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Abstract—Securing inter-domain routing systems of the
Internet from illegitimate prefix annoucements has been a
great concern for the researchers and network operators.
After the failure of many BGP (Border Gateway Protocol)
security enhancement mechanisms to achieve extensive deploy-
ment, it is encouraging to see that the deployment of RPKI
(Resource Public Key Infrastructure) is gradually increasing
worldwide. For a deeper understanding of the impact of RPKI,
many studies have been devoted to measuring the deployment
of RPKI, including the deployment of ROA (Route Origin
Authorization) and ROV (Route Origin Validation). Unlike
the measurement of ROA deployment which can be directly
derived from the data in RPKI repository, the measurement
of ROV deployment requires more sophisticated measurement
and inference techniques. However, existing work has limited
measurement range, and the inference methods are either
inaccurate or inefficient.

In this paper, we propose a new framework, ROV-MI, for
the measurement of ROV deployment, which consist of a large-
scale measurement infrastructure driven by in-the-wild RPKI
invalid prefixes in the control plane to detect the filtering of
these invalid updates with active probing in the data plane, and
an efficient and accurate inference algorithm based on Bayesian
inference techniques. We implement ROV-MI for measuring
real-world ROV deployment and compare it to prior works,
and the results show that ROV-MI can accurately infer ROV
adoption of ∼10 times more ASes (Autonomous Systems) with
less than 20% of the execution time compared to current state-
of-the-art methods.

I. INTRODUCTION

Border Gateway Protocol (BGP) serves as the basis for
inter-domain routing systems of the Internet [1], which
computes the routes between tens of thousands of smaller
networks called Autonomous Systems (ASes). However,
BGP lacks mechanisms for route authentication: BGP does
not check whether the received routes are valid or not. Thus,
an AS can hijack prefixes it does not control by intentionally
or unintentionally announcing invalid routes, making BGP
vulnerable to malicious ASes and configuration errors. These
vulnerablities may significantly impair the reachability of

the Internet or be exploited by attackers to launch man-in-
the-middle attacks [2], as is evidenced by some well-known
route leak and prefix hijack events [3], [4].

To address this issue, many security enhancement mech-
anisms for BGP have been proposed and standradized [5]–
[7], but most of them have gained limited adoption because
of the difficulty of deployment or the lack of incentives
(e.g. low benefit when partially deployed). So for a long
time, the route authentication for BGP remains unsolved.
However, many recent studies and reports show that one
of the the mechanisms, RPKI (Resource Public Key Infras-
tructure) [8], has shown an increasing trend of deployment
[9], [10]. RPKI consists of two processes: ROA (Route
Origin Authorization) and ROV (Route Origin Validtion).
ROA specifies which prefixes each AS can advertise with
Digital Certificates as technical basis and Regional Internet
Registries (RIRs) as trust anchors, and stores these records in
a trustworthy centralized database named RPKI repository.
Then the ASes adopting ROV can periodically retrieve ROA
records from RPKI repository, and when receiving new route
annoucements, check their validity and filter the invalid ones.
Recent reports show a promising trend in RPKI deployment,
with over 30% of prefixes all over the Internet registered in
PRKI by April, 2021 [10], [11] .

To better understand the impact and future benefit of
RPKI, many studies have been devoting to measuring RPKI
deployment [9], [10], [12]–[15], which consists of ROA
and ROV deployment. ROA deployment measurement takes
relatively little effort to conduct, as it can fetch data from
RPKI repository, and derive most results directly (e.g. how
many prefixes/anouncements can be validated by existing
ROA records) [10], [12]. Yet compared to the deployment
of ROA, we have relatively little understanding of ROV
deployment. The main reason is that there is no available
database of ROV deployment like RPKI repository, thus
requiring more sophisticated measurement and inference
methods [9].

In recent years, several studies have attempted to take
a step forward in the measurement and inference of ROV
deployment [9], [13], [14], which are shown in Table I.
Galid et al. [9] is one of the earliest efforts, which collects
BGP route announcements from public route collectors (e.g.
Routeviews, RIPE RIS) to see which paths are filtering
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TABLE I. Comparison of representative ROV measurements.

Method Measurement Inference

Scale Accurate Efficient

Galid et al. [9] Medium % "

Reuteret et al. [13] Narrow " "

Gray et al. [14] Medium " %

ROV-MI Large-scale " "

invalid routes, and uses a heuristic to find the ASes that are
most likely to adopt ROV from the labeled paths. However,
this algorithm can be easily affected by other kinds of
filtering (e.g. traffic engineering) and is highly dependent
on the distribution of the vantage points [13], thus having
relatively low accuracy. To this end, Reuter et al. [13] pro-
poses a controlled measurement method that uses PEERING
testbed [16] to announce a pair of valid/invalid prefixes to
the ASes which peer with it. By comparing whether the
prefix pair is accepted, it can accurately measurement the
ROV adoption of its peering ASes. The main problem is the
connected-restriction imposed on the measured ASes that
they have to be directly connected to PEERING testbed,
which greatly narrows down the measurement range. Gray
et al. [14] removes this restriction by extending the method
of [13] to collecting the route announcements of the prefix
pair advertised with PEERING from public route collectors
to label which paths are propagating the invalid prefix and
which are filtering them. It then models the problem with
Bayesian methods and solve it by MCMC (Markov Chain
Monte Carlo) methods. However, the measurement range is
still limited because PEERING can only announce prefixes
from several certain sites, which means the number of paths
observed at public route collectors is limited. What’s more,
MCMC is a sampling-based method, which is extremely
time-consuming and becomes unscalable when the problems
is larger, and is hard to access convergence [17].

Our work. In lights of the problems above, we propose
ROV-MI, a large-scale, accurate and efficient framework for
ROV measurement. In the measurement part, to expand the
range of the measurement, we find it feasible to utilize
the invalid prefixes in the wild to increase the number
of origins that announce invalid updates, and propose to
observe the propagation of these updates with active probing,
through which we observe ∼10 times more paths compared
to existing work. In the inference part, we borrow the
idea of solving it in a probabilistic setting from [14], but
introduce a more superior Bayesian Inference technique,
Stein Variational Gradient Descent (SVGD) [18], to solve
it. Unlike MCMC, SVGD uses deterministic method to
approximate target probability distributions, which can infer
the deployment of ROV in an accurate and efficient way.

Contribution. In a nutshell, our contribution can be
summarized as follows:

• Proposing a large-scale measurement scheme for ROV
deployment. By leveraging the invalid prefixes in the

wild, our measurement method greatly enlarges the
number of labeled paths, which provides the opportu-
nity for a large-scale ROV deployment measurement.

• Solving the inference of ROV deployment both accu-
rately and efficiently. To ensure the accuracy of the
inference, we extend the probabilistic model from pre-
vious studies, but the large-scale measurement brings
the problem to extremely high-dimensional space. To
this end, we introduce a superior variational inference
algorithm, SVGD, for an accurate and efficient solution.

• We implement our measurement framework, ROV-MI,
which combine the large-scale measurement scheme
and the accurate and efficient inference algorithm, to
measure the real-world ROV deployment. The results
show ROV-MI can accurately measure the ROV de-
ployment in the Internet, outperform existing work in
accuracy and efficiency, and can generalize to other
problems.

II. BACKGROUND

This section first introduces how BGP works (§ II-A), then
analyzes one major security issue of BGP and introduces
how RPKI solves it (§ II-B). Finally we elaborate existing
studies about RPKI measurement (§ II-C).

A. Border Gateway Protocol (BGP)

The Internet is composed of many Autonomous Systems
(ASes), which are sets of connected Internet Protocol (IP)
prefixes, each under the control of some network operators
on behalf of a administrative entity (e.g. Internet Service
Provider (ISP), business enterprise). Each AS has a AS
Number (ASN) and some IP prefixes (i.e. IP address blocks)
allocated to it. The ASN uniquely identify its network
when exchanging information with other ASes. The prefixes
contain many IP addresses, which it can adopt for different
usage (e.g. Cloud Services, Enterprise Networks).

Border Gateway Protocol (BGP) is the de facto routing
protocol between these ASes, with which each AS can
advertise information about its own prefixes and accept
information about the path to its external prefixes. The main
process of BGP can be summarized as following steps:
Fisrt, ASes send UPDATE messages (updates) to peers
(i.e. neighbor ASes) to propagate information about its own
prefixes. For example, if an AS A owns prefix p, it may
send a update containing a ternary (A, p,A) to its peers.
The first two terms in the ternary are the ASN and the
prefix respectively, and the third term is the path to the
prefix p. When other ASes receive the updates, there might
be multiple updates containing the same prefix p, and the
receiver chooses one from them as the path to the prefix, and
then further propagate the prefix to its peers. For example,
if an AS E receives two updates (A, p,C → B → A)
and (A, p,D → A), which means there are two paths
C → B → A and D → A to the prefix p, it may
choose D → A as the path to p for it is shorter (has fewer
hops). Then it prepends its own ASN to the path, and send
the update (A, p,E → D → A) to it peers. In practice
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the choice of the path may not only depend on the hops
of the path, but complies to the routing policy of the AS
which incorporates more complex decision factors (e.g. the
commercial relationship of the ASes) [19].

B. RPKI
Although BGP has been serving as the basis of the Internet

for a long history, many security issues of it remain unsolved
yet, and one of them is the lack of authentication mechanism.
BGP assumes no adversaries among the ASes, so it fully
trusts all the updates it receives. However, this leaves BGP
vulnerable to accidental or malicious disruption: If an AS
advertises an update containing a prefix that is not assigned
to it (may be caused by adversary ASes or configuration
errors), the receivers lack proper methods to check the
validity of the update, and may choose the invalid path. For
instance, as Fig. 1(a) shows, AS 666 may anounce a prefix
p which belongs to AS 1, and when AS 2 receives both
the valid and invalid updates, it cannot tell which one is the
valid. This behavior, also known as BGP Hijacking, may
result in global reachability failures and economic losses
[2], as is evidented by many famous accidents like Pakistan
Telecom’s hijacking of Youtube traffic in Feb, 2008 [3].

AS 666 AS 1

AS 2

（𝒑𝒑,666） （𝒑𝒑,1）

AS 666 AS 1

AS 2

（𝒑𝒑,666） （𝒑𝒑,1）

Prefix: 𝑝𝑝
Origin: AS 1

Owner of P

(a) Original BGP.

AS 666 AS 1

AS 2

（𝒑𝒑,666） （𝒑𝒑,1）

AS 666 AS 1

AS 2

（𝒑𝒑,666） （𝒑𝒑,1）

Prefix: 𝑝𝑝
Origin: AS 1

Owner of 𝑝𝑝

(b) BGP with RPKI deployed.

Fig. 1: The propagation of valid and invalid updates be-
fore/after RPKI is deployed. RPKI helps ASes with detecting
and filtering invalid update.

To this end, numerous attemps have been made by re-
searchers and network operators [5]–[7], and RPKI is the
most popular one among them, which has gained relatively
wide deployment according to recent reports [10]. RPKI is a
specialized public key infrastructure designed to improve the
security of BGP, which consists of two main components,
ROA and ROV [8]. The owners of a prefix p can register
in ROA to get the records that state which ASes are autho-
rized to originate p, which has cryptographic certificate as
technical basis and RIRs (which are in charge of allocating
prefixes) as trust anchors. Each ROA record contains an
ASN A and a prefix p which means A is authorized to
advertise p, and a max-length field denoting that prefixes
longer (more specific) than max-length is considered invalid
even if it’s a sub-net of A. It’s initially designed to reduce
the space required to store the ROA records and make it
more flexible to reconfigure networks without modifying
the ROA records, however recent studies show that it often
incurs misconfigurations and has potential vulnerabilities
[20]. ROA records are stored in a centralized database named
RPKI repository.

Then upon receiving an update, the ASes which adopt
ROV fetch ROA records from RPKI repository, and validate
the update according to the records. If there are records
authorizing the AS in the update to advertise the prefix, it
is considered as valid; if there are only records authorizing
other ASes to advertise the prefix, it’s invalid, and if there are
no records for the prefix, the update is considered unknown
(as RPKI has not been fully-deployed so far). The valid and
unknown updates get propagated as normal, but the invalid
updates are filtered. Fig. 1(b) shows how RPKI avoids the
propagation of invalid updates. Suppose prefix p is registered
in ROA and AS 2 is deployed with ROV, when AS 2
receives both the valid and invalid updates, it can fetch ROA
records from RPKI repository, which shows that only AS 1
is quantified to originate p, and filters the update from AS
666 accordingly.

C. Existing Measurement of RPKI

Given the importance of RPKI in securing BGP from
hijacking, many studies have been devoted to measuring
the deployment of RPKI, which mainly aim to address two
concerns: (1) How many prefixes have been registered
in/proctect by ROA, and (2) How many ASes are adopt-
ing ROV to filter invalid updates. As for concern (1),
researchers can analyze all the ROA records, and compare it
to the global RIB (Route Information Base) table from public
route collectors, and the results can be derived directly.
Measurement of ROV. Unlike concern (1), things get much
harder for concern (2). There are no available data to show
which AS is adopting ROV, so experiments have to be
conducted to see which ASes are actually filtering invalid
updates. Early measurement [9] proposes to observe the
propagation of invalid updates from global RIB table got
from public route collectors. However, this method can eas-
ily get confused with other filtering and is heavily influenced
by the distribution of vantage points [13], resulting in low
accuracy. A more accurate method is to announce an invalid
prefix to the target AS and check whether it is accepted
by investigating the RIB table (if available) or testing the
reachability of the prefix from a probe in the target AS.
[13] uses this method to conduct the measurement, and
includes a valid prefix as a control group to distinguish
from other filtering. However, this method has two main
drawbacks: First, the target AS has to peer with PEERING
(this problem is solved by the inference technique introduced
below); Second, PEERING can only advertise prefixes from
several certain sites. These two restrictions greatly narrow
down the measurement range, which makes it only capable
of identifing the ROV adoption of ∼100 ASes.
Inference techniques. As mentioned above, one major limit
of [13] is that it requires the target AS to peer with
PEERING testbed, and the inference technique proposed by
[14] have solved this problem. Instead of observing whether
a certain AS filters the invalid update, it collects updates
from public route collectors to see which paths are filtering
invalid updates and which paths are not. After labeling the
paths, it models the problem in a probabilistic setting: it
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infers the probability distribution of the ASes deploying
ROV, which changes the output from a binary value in {0, 1}
to a distribution on [0, 1], and then it treats the labeled paths
as observed data and uses a famous Bayesian inference
technique named Markov Chain Monte Carlo (MCMC)
to solve the problem. However, MCMC uses a sampling
method to appoximate the probability distribution, which
is extremely time-consuming and becomes unscalable when
the problem becomes larger, and sometimes may be hard to
access convergence [17].

III. ROV MEASUREMENT WITH ROV-MI

This section first introduces the challenges for performing
a large-scale, accurate and efficient ROV measurement, and
our solutions for them (§ III-A), and then presents the
framework of ROV-MI (§ III-B).

A. Challenges and Solutions

As analyzed in § II-C, the major challenges in measuring
ROV deployment can be summarized as follows:
Challenge 1: Limited measurement range. As previous
studies can only announce prefixes from several sites of
PEERING testbed, even with sophisticated inference tech-
niques, the measurement range is still limited by the number
of labeled paths.
Challenge 2: Inefficient or inaccurate inference tech-
niques. Simple heuristic used in early works have low ac-
curacy. Recent attempts solve it more accurately in a proba-
bilistic setting through a sampling-based Bayesian inference
method, but the method is extremely time-consuming and
unscalable.

To step over the barrier in current measurement of ROV,
we propose the solutions to the challenges above:
Solution 1: Utilizing in-the-wild invalid prefixes. Through
previous analysis, we identify that the key reason of limited
measurement range is that PEERING testbed provides only
a few origins to advertise invalid prefixes, which results
in that only a small number of paths are labeled about
whether they propagate invalid updates or not. Our solution
is to utilize in-the-wild invalid prefixes to increase the
number of the origins of invalid updates. Fig. 2 shows how
many unique RPKI invalid prefix-origin pairs are observed
from global updates collected from public route collectors
during May, 2021. It can be seen that over 6,000 unique
invalid prefix-origin pairs can be observed every day, which
also conforms to observation of NIST RPKI monitoring
platform [21]. This is much larger compared to the number
of sites provided by PEERING testbed to advertise invalid
updates, which provides the possibility of a large-scale
ROV measurement. After getting enough origins of invalid
updates, the next question is how to observe the propagation
of these prefixes, so as to label the paths. To this end,
we propose a data-plane active probing scheme to identify
which paths are filtering invalid updates: we use probes
to traceroute two IP addresses from a legitimate (valid or
unknown)/invalid prefix pair of the same origin, to get the
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Fig. 2: The number of unique RPKI invalid prefix-origin
pair observed in global updates during May, 2021. Over
6,000 unique invalid prefix-origin pairs are observed per
day, which provides the possibility to use in-the-wild invalid
prefixes for ROV deployment measurement.

AS-level paths, and through the comparison of these paths,
we know whether these paths are filtering invalid updates.
Solution 2: Accurate and Efficient Bayesian inference
techniques. As have been shown by experiments, using
heuristics for inference of ROV deployment can be severely
affected by the distribution of the vantage points and easily
confused with other types of filtering, so we decide to
borrow the idea proposed by [14] to model the problem
in a probabilistic setting for a more accurate inference.
However, existing methods like MCMC have to randomly
generate samples to approximate the distribution, which is
quite inefficient, and unscalable when the problem becomes
large (as it is in a large-scale measurement). So the key
problem is how to solve it both accurately and efficiently.
To achieve this, we utilize an advanced Bayesian Inference
method named Stein Variational Gradient Descend (SVGD)
proposed in [18]. SVGD starts with a group of initial
particles, and iteratively update the particles to minimize
the difference between the approximate distribution (derived
from the particles) and the target distribution. The biggest
advantage of SVGD is that it provides a deterministic de-
scent method, unlike MCMC, which uses a random method
to draw samples from the target distribution thus requiring
large sample size to increase the diversity of particles. This
advantage makes SVGD significantly superior to MCMC in
terms of efficiency.

B. Framework

After giving corresponding solutions to the challenges of
ROV measurement, we introduce the design of ROV-MI.
Fig. 3 shows the framework of ROV-MI. In the measurement
part, we use the data from public route collectors to detect
the occurrence of invalid prefixes in global updates in real
time. After spotting an invalid prefix announcement from an
AS, we find another legitimate prefix that has the same origin
AS with it, and respectively traceroute a live IP address in
these two prefixes with probes. By comparing the AS-level
path obtained from the traceroute, we can label whether each
path is filtering invalid updates or not.

Then in the inference part, we consider the problem
under a probabilistic model: we can regard the labeled paths
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Fig. 3: The framework of ROV-MI.

as observed data, and our task is to infer the posterior
distribution of the ROV deployment of each AS given these
data. Next, we use SVGD to solve this problem efficiently
and accurately.

IV. MEASUREMENT INFRASTRUCTURE

The workflow of ROV-MI can be intuitively described as
finding invalid prefixes on the control plane, and labeling
the paths on the data plane. First of all, in the control
plane, we collect the BGP updates in the global Internet in
real time, extract the prefix and origin AS and check whether
they are valid against ROA records. If we spot an invalid pair
of prefix p1 and origin AS A, we find another legitimate
prefix p2 from the updates which also originates from AS
A, and the validity of this prefix is valid or unknown (which
means it will not be filtered by ROV). Then in the data plane,
we first respectively retrieve an active IP address from p1
and p2, denoted as addr1 and addr2, and use probes to
perform traceroutes towards this pair of IP addresses, to find
the path chosen by the probes to reach p1 and p2 . Finally, by
comparing the AS-level path obtained by the traceroutes, we
can label which paths are filtering invalid updates. The rest
of this section mainly introduces several main modules of
the measurement infrastructure in detail and discusses about
the ethics of the measurement.

A. Spotting Invalid Prefixes

In order to find invalid prefixes in the control plane, the
first step is to collect all the BGP updates, and we achieve
this with BGPStream [22]. BGPStream is an open-source
software that provides an interface for real-time access to
global updates. The data sources of BGPStream include
RIPE RIS (Route Information Service) [23] and RouteViews
[24], which are two projects dedicated to providing network
operators and researchers with BGP information in the
global routing system. The working principle of these two
projects is to maintain some route collectors to establish
BGP connections with the routers from volunteering ASes,
so as to obtain the updates advertised by these routers and
make them public. Until June 2021, RouteViews and RIPE
RIS have maintained 37 and 26 route collectors respectively.
These route collectors have established connections with

more than one thousand ASes, providing high visibility for
global updates.

After obtaining the available updates, we need to identify
the invalid ones from them. There are many open source
RPKI validators that can accomplish this work. RPKI val-
idators allow users to periodically download ROA records
from the RPKI repository, and then users can compare the
downloaded data with received updates, or feed them to the
router for processing. In our measurement infrastructure, we
select Routinator [25] as the RPKI validator and set the time
interval for synchronizing data to 10 minutes, as suggested
in previous work [11]. Then for each update we receive with
BGPStream, we validate it against the ROA records, and the
invalid ones are used for measurements.

B. Prefix Selection and Live IP Retrieving

Directly using all invalid prefixes for further measure-
ment will be interfered by some other factors (e.g. multi-
homing prefixes), so we need to filter some invalid prefixes
to exclude these factors to make our measurement more
accurate. After that, for each invalid prefix, we need to find
a legitimate prefix of the same origin, and extract a live IP
addresses from this prefix pair.

Filtering of multi-homing prefixes. Multi-homing prefix
refers to the prefix announced by multiple ASes in the
control plane, which may be caused by many reasons, such
as BGP Anycast, service migration, route hijacking, and
so on [26]. In this case, the accessibility and path to the
prefix may be unstable, and the results obtained by different
probes may be inconsistent, which is not convenient for our
measurement.

We filter multi-homing prefixes by maintaining a prefix-
trie (we also use the same data structure for other prefix
filtering and live IP extraction). When an update is received,
we will insert the prefix that it contains into the prefix-trie,
and add the ASN to the attributes (maintained through a list)
of the end node of the prefix in the trie. Then after finding
an invalid update in this way, we can query the invalid prefix
in it on the trie, if there are attributes other than the ASN
in the update, the prefix is a multi-homing prefix.

Filtering of prefixes covered by other legitimate pre-
fixes. Some invalid prefixes are caused by exceeding the
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max-length and in this case, it may be covered by another
shorter (less specific) but legitimate prefix. In this case, the
invalid prefix may still be reachable on a path which filters
invalid updates, because this shorter but legitimate prefix can
still propagate along this path.

The filtering of covered prefixes is similar to the filtering
of multi-homing prefixes. First, we use the same method
to maintain a prefix-trie of legitimate prefixes. Then if we
want to query an invalid prefix, we can move from the root
node, along its ancestor nodes to its own node on this trie. In
this process, if one of its ancestor nodes have an attribute, it
means that this invalid prefix is covered by another legitimate
prefix.

Live IP Retrieving. The invalid prefix which passes the
filtering will be used for subsequent measurement, so the
next task is to find a legitimate prefix of the same origin
for the invalid prefix, and extract live IP addresses from this
pair of prefixes. Finding the legitimate prefix is relatively
simple. We only need to maintain a mapping from ASN to
legitimate prefix when receiving the updates, and query it
when necessary. Finding the active address is a bit more
complex. It is too time-consuming to find the address by
random scanning, so we periodically scan all IPv4 addresses
with ZMap [27] (because it is difficult to extract live IP
address for IPv6 prefixes, we only consider IPv4 prefixes in
our work), and maintain a live-IP-trie to store the detected
live IP addresses. Then to retrieve a live IP address of a
prefix, we only need to check whether there is a subtree
rooted at the corresponding node of the prefix. If there is,
each leaf node in the subtree represents a live IP address of
the prefix.

Influence of other filtering. To rule out the influence of
other filtering, we confirm that the updates used for further
experiments we receive do not trigger other types of filtering
(e.g., Route Flap Damping, Loop Detection [14]). There are
also some common filtering which are similar to RPKI in
mechanism (DISP (Drop If Still Routable) [28], BGPSec
[7], etc.), but they either are designed for invalid prefixes that
exceeds the max-length, which would not interfere with our
measurement, or have limited deployment, which has minor
influence on our measurement results.

C. Traceroute and Labeling the Paths

In the data plane, we perform traceroutes with the probes
towards the live IP extracted from the legitimate/invalid pre-
fix pair, and compare the paths obtained by the traceroutes
to infer whether they filter invalid updates.

Traceroute with public probes. There are many pub-
lic probe services, and we choose RIPE Atlas [29] and
perfSONAR [30] from them to perform our measurements.
RIPE Atlas is a global active measurement network from
RIPE NCC. Participants of RIPE Atlas can deploy their own
probes with dedicated hardware devices or software agents
provided by RIPE NCC, and all the probes are public. Users
can use any probe to make their customized measurement of
different types (i.e. ping, traceroute, DNS, etc.). Similarly,
perfSONAR is another network measurement toolkit aiming

legitimate prefix 𝒑𝟏

Invalid prefix 𝒑𝟐probe
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Invalid prefix 𝒑𝟐probe

Data Plane
legitimate prefix 𝒑𝟏

Invalid prefix 𝒑𝟐probe

legitimate prefix 𝒑𝟏

Invalid prefix 𝒑𝟐probe
𝑝𝑎𝑡ℎ2
𝑝𝑎𝑡ℎ1

Fig. 4: An example of path labeling. The left part shows the
case where the probe has identical paths to the legitimate and
invalid prefixes, and the right shows the case of the different
paths.

to provide federated coverage of network paths, which can
also be deployed by volunteers as probes and publicly
accessed by the users. perfSONAR supports a wider range
of measurement types compared to RIPE Atlas (i.e. path,
packet loss, throughput, etc.). There are ∼25,000 probes in
RIPE Atlas and ∼1,900 pScheduler servers in perfSONAR
respectively by June, 2021.

Labeling the paths. After launching the traceroutes on the
data plane, we can label which paths filter invalid updates by
comparing the paths from the probes to the invalid/legitimate
prefixes. Assuming that we traceroute the invalid prefix and
the legitimate prefix from one probe, and the AS-level paths
obtained are denoted as path1 and path2 respectively, then
there are two different situations: The first is that path1

and path2 are the same. As shown on the left of Fig. 4,
in the control plane, this path must have propagated the
invalid update, otherwise the probe cannot choose path1

to reach the invalid prefix. So in this case, we can think
that this path does not filter invalid updates. The second
case is that path1 and path2 are different. As shown on the
right of Fig.4, firstly, path2 cannot have filtered the invalid
update, otherwise it is impossible for the probe to reach
the invalid prefix through path2. Secondly, path1 filters the
invalid update, because if the probe receives the update from
path1, which means the prefix is reachable from both path1

and path2, then the probe will choose the better route path1

for routing just like it does for the legitimate prefix, which
is inconsistent with the traceroute result. So in this case, we
think that path1 filters invalid updates, and path2 does not
filter invalid updates (here we assume no traffic engineering
for the invalid/legitimate prefix pair).

D. Ethics

In our measurement infrastructure, we do not announce
any messages in the control plane, so the possible ethical
issue lies in the scanning of the live IP addresses and the
traceroute to the live IP addresses.

First for the live IP scanning, we limit the bandwidth of
the scan to 100Mbps and only execute the scanning on daily
basis, so it doesn’t cause much burden on the Internet. For
the detected live IP addresses, we do not take any further
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actions except performing a traceroute towards it when it’s
contained in an invalid/legitimate prefix pair. Also, we do
not analyze the live IP addresses or make them public, so
there are no risks for the leakage of their privacy.

Then in the traceroute, we control the rate of performing
traceroute to 1 time per second, so it does not cause any
burdens on the Internet either.

V. INFERENCE ALGORITHM

This section introduces how ROV-MI infers the adoption
of ROV with the labeled paths from the measurement
infrastructure. We first explain how to convert the problem
into a Bayesian inference problem, and then introduce how
to solve it through an advanced Bayesian inference method,
SVGD.

A. Non-probabilistic Model

First, we formalize the problem of ROV deployment
inference under a non-probabilistic model. For an AS i, we
use a variable xi to indicate whether it deploys ROV. For the
simplicity of calculation, we set the meaning of xi to AS i
not adopting ROV. xi is equal to 0 when AS i adopts ROV
and 1 otherwise, which can be expressed mathematically as:

xi =

{
0 if AS i adopts ROV
1 if AS i does not adopt ROV (1)

Then in our measurement, we cannot directly observe
which ASes are adopting ROV, and we only measure which
paths are filtering invalid updates. For a path j, we denote
the ASes it contains as Nj . We notice that path j filters
invalid updates when there is at least one AS in Nj filters
invalid updates (i.e. adopts ROV) on it . So we can use
the production of {xi}i∈Nj

to determine whether the path
j filters invalid updates. Similarly, we use a variable yj to
denote whether path j filters invalid updates, where:

yj =

{
0 if path j filters invalid updates
1 if path j does not filter invalid updates

(2)
Then the relationship of the ROV deployment of the ASes

and filtering of the paths can be expressed as:

yj =
∏
i∈Nj

xi (3)

For each observed path, there is an equation in the form
above, so the results of our measurement can be regarded
as a set of equations. If the equation set is solved, the
deployment of ROV can be inferred. However in reality,
solving this equation set is nontrival due to the following
reasons:

1) It is difficult to obtain a unique solution [14]. Generally,
finding a unique solution to such a equation set requires
a large number of equations, which means that a lot of
independent measurement results need to be obtained
to make accurate inference, which is usually hard to
meet. In other problems, there may be some additional

assumptions to assist solving the equations (e.g., in the
inference of link failure, it can be assumed that the
failure is very sparse, thus limiting the number of xi

with the value of 0), but it is not feasible in ROV
deployment measurement.

2) The solution is vulnerable to noises. Under most cir-
cumstances, there are some noises in the measurement
results. In this case, this equation set is highly likely to
have no solution. Some robust methods will approxi-
mate the solution by introducing some Gaussian noises
into the model, but this is not suitable for ROV deploy-
ment inference, because the noise in the measurement
usually comes from a small number of incorrect labels,
which cannot be modeled with Gaussian noises.

B. Probabilistic Model

In lights of the problems of non-probabilistic model, we
choose to model the problem in a probabilistic setting [14].
In order to introduce probability model, we use a new
variable zi to represent the percentage of invalid routes
that AS i does not filter. Then different from the xi in
the non-probabilistic model, which is a binary variable with
its value in {0, 1}, zi is a random variable distributed in
[0, 1] . When the value of zi is in (0, 1), we can interpret
it as AS i will filter the received invalid updates with the
probability of (1− zi). Assuming zi is inter-independent in
its prior distribution, we can derive the relationship between
zi and yj with the following method: when yj is equal to 0,
it means that path j does not filter the invalid update, that is
to say, all the ASes on path j don’t filter the invalid update,
otherwise yj is equal to 1. Therefore, the probability that yj
is equal 0 can be expressed as:

{
p(yj = 0 | Z) =

∏
i∈Nj

zi

p(yj = 1 | Z) = 1−
∏

i∈Nj

zi
(4)

where:

Z = (z1, z2, . . . , zn) (5)

Here n represents the number of ASes to be inferred. Then
for a set of measured data D = (y1, y2, . . . , yN ) (where
N denotes the number of labeled paths), the probability of
observing D given a value of Z is:

p(D | Z) =
∏

yjinD

p(yj | Z) (6)

The equation Eq. (6) can be regarded as a likelihood func-
tion (a function of Z), which represents the probability that
the data D is observed when Z takes different values. The
problem we now hope to solve is to calculate the probability
distribution of Z under a given set of measurement data,
namely the posterior distribution of Z. Bayesian rule tells
us the posterior probability is proportional to the product of
the prior probability and the likelyhood function:

p(Z | D) ∝ p(Z)p(D | Z) (7)
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By combining Eq. (4)-Eq. (7) and providing a prior
distribution p(Z) (which can incorporate known information
about ROV deployment, and if there is no prior knowledge
about ROV deployment, some common distributions like
uniform distribution can be used), the posterior distribution
can be determined. Next, in order to determine whether
AS i deploys ROV, we need to solve the marginal distri-
bution p(zi|D) of the corresponding dimension zi in Z.
However, it is intractable to give an analytical solution of
p(zi|D) because Z is a random variable located in a high-
dimensional space (the dimension n is equal to the num-
ber of inferred ASes), and different dimensions are highly
correlated. So we need to use Bayesian inference methods
to approximate the marginal distributions. However, poor
man’s Bayesian estimator methods like MAP (Maximum a
posterior) provide limited information about the distribution,
while full Bayesian inference technique like Variational
Inference or MCMC have accuracy or efficiency issues for
high dimensional data, so it is essential to find an inference
method to solve the problem both accurately and efficiently.

C. ROV Deploymenet Inference with SVGD
The MCMC method used in previous work uses sampling

to solve p(Z|D): it starts from an initial state Z0 and
then iteratively draw samples from p(Z|D). In the t-th
iteration, it generates a new distribution qt(Z) based on
the samples generated in the previous (t − 1) iterations
(for example, a new normal distribution with the mean of
Z(t−1)) and randomly draws a new sample Ztemp from it,
and accepts it with the probability of α(Z0, . . . ,Ztemp) .
If Ztemp is accepted, it makes Zt ← Ztemp and starts the
(t + 1)-th iteration, otherwise it repeats the t-th iteration.
α(·) is a self-defined function that controls the direction of
sampling, which usually makes the sampling method to draw
more samples in the region with higher probability density.
After the sampling is completed, the set of all the accepted
samples {Z0, . . . ,ZT } can be regarded as the approximate
distribution of p(Z|D).

The main problem with MCMC lies in that it is based on
a random scheme: In each iteration, it randomly draws an
sample, and then accepts it with a certain probability, which
means that it may need to sample Ztemp for many times to
obtain a new accepted sample Zt. And in order to better
approximate the distribution, the diversity of samples must
be increased to ensure that the value space of the random
variables is fully explored, so a larger number of samples is
required, especially for high-dimensional random variables
like Z. This makes MCMC very time-consuming, unscalable
for large problems, and have accuracy and convergence
issues when the sample size is not sufficiently large.

To this end, we propose to use a more advanced Bayesian
Inference algorithm, SVGD to solve the approximate distri-
bution of p(Z|D). SVGD is also a particle-based method,
which means that it also samples from p(Z|D) to approx-
imate the distribution. But unlike MCMC, SVGD is based
on a deterministic method: First, through Stein method [18],
SVGD gives an analytical solution of the direction of

the gradient for updating the particles (samples). Based
on this gradient, we can use the deterministic gradient
descent method to iteratively update the particles, which can
effectively increase the speed and efficiency of optimization
and does not require large sample size to increase the
diversity of particles like random methods.

As shown in Algorithm 1, the process of solving p(Z|D)
with SVGD is as follows:

First, we randomly generate a set of initial particles
{θ0i }mi=1 (the number of particles is fixed during the iteration)
for subsequent optimization. In the l-th iteration, we first
calculate the direction of the gradient for updating the
particles:

ϕ̂∗(θ) =
1

m

m∑
k=1

[k(θlk, θ)∇θl
k
log p(θlk|D) +∇θl

k
k(θlk, θ)]

(8)
Kernel Functions for SVGD. The k(·, ·) term in Eq. (8) is

called kernel function, and the choice of the kernel function
may influence the convergence speed of the algorithm, and
is generally tested via experiments. In our work, we mainly
consider two types of kernel functions:

• Gaussian(RBF) kernel:

k(x, x′) = exp(− 1

h
||x− x′||22) (9)

• Inverse Multi-quadric(IMQ) kernel:

k(x, x′) = (1 +
1

h
||x− x′||22)−β (10)

In the kernel functions above, h and β can be adjusted
to optimize the efficiency of SVGD, and we provide model
calibration experiments in § VIII-A.

Intuitively, the first term in Eq. (8) makes the particles
move towards the region of higher probability density, and
the second term acts like a regularization term that forces
the particles to move away from current value to avoid local
optima. Note that in Eq. (8), with a certain kernel function,
we only need to calculate ∇θl

k
log p(θlk|D) to determine the

gradient function, which can be calculated as:

∇θl
k
logp(θlk|D) = ∇θl

k
log p(θlk)p(D|θlk)

= ∇θl
k
log[p(θlk)

∏
yj∈D

p(yj |θlk)]

= ∇θl
k
log p(θlk) +

∑
yj∈D

∇θl
k
log p(yj |θlk)

(11)

In Eq. (11), the first term is only related to the prior
probability, so in order to solve ∇θl

k
log p(θlk|D), we only

need to traverse all yj , calculate ∇θl
k
log p(yj |θlk) and sum

them up. And we can see that solving ∇θl
k
log p(yj |θlk) is

easy from the form of p(yj |θlk) in Eq. (4).
After getting the gradient function, we can use it to update

the particles:

θl+1
k = θlk + ϵlϕ̂

∗(θlk), j = 0, 1, . . . ,m (12)
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where ϵl is the step size of the l-th iteration. After T
iterations, we obtain the particles required to approximate
the distribution.

Algorithm 1 Bayesian Inference with SVGD
Input The prior distribution p(Z), the initial particles
{θ0k}mk=1, and the max iteration time T
Output The final set of particles {θTk }mk=1 that approximate
the posterior distribution p(Z|D)

1: for l← 0 to T do
2: ▽ compute the gradient function

3: ϕ̂∗(θ) = 1
m

m∑
k=1

[k(θlk, θ)∇θl
k
log p(θlk|D) +∇θl

k
k(θlk, θ)]

4: for k ← 1 to m do
5: ▽ update the particles
6: θl+1

k = θlk + ϵlϕ̂
∗(θlk)

7: return {θTk }mk=1

Accelerating the algorithm. From Eq. (11), we can find
that the main computational complexity of the algorithm lies
in that for each particle, we need to traverse yj to compute∑

yj∈D∇θl
k
log p(yj |θlk). In light of this, we can use two

techniques to accelerate the computation.
First, from the nature of BGP, we know that each path only

contains a few ASes, which means each p(yj |θlk) is related
to only a few dimensions in θlk, and the components of
∇θl

k
log p(yj |θlk) in other dimensions are all zero. So we can

use this sparse relationship between D and θlk to accelerate
the algorithm. For each dimension of θlk, we maintain which
paths in D contribute to the component of ∇θl

k
log p(yj |θlk)

in this dimension, then we can compute ∇θl
k
log p(yj |θlk)

dimension by dimension, and for each dimension, we only
need to visit the paths that is related to it.

Second, if the complexity is still very high after the
optimization above, then we can downsample D to approx-
imate the calculation of ∇θl

k
log p(D|θlk). We select a subset

S ⊂ {0, 1, . . . , N − 1}, and then calculate it with:

∇θl
k
log p(D|θlk) ≈

∑
j∈S

∇θl
k
log p(yj |θlk) (13)

If possible, some parallel computation methods can also
be used to accelerate the process, such as paralleling the
gradient calculations of different particles.

D. From Posterior Distribution to Results

The output of SVGD are the particles {θTk }mk=1 which
approximate the distribution p(Z|D). Then from the defini-
tion of Z, we know that the i-th dimension zi is related to
whether AS i adopts ROV. So we can use the i-th component
of all the particles to approximate the marginal distribution
of zi. Note that zi represents the probability of AS i not
deploying ROV, so we define another variable z′i = 1 − zi,
and then it is more intuitive to analyze the distribution of z′i
.
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Fig. 5: The number of prefix pairs that can be used for
data plane probing. Though most invalid prefixes are filtered,
the number of available prefix pairs is still large enough to
perform a large-scale ROV deployment measurement.

VI. MEASUREMENT IN THE INTERNET

In this section, we present our measurement results on the
Internet, including the path labeling results from our mea-
surement infrastructure and the ROV deployment inference
results obtained from our inference algorithm.

A. Experiment Setup

We use ROV-MI to measure ROV deployment on the
Internet from June 1st to 7th in 2021. In our measurement
infrastructure, we configure BGPStream to live mode to
capture the updates from 5 route collectors (route-views2-
4.routeviews.org, rrc01-02.ripe.net), and upon finding an
available invalid prefix, we initiate traceroutes from 200
randomly seleted public probes. In the inference part, we set
the particle number in SVGD to 1,000. All the experiments
were carried out on a Dell PowerEdge R720 server using
Ubuntu 16.04 LTS with 6 cores Intel Xeon(R) CPU E5-2630
@ 2.60GHz and 94G RAM.

B. Results from Measurement Infrastructure

Control Plane Results. Fig. 5 records the daily number
of the prefix pairs that can be used for data plane probing.
We define the prefix pair as available if it is not filtered, and
we can extract live IP addresses from these two prefixes. We
can see that the number of available prefix pairs fluctuates
between 300 and 500, which is an order of magnitude
smaller than the daily number of invalid prefixes recorded in
Fig. 2. Through the analysis of the filtering results, we found
that most (∼71%) invalid prefixes are filtered because they
are covered by another valid prefix. This result implies that
there are a large number of configuration errors about the
max-length field in the ROA records, which is consistent
with the analysis in related work [12]. However, this number
is still large enough for us to use these prefix pairs for a
large-scale ROV deployment measurement.

Data Plane Results. Next, we initiate traceroutes to these
available prefix pairs in the data plane. The entire dataset get
from data plane is recorded in Table II. It can be seen that
compared with the measurement method in previous work,
our method can obtain about ten times the paths and cover
about ten times the ASes, which shows that our measurement
infrastructure effectively increases the measurement range.
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TABLE II. Data collected from data plane probing.

#unique origins #covered ASes #unique paths

Gray et al. [14] 1 1,265 12,634
ROV-MI 678 11,074 115,427

What’s more, most ASes that we are able to measure are
large ASes, which have greater impact on the filtering of
the invalid updates in the Internet. Detailed analysis of the
cone-size [31] distribution of the measured ASes is shown
in Appendix § C.

C. Inference Results of ROV Deployment

Typical cases of posterior distributions. First we present
several typical cases of the posterior distribution to show
how the distribution reflects the deployment of ROV. Fig. 6
shows the posterior distributions of z′ for four typical ASes.

• AS 6677. The mode of the distribution is very close to
0, and the possible values of z′ are clustered in a small
interval. This case shows that we are confident that AS
6677 doesn’t adopt ROV.

• AS 6453. The mode of the distribution is very close to
1, and the possible values of z′ are clustered in a small
interval. This case shows that we are confident that AS
6453 adopts ROV.

• AS 47441. The mode of the distribution is about 0.2,
and the possible values of z′ are also clustered in a
small interval. This means that AS 47441 filters ∼20%
of the invaild updates it receives, which indicates that
it is adopting different filter policies either to different
neighbor ASes or to different prefixes. So we consider
it as partially-deployed.

• AS 7296. The possible values are spreading in a
large interval, and the distribution is very similar to
a uniform distribution. This result means that we have
low evidence about whether this AS adopts ROV, so we
consider it as unknown.

Summarizing the posterior distribution. It’s infeasible
to observe the posterior distributions of all the ASes and
judge whether they adopt ROV one by one. So we need
to use some summarizing metrics to judge ROV deploy-
ment from the distribution. We are mainly concerned with
two issues: (1) The values z′ is most likely to take (the
probability of the AS adopting ROV). (2) For these values,
what’s the probability for z′ to take value from them (how
confident we are about the inference results). To this end,
we use two summarizing metrics for quantitative judgement
of ROV adoption.

• The mean of the distribution. By calculating the mean
of the distribution, we know the expected value of
z′i which can be regarded as the probability of AS i
adopting ROV.

• The HDI (Highest Density Interval) of the distribution.
HDI refers to the smallest interval that contains γ of
the mass (by default γ = 0.94). This metric estimates
the spread of the distribution and shows how likely it is

TABLE III. Rules for categorizing the ASes.

Categories mean confidence(1-HDI)

deployed [0.8, 1] [0.5, 1]
undeployed [0, 0.2] [0.5, 1]

partially-deployed (0.2, 0.8) [0.5, 1]
unknown - [0, 0.5)

TABLE IV. The number/proportion of different types of
ASes.

Categories Number Proportion

deployed 3,107 28%
undeployed 4,716 43%

partially-deployed 357 3%
unknown 2,894 26%

total 11,074 100%

for z′i to take values near the mean of the distribution,
which indicates the confidence of the mean value. Since
HDI and the confidence of the inference are negatively
correlated, we define a new variable:

confidence = 1 − HDI

Based on these two metrics, we can set some classification
rules to judge whether each AS deploys ROV. We use a
simple threshold method in our inference, which can divide
the ASes into four categories according to the rules in
Table III. Fig. 7 shows scatter plot of a subset of ASes
located in the mean-confidence space. It can be seen that
most ASes of type deployed or undeployed show very high
confidence about the results, which confirms the feasibility
of the categorization scheme.

Reason for unknown ASes. Through the analysis of the
variation of the gradient value with the iteration number
in the runtime of SVGD as well as the labeled paths that
contains the unknown ASes, we identify that the algorithm
fails to infer the ROV deployment of the unknown ASes
mainly in the following two situations:

• Isolated path: All the ASes on a labeled path have
little overlap with other labeled paths, which results in
low evidence for the ROV deployment of all the ASes
on this isolated path.

• Masked AS: All the labeled paths of an AS contains
another AS that adopts ROV, so it is hard to infer the
ROV deployment of the masked AS from the filtering
behavior of these paths.

Detailed analysis of the reason for the unknown ASes are
provided in Appendix § A.

Measurement Results. The categorization for all the
ASes with the rules above is shown in Table IV. We are
very pleased to see that, together with ROA, the deployment
of ROV is also gradually increasing. Among the measured
ASes, ∼28% have already deployed ROV and are filtering
invalid updates correctly, and most ASes deployed with ROV
are large transit ASes, which means ROV is contributing
more than this percentage shows, making RPKI highly
potential in the future.
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Fig. 6: Posterior distribution of z′ for four typical ASes, whose inference results are undeployed, deployd, partial deployed
and unknown respectively from left to right. The posterior distributions of z′ have obivious characteristic that indicate the
ROV adoption of the AS.
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Fig. 7: The scatter plot of the ASes in the mean-confidence
space. It can be seen that most of the deployed and unde-
ployed ASes show great confidence in their results.

TABLE V. The number of ASes that deploys ROA/ROV.

ROV
ROA deployed undeployed

deployed 2,261 486
undeployed 833 3,883

VII. ANALYSIS OF MEASUREMENT RESULTS

This section mainly performs in-depth analysis of the
measurement results from several aspects including the
correlation of ROA/ROV deployment, the geolocation distri-
bution of ROV deployment and the validation on the ground
truth.

A. Correlation of ROA and ROV deployment

After obtaining the deployment of ROV, we can analyze
the relationship between ROA and ROV deployment. For
the ASes that we are able to infer the deployment of ROV,
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Fig. 8: The distribution of ASes in the ROA/ROV deploy-
ment plane. The deployment of ROA and ROV are highly
correlated.

we look up the corresponding deployment of ROA from the
snapshot of RPKI repository. Then we perform analysis of
two different granularities.

First, For coarse-grained analysis, all the measured ASes
are divided into four categories based on whether it adopts
ROA and ROV (i.e., adopts both ROA and ROV/only
ROA/only ROV/neither ROA nor ROV). We consider an AS
deploys ROA if at least one of its prefixes is protected by
ROA. The number of the four types of ASes are shown in
Table V. Then we perform χ2 test and get that χ2 = 2988.9,
which is an extremely high value and shows that the deploy-
ment of ROA and ROV are highly relevant.

For fine-grained analysis, we further consider two proper-
ties of each AS: the proportion of the address space of the AS
protected by ROA (which can be computed through the RIB
table from global route collectors and the RPKI repository),
and the mean of the posterior distribution z′ of the AS in
the inference result of ROV-MI (intuitively it is proportional
to the number of the invalid updates this AS filters). These
two properties respectively represent the extent to which the
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Fig. 9: The geolocation distribution the ASes that adopt
ROV.

TABLE VI. The countries with the most ASes that adopt
ROV.

Country #ASes with ROV

the United States 1,171
South Africa 219

Germany 193
Netherlands 186

Italy 157

AS adopts ROA and ROV. From this view, each AS can
be regarded as a sample located in a two-dimensional plane,
and the distribution of the ASes is shown in Fig. 8. Then we
use linear regression to analyze the correlation of these two
dimensions, and get the correlation coefficient ρ = 0.831,
which also confirms that the deployment of ROA and ROV
are highly correlated.

B. Geolocation Distribution of ROV Deployment

Then we investigate whether the deployment of ROV is
relevant to the geographical location. We map the measured
ASes to geolocation at the national level. Then we provide
the heatmap of the number of the ASes that deploys ROV
around the world in Fig. 9. It can be seen that the ASes
that adopt ROV is distributed in a very imbalanced way,
and the countries where ROV are more fully deployed are
mainly located in North America, Europe and South Africa.
Then we present that countries with the most ASes that
adopt ROV in Table VI. Among all the countries, the United
States has the highest deployment of ROV, with over 1,000
of its ASes adopting ROV, and the countries in Europe
also have relatively high deployment of ROV. Note that
this imbalanced geolocation distribution might be partially
caused by the imbalanced geolocation distribution of the
observed paths, so a possible future work is to incorporating
more probes for geoloation related analysis.

C. Validation on Ground Truth

Dataset and metrics. Finally, we verify our results on
a small set of ground truth. The source of ground truth is
a project called is-bgp-safe-yet [32]. This project collects
the RPKI deployment status of 370 ASes by communicating
with the network operators, which includes the ROV deploy-
ment information of many large ASes. For each AS, is-bgp-
safe-yet records whether the AS filters invalid updates. We
divide the ASes into three types accordingly: filtering, not

TABLE VII. Validation on ground truth.

Method Precision(%) Recall(%)

Heuristic [9] 68 73
MCMC [14] 100 100

SVGD 100 100
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Fig. 10: The influence of the particle number m on the
effectiveness and efficiency of SVGD. It can be seen that
m = 1000 enable SVGD with both ideal accuracy and
runtime performance.

filtering, and partial filtering (including the ASes that only
filter peers). In the evaluation, for each metric(e.g., precision,
recall), we compute the micro-average of the three classes as
the result. We validated our inference results on this dataset
and compared it to other inference methods.

Baseline Methods. We compared ROV-MI with the two
baseline methods. The first is a heuristic method: It first
excludes all the ASes that have propagated invalid updates.
For the remaining ASes, if there is a path that filters invalid
updates, it adds the confidence of all the ASes on that path by
1. Finally, the ASes with higher confidence are considered to
have deployed ROV. The second baseline method is MCMC
[14], a sampling based Bayesian inference algorithm which
has been introduced in § V-C.

The validation results are shown in Table VII. We can
see that only the heuristic method has a low accuracy, and
both MCMC and SVGD can accurately infer the adoption of
ROV for these ASes. But our experiments in § VIII show that
SVGD is much superior to MCMC in terms of efficiency.

VIII. COMPARISON TO OTHER INFERENCE ALGORITHMS

In this section, we first evaluate the influence of the
parameters on the inference algorithm and find a set of
optimal parameters. Then we compare it to MCMC methods
in terms of efficiency and computational costs.

A. Parameter Calibration

Influence of the particle number. The first parameter
that has great impact on SVGD is the number of particles
m, so we first fix the kernel function of SVGD to RBF kernel
and take different values for m to observe how it influences
the sampling results and runtime efficiency. The left part of
Fig. 10 shows the average value of the likelyhood function of
the particles (higher value indicates better sampling quality)
varying with iteration times under different m. It can be
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Fig. 11: The performance of SVGD under different kernel
functions. It can be seen that IMQ kernel has better perfor-
mance than RBF kernels, and β = 0.5 is the best setting for
IMQ kernel.

seen that for m small than 1,000, enlarging m effectively
improves the sampling quality, but nearly ineffective for m
greater than 1,000.

The right part of Fig. 10 shows the execution time of
SVGD running 2,000 iterations under different m. We can
see that the execution time of SVGD increases linearly
with the particle numbers m. So by combining these two
experiments, we find that it is best for us to set m to 1,000
in our experiment for quality and efficiency considerations.

Comparison of different kernel functions. Another
important component of SVGD is the kernel function. For
each type of kernel functions mentioned in § V-C, we use
several different settings to compare their performance. For
RBF kernel, we use two different parameter settings of h,
the first is the scheme proposed in [18], which adaptively
changes the value of h according to the median value of
the distance between all the particles with the equation
h = med2/ log n. We also try h with fixed values like
h = 0.005, 0.01. Then for the IMQ kernel, we use the same
scheme proposed in [18] to set the value of h, and for β, we
try different values including β = 0.25, 0.5, 0.75. Similar
to the experiment on m, we investigate the variation of the
average log-likelyhood with the number of iteration. The
results are shown in Fig. 11. First for the RBF kernel, it can
be seen that fixed h have relative poor performance, and may
even cause the log-likelyhood to drop with the increase of
iteration number, which indicates that a fixed h is not a good
choice for RBF kernels. Then for IMQ kernels, we see that
they have similar performance under different parameters,
and β = 0.5 is the best among the tested parameters.
Finally, for the comparison of RBF and IMQ kernel, it can
be seen that under all different values, IMQ kernel performs
better than RBF kernel, which indicates that IMQ kernel is
more suitable for our task, and we choose IMQ kernel with
β = 0.5 and adaptive h as our setting for the measurement
tasks and subsequent experiments.

B. Comparison to MCMC

Then we compare our inference method with MCMC.
There are two commonly used MCMC methods, the orig-
inal MCMC and HMC (Hamiltonian Monte Carlo). HMC
replace the random walk scheme in original MCMC with
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Fig. 12: The convergence time of SVGD and different
MCMC methods. It can be seen that SVGD uses only ∼20%
of the time as MCMC methods to reach the convergence.

TABLE VIII. Number of samples when reaching conver-
gence.

Method SVGD HMC MCMC

#Particles 1,000 463,569 573,645

a momentum based state transition, which can sample the
state space more efficiently.

Convergence time. First we compare the time it takes for
them to converge. In order to know the convergence time,
we need some criteria to judge whether they converge. It
is relatively easy for SVGD that it converges when all the
particles become stable, so we can set a threshold δ, and
stops the iteration when ||θl+1

k − θlk||2 < δ. But usually it is
hard to tell whether MCMC converges because it is a ran-
dom process. A relatively reliable method is Gelman-Rubin
Method [33], which runs multiple chains that are initialized
with different initial values, and judge the convergence by
the statics of these chains. Through the methods above, we
can determine the convergence time of the two inference
methods, and the results are as shown in Fig. 12. While it
only takes about 9 hours for SVGD to reach the convergence
(i.e. finish the inference), solving it with MCMC methods
may take ∼50 hours, which shows that SVGD is much more
time-efficient than MCMC methods.

The number of samples generated. Table VIII records
the number of particles generated by each method until
it reaches the convergence. It can be seen that MCMC
methods need to generate ∼500 times more particles than
SVGD to approximate the distribution, which can cause
great computational overhead.

Comparison on higher-dimensional space. As both
SVGD and MCMC can reach 100% accuracy in the vali-
dation dataset, we use the synthesized data generated from
the simulation on the AS topology computed from AS
relationship dataset [31]. We randomly choose 5,000 ASes
to deploy ROV and label sufficient paths between arbitrary
origin/destination AS pairs, and then compare the precision
and recall of SVGD and MCMC on the “Deployed” ASes.
The results are shown in Table IX. It can be seen that both
SVGD and MCMC can reach 100% in preicion, but has
relatively low recall, which may be caused by isolated paths
or masked ASes during the data synthesizing. However, the
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TABLE IX. Experiments on higher-dimensional data.

Method Precision(%) Recall(%)

SVGD 100 92.98
MCMC 100 92.32

recall of SVGD is 0.66% higher than MCMC, which means
that there are several ASes that MCMC fails to infer while
SVGD successfully infers the deployment. This indicates
that MCMC may have failed to reach convergence on the
corresponding dimensions [17] and the result shows that
SVGD is more stable to the change of the problem scale.

IX. DISCUSSION

In this section, we discuss several design choices, limita-
tion, and potential future works.

Inference for links. If we don’t consider the measurement
part, it is a good choice to do link-wise inference, because
it can make more accurate inferences about behaviors such
as using different filtering policies for different neighbors.
However, the number of labeled paths required for precise
link inference is much larger than that required for AS-
wise inference, which is not feasible for our measurement
infrastructure.

Incorporating IPv6 prefixes. As mentioned in § III,
extracting live IP addresses from IPv6 prefixes are time-
consuming and has a low hit rate [34], which is unsuitable
for a real-time measurement, and by tracerouting only IPv4
prefixes can also generate enough labeled paths for infer-
ence, so we do not consider IPv6 prefixes. In future work,
we can utilize some IPv6 reconnaissance techniques for IPv6
live IP address retrieving to incorporate some IPv6 prefixes
and analyze how ROV deployment differs in IPv4/IPv6.

Scheduling the probes in the data plane. Generally,
randomly choosing probes can cover more ASes in the
labeled paths by strengthen the diversity of the probe and
origin pairs. However, as discussed in § VI-C and Appendix
§ A, it will also result in situations like isolated paths and
masked ASes. A possible improvement is to incorporate the
AS topology to schedule the probes to perform traceroutes,
which may provide the chance of reducing “unknown ASes”
to increase the measurement coverage and generating as few
labeled paths as possible for effective inference thus further
boosting the performance of the inference part.

Continuous measurement. Currently with more and
more ASes deploying RPKI, RPKI is developing rapidly,
thus requiring measurement of longer time period. Luckily
many studies and reports have shown that most invalid
prefixes in the wild are long-lived [21], [35], which provides
us the opportunity for a continuous measurement. In the
future, we can make regular measurement to see how the
deployment of RPKI varies with time.

Extending to other scenarios. In fact there are many
problems similar to the measurement of ROV deployment
like the localization of link failures and the measurement
of other network properties. It is feasible to extend our

inference algorithm to these scenarios. We provide the
possible situations to apply ROV-MI and several examples
in Appendix § B.

X. RELATED WORK

The most related works have been introduced in § II and
§ III, so in this section, we briefly discuss other related works
from several aspects.

RPKI Measurement. Recent years, with the gradual
prevalence of RPKI, many studies have been devoting to
measuring the deployment of RPKI [9], [10], [12]–[15]. The
measurements for ROA deployment is mainly conducted
by analyzing the ROA records in RPKI repository [9],
[10], [15], which mainly aims to figure out how many
prefixes/ASes are protected by the ROA as well as some
ROA configuration errors and their consequences in the
Internet. In terms of the measurement of ROV deployment,
there are several work trying to pinpoint the adoption of
ROV [9], [13], [14], but the measurement range was lim-
ited and the inference methods are unsatisfactory in either
accuracy or efficiency. We extend these prior works by
modifying the measurement infrastructure to enable large-
scale measurement, and proposing an accurate and efficient
inference algorithm based on the probabilistic model in [14].

Bayesian Inference. There is a rich literature about
Bayesian inference [17]. The general purpose of Bayesian
inference to estimate or approximate a target distribution.
Bayesian inference techniques can be divided into two
categories based on the question it aims to solve. Poor
man’s Bayesian estimator like MLE (Maximum Likelyhood
Estimator) only gets a value of the random variable that
maximize the likelyhood. We don’t choose this kind of
method because the information it provides is not sufficient
to infer ROV deployment (there are no information like
certainty). The other category, full Bayesian inference, tries
to approximate the target distribution. There are two classic
methods to do so, namely MCMC [36] and variationoal
inference [37]. Variational inference use a distribution of
certain form to approximate the target distribution, which
may have accuracy issues unless the form is specially
desgined. MCMC is accurate most of the time but the
random scheme makes it inefficient and hard to access
convergence. The SVGD [18] method combines the particle-
based scheme with deterministic descend updating method,
which can solve the inference problems in a accurate and
efficient way.

Security Enhancement for BGP and RPKI. Except for
RPKI, there are many other works proposing to provide an
authentication mechanism for BGP [5]–[7], while some other
works propose to protect BGP from hijackings with anomaly
detection and mitigation methods [26], [38]. With the grow-
ing of RPKI, the security issues of RPKI itself have also
attracted concerns from the researchers. There are several
work aiming to solve the vulnerability of RPKI, including
the max-length security issues [20], the configuration errors
[39], and the vulnerability of the communication protocols
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[40]. These works are orthogonal to our work, which all aim
to make BGP reliable and robust to possible hijackings.

Binary Network Tomography. As introduced in § IX,
our inference algorithm can be generalized to a class of
problems called Binary Network Tomography, which aims
to pinpoint the binary property of the node through path
observations. Early work in binary network tomography
all consider the problem in a non-probabilistic model, and
solves them with mathmatical equations [41], [42]. More
recent work translate the equations into logical constraints,
and then solve them with SAT [43]. This type of solution
have a problem in common that there might be no solution or
no unique solution as it is for solve ROV inference in a non-
probabilistic model, as introduced in § V. Gray et al. [14]
is the first to bring probabilistic model to binary network
tomography, and solves it with MCMC for several scenarios
like RFD. However, the drawbacks of MCMC make it hard
to generalize to large scale problems. So in this paper, we
take a step forward to improve the solution of the inference
by introducing SVGD.

XI. CONCLUSION

In this paper, we propose ROV-MI, a large-scale, accurate
and efficient measurement framework for ROV deployment.
In the measurement infrastructure, ROV-MI first detects
in-the-wild invalid prefixes in the control plane, and the
performs traceroutes with probes in the data plane to see
which paths are filtering invalid updates, thus labeling the
paths. Then in the inference algorithm, ROV-MI models the
problem in a probabilisitc setting, associating the deploy-
ment of ROV to a random variable distributed in [0, 1].
ROV-MI then solves it with an advanced Bayesian inference
algorithm SVGD, which combines the particle-based scheme
for accuracy and a deterministic descend updating method
for efficiency. Our measurement on the Internet shows that
ROV-MI can accurately infer the ROV deployment, and
the comparison to the baseline methods shows that our
algorithm is superior to existing work in terms of accuracy
and efficiency.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
valuable comments. We also thank for the suggestions from
Han Zhang, Letong Sun, Shize Zhang, Bin Xiong, as well as
other members from NMGroup and CNPT-Lab in Tsinghua
University. This work was supported in part by National
Key R&D Program of China under Grant 2018YFB1800401
and National Natural Science Foundation of China under
Grants 62002009. Zhiliang Wang and Xingang Shi are the
corresponding authors of this paper.

REFERENCES

[1] Y. Rekhter K. Lougheed. A Border Gateway Protocol (BGP) . In
RFC 1105, 1989.

[2] Ratul Mahajan, David Wetherall, and Tom Anderson. Understanding
BGP Misconfiguration. 2002.

[3] RIPE NCC. Youtube hijacking: A ripe ncc ris case study. http:
//www.ripe.net/news/study-youtube-hijacking.html, 2008.

[4] Renesys. China’s 18-minute mystery. http://www.renesys.com/blog/
2010/11/chinas-18-minute-mystery.shtml, 2010.

[5] Avichai Cohen, Yossi Gilad, Amir Herzberg, and Michael Schapira.
Jumpstarting BGP Security with Path-End Validation. In Proceedings
of the 2016 ACM SIGCOMM Conference. ACM, 2016.

[6] Yang Xiang, Zhiliang Wang, Jianping Wu, Xingang Shi, and Xia Yin.
Sign What You Really Care about – Secure BGP AS Paths Efficiently.
In NETWORKING 2012. 2012.

[7] Ward D. Bellovin S, Bush R. Security Requirements for BGP Path
Validation. In RFC 7353, 2014.

[8] S. Santesson D. Cooper and et al. Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile
. In RFC 1105, 2008.

[9] Yossi Gilad, Avichai Cohen, Amir Herzberg, Michael Schapira, and
Haya Shulman. Are We There Yet? On RPKI’s Deployment and
Security. San Diego, CA, 2017.

[10] Taejoong Chung, Emile Aben, Tim Bruijnzeels, Balakrishnan Chan-
drasekaran, David Choffnes, Dave Levin, Bruce M. Maggs, Alan Mis-
love, Roland van Rijswijk-Deij, John Rula, and Nick Sullivan. RPKI
is Coming of Age: A Longitudinal Study of RPKI Deployment and
Invalid Route Origins. In Proceedings of the Internet Measurement
Conference, 2019.

[11] Geoff Huston. Measuring RPKI. In NANOG 80, 2020.
[12] Daniele Iamartino, Cristel Pelsser, and Randy Bush. Measuring BGP

Route Origin Registration and Validation. In Passive and Active
Measurement. 2015.

[13] Andreas Reuter, Randy Bush, Ítalo Cunha, Ethan Katz-Bassett,
Thomas C. Schmidt, and Matthias Wählisch. Towards a Rigorous
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APPENDIX A
REASON FOR UNKNOWN ASES

To identify the reason for the unknown ASes (i.e., the
ASes that we cannot determine whether they adopt ROV
or not), we analyze the algorithm from the following two
aspects:

First, we investigate whether the gradient value in SVGD
can give us any clue. For the l-th iteration of SVGD, we
define a new variable gl to represent the sum of the absolute
values of the gradient ∇θl

k
log p(θlk|D) in Eq. (11) for all the

particles:

gl = Σk |∇θl
k
log p(θlk|D)|

By this definition, gl is also a vector of n dimensions
(where n is the number of the ASes to infer). Intuitively,
when SVGD has not reached convergence, the i-th dimen-
sion of gl indicates how important AS i is to obtain the
observed data (the labeled paths) D, and small values
imply that the observed data D provides low evidence
about the ROV deployment of AS i. So we investigate how
gl varies with the number of iteration l and see whether
there is a difference between the dimensions of known
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Fig. 13: The variation of the corresponding dimension of gl

of known and unknown ASes.

and unknown ASes in gl. The results show that, for the
dimensions corresponding to the known ASes in gl, the
values are initially relative large, and gradually drops to a
small value when l increases. However, for the dimensions of
unknown ASes, the value remains relatively small even in the
initial states. Fig. 13 shows the difference the corresponding
dimension of gl between a known AS and a unknown AS.
This is a indication that the unknown ASes are resulted from
insufficient evidence in the observed data D.

Then to confirm our idea, for each unknown AS, we
collect all the labeled paths in D which contain it to see
whether they can provide enough evidence for the inference.
Through our investigation, we find the labeled paths of the
unknown ASes can be divided into two categories.

(1) The first situation can be called isolated path, which
refers to a path that filters invalid updates, but all the ASes
it contains have only appeared very few times in the whole
observed data D, and have little overlap with other labeled
paths, which makes it hard to infer the ROV deployment of
all the ASes on that path.

(2) The second situation, which is more common in the
observed data, can be called masked AS, which means that
in all the labeled paths that contains the unknown AS also
contains another AS that adopts ROV. In this case, whether
the unknown AS deploys ROV has no influence on the
filtering of these paths, thus masking the unknown AS.

The analysis of the observed data confirms that the
unknown ASes are caused by the insufficient evidence in
the observed data.

APPENDIX B
EXTENDING TO OTHER SCENARIOS

Below, we introduce how to generalize the inference
algorithms. We model ROV deployment inference problem
under probabilistic settings, and solve it with SVGD in § V.
But in fact, within the field of network researches, there
are many other problems that can be modeled and solved
in a similar way. A paradigm of this kind of problem is
that we want to pinpoint which nodes n have a certain
binary property p(n) (e.g., ROV deployment, host failure).
However, we usually cannot measure the property of the
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TABLE X. Experiments in other scenarios.

Problem Precision(%) Recall(%)

RFD measurement 100 86
Link failure localization 100 93
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Fig. 14: The distribution of log(cone-size) for all the ASes
and all the measured ASes.

nodes directly, instead we can observe whether some paths
have the property, and the property of a path d can be
expressed as the product of the property of the nodes on
it :

p(d) =
∏
n∈d

p(n)

This kind of problems are called binary network tomog-
raphy. The key challenges of binary network tomography
is how to infer the node properties the observed paths, and
our work provides an accurate and efficient solution to it
with a probabilistic model and a deterministic Bayesian
inference algorithm. We test our algorithm on another two
binary network tomography problems, RFD (Route Flap
Damping) measurement and link failure localization. RFD
is an enhancement mechanism for BGP to prevent frequent
anouncement and withdrawal of a prefix, and link failure
localizaiton is a common problem in the network. For RFD
measurment, we get the observed paths and a subset of
ground truth from the measurement by [14], and for link
failure localization, we use 12 different topologies in Topol-
ogy Zoo [44] randomly simulate the failures and vantage
points. The results are shown in Table X. Note that there is
a slight drop in the recall, which is mainly caused by some
missing alarms due to visibility issues. Lacking the visibility
for some nodes is the nature of binary network tomography
problems and has nothing to do with our inference method.
This results illustrate that the inference algorithm of ROV-MI
works well as a universal inference method in other binary
network tomography problems.

APPENDIX C
CONE-SIZE DISTRIBUTION

Below, we analyze the cone-size distribution of the mea-
sured ASes and all the ASes. As the distribution of cone-size

is like heavy-tail distribution which is difficult to visualize,
we instead investigate the distribution of log(cone-size).
Then for all the ASes and all the measured ASes with cone-
size larger than 1, we show the binplot of their distribution
of log(cone-size) in Fig. 14. It can be seen that the measured
ASes contains most of the large ASes (ASes with large cone-
size), which indicates that our measurement result is very
meaningful for the analysis of the filtering of invalid updates
in the Internet.

17


