
HeadStart: Efficiently Verifiable and Low-Latency
Participatory Randomness Generation at Scale

Hsun Lee∗, Yuming Hsu∗, Jing-Jie Wang∗, Hao Cheng Yang∗, Yu-Heng Chen∗, Yih-Chun Hu† and Hsu-Chun Hsiao∗‡
∗National Taiwan University, Taiwan †University of Illinois at Urbana-Champaign, USA ‡Academia Sinica, Taiwan

∗{133xun, d768092}@gmail.com, {b06902035, b06902097, b07902026, hchsiao}@csie.ntu.edu.tw, †yihchun@illinois.edu

Abstract—Generating randomness by public participation al-
lows participants to directly contribute randomness and verify
the result’s security. Ideally, the difficulty of participating in such
activities should be as low as possible to reduce the computational
burden of being a contributor. However, existing randomness
generation protocols are unsuitable for this scenario because
of scalability or usability issues. Hence, this paper presents
HeadStart, a participatory randomness protocol designed for
public participation at scale. HeadStart allows contributors to
verify the result on commodity devices efficiently and provides
a parameter L that can make the result-publication latency
L times lower. Additionally, we propose two implementation
improvements to speed up the verification further and reduce
the proof size. The verification complexity of HeadStart is only
O(L × polylog(T) + logC) for a contribution phase lasting for
time T with C contributions.

I. INTRODUCTION

Unpredictable and unbiased randomness is crucial for many
applications concerning public interest, such as randomly
drawing residents for limited vaccination [57], [40], ensuring
the trustworthiness of prize-linked savings accounts [42], and
maintaining fairness in VAT-receipt lotteries [23]. Today, these
applications usually generate random values using a computer
program or a live-streamed ball-drawing or die-throwing event.
However, these methods provide no verifiable proof that their
random values are indeed unpredictable and unbiased. Past
incidents have also eroded public confidence in randomness
generated by third parties [5], [3].

One way to improve public confidence is via participa-
tory randomness generation, which allows people to directly
contribute entropy to the output and be assured of the result’s
unpredictability and bias resistance. To ensure the fairness of
participation, such protocols should be secure, usable, and
scalable so that even millions of people, without powerful
machines, could contribute easily. Although a number of ran-
domness generation techniques have been proposed since the
introduction of coin-flipping protocols [11], [7] and random-
ness beacons [51], participatory randomness generation has not
been widely adopted because existing protocols do not take the
security, scalability, and usability of public participation into
consideration simultaneously.

Some protocols apply verifiable random functions
(VRFs) [31], [27] or extract randomness from Bitcoin [14],
[9], [50] or public financial data [24] to compute the
random result. Nonetheless, these approaches are insecure
for participatory randomness generation because adversaries
who know all the current contributions can bias the result
by precomputing the best outcome before contributing. In
order to defend against these kinds of biasing attacks, a
secure protocol must bound the adversary’s ability to predict
the result before the end of the contribution phase. This
unpredictability prevents adversaries from contributing a
crafted contribution to bias the result.

However, existing secure approaches are inapplicable for
large-scale participatory randomness generation due to scala-
bility or usability issues. Protocols based on commitments [39],
publicly-verifiable secret sharing (PVSS) [55], [19], [53], [43],
and threshold signatures [18], [37] require multiple phases
with high communication overhead to distribute keys, commit
entropy or secret shares, reveal commitments, and recover the
final results. In addition, these protocols assume that all or
the majority of the predefined fixed set of participants are
honest, which limits its usability in practice. On the other hand,
protocols based on delay functions [17], [22], [44], [45], [32],
[13] and verifiable delay functions (VDFs) [52], [12], [29],
[36] can prevent adversaries from precomputing the result in
time by delaying the result generation. However, their delay
of the result publication after the contribution phase, what we
called result-publication latency (RP latency), is relatively high
because of the long result-generation time caused by delay
functions and VDFs. Although existing randomness beacon
protocols [17], [24], [29], [36], [12], [52] can reduce their
RP latency by decreasing the beacon interval, the contribution
phase for a specific output will also be shortened. This short-
ened contribution phase is ill-suited for public participation
events, which often need to last for several days or weeks to
ensure fairness and availability of public participation.

Accordingly, we propose HeadStart, a participatory ran-
domness generation protocol designed for public participation
at scale. HeadStart is scalable because its communication and
verification complexity for each contributor are both only
O(logC) with respect to the number of contributions C.
The usability is from HeadStart’s ease of direct participation,
reasonable assumption on the honest contributors, and low RP
latency. The contributors can contribute entropy and efficiently
verify HeadStart’s result via their commodity devices without
assuming that other contributors are honest. HeadStart’s contri-
bution phase can be opened for a sufficiently long time while

Network and Distributed Systems Security (NDSS) Symposium 2022
24-28 April 2022, San Diego, CA, USA
ISBN 1-891562-74-6
https://dx.doi.org/10.14722/ndss.2022.24234
www.ndss-symposium.org

achieving a considerably low RP latency that everyone can
receive the result earlier. The result of HeadStart is generated
by an organizer, such as a government or a large enterprise,
who is responsible for generating a verifiable random result to
convince the public.

Efficient verification and low RP latency are two important
advantages of HeadStart that make it suitable for public par-
ticipation. HeadStart achieves efficient verification by storing
contributions in Merkle trees and adopting VDFs, so the
verification complexity is only O(L×polylog(T)+ logC) for
a contribution phase lasting for time T with C contributions.
To overcome high RP latency caused by VDFs, HeadStart
divides the contribution phase into L stages and gives its
result-generation a “head start” of L − 1 stages. Therefore,
the RP latency of HeadStart can be reduced to only T

L ,
which is a huge improvement over T in existing approaches
based on delay functions or VDFs [17], [22], [44], [45], [52].
Moreover, HeadStart can be extended to a randomness beacon
that can alleviate the burden of frequent re-registration when
the beacon interval is short, because every honest participant
can ensure the security of the subsequent L stages. All these
improvements are only at the cost of verifying L VDF proofs
with a time complexity of O(L× polylog(T)).

To further enhance HeadStart’s verification performance
in practice, we present an algorithm named ClHash in Sec-
tion VII-B to bring VDF proof aggregation from theory
into practice. Although VDF proof aggregation is a known
technique in theory [56], no efficient implementation was
available because implementing it requires solving a complex
mathematical problem. To the best of our knowledge, our VDF
implementation is the first to support proof aggregation in the
class groups of imaginary quadratic fields, which can aggregate
L VDF proofs into one. Besides, we also present a mechanism
called DHPI in Section VII-C to speed up the initialization of
verification by about five times.

To demonstrate HeadStart’s practicality for people using
commodity devices, we evaluate its verification costs on
personal computers and mobile phones using both browsers
and native applications with various parameter settings. This
evaluation shows that when L = 100 and C = 106, an
iPhone XR application took only 10.7 seconds for verification
regardless of the length of the contribution phase. This is sig-
nificantly faster than previous schemes [22], [45] that require
contributors to compute longer than the contribution phase.

This paper makes the following contributions:

1) We propose HeadStart, an efficiently verifiable and
low-latency participatory randomness generation pro-
tocol with high usability and scalability.

2) We present ClHash: the first efficient algorithm that
hashes to a class group of an imaginary quadratic
field, bringing class-group VDF proof aggregation
from theory into practice.

3) We describe the HeadStart beacon to solve the issue
of frequent re-registration mentioned above.

4) We evaluate HeadStart through analysis and experi-
ments. The results confirm that HeadStart is scalable
and can be efficiently verified on commodity devices
with small RP latency.

II. BACKGROUND

This section introduces the cryptographic primitives used in
this paper: participatory randomness generation, Merkle trees,
and verifiable delay function (VDF).

A. Participatory Randomness Generation

Participatory randomness generation allows a group of
contributors to collectively generate an unpredictable, bias-
resistant and verifiable result. Typically, it consists of two
phases: (1) a contribution phase to gather randomness from
the public (i.e., the contributors), and (2) a result-generation
phase to compute the random output. It can be represented as
RG(k, x1, x2, · · · , xn) → y, where k is a security parameter
and x1, x2, · · · , xn are the contributions used to generate a
randomness result y ∈ [0, 2k).

A participatory randomness generation protocol should
satisfy the following security properties:

1) Unpredictability. If an adversary performs a predic-
tion y′ ∈ [0, 2k) to guess the output y before the end
of the contribution phase, the probability that y′ = y
is negligible with respect to the security parameter k.

2) Bias Resistance. An adversary cannot actively ma-
nipulate the result in a meaningful (i.e., predictable)
way.

3) Verifiability. Honest contributors can verify the re-
sult’s unpredictability and bias-resistance. Namely,
they can ensure that no adversary can predict or
manipulate the result to its advantage with non-
negligible probability.

Unpredictability defends against passive observers who do
not participate in the protocol, and bias resistance defends
against active adversaries who can contribute to the input.
Related work [53], [52] also explicitly listed both in their
security properties, so we followed this convention for ease
of comparison.

B. Merkle Trees

A Merkle tree [48] is a hash tree that employs a crypto-
graphic hash function to build its tree nodes. Each leaf node is
labeled with the hash value of the data, and each non-leaf node
is labeled with the hash value of its children. In this work, we
consider a typical Merkle tree implemented in binary form,
while alternative implementations exist for specific purposes
such as Fast Merkle Trees [46] in Bitcoin and Dense Merkle
Trees in the Certificate Transparency storage system [33].

The structure of a Merkle tree allows it to provide effi-
ciently verifiable proof-of-inclusion for requested data included
in the leaf nodes. Such proof-of-inclusion consists of an audit
path, i.e., the set of nodes required to compute the hash value
of the tree root from a leaf. If the root computed using the audit
path matches the root in the proof, then the audit path proves
that the leaf is in the tree. As a result, the time and space
complexities to verify proof-of-inclusion are both O(logN),
where N is the number of tree nodes.

2

C. Verifiable Delay Function (VDF)

VDF [12] is a type of moderately hard cryptographic
function whose results can be efficiently verified. It is a
trio of algorithms, which can be represented as V DF =
(Setup,Eval,Verify). These three algorithms are defined
as follows:

1) Setup(k, T) → pp = (ek, vk) is a randomized
algorithm that takes a security parameter k and a
time parameter T as inputs. Its output pp, comprises
two public parameters: an evaluation key ek and a
verification key vk. By convention, a pp specifies
the input space X and the output space Y .

2) Eval(ek, x) → (y, π) is a deterministic algorithm
that takes an input x ∈ X , outputs the result y ∈ Y
along with a proof π and must run in parallel time T
with poly(log (T), k) processors.

3) Verify(vk, x, y, π) → {True, False} is a deter-
ministic algorithm that outputs whether y ∈ Y is
the correct output of Eval(ek, x). The Verify
algorithm, which is much faster than Eval, must run
in total time poly(log (T), k).

For a Setup that needs secret randomness, such VDF will
require a trusted setup to ensure that even the one that
initializes the protocol does not have a trapdoor to speed up
the VDF computation. For this reason, our implementation
adopts a VDF with a non-trusted setup—specifically, one
constructed based on the class groups of imaginary quadratic
fields proposed by Wesolowski [56].

Additionally, a VDF must satisfy the following properties:

1) Correctness: For all k, T , pp and x ∈ X , if (y, π)←
Eval(ek, x), then algorithm Verify(vk, x, y, π)
must be True.

2) Soundness: A VDF is sound if for all algo-
rithms A that run in time O(poly(T, k)) and
(x, y, π) ← A(k,pp, T), the probability of
Verify(vk, x, y, π) = True but y 6= Eval(ek, x)
is negl(k).

3) σ-sequentiality: A VDF is σ-sequential if (1) Eval
can be computed in T to output (y, π), and (2) no
randomized algorithm with poly(T, k) parallel pro-
cessors can distinguish y with non-negligible prob-
ability before time σ(T), i.e., the guaranteed lower
bound of Eval time with O(poly(T, k)) processors.

In the random oracle model, one can extract a uniformly
random string by applying a hash function to the unpredictable
VDF output. The VDF needs not be pseudorandom to achieve
this goal [12].

In addition, σ-sequentiality implies that one can only obtain
negligible information about y before computing Eval with
time σ(T). A perfect VDF would achieve σ(T) = T , but this
requirement is unrealistic. In practice, it is sufficient to use a
VDF ensuring σ(T) = T −o(T), or even σ(T) = T −εT with
small ε. Recently, there have been several competitions [25],
[10] and research [41] working on accelerating VDF com-
putation. Their results indicate that it remains challenging
for the state-of-the-art hardware and implementation to obtain
σ(T) significantly smaller than T . Therefore, in this paper, we
assume σ(T) to be less than but close to T , i.e., σ(T) . T .

III. THREAT MODEL

An adversary’s goal is to obtain a verifiable result from
the protocol that is to his advantage. Specifically, an adversary
may passively predict or actively bias the inputs of the protocol
to produce such a result. He may also try to manipulate others’
inputs or collude with the organizer and any set of contributors.

We define an honest contribution as one that is random
and unpredictable, and a contributor honest if he validly
contributes an honest contribution and verifies the protocol.
The organizer is responsible for generating the result of the
protocol. However, the organizer is not necessarily honest, and
may collude with the adversary.

The organizer and the contributors can publish messages
to a public bulletin board, which provides correct message
timestamps. An adversary cannot prevent honest parties from
posting and reading information on it, and the posted informa-
tion cannot be modified or removed. In practice, the public
bulletin board could be a public database, e-mail service,
notification service, or blockchain.

We construct HeadStart to defend against polynomially-
bounded adversaries in a synchronous network, where mes-
sages are reliably delivered without delay, assuming that at
least one honest contributor exists. We model cryptographic
hash functions as random oracles. As noted above, a Merkle
tree is constructed using a cryptographic hash function, so a
Merkle tree root can also be considered an output of a random
oracle.

IV. THE HEADSTART PROTOCOL

HeadStart consists of four phases: setup, contribution,
result-generation, and verification. The result-publication (RP)
latency is the time span between the end of contribution and
the end of result generation. HeadStart divides the contribution
phase into L stages and gives the result-generation phase a
“head start” of L − 1 stages, reducing the RP latency to L-
fold.

To explain the HeadStart protocol clearly, we begin with a
special case in which L = 1 before proceeding to the general
case, in which L > 1, where L is the number of contribution
stages. We present the notations in Table I, and illustrate the
special case in Fig. 1 and the general case in Fig. 2. We
describe each phase in the detail below.

Fig. 1: The HeadStart special case in which L = 1

A. Special Case in Which L = 1

Setup phase. The setup phase consists of three sub-phases.
These are: (1) parameter initialization, in which the organizer

3

chooses the security parameter k, a cryptographic hash func-
tion H , and a σ-sequential verifiable delay function V DF =
(Setup,Eval,Verify) with k-bit security level, and also
decides the time parameters: τstart, tcontri, ε, and tvdf , where
σ(tvdf) > tcontri + ε, tcontri = Tcontri and tvdf = Tvdf ; (2)
VDF setup, in which the organizer runs pp← Setup(k, tvdf)
to configure the VDF; and (3) parameter publication, in which
the organizer publishes all the above parameters, including
k,H, V DF, τstart, tcontri, ε, tvdf ,pp = (ek, vk) to the bul-
letin board.

Contribution phase. The contributors save the published
parameters and publish random values to the bulletin board
as the contribution xi, where xi is in the range [0, 2k). After
the end of this phase, the organizer gathers the contributions
(x1, x2, · · · , xC) from τstart to τstart + tcontri.

Before entering the next phase, the organizer computes
and publishes the Merkle tree root xroot and audit paths
for each contributor to the bulletin board within time of
length ε after the end of the contribution phase, which
is subject to tcontri + ε < σ(tvdf), where xroot ←
Merkle TreeH(x1, x2, · · · , xC).

Result-generation phase. Although the final result y is
unknown at this moment, it actually has been determined be-
cause xroot has been published. The organizer then computes
(y, π)← Eval(ek, xroot) to obtain the result y and the VDF
proof π. This computation takes tvdf time. Lastly, the organizer
publishes y and π to the bulletin board. As a result, the result
publication occurs around tvdf + ε after the contribution phase
ends.

Verification phase. After result publication, contribu-
tors can verify the proof-of-inclusion and proof-of-VDF-
correctness to assure that HeadStart’s result is unpredictable
and bias-resistant. To verify the proof-of-inclusion, each of
the contributors acquires his Merkle tree audit path from the
bulletin board, and then computes the root r with the audit
path from his contribution xi. If the computed root r matches
the published root xroot, then proof-of-inclusion is deemed
to be verified. To verify the proof-of-VDF-correctness, the
contributor first confirms that the publication time of xroot
is within time of length ε after the contribution phase, then
computes Verify (vk, xroot, y, π), and accepts the proof-of-
VDF-correctness if Verify returns True.

B. General Case in Which L > 1

The major advantage of HeadStart is that it provides a
parameter L that can be configured to reduce the RP latency L-
fold while preserving security. In the general case, we extend
the special case by dividing the phases into L stages and
thus give its result-generation a head start of L − 1 stages.
Consequently, the RP latency of HeadStart can be reduced to
around Tvdf

L .

Setup phase. The setup phase is made up of three sub-
phases: (1) parameter initialization, in which the organizer
chooses a parameter L, representing the number of contribution
stages, along with the parameters as described in the special
case, making tcontri = Tcontri

L and tvdf =
Tvdf

L . (2) VDF
setup, in which the organizer computes pp← Setup(k, tvdf)
to setup the VDF ; and (3) parameter publication, in which

TABLE I: Notations.

Notation Description
L The number of divided contribution stages
C The number of contributions
k The number of bits of security level

τstart The start time of the contribution phase
Tcontri The duration of the contribution phase
tcontri The duration of a contribution stage
ε The duration of computing the Merkle tree root

Tvdf The duration of the result-generation phase
tvdf The duration of the VDF

σ(tvdf) The lower bound of Eval with O(poly(T, k)) processors
xi The value of ith contribution
xi,j The value of ith contribution in stage j
xroot The root value of the Merkle tree
xroot,j The root value of the Merkle tree in the jth stage
yj The randomness result in the jth stage
πj The VDF proof in the jth stage
|| The string concatenation operation

the organizer publishes L and other previously described
parameters to the bulletin board.

Contribution phase. The contribution phase is divided into
L stages, each spans tcontri and acts as a shorter contribution
phase in the general case. After the jth contribution stage ends,
the organizer computes and publishes the jth Merkle tree root
xroot,j , and the audit paths for each contributor, within time
of length ε.

Result-generation phase. This phase is also divided into L
stages. The organizer computes (y1, π1)← Eval(ek, xroot,1)
for the first stage (j = 1), and computes (yj , πj) ←
Eval(ek,H(xroot,j ||yj−1)) for all the other stages (j > 1). In
the last result-generation stage (j = L), the result yL is used as
the result of the randomness generation. After yL is computed,
the organizer publishes all the values y1, · · · , yL, π1, · · · , πL
to the bulletin board around the time of length L× tvdf + ε−
(L− 1)× tcontri after the contribution phase.

Verification phase. Contributors can verify the proof-of-
inclusion and the proof-of-VDF-correctness after the result-
publication. To verify the former, they acquire their audit paths
from the bulletin board and follow the same process as in
the special case. For the latter, they need to verify that all
xroot,j is published within time of length ε after the end
of jth contribution stage, and all L VDFs were correctly
computed by running Verify for each stage j. When j > 1,
Verify (vk,H(xroot,j ||yj−1), yj , πj) must return True, and
when j = 1, Verify (vk, xroot,1, y1, π1) must return True.

C. Performance Analysis

HeadStart is designed for public participation where a large
group of ordinary people seeks to ensure fair allocation of
limited social resources. According to this design concept, we
analyze HeadStart’s performance by its RP latency, verification
efficiency, scalability, and usability.

HeadStart provides a parameter L that can reduce the RP
latency. Compared with existing work based on delay functions
or VDFs which result in high RP latency, HeadStart reduces
the RP latency to L×tvdf+ε−(L−1)×tcontri. By setting the

4

Fig. 2: The HeadStart general case in which L > 1

parameters to be tvdf & σ(tvdf) & tcontri + ε & tcontri, the
RP latency would be approximately tvdf , which is L times less
than the previous work’s. Consider when the allocation is about
medical supplies or refugee housing. This acceleration would
be extremely important because it allows the contributors to
have a reasonably long time to register and contribute to ensure
the fairness of participation and meanwhile guarantees them to
receive the result significantly faster than previous work.

The verification complexity of HeadStart is O(L ×
polylog(T)+logC) only because an honest contributor is only
required to verify L VDFs and one Merkle tree. Although the
VDF proof size grows linearly with the stage number L, we
can adopt a VDF supporting proof aggregation [56], which can
aggregate L VDF proofs into a single one, to reduce the proof
size further.

About the scalability of HeadStart, the communication and
verification complexity of a contributor are both O(logC) only
with respect to the number of contributions C. In addition,
HeadStart allows a large dynamic set of contributors to freely
participate within the contribution phase without preregistra-
tion, whereas previous work [19], [53], [52] assumes a fixed
set of participants which cannot be more or less during the
protocol execution. Their requirements impair the scalability of
public participation where the participants are ordinary people.

The usability of HeadStart is from the low RP latency,
ease of direct participation, and reasonable assumption on the
honest contributors. First, people can contribute in HeadStart
within a reasonably long contribution phase, while the RP
latency can remain considerably low. Second, people can
efficiently verify the result of HeadStart on commodity devices
as we demonstrate in Section VIII. Third, in reality, it is more
convincing and practical to use HeadStart because the public
can easily fulfill the assumption that at least one contributor
is honest via direct participation, rather than asking them to
believe that a system has a majority of honest participants.

In addition, the contributors in HeadStart cannot prevent
the protocol from making progress, which avoids the public

from denying the service whether intentionally or not. Previous
work relies on a majority of honest participants to recover the
unrevealed values [19], [53], or requires them to recompute
the VDF evaluation to obtain the missing values hidden by
the adversaries [52]. For many public participation events, it
is reasonable to place the responsibility of protocol execution
on the organizer such as a government or a large enterprise
instead of spreading upon the participants, since the organizer
has to maintain his public reputation. If the organizer does not
care about its public reputation, it does not have to adopt a
verifiable randomness protocol in the first place.

D. A Use Case of HeadStart: Vaccine Allocation

Let us consider the equitable COVID vaccine allocation
launched in the US [40], [49] in 2021. First, the contribution
phase must be open for a reasonable time interval, such as
several days, for public registration and contribution. Second,
the government starts the result-generation phase. Without
the L-stage optimization provided by HeadStart, the result
publication would have been prolonged for another several
days. However, every hour of delay in the vaccination program
significantly undermines public health.

Using the HeadStart protocol to start an urgent vaccine
allocation event whose registration lasts for L stages, we can
publish the vaccination list L−1 stages earlier. As a result, this
allows people to receive their doses in a fair manner, avoids
the vaccines from expiring, and provides flexible reaction time
for the government.

Although existing randomness beacon protocols can re-
duce their RP latency by decreasing the beacon interval, the
shortened RP latency either requires all participants to register
and contribute within a same beacon period, or re-register
frequently in each interval until they eventually get chosen. To
conclude, the advantages over high-latency randomness bea-
cons [12], [52] mentioned above demonstrate the importance
of HeadStart’s L− 1 stages acceleration.

5

V. SECURITY ANALYSIS

This section provides evidence that HeadStart satisfies the
security properties of participatory randomness generation.
Without loss of generality, we let τstart = 0 in this section.
We use the same notations as described in Table I.

A. Unpredictability

Unpredictability prevents an adversary from predicting the
result before the publication of the Merkle tree root. Since
the Merkle tree root is published right after the contribution
phase ends, an adversary cannot predict the result if an honest
contribution is included.

Lemma 1 (Unpredictability of the special case). When L = 1,
an adversary Eve can not predict the result before the publi-
cation of the Merkle tree root.

Proof: Suppose an honest contribution is submitted at
time τs ∈ [0, tcontri]. Eve cannot predict the result before
time τs + σ(tvdf) because of σ-sequentiality. Also, HeadStart
requires the server to publish the Merkle tree root before
tcontri + ε, so Eve cannot predict the result before the publi-
cation since tcontri + ε < τs + σ(tvdf).

Next, we prove the unpredictability of jth result-generation
stage’s output in the general case with L stages.

Lemma 2. If an honest contribution is included within any of
the first j contribution stages (1 ≤ j ≤ L), an adversary
Eve cannot predict the jth result-generation stage’s output
yj before the publication of the Merkle tree root of the jth

contribution stage.

Proof: We prove it by induction.

For the case when j = 1, the honest contribution must be in
the first (and only) contribution stage. According to Lemma 1,
Eve cannot predict the output before the publication of the
Merkle tree root of this (first) contribution stage.

Assuming that the statement holds when j = j′: if an
honest contribution is included within any of the first j′
contribution stages (1 ≤ j ≤ L), Eve cannot predict the j′th
result-generation stage’s output yj before the publication of
the Merkle tree root of the j′th contribution stage.

When j = j′ + 1, there are two possible cases: the honest
contribution is either within the first j′ contribution stages, or
in the (j′ + 1)th stage.

Case 1: The honest contribution is within the first j′
contribution stages. According to the induction hypothesis,
Eve cannot predict the output yj′ before the publication of
the Merkle tree root of the j′th contribution stage. So yj′ is
unpredictable at time tcontri×j′ for Eve, and so is the (j′+1)th

result-generation stage’s input H(xroot,(j′+1)||yj′). By σ-
sequentiality, Eve cannot predict the (j′+1)th result-generation
stage’s output yj′+1 before time tcontri × j′ + σ(tvdf). Also,
HeadStart requires the server to publish the Merkle tree root
of the (j′+1)th contribution stage before tcontri×(j′+1)+ε,
so Eve cannot predict the result before the publication because
tcontri× (j′+1)+ ε < tcontri× j′+σ(tvdf), which is the end
of the (j′ + 1)th contribution phase.

Case 2: The honest contribution is in the (j′ + 1)th con-
tribution stage. Suppose the honest contribution is submitted
at time tcontri × j′ + τs, where τs ∈ [0, tcontri], then the
(j′ + 1)th result-generation stage’s input H(xroot,(j′+1)||yj′
is unpredictable for Eve at time tcontri × j′ + τs. By σ-
sequentiality, Eve cannot predict the (j′+1)th result-generation
stage’s output yj′+1 before time tcontri×j′+τs+σ(tvdf). Also,
HeadStart requires the server to published the Merkle tree root
of the (j′+1)th contribution stage before tcontri×(j′+1)+ε,
so Eve cannot predict the result before the publication because
tcontri × (j′ + 1) + ε < tcontri × j′ + τs + σ(tvdf).

Thus, as shown by Cases 1 and 2, the statement holds
when j = j′ + 1. By induction, the statement holds for every
j (1 ≤ j ≤ L).

Then we use Lemma 2 to prove the unpredictability of the
general case with L stages.

Theorem 1 (Unpredictability). An adversary Eve can not
predict the result before the publication of the final Merkle
tree root.

Proof: We apply j = L on Lemma 2: An adversary
Eve cannot predict the Lth result-generation stage’s output
yL before the publication of the Merkle tree root of the Lth
contribution stage if an honest contribution is included within
any of the first L contribution stages. The assumption holds
because HeadStart assumes that there exists at least one honest
contribution and there are exactly L contribution stages. Also,
the Lth result-generation stage’s output yL is the result, and
the Merkle tree root of the Lth contribution stage is the final
Merkle tree root. So we can conclude that Eve cannot predict
the result before the final Merkle tree root.

B. Bias Resistance

Bias resistance defends against adversaries who can con-
tribute to or manipulate the input from leading the result to
their advantage. Although the adversaries may change the
result, we show that they cannot predict the changed result
to gain advantages.

Theorem 2 (Bias resistance). An adversary Eve cannot ac-
tively manipulate the result in a meaningful (i.e., predictable)
way.

Proof: In the HeadStart protocol, the only inputs that Eve
can manipulate are the leaves of the Merkle tree. Eve can add,
exclude, and reorder the leaves. If Eve excludes an honest
contribution, then the proof-of-inclusion of that contribution
can not be provided and the result would not be accepted.
In other cases, there is still at least one honest contribution.
Following the unpredictability of HeadStart (Theorem 1), Eve
cannot predict the result before the publication of the final
Merkle tree root, no matter what kind of manipulation is
performed. Therefore, Eve can not influence the result in a
meaningful way. After the publication of the final Merkle tree
root, the inputs of each VDF are unchangeable, so the result
cannot be influenced in any way.

C. Verifiability

An honest contributor can act as a verifier to verify the
unpredictability and bias resistance of HeadStart’s result with

6

the following information:

1) the audit path of the Merkle tree containing the
contributor’s contribution,

2) H,V DF, vk,
3) xroot,j , ∀1 ≤ j ≤ L, and their timestamps,
4) (yj , πj), ∀1 ≤ j ≤ L.

These values are public on the bulletin board, so verifiers
can acquire all these messages. The organizer cannot abort or
refuse to follow the protocol because it will be detected by the
verifiers who check the validity of information on the bulletin
board. If an honest contributor has verified that his contribution
is indeed in the Merkle tree, then there is at least one honest
contribution and thus the unpredictability and bias resistance
hold.

VI. HEADSTART EXTENSIONS

A. HeadStart beacon

HeadStart can be applied to implement a randomness
beacon service [17], [24], [29], [36], [12], [52] by continuously
accepting public contributions and outputting the results from
each stage periodically. It can be viewed as an extension of
HeadStart with endless stages: each stage outputs the result
and passes on the result as an input to the next stage. For
those who want to use the beacon, they can directly contribute
within a range of stages and verify the result in exactly the
same way as HeadStart.

Aside from the advantages inherited from HeadStart, a
HeadStart beacon has another crucial advantage based on
Theorems 1 and 2: every honest contributor can ensure the
security (unpredictability and bias-resistance) of the subse-
quent L stages at the cost of L verifications. Consider when
the beacon interval is configured to be a short time (such as
several minutes) to ensure a low RP latency. In a HeadStart
beacon, the contributors only need to contribute once and
compute L verifications after L intervals to ensure that all
the results within these intervals are secure. Compared with
the existing randomness beacon services [17], [24], [29], [36],
[12], [52], where the contributors must re-register and re-
contribute frequently for the following L stages to achieve
the same purpose, the HeadStart beacon provides an L-fold
trade-off to alleviate the burden.

B. Publicly-verifiable HeadStart

HeadStart can be extended to achieve public verifiability,
which ensures that a third party can verify the correct execution
of the protocol via a protocol transcript.

Recall that in HeadStart, a contributor accepts the verifi-
cation if his honest contribution is included because this is
enough to ensure unpredictability and bias-resistance of the
result. Although contributors can provide contributions for a
third party to verify, HeadStart does not strictly achieve the
above definition of public verifiability because this verification
does not ensure the inclusion of other contributions.

We can extend HeadStart to be publicly verifiable by
requesting verifiers to recompute the Merkle tree from all
contributions. Alternatively, we can replace the Merkle tree
with a hash chain where chain1 = H(x1), chaini =

H(chaini−1||xi) for i > 1, and using the result as the input
of the VDF in each stage. Via these modifications, the verifiers
can ensure that all contributions are correctly included by
recomputing the Merkle tree or the hash chain. Both of them
increase the verification and communication complexity from
O(logC) to O(C), and the hash chain version has a constant
factor improvement.

Formally, third parties and honest contributors can verify
the result in the hash chain version of publicly-verifiable
HeadStart by using the following public information:

1) all the contributions (x1, x2, · · · , xC) within the con-
tribution phase,

2) H,V DF, vk,
3) xchain,j , ∀1 ≤ j ≤ L, and their timestamps,
4) (yj , πj), ∀1 ≤ j ≤ L.

These values are public on the bulletin board, so third
parties and honest contributors can recompute the hash chain
in each stage to verify proof-of-inclusion of every contributor,
construct the input of VDF, and verify the protocol the same
way as in HeadStart.

Frankly, public verifiability is not required for public partic-
ipation scenarios because anyone who wants to verify the result
can easily participate within the HeadStart protocol. HeadStart
allows a large dynamic set of contributors to participate,
whereas previous schemes [19], [53], [52] assume a fixed set of
participants throughout the protocol execution. Those schemes
are designed for the case when a group of preregistered or
private users wants to generate verifiable random outputs for
others outside the group, so they need to achieve public
verifiability to convince those outside the group. In those
schemes, public verifiability is based on the assumption that
the majority of the preregistered users are honest; otherwise,
their security is unverifiable because third parties do not know
the number of honest users.

It is practical and convincible for public participation
events to use HeadStart because the public can easily fulfill
the assumption that at least one contributor is honest via direct
participation, rather than asking them to believe that a system
has a majority of honest users or nodes.

VII. IMPLEMENTATION

This section describes how we implement a fully functional
HeadStart system with improved performance to demonstrate
its practicality. We first describe our VDF selection criteria and
the construction of the VDF in Section VII-A, because our
improvements are highly related to its detailed construction.

We present our two implementation-specific improvements:
(1) ClHash, an efficient algorithm that hashes to a class group
of an imaginary quadratic field, which brings class-group VDF
proof aggregation from theory into practice (§VII-B), and
(2) determined hash prime iteration, which can further speed
up the initialization of verification (§VII-C). In addition, we
describe our programming language choices for our HeadStart
implementation (§VII-D).

7

A. VDF Selection and Construction

a) VDF selection: We choose to use Wesolowski’s
class-group VDF [56], which will be referred to as class-
group VDF, for three reasons. First, the verification of class-
group VDF is very efficient because its complexity of group
operations is O(1), faster than the formal requirement of
VDF, which is poly(log (T), k). Second, it is based on groups
of unknown order and can be initialized without a trusted
setup. Third, it supports proof aggregation in theory [56],
allowing further reductions in the proof size, and we present
our algorithm ClHash to bring this theory into reality.

Although using a succinct argument with a sequential
function (e.g., a hash chain) is a straightforward method to
construct a VDF, we did not use SNARKs [15], [30] because
of its trusted setup requirement. As for STARKs [8], its
proof size and verification complexity are poly(log (T), k).
For public participation choosing large T because of the need
for a long contribution phase, it is better to use a class-group
VDF because the verification complexity of its costly group
operations is only O(1).

b) Class-group VDF construction: We now briefly in-
troduce the construction of the class-group VDF proposed
by Wesolowski [56] to provide sufficient information before
presenting our improvements in the following subsections.

The basis of class-group VDF is the class group of an
imaginary quadratic field. In practice, the binary quadratic
form is used to represent the group elements, defined as
follows.

(a, b, c) = ax2 + bxy + cy2 ∈ Z[x, y] (1)

The discriminant of (a, b, c) is d = b2−4ac if d ≡ 1 (mod 4).
When d < 0, each (a, b, c) uniquely represents an element
in the class group of an imaginary quadratic field with dis-
criminant d. The notation Cl(d) represents a class group with
discriminant d.

Wesolowski’s work provides a non-interactive VDF proof
based on the Fiat-Shamir heuristic. It takes the following
parameters: a hash function d ← HD(x) mapping an input
string x to a discriminant d, a group Cl(d), a hash function
g ← HCl(x, d) mapping an input string x to a group element
g = (a, b, c) ∈ Cl(d), a time parameter T , a security parameter
k`, a uniformly random string xroot (which in HeadStart is
the Merkle tree root), and a hash function Hprime mapping
an input string onto a prime p (where 2k`−1 < p < 2k`). We
denote bin(s) as the binary representation of s and || as the
string concatenation. Its process is as follows:

1) The prover takes the string xroot as the input, com-
putes d ← HD(xroot), g ← HCl(xroot, d), and
evaluates the group operations as y ← g2

T

, where
y ∈ Cl(d) is the outcome.

2) The prover computes ` ← Hprime(bin(g)||bin(y)),
and generates the proof via π ← gq , where q =⌊
2T /`

⌋
; and finally, sends y and π to the verifier.

3) The verifier receives the outcome y and π, then
computes the discriminant d← HD(xroot), the group
element g ← HCl(xroot, d), the non-interactive chal-
lenge prime ` ← Hprime(bin(g)||bin(y)), and the

remainder r = 2T mod `. Finally, The verifier
accepts the result if π`gr = y.

This process allows individuals to verify the correctness of
the VDF evaluation in a constant number of group operations
with respect to the time parameter T . Additionally, without
knowing the group order of Cl(d), there is currently no
practical way to compute g2

T

faster than directly performing
T sequential squarings. [56] For this reason, the class groups
of imaginary quadratic fields are used to construct such groups
of unknown order.

The class groups were introduced in cryptography by Buch-
mann et al. [16], presenting the difficulty of computing their
orders. Boneh et al. [12] and Wesolowski [56] then describe
its use in constructing VDFs. By selecting a sufficiently large
negative prime discriminant d ≡ 1 (mod 4), the order of a
class group Cl(d) is believed to be hard to compute [34], [35].
Hence, class-group VDF is used to construct a VDF without
a trusted setup.

In order to reach a 128-bit security level, Dobson et al. [28]
proposed that one must set the discriminant to 6,656 bits.
Also, Belabas et al. showed a specific form of discriminant
called trapdoor discriminant, which breaks the unknown order
property [6]. They further stated that the probability of having a
trapdoor discriminant is negligible if the discriminant is chosen
at random. Thus, we adopted these suggested settings in our
implementation to ensure a sufficient level of security. Below,
we denote the bit-length of a discriminant as kd; when we
make reference to “kd-bit discriminant d”, it means d must
meet the condition 2kd−1 < |d| < 2kd .

c) VDF proof aggregation: We describe how we can
aggregate HeadStart’s L VDF proofs to a single proof to
show the correctness of multiple VDFs based on Wesolowski’s
theory [56].

First, the prover computes: gj ← HCl(d)(xroot,j), s =
bin(g1)|| · · · ||bin(gn)||bin(y1)|| · · · ||bin(yn), ` ← Hprime(s)
and αj ← int(H(bin(j)||s)). Second, the prover computes
and publishes the aggregated proof π̃ ∈ Cl(d) as follows:

π̃ =

 L∏
j=1

g
αj

j

b2
T /`c

(2)

Finally, the contributor can verify VDFs of all L stages by
computing r = 2T mod ` and accepts if

π̃`

 L∏
j=1

g
αj

j

r

=

L∏
j=1

y
αj

j (3)

However, the procedure g ← HCl(x, d) is an abstact
function defined as HG in Wesolowski’s paper [56]. In fact,
it is not trivial to construct a function g ← HCl(x, d) that
receives a string x and a large negative prime as discriminant
d to output a g = (a, b, c) ∈ Cl(d) with respect to x. As a
result, we invent ClHash, an algorithm that solves this problem
and concretizes this abstract function.

8

B. ClHash

We invent an algorithm (ClHash) to construct an efficient
hash function that maps a string to a class group of an
imaginary quadratic field. To the best of our knowledge,
ClHash is the first efficient implementation to bring class-
group VDF proof aggregation from theory into practice.

To construct ClHash, we state the problem as follows.
Given an input x and a large negative prime discriminant d,
where d ≡ 1 (mod 4), find the g = (a, b, c) ∈ Cl(d) with
respect to x such that d = b2 − 4ac and c ≥ a ≥ |b|. We
present the pseudo-code of our algorithm in Fig. 3, and the
following is the procedure with detailed explanation of our
algorithm:

1) We use x to deterministically generate a prime a
where a ≡ 3 (mod 4).

2) By observing d = b2−4ac, we can see that 4 | b2−d,
so b must be an odd number. As a result, we have to
find an odd number b satisfying b2 ≡ d (mod a) to
ensure that c = b2−d

4a is also an integer.
3) We adopt Euler’s criterion: there is an integer b such

that b2 ≡ d (mod a) ⇐⇒ d
(a−1)

2 ≡ 1 (mod a), to
test whether a satisfies the requirement. According
to [26], the success rate of this step is about 50%.

4) If a satisfies the requirement, we can compute b ≡
d

a+1
4 mod a to satisfy b2 ≡ d (mod a), because

b2 ≡ (d
a+1
4)2 = d

a+1
2 = d·d a−1

2 ≡ d·1 ≡ d (mod a).
5) If the final b is not an odd number, let b ← a − b.

This is because if b is even and b2 ≡ d (mod a), then
a− b is an odd number and (a− b)2 ≡ d (mod a).

6) Finally, we obtain the element g = (a, b, b
2−d
4a) ∈

Cl(d).

We analyze the image of ClHash for the security of
the VDF construction. According to the prime number theo-
rem [26], the number of prime numbers ≤ N is π(N) ≈ N

ln(N) ,
so the number of 256-bit prime numbers is π(2256)−π(2255) ≈
2247.5. By Dirichlet’s theorem on arithmetic progressions,
prime numbers are equally distributed between the classes of
the form 4K + 1 and 4K + 3, so there are about 2246.5 256-
bit primes congruent to 3 mod 4. Now the question is: Given
a 6656-bit prime number d, how many of these 2246.5 prime
numbers a satisfying the constraint that d is a quadratic residue
modulo a? To answer this question, we can see that given one
of these a, half of the number are a quadratic residue modulo
a according to Euler’s criterion. Since the distribution of d is
not related to a, we can estimate that about half of the 6656-
bits prime numbers are a quadratic residue modulo a. In other
words, half of these (a, d) pairs are valid pairs. Putting these
together, given a 6656-prime number d, the expected number
of valid a is half of the 2246.5 256-bit prime numbers congruent
to 3 mod 4, which is 2245.5.

To analyze the time complexity of ClHash, let itera be the
expected number of iterations needed to generate a prime with
kl bits. For each generated prime, the success rate of passing
the primality test is about 50% in step (3), so we need 2 ×
itera iterations in expectation to generate a. Because ClHash’s
computation is dominated by a’s generation (b and c can be
efficiently computed), ClHash’s expected time complexity is
about 2× itera primality tests with kl-bit numbers..

1 def ClHash(x, d, k_l):
2 while True:
3 sprout = sha256(x).hexdigest()
4 a = int(sprout, 16)
5 a |= (1<<(k_l-1))
6 # make a=3(mod 4)
7 a |= 3
8

9 if isprime(a):
10 if pow(d, (a-1)/2, a)==1:
11 b = pow(d, (a+1)/4, a)
12 if b%2!=1:
13 b = a-b
14 c = (b*b-d)/(4*a)
15 return (a, b, c)
16

17 # Increamentally change the sprout
18 # to generate next candidate.
19 t = ""
20 for i in range(0, len(sprout)):
21 t += chr(ord(sprout[i]) + 1)
22 x = t

Fig. 3: Pseudo-code of ClHash, a hash function which receives
given string x, discriminant d and security parameter kl for a
to generate a group element (a, b, c) ∈ Cl(d).

C. Determined Hash Prime Iteration (DHPI)

Our second improvement is determined hash prime itera-
tion (DHPI), which can speed up the verification further by
skipping those failed primality tests.

To verify the VDFs, contributors need to compute d ←
HD(x, kd), whose pseudo-code is presented in Fig. 4, to obtain
the discriminant. HD involves a primality-test procedure for
verifying whether the discriminant candidate d is a prime.
However, most of its running time is spent on failed primality
tests, and it is time-consuming to find a valid 6,656-bit
discriminant.

DHPI allows contributors to skip failed primality tests and
verify the correct one directly, thereby significantly reducing
the verification overhead. To achieve this, the organizer is
asked to provide iterd (i.e., the number of iterations needed
to generate the corresponding d) and publish it together with
the Merkle tree root. The contributors can skip the primality
tests in the first iterd − 1 iterations, and only run it in the ith
iteration to ensure that the final d is truly a prime.

To prevent an adversary from gaining advantage by repeat-
ing the iteration until it gets a trapdoor discriminant, we set an
upper bound of iterd to ensure that the probability of finding
a trapdoor discriminant within iterupper is negligible. During
the verification phase, contributors can choose to calculate d
if iterd ≤ iterupper is false, which occurs rarely, as estimated
below.

We perform an estimation on the probability of HD failure
when setting iterupper (fix kd = 6656). First, by prime
number theorem [26], the number of 6656-bit prime numbers
is π(26656) − π(26655), where π(N) ≈ N

log(N) is the prime-

counting function. The number is approximately 26656

6656 ln 2 −
26655

6655 ln 2 = 26655 6654
6656·6655 ln 2 . By Dirichlet’s theorem on arith-

metic progressions [54], prime numbers are equally distributed
between the classes of form 8K+1, 8K+3, 8K+5, 8K+7.
Therefore, when choosing a candidate d of form 8K+7 in each
iteration of HD, it has probability p = 2·6654

6656·6655 ln 2 to pass the

9

1 def H_D(x, k_d):
2 while True:
3 sprout = sha256(x).hexdigest()
4 d = int(sprout, 16)
5 d |= (1<<(k_d-1))
6 d |= 7
7

8 # In our optimized implementation
9 # Organizer directly tell contributors

10 # which iteration of the while loop
11 # will pass this primality test.
12 if isprime(d):
13 return -d
14

15 # Increamentally change the sprout
16 # to generate next discriminant candidate.
17 t = ""
18 for i in range(0, len(sprout)):
19 t += chr(ord(sprout[i]) + 1)
20 x = t

Fig. 4: Pseudo-code of HD, a function returning a kd-bit
negative prime d ≡ 1 (mod 8).

primary test, and the probability that the organizer fails to find
a valid discriminant within iterupper steps is approximately
(1− p)iterupper . By setting iterupper = 105, the probability is
about 9× 10−10.

D. Implementation Details

Our VDF implementation, AggVDF, adopts our ClHash
algorithm to support proof aggregation in class groups of
imaginary quadratic fields and supports DHPI. With ClHash,
which can map strings into class groups with identical discrim-
inants, AggVDF can create multiple elements with the same
discriminant to compress their size. Compared with existing
implementations [1], [4], [38], in which all the group elements
must be represented in the form of (a, b, d) with different d,
our elements can be easily represented in the form of (a, b) to
further reduce the proof size.

In addition, we set the bit-length of discriminant to be
6,656 bits as proposed by Dobson et al. [28]. To reach a 128-
bit security level, 6,656-bit is a much secure discriminant bit
length, whereas most of the current implementations of class-
group VDFs [20], [38], [4] use much smaller 512-bit, 1024-bit,
or 2048-bit discriminants, thereby providing insufficient levels
of security.

Our AggVDF adopts the available implementation of class-
group evaluation provided by Chia Network [1] because Chia
Network held worldwide competitions for the fastest imple-
mentation of class-group VDFs [21] to reduce the chance that
an adversary gains advantage via faster VDF evaluation. We
will refer to Chia Network’s implementation as the ChiaVDF.

Our implementation of HeadStart contains a server for the
organizer and clients for contributors. On the server side, we
implement the VDF in C++ and the rest in Golang. On the
client side, we implement HeadStart as a mobile native appli-
cation and a web application. The mobile application is written
in Objective-C and Objective-C++, and the web application is
written in WebAssembly. Both Objective-C++ and WebAssem-
bly use the same C++ code base, with cross-compilation to
ensure implementation consistency and good performance. Our

code can be accessed via this link: https://github.com/csienslab.
We plan to open-source our implementation after publication.

VIII. EVALUATION

We evaluate HeadStart’s scalability and usability to demon-
strate its practicality in public participation. Our usability
metrics are verification efficiency and RP latency, where the
former aims to increase ease of participation so that the
contributors can easily join HeadStart with their own mobile
phones, and the latter aims to provide fast result publication
with a sufficiently long contribution phase for the public.

We evaluate HeadStart using both theoretical analysis and
experiments based on the ClHash and DHPI implementation
presented in Section VII. We examine its RP latency and
verification cost under different numbers of contribution stages
(L) and types of commodity devices. Our results confirm that
HeadStart achieves efficient verification and low RP latency, as
the verification time is consistently low on commodity devices
with realistic settings.

Specifically, we conduct experiments to answer the follow-
ing research questions:

1) Scalability: Does the scale of contributions affect the
performance of the verification? (§VIII-A)

2) Verification efficiency: How efficient is HeadStart’s
client verification? How effective is our DHPI? How
much proof size can we reduce via proof aggregation?
(§VIII-B, §VIII-C)

3) RP latency: What are the factors influencing the
length of the RP latency in practice? (§VIII-D)

To further ensure practicality in public participation, we
aim to suggest a practical parameter setting not only on generic
mobile phones and laptops but also on old mobile phones.
As a result, we use iPhone 6 (two cores and used for seven
years) to represent old mobile phones, iPhone XR (six cores)
to represent generic mobile phones, and MacBook (2.3 GHz,
four cores, Intel Core i7) to represent laptops, in order to
demonstrate the practicality on these devices.

A. Scalability of HeadStart

To show that HeadStart can scale to a large number of
contributions, we analyze the communication complexity from
two perspectives, that of the organizer and that of a contributor,
as C grows, and we evaluate its verification complexity with
respect to the number of contributions (C).

The communication complexity with respect to the number
of contributions can be evaluated by the space complexity
of the communication messages within HeadStart. For the
organizer, it takes O(C logC) space complexity to gather C
contributions and post C audit paths of the Merkle trees to non-
interactively show the proof-of-inclusions to each contributor.
For the contributors, each of them takes O(logC) space
complexity to read his audit path of the Merkle tree for proof-
of-inclusion. As a result, the communication complexity for
each contributor is quite small, increasing ease of participation.

Recall that HeadStart’s verification complexity is O(L ×
polylog(T)+logC), where O(L×polylog(T)) is for verifying
L class-group VDFs and O(logC) is for proof-of-inclusion.

10

https://github.com/csienslab

1 · 106 2 · 106 3 · 106 4 · 106 5 · 106 6 · 106 7 · 106 8 · 106 9 · 106 1 · 107

Number of contributions (C)

0

500

1000

1500

2000

2500

3000
V

er
ifi

ca
tio

n
tim

e
(m

ic
ro

se
co

nd
s)

MacBook (Browser)
MacBook (Native App)
iPhone XR (Browser)
iPhone XR (iOS App)
iPhone6 (Browser)
iPhone6 (iOS App)

Fig. 5: Verification time of proof-of-inclusion with respect to
C, which is of logarithmic growth.

Validating a proof-of-inclusion in HeadStart can be done
efficiently, as it requires only O(logC) hash computation and
storage. A hash function such as SHA256 can be computed
in a few microseconds on commodity devices.1 We evaluate
the speed of the proof-of-inclusion verification on different
platforms as C increases and confirm that the time grows
logarithmically, as shown in Fig. 5. Moreover, it takes only
three milliseconds to verify when C = 10M on the slowest
platform, a browser-based implementation on an iPhone 6.
Hence, our HeadStart protocol provides high scalability in
practice.

B. Verification Efficiency (L = 1)

We present the verification efficiency on both desktop
(MacBook) and mobile devices (iPhone XR and iPhone 6)
when L = 1 before advancing to L > 1 for ease of
understanding. Aside from the results of native macOS and iOS
applications, we also present the experiment results of our We-
bAssembly implementation running on the different devices’
browsers. Although native applications usually perform better
than browser applications, we still conduct this experiment to
test HeadStart’s feasibility on built-in browsers because using
built-in browsers is more convenient than native applications
for the contributors. In this evaluation, we choose a length of
Tvdf = 24h result-generation phase and fix C to be one million
because the verification of proof-of-inclusion is relatively fast
as discussed in Section VIII-A.

As shown in Table II, the results with DHPI on different
platforms are about five times faster than those without this
optimization. By adopting DHPI, the verification can finish
within several seconds on native applications and in around
a minute when using the browser on iPhone 6. Note that
increasing the time parameter T of class-group VDF does not
drastically increase the execution time of verification. Namely,
with a reasonable length of the result-generation phase, such
as several days or weeks, the contributors can always verify
in around the time lengths shown in Table II if L = 1.

1It takes around 26µs to perform one SHA256 hash on an iPhone 6 with a
256-bit input.

TABLE II: Verification time of HeadStart with/without DHPI
(L = 1, C = 1M , Tvdf = 24h).

Platform Without DHPI With DHPI
MacBook (Native App) 9.63s 1.74s
iPhone XR (iOS App) 33.36s 6.21s
iPhone 6 (iOS App) 94.60s 16.17s
MacBook (Browser) 127.37s 29.76s

iPhone XR (Browser) 143.26 30.33s
iPhone 6(Browser) 413.5199s 84.985s

However, we discovered that the browser implementation
on mobile phones provides less than ideal user experience
when L grows larger. First, the runtime of the verification
procedure will be stalled when the browser tab is moved to
the background. As a result, the contributor needs to keep
his browser tab in the foreground for several minutes until
the verification is completed. Second, multithreading is rarely
supported in mobile browsers [47], and the only platform
supporting this feature so far (Firefox57 on Android) has
disabled it by default to mitigate speculative execution side-
channel attacks [47]. However, in the case when L > 1, we can
adopt parallel computing to accelerate the procedure because
the verifications of L VDFs can be performed independently.
Although these are some real-world technical details, we still
present the experiments of browsers for future investigations.
Consequently, our current suggestion of client implementation
on mobile phones is to use native mobile applications.

C. Verification Efficiency (L > 1)

The verification’s space and time overheads grow roughly
linearly with the stage number L, because the complexity of
the costly operations of class groups in each stage is O(1)
with respect to the time parameter T . In addition, the L VDF
proofs can be reduced to a single proof π̃ via proof aggregation,
and we can accelerate the verification of L VDFs by parallel
computing. Consider the case when the contribution phase is
opened for a week. Our experiment shows that everyone can
receive the result in around 1 hour and 41 minutes after the
contribution phase ends by setting L = 100, while previous
work [17], [22], [44], [45], [32], [13], [12], [52] needs to delay
for another whole week. Hence, we consider this a reasonable
parameter suggestion. In this evaluation, we set Tvdf = 24h
and start the parameters from L = 100.

The verification proof is composed of the audit path of the
Merkle tree, the inputs xroot,j , outputs yj , and proofs πj of
VDFs across L stages. As shown in Table III, our AggVDF
has a much smaller proof size than ChiaVDF. Specifically,
each increment in L when L > 1 will increase the difference
of our proof sizes by roughly 2 × 832 bytes. We explain the
reason in detail from two aspects. First, ChiaVDF has to use
different discriminants with different input strings [2] because
it does not implement our ClHash function. As a result, it
requires L−1 additional space to represent those additional dis-
criminants, which are large negative primes (832 bytes) where
26655 < |d| < 26656. Second, ChiaVDF cannot use proof
aggregation because all the VDFs are in different class groups
with different discriminants, and each proof is also around 832
bytes because d = b2 − 4ac. Consequently, ChiaVDF requires
additional space for L− 1 more discriminants and proofs.

11

TABLE III: Comparison of the Total Proof Size

L ChiaVDF HeadStart AggVDF
100 334 KB 169 KB
150 500 KB 252 KB
200 667 KB 336 KB
250 833 KB 419 KB

Note. This table presents the comparison of total proof size of one contributor, which
includes the audit path, (xroot,j , yj) ∀1 ≤ j ≤ L and the aggregated proof π̃.

The verification of L VDFs can be computed in parallel
because the group operations can be independently executed
as shown in Equation 3. To investigate how well these tested
devices can perform when set to the best condition, we present
the multithreading results in Fig. 6, and the hyperthreading of
MacBook is enabled. The results, when given different L, are
influenced by the verification of the aggregated proof (Equation
3). The contributors have to compute the group operations gαj

j ,
where αj are the SHA256 checksums in practice. Therefore,
every additional L results in the execution of a large number
of additional operations.

MacBook iPhoneXR iPhone6
0

20

40

60

80

100

V
er

ifi
ca

tio
n

tim
e

(s
ec

on
ds

)

3.39

10.79

37.99

4.26

14.07

54.11

5.17

18.15

76.10

6.21

30.58

96.78L=100
L=150
L=200
L=250

Fig. 6: Verification time on different devices

D. Influencing factors of RP Latency

The factors that might influence the length of RP latency
are the time to gather contributions, build Merkle trees, publish
audit paths and roots, evaluate VDFs, and publish the final
result. In reality, the organizer can prefetch the contribu-
tions and prebuild the Merkle trees during the contribution
phase. Besides, the audit paths and roots can be published
simultaneously without delaying the procedures because VDF
evaluations can be started right after their inputs are ready.
The organizer simply needs to ensure that the publications will
be available in time to fulfill HeadStart’s requirements. The
delay of the final result publication depends on the system
implementation’s network latency. As a result, the primary
factor that we should discuss is the time variation of the VDF
evaluation.

We then discuss how the variation of a VDF’s evaluation
time affects the RP latency. Although ideally, a VDF should
run for tvdf time consistently in every stage, the actual duration
may be slightly different and longer than tvdf because of the

8.00 8.05 8.10 8.15 8.20 8.25 8.30 8.35 8.40
Time (s)

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

Pe
rc

en
ta

ge

Fig. 7: Variation of the evaluation time of AggVDF when the
bit-length of the discriminant kd = 6656 and the number of
sequential squaring t = 83886.

variation of CPU time. These short delays would accumulate in
each result-generation stage and thus lengthen the RP latency.
However, if the performance of the chosen VDF is stable, then
the short delays would not cause a severe impact. Therefore,
we present our experiment to show that the performance of
our AggVDF is stable.

We deploy our AggVDF on the AWS EC2 instances
(c5.xlarge) with AVX enabled and set its process execution
priority to the highest. We collect 10,000 records and present
their distribution to show the variation. As shown in Fig. 7,
the range of the data is only about 0.3 seconds, where the
minimum is 8.0006 seconds, and the maximum is 8.3995
seconds. Additionally, about 95% of the data are in 8.09
seconds. As a result, we demonstrate that the performance of
AggVDF is relatively stable, which shows that the variations in
VDF evaluation will not significantly lengthen the RP latency.

IX. RELATED WORK

Since the introduction of coin-flipping protocols [11], [7]
and randomness beacons [51], several randomness generation
techniques have been proposed. Algorand [31] and Ouroboros
Praos [27] applied verifiable random functions (VRFs) to
compute and verify the local randomness. In these schemes,
participants are responsible for computing the next randomness
by combining their local randomness with the previously
available randomness to produce the random result. Some
work extracts randomness from Bitcoin [14], [9], [50] or
public financial data [24] for the same purpose. However, these
protocols are not suitable for public participation because they
do not prevent malicious participants from withholding the
random output until gaining advantage as described by [52],
[53].

To defend against biasing attacks, there are mainly two
types of strategies. One delays the inputs of the result gen-
eration, such as commitment scheme, PVSS, and threshold
signature schemes. The other delays the duration of result
generation, such as delay functions and VDFs. The main idea
of them is to prevent an adversary from stealthily crafting a
desirable result.

12

TABLE IV: Comparison of related work by usability and scalability properties

Usability Scalability Misc.

V
er

if
.c

om
pl

ex
ity

R
P

la
te

nc
y

N
o.

of
ho

ne
st

co
nt

ri
bu

to
rs

C
om

m
un

ic
at

io
n

co
m

pl
ex

ity
(a

s
a

co
nt

ri
bu

to
r)

C
ry

pt
og

ra
ph

ic

pr
im

iti
ve

(s
)

Chow et al. [22] O(T + C) O(T) 1 O(C) VRF + delay function
Liu et al. [45] O(T + logC) O(T) 1 O(logC) VRF + delay function
HydRand [53] O(C) % 2C

3 + 1 O(C) PVSS
RandRunner [52] O(C log T) O(T) C

2 O(C) VDF
HeadStart O(L log T + logC) O(T

L) 1 O(logC) VDF

Note. We compare HeadStart with the latest work based on delay functions, PVSS and VDFs. (L = number of divided contribution stages; C = number of contributions; T = time
duration of the contribution phase.)

Many recent schemes, such as Ouroboros [43], RandHound
and RandHerd [55], Scrape [19], and HydRand [53], adopted
PVSS to increase the system availability. By adopting such
threshold cryptographic techniques, the majority of participants
can recover those unrevealed secrets, alleviating the issue in
traditional commitment schemes. However, these protocols
require an honest majority to reveal the secret securely; one
honest contributor is insufficient to guarantee their security.

To delay the duration of the result generation, several
schemes [17], [22], [45] adopt delay functions or time-lock
puzzles but with high verification costs. The recently proposed
RandRunner [52] adopts VDF to construct randomness bea-
cons, which requires a predefined fixed set of participants to
propagate their VDF results in a round-robin manner. Its design
allows an honest participant to compute his own VDF through
the trapdoor in O(log T). However, if there are m malicious
participants who do not propagate their results, the RP latency
will be drastically lengthened by m×T because the remaining
participants need to compute for a length of time T to recover
each missing result.

Most of the recent schemes [19], [53], [19], [52] that we
mentioned assume a predefined fixed set of participants or rely
on an honest majority. One of their main applications is to
generate a verifiable result for the third-party verifiers by a
group of preregistered or private participants with powerful
machines, because these protocols have high communication
or computational overheads. However, in the scenario of public
participation events, it is impractical to ask ordinary people
to participate in such protocol due to the honest majority
assumption. For public participation events, it is much more
convincing for the public to directly contribute, like in Head-
Start, so that they can easily fulfill the assumption that at least
one contributor is honest, rather than asking them to believe
that the system has an honest majority.

The two lottery systems proposed by Chow et al. [22] and
Liu et al. [45] are much more similar to our public participation
scenarios, which open for the public to participate and only
assumes one honest participation. As a result, we present
table IV to summarize representative related protocols: the two
lottery systems [22], [45], HyRand [53], which is the latest
work based on PVSS, and RandRunner, which is the latest
work based on VDF. Because all schemes included in the table
satisfy unpredictability and bias-resistance, we only compare
them based on our desired usability and scalability properties.

X. CONCLUSION

We proposed HeadStart, a participatory randomness proto-
col designed for public participation at scale. HeadStart accepts
the contributions from the public and generates unpredictable
and bias-resistant results that can be efficiently verified on
commodity devices without assuming other contributors are
honest. The contribution phase can be sufficiently long with
low RP latency to produce the result earlier. We present an
algorithm ClHash, the first efficient algorithm that hashes to a
class group of an imaginary quadratic field, bringing proof
aggregation of class-group VDF from theory into practice.
We then evaluate our implementation to show HeadStart’s
feasibility when running on moderate or low-end devices.
Future work includes: (1) the adoption of other groups of
unknown order that can provide 128-bit or higher security with
smaller security parameters, and (2) integration with real-world
applications, such as auditing and social-resource allocation.

ACKNOWLEDGMENTS

We thank Jia-Chi Huo and Peng Lo for precious discus-
sions and their comprehensive writing advice, as well as the
anonymous reviewers for the valuable feedback we received.
This research was supported by the Ministry of Science and
Technology of Taiwan under grants MOST 109-2636-E-002-
021 and 110-2628-E-002-002. This work was performed in
part while Yih-Chun Hu was visiting Academia Sinica and
National Chiao Tung University in Taiwan.

REFERENCES

[1] “Chia network,” https://github.com/Chia-Network/chiavdf, accessed on
2020-09-15.

[2] “The evaluation of chiavdf cannot use the same discriminant with dif-
ferent input strings.” https://github.com/Chia-Network/chiavdf, accessed
on 2020-09-15.

[3] “Hot lotto fraud scandal,” https://www.nytimes.com/interactive/
2018/05/03/magazine/money-issue-iowa-lottery-fraud-mystery.html,
accessed on 2020-12-01.

[4] “Poa network,” https://github.com/poanetwork/vdf, accessed on 2020-
09-15.

[5] “US apologizes for visa lottery error,” https://www.voanews.com/a/us-
mistakenly-tells-22000-they-were-eligible-for-visas-121790664/
174692.html, accessed on 2020-12-01.

[6] K. Belabas, T. Kleinjung, A. Sanso, and B. Wesolowski, “A note on
the low order assumption in class group of an imaginary quadratic
number fields,” Cryptology ePrint Archive, Report 2020/1310, 2020,
https://eprint.iacr.org/2020/1310.

13

https://github.com/Chia-Network/chiavdf
https://github.com/Chia-Network/chiavdf
https://www.nytimes.com/interactive/2018/05/03/magazine/money-issue-iowa-lottery-fraud-mystery.html
https://www.nytimes.com/interactive/2018/05/03/magazine/money-issue-iowa-lottery-fraud-mystery.html
https://github.com/poanetwork/vdf
https://www.voanews.com/a/us-mistakenly-tells-22000-they-were-eligible-for-visas-121790664/174692.html
https://www.voanews.com/a/us-mistakenly-tells-22000-they-were-eligible-for-visas-121790664/174692.html
https://www.voanews.com/a/us-mistakenly-tells-22000-they-were-eligible-for-visas-121790664/174692.html
https://eprint.iacr.org/2020/1310

[7] M. Ben-Or and N. Linial, “Collective coin flipping, robust voting
schemes and minima of banzhaf values,” in 26th Annual Symposium
on Foundations of Computer Science (sfcs 1985). IEEE, 1985, pp.
408–416.

[8] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable,
transparent, and post-quantum secure computational integrity.” IACR
Cryptol. ePrint Arch., vol. 2018, p. 46, 2018.

[9] I. Bentov, A. Gabizon, and D. Zuckerman, “Bitcoin beacon,” arXiv
preprint arXiv:1605.04559, 2016.

[10] B. Blanke, “Chia vdf competition round 2 results and an-
nouncements.” ”https://aws.amazon.com/tw/blogs/startups/competition-
forever-change-blockchain/”, 2019, accessed on 2020-12-01.

[11] M. Blum, “Coin flipping by telephone a protocol for solving impossible
problems,” ACM SIGACT News, vol. 15, no. 1, pp. 23–27, 1983.

[12] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch, “Verifiable delay
functions,” in Annual international cryptology conference. Springer,
2018, pp. 757–788.

[13] D. Boneh and M. Naor, “Timed commitments,” in Annual international
cryptology conference. Springer, 2000, pp. 236–254.

[14] J. Bonneau, J. Clark, and S. Goldfeder, “On bitcoin as a public
randomness source.” IACR Cryptol. ePrint Arch., vol. 2015, p. 1015,
2015.

[15] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit, “Efficient zero-
knowledge arguments for arithmetic circuits in the discrete log setting,”
in Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2016, pp. 327–357.

[16] J. Buchmann and H. C. Williams, “A key-exchange system based on
imaginary quadratic fields,” Journal of Cryptology, vol. 1, no. 2, pp.
107–118, 1988.

[17] B. Bünz, S. Goldfeder, and J. Bonneau, “Proofs-of-delay and ran-
domness beacons in ethereum,” IEEE Security and Privacy on the
blockchain (IEEE S&B), 2017.

[18] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in constantino-
ple: Practical asynchronous byzantine agreement using cryptography,”
Journal of Cryptology, vol. 18, no. 3, pp. 219–246, 2005.

[19] I. Cascudo and B. David, “Scrape: Scalable randomness attested by
public entities,” in International Conference on Applied Cryptography
and Network Security. Springer, 2017, pp. 537–556.

[20] Chia Network, “Chia network sets the bit-length of the
security parameter of vdf k=1024,” https://github.com/Chia-
Network/chiavdf/blob/f4266166e5f79c8375be567fd2624ed4e1229afd/
src/proof common.h#L50, accessed on 2020-11-15.

[21] ——, “Congratulations to sundersoft for winning both tracks of
the second chia vdf competition!” https://github.com/Chia-Network/
vdfcontest2results, accessed on 2020-12-01.

[22] S. S. Chow, L. C. Hui, S.-M. Yiu, and K. Chow, “Practical electronic
lotteries with offline ttp,” Computer Communications, vol. 29, no. 15,
pp. 2830–2840, 2006.

[23] S. Chung, “In some countries, your receipt can be a winning
lottery ticket and can help the government collect sales tax,” https:
//abovethelaw.com/2019/10/in-some-countries-your-receipt-can-be-a-
winning-lottery-ticket-and-can-help-the-government-collect-sales-tax/,
2019, accessed on 2020-11-15.

[24] J. Clark and U. Hengartner, “On the use of financial data as a random
beacon.” EVT/WOTE, vol. 89, 2010.

[25] M. V. Copeland, “Time, randomness, and a 100,000 prize to for-
ever change blockchain.” ”https://aws.amazon.com/tw/blogs/startups/
competition-forever-change-blockchain/”, 2019, accessed on 2020-12-
01.

[26] R. Crandall and C. B. Pomerance, Prime numbers: a computational
perspective. Springer Science & Business Media, 2006, vol. 182.

[27] B. David, P. Gaži, A. Kiayias, and A. Russell, “Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain,” in
Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2018, pp. 66–98.

[28] S. Dobson, S. D. Galbraith, and B. Smith, “Trustless groups of unknown
order with hyperelliptic curves.” IACR Cryptol. ePrint Arch., vol. 2020,
p. 196, 2020.

[29] J. Drake., “Minimal vdf randomness beacon.” ”https://ethresear.ch/t/
minimal-vdf-randomness-beacon/3566”, 2018, accessed on 2020-12-
01.

[30] R. Gennaro, C. Gentry, B. Parno, and M. Raykova, “Quadratic span
programs and succinct nizks without pcps,” in Annual International
Conference on the Theory and Applications of Cryptographic Tech-
niques. Springer, 2013, pp. 626–645.

[31] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in Proceedings of
the 26th symposium on operating systems principles, 2017, pp. 51–68.

[32] D. M. Goldschlag and S. G. Stubblebine, “Publicly verifiable lotteries:
Applications of delaying functions,” in International Conference on
Financial Cryptography. Springer, 1998, pp. 214–226.

[33] Google LLC, “Trillian, a transparent, highly scalable and cryptograph-
ically verifiable data store.” https://github.com/google/trillian, accessed
on 2020-11-15.

[34] J. L. Hafner and K. S. McCurley, “A rigorous subexponential algorithm
for computation of class groups,” Journal of the American mathematical
society, vol. 2, no. 4, pp. 837–850, 1989.

[35] S. Hamdy and B. Möller, “Security of cryptosystems based on class
groups of imaginary quadratic orders,” in International Conference on
the Theory and Application of Cryptology and Information Security.
Springer, 2000, pp. 234–247.

[36] R. Han, J. Yu, and H. Lin, “Randchain: Decentralised randomness
beacon from sequential proof-of-work,” Cryptology ePrint Archive,
Report 2020/1033, 2020, https://eprint.iacr.org/.

[37] T. Hanke, M. Movahedi, and D. Williams, “Dfinity technology overview
series, consensus system,” arXiv preprint arXiv:1805.04548, 2018.

[38] Harmony Project, “Harmony project using k=2048,” https://github.com/
harmony-one/vdf/blob/620379da88498fe40babc744685253aade77e8a2/
src/vdf go/vdf.go#L13, accessed on 2020-12-03.

[39] B. He and Y. Wei, “Electronic sortition,” in Proceedings. The 2009
International Symposium on Intelligent Information Systems and Appli-
cations (IISA 2009). Citeseer, 2009, p. 203.

[40] J. Hendricks, “Manatee county explains vaccine distribution proto-
cols,” https://thebradentontimes.com/manatee-county-explains-vaccine-
distribution-protocols-p22480-158.htm, accessed on 2021-07-04.

[41] S. Jaques, H. Montgomery, and A. Roy, “Time-release cryptography
from minimal circuit assumptions.” IACR Cryptol. ePrint Arch., vol.
2020, p. 755, 2020.

[42] M. S. Kearney, P. Tufano, J. Guryan, and E. Hurst, “Making savers
winners: An overview of prize-linked savings products,” National
Bureau of Economic Research, Tech. Rep., 2010.

[43] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure proof-of-stake blockchain protocol,” in Annual Inter-
national Cryptology Conference. Springer, 2017, pp. 357–388.

[44] A. K. Lenstra and B. Wesolowski, “A random zoo: sloth, unicorn, and
trx,” Cryptology ePrint Archive, Report 2015/366, 2015, https://eprint.
iacr.org/2015/366.

[45] Y.-N. Liu, H.-G. Liu, L. Hu, and J.-B. Tian, “A new efficient e-lottery
scheme using multi-level hash chain,” in 2006 International Conference
on Communication Technology. IEEE, 2006, pp. 1–4.

[46] B. Mark Friedenbach, Kalle Alm, “Fast merkle trees in bitcoin,” https:
//github.com/bitcoin/bips/blob/master/bip-0098.mediawiki, accessed on
2020-12-22.

[47] MDN contributors, “Atomics document on mdn web.”
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global Objects/Atomics, accessed on 2020-11-15.

[48] R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Conference on the theory and application of cryptographic
techniques. Springer, 1987, pp. 369–378.

[49] K. T. Paul P. Murphy, Rosa Flores and C. Sara Weisfeldt, “Florida
county commissioner limited vaccine drive to the two richest zip codes
and then created a vip list,” https://edition.cnn.com/2021/02/18/politics/
manatee-county-vaccine/index.html, accessed on 2021-07-04.

[50] C. Pierrot and B. Wesolowski, “Malleability of the blockchain’s en-
tropy,” Cryptography and Communications, vol. 10, no. 1, pp. 211–233,
2018.

14

https://aws.amazon.com/tw/blogs/startups/competition-forever-change-blockchain/
https://aws.amazon.com/tw/blogs/startups/competition-forever-change-blockchain/
https://github.com/Chia-Network/chiavdf/blob/f4266166e5f79c8375be567fd2624ed4e1229afd/src/proof_common.h#L50
https://github.com/Chia-Network/chiavdf/blob/f4266166e5f79c8375be567fd2624ed4e1229afd/src/proof_common.h#L50
https://github.com/Chia-Network/chiavdf/blob/f4266166e5f79c8375be567fd2624ed4e1229afd/src/proof_common.h#L50
https://github.com/Chia-Network/vdfcontest2results
https://github.com/Chia-Network/vdfcontest2results
https://abovethelaw.com/2019/10/in-some-countries-your-receipt-can-be-a-winning-lottery-ticket-and-can-help-the-government-collect-sales-tax/
https://abovethelaw.com/2019/10/in-some-countries-your-receipt-can-be-a-winning-lottery-ticket-and-can-help-the-government-collect-sales-tax/
https://abovethelaw.com/2019/10/in-some-countries-your-receipt-can-be-a-winning-lottery-ticket-and-can-help-the-government-collect-sales-tax/
https://aws.amazon.com/tw/blogs/startups/competition-forever-change-blockchain/
https://aws.amazon.com/tw/blogs/startups/competition-forever-change-blockchain/
https://ethresear.ch/t/minimal-vdf-randomness-beacon/3566
https://ethresear.ch/t/minimal-vdf-randomness-beacon/3566
https://github.com/google/trillian
https://eprint.iacr.org/
https://github.com/harmony-one/vdf/blob/620379da88498fe40babc744685253aade77e8a2/src/vdf_go/vdf.go#L13
https://github.com/harmony-one/vdf/blob/620379da88498fe40babc744685253aade77e8a2/src/vdf_go/vdf.go#L13
https://github.com/harmony-one/vdf/blob/620379da88498fe40babc744685253aade77e8a2/src/vdf_go/vdf.go#L13
https://thebradentontimes.com/manatee-county-explains-vaccine-distribution-protocols-p22480-158.htm
https://thebradentontimes.com/manatee-county-explains-vaccine-distribution-protocols-p22480-158.htm
https://eprint.iacr.org/2015/366
https://eprint.iacr.org/2015/366
https://github.com/bitcoin/bips/blob/master/bip-0098.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0098.mediawiki
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Atomics
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Atomics
https://edition.cnn.com/2021/02/18/politics/manatee-county-vaccine/index.html
https://edition.cnn.com/2021/02/18/politics/manatee-county-vaccine/index.html

[51] M. O. Rabin, “Randomized byzantine generals,” in 24th Annual Sym-
posium on Foundations of Computer Science (sfcs 1983). IEEE, 1983,
pp. 403–409.

[52] P. Schindler, A. Judmayer, M. Hittmeir, N. Stifter, and E. Weippl,
“Randrunner: Distributed randomness from trapdoor vdfs with strong
uniqueness,” in 28th Annual Network and Distributed System Security
Symposium, NDSS, 2021.

[53] P. Schindler, A. Judmayer, N. Stifter, and E. Weippl, “Hydrand: Efficient
continuous distributed randomness,” in 2020 IEEE Symposium on
Security and Privacy (SP). IEEE, 2020, pp. 73–89.

[54] J.-P. Serre, A course in arithmetic. Springer Science & Business Media,
2012, vol. 7.

[55] E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L. Gasser, I. Khoffi, M. J.
Fischer, and B. Ford, “Scalable bias-resistant distributed randomness,”
in 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 2017,
pp. 444–460.

[56] B. Wesolowski, “Efficient verifiable delay functions,” Journal of Cryp-
tology, pp. 1–35, 2020.

[57] World Health Organization, “Ethics and covid-19: resource allo-
cation and priority-setting,” https://www.who.int/ethics/publications/
ethics-covid-19-resource-allocation.pdf?ua=1, 2020, accessed on 2022-
01-15.

15

https://www.who.int/ethics/publications/ethics-covid-19-resource-allocation.pdf?ua=1
https://www.who.int/ethics/publications/ethics-covid-19-resource-allocation.pdf?ua=1

	Introduction
	Background
	Participatory Randomness Generation
	Merkle Trees
	Verifiable Delay Function (VDF)

	Threat Model
	The HeadStart Protocol
	Special Case in Which L=1
	General Case in Which L>1
	Performance Analysis
	A Use Case of HeadStart: Vaccine Allocation

	Security Analysis
	Unpredictability
	Bias Resistance
	Verifiability

	HeadStart Extensions
	HeadStart beacon
	Publicly-verifiable HeadStart

	Implementation
	VDF Selection and Construction
	ClHash
	Determined Hash Prime Iteration (DHPI)
	Implementation Details

	Evaluation
	Scalability of HeadStart
	Verification Efficiency (L=1)
	Verification Efficiency (L>1)
	Influencing factors of RP Latency

	Related Work
	Conclusion
	References

