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Abstract—Due to the high cost of serializing instructions
to mitigate Spectre-like attacks on mispredicted conditional
branches (Spectre-PHT), developers of critical software such as
the Linux kernel selectively apply such mitigations with annota-
tions to code paths they assume to be dangerous under speculative
execution. The approach leads to incomplete protection as it
applies mitigations only to easy-to-spot gadgets. Still, until now,
this was sufficient, because existing gadget scanners (and kernel
developers) are pattern-driven: they look for known exploit
signatures and cannot detect more generic gadgets.

In this paper, we abandon pattern scanning for an approach
that models the essential steps used in speculative execution
attacks, allowing us to find more generic gadgets—well beyond
the reach of existing scanners. In particular, we present KASPER,
a speculative execution gadget scanner that uses taint analysis
policies to model an attacker capable of exploiting arbitrary
software/hardware vulnerabilities on a transient path to control
data (e.g., through memory massaging or LVI), access secrets
(e.g., through out-of-bounds or use-after-free accesses), and leak
these secrets (e.g., through cache-based, MDS-based, or port
contention-based covert channels).

Finally, where existing solutions target user programs,
KASPER finds gadgets in the kernel, a higher-value attack target,
but also more complicated to analyze. Even though the kernel
is heavily hardened against transient execution attacks, KASPER
finds 1379 gadgets that are not yet mitigated. We confirm our
findings by demonstrating an end-to-end proof-of-concept exploit
for one of the gadgets found by KASPER.

I. INTRODUCTION

Ever since Meltdown and Spectre burst onto the scene in
January 2018 [23, 32, 36], transient execution vulnerabilities
have had the security community scrambling for solutions.
While some of the vulnerabilities, such as Meltdown, can be
mitigated fairly easily [16], this is not the case for others.
In particular, Spectre-PHT (commonly referred to as Spectre-
V1)—which leaks secrets by abusing the transient execution
that follows a mispredicted conditional branch—cannot be
fully eradicated without crippling performance. One possible
mitigation is to forbear all speculation after a conditional
branch. However, since speculative execution in modern CPUs

x = get_user(ptr);
if (x < size) {

y = arr1[x];
z = arr2[y];

}

Listing 1: Spectre-PHT BCB pattern, where attacker data
bypasses an array bounds check in order to leak secret data.

is essential to performance and conditional branches are ev-
erywhere, it is crucial that such an expensive mitigation be
applied only where necessary. The attack itself requires spe-
cific Spectre-PHT gadgets: that is, vulnerable branches which
can indeed leak secrets through the microarchitectural state.
Therefore, to maintain acceptable performance, we should only
serialize or otherwise instrument these gadgets.

Beyond pattern-matching. However, current methods to iden-
tify gadgets are limited as they are entirely pattern-driven. By
searching for specific features of well-known Bounds Check
Bypass (BCB) patterns (Listing 1)—e.g., suspicious copies
from userspace [11], potential out-of-bounds accesses [43],
or attacker-dependent memory accesses [47]—they only ap-
proximate the presence of BCB gadgets. Our experiments
show that today’s state-of-the-art scanners [43, 47] yield a false
positive rate of 99% (Section IX-A). In other words, 99% of
the code snippets identified as gadgets cannot actually lead
to information disclosure. Adding expensive defenses to such
code snippets incurs substantial and unnecessary overhead.
More, the false negative rate is up to 33%. In other words,
they miss many vulnerable branches that should be protected.

Furthermore, existing approaches are limited in scope.
They all broadly assume the same primitives as the traditional
BCB pattern: direct attacker input, an out-of-bounds secret
access, and a cache-based covert channel. Such primitives
are of little use in the hardened Linux kernel since the large
majority of BCB gadgets have been mitigated. However, this
does not mean the kernel is free of Spectre-PHT gadgets. Far
from it: the problem goes much deeper than BCB patterns. In
reality, attackers do not care about patterns; they just want to
find any instructions in the wake of any conditional branch,
controllable by any means, which access secrets in arbitrary
ways, and leak the secrets through any covert channel.

A principled approach. In this paper, we propose a novel ap-
proach for finding vulnerable gadgets in the kernel, abstracting
away all pattern-specific details and instead precisely modeling
the essential steps of a Spectre-PHT attack shown in Figure 1.
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Step 1: Inject controlled values into transient execution.
Step 2: Force the execution to access a secret.
Step 3: Force the execution to leak the secret.

Fig. 1: Essential steps in a Spectre attack.

Around these steps, we use targeted taint analysis policies to
generically model the effects of arbitrary hardware/software
vulnerabilities on a transient path.

To evaluate the approach, we present KASPER, a Spectre-
PHT gadget scanner. By modeling the effects of vulnerabilities
on a transient path—e.g., memory errors [13, 32], load value
injection [55], cache-based covert channels [32], MDS-based
covert channels [10, 51, 56], and port contention-based covert
channels [9, 19]—KASPER finds gadgets well beyond the
scope of existing approaches.

Moreover, rather than focusing on user processes (to which
our approach is easily applicable), we developed our tech-
niques specifically for the Linux kernel—a high-value target
like few other programs; since the kernel has access to all
memory in the system, a kernel attacker can target data from
any of the running processes in the system. Existing kernel
gadget scanners however, are all based on static analysis [11,
30], which previous work observes is imprecise [43, 47].
Instead, we take a dynamic analysis-based approach, which
simply requires us to build the kernel with KASPER support,
fuzz the syscall interface (to simulate the possible coverage
from a user-to-kernel attacker), then KASPER will report
gadgets at runtime. Even though the kernel has undergone
intensive scrutiny and mitigation efforts to neuter all gadgets,
we still find 1379 gadgets in an automated fashion—including
many gadgets which would be non-trivial to find statically.

Furthermore, we present a case study of a gadget found
by KASPER which is pervasive throughout the codebase and
non-trivial to mitigate. In total, we have found 63 instances
of the demonstrated gadget sprinkled all over the kernel. We
demonstrate the efficacy of our approach by presenting a proof-
of-concept exploit of this gadget.

Contributions. We make the following contributions:

• We present taint-assisted generic gadget scanning, a new
approach to identify pattern-agnostic transient execution
gadgets that stem from arbitrary software/hardware vul-
nerabilities on a transient execution path.

• We present KASPER, an implementation1 of our approach
for the Linux kernel.

• We evaluate KASPER on a recent version of the Linux
kernel to identify 1379 previously unknown transient
execution gadgets and present a proof-of-concept exploit
for one of the gadgets. The Linux kernel developers are
currently working on mitigations for the disclosed gadgets
and requested access to KASPER for mainline kernel
regression testing moving forward.

The rest of this paper is organized as follows. Section II
presents background on the attack primitives modeled by
KASPER. Section III describes the threat model. Section IV
defines the problem scope for KASPER. Section V describes

1KASPER is available at https://www.vusec.net/projects/kasper [2].

TABLE I: Overview of the possible primitives of a Spectre
gadget. KASPER models the primitives in bold.

Speculation Attacker input Secret output

PHT
BTB
RSB
STL

ARCH:a

USER, FILE, NET, DEV,
MASSAGE

LVI
FPVI

CACHE
MDS
PORT
AVX

a We only list the set of ARCH inputs that are relevant to the kernel.

the design of KASPER at a high level. Section VI explains
speculative emulation, including unique implementation chal-
lenges posed by the kernel. Section VII explains KASPER’s
vulnerability detectors and the taint policies which model their
effects. Section VIII briefly describes implementation details.
Section IX evaluates the efficacy of KASPER compared to
existing approaches and KASPER’s gadgets found in the kernel.
Section X discusses the limitations of our approach. Section XI
presents a case study of a gadget found by KASPER. Finally,
Section XIII concludes.

II. BACKGROUND

In this section, we will first provide a background on the
components involved in a Spectre attack and the defenses
which combat them, motivating the need for Spectre-PHT
gadget scanners. Then, we will provide background on previ-
ous gadget-scanning tools, highlighting the need for a pattern-
agnostic gadget scanner.

A. Speculative execution attacks and defenses

Spectre attacks exploit the fact that modern processors
predict the outcome of operations such as conditional branches,
and speculatively continue executing as if its prediction is
correct. If it turns out the prediction was incorrect, the pro-
cessor reverts the results of any speculative operations and
restarts from the correct state. The modifications made by the
incorrect path to the microarchitectural state, however, can
be examined by an attacker using a covert channel to leak
sensitive information.

We propose that the underlying primitives used by a
Spectre gadget—i.e., the type of speculation it abuses, the
type of attacker data it depends on, and the type of leakage
it exploits—define a Spectre variant. The interactions between
the different primitives affect whether the variant is indeed
exploitable and whether it is easily mitigated. We summarize
these primitives in Table I.

Speculation type. Spectre variants based on speculation from
anything other than the Pattern History Table—that is, Spectre-
BTB [32], Spectre-RSB [34, 40], and Spectre-STL [24]—are
easily mitigated with relatively low overhead using microcode
updates [26] or software updates such as retpolines [25] and
static calls [64]. Unfortunately, this is not so for Spectre-PHT.
Spectre-PHT gadgets can be mitigated by adding an lfence
instruction after conditional branches; this approach does not
scale, however, as adding an lfence after every conditional
branch would incur up to a massive 440% overhead [42].
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Hence, rather than avoiding speculation altogether via lfence,
Spectre-PHT is better addressed by mitigating specific spec-
ulative operations—that is, either at the point where attacker
data is used or where secret data is leaked.

Attacker input type. Attacker data may reach a kernel gadget
in a variety of ways—either via architectural or microarchitec-
tural means. First, an attacker may pass data to the kernel via
well-defined interfaces such as userspace, files, the network,
or malicious devices. Second, data can come from such places
as normal, but then an attacker may inject it into a victim
kernel thread via targeted memory massaging [13, 14, 61, 65]—
wherein the attacker lands the data into a specific place on the
kernel’s stack or heap, in the hopes that later on, a bug such as
an out-of-bounds read or an uninitialized read (bugs that are
relatively common on a transient path) will eventually use the
malicious data. Third, using thread that shares a simultaneous
multithreaded (SMT) core with a kernel thread (i.e., where
the core executes instructions from both the attacker thread
and the victim thread at the same time), the attacker may
inject data into the victim’s transient path via load value
injection (LVI) [55]—wherein the attacker issues a sequence
of faulting stores, filling the CPU’s load port with unresolved
data dependencies; meanwhile, if the kernel simultaneously
loads from the same faulting address, the CPU will inad-
vertently serve malicious data to the kernel. Concurrent to
our work, floating point value injection (FPVI) [48] similarly
demonstrates this issue for floating point values. Note that
when we will discuss gadget exploitability, we will group
together variants using architectural input, since a Spectre
gadget is agnostic to architectural-level semantics, and will
execute the same regardless of whether the input comes from
e.g., userspace or memory massaging.

A widely-used mitigation to pacify attacker input is to
prevent certain transient array accesses from accessing secret
data out-of-bounds by forcing the access to stay in-bounds
via a masking operation. The Linux kernel uses user pointer
sanitization and the macro array_index_nospec for this
purpose. This approach however, does not generalize well to
non-array transient accesses.

Secret output type. Secrets may leak from a kernel gadget
in a variety of ways. First, a gadget may rely on a cache-
based channel [32], wherein the victim dereferences a secret,
thereby leaving a trace on the data cache (or TLB); an
attacker can then recover this secret through methods such
as FLUSH+RELOAD [62]. Second, a gadget may rely on a
microarchitectural data sampling (MDS)-based channel [10,
51, 56], wherein the victim simply accesses a secret, causing
the CPU to copy the secret into its load buffer (or line fill
buffer, store buffer, etc.); meanwhile, an attacker can co-locate
a thread on a SMT core and issue a conflicting load. As a
result, the CPU will inadvertently serve the secret data to the
attacker, who can then use it to leave a trace on their own
FLUSH+RELOAD buffer for recovery. Third, a gadget may
rely on a port contention-based channel, wherein the victim—
depending on a secret—either executes one set of instructions
or another; meanwhile, an attacker can co-locate a thread
on a SMT core and issue instructions that compete for the
same execution units (i.e., ports) as the victim’s instructions.
Then, the attacker can use timing information to infer which

instructions the victim executed, and hence, learn a bit of the
secret [9, 19]. Finally, a gadget may rely on an AVX-based
channel, which exploits the timing of AVX2 instructions [52].

The kernel flushes CPU buffers to mitigate same-thread
MDS channels. Hardware updates for the most recent genera-
tion of CPUs mitigate cross-thread MDS (and LVI) channels.
For the same protections, older CPUs must disable hyper-
threading, resulting in massive performance penalties (not the
default on Linux). The reality that these defenses are only on
by default on the newest CPUs, and that PHT gadgets can-
not be systemically mitigated via lfence, array_index_ c
nospec, and user pointer sanitization, highlights the pressing
need for Spectre-PHT gadget scanners.

B. Gadget scanning

Existing gadgets scanners, however, cannot accurately
identify gadgets that stray even slightly from the basic BCB
pattern in Listing 1.

Static analyses. Existing static analyses find gadgets through
pattern-matching of source code [11, 21], pattern-matching of
binaries [15], static taint analysis [59], and symbolic execu-
tion [22, 58]. Concurrent work [30]—which goes beyond the
BCB pattern, and instead targets a type-confusion pattern—
similarly uses such approaches. These approaches, however,
all suffer from the fundamental limitation of static analysis:
assumptions to compensate for unknowns at compile time will
severely hamper soundness and/or completeness. For example,
consider the gadget in Listing 2a, which loads its input from a
source that is unknown at compile time. In theory, an advanced
analysis such as symbolic execution could deduce whether
*ptr is indeed attacker-controllable by verifying the con-
trollability of every possible value in every possible location
of *ptr; however, this kind of analysis cannot scale to the
complex and massive kernel codebase [65], so it instead must
ultimately either assume that *ptr is attacker-controllable (and
risk false positives) or that it is not (and risk false negatives).
Such scalability issues are inherent to any sufficiently complex
static analysis, leading to imprecise points-to analyses, inac-
curate call graph extractions, and ultimately, imprecise gadget
identifications. In Appendix D, we describe a gadget found by
our dynamic analysis which relies on an indirect call, thereby
thwarting static call graph extraction, and hence, identification
by static analysis altogether.

Dynamic analyses. To overcome the limitations of static
analysis, recent work instead opts for dynamic analysis. Their
approaches however, fall short since they are pattern-driven
and do not model the underlying semantics of gadgets.

For example, since the BCB pattern has an out-of-bounds
access, SpecFuzz [43] uses code sanitizers to report as gadgets
any speculative out-of-bounds accesses. By targeting this sin-
gle behavior however, it incurs false negatives for gadgets such
as the one in Listing 2b, whose leak instruction is in-bounds.
Furthermore, it incurs false positives for any unrelated out-of-
bounds accesses, such as the one in Listing 2c, even though it
is entirely uncontrollable by an attacker.

Another property about the BCB pattern is that there is a
direct dataflow from an attacker-controllable value, to a secret,
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x = *ptr ;
if (x < size) {
y = arr1[x];
z = arr2[y]; }

(a) Gadget that is difficult to detect
statically because it is unclear whether
*ptr is attacker-controllable.

x = get_user(ptr);
if (x < size) {
y = arr1[x];
z = arr2[y & MASK ]; }

(b) Gadget that is undetectable by
SpecFuzz [43] because its in-bound
leak eludes code sanitizers.

x = 1000 ;
if (x < size) {

y = arr1[x];
z = arr2[y]; }

(c) Gadget that is not controllable by an at-
tacker, yet falsely reported by SpecFuzz [43]
because it yields an out-of-bounds access.

x = get_user(ptr);
if (x < size) {
y = arr1[x & MASK ];
z = arr2[y]; }

(d) Gadget that is mitigated by the masking opera-
tion, yet falsely reported by SpecTaint [47] because
there is a direct dataflow from x to y to arr2[y].

if ( addr_is_mapped(ptr) ) {

x = *ptr;
y = arr1[x];
z = arr2[y]; }

(e) Gadget that existing approaches cannot
detect. *ptr gives a transient page fault, so
an attacker can inject data for x via LVI [55].

Listing 2: Gadgets that differ slightly from the basic BCB pattern in Listing 1, and therefore foil existing approaches.

and finally to a leak instruction. Targeting this single property,
SpecTaint [47] taints attacker-controllable values (x), then
taints as a secret any attacker-dependent loads (y), then reports
as a gadget any secret-dependent accesses (arr2[y]). This
policy however, assumes very specific patterns and also incurs
false positives since not every attacker-dependent load accesses
secret data. For example, consider the attacker-dependent load
in Listing 2d: even though the masking operation prevents
it from accessing secret data, SpecTaint falsely reports this
mitigated gadget as an exploitable gadget.

III. THREAT MODEL

We consider a local unprivileged attacker with the abil-
ity to issue arbitrary system calls to a target kernel free
of (exploitable) software bugs. The attacker aims to gain a
memory leak primitive by exploiting a transient execution
gadget in the kernel. As an operating system kernel, we
focus on a recent Linux kernel (in our case 5.12-rc2) with
default configurations, including all the mitigations against
transient execution attacks enabled, such as user pointer sani-
tization, lfences, array_index_nospec, retpolines, static
calls, etc. Additionally—although overlooked by the Linux
kernel’s transient execution threat model [7, 8], which only
considers attacker input from userspace and MDS/cache-based
covert channels—we consider an attacker able to: (1) inject
data via memory massaging, (2) inject data via LVI, and
(3) exfiltrate data via port contention-based covert channels.
Note that on the most recent generation of CPUs, LVI and
MDS are mitigated in-silicon to a large extent, so our results
for LVI and MDS do not apply to the full extent to such CPUs.

IV. PROBLEM ANALYSIS

Not only do existing approaches fail to identify gadgets
which stray slightly from the basic BCB pattern (Section II-B),
they do not even attempt to model primitives beyond those
it uses—i.e., where an attacker directly passes data to the
victim, causing a cache-based leak. For example, consider the
gadget in Listing 2e, where an attacker can inject data via
LVI [55]. No existing approach attempts to model LVI, and
hence, gadgets such as these are missed. In reality, attackers
have many such primitives at their disposal (Table I)—such
as memory massaging, LVI, MDS, and port contention—all of

TABLE II: Exploitability of the Spectre variants that are
composed of the primitives which KASPER models. Despite
the signal on 4 variants, existing scanning techniques target
only PHT-ARCH-CACHE.

Spectre variant Described in: Verified
signal?

Existing scanning
techniques?

PHT-ARCH-CACHE [32] 3 3
PHT-ARCH-MDS [10] 3 -
PHT-ARCH-PORT [19] 3 -
PHT-LVI-CACHE This papera 3 -
PHT-LVI-MDS Nonea -b -
PHT-LVI-PORT Nonea - -

a The demonstrated LVI attack [55] exploits an LVI-CACHE gadget.
b We verified a signal for LVI-MDS, but not for PHT-LVI-MDS.

which may yield gadgets that fall outside the scope of existing
approaches.

To reason about the various combinations of primitives
which are possible in a Spectre gadget, we express Spectre
variants as a triple in terms of these primitives. For example,
we consider the original Spectre-PHT attack [32] which ex-
ploited the BCB pattern to be a PHT-ARCH-CACHE gadget
because it: (1) exploits prediction from the PHT, (2) depends
on architecturally-defined attacker input, and (3) leaks the
secret via the cache. Similarly, Fallout [10] uses a PHT-
ARCH-MDS gadget and SpectreRewind [19] uses a PHT-
ARCH-PORT gadget. Other Spectre attacks, including those
using other speculation types, can be expressed as a triple in
this way; e.g., SMoTherSpectre [9] exploits a BTB-ARCH-
PORT gadget. Furthermore, even non-Spectre attacks can be
expressed as a tuple of the last two primitives; e.g., a standard
cache attack [45] exploits an ARCH-CACHE gadget.

Finally, assuming a gadget scanner can model all such
primitives, we would first need to verify that all the possible
variant combinations are indeed exploitable. In Table II, we
summarize the exploitability of the Spectre variants made up
of the primitives modeled by KASPER. The first three rows,
as described above, are based on attacks from previous work.
Beyond existing work, we were able to verify a signal for
a PHT-LVI-CACHE gadget, but not for a PHT-LVI-MDS
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gadget or a PHT-LVI-PORT gadget. Hence, KASPER models
the first four variants of the table.

V. OVERVIEW

The key insight to our approach is that by generically
modeling the vulnerabilities that an attacker can use in each
step of a Spectre attack, we can precisely identify gadgets. In
particular, we use: (1) speculative emulation to model transient
execution, (2) vulnerability detectors to model various software
and hardware vulnerabilities, (3) dynamic taint analysis to
model the architectural and microarchitectural effects of such
vulnerabilities, and (4) fuzzing to model the possible coverage
of an attacker. Figure 2 presents an example of how these
components interact to identify a gadget in a system call
handler.

Modeling transient execution. To model branch mispredic-
tions, we invert conditional branches at runtime and emulate
the corresponding transient execution by taking a checkpoint at
the point of ‘misprediction’ and executing the code that would
be executed speculatively. We roll back to resume normal
execution when the speculative window closes.

Speculative emulation is not trivial in general and this is
especially true for speculative emulation in the kernel, where
complexities such as device interactions, exceptions, and inline
assembly all pose challenges. We explain how our approach
overcomes these challenges in Section VI.

Modeling software and hardware vulnerabilities. By mod-
eling transient execution at runtime, we expose transient code
paths to runtime checkers to generically identify software
and hardware vulnerabilities which would otherwise remain
undetectable.

Our current prototype uses: (1) a memory error detector
to target software vulnerabilities in the shape of transient out-
of-bounds and use-after-free accesses, (2) an LVI detector to
target hardware vulnerabilities via transient faulting accesses,
and (3) a covert channel detector for hardware vulnerabilities
via cache-based, MDS-based, or port contention-based chan-
nels. We explain our detectors in more detail in Section VII-A.

Modeling the effects of transient vulnerabilities. By de-
tecting software and hardware vulnerabilities, we can design
taint policies around the essential steps of a Spectre attack
(Listing 1) to reason about the effects of such issues.

For example, our policies may handle a transient invalid
load in different ways: (1) our LVI detector may taint the
load with an attacker label to indicate that the attacker may
inject the value via LVI; (2) our memory error detector may
taint the load with a secret label to indicate that it may
access arbitrary memory; or (3) our covert channel detector
may report the load as an MDS-LP [56] covert channel to
indicate that it may leak secret data. We explain how our
taint policies reason about the interactions between different
vulnerabilities on a transient path in Sections VII-B–VII-D,
including a summary of the policies in Figure 3.

Modeling the possible coverage of an attacker. By modeling
the effects of transient vulnerabilities in the kernel, we can

x = get_user(ptr);
// Sets in_checkpoint
if (!in_checkpoint) new_checkpoint();

L1:
if ((x < size)

XOR in_checkpoint) {
y = arr1[x];
z = arr2[y];

}
// Unsets in_checkpoint
if (in_checkpoint) {rollback(); goto L1;}

Listing 3: Conditional branch instrumented to enable specula-
tive emulation.

use a user-to-kernel fuzzer to only model the vulnerabilities
that are reachable by a userspace attacker issuing arbitrary
syscalls. We describe the fuzzer and implementations details in
Section VIII, including a summary of the end-to-end pipeline
in Figure 4.

VI. SPECULATIVE EMULATION

To emulate speculative execution, we need to be able to
execute possible execution paths that would otherwise not be
executed architecturally. Specifically, on a branch mispredic-
tion, the processor first executes the wrong code path until
the speculation is eventually squashed. The processor then
continues executing the correct side of the branch. To model
such branch mispredictions, we invert conditional branches at
runtime in software and to be able to squash the incorrect exe-
cution path, we rely on software-based memory checkpointing.
Thus, at runtime we will first execute the wrong code path
to emulate speculation and when speculation is squashed, we
execute the correct code path.

Listing 3 shows how we instrument the example of List-
ing 1 to support speculative emulation. If x ≥ size at run-
time, we:

1) Start a checkpoint immediately before the branch via the
call to new_checkpoint.

2) Simulate a branch misprediction by flipping the branch
via XOR in_checkpoint.

3) Emulate speculative execution along the taken code path.
4) Simulate a speculative squash by rolling back to the saved

checkpoint via rollback(); goto L1;
5) Finally, continue normal execution along the correct not-

taken code path.

A. Transactions and rollbacks

To ensure correct execution, speculative execution is in-
herently transactional from an architectural point of view;
either all the instructions after a predicted branch commit
(i.e., correct prediction) or none does. To provide this se-
mantic, we opted for a compiler-based memory checkpoint-
restore mechanism to build a notion of transactional execution.
We implemented our solution with a combination of LLVM
compiler passes and a runtime component. On a rollback, we
need to restore the original state before the misprediction.
KASPER does this by saving all relevant registers when starting
a checkpoint and tracking all memory changes in an undo
log in preparation for a replay on rollback, similar to prior
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void syscall_handler(int x) {
  ...
  if (x < size) {
    y = arr1[x];
    z = arr2[y];
  }
}

4. Memory error detector 
finds an unsafe access.

2. Add an attacker label 
to attacker-controllable data.

5. Add a secret label to 
the output of an attacker-
controllable unsafe access. 6. Cache interference 

detector reports a 
PHT-USER-CACHE gadget.

Add runtime checkers to model software and hardware vulnerabilities 
on a transient path.

Use taint policies to model the effects of transient vulnerabilities.

Fuzz the syscall interface to model the possible coverage of an attacker.

Flip conditional branches at runtime to model the transient execution 
resulting from a branch misprediction. 

1. Invoke varying system 
calls with varying inputs.

3. If x ≥ size at runtime, 
speculatively emulate the 
branch. 

7. After speculative 
emulation finishes, revert all 
speculative operations and 
resume normal execution.

x = 3x = -7 x = 100000

Fig. 2: Components used by our approach and how they interact to detect a PHT-USER-CACHE gadget in a system call handler.

x = get_user(ptr);
if (x < size) {

foo = *bar; // Page fault if bar is invalid
y = arr1[x]; // Would not execute
z = arr2[y]; // Would not execute

}

Listing 4: Executing past a potential page fault in speculative
emulation.

work [43]. However, doing so in the kernel presents unique
challenges which we address in Section VI-B.

Stopping Speculative Emulation. One question we need to
answer is when to roll back speculative emulation. Speculative
execution is limited to a certain number of micro-ops executed
depending on the ReOrder Buffer (ROB). At compile time
we approximate this behavior with the number of executed
LLVM instructions. At the start of every basic block, the
number of executed LLVM instructions from the beginning of
the checkpoint is compared against a configurable threshold
to decide when to abort speculative emulation. While this
does not map to the exact behavior of hardware, a reasonable
approximation is good enough, and we can easily configure
the threshold to be conservative to avoid false positives or
more permissive to decrease the likelihood of false negatives.
Similarly, we define an upper limit of call depth, simulating
the behavior of the Return Stack Buffer (RSB).

Exception handling. Exceptions do not necessarily stop spec-
ulative execution, as instructions past an exception can still be
executed out-of-order [36, 56]. Our initial evaluation showed
that the majority of exceptions raised during kernel speculative
emulation are page faults, due to a corrupted memory address
within speculation. We hence designed a page fault suppres-
sion for speculative emulation to execute past raised page
faults—and simply stop emulation in the exception handler
in the other cases. To avoid page faults, KASPER validates
the pointer before dereferencing and replaces it with a valid
dummy pointer if it is invalid. Listing 4 shows an example
gadget that we would miss without this improvement. Another
advantage of dedicated page fault handling is the ability to
model common hardware vulnerabilities, as discussed later.

B. Challenges unique to the kernel

Implementing speculative emulation for the kernel intro-
duces new challenges compared to userland. For example, a
user program only operates on its own accessible memory

static void arch_atomic64_inc(atomic64_t *v) {
kasper_track_store((void*)&v->counter);
asm volatile(LOCK_PREFIX "incq %0"
: "=m" (v->counter)
: "m" (v->counter) : "memory");

}

Listing 5: Enabling a common assembly sequence in specula-
tive emulation.

while the kernel is able to access the entire range of memory.
The kernel is therefore responsible for ensuring full memory
integrity while user processes are only aware of their own
address space, prompting special treatment, as discussed next.
As shown in Appendix A-B, these strategies only contribute
to a negligible amount of rollbacks.

Non-conventional memory accesses. The kernel uses device
or I/O mapped memory to communicate with external devices.
Memory writes to such memory cannot be rolled back by
simply writing back the original value. Rollback after writes
to such memory ranges would require also rolling back the
dedicated device. Since I/O communication does not happen
often in most syscall handlers, we gracefully stop emulation
in those cases without a big loss in speculative code coverage.

Low-level code and mitigations. The Linux kernel codebase
is sprinkled with low-level assembly and transient mitigation
code. To ensure speculative emulation correctness, it is im-
portant to handle such snippets properly. To this end, KASPER
conservatively treats assembly code as a speculative emulation
barrier (i.e., forcing rollback) by default and implements
dedicated handling for the common assembly snippets to allow
their use in speculative emulation. This is to avoid unnecessary
rollbacks and maximize speculative code coverage. Listing 5
illustrates an example, with custom handling for atomic in-
crement instructions. Since the assembly is not instrumented,
we manually preserve the changed memory location. As for
mitigations, we observe the relevant ones (lfence, stac, etc.)
are all implemented in assembly snippets, thus our default
assembly handler (i.e., stop speculative emulation) already
models them correctly with no special treatment needed.

Concurrency. Unlike many common user programs, the Linux
kernel is a highly concurrent piece of software, with multi-
ple threads running in parallel on different CPU cores and
hardware (e.g., timer) interrupts causing asynchronous event
handling. Taking correct checkpoints in face of concurrency
poses a fundamental challenge for the correctness of check-
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Fig. 3: Injection, access, and leakage taint policies which de-
scribe how data rises from an untainted label, to an attacker
label, to a secret label, and finally to a gadget report.

pointing [53] (and speculative emulation in our case). To
address this challenge, we disable SMP support in the kernel
and force single-core execution. To handle hardware interrupts,
we instrument the interrupt handler to: (i) record interrupt
information; (ii) stop speculative emulation and resume execu-
tion at the last checkpoint; (iii) replay the interrupt as though
it was delivered before entering speculative emulation. These
steps are all crucial to ensure correct checkpointing and kernel
execution (i.e., no interrupts are lost).

VII. TAINT POLICIES

To model each of the three steps in Figure 1, we can
draw upon previous work that uses information flow policies
to detect sensitive data leakage [17, 18, 41, 49, 63], and use a
basic framework consisting of three types of policies:

1) Taint any data injected by an attacker with an attacker
label.

2) Taint secret data (i.e., data accessed via an attacker
pointer) with a secret label.

3) Report gadgets that leak such secret values.

However, to detect leakage via generic transient execution
gadgets, we must refine our framework with taint policies that
account for arbitrary vulnerabilities exploited on a transient
path that enrich the attacker’s capabilities. In particular, with
detectors capturing the effects of vulnerabilities in software
(i.e., memory errors in the current implementation) or hardware
(i.e., LVI, MDS, port contention, and cache covert channels in
the current implementation), we are able to model increasingly
complex gadgets. In the following, we first detail our current
detectors and then discuss how our taint manager enforces
the detection-based taint policies (for injection, access, and
leakage). We summarize our policies in Figure 3.

A. Vulnerability detectors

Memory error detector. Our current memory error detec-
tor supports the detection of unsafe (i.e., out-of-bounds or
use-after-free) accesses on a transient execution path. This
is done by running sanitizers during speculative emulation
and reporting information about unsafe load/store operations
and addresses to the taint manager. Information about unsafe

accesses is useful to model a degree of attacker’s control on
a given address. For instance, if an out-of-bounds detection is
taken as evidence that an attacker can make a load address go
out-of-bounds at will, that address is a controlled pointer that
could be used for injection (via memory massaging), access
(via unauthorized reads), and leakage (via vulnerabilities such
as MDS).

LVI detector. Our current LVI [55] detector supports the
detection of invalid loads able to trigger LVI on a transient
execution path. We tested the (known) LVI triggering condi-
tions and could reproduce only two cases of such invalid loads
on a mispredicted branch, also observed in prior work [10]:
(i) loads incurring an SMAP fault (i.e., loading a user address
with SMAP on—default); (ii) loads incurring a noncanonical
address fault (i.e., loading an address outside the canonical
48-bit address space). We also verified these loads can be
poisoned by attackers for injection of transient values via
MSBDS exploitation [10]. To identify such invalid loads, we
target loads with user/noncanonical addresses (a subset of
unsafe loads). However, by default we omit NULL pointer
dereferences. Allowing them leads to plenty of usable gadgets,
however those require an attacker to map the 0x0 page (i.e.,
to cause an SMAP fault). The latter is forbidden by default on
Linux, but possible on systems with mmap_min_addr=0.

Cache interference detector. Our current cache interference
channel detector supports the detection of secret-dependent
loads/stores on a transient execution path. For all such memory
accesses, an attacker can achieve leakage of the target (secret-
dependent) address with a classic cache [20] or TLB [37]
attack. Hence, to identify these loads/stores, we can simply
report those that use a pointer tainted with the secret label
during speculative emulation.

MDS detector. Our current MDS detector supports the de-
tection of secret-accessing loads/stores on a transient exe-
cution path whose data can be leaked by an MDS exploit
(i.e., sampling data via various CPU internal buffers, such
as LFB [56], SB [10], etc.). We tested the (known) MDS
triggering conditions and verified that an attacker can achieve
leakage of data from arbitrary loads/stores on a mispredicted
branch. Hence, to identify these loads/stores, we report cases
where the pointer is under the control of the attacker during
speculative emulation. These pointers are tainted with the
attacker label and/or leading to unsafe loads/stores.

Port contention detector. Our current port contention detector
supports the detection of secret-dependent branches on a
transient path. For such branches, an attacker can leak a bit of
the secret by issuing instructions that use the same execution
units (i.e., ports) as the branch targets’ instructions. Hence,
to identify these branches, we report those that use a target
tainted with a secret during speculative emulation. Note
that future work could refine the set of reported port con-
tention gadgets by using static analysis to determine whether a
secret-tainted branch’s possible targets are indeed SMOTHER-
differentiable [9]—i.e., whether there is a sufficiently large
enough timing difference generated by the port contention of
one branch target to tell it apart from the port contention of
another branch target.
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if (a < size) {
b = arr1[a]; // Transient out-of-bounds

access loading memory massaged data↪→

c = arr2[ b ];
d = arr3[ c ];

}

(a) Gadget where an attacker can inject data via memory massaging by
taking advantage of a transient out-of-bounds read.

if (addr_is_mapped(ptr)) {
x = *ptr; // Transient faulting accessing

loading LVI-injected data↪→

y = arr2[ x ];
z = arr3[ y ];

}

(b) Gadget where an attacker can inject data with LVI by taking
advantage of a transient faulting load (see Listing 2e).

Listing 6: Gadgets that demonstrate the injection policies.

B. Injection policies

Our unified injection policies combine our basic policy of
tainting directly-controllable data injected via external input
(e.g., syscall arguments) with our detection-based policies
of tainting data injected via hardware/software vulnerabili-
ties (e.g., memory massaging or LVI) which we refer to as
indirectly-controllable attacker data. We distinguish between
directly-controllable attacker data and indirectly-controllable
attacker data because our access policies make use of this dis-
tinction, as explained later (Section VII-C). We refer to these
labels as attacker-dir and attacker-ind (and attacker
to refer to either one).

Injection Policy I: Directly-controllable data. We taint all data
which is directly-controllable from user space—that is, syscall
arguments and the output of functions such as get_user,
copy_from_user, and strncpy_from_user—with the at
tacker-dir label.

Injection Policy II: Indirectly-controllable data. We taint
all data which is indirectly-controllable from an attacker, as
modeled by our memory error and LVI detectors, with the
attacker-ind label.

Data injected via memory errors. We use our memory error
detector to identify unsafe loads during speculative emulation;
by default, upon detection and if the pointer is untainted,
we add the attacker-ind label to the loaded value. Note
that if the pointer is already tainted with an attacker
label, such label is automatically propagated (pointer tainting
enabled for loads). These policies are to model an attacker
massaging controlled data in the target memory location.
Since our memory error detector operates on heap and stack,
these policies provide the attacker with plenty of exploitation
strategies [13, 14, 61]. As an example, consider the gadget
in Listing 6a which loads the attacker input by reading a
heap object out-of-bounds, thereby possibly reading data from
another object placed by the attacker using memory massaging.
Attackers able to target heap memory massaging may gain

indirect control over the data at arr1[a] and inject it into the
otherwise-benign gadget.

Data injected via LVI. Similarly, we use our LVI detector to
detect invalid loads during speculative emulation; by default,
upon detection and if the pointer is untainted, we add the
attacker-ind label to the loaded value (again existing
attacker labels are propagated via pointer tainting). Consider
the gadget in Listing 6b, which loads attacker-controlled data
via a transitive faulty access, thereby retrieving a value from
the store buffer. Attackers capable of LVI may gain indirect
control over the data at a->bar and inject it into the otherwise-
benign gadget.

In addition to tainting unsafe (including invalid) loads as
attacker-ind data, we could also taint them as attacker-
ind data loads whose pointer is tainted with an attacker-
dir label. This is because if an attacker controls a pointer,
then the attacker could hypothetically force it to load data
through LVI or memory massaging. However, as explained
later (Section VII-C), such loads are already tainted with the
secret label and such modeling would be redundant (and lead
to gadget over-reporting). We could also avoid using our detec-
tors and only rely on pointer tainting, but this strategy leads
to unnecessary false negatives (i.e., noncontrollable pointers
still able to read memory massaged data or LVI data). Finally,
we could disable pointer tainting on loads, but this strategy
still misses cases of (safe/valid) loads where the attacker can
control the loaded value.

C. Access policies

The raising of attacker labels to secret labels in access
instructions is dependent on (1) the type of control the attacker
has on the pointer, as determined by its taint sources, and
(2) the degree of control the attacker has on the pointer, as
approximated by the memory error detector.

Access Policy I: Raising directly-controllable attacker data.
If a load is unsafe and has a pointer with an attacker-dir
label, then we add the secret label to the loaded value.

We use both taint information and memory error detection
to identify secret accesses. We observed that using only
memory error detection leads to many false positives. This
is because the attacker may not have enough control over the
pointer to leak arbitrary data. Using only taint information,
on the other hand, still leads to false positives, especially in
the kernel. Indeed, the kernel contains many pointer masking
operations (for input sanitization), which have the effect of
keeping many controlled pointers always safe even in transient
execution. Both strategies are an approximation of controlla-
bility: using only memory error detection but then flagging
cases with fixed addresses as an indication for the lack of
the attacker’s control, or using only tainting but then flagging
cases with limited controllability, as an indication that an
attacker will never be able to promote the access to go out-of-
bounds. While state-of-the-art solutions [43, 47] have focused
on these two extremes, we will later show there is no one-size-
fits-all strategy and that different conditions require different
treatments.

For example, consider the gadget in Listing 7, which is
benign due to the masking operation which keeps the access
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x = get_user(ptr);
if ( x < size) {

y = arr1[ x & MASK]; // In-bounds access
z = arr2[ y ];

}

Listing 7: Gadget that is mitigated via a masking operation
will not be falsely report as a gadget (see Listing 2d).

in-bounds. In the gadget, we do not raise the attacker-
dir label to a secret label (i.e., use only taint information)
because it could never lead to an out-of-bounds access. In
doing so, we avoid false positives which would arise from
reporting harmless gadgets.

Access Policy II: Raising indirectly-controllable attacker
data. If a load has a pointer with an attacker-ind label,
then we always add the secret to its output.

Unlike the taint policies for raising directly-controllable
data, we do not use memory error detectors in this case be-
cause indirectly-controllable data is generated (barring actual
architectural bugs) within the same speculation window as the
access instruction. Code paths using such transiently-injected
data typically break global code invariants and we observed
them to be rarely subject to pointer masking operations. As
such, these paths offer almost unrestricted control to the
attacker—unlike, say, syscall arguments and data loaded from
usercopy functions, which kernel developers take efforts to
sanitize against traditional exploits.

Note that the indirectly-controllable data which is loaded
during the analysis is not generated by the user space attacker.
It is either loaded from a code sanitizer’s redzone or a similar
dummy region (as described in Section VI). Hence, its possible
values during analysis are limited, so any restriction based on
a memory error detector would simply test against the values
incidentally loaded at runtime, rather than any meaningful
values injected by a user space attacker.

With this policy, we avoid false negatives which would
arise from failing to identify an indirectly-controllable gadget
because it incidentally did not lead to an unsafe access
instruction.

D. Leakage policies

We use our hardware vulnerability detectors to identify
gadgets that use cache-based, MDS-based, or port contention-
based covert channels to leak secret information.

Leakage Policy I: Identifying cache-based gadgets. If a
memory access has a pointer with a secret value, then we
report it as a cache-based gadget.

Hence, by propagating taint from attacker-controlled
sources to dependent secret accesses, we find the simple
Spectre-BCB gadget from Listing 1 by propagating taint as
in Listing 8a. Similarly, if *ptr in Listing 2a is attacker-
controlled, the policy also identifies the gadget.

Unlike access instructions, leak instructions require no
memory error detector—only our simple cache interference
detector. Such instructions will leave a trace on the cache (and

x = get_user(ptr);
if ( x < size) {

y = arr1[ x ];
z = arr2[ y ]; // Leaks via cache

}

(a) Gadget leaking a secret via a cache-based covert channel.

x = get_user(ptr);
if ( x < size) {

y = arr1[ x ]; // Leaks via MDS
}

(b) Gadget leaking a secret via an MDS-based covert channel.

x = get_user(ptr);
if ( x < size) {

y = arr1[ x ];
if ( y ) {

... // Leaks via port contention
} }

(c) Gadget leaking a secret via a port contention-based covert channel.

Listing 8: Gadgets that demonstrate the leakage policies.

TLB) regardless of whether it is, say, in-bounds or out-of-
bounds. Hence, even if the leak instruction contains a masking
operation to keep the index in-bounds—as in Listing 2b—we
would still report it as a cache-based gadget, as it leaks at least
some information. In doing so, we avoid false negatives which
would arise from failing to identify gadgets that leave traces
in the cache.

Leakage Policy II: Identifying MDS-based gadgets. To iden-
tify MDS-based gadgets, we use the same policies as our
access policies (which raise attacker data to secret data)
with one minor difference (similar to our LVI policy): we do
not report directly-controllable null-memory accesses because
exploitation of such accesses is more difficult.

For example, consider the MDS-based gadget in Listing 8b,
where the errant access loads secret data into internal CPU
buffers. Our policy reports an MDS gadget since the memory
access outputs secret data, thereby potentially leaking the
secret data to an attacker thread sharing an SMT core with the
kernel thread. Note that for MDS-based gadgets, the access
and leak steps occur in a single instruction.

Just as we avoid over-tainting harmless (e.g., in-bounds)
access instructions, we avoid over-reporting MDS-based gad-
gets which are similarly benign, thereby avoiding a source of
false positives.

Leakage Policy III: Identifying port contention-based gad-
gets. If a secret affects the flow of execution—that is, if a
branch’s condition, switch’s condition, indirect call’s target,
or indirect branch’s targets is a secret—then we report it as
a port contention-based covert channel.

For example, consider the port contention-based gadget
in Listing 8c. Our policy identifies the gadget because the
secret determines whether the branch is taken—and in effect,
determines the resulting port contention, which can leak a bit
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TABLE III: Total lines of code (LOC) in the various compo-
nents of KASPER. If a component is based on an existing one,
the LOC given is the diff with respect to the original.

LLVM pass Runtime library

KSPECEM 964 2102
KDFSAN 251 (diff) 1975
TMANAGER 57 65
syzkaller – 355 (diff)

of the secret to an attacker that shares an SMT core with the
kernel.

VIII. IMPLEMENTATION

Figure 4 presents the workflow of KASPER, our gen-
eralized transient execution gadget scanner for the Linux
kernel. First, we build the kernel with KASPER support by
using three components that each consist of a runtime li-
brary and an LLVM pass2: (1) Kernel Speculative Emulation
Unit (KSPECEM), which emulates speculative execution due
to a branch misprediction, (2) Kernel DataFlow Sanitizer
(KDFSAN), which performs the taint analysis, and (3) Taint
Manager (TMANAGER), which manages the vulnerability-
specific taint policies. Next, we use a modified version of
syzkaller [6] to fuzz the instrumented kernel and generate
gadget reports. Finally, we calculate aggregate gadget statistics
that aid developers in applying mitigations. Table III presents
the total lines of code (LOC) in each of the main components
of KASPER.

Kernel Speculative Emulation Unit. To simulate branch
mispredictions, KSPECEM replaces branch conditions with a
SelectInst that, depending on a runtime variable, will either
take the original branch target or the inverse branch target.
To simulate the resulting speculative execution, KSPECEM
hooks store instructions so that any speculative memory write
is reverted after speculative emulation finishes.

Kernel DataFlow Sanitizer. For our taint analysis engine, we
ported the user space DataFlowSanitizer (DFSan [1]) from the
LLVM compiler to the kernel. KDFSAN is, to our knowledge,
the first general compiler-based dynamic taint tracking system
for the Linux kernel. In contrast to the original DFSan imple-
mentation, we: (1) modified its shadow memory implemen-
tation to work in the kernel, (2) fixed its flawed label union
operation (similar to existing work [12, 54]), (3) modified it
to conservatively wash taint on the outputs of inline assembly,
and (4) created custom taint wrappers to emulate the semantics
of uninstrumentable code.

Taint Manager. TMANAGER implements the taint policies
described in Section VII. It receives callbacks from the kernel
and the KDFSAN runtime library and will e.g., apply taint
to syscall arguments, or determine if a memory operation is
an inject, access, or leak instruction. It re-uses checks from

2We opted for an LLVM-based implementation due to its low complexity
and better performance compared to e.g., a full-system emulator. Future
work may see improvements by complementing KASPER with a binary-based
approach since it does not require special care of low-level code.

TABLE IV: Gadgets detected in the 15 Spectre Samples
Dataset [31] by various solutions.

Accesses
detected

Leaks
detected

Static

MSVC [44] – 7
RH Scanner [15] – 12
oo7 [59] – 15
Spectector [22] – 15

Dynamic

SpecFuzz [43] 15 0a

SpecTaint [47] 15 14b

KASPER (USER/CACHE-only) 15 14
KASPER (USER/CACHE/PORT-only) 15 15

a SpecFuzz’s eval. reports 15 leaks since it assumes all accesses are leaks.
b SpecTaint’s eval. reports 15 leaks since it assumes arbitrary ptrs. are secret.

KernelAddressSanitizer (KASAN) [33] to determine whether
a memory operation is an unsafe or an invalid access.

syzkaller. We used a customized version of syzkaller [6],
an unsupervised coverage-guided fuzzer for the kernel, to
maximize speculative code coverage. syzkaller’s strategy of
maximizing regular code coverage will inevitability maximize
speculative code coverage since we start a speculative emula-
tion window at every regularly-executed branch. We utilized
qemu snapshots to begin every syzkaller testcase (a series of
syscalls) from a fresh snapshot, avoiding leftover taint from
previous testcases.

Gadget aggregation. After fuzzing, KASPER parses the execu-
tion log for gadget reports. Then, it filters out duplicate reports,
categorizes them by type, and prioritizes them based on a set
of exploitability metrics (see Appendix C for a description of
these metrics). Finally, it stores the resulting aggregate gadget
statistics into a database that is used by a web interface to
present the results. In Appendix E, we present the interface that
allows kernel developers to easily process the found gadgets.

IX. EVALUATION

We evaluate KASPER’s efficacy compared to existing solu-
tions and KASPER’s gadgets found in the Linux kernel. We
perform our evaluation on an AMD Ryzen 9 3950X CPU
with 128GB of RAM, where the KASPER-instrumented kernel
(v5.12-rc2) runs as a guest VM on a host running Ubuntu
20.04.2 LTS (kernel v5.8.0).

A. Comparison with previous solutions

We compare KASPER against previous approaches in a
variety of ways. First, as a micro-benchmark, we evalu-
ate KASPER and all other approaches on the Kocher gad-
get dataset [31]. Then, as a macro-benchmark, we evaluate
KASPER and other dynamic approaches on the syscalls invoked
by UNIX’s ls command. Finally, in Appendix B, we evalu-
ate the performance of KASPER and compare it to existing
approaches, where applicable.

Micro-benchmark. We evaluate KASPER and previous work
against Paul Kocher’s 15 Spectre examples [31], which were
originally designed to evaluate the effectiveness of the Spectre
mitigation in MSVC (Microsoft Visual C++). Although the
examples are simple—as gadgets in real-world programs are
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Fig. 4: The workflow of KASPER, which takes a vulnerable Linux kernel, identifies gadgets, and finally presents statistics to aid
developers in applying mitigations.

TABLE V: CACHE gadgets reported in the kernel by various
solutions when running the ls UNIX command.

Total CACHE
gadgets reported

FP
rate

FN rate
(USER-only)

FN
rate

SpecFuzz [43] 662 99% 33% 60%
SpecTaint [47] 688 99% 0% 40%
KASPER (USER-only) 8 25% 0% 40%
KASPER 14 29% 0% 0%

often much more complex—they represent one of the few well-
defined microbenchmarks available for direct comparison with
different solutions.

Table IV shows the results for tools that are based on static
and dynamic analysis. Static analysis tools specifically model
the Spectre-PHT gadgets, combining the access to the secret
and its leakage through a covert channel. While these tools
scale to such small code snippets, they often miss many cases
with more complex gadgets combining multiple attack vectors.
Furthermore, it is difficult to run solutions based on symbolic
execution [22] on large codebases such as the Linux kernel
without losing soundness.

In the dynamic analysis category, SpecFuzz [43] depends
on address sanitizers to detect invalid accesses. Without data
flow analysis, tracking the data dependency between accessing
and leaking of a secret is not possible. Assuming the second
access encoding the secret in the reload buffer is inbounds,
SpecFuzz is not able to detect it. SpecTaint [47] makes use
of dynamic taint analysis, allowing it to detect dependencies
between the access and leakage. While the authors report that
they detect all 15 variants, it is unclear how they detect variant
v10, that leaks the secret through the outcome of the branch.
In direct communication with the authors, they mentioned that
SpecTaint assumes that the leaking pointer is tainted as a
secret. However, this makes it independent of the presented
variant.

Without implicit flow tracking, KASPER detects the access
of the secret for all 15 variants and the transmission of 14
of those. For the undetected variant (v10), KASPER’s port
contention policies detect the attacker-controlled branch giving
the attacker the ability to leak the secret by controlling the
outcome of the branch.

Macro-benchmark. To provide a more realistic scenario, we
evaluate KASPER and previous work by running the ls UNIX
command. Since SpecFuzz [43] and SpecTaint [47] are only
implemented for user space programs, we adapted KASPER to
model their functionality for the kernel. To model SpecFuzz,
we report any address sanitizer violation within speculative

emulation as a CACHE gadget. To model SpecTaint3, we taint
syscall arguments and user copies as attacker data, taint
the output of any attacker-dependent speculative load as
secret data, and report any secret-dependent access as a
CACHE gadget.

For each solution, Table V presents: (1) the total number
of CACHE gadgets reported, (2) the false positive rate, (3) the
false negative rate when scanning for gadgets controlled only
by USER input, and (4) the false negative rate when scanning
for gadgets controlled by USER, MASSAGE, and LVI input.
In the scenario where an attacker can only inject USER
input, we define a true positive as a gadget that: (1) injects
directly-controllable attacker data (i.e., syscall arguments or
user copies), (2) accesses a secret by dereferencing a pointer
that is both unsafe (i.e., out-of-bounds or use-after-free) and
directly-controllable (i.e., flowing from the injected data), and
(3) leaks the secret by dereferencing a pointer that is secret
(i.e., flowing from the accessed data). In the scenario where
an attacker can also inject MASSAGE and LVI data, we define
a true positive as a gadget that may additionally: (4) inject
indirectly-controllable attacker data by dereferencing a pointer
that is either invalid (i.e., a non-canonical address or a user
address with SMAP on) or unsafe, and (5) access a secret by
dereferencing a pointer that is indirectly-controllable.

As shown in the table, existing solutions’ pattern-based
approaches incur a high FP rate (99%) and a substantial
FN rate (up to 33%). In contrast, KASPER (USER-only)’s
more principled approach drastically decreases the FP rate
(25%) and matches the best case FN rate (0%). However,
when considering gadget primitives beyond those in the BCB
pattern—i.e., MASSAGE and LVI attacker inputs—FN rates for
existing approaches (and for the limited version of KASPER)
increase significantly (to 40%–60%). Since the full version of
KASPER models these primitives (and more), it has no FNs and
maintains an acceptable FP rate (29%). We observed similar
results on the GNU core utilities other than ls.

We verified our FP/FN rates by checking whether each
reported gadget satisfies our definition of a TP. First, we
verified that KASPER’s FPs are due to overtainting; moreover,
these FPs are also nondeterministic (i.e., they only appear in
specific runs). Second, we verified that all of SpecFuzz’s FPs
are due to its inability to track attacker/secret data, causing it
to report leaks of non-secret data (as in Listing 2c). Third, we
verified that all of SpecFuzz’s (USER-only) FNs are due to its
inability to identify in-bound leaks (as in Listing 2b). Fourth,
we verified that all of SpecTaint’s FPs are due to its inability to
filter out safe accesses (as in Listing 2d). Finally, we verified

3We base our implementation of SpecTaint on the information provided
in the paper, because while the paper states the authors’ intention to release
SpecTaint as open source, the code is not yet available.
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TABLE VI: Different gadgets discovered by KASPER.
Gadget type Number of reports

PHT-USER-CACHE 147
PHT-MASSAGE-CACHE 47
PHT-LVI-CACHE 12
Total PHT-*-CACHE 183

PHT-USER-MDS 600
PHT-MASSAGE-MDS 193
Total PHT-*-MDS 722

PHT-USER-PORT 407
PHT-MASSAGE-PORT 123
Total PHT-*-PORT 474

Total PHT-*-* 1379

that all remaining FNs are due to existing approaches (and the
limited version of KASPER) not modeling MASSAGE or LVI
attacker input.

From these results, we can conclude that previous ap-
proaches are insufficient for a variety of reasons. First, the
high FP rates for existing techniques are problematic because
hardening every reported gadget would lead to a substantial
slowdown, yet attempting to verify all the reported gadgets is
impractical. Second, SpecFuzz’s substantial FN rate is prob-
lematic because it leaves many unidentified gadgets vulnerable.
Finally, the high FN rates when considering MASSAGE and
LVI primitives—which would be far worse if also consid-
ering MDS and PORT primitives—are problematic because
they highlight how previous approaches leave generic gadgets
completely vulnerable.

B. Gadgets found in the kernel

We fuzzed the kernel for 18 days with 16 virtual machines
running in parallel and report the number of gadgets found in
Table VI. KASPER currently taints data copied from userspace
(USER), data vulnerable to memory massaging (MASSAGE)
and data vulnerable to LVI-injection (LVI) as attacker
input. Furthermore, the prototype assumes that secret data
can leak either through microarchitectual buffers (MDS), port
contention (PORT) or cache-based covert channels (CACHE).
Although KASPER can model PHT-LVI-MDS and PHT-LVI-
PORT gadgets, we do not report such variants since we were
unable to exploit them in practice (see Section IV).

Most of the gadgets found by KASPER allow information
to leak via MDS after a PHT misprediction. The input for these
gadgets mostly comes from syscall arguments or values that
the attacker can indirectly control in memory via massaging
techniques. We present a case study of one such gadget that
is difficult to mitigate in Section XI. KASPER also finds 147
gadgets with the same capabilities as Spectre-BCB, which
are still missed by existing mitigations due to limitations in
the kernel’s static analysis-based gadget scanning tools, which
only look for specific patterns.

X. LIMITATIONS

Although we have shown that KASPER outperforms state-
of-the-art gadget scanners, it is still limited relative to the
ideal gadget scanner—i.e., a scanner that detects practically
exploitable gadgets with perfect precision.

Practical exploitability. We do not evaluate the practical
exploitability of every gadget found. Such an evaluation is
infeasible in bounded time: it would require testing each
gadget against a myriad of possible microarchitectures, attack
patterns to facilitate the exploit (e.g., concurrent cache evic-
tions [20]), etc. Instead, like existing kernel Spectre mitiga-
tions and state-of-the-art gadget scanners [43, 47], we aim to
provide a more comprehensive security-by-design, since even
gadgets that are seemingly nonexploitable now may become
practically exploitable due to seemingly-innocuous changes—
e.g., microcode updates, code refactors, or different compiler
versions [30]. Nonetheless, in Section XI, we present a proof-
of-concept exploit of a gadget found by KASPER. Furthermore,
in Appendix C, we discuss heuristics that developers can use
to prioritize gadgets that are more likely to be exploitable in
practice.

Completeness. KASPER’s results may be incomplete for a
couple of reasons. First, similar to existing dynamic gadget
scanners [43, 47], we inherit dynamic analysis’s inherent limi-
tation of incomplete coverage. In Appendix A, we evaluate this
limitation and conclude that as fuzzing progresses, FNs due
to incomplete coverage become more and more rare. Second,
since (K)DFSan does not track attacker-controllable implicit
data flows, KASPER will fail to identify gadgets that rely on
them. However, these FNs may be less useful to an attacker,
because implicit flows normally propagate only one bit of data.

Soundness. Similar to existing scanners based on dynamic
taint analysis (DTA) [47], we inherit DTA’s inherent soundness
limitations. Specifically, since DTA cannot model data-flow
constraints (e.g., the effect of arbitrary arithmetic or bitwise
operations on data), KASPER may report gadgets that are not
entirely controllable by an attacker. For example, even though
it might only be possible for an attacker-controllable access
to go one byte out-of-bounds—rather than arbitrarily out-of-
bounds—KASPER will overlook this, and still taint the output
as a secret. To mitigate these FPs, KASPER washes taint for
common data masking operations that are part of mitigations
in the Linux kernel (i.e., array_index_nospec), but a
general solution remains out of the scope of DTA. A generic
way to address this problem is to rely on symbolic (or concolic)
execution, but state-of-the-art techniques can only scale to
a limited number of basic blocks of kernel execution [65].
In contrast, KASPER can scalably find gadgets with attacker-
controlled data propagating even across multiple syscalls.

Fidelity. Since our implementation does not faithfully model
every aspect of a natively-run kernel, its results may be
imprecise. First, we cannot precisely model nondeterminism—
e.g., from timer interrupts occurring at different program
states in the KASPER kernel compared to the native kernel.
We can mitigate any resulting FNs by increasing coverage.
Second, we do not precisely model all microarchitectural
details—e.g., exact speculative window sizes, pipeline stalls
caused by memory aliasing, etc. We can mitigate any resulting
FNs by extending KASPER to model even more low-level
microarchitectural details. We consider any fidelity-related FPs
to be acceptable, as described above (i.e., seemingly-innocuous
changes may turn a FP into a TP).
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#define list_for_each_entry(pos, head, member)
for (pos = list_first_entry(head,

typeof(*pos), member);
&pos->member != (head);
pos = list_next_entry(pos, member))

Listing 9: Linux implementation for generic list iterations. pos
is the current list element, head is the head of the list, and
pos->member is the next list element.

XI. CASE STUDY

We have shown that KASPER finds a wide range of gadgets
in the hardened Linux kernel codebase. To demonstrate that
the presence of such gadgets is serious, we now present a case
study for one of the (unmitigated) gadgets found by KASPER.
It shows that focusing on simple gadgets is insufficient and
mitigation can be far from trivial. Finally, we analyze the
exploitability of the found gadget. We refer the interested
reader to Appendix D for an additional case study illustrating
the need for a dynamic analysis tool for the Linux kernel.

A. List implementation of the kernel

Our case study is fundamental to the (double linked) list
implementation that is used pervasively in the Linux kernel.
The kernel’s list implementation is cyclic and consists of a
head element (of type list_head) which is typically a field
in another data structure, and list elements containing the data,
where the last element points back to the head element. A
data structure can become a list element, if it also embeds the
list_head struct as one of its fields. The list_head simply
contains pointers to the list_head fields in the previous and
next list elements (or the head).

To iterate over a list, the kernel provides macros such
as list_for_each_entry, shown in Listing 9. Here pos
points to the data structure and pos->member to the embedded
list_head. The list iteration terminates when it reaches the
head element in the cyclic list. List iterators are also used
pervasively in the kernel codebase with more than 2600 uses.

B. A list_for_each_entry gadget in keyring.c

The security implications of the list_for_each_entry
implementation become clear when we consider the gadget
found by KASPER in the find_keyring_by_name function
in keyring.c. Listing 10 shows the relevant code snippet.
Simulating a branch misprediction, KASPER flips the terminat-
ing condition of the list iterator (&pos->member != head),
resulting in an additional iteration with &pos->member ==
head. Note that when the list iteration is speculatively executed
for the head element, there is no associated key data structure.
In other words, keyring and &keyring->user point to out-
of-bounds memory, in this case belonging to the data structure
containing the head element. The type confusion results in
the access to keyring->user->uid dereferencing an out-of-
bounds read pointer.

KASPER not only detects the KASAN violation, but further
reports the gadget as capable of leaking secrets trough MDS,
as it verifies through its dynamic taint analysis that the pointer
is attacker controlled.

name_link

struct user_namespacestruct key

user

keyring_name_list

projid_map

Fig. 5: Through the type confusion head is assumed to be
within a key struct instead of the user_namespace struct.

C. Exploitation

First, we evaluate the controllability of the out-of-
bounds read pointer. The type-confusion assumes that &ns- c
>keyring_name_list is within a key struct, but in reality
the head element is in a user_namespace struct. To compute
the location of &keyring->user in the speculative iteration,
we first compute the offset of name_link within the key
struct. Next we compute the offset of user in the struct and
apply those offsets to &ns->keyring_name_list as shown
in Figure 5. The out-of-bounds read pointer keyring->user
is read from ns->projid_map which can be easily controlled
from user space through the proc interface.

We evaluated the gadget on an i7-7700K machine with
a recent v5.12 Linux kernel. First, we verified whether the
branch can be mistrained. Since the attacker can control
the length of the keyring_name_list list by adding keys
through the add_key, mistraining the branch condition in-
place is not difficult. Moreover, for easier exploitation, the
gadget can be reached close to the system call entry of keyctl
with the KEYCTL_JOIN_SESSION_KEYRING operation.

We build a simple Flush+Reload [62] proof of concept to
verify that the attacker-controlled pointer is actually used in
the speculative load operation. For verification purposes, we
disabled SMAP and set the pointer pointing directly into the
reload buffer and observed the signal by executing the keyctl
system call between flushing and reloading. We confirm that
the attacker-controlled pointer is dereferenced during specula-
tive execution.

In principle, any value loaded by a speculative load can be
leaked cross-thread with MDS [10, 51, 56] if SMT is enabled.
Since SMT is not disabled by default in the latest version
of Linux, it is still vulnerable to MDS when leaking from
the sibling hyperthread. We verify this with a simple proof
of concept where one thread repeatedly executes the keyctl
system call and the other thread reads in-flight data and
encodes it within a Flush+Reload buffer. We use madvice to
force a page fault across a page boundary which is required to
leak the in-flight data. Listing 11 presents a simplified version
of the proof of concept. Without synchronization between the
two threads (which was not the focus of our research), the
signal strength depends on the the leaking load in the system
call occurring roughly at the same time as as the load from
CPU-internal buffers in the reading thread. We verified that a
signal exists if the loads are happening approximately at the
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struct key *find_keyring_by_name(const char *name, bool uid_keyring) {
struct user_namespace *ns = current_user_ns();
struct key *keyring;
...
list_for_each_entry( keyring , &ns->keyring_name_list, name_link) {

if (!kuid_has_mapping(ns, keyring->user->uid ))
continue;

...
} }

Listing 10: PHT-MASSAGE-MDS gadget in find_keyring_by_name.

while(1)
syscall(__NR_keyctl,

KEYCTL_JOIN_SESSION_KEYRING,
"kasper", 0, 0, 0);

(a) Attacker thread that repeatedly invokes the vulnerable keyctl
system call.

while(1) {
madvise(leak+4096, 4096, MADV_DONTNEED);
flush(reloadbuffer);
asm volatile(
"movdqu (%0), %%xmm0 \n"
"movq %%xmm0, %%rax \n"
"andq $0xff, %%rax \n"
"shl $0xa, %%rax \n"
"prefetcht0 (%%rax, %1) \n"
"mfence \n" ::
"r"(leak + 4096 - 14),
"r"(reloadbuffer):"rax","rbx","rcx");

reload(reloadbuffer, results);
}

(b) Attacker thread that repeatedly encodes in-flight secret data into a
reloadbuffer.

Listing 11: Simplified proof of concept exploit consisting of
two simultaneously executing threads.

same time in both threads, leaking the secret from a kernel
buffer to user space.

Mitigating the presented gadget is far from trivial. Adding a
spot mitigation in keyring.c leaves all other uses of list_ c
for_each_entry vulnerable. Mitigating the list iterators,
that are frequently used throughout the kernel, may cripple
performance when using lfence in every iteration of the loop.
Other kernel mitigations such as array_index_nospec are
not applicable with the current list implementation.

XII. RELATED WORK

Checkpointing for transactional execution. While check-
pointing was used to recover from software faults [35, 57],
we require such high frequency checkpointing (on every con-
ditional branch) that we built a checkpointing mechanism for

the Linux kernel from scratch. However, the solution is general
and applicable to other scenarios (e.g., crash recovery).

Taint tracking in the kernel. For KASPER, we built KDF-
SAN, the first generic compiler-based dynamic taint tracking
system for the kernel. Other non-generic, non-compiler-based,
and static taint tracking systems have also found bugs in
the kernel. For example, KMSAN is a widely-used compiler-
based dynamic taint tracking system targeted at detecting
uninitialized memory usage; it has found hundreds of bugs
in the Linux kernel [46]. Furthermore, Bochspwn Reloaded
is an emulation-based dynamic taint tracking system targeted
at detecting uninitialized memory disclosures to user-mode; it
has found 70 bugs in the Windows kernel and 10 bugs in the
Linux kernel [29]. Finally, a wide range of static taint tracking
systems have found numerous bugs in the kernel [28, 39, 60].

Speculative gadget scanners. Shortly after the publication
of Spectre [32], the Red Hat Spectre V1 scanner [15] and
Microsoft’s Visual C/C++ Compiler [44] tried finding and
mitigating Spectre V1 gadgets using well defined code pat-
terns. More advanced static analysis gadget scanners followed.
oo7 [59] uses binary-level static taint analysis and has analysis
times of 74 hours on average on medium sized user applica-
tions, scaling it to large codebases such as the Linux kernel is
impractical. SPECTECTOR [22] and KLEESPECTRE [58] use
symbolic execution to find Spectre based information leaks.
Without sacrificing soundness and completeness, symbolic ex-
ecution becomes a bottleneck when scaling to large real-world
codebases like the kernel [65]. The Linux kernel currently
relies on manual analysis and static analysis tools such as
smatch [11] to identify potential Spectre gadgets. However, this
still involves manual inspection because found code locations
are patched at the source code level and it suffers of a high
rate of false positives. SpecFuzz [43], a dynamic analysis
tool, combines fuzzing with the use of sanitizers to detect
and mitigate potential speculative memory leaks within user
applications. SpecTaint [47] uses dynamic taint analysis to
track attacker controllability and leaking of the secret. Similar
to SpecFuzz, it targets user space programs which rarely have
mitigations applied.

XIII. CONCLUSION

We presented KASPER, a solution for finding generalized
transient execution gadgets in the Linux kernel. Where existing
gadget scanners limit themselves to specific Spectre patterns
(in user programs), KASPER abstracts away pattern-specific
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details and instead models the essential steps of an attack:
injecting controllable data, accessing a secret, and then leaking
the secret. Moreover, where existing scanners target only the
primitives used in the BCB pattern, KASPER models the wide
variety of primitives that are at an attacker’s disposal. As a
result, KASPER finds gadgets that are well out of reach of ex-
isting techniques. We conclude that current Spectre mitigations
in the Linux kernel are wholly insufficient.

Disclosure. We disclosed our findings to the Linux kernel and
to Intel on February 11, 2021. We shared our paper, gadgets
found, and patches for the discussed gadgets (in Section XI and
Appendix D) with the affected parties, who acknowledged our
findings and agreed to a public disclosure date of January 25,
2022.
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[22] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez,
“SPECTECTOR: Principled Detection of Speculative Information
Flows,” in S&P, 2020.

[23] J. Horn, “Reading privileged memory with a side-
channel,” https://googleprojectzero.blogspot.com/2018/01/
reading-privileged-memory-with-side.html, 2018.

[24] ——, “speculative execution, variant 4: speculative store bypass,” https:
//bugs.chromium.org/p/project-zero/issues/detail?id=1528, 2019.

[25] Intel, “Retpoline: A Branch Target Injection Mitigation,” 2018.
[26] ——, “Speculative Execution Side Channel Mitigations,” 2018.
[27] ——, “Intel 64 and IA-32 Architectures Optimization Reference Man-

ual,” 2020.
[28] R. Johnson and D. Wagner, “Finding User/Kernel Pointer Bugs With

Type Inference,” in USENIX Security, 2004.
[29] M. Jurczyk, “Bochspwn Reloaded: Detecting Kernel Memory Disclo-

sure with x86 Emulation and Taint Tracking,” in Black Hat USA, 2017.
[30] O. Kirzner and A. Morrison, “An Analysis of Speculative Type Confu-

sion Vulnerabilities in the Wild,” in USENIX Security, 2021.
[31] P. Kocher, “Spectre Mitigations in Microsoft’s C/C++ Compiler,” https:

//www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html,
2018.

[32] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre Attacks:
Exploiting Speculative Execution,” in S&P, 2019.

[33] A. Konovalov and D. Vyukov, “KernelAddressSanitizer (KASan): a fast
memory error detector for the Linux kernel,” LinuxCon North America,
2015.

[34] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre Returns! Speculation Attacks using the Return Stack Buffer,”
in WOOT, 2018.

[35] M. Lee, A. S. Krishnakumar, P. Krishnan, N. Singh, and S. Yajnik,
“Hypervisor-assisted Application Checkpointing in Virtualized Environ-
ments,” in ASPLOS, 2011.

[36] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading Kernel Memory from User Space,” in USENIX
Security, 2018.

[37] K. Loughlin, I. Neal, J. Ma, E. Tsai, O. Weisse, S. Narayanasamy,
and B. Kasikci, “DOLMA: Securing Speculation with the Principle of
Transient Non-Observability,” in USENIX Security, 2021.

[38] K. Lu and H. Hu, “Where Does It Go? Refining Indirect-Call Targets
with Multi-Layer Type Analysis,” in CCS, 2019.

[39] A. Machiry, C. Spensky, J. Corina, N. Stephens, C. Kruegel, and
G. Vigna, “DR. CHECKER: A Soundy Analysis for Linux Kernel
Drivers,” in USENIX Security, 2017.

[40] G. Maisuradze and C. Rossow, “Ret2Spec: Speculative Execution Using
Return Stack Buffers,” in CCS, 2018.

[41] A. C. Myers, “JFlow: Practical Mostly-Static Information Flow Con-
trol,” in POPL, 1999.

[42] O. Oleksenko, B. Trach, T. Reiher, M. Silberstein, and C. Fetzer, “You
Shall Not Bypass: Employing data dependencies to prevent Bounds
Check Bypass,” arXiv preprint arXiv:1805.08506, 2018.

[43] O. Oleksenko, B. Trach, M. Silberstein, and C. Fetzer, “SpecFuzz:
Bringing Spectre-type vulnerabilities to the surface,” in USENIX Se-
curity, 2020.

15



[44] A. Pardoe, “Spectre mitigations in MSVC,” https://devblogs.microsoft.
com/cppblog/spectre-mitigations-in-msvc, 2018.

[45] C. Percival, “Cache missing for fun and profit,” 2005.

[46] A. Potapenko, “Add KernelMemorySanitizer infrastructure,” https://
lwn.net/Articles/878652, 2021.

[47] Z. Qi, Q. Feng, Y. Cheng, M. Yan, P. Li, H. Yin, and T. Wei, “SpecTaint:
Speculative Taint Analysis for Discovering Spectre Gadgets,” in NDSS,
2021.

[48] H. Ragab, E. Barberis, H. Bos, and C. Giuffrida, “Rage Against the
Machine Clear: A Systematic Analysis of Machine Clears and Their
Implications for Transient Execution Attacks,” in USENIX Security,
2021.

[49] A. Sabelfeld and A. C. Myers, “Language-Based Information-Flow
Security,” J-SAC, 2003.

[50] S. Schumilo, C. Aschermann, A. Abbasi, S. Worner, and T. Holz,
“NYX: Greybox Hypervisor Fuzzing using Fast Snapshots and Affine
Types,” in USENIX Security, 2021.

[51] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “ZombieLoad: Cross-Privilege-Boundary
Data Sampling,” in CCS, 2019.

[52] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss, “Net-
Spectre: Read Arbitrary Memory over Network,” in ESORICS, 2019.

[53] S. Sidiroglou, O. Laadan, C. Perez, N. Viennot, J. Nieh, and A. D.
Keromytis, “ASSURE: Automatic Software Self-Healing Using Rescue
Points,” in ASPLOS, 2009.

[54] E. Sultanik, “Two New Tools that Tame the Treach-
ery of Files,” https://blog.trailofbits.com/2019/11/01/
two-new-tools-that-tame-the-treachery-of-files, 2019.

[55] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lippi, M. Minkin,
D. Genkin, Y. Yarom, B. Sunar, D. Gruss, and F. Piessens, “LVI:
Hijacking Transient Execution through Microarchitectural Load Value
Injection,” in S&P, 2020.

[56] S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
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APPENDIX A
COVERAGE EVALUATION

We evaluate the completeness of KASPER’s fuzzing results
(Section IX-B) based on its coverage in both normal execution
and speculative emulation.
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Fig. 6: Gadgets found by KASPER over time, separated by
gadget type.
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Fig. 7: Covered edges in the Linux kernel reported by
syzkaller.

A. Normal execution coverage

First, we find that KASPER’s total gadgets found (Figure 6)
begins to flatten at around 18 days; this is not surprising, since
we fuzzed the kernel until KASPER found only 3 new gadgets
per day (out of 1379 gadgets found in total). Next, we find that
KASPER’s code coverage (Figure 7) also flattens, confirming
that further fuzzing will most likely execute already-executed
code, and as a result, uncover fewer and fewer gadgets.

To evaluate how long it would take for KASPER’s code
coverage to completely flatten (and in effect, uncover almost
all gadgets), we compare KASPER’s code coverage to an
uninstrumented kernel’s code coverage. We fuzzed an unin-
strumented kernel for 18 days and found that in the final
24 hours, the baseline’s coverage increased by only 0.15%,
and in the same span, KASPER’s coverage similarly increased
by only 0.61%. In other words, the baseline’s coverage—like
KASPER’s coverage—flattens, but not completely. Since even
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TABLE VII: Causes for rollback in speculative emulation.

Rollback cause Basic + Page fault
suppression

+ Inline assembly
patches

Max spec length 20.8% 22.9% 56.9%
Return 32.9% 33.8% 39.7%
Inline asm 38.4% 41 % 0.2%
Indirect calls 0.8% 1.2% 1.3%
Interrupts 6.5% 0.5% 1.2%
Blacklisted function 0.6% 0.6% 0.7%

the baseline does not completely flatten in bounded time4, we
cannot expect KASPER to completely flatten in bounded time.
Hence, future work on improving syzkaller’s coverage would
not only improve the completeness of KASPER’s results—it
would also improve all kernel fuzzing results.

B. Speculative emulation coverage

Apart from normal code coverage, KSPECEM specifically
targets increasing the code coverage in the speculative window.
Simply executing basic blocks within speculative emulation is
not sufficient. Ideally, KSPECEM should execute a basic block
speculatively in every speculative window that may cover it. In
other words, we should exhaust speculative execution windows
as much as possible and eliminate premature rollbacks.

Lightweight checkpointing in the kernel is more challeng-
ing than in well-defined user space programs, due to the
many complex operations, frequent use of inline assembly,
interactions with device memory, and complex control flow
resulting from interrupts. As described in Section VI-B, to
handle such cases we allow speculative emulation to stop
gracefully to ensure memory integrity on a rollback. Stopping
speculative emulation in the above cases limits the length of
the emulation window.

Table VII presents the different causes of rollbacks in
three scenarios: the basic implementation of KSPECEM and
two improvements that we later made to improve speculative
code coverage. These numbers report the causes for rollbacks
averaged over all instrumented functions when executing the
ls command. A negligible amount of rollbacks (3.4%) are
due to limitations introduced by unique challenges of the
Linux kernel, as explained earlier in Section VI-B. We set the
maximum of speculative instructions for all evaluations to 250
executed LLVM IR instructions, which is in line with the size
of the ROB in modern microarchitectures [27] and what has
been used in recent work (for x86 instructions) [43, 47]. We
have analyzed the ratio of the number of LLVM IR instructions
to x86 instructions within the Linux kernel per function using
LLVM passes. The median of the ratio is 0.92, concluding that
counting LLVM IR instructions is a reasonable approximation
for the number of machine code instructions. The first row
shows the percentage of cases where KSPECEM rolls back
because we reach this maximum speculation length. Ideally,
the percentage of rollbacks due to reaching the maximum
speculation length should be as high as possible.

We see that a small percentage of rollbacks can be at-
tributed to indirect calls where the target address cannot be

4Indeed, Google runs syzkaller continuously on many different kernel
versions and configurations, and even its longest-running fuzzing campaigns
continue to gain code coverage [5].

verified at compile time, interrupts, and blacklisted functions
such as those that interact with I/O memory. This proves that,
even for drivers code, we have isolated the small locations
interacting with I/O mapped memory, still reaching high spec-
ulative code coverage within those kernel components. The
low number of rollbacks due to interrupts show that these
interrupts, caused by exceptions creating an unrecoverable
state, are not a significant limitation of KASPER. A major
source of rollbacks consists of returns as speculative emulation
tries to go up in the call trace from the start of the checkpoint.
In contrast, returning in functions that have been called within
speculative emulation is safe since it will return back into a
function that was already executed within emulation. Future
work can support additional returns by keeping track of safe
functions within the call trace, and thus increase speculative
code coverage even further.

In the basic implementation (column 2), we stop on all
interrupts (including exceptions and timers) and every occur-
rence of inline assembly. In this case, speculative emulation
reaches the maximum speculation length in a modest 20.8%
of all cases. However, by adding Page Fault suppression
(column 3), we find new classes of attack (e.g., LVI) and
reduce interrupts from 6.5% to a mere 0.5%, to arrive at
22.9% of the cases that exhaust the maximum speculation
window. Moreover, by modeling the most frequently-used
inline assembly fragments, we increase the percentage of
rollbacks due to reaching the speculation length to 56.9%.
As shown by our case studies, these improvements enabled
KASPER to find a wide range of gadgets.

APPENDIX B
PERFORMANCE EVALUATION

We evaluate the performance of KASPER relative to an
uninstrumented kernel and where possible, relative to previous
approaches.

Analysis time. Similar to previous work [43], we evaluate
the time overhead of our approach based on the fuzzing
throughput (i.e., the number of testcases over time). First,
we compare the fuzzing throughput of KASPER against the
uninstrumented kernel. Next—since we observed that our
modifications to syzkaller, which use qemu’s snapshot feature
to revert taint between testcases (see Section VIII), introduced
a major overhead—we also compare the fuzzing throughput of
KASPER against the uninstrumented kernel running with our
modified version of syzkaller.

We ran each setup for 36 hours on the same machine
used for our fuzzing evaluation (Section IX-B). We found
that on average, KASPER executes 136 testcases per hour,
compared to the uninstrumented kernel executing 45,933 per
hour; however, when running with our modified version of
syzkaller, the uninstrumented kernel executes a mere 252
testcases per hour. Hence, we can attribute a 1.8x slowdown
due to KASPER’s instrumentation and a 183x slowdown due
to our syzkaller modifications. Since our modifications to
syzkaller were not the focus of this work, we consider this
an acceptable overhead; orthogonal (and concurrent) efforts to
optimize qemu’s snapshot feature can be used to improve the
throughput [50]. Furthermore, note that reverting taint between
testcases is not strictly necessary for KASPER. Nonetheless, we
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opted for this strategy because we prefer to have reproducible
results (by starting each testcase from a clean snapshot) over
quick results (by fuzzing without snapshotting).

For comparison, SpecFuzz reports a 23x slowdown in the
best case (on libHTP [3]) and a 560x slowdown in the worst
case (on OpenSSL [4]). Hence, relative to the 1.8x overhead of
KASPER’s instrumentation, SpecFuzz’s instrumentation incurs
a sizable overhead. We attribute this difference to SpecFuzz’s
use of nested speculation to improve speculative code cover-
age: i.e., SpecFuzz inverts many conditional branches within
a single speculative emulation window, whereas KASPER only
inverts one. Although SpecFuzz observes that most gadgets
found are within the lower orders of nested speculation (i.e.,
only requiring one or two inverted branches), nested specula-
tion (as well as other forms of speculation) can be integrated
in KASPER in future work.

Unfortunately, we cannot meaningfully compare against
SpecTaint for a couple of reasons. First, its performance
numbers are not relative to a tangible baseline: e.g., it does
not present baseline times for programs when not run with
SpecTaint; also, it does not define when an analysis is “fin-
ished”, even though the analysis times it presents use this
metric. Second, the code is not yet available, so we cannot
reproduce its performance numbers. However, we estimate
that, because it uses a full-system emulation-based approach,
it likely incurs a more significant overhead compared to
KASPER’s and SpecFuzz’s LLVM-based approaches.

Memory consumption. KASPER consumes just over 4x mem-
ory relative to a baseline system. Of this overhead, 2x is
required by syzkaller for its snapshot feature. Another 2x is
required by KDFSAN’s shadow memory, which allocates a
page of shadow memory for every page of kernel memory. Be-
yond that, a constant, negligible amount of memory is required
for KSPECEM’s tracking of speculative memory writes and
other internal data structures. Unfortunately, neither SpecFuzz
nor SpecTaint evaluate memory consumption, so we cannot
compare against them.

APPENDIX C
LARGE-SCALE EXPLOITABILITY EVALUATION

In the extended version of this paper available at [2], we
evaluate the found gadgets across different metrics to provide
a more detailed analysis of exploitability.

APPENDIX D
ADDITIONAL CASE STUDY

We present a case study found by KASPER that highlights
the need for a dynamic analysis-based approach and the need
for automated transient execution patch verification.

The gadget. Listing 12 shows an MDS-based gadget in the
vc_allocate function, which is called by vt_ioctl. In this
gadget, the attacker first supplies arg through an ioctl syscall
argument, which KASPER marks as tainted. Then, KASPER
emulates the mispredicted bounds check at line 1 and executes
the else statement with an out-of-bounds value for arg. After
a second mispredicted bounds check at line 8, KASPER detects
an out-of-bounds memory access at line 11. Since curcons

1 if ( arg == 0 || arg > MAX_NR_CONSOLES )

2 ret = -ENXIO;
3 else {
4 arg --;
5 currcons = arg ;
6 console_lock();
7 WARN_CONSOLE_UNLOCKED();

8 if ( currcons >= MAX_NR_CONSOLES )

9 return -ENXIO;
10

11 if ( vc_cons[ currcons ].d )

12 ...
13 }

Listing 12: MDS-based gadget in the vc_allocate function
used within the vt_ioctl function.

is a 32-bit value under full control of the attacker, this gadget
allows an attacker to leak a large range of kernel memory.
Note that a previous version of KASPER that used a basic
implementation of nested speculation found this gadget, as it
relies on two inverted branches (lines 1 and 8).

Drawback of static analysis. We identified an almost identical
code snippet in vc_setallocate—which is very close to the
other gadget, and also called from vt_ioctl—however, it was
already (partially) mitigated through speculative array index
masking. It is unclear why the kernel developers applied the
mitigation to this gadget, but not to the other. At first glance,
the only noticeable difference between the two gadgets is that
this gadget receives user data from a copy_from_user call,
whereas the other gadget receives user data from a syscall argu-
ment. However, upon closer inspection, it becomes clear why
the kernel’s static analysis tool [11] may not have identified
it. The dataflow from the copy_from_user to the (partially)
mitigated gadget is only separated by a direct call, whereas
the dataflow from the syscall argument to the unmitigated
gadget is separated by an indirect call. Since indirect calls
are notoriously difficult to resolve statically [38], it is no
surprise that the gadget was left unmitigated. This highlights
the importance of a dynamic analysis-based approach, which
can uncover gadgets beyond the reach of static analysis.

Drawback of manual mitigation verification. Upon further
inspection of the mitigation in vc_setallocate, we found
that it was applied incorrectly. Indeed, KASPER verifies that
the mitigation is only partial. Namely, while the speculative
array index masking ensures that the index becomes zero if
it goes out-of-bounds, the decrement that follows (similar to
line 4 in Listing 12) causes an integer underflow in transient
execution. This demonstrates the importance of an automated
tool such as KASPER, which can verify that manually-applied
security patches work as intended.

APPENDIX E
DEVELOPER INTERFACE

In the extended version of this paper available at [2], we
present the web interface we built to accompany KASPER,
which visualizes all the necessary gadget information, allowing
kernel developers to easily analyze them and apply mitigations.
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