sniffer captures wireless
traffic over the air, it may miss some 802.11 wireless frames
between mobile devices and wireless AP due to signal atten-
uation, signal refraction, and multipathing [54]. As such, the
WiFi sniffer only obtains incomplete wireless traffic. We refer
to packet loss in this situation as sniffer packet loss (SPL). For
a traffic instance, we estimate its SPL rate as (mp−mc

p)/mp,
where mp is the number of all TCP/IP packets captured on the
device and mc

p is the number of TCP/IP packets that we can
correlate 802.11 wireless frames with them. Apps that generate
a larger amount of traffic may suffer more severe SPL. We
compute the SPL rate of an app as an average SPL rate for
its traffic instances. The average SPL rate of all apps in Mon-
key500 dataset is 11.6%. To analyze the impact of SPL rate,
we group apps into four SPL levels according to their SPL rate.
SPL level k contains apps with a SPL rate between 25(k−1)th
percentile and 25kth percentile. Average SPL rates for SPL
level 1, SPL level 2, SPL level 3, and SPL level 4 are 3.8%,
6.6%, 11.0%, and 22.4% respectively. Fig. 5(a) shows the
experimental results, where we also consider the open-world
setting. SPL undermines the recall of PACKETPRINT but does
not significantly reduce its precision. Packet loss decreases the
recall of PACKETPRINT because it decomposes structural patterns
of packet arrivals. Without sufficient information extracted
from structural patterns, PACKETPRINT generates more false
negatives. For baseline methods, their precision is relatively
stable but their recall also decreases as SPL rate increases. An
interesting observation is a larger value of τ results in a slower

PACKETPRINT

SW+RF-A(1)

SW+RF-A(10)

SW+RF-A(100)

SW+RF-N(1)

SW+RF-N(10)

SW+RF-N(100)
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ec

isi
on

SPL level 1
SPL level 2

SPL level 3
SPL level 4

(a) Precision.

PACKETPRINT

SW+RF-A(1)

SW+RF-A(10)

SW+RF-A(100)

SW+RF-N(1)

SW+RF-N(10)

SW+RF-N(100)
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
ca

ll

SPL level 1
SPL level 2

SPL level 3
SPL level 4

(b) Recall.

Fig. 5: The impact of sniffer packet loss. SPL levels 1 to 4
represent an increasing degree of sniffer packet loss (SPL).
SPL level k contains apps with a SPL rate between 25(k−1)th
percentile and 25kth percentile.

drop in recall. We conjecture the reason is features extracted
from larger sliding windows tend to be more statistically stable
and more robust against SPL.

• Congestion-Related Packet Loss. Another important factor
that causes packet loss is network congestion. It happens if
network nodes or links are carrying more packets than they
can handle, and the typical consequences include queueing
delay and packet loss. We refer to packet loss in this situation
as congestion-related packet loss (CPL). To simulate network
congestion, we modify wireless AP’s configuration to set the
maximum inbound/outbound network speed of mobile devices
to be 10KB/s. Fig. 6(a) presents the joint distribution of app
traffic’s RTT and CPL rate with/without network congestion.
These two metrics are strongly positively correlated with each
other. We elaborate how we estimate them in § B-C. Fig. 6(b)
shows an ECDF plot of CRL rate. The average CRL rate
dramatically increases from 3.0% to 21.8% when network
congestion occurs. Fig. 7 reports the experimental results.
Network congestion results in a negligible precision decline
for PACKETPRINT but a more substantial precision decline for
baseline methods. The impact of network congestion on the
recall is more significant than that on the precision. The
average recall of PACKETPRINT drops from 0.891 to 0.631.
Nevertheless, PACKETPRINT still achieves a higher recall than all
baseline methods and its advantage even appears to be larger.
For example, compared with the baseline method that achieves
the highest F1-score in the open-world setting, PACKETPRINT

improves the recall with ∼ 0.08 without network congestion,
while it improves the recall with ∼ 0.33 when network
congestion occurs.

Comparing Fig. 7(b) to Fig. 5(b), we can see that

10

0 1 2 3 4 5
RTT (second)

0

10

20

30

40

50

P
ac

ke
t L

os
s

R
at

e
(%

)

Normal
Network Congestion

(a) Joint distribution of app traffic’s
RTT and CPL rate. Each scatter rep-
resents an app.

0 10 20 30 40
Packet Loss Rate (%)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Network Congestion
Normal

(b) ECDF of CPL rate.

Fig. 6: Comparing app traffic with/without network congestion.

PACKETPRINT

SW+RF-A(1)

SW+RF-A(10)

SW+RF-A(100)

SW+RF-N(1)

SW+RF-N(10)

SW+RF-N(100)
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ec

isi
on

CPL rate=3.0%
CPL rate=21.8%

(a) Precision.

PACKETPRINT

SW+RF-A(1)

SW+RF-A(10)

SW+RF-A(100)

SW+RF-N(1)

SW+RF-N(10)

SW+RF-N(100)
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
ca

ll

CPL rate=3.0%
CPL rate=21.8%

(b) Recall.

Fig. 7: The impact of congestion-related packet loss (CPL).

PACKETPRINT seems to be more sensitive to CPL than SPL since
PACKETPRINT achieves the recall 0.818 when the average SPL
rate is 22.4% (SPL level 4) but achieves the recall 0.631 when
the average CPL rate is 21.8%. The underlying reasons are
two-fold. First, given a packet loss rate, CPL results in more
lost packets than SPL because packet retransmission inflates
the total packet number. For example, assume that the original
number of packets is m if no packet is lost. 50% SPL rate
corresponds to m/2 lost packets, while 50% CPL corresponds
to m lost packets. Second, in the CPL experiment, PACKETPRINT

is trained over app traffic with 3.0% CPL rate but is tested over
app traffic with 21.8% CPL rate. Huge difference in CPL rate
leads to a considerable concept drift between training data and
testing data, thereby degrading PACKETPRINT’s performance.

Answer to RQ2: Sniffer packet loss (SPL) and congestion-
related packet loss (CPL) will reduce PACKETPRINT’s recall
but have little impact on its precision. PACKETPRINT is more
sensitive to CPL than SPL. Nonetheless, it still outperforms
all baseline methods for both SPL and CPL, and even shows
a more significant advantage in face of CPL.

E. Impact of Noise Packets due to App Multiplexing

In practice, mobile users may simultaneously use different
apps. We refer to this scenario as app multiplexing. It will in-
troduce a large number of noise packets that potentially under-
mine recognition accuracy. We next evaluate how PACKETPRINT

is resilient to noise packets due to app multiplexing.

• Experimental Setup. Here we still consider the open-world
setting. To simulate simultaneous use of different apps, we first
synthesize unsegmented traffic Ta just like that in § VI-C.
Next, we choose apps not involved in both the training and
testing dataset to synthesize another part of unsegmented traffic
Tb with their traffic instances. Finally, we superimpose the
latter traffic into the former one to generate composite traffic
Tab in which packets generated by different apps are strongly
mixed together. To evaluate PACKETPRINT’s noise tolerance for
different noise packet ratios, we set different average time
intervals between traffic instances in Tb. Specifically, we sim-
ulate the use of different apps as the Poisson process, which is
commonly used to model human behaviors [55]–[57]. The time
interval between traffic instances is exponentially distributed
with a varying mean µb. A smaller value of µb results in more
noise packets. We set µb = 1, 10, 50, 100, 500, 1000 seconds
to induce different noise packet ratios.

• Result. Fig. 8 reports the experimental results. PACKETPRINT

exhibits strong robustness against noise packets. For example,
it still achieves an average F1-score 0.826 when the noise
packet ratio is 0.823. As opposed to PACKETPRINT, all baseline
methods suffer from substantial performance decline with the
increase of noise packet ratio, indicating they are not resilient
to app multiplexing. A closer look reveals the recall of baseline
methods decreases drastically as τ increases, which implies
baseline methods with a larger sliding window size tend to be
more susceptible to noise packets caused by app multiplexing.
For example, the F1-score of SW+RF-A(100) features drops
from 0.626 to 0.330 (∼ 0.30 decline). As for PACKETPRINT, we
only observe a F1-score decline from 0.884 to 0.795 (∼ 0.09
decline) for the largest noise packet ratio. We believe it is
attributed to the noise-tolerant property of label-aware feature
mapping.

Answer to RQ3: PACKETPRINT works well when faced with
app multiplexing and exhibits significantly stronger noise
tolerance than baseline methods. It achieves an average F1-
score 0.826 when the noise packet ratio is 0.823.

F. Cross-Dataset Recognition

In this experiment, we analyze PACKETPRINT’s transfer-
ability across different datasets by evaluating to what extent
PACKETPRINT trained on app traffic triggered by automatic test
tools, e.g., Monkey, can recognize human-generated app traffic.

• Experimental Setup. To evaluate PACKETPRINT’s transfer-
ability, we consider the apps of interest as those belonging to
both Monkey500 dataset and Human100 dataset. Without loss
of generality, assume that A is an app of interest. We construct
A’s training dataset using traffic instances from Monkey500
dataset. Similar to the setting in § VI-C, we randomly choose
another 40 apps from Monkey500 dataset and involve traffic
instances in their training subset as negative samples of A’s
training dataset. Two testing datasets are constructed for dif-
ferent transfer settings. In the “M → M” setting, PACKETPRINT

is trained over Monkey-generated dataset and tested over the
same dataset. That is, the testing dataset of A is comprised of
traffic instances of A and other randomly chosen apps from
Monkey500 dataset. In the “M → H” setting, PACKETPRINT is
trained over Monkey-generated dataset and tested over human-
generated dataset. Specifically, we construct the testing dataset

11

0 0.2 0.4 0.6 0.8 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise Packet Ratio

P
re

ci
si

on

PACKETPRINT SW+RF-A(1) SW+RF-A(10) SW+RF-A(100) SW+RF-N(1) SW+RF-N(10) SW+RF-N(100)

0 0.2 0.4 0.6 0.8 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

Noise Packet Ratio
0 0.2 0.4 0.6 0.8 1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
1-

S
co

re

Noise Packet Ratio

Fig. 8: The impact of noise packets due to app multiplexing.

TABLE III: Evaluating PACKETPRINT in cross-dataset app traffic recognition (mean±standard deviation).

Transfer
Setting Metric SW+RF (AppScanner features) SW+RF (NetScope features) PACKETPRINT

(Our method)τ = 1 τ = 10 τ = 100 τ = 1 τ = 10 τ = 100

M → M
Precision 0.778± 0.243 0.840± 0.195 0.672± 0.267 0.718± 0.248 0.854± 0.191 0.706± 0.257 0.901± 0.134
Recall 0.749± 0.312 0.810± 0.244 0.647± 0.282 0.733± 0.295 0.806± 0.256 0.679± 0.273 0.915± 0.086
F1-score 0.687± 0.249 0.798± 0.197 0.613± 0.240 0.649± 0.209 0.794± 0.207 0.631± 0.233 0.899± 0.084

M → H
Precision 0.696± 0.317 0.789± 0.292 0.625± 0.368 0.585± 0.340 0.726± 0.349 0.608± 0.391 0.910± 0.168
Recall 0.668± 0.395 0.546± 0.377 0.432± 0.372 0.614± 0.402 0.424± 0.380 0.370± 0.364 0.850± 0.225
F1-score 0.553± 0.341 0.540± 0.334 0.386± 0.322 0.496± 0.331 0.425± 0.348 0.332± 0.310 0.854± 0.185

of A by involving all 5 traffic instances of A and another 40
randomly chosen apps from Human100 dataset. In addition,
we still consider the open-world setting in this experiment.

• Result. Table III reports the experimental results.
PACKETPRINT shows strong transferability across datasets gen-
erated in different ways. More specifically, in the M → H
setting, PACKETPRINT trained with Monkey-generated traffic
accurately recognizes true human-generated traffic with the
average F1-score 0.854, which is slightly lower than that in
the M → M setting. Contrarily, baseline methods suffer from
substantial performance degradation when conducting cross-
dataset recognition. For example, SW+RF with AppScanner
features (τ = 10) has F1-score decline from 0.798 to 0.540,
while SW+RF with NetScope features (τ = 10) has F1-score
decline from 0.794 to 0.425 Their performance degradation is
mainly caused by the drop of recall. In other words, baseline
methods generate more false negatives in the M → H setting.

The underlying reasons are two-fold. First, Monkey test can
hardly cover all UI operations that human may trigger in the
wild and thus true human-generated traffic may contain new
traffic patterns that are absent in the Monkey-generated traffic.
These new traffic patterns may become noises and change traf-
fic features if they are mixed with known traffic patterns in the
same slide window. Second, UI operations triggered by humans
are contextually correlated while those for Monkey tend to be
contextually independent because the behavior of Monkey is
highly random. Such a difference potentially leads to different
operation orders. Baseline methods are susceptible to the above
two factors because features used by them are noise-sensitive
and order-sensitive. As opposed to these methods, PACKETPRINT

is resilient to the above two factors. First, it is noise-tolerant
because of label-aware feature mapping, thereby immune to
new traffic patterns. Second, it takes advantage of hierarchical
bag-of-words model to extract order-independent features.

Since manually generating app traffic for the construction

of training dataset is substantially labor-intensive, good trans-
ferability significantly facilitates PACKETPRINT’s practicality due
to a low cost for training data collection.

Answer to RQ4: PACKETPRINT trained on app traffic driven
by automatic test tools can accurately recognize human-
generated app traffic with the average F1-score 0.854.

G. In-App User Action Recognition

The above experiments focus on recognizing user activ-
ities associated with the app of interest without distinguish-
ing specific in-app user actions. Here we evaluate whether
PACKETPRINT can recognize fine-grained in-app user actions.

• Experimental Setup. Our evaluation is based on IUA
dataset. Recall that PACKETPRINT recognizes in-app user actions
associated with A from its relevant segments, i.e., segments of
encrypted traffic that have been recognized to be generated by
A (see § II-B). It implies that in-app user action recognition is
essentially conducted in the closed-world setting. Therefore,
we treat in-app user action recognition for different apps as
independent tasks. For each in-app user action, we construct
its training dataset and testing dataset by involving traffic
instances of all in-app user actions belonging to the same app.
Specifically, 4 out of 5 traffic instances are randomly chosen
for model training, while the remaining one traffic instance
is used for testing. To meet statistical soundness, for each in-
app user action, we run training dataset construction, model
training, and testing 100 times and find the mean to report the
final performance of the attack.

• Result. Table IV reports the results for all in-app user actions
considered in this experiment. PACKETPRINT recognizes in-app
actions with an average F1-score 0.959. It can differentiate
not only user actions that exhibit considerable difference in
terms of traffic patterns, such as browsing video and watching
video using Netflix, but also more subtle user actions. For

12

TABLE IV: Identifying in-app user actions.

App In-app user action Precision Recall F1-score

Youtube Browse video 1.000 1.000 1.000
Watch video 0.930 1.000 0.953

Netflix Browse video 0.995 0.960 0.957
Watch video 0.975 1.000 0.987

Bilibili Browse video 1.000 0.990 0.990
Watch video 0.960 0.980 0.953

Wechat

Share location 1.000 1.000 1.000
Voice call 0.990 0.980 0.973
Video call 1.000 1.000 1.000
Browse moment 1.000 1.000 1.000

WhatsApp
Voice call 0.935 1.000 0.957
Video call 0.980 1.000 0.987
Send file 1.000 0.850 0.850

Line

Voice call 0.980 1.000 0.987
Video call 1.000 1.000 1.000
Send file 1.000 1.000 1.000
Browse news 1.000 1.000 1.000

Spotify Browse music 1.000 1.000 1.000
Play music 0.920 0.900 0.847

Youtube Music Browse music 0.955 0.980 0.950
Play music 0.850 1.000 0.900

Musi Browse music 0.855 0.930 0.853
Play music 0.880 0.830 0.777

Taobao Search items 1.000 1.000 1.000
Purchase products 1.000 1.000 1.000

Google Play Browse app 1.000 1.000 1.000
Download app 0.970 1.000 0.980

Tik Tok Browse video 1.000 0.960 0.960
Watch video 1.000 1.000 1.000

Instagram Browse posts 1.000 0.960 0.960
Post 1.000 0.920 0.920

Average ∗∗ 0.973 0.975 0.959

example, PACKETPRINT is able to accurately distinguish between
searching items and purchasing products using Taobao, a
famous Chinese e-commerce app. Compared with the previous
experiments, PACKETPRINT achieves higher accuracy for in-
app user action recognition. The underlying reasons are two-
fold. First, in-app user action recognition is conducted in
the closed-world setting and less challenging than other tasks
in the open-world setting. Second, in-app user actions listed
in Table IV have relatively stable and distinguishable traffic
patterns. PACKETPRINT is capable of capturing traffic pattern
differences and recognizing different in-app user actions.

• Long-Running Behaviors. We further evaluate whether
PACKETPRINT is able to distinguish long-running behaviors of
the same type. Specifically, we consider four representative
long-running user actions, including watching video with dif-
ferent video streaming apps, making a voice/video call with
different IM apps, and playing music with different music apps
as listed in Table V. Compared to different in-app user actions
with the same app, it is a more challenging to distinguish user
actions of the same type for different apps because they typ-
ically exhibit very similar traffic patterns. In this experiment,
we consider both “action only” and “app+action” settings.
In the “action only” setting, PACKETPRINT directly recognizes
and distinguishes user actions of the same type without first
recognizing apps. In the “app+action” setting, PACKETPRINT

first recognizes the app to locate all its traffic segments and
then recognizes in-app user actions from these traffic segments.
For each user action, we regard its traffic instances as positive
samples and traffic instances generated by other user actions of

TABLE V: Distinguishing user actions of the same type.

Behavior Setting App Precision Recall F1-score

Watch video

AO
Youtube 0.980 1.000 0.986
Netflix 0.517 1.000 0.668
Bilibili 0.782 1.000 0.853

AA
Youtube 1.000 0.950 0.950
Netflix 0.900 0.990 0.918
Bilibili 0.995 0.920 0.917

Voice call

AO
Wechat 1.000 1.000 1.000

WhatsApp 0.900 1.000 0.933
Line 1.000 1.000 1.000

AA
Wechat 1.000 0.980 0.980

WhatsApp 0.985 1.000 0.990
Line 0.995 0.930 0.927

Video call

AO
Wechat 0.985 1.000 0.990

WhatsApp 0.930 1.000 0.953
Line 0.980 1.000 0.987

AA
Wechat 0.985 0.990 0.980

WhatsApp 1.000 1.000 1.000
Line 1.000 0.970 0.970

Play music

AO
Spotify 0.712 1.000 0.798

Youtube Music 0.745 1.000 0.827
Musi 0.748 1.000 0.832

AA
Spotify 0.980 0.890 0.877

Youtube Music 0.995 0.990 0.987
Musi 1.000 0.970 0.970

AO is short for “action only” and AA is short for “app+action”.

the same type as negative samples. Table V reports the experi-
mental results. We observe a precision decline for PACKETPRINT

to distinguish user actions of the same type in the “action only”
setting. For example, the precision of recognizing watching
video with Netflix drops from 0.975 to 0.517. Fortunately,
PACKETPRINT in the “app+action” setting effectively improves
the precision because other in-app actions of the app will be
jointly considered to reduce false positive cases. For example,
PACKETPRINT improves the precision of recognizing watching
video with Netflix from 0.517 to 0.900. We also observe that
“app+action” setting improves precision at the cost of slight
recall decline. The root cause is that ”app+action” setting is
essentially two-stage app traffic recognition, and thus the false
negative cases of app recognition also cause false negatives for
in-app user action recognition.

Answer to RQ5: PACKETPRINT can accurately recognize
in-app user actions. The average F1-score is up to 0.959.

VII. DISCUSSION

Experimental results in § VI show that PACKETPRINT poses a
serious threat to mobile users’ online privacy. In this section,
we discuss possible mitigation solutions. AF attacks aim to
infer user activities associated with apps by leveraging features
extracted from i) destination information, ii) packet timing, iii)
packet direction, and iv) packet size, without accessing packet
payload plaintext. To protect apps from AF attacks, the de-
fender may obfuscate app traffic through feature perturbations.

• Hiding Real Destination. To hide app servers’ destination
information (e.g., IP address and domain name), mobile users
can access Internet through VPN or encrypted proxies, e.g.,
ShadowSocks [58]. However, such a defense is only effective
for AF attacks that use destination information [6], [11] and
will not work for PACKETPRINT.

13

• MAC Address Randomization. Starting in iOS 8 and An-
droid 8.0, mobile devices enable MAC address randomization
as an optional security mechanism to enhance privacy protec-
tion. However, the frequency of MAC address randomization
is generally much lower than app dynamics. For example,
iPhones choose a new randomized address for each wireless
network and randomize it every 24 hours. Therefore, MAC
address randomization cannot prevent the adversary from rec-
ognizing user activities associated with the app of interest from
wireless encrypted traffic but could cause some difficulties in
correlating short-term user activities across multiple days to
infer long-term user habits. Besides, some methods have been
proposed to circumvent this security mechanism. For example,
Matte et. al propose to use the fingerprinting of the probe
request from a certain device as persistent identifier [59] and
Martin et. al propose to recover the true MAC addresses with
a fine-grained inferred address mapping [60].

• Perturbing Timings. It changes packet-timing-based fea-
tures by introducing inter-packet delay [61], [62]. To avoid
interfering with normal interactive logic in the communication
between the app client and server, timing perturbation will not
change packet order, resulting in little impact on sequential
patterns and structural patterns of packet arrivals. Therefore,
we expect PACKETPRINT is robust against timing perturbation.

• Dummy Packet Injection. The strategy of injecting dummy
packets has been proven to be effective against WF at-
tacks [62], [63]. Essentially, dummy packets can be viewed as
noises that perturb packet-direction-based features. As demon-
strated in § VI-E, PACKETPRINT is resilient to a moderate
number of noise packets.

• Packet Padding. It can perturb packet-size-based fea-
tures. Since PACKETPRINT takes advantage of features ex-
tracted from packet sizes, it is naturally susceptible to packet
padding. In essence, the strategy of packet padding under-
mines PACKETPRINT’s recognition accuracy by reducing the
resolution of packet-size-based features. In an extreme case
where all packets are padded to MTU, PACKETPRINT can only
observe two kinds of packets in terms of packet size, i.e.,
inbound packets and outbound packets. Packet padding can
be implemented at application layer. For example, HTTPOS
implemented application-layer padding by altering the size
of outgoing packets on the HTTP layer [64]. Despite the
effectiveness, application-layer padding often needs extra ef-
forts by app developers, thereby limiting its scalability. In
fact, we didn’t observe application-layer padding had been
widely applied in popular apps in our dataset. Additionally,
if only a few apps choose to apply packet padding, consistent
packet sizes may become a strong indicator for the presence
of these apps, instead of hiding them. Packet padding can
also be implemented based on VPN or encrypted proxy. For
example, IMProxy implemented packet padding by leveraging
a local proxy and a remote proxy for traffic relay [61].
Although both VPN-based padding and proxy-based padding
are globally effective for all apps on the mobile device, they
will introduce considerable network delay and degrade user
experience. Moreover, untrustworthy third-party proxies may
invade user privacy. Another side effect of packet padding is
all the above implementations will introduce extra network
overhead and reduce communication efficiency.

VIII. RELATED WORK

Traffic fingerprinting (TF) constitutes an important branch
of traffic analysis techniques. Network administrators employ
TF for Internet demographics, security monitoring, and cen-
sorship [65]–[69], whereas adversaries take advantage of TF
to eavesdrop sensitive information [9], [17], [23], [24].

A. App Fingerprinting

Our work falls into this category. By analyzing app traffic,
some existing works [6]–[8], [14] aim to identify apps from
encrypted app traffic. For example, Van Ede et al. proposed
a semi-supervised approach to fingerprint mobile apps based
on destination-related features [6]. Taylor et al. proposed a
modular framework, dubbed AppScanner, for automatic fin-
gerprinting and real-time identification of Android apps from
their encrypted network traffic [7], [8]. Aceto et. al proposed
a multimodal deep learning framework, named by MIMETIC,
to classify mobile encrypted traffic and identify apps [14].

Another line of works [9]–[13], [70] intend to identify
fine-grained user behaviors associated with apps. For example,
Conti et al. proposed a framework to infer which particular
actions the user executed on some app by using information
available in TCP/IP packets (like IP addresses and ports),
together with other information like the size, direction, and
timing [11]. Saltaformaggio et al. presented NetScope, a sys-
tematic method to perform robust inference of users’ semantic
activities [9]; Liu et al. developed an iterative analyzer for
classifying encrypted mobile traffic in a real-time way. They
segmented app traffic based on a recursive time continuity con-
strained KMeans clustering (rCKC) algorithm and classified
the segmented traffic to identify in-app user activity [10].

Existing AF attacks cannot tackle the challenges listed in
§ I. AF attacks that rely on destination information, e.g., [6],
[11], are unable to handle encrypted wireless traffic due to
hidden destination. Second, the vast majority of existing AF
attacks, e.g., [9]–[12], [14], [51], work under the closed-world
setting, where apps in the testing stage should also be present
in the training stage. In other words, they are unable to handle
open-world app fingerprinting by design. Third, there is no
AF attack can handle app multiplexing for encrypted wireless
traffic. For example, existing works, e.g., [6], [10], [12],
either explicitly or implicitly, assume that apps are executed
one at a time. At the first glance, AF attacks that extract
network flows as traffic samples can solve app multiplexing
because each network flow is exclusively generated by one app.
Unfortunately, network flows cannot be identified and extracted
since transport-layer endpoints are invisible in 802.11 wireless
frames. Consequently, AF attacks, e.g., [7]–[9], [14], which
need to extract network flows, fail to solve our problem.

B. Website Fingerprinting

Website fingerprinting (WF) attacks aim to infer the web-
sites being visited by users via encrypted proxies or anonymity
networks [71]. Existing WF attacks, e.g., [21]–[28], [72],
[73], can be roughly grouped into feature-engineering-based
WF and deep-learning-based WF. WF attacks in the former
category [21], [23], [24], [26], [27] extract features based on
domain knowledge and train classifiers to identify website.
WF attacks in the latter category [25], [28], [74] use deep

14

learning models to achieve automatic feature extraction. Since
deep-learning-based WF attacks often need enormous training
data, some improvements leverage metric learning [22] or
adversarial domain adaption [75] to achieve few-shot learning.
Despite higher accuracy, deep-learning-based WF attacks have
been proven to be susceptible to adversarial perturbations [62].
Existing WF attacks usually assumed that network traffic cor-
responding to different websites can be reasonably separated
by obvious time gaps between packets [63]. Unfortunately,
packets generated by different apps are often strongly mixed
together. Therefore, models of WF attacks cannot be directly
applied to our problem.

IX. CONCLUSION

We proposed PACKETPRINT, a novel AF attack to recognize
user activities associated with apps of interest in the open-
world setting by addressing four challenges, including hidden
destination, invisible boundary, app multiplexing, and open-
world recognition. The extensive experimental results show
that PACKETPRINT achieves the average F1-score 0.884 for
open-world app recognition and the average F1-score 0.959 for
in-app user action recognition. When faced with noise packets
caused by the simultaneous use of different apps, PACKETPRINT

still achieves a reasonably high F1-score 0.826 when the noise
packet ratio is 0.823. Moreover, PACKETPRINT trained over app
traffic driven by automatic test tools can accurately recognize
human-generated app traffic with the average F1-score 0.854.

ACKNOWLEDGMENT

We sincerely thank the anonymous reviewers for their
constructive comments. This work is partly supported by Hong
Kong ITF Project (No. GHP/052/19SZ), National Science
Foundation (No. 1951729, 1953813, and 1953893), National
Natural Science Foundation of China (No. 61972313), and
Cyrus Tang Foundation as an XJTU Tang Scholar.

REFERENCES

[1] M. Yea-Ji and K. Hyun-Bin, “O2O apps become part of
daily life,” https://www.korea.net/NewsFocus/Society/view?articleId=
162968, 2021.

[2] C.-D. Chen, C.-K. Huang, M.-J. Chen, and E. Ku, “User’s adoption
of mobile o2o applications: Perspectives of the uses and gratifications
paradigm and service dominant logic,” 2015.

[3] Arthur and Charles, “Naked celebrity hack: security experts focus on
icloud backup theory,” http://www.theguardian.com/technology/2014/
sep/01/naked-celebrity-hack-icloud-backup-jennifer-lawrence, 2020.

[4] T. McCoy, “4chan: The ’shock post’ site that hosted the private jennifer
lawrence photos,” http://shorturl.at/biHLN, 2020.

[5] Zetter and Kim, “Sony got hacked hard: What we know and don’t know
so far,” http://www.wired.com/2014/12/sony-hack-what-we-know/,
2020.

[6] T. van Ede, R. Bortolameotti, A. Continella, J. Ren, D. J. Dubois,
M. Lindorfer, D. Choffnes, M. van Steen, and A. Peter, “Flowprint:
Semi-supervised mobile-app fingerprinting on encrypted network traf-
fic,” in Network and Distributed System Security Symposium, NDSS
2020. Internet Society, 2020.

[7] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “Appscanner:
Automatic fingerprinting of smartphone apps from encrypted network
traffic,” in 2016 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 2016, pp. 439–454.

[8] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “Robust smart-
phone app identification via encrypted network traffic analysis,” IEEE
Transactions on Information Forensics and Security, vol. 13, no. 1, pp.
63–78, 2017.

[9] B. Saltaformaggio, H. Choi, K. Johnson, Y. Kwon, Q. Zhang, X. Zhang,
D. Xu, and J. Qian, “Eavesdropping on fine-grained user activities
within smartphone apps over encrypted network traffic,” in 10th
{USENIX} Workshop on Offensive Technologies ({WOOT} 16), 2016.

[10] J. Liu, Y. Fu, J. Ming, Y. Ren, L. Sun, and H. Xiong, “Effective and
real-time in-app activity analysis in encrypted internet traffic streams,”
in Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2017, pp. 335–344.

[11] M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde, “Can’t you
hear me knocking: Identification of user actions on android apps via
traffic analysis,” in Proceedings of the 5th ACM Conference on Data
and Application Security and Privacy, 2015, pp. 297–304.

[12] D. Li, W. Li, X. Wang, C.-T. Nguyen, and S. Lu, “Activetracker:
Uncovering the trajectory of app activities over encrypted internet
traffic streams,” in 2019 16th Annual IEEE International Conference
on Sensing, Communication, and Networking (SECON). IEEE, 2019,
pp. 1–9.

[13] M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde, “Analyzing
android encrypted network traffic to identify user actions,” IEEE Trans-
actions on Information Forensics and Security, vol. 11, no. 1, pp. 114–
125, 2015.

[14] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapè, “Mimetic: Mobile
encrypted traffic classification using multimodal deep learning,” Com-
puter Networks, vol. 165, p. 106944, 2019.

[15] Samsung, “Smartthings,” https://www.smartthings.com, 2021.

[16] Apple, “Homekit,” https://www.apple.com/ios/home/, 2021.

[17] A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Miettinen, H. Aksu,
M. Conti, A.-R. Sadeghi, and S. Uluagac, “Peek-a-boo: I see your
smart home activities, even encrypted!” in Proceedings of the 13th ACM
Conference on Security and Privacy in Wireless and Mobile Networks,
2020, pp. 207–218.

[18] W. E. Forum, “The COVID-19 pandemic has changed
education forever,” https://www.weforum.org/agenda/2020/04/
coronavirus-education-global-covid19-online-digital-learning/, 2021.

[19] D. I. Jason Abbruzzese and S. Click, “The coronavirus pandemic
drove life online,” https://www.nbcnews.com/tech/internet/
coronavirus-pandemic-drove-life-online-it-may-never-return-n1169956,
2021.

[20] J. Li, X. Ma, L. Guodong, X. Luo, J. Zhang, W. Li, and X. Guan, “Can
we learn what people are doing from raw dns queries?” in IEEE INFO-
COM 2018-IEEE Conference on Computer Communications. IEEE,
2018, pp. 2240–2248.

[21] A. Panchenko, F. Lanze, J. Pennekamp, T. Engel, A. Zinnen, M. Henze,
and K. Wehrle, “Website fingerprinting at internet scale.” in NDSS,
2016.

[22] P. Sirinam, N. Mathews, M. S. Rahman, and M. Wright, “Triplet
fingerprinting: More practical and portable website fingerprinting with
n-shot learning,” in Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, 2019, pp. 1131–1148.

[23] T. Wang and I. Goldberg, “On realistically attacking tor with website
fingerprinting,” Proceedings on Privacy Enhancing Technologies, vol.
2016, no. 4, pp. 21–36, 2016.

[24] T. Wang, “High precision open-world website fingerprinting,” in 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 2020, pp. 152–
167.

[25] V. Rimmer, D. Preuveneers, M. Juarez, T. Van Goethem, and W. Joosen,
“Automated website fingerprinting through deep learning,” arXiv
preprint arXiv:1708.06376, 2017.

[26] J. Hayes and G. Danezis, “k-fingerprinting: A robust scalable web-
site fingerprinting technique,” in 25th {USENIX} Security Symposium
({USENIX} Security 16), 2016, pp. 1187–1203.

[27] A. Shusterman, L. Kang, Y. Haskal, Y. Meltser, P. Mittal, Y. Oren, and
Y. Yarom, “Robust website fingerprinting through the cache occupancy
channel,” in 28th {USENIX} Security Symposium ({USENIX} Security
19), 2019, pp. 639–656.

[28] P. Sirinam, M. Imani, M. Juarez, and M. Wright, “Deep fingerprinting:
Undermining website fingerprinting defenses with deep learning,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, 2018, pp. 1928–1943.

15

[29] Google, “Multi-window support,” https://developer.android.com/guide/
topics/ui/multi-window, 2021.

[30] Statista, “Number of available apps in ap-
ple app store,” https://www.statista.com/statistics/
779768/number-of-available-apps-in-the-apple-app-store-quarter/,
2020.

[31] Statista, “Number of available apps in google-
play store,” https://www.statista.com/statistics/289418/
number-of-available-apps-in-the-google-play-store-quarter/, 2020.

[32] J. Jonsson, “On the security of ctr+ cbc-mac,” in International Workshop
on Selected Areas in Cryptography. Springer, 2002, pp. 76–93.

[33] A. D. Potorac and D. Balan, “The impact of security overheads on
802.11 wlan throughput,” Journal of Computer Science and Control
Systems, vol. 2, no. 1, pp. 47–52, 2009.

[34] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. Savelsbergh, and
P. H. Vance, “Branch-and-price: Column generation for solving huge
integer programs,” Operations research, vol. 46, no. 3, pp. 316–329,
1998.

[35] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proc. of ACM SIGKDD, 2016.

[36] “Omnipeek,” https://www.liveaction.com/products/
omnipeek-network-protocol-analyzer/, 2022.

[37] “Monkey,” https://developer.android.com/studio/test/monkey, 2020.
[38] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “Reran: Timing-

and touch-sensitive record and replay for android,” in 2013 35th
International Conference on Software Engineering (ICSE). IEEE,
2013, pp. 72–81.

[39] “Tcpdump,” https://www.tcpdump.org, 2021.
[40] Q. Xu, J. Erman, A. Gerber, Z. Mao, J. Pang, and S. Venkataraman,

“Identifying diverse usage behaviors of smartphone apps,” in Proceed-
ings of the 2011 ACM SIGCOMM conference on Internet measurement
conference, 2011, pp. 329–344.

[41] Q. Wang, A. Yahyavi, B. Kemme, and W. He, “I know what you did
on your smartphone: Inferring app usage over encrypted data traffic,”
in 2015 IEEE Conference on Communications and Network Security
(CNS). IEEE, 2015, pp. 433–441.

[42] E. Grolman, A. Finkelshtein, R. Puzis, A. Shabtai, G. Celniker,
Z. Katzir, and L. Rosenfeld, “Transfer learning for user action iden-
tication in mobile apps via encrypted traffic analysis,” IEEE Intelligent
Systems, vol. 33, no. 2, pp. 40–53, 2018.

[43] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Traffic classi-
fication of mobile apps through multi-classification,” in GLOBECOM
2017-2017 IEEE Global Communications Conference. IEEE, 2017,
pp. 1–6.

[44] M. Tian, P. Chang, Y. Sang, Y. Zhang, and S. Li, “Mobile application
identification over https traffic based on multi-view features,” in 2019
26th International Conference on Telecommunications (ICT). IEEE,
2019, pp. 73–79.

[45] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Mobile encrypted
traffic classification using deep learning,” in 2018 Network Traffic
Measurement and Analysis Conference (TMA). IEEE, 2018, pp. 1–
8.

[46] H. D. Trinh, A. F. Gambin, L. Giupponi, and P. Dini, “Classification
of mobile services and apps through physical channel fingerprinting: a
deep learning approach,” arXiv preprint arXiv:1910.11617, 2019.

[47] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Multi-
classification approaches for classifying mobile app traffic,” Journal
of Network and Computer Applications, vol. 103, pp. 131–145, 2018.

[48] S. Dai, A. Tongaonkar, X. Wang, A. Nucci, and D. Song, “Net-
workprofiler: Towards automatic fingerprinting of android apps,” in
2013 Proceedings IEEE INFOCOM. IEEE, 2013, pp. 809–817.

[49] Y. Chen, W. You, Y. Lee, K. Chen, X. Wang, and W. Zou, “Mass discov-
ery of android traffic imprints through instantiated partial execution,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 815–828.

[50] C. Hou, J. Shi, C. Kang, Z. Cao, and X. Gang, “Classifying user activ-
ities in the encrypted wechat traffic,” in 2018 IEEE 37th International
Performance Computing and Communications Conference (IPCCC).
IEEE, 2018, pp. 1–8.

[51] Y. Fu, H. Xiong, X. Lu, J. Yang, and C. Chen, “Service usage
classification with encrypted internet traffic in mobile messaging apps,”
IEEE Transactions on Mobile Computing, vol. 15, no. 11, pp. 2851–
2864, 2016.

[52] R. Bortolameotti, T. van Ede, M. Caselli, M. H. Everts, P. Har-
tel, R. Hofstede, W. Jonker, and A. Peter, “Decanter: Detection of
anomalous outbound http traffic by passive application fingerprinting,”
in Proceedings of the 33rd Annual Computer Security Applications
Conference, 2017, pp. 373–386.

[53] R. Bortolameotti, T. Van Ede, A. Continella, T. Hupperich, M. H.
Everts, R. Rafati, W. Jonker, P. Hartel, and A. Peter, “Headprint:
detecting anomalous communications through header-based application
fingerprinting,” in Proceedings of the 35th Annual ACM Symposium on
Applied Computing, 2020, pp. 1696–1705.

[54] C. A. G. Da Silva and C. M. Pedroso, “Mac-layer packet loss models for
wi-fi networks: A survey,” IEEE Access, vol. 7, pp. 180 512–180 531,
2019.

[55] J. Cho and H. Garcia-Molina, “Estimating frequency of change,” ACM
Transactions on Internet Technology (TOIT), vol. 3, no. 3, pp. 256–290,
2003.

[56] C. C. Zou, D. Towsley, and W. Gong, “Email worm modeling and
defense,” in Proceedings. 13th International Conference on Computer
Communications and Networks (IEEE Cat. No. 04EX969). IEEE, 2004,
pp. 409–414.

[57] K. C. Sia, J. Cho, and H.-K. Cho, “Efficient monitoring algorithm
for fast news alerts,” IEEE Transactions on Knowledge and Data
Engineering, vol. 19, no. 7, pp. 950–961, 2007.

[58] “ShadowSocks,” https://shadowsocks.org/en/index.html, 2021.
[59] C. Matte, M. Cunche, F. Rousseau, and M. Vanhoef, “Defeating mac

address randomization through timing attacks,” in Proceedings of the
9th ACM Conference on Security & Privacy in Wireless and Mobile
Networks, 2016, pp. 15–20.

[60] J. Martin, E. Rye, and R. Beverly, “Decomposition of mac address
structure for granular device inference,” in Proceedings of the 32nd
Annual Conference on Computer Security Applications, 2016, pp. 78–
88.

[61] A. Bahramali, A. Houmansadr, R. Soltani, D. Goeckel, and D. Towsley,
“Practical traffic analysis attacks on secure messaging applications,” in
NDSS, 01 2020.

[62] M. Nasr, A. Bahramali, and A. Houmansadr, “Defeating dnn-based traf-
fic analysis systems in real-time with blind adversarial perturbations,”
in 30th {USENIX} Security Symposium ({USENIX} Security 21), 2021.

[63] J. Gong and T. Wang, “Zero-delay lightweight defenses against website
fingerprinting,” in 29th {USENIX} Security Symposium ({USENIX}
Security 20), 2020, pp. 717–734.

[64] X. Luo, P. Zhou, E. W. Chan, W. Lee, R. K. Chang, R. Perdisci et al.,
“Httpos: Sealing information leaks with browser-side obfuscation of
encrypted flows.” in NDSS, vol. 11, 2011.

[65] X. Ma, J. Qu, J. Li, J. C. Lui, Z. Li, and X. Guan, “Pinpointing hidden
iot devices via spatial-temporal traffic fingerprinting,” in IEEE INFO-
COM 2020-IEEE Conference on Computer Communications. IEEE,
2020, pp. 894–903.

[66] T. Stöber, M. Frank, J. Schmitt, and I. Martinovic, “Who do you
sync you are? smartphone fingerprinting via application behaviour,” in
Proceedings of the sixth ACM conference on Security and privacy in
wireless and mobile networks, 2013, pp. 7–12.

[67] Y. Wan, K. Xu, G. Xue, and F. Wang, “Iotargos: A multi-layer security
monitoring system for internet-of-things in smart homes,” in IEEE IN-
FOCOM 2020-IEEE Conference on Computer Communications. IEEE,
2020, pp. 874–883.

[68] M. Wei, “Domain shadowing: Leveraging content delivery networks for
robust blocking-resistant communications,” in 30th {USENIX} Security
Symposium ({USENIX} Security 21), 2021.

[69] X. Ma, J. Qu, J. Li, J. C. S. Lui, Z. Li, W. Liu, and X. Guan,
“Inferring hidden iot devices and user interactions via spatial-temporal
traffic fingerprinting,” IEEE/ACM Transactions on Networking, pp. 1–
15, 2021.

[70] J. Li, H. Zhou, S. Wu, X. Luo, T. Wang, X. Zhan, and X. Ma,
“FOAP: Fine-Grained Open-World android app fingerprinting,” in
31st USENIX Security Symposium (USENIX Security 22). Boston,

16

MA: USENIX Association, Aug. 2022. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity22/presentation/li-jianfeng

[71] “Tor,” https://www.torproject.org/, 2021.
[72] X. Ma, M. Shi, B. An, J. Li, D. X. Luo, J. Zhang, and X. Guan,

“Context-aware website fingerprinting over encrypted proxies,” in IEEE
INFOCOM 2021-IEEE Conference on Computer Communications.
IEEE, 2021, pp. 1–10.

[73] X. Xiao, W. Xiao, R. Li, X. Luo, H. Zheng, and S. Xia, “Ebsnn:
Extended byte segment neuralnetwork for network traffic classification,”
IEEE Transactions on Dependable and Secure Computing, 2022.

[74] S. Bhat, D. Lu, A. Kwon, and S. Devadas, “Var-cnn and dynaflow:
Improved attacks and defenses for website fingerprinting,” CoRR, vol.
abs/1802.10215, 2018. [Online]. Available: http://arxiv.org/abs/1802.
10215

[75] C. Wang, J. Dani, X. Li, X. Jia, and B. Wang, “Adaptive fingerprinting:
Website fingerprinting over few encrypted traffic,” in Proceedings of
the Eleventh ACM Conference on Data and Application Security and
Privacy, 2021, pp. 149–160.

APPENDICES

APPENDIX A
DETAILS OF MODELS AND ALGORITHMS

A. Recursive Model Training

To speed up the training process, Eqn. (2) is approximated
by its second-order Taylor expansion

L̂k
j =

m∑
i=1

gi(0) + g
(1)
i fk

j (x
k
i) +

1

2
g
(2)
i fk

j (x
k
i)

2 +Θ(fk
i), (11)

where gi(z) = L
(
yi,

∑k−1
r=0 Fr(x

r
i) +

∑j−1
s=0 f

k
s (x

k
i) + z

)
is

the loss function of pi,

g
(1)
i = −yi +

exp
(∑k−1

r=0 Fr(xr
i) +

∑j−1
s=0 f

k
s (x

k
i)
)

exp(
∑k−1

r=0 Fr(xr
i) +

∑j−1
s=0 f

k
s (x

k
i)) + 1

(12)

is the first-order derivative of g(z) at z = 0, and

g
(2)
i =

exp
(∑k−1

r=0 Fr(xr
i) +

∑j−1
s=0 f

k
s (x

k
i)
)

[
exp

(∑k−1
r=0 Fr(xr

i) +
∑j−1

s=0 f
k
s (x

k
i)
)
+ 1

]2 (13)

is the second-order derivative of g(z) at z = 0. Recalling that
fkj is approximated by a decision tree, we rewrite Eqn. (11)
as

L̂k
j =

nk
j∑

t=1

∑
xk
i ∈Cj

g
(1)
i vt+

1

2

(
λ+

∑
i∈Ct

g(2)
)
w2

t +gi(0)+γnk
j . (14)

To minimize L̂s
t , the optimal value associated with the leaf Ct

can be independently computed by

v∗t = −

∑
xk
i ∈Cj

g
(1)
i

λ+
∑

xk
i ∈Ct

g
(2)
i

. (15)

Given v∗j , the total residual loss corresponding to packets
falling into Cj is computed by

H(Cj) =
∑

pi∈Cj

gi(0)−
(
∑

i∈Cj
g
(1)
i)2

2
(
λ+

∑
xk
i ∈Ct

g
(2)
i

) + γ. (16)

To construct the fkj that minimizes the loss in Eqn. (14), we
expand the decision tree by recursively splitting leaf nodes on
it. Specifically, given a leaf C and a splitting point u, C can

be split into two children CL
u and CR

u , leading to a loss drop
∆H(u, C) = H(C)− [H(CL

u)+H(CR
u)]. The optimal splitting

is expressed by (C∗, u∗) = argmaxC,u ∆H(u, C) subject to
∆H(u, C) > 0. We expand the decision tree by recursively
searching for (C∗, u∗) and splitting C∗ at u∗.

B. Packet Size List Construction

We transform the problem of constructing packet size list to
a combinational optimization problem in Eqn. (1) and propose
Algorithm 1 to solve it.

Algorithm 1: Packet size list construction
Input: Sp, Rmin, Ms

min, r+(si) and r−(si) for ∀si ∈ Sp;
Output: SA

p ;
1 SA

p ← Sp, S′
p ← Sp;

2 rmin ← min
{∑

si∈Sp
r+(si), Rmin

}
;

3 while |SA
p | > Ms

min ∧ |S
′
p| > 0 do

4 si∗ ← argmaxsi∈S′
p

r−(si)

r+(si)
;

5 if
∑

si∈SA
p\{si∗} r+(si) ≥ rmin then

6 SA
p ← S

A
p \ {si∗};

7 end
8 S′

p ← S
′
p \ {si∗};

9 end

C. Recursive LFM Training

H-BoW model recursively maps structural patterns at a
smaller time scale to a categorical variable at a larger time
scale. Mapping functions are learned in a supervised manner
as shown in Algorithm 2.

D. Greedy Feature Representation

The feature representation of H-BoW model is formulated
as the optimization problem in Eqn. (7). We propose a greedy
algorithm to solve it as shown in Algorithm 3.

APPENDIX B
SUPPLEMENTARY MATERIAL OF EVALUATION

A. Training Data Labeling

• Correlating 802.11 wireless frames with TCP/IP packets.
We make use of TCP/IP packets as a bridge to label 802.11
wireless frames because TCP/IP packets contain Internet-
layer and transport-layer endpoints, which are informative to
indicate which app generates them. Specifically, we correlate
each Data-Type (QoS data) 802.11 wireless frame captured by
the WiFi sniffer with a TCP/IP packet captured on the device.
To this end, we first extract the timestamp of each Data-Type
802.11 wireless frame and then derive the packet size of the
TCP/IP packet encapsulated in it by subtracting the length
of frame body by a protocol-dependent encryption overhead
(see § III-B). By comparing these two kinds of information
with TCP/IP packets captured on the device, we are able to
correlate 802.11 wireless frames with TCP/IP packets.

• Correlating TCP/IP packets with sockets. We correlate
packets with sockets (described as 4-tuples) according to
Internet-layer and transport-layer endpoints, i.e., source/des-
tination IP address and source/destination port.

17

Algorithm 2: Recursive LFM training
Input: p = (p1, p2, . . . , pm), {T 2

t }
m2
t=1, {T

3
t }

m3
t=1;

Output: V , M1,M2,M3;
1 V ← ∅;
2 for s = 1, 2, 3 do
3 if s = 1 then
4 for t = 1, 2, . . . ,m do
5 z1

t ← x1
t ;

6 end
7 else
8 for t = 1, 2, . . . ,ms do
9 Compute zs

t according to Eqn. (4);
10 end
11 end
12 Construct the set Ds

train = {(zs
t , y

s
t)}

ms
t=1;

13 Train a decision tree Ms over Ds
train;

14 Add positive leaves on Ms to the vocabulary: V ← V ∪Rs+1
+ ;

15 end

Algorithm 3: Greedy Feature Representation
Input: D+

train, D−
train, α;

Output: c1, c2, . . . , c|V|;
1 cj ← 01×nf

for 1 ≤ j ≤ |V|;
2 for i = 1, 2, . . . , |V| do
3 for j = 1, 2, . . . , |V| do
4 if ∥cj∥1 > 0 then
5 continue;
6 end
7 for k = 1, 2, . . . , nf do
8 ∆L(j, k)← 0;
9 foreach s̃t ∈ D+

train do
10 ht ←

∑
l∈W (s̃t)

cl;
11 if ht(k) = 0 then
12 ∆L(j, k)← ∆L(j, k) + α/|D+

train|;
13 end
14 end
15 foreach s̃t ∈ D−

train do
16 ht ←

∑
l∈W (s̃t)

cl;
17 if ht(k) = 0 then
18 ∆L(j, k)← ∆L(j, k)− 1/|D−

train|;
19 end
20 end
21 end
22 end
23 j∗, k∗ ← argmaxj,k ∆L(j, k);
24 if ∆L(j∗, k∗) ≤ 0 then
25 break;
26 else
27 cj∗ (k

∗)← 1;
28 end
29 end

• Correlating sockets with apps. To correlate the socket with
app, we first instrument the socket-related system functions
(e.g., sendto, write in libc.so), to retrieve sockets
identified by a unique 4-tuple. Next, in these functions, we
internally invoke getpid to obtain the PID values, with
which we can find the app’s package name by accessing the
/proc/PID/cmdline file. By doing so, we establish the
correlation between each socket and the app that creates it.
We output the above information to logcat in real time.

Combining the above three kinds of information, we are
able to label each Data-Type frame to indicate what app
generates it.

B. Hyperparameter Tuning

Since PACKETPRINT is an AF attack working in the open-
world setting by design, we fine-tune hyperparameters based
on grid searching to maximize the average F1-score in the

open-world setting. Table VI summarizes the hyperparameter
tuning process. Similarly, we fine-tune the recognition thresh-
old for each baseline method to maximize its F1-score in the
open-world setting.

TABLE VI: Hyperparameter tuning.

Parameter Search space Selected value
ϕmin {0.5, 0.51, . . . , 0.99} 0.95
ϵ {10s, 50s, 100s, 200s, 300s, 500s} 300s
α {0.05, 0.1, . . . , 0.95} 0.1
nf {1, 2, 3, 5, 10, 20, 50} 3
ψmin {0.05, 0.1, . . . , 0.95} 0.1

C. Estimating CPL Rate And RTT

We estimate RTT as the average time delay between
timestamps of SYN packet and ACK packet in the TCP
handshake. As for CPL rate, we estimate it in a passive manner
by analyzing retransmitted packets in TCP/IP traffic captured
on devices. Therefore, we only consider CPL rate associated to
outbound packets sent by mobile devices. For a traffic instance,
we estimate its CPL rate as mr

t/mt, where mt is the number
of outbound TCP packets associated to the app that this traffic
instance belongs to and mr

t is the number of retransmitted
outbound TCP packets. We focus on TCP packets because
TCP packets are dominating in Android app traffic (more than
98% in our dataset). The CPL rate (resp. RTT) of an app is
computed as an average CPL rate (resp. RTT) for its traffic
instances.

18

