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Abstract—Robotic vehicle (RV) attack forensics identifies root
cause of an accident. Reproduction of accident and reasoning
about its causation are critical steps in the process. Ideally, such
investigation would be performed in real-world field tests by
faithfully regenerating the environmental conditions and varying
the different factors to understand causality. However, such
analysis is extremely expensive and in many cases infeasible due
to the difficulties of enforcing physical conditions. Existing RV
forensics techniques focus on faithful accident reproduction in
simulation and hence lack the support of causality reasoning.
They also entail substantial overhead. We propose RVPLAYER, a
system for RV forensics. It supports replay with what-if reasoning
inside simulator (e.g., checking if an accident can be avoided
by changing some control parameter, code, or vehicle states).
It is a low-cost replacement of the expensive field test based
forensics. It features an efficient demand-driven adaptive logging
method capturing non-deterministic physical conditions, and a
novel replay technique supporting various replay policies that
selectively enable/disable information during replay for root cause
analysis. Our evaluation on 6 RVs (4 real and 2 virtual), 5 real-
world auto-driving traces, and 1194 attack instances of various
kinds reported in the literature shows that it can precisely
pinpoint the root causes of these attacks without false positives.
It has only 6.57% of the overhead of a simple logging design.

I. INTRODUCTION

Robotic vehicles (RV) are becoming increasingly popular
due to the advances of AI and the fast-growing applications
of these vehicles [1], [2]. They hence become an important
target of attackers. RVs are combinations of cyber and physical
components, which introduce a broader attack surface com-
pared to traditional computation systems. Various attacks have
been developed for RV systems, including sensor spoofing [3]–
[6], side-channels [7], [8], and APTs [9]–[11], attacking both
the cyber and the physical domains. As RV attacks often
have physical consequences, endangering properties and even
human lives, RV security assurance is an important challenge.
Many existing defense techniques fall into the category of
anomaly detection [12]–[15] that utilizes models and invariants
to detect behavioral anomalies at runtime or offline. Attack
resilient approaches [16]–[18] recover systems from attacks to
continue normal operations.

In this paper, we focus on RV forensics, which is to identify
root cause in post-accident investigation (e.g., determine which
parameter update caused an accident or which sensor was

spoofed). This is an orthogonal challenge to the aforemen-
tioned ones. Note that forensics is particularly important when
attacks are stealthy and/or have a long duration, making run-
time detection difficult. The control of an RV is through a loop
that involves control software, vehicle, and the environment.
As such, external inputs to cyber components (e.g., sensor
readings) are the aggregation of both the environmental condi-
tions and the effects of motor thrusts decided by the previous
control loop iteration. Many existing RV or Cyber Physical
System (CPS) forensics techniques, however, use an open loop
abstraction and focus only on cyber components [19]–[22].
They replay the observed external inputs and do not distinguish
effects from the environment and from the vehicle. Therefore,
although they can faithfully replay an accident, they do not
support what-if reasoning, a key step in causality analysis [23],
[24]), which changes individual factors of a system (e.g.,
reverts a malicious parameter update), replays physical world
disturbances, and observes consequences (e.g., if the accident
is successfully avoided). A factor is considered a root cause
if enabling/disabling it induces/avoids the accident. Recently,
a state-of-the-art RV problem diagnosis tool MAYDAY [25]
utilizes additional runtime program logs and threshold based
physical anomaly detection. It focuses on accidents caused
by control software bugs. It can narrow down root cause to
a program region. It does not focus on accidents caused by
external perturbations such as sensor spoofing.

Ideally, RV forensics shall be performed through real-
world field tests in which the same environmental conditions
are faithfully regenerated and the accident is replayed with
various what-if changes to understand causation. However, this
is extremely expensive and in many cases infeasible due to
the difficulty of recreating same environmental disturbances.
Therefore, we propose a novel low-cost replacement that
enables forensics in simulation. It selectively and efficiently
records critical runtime information with an adaptive fre-
quency. Specifically, it constructs a dynamics model of the
subject RV and runs it as a shadow system to the real one
during operation. When the model can correctly predict the real
system behaviors, the RV is considered not having substantial
environmental disturbances and a low logging frequency is
used. Otherwise, high frequencies proportional to the level
of anomaly are used. Different from traditional CPS replay
techniques that treat external inputs from the physical world
as a whole, our technique decouples it to environmental
disturbances and effects by motor thrusts such that the former
can be saved and replayed independently from the latter,
achieving reproduction of physical environments. During re-
play, it leverages the aforementioned model (in simulation) to
regenerate the states that were not recorded during operation.
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It also re-applies the recorded disturbances to recreate the
environmental conditions. More importantly, it supports a
wide range of policies that selectively enable/disable certain
information during replay to allow what-if reasoning for root
cause identification. More details can be found in Section III.

Our contributions are summarized as follows.

• We develop an efficient demand-driven logging method
that features an adaptive logging frequency and decou-
pling/recording environmental disturbances.

• We develop a novel replay engine that supports various
replay policies needed in the what-if reasonings for differ-
ent kinds of attack. These policies allow disabling/enabling
individual events (e.g., parameter updates) and sensors,
and changing controller code during replay. The replayed
runs (inside the simulator) closely resemble the real test
executions (in the physical world) with the same changes
applied.

• We develop a prototype RVPLAYER and evaluate it on
6 RVs, including drones and rovers, with 4 real vehicles
and 2 virtual ones, and on 5 real-world auto-driving op-
eration traces. We also test it on normal operations with
real-world considerations (e.g., GPS urban canyon, wind,
etc) and popular attacks, including gradual spoofing [4],
[6], split-second spoofing [26], parameter tampering [12],
code vulnerabilities that can be exploited through physical
conditions [27], and sensor fusion spoofing for auto-driving
cars [4], with 1194 attack instances. The results show
that the logging component is highly efficient, reducing
the logging overhead of a naive design by 93.43%. In
contrast, due to the different design goal, MAYDAY’s space
overhead is 40.5 times of RVPLAYER’s. Our replay policies
can precisely pinpoint the causes for all the attacks we
study without false positives and identify the attack start-
times. In contrast, forensics methods adapted from anomaly
detection methods can only identify root causes for very
limited attacks, i.e., 32 of the 53 split-second sensor spoof-
ing and sensor fusion spoofing, and miss others. MAYDAY
does not handle 6 out of the 12 parameter tampering attacks
we studied.

Threat Model. Our threat model is consistent with that in the
literature [12], [25], [28]. We make the following assumptions.
(i) The attacker cannot directly access the internals (i.e.,
control program) of the target vehicle. Instead, he performs
attack through external means (e.g., parameter modifications
by external commands and sensor spoofing), with the goal
of disrupting the planned operations, damaging the vehicle,
and covering his tracks. (ii) The life-cycle of an attack can
consist of multiple steps: intrusion, payload triggering, and
symptom manifestation. Intrusion is an act of entering a
system and placing malicious components (i.e., payloads).
Next, payloads can be triggered immediately or long after
intrusion when the system encounters a specific physical
condition. The attacker knows what conditions can trigger
the planned payload but does not necessarily fabricate the
conditions right away. Symptoms of attack (e.g., crashes) can
appear immediately or after a certain period of time since
payload triggering. (iii) The attacker is knowledgeable about
the built-in logging functionalities. The attacker gets to know
how to attack a specific vehicle by acquiring a copy from the
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Fig. 1: Typical feedback control loop architecture with state logs

market or even reverse engineering the vehicle’s dynamics and
control parameters by observing its flights. He cannot directly
corrupt the logging component or the generated logs, but
he can indirectly compromise them through spoofing. Secure
execution environment is provided for the logging component.
We assume that the vehicle and recorded logs are accessible
during forensics. This assumption is the same as that in the
log-based forensics techniques [25], [29].

II. BACKGROUND AND MOTIVATION

A. Background: Feedback Control Loop and State Logging

A control system typically uses a feedback-driven and loop-
based architecture as shown inside the gray box in Figure 1.
Given a reference state (e.g., a waypoint to reach), the system
continuously observes the differences between the reference
and the current states (measured by sensors), computes the
needed control signals, based on some control algorithm with
specific parameters, and drives the actuators to reach the target.
Observe that the control system mainly takes two kinds of
external inputs and operates accordingly. The first kind is
called cyber events that are high-level instructions from the
navigation component or the user, such as user commands to
modify a control parameter or setting a reference state. These
events are discrete and can be intercepted, stored, and replayed
during forensic analysis. The second is physical disturbances
(e.g., wind, air resistance, and road friction) from the envi-
ronment. They are continuous and largely non-deterministic.
Different from cyber events, logging and replaying physical
signals is challenging, entailing substantial overhead.

Typically, a control program has a few threads, including
the monitor thread, main thread, timer thread, IO thread, etc.
The control loop is in the main thread and has a higher priority
than the others, whereas the IO thread in charge of writing log
data to SD card has a low priority. A real-time OS manages the
scheduling of the different threads. Additionally in the control
loop, there are many tasks in charge of different functions,
including navigation, attitude control, fall-safe check, sensor
data update, remote communication, data logging, etc. These
tasks have their own predefined frequencies and get executed
once in a few iterations. In order to maintain a fixed control
loop frequency, each iteration has a hard time constraint. In it-
erations with many tasks scheduled, time-consuming tasks may
be skipped (preempted) together with their logging requests,
to meet the time constraint.

Modern RV systems often have built-in support to record
system states as time-series data. The recorded states may
include sensor measurements, control references, actuation
signals, and control parameters. For example, in the on-
board dataflash log for Ardupilot [30], there are ACC, GYR,

2



IMU, IMT, MAG, BARO, GPS, and GPA message types
for recording sensor measurements, RCIN and RCOU for
actuator signals. AHR2, ATT, and POS for physical status,
NKF, PID, MAVC, etc. for control statistics and events.

B. Motivating Example

Advanced stealthy attacks [4], [6], [7], [12], [31] can hide
malicious activities from detection techniques. The conse-
quences of these attacks may only become observable long
after intrusion. In the following, we present a realistic stealthy
attack, parameter tampering attack [32], as our motivating
example. The attacker issues a malicious command to set
a control parameter to an invalid value, and the tampered
parameter impacts control operations under a certain triggering
condition (e.g., sharp turn with wind). Thus, the malicious
payload usually lurks for a long period of time, and attack
ramifications occur afterwards. It is hence challenging for
existing techniques to detect the root cause or conduct forensic
analysis.
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Fig. 2: An example of advanced attack. A-G: cyber events and
important physical disturbances: a parameter is tampered with at A;
the drone makes a scheduled sharp turn at H with strong wind gust
denoted by G. The arrows at H and G denote the directions.

Attack Scenario. A package delivery drone mostly flies
straight and occasionally makes turns in its daily missions. Fig-
ure 2 illustrates an example of multiple missions over time. At
time t0, the attacker issues a malicious command A to enlarge
the proportional gain of horizontal velocity’s PID controller
from 0.6 to 5.7, by tampering with parameter VEL_XY_P in
the Ardupilot system. During the k − 1 deliveries starting at
t1, t2, ..., tk−1 (over several days), respectively, the drone
performs simple flights including end-to-end straight routes
and mild turns. Various normal commands (B-F) are also
issued in the duration. At time tk (i.e., the kth delivery after
the parameter tampering), it flies straight and then performs
a scheduled sharp turn (e.g., north to the east) at G, with
Beaufort level 6 wind gust [33] (that may move tree branches)
blowing from north to south. The environmental condition
triggers the injected malicious behavior. In other words, the
drone would turn successfully even with the wind, were not
for the compromised parameter. Specifically, VEL_XY_P is
responsible for the proportional gain of horizontal velocity’s
PID controller. The update does not have any immediate effect
as the drone does not have any aggressive horizontal movement
at that moment. Later, upon the triggering condition, it causes
the drone to crash. The high control gain leads to sudden
acceleration change and divergence of velocity control, and
thus the accumulated impact causes a crash. Note that the
attack consequences happen long after the initial parameter

tampering. There are many legitimate parameter changes in
the duration.

Ideally, a forensics technique would faithfully record all the
cyber-events and environmental disturbances during operation
and replay them with mutations in post-mortem analysis (e.g.,
through multiple field tests). However, existing techniques fall
short in various aspects.

Limitations of Existing Approaches. A wide spectrum of
runtime anomaly detection techniques [12]–[15], [34] devel-
oped by the security community can detect attack ramification-
s/symptoms. However, a root cause that occurred long before
attack consequences is difficult to locate. Efficient state logging
and replay based forensic techniques are essential.

(1) Existing Logging Techniques Miss Critical Evidence Due to
Resource Constraints. Existing RV/CPS data loggers [35], [36]
record operational data in non-volatile memory (usually on-
board). A prominent challenge is to handle storage overhead.
Control loops usually run at a high frequency (e.g., 400Hz).
At each iteration, messages of the types mentioned at the
end of Section II-A are generated. If all message types are
considered, the memory consumption is 13.82 GB/day for a
PX4 drone, and 5.30GB/day for Ardupilot. As such, a typical
32GB storage can only record 6 days’ flight for Ardupilot,
without considering space consumption caused by other data
such as video and audio. The systems would automatically
delete log entries when the space is not enough. The real-time
OS and the control algorithm may preempt/discard logging
operations when they are under time pressure. As such, state
logs are rarely complete. In a real drone flight such as those
in the motivating example, due to the low CPU speed, 85.6%
of log events are missing if FAST_ATT and PID logging
options are turned on (Details are available in Section S-A
of our online document [37].).
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Fig. 3: Comparisons between the real traces of motivating example
and the replayed traces without environmental disturbances

(2) Existing Techniques Lack Sufficient Replay Support. There
are techniques that log cyber-events and generate operation
trace from such events in a simulation environment for forensic
analysis [38]–[40]. While these techniques are sufficient in
diagnosing deterministic bugs/attacks, they can hardly analyze
those that are conditioned on nondeterministic environment
disturbances. Figure 3 shows the operation traces (i.e., roll and
pitch) of the vehicle in our attack example when environmental
disturbances are precluded, and its comparison with the real
operation traces. Observe that the crash vanishes and there are
substantial errors in the two traces, illustrating the importance
of considering environmental disturbances.

There are also classic program/system record and replay
techniques [39], [41]–[45] that can faithfully reproduce cyber-

3

https://sites.google.com/view/rvplayer#h.qb9tb5e3sfu9


space execution, for forensics and debugging. These techniques
aim at faithful reproduction, and lack the support of what-
if reasoning, which entails replaying an execution in the
presence of changes (e.g., configuration and program changes).
Replay in the cyber space with changes is in general highly
challenging as these changes may lead to program execution
path differences such that log entries may mis-align with
the replayed execution, causing replay exceptions [46]. In
addition, although these techniques can record sensor readings,
which are the joint effects of motor thrusts and environmental
disturbances, they can hardly isolate the latter for environment
reproduction. Furthermore, replay with what-if changes in
real-world is extremely expensive and recreating the same
environmental disturbances is difficult since these are non-
deterministic and hard to measure individually. These features
make what-if analysis for RVs more challenging.

Recent CPS Forensic Technique MAYDAY [25]. MAYDAY
aims to identify a potentially problematic control code for a
runtime accident. A control system consists of a set of con-
troller components (or controllers in short) controlling different
physical aspects of a vehicle. These controllers have inter-
dependences. MAYDAY leverages a pre-constructed depen-
dency graph between controllers. When an accident happens,
denoted as states substantially deviated from their references
at some controller (e.g., position discrepancy), MAYDAY
leverages the graph to back-trace to the controller that has the
initial state corruption. The human inspector then looks into the
code region of the controller to find the root cause. To do so,
MAYDAY instruments control program and records all control
states and reference points in each controller, which enables
source code level debugging. While it is highly effective in
diagnosing controller bugs and mission command bugs, in
accidents involved external perturbations (that we target), due
to the highly iterative nature of controller computation, small
state corruption may be quickly propagated to other controllers.
It hence becomes difficult to identify the initial root cause
controller using a method like MAYDAY.

For our motivating example, since the crash is triggered
by environmental conditions instead of cyber-space state cor-
ruption in some controller, the first controller reacts to the
environmental disturbance may not be the controller with the
compromised parameter. Actually in 0.1 seconds after the
sharp turn with the wind gust, all controllers are considered
abnormal by MAYDAY. Although a parameter of the velocity
controller is compromised, MAYDAY reports the position con-
troller as the root. Even if it identified the velocity controller
correctly, it remains a challenge to determine what is wrong
in the controller as the state corruption could be induced by a
bug in the code or a parameter update, not to mention the 5
other parameter updates for the same controller over the attack
duration. In such a case, what-if reasoning is needed to deter-
mine a particular parameter update is the cause of accident.
Despite its effectiveness in locating problematic controller(s),
MAYDAY does not perform what-if analysis as it does not
replay missions. Our technique is hence complementary to
MAYDAY.

Our Approach. Our technique records cyber events, states and
environmental disturbances. To reduce space consumption, it
is demand-driven and only records when disturbances trigger
state changes of the vehicle that cannot be predicted by the
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Fig. 4: Comparisons between the real traces and the replayed traces
with captured disturbances

dynamics model. In addition, it features the ability of reverse
engineering the aggregated effects of all environmental distur-
bances and decoupling them from the effects by motor thrusts.
The former is hence recorded (and later reapplied during
replay). Note that many environmental conditions cannot be
measured by RVs. For instance, wind gusts or precipitation is
a typical environmental condition affecting drone’s behavior.
However, most autopilot systems and commercial vehicles
cannot provide the individual measurements of external en-
vironmental effects (e.g., aerodynamic effects and magnetic
forces) unless a system is equipped with designated sensors.
In our motivation attack, our logging component consumes
space at a rate of 0.17GB/day (compared to 4.04GB/day with
builtin logging).
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Fig. 5: What-if reasoning by changing settings

In the forensics stage, our technique supports faithful
replay and replay with what-if reasoning. Faithful replay is
achieved by rerunning the mission in a simulation environment
and reapplying the recorded environmental disturbances. Since
we leverage simulation during forensics, we can replay the
accident as many times as we want. The replay of recorded
disturbances does not require any environment simulation
plugins (e.g., wind /wind-gust plugin). We also support what-if
reasoning by automatically making changes during replay, such
as disabling parameter updates, injecting new updates, and
changing controller code. This is enabled by our capabilities
of isolating environmental disturbances and reapplying them
during replay. In our example, the vehicle crashes when
making a sharp turn under wind gust. Figure 4 shows that
our technique can faithfully reproduce the crash. In addition,
Figure 5 shows that when we mutate the conditions, including
figure (a) disabling the root cause parameter update; (b)
disabling an irrelevant parameter update; and (c) disabling the
environmental disturbances, how the vehicle behaviors change
with these mutations during replay, and how the replayed traces
differ from the real traces with the same mutations. In other
words, on one hand we change the settings and replay the cyber
events and the recorded external disturbances with the changed
settings to get the first set of traces. On the other hand, we also
re-execute the mission with the changed settings and regenerate
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the same set of environmental disturbances (e.g., wind gust)1

to get the second set of operation traces. Then we compare
the two sets. Observe that the replayed traces (the red solid
curves in Figure 5) closely resemble the re-execution traces
(the blue dashed curves), illustrating the correctness of our
what-if reasoning. In addition, the results clearly demonstrate
that the VEL_XY_P parameter update is the root cause and
it needs the triggering condition of the wind. Missing either
precludes the crash. That is, the drone does not crash in Figure
5 (a) or (c) as the curves are stablized towards the end, while
it does in (b) as the fluctuation aggravates.

In the presence of sensor spoofing, logs are corrupted. A
faithful replay technique will likely fail. RVPLAYER leverages
information redundancy and dependences in sensor fusion
such that it systematically disables sensors according to their
dependence order, to identify spoofed sensors and the spoofing
attack starting time (Section IV-B).

III. DESIGN

Figure 6 presents the work-flow of our technique. First,
RVPLAYER derives the subject vehicle’s dynamics model via
grey-box system identification ( 1 ) based on the vehicle’s op-
eration profile and a model structure pre-selected for a vehicle
category. The model describes the expected vehicle behaviors,
given the current states and external signals, including control
signals and environmental disturbances. The model is used to
facilitate demand-driven logging, namely, we adaptively log
when the vehicle’s states deviate from the model’s prediction.
This is because during replay we can use the model to re-
generate the states that can be precisely predicted. Second,
our logger ( 2 ) instruments the control software and records
states and environmental disturbances. It uses a high log-
ging frequency to capture disturbances accurately when the
vehicle’s behaviors deviate from the model prediction and a
low frequency otherwise. Note that RVPLAYER logs minimal
state information even when behaviors are predictable. Such
information is used for regular correction of accumulated
errors during replay, which are inevitable. Upon an accident
of interest, the replayer ( 3 ) replays the same mission with
the recorded disturbances and states. Finally, our root cause
analysis ( 4 ) identifies the root cause by performing systematic
what-if analysis. Details will be discussed in the following.

A. RV Modeling by System Identification

We leverage a control system engineering methodology
system identification (SI) [48], to build a dynamics model

1Since it is infeasible to deterministically regenerate the same disturbances
in the physical world, we use simulation with environmental plugins [47].

for the target vehicle. The nominal physical behaviors of a
vehicle can be described by a set of mathematical equations
constituting the model. Model equations are readily available
for various dynamic systems, from simple dynamics such as
robotic arms [49] and water tanks [50] to complex ones such
as multi-copter [51] and ground vehicles [52]. Coefficients/pa-
rameters of these equations are vehicle specific. SI techniques
allow us to estimate them from measured input-output data of
the vehicle’s normal operations. Most system dynamics can be
described by the following general equations.

ṡ = F(s) + G(s)u+ d,

y = H(s) + v
(1)

Here, s is a system state vector, y a system output vector, u
control inputs, d a disturbance vector, and v a measurement
noise vector. F , G, and H are nonlinear nominal system
function, input function, and output function, respectively.
As such, the two equations determine the first derivative of
states denoted as ṡ and the output y based on the current
state and the control inputs, considering the disturbances and
noise. Note that the next state values are computed from the
current states and the derivatives. We use a nonlinear grey-
box SI [53], which leverages pre-existing formulas (called
dynamics model). Grey-box SI is more accurate than black-box
SI as it leverages the known dynamics model. The constructed
models for a quadrotor and a ground vehicle (i.e., concretiza-
tions of Equation (1)) are available in Section S-B of our online
document. Dynamics models do not model environments.
As such, nontrivial environmental disturbances must cause
deviations and be recorded. Model accuracy hence has effects
on our log reduction efficacy but its influence is marginal
compared to environmental disturbances (see Appendix E).

B. On-the-fly Logging

RVPLAYER logs the following information to support
replay and what-if reasoning: timestamp, control references,
system states, sensor measurements, control parameters, and
environmental disturbances by instrumenting the event dis-
patcher and the main control loop. In particular, references are
inputs from the navigation component, reflecting the targets;
system states include positions and attitudes; and control pa-
rameters are configurable coefficients for control algorithms. It
separates the information into three sets: (i) the environmental
disturbances that are recorded in an adaptive fashion (i.e.,
using a higher sampling frequency when the vehicle has
nontrivial deviation from dynamics model’s prediction), (ii)
state information including positions, attitudes, and sensor
measurements that are recorded with a much lower but regular
frequency (2HZ), and (iii) discrete events that are faithfully
recorded without any reduction such as parameter updates.
The second is used to correct accumulated errors that are
inevitable during replay and to diagnose spoofing attacks. Note
that environmental disturbances are difficult to measure with
precision. A typical commodity quadrotor has only inertial,
magnetic, and GPS sensors, which are not sufficient to provide
comprehensive measurements of environmental conditions. To
address the challenge, our adaptive logger calculates the aggre-
gated effects of environmental disturbances and only records
such effects, avoiding the need of measuring a wide spectrum
of environmental conditions.
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1) Computing Aggregated Effects of Environmental Dis-
turbances: Our technique decouples the effects by external
disturbances from those by motor thrusts so that the former
can be recorded and replayed for environment reconstruction.
The idea is that environmental disturbances affect the vehicle
through forces, which are reflected in accelerations, including
both linear and angular accelerations. However, acceleration
values depend on not only external forces, i.e., environmental
conditions, but also internal forces (e.g., thrust) that are gen-
erated by motors under the control of the vehicle system. We
hence develop a method to decouple the two.

The idea is inspired by Disturbance Observer (DOB)-
based control [54], [55] which is a widely used robust control
methodology. It estimates external forces by utilizing the dy-
namics model and measured states of a target system, and then
feeds back the estimation (of external forces) into a control
loop to improve the robustness of system control. While we
do not aim at robust control, we leverage the estimation method
in DOB to approximate environmental disturbances.

As mentioned in Section III-A, a dynamics model denotes
a vehicle’s normal behavior without disturbances. We have the
following two dynamics equations.

ṡ = F(s) + G(s)u+ d,

˙sm = Fm(s) + Gm(s)u
(2)

The first one is the same as that in Equation (1). Recall
s denotes the real vehicle states (and ṡ its derivative), u
control input, d disturbances, and F and G system nominal
function and input function, respectively. The second equation
is the dynamics denoted by the model with sm the model
prediction of vehicle states. Fm and Gm are derived by system
identification. Observe that the derivative of prediction (used
to determine next states) is computed from the (current) real
vehicle states s without disturbances. Therefore, the estimated
external disturbances denoted as d̂ can be derived as follows.

d̂ = ṡ− (F(s) + G(s)u) ≈ ṡ− ṡm (3)

We assume F(s) ≈ Fm(s) and G(s) ≈ Gm(s). Intuitively, the
aggregated external disturbances can be approximated by the
derivative differences between model and measured states.

2) Adaptive Logging: If vehicle states have non-trivial
deviation from model prediction i.e., including significant
disturbances or anomalies), the sampling frequency is in-
creased, with the maximum being per control loop iteration.
Specifically, in a control loop iteration at time t, let si(t) be the
ith value in a 12 dimension state vector that includes positions
(x, y, and z), velocities (ẋ, ẏ, ż), attitudes (roll φ, pitch θ,
yaw ψ) and angular velocities, and ŝi(t) its prediction. The
prediction deviation E i(t) is the absolute difference of the two.
Through a number of profile runs, we collect the distribution
of E i. E imax, the maximum deviation in normal situations, is
defined as the third quartile (Q3) plus 1.5 times interquartile
range (IQR) of the deviation distribution, which corresponds
to the maximum value of box-plot in descriptive statistics [56].

The logging frequency is hence adapted as follows.

f(t+ 1) = α(t) · fm (4)

Here, f(t+ 1) is the logging frequency at the next timestamp,
and fm the main loop frequency that is the maximum possible

logging frequency. Coefficient α(t) is computed as follows.

α(t) =

 max
i∈{1,...,n}

(
Ei(t)
Eimax

)
, if ∀Ei(t) ≤ Eimax

1, otherwise
(5)

When the prediction deviation E i(t) is smaller than E imax for
all i’s, the future logging frequency is set to the maximum ratio
of the current deviation to the corresponding maximum normal
deviation among the individual states (and hence smaller than
1). Intuitively, it means that the current state value is likely
normal (and can be accurately predicted by the model). Hence,
it may not need to be recorded. When any E i(t) is larger than
Emax, the system logs at the highest frequency. In Appendix D,
our experiment shows that results are not sensitive to Emax.

C. Replayer

Our replayer takes the recorded information and replays the
mission in simulation. The replay can be customized by differ-
ent policies for what-if reasoning, by selectively enabling/dis-
abling various recorded information during replay. Here, we
introduce the vanilla replay that aims to faithfully replay the
discrete events (e.g., parameter updates) and environmental
disturbances. Customized replay policies will be discussed
in the next section. During faithful replay, recorded events
and disturbances are retrieved from the log files based on
their timestamps and applied in order. To correct accumulated
intrinsic errors, recorded states such as positions are regularly
synchronized with the simulated vehicle.

Algorithm 1 Replay
Input: t iteration, D online log

s(t) states, a(t)accelerations
K synchronization interval counter

Output: s(t+ 1) next states
1: procedure REPLAY
2: E, te = getNextEvent(D) . discrete event
3: if t = te then
4: executeEvent(E)
5: end if
6: d = getMostRecentDisturbance(D, t)
7: a(t)← a(t) + d . apply disturbances
8: s(t+ 1)← simulation(s(t), a(t)) . update next states
9: if (t mod K) = 0 then . Error correction

10: s(t)← getPosition(t,D)
11: end if
12: end procedure

Algorithm 1 presents the replay procedure for linear states.
Attitude states replay is similar and elided. The replay function
is invoked at each iteration of the main control loop. In lines
3-5, it checks the timestamp of next discrete event. If it
matches the current time, the event is executed. In lines 6-
7, it uses the current time to retrieve the most recent recorded
disturbance and applies it to the virtual vehicle. Note that since
real disturbances are continuous while the recorded ones are
discrete, we use the most recent recorded values to achieve
a kind of interpolation/smoothing. In lines 9-11, a counter is
used to facilitate regular position error correction.

IV. ROOT CAUSE ANALYSIS BASED ON REPLAY WITH
WHAT-IF REASONING

A wide range of attacks have been developed against
robotic RVs. Most of them can be classified into the following
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categories: (i) cyber-only attacks that exploit traditional zero-
day vulnerabilities to crash or gain control of the system [2],
[57], [58]; (ii) cyber-space state corruption (e.g., parameter
tampering) or latent defects that can cause physical accidents
when certain environmental conditions are satisfied [12], [27],
[32]; (iii) spoofing attacks that compromise sensor readings
such as GPS and Microelectromechanical systems (MEMS)
sensors spoofing [4]–[6]; and (iv) physical attacks that enforce
extreme environmental conditions (e.g., strong wind and ob-
stacles). There have been a large body of existing forensics
works for category (i) attacks. Hence, we focus on how to use
different replay policies to diagnose the other three kinds. We
assume these attacks are not adapted to evade our technique,
that is, we discuss their original forms. Discussion of adaptive
attack can be found in Section VI.

Definition of Accident and Reproduction of Accident. We
denote an accident as corrupted states at a specific time (e.g.
crash locations or large position/attitude offsets). We assume
the genuine (i.e., not spoofed) accident states are available. The
assumption is reasonable in the context of forensics. Because
even in the presence of spoofing, when an accident occurs,
causing termination of operation (e.g., crash or landing/stop-
ping at a substantially deviated location), the true location of
accident can be precisely measured, without being affected by
the compromised states of victim RV. We say an accident is
reproduced during forensics if the replayed run reproduces the
genuine accident states. Accidents in which the vehicle is no
longer accessible are beyond our scope (and most forensics
techniques). 2

Accidents caused by spoofing and non-spoofing attacks
have different natures, entailing different replay policies. In
the presence of spoofing, the RV internal states (and hence
the logs) are substantially corrupted. Direct reasoning based
on such corrupted logs likely yields meaningless results. The
above assumption (of genuine states upon accident) is hence
critical to spoofing attack forensics as it provides a clean
reference point to identify clean and usable information from
the corrupted log, if any.

Replay with What-if Reasoning. What-if reasoning is a
common reasoning method that analyzes causality by changing
causes and observing outcomes [23], [24]. Intuitively, for two
distinct events A and B, we can reason as follows. If B happens
after A and B does not happen in the absence of A, then A is
a cause of B. More formally, A causes B because “if A then
B” and its counterfactual “if not A then not B” are true. Our
root cause analysis technique utilizes multiple replays with
what-if analysis to identify what causes the accident. During
replay, what-if reasoning enables us to analyze the causality of
the attack by selectively enabling/disabling the recorded cyber
events, sources of sensory data, program codes, and external
physical disturbances.

Diagnosis Procedure. Given the assumptions and definitions,
the overall procedure is as follows.

(1) Non-spoofing Attacks. If an accident can be faithfully
reproduced by the vanilla replay, the recorded data is clean
and the accident is not caused by spoofing, but rather by other
attacks such as parameter tampering and defective code. To
diagnose non-spoofing attacks, RVPLAYER abstracts parameter

updates, external disturbances and code changes as configura-
tion variables for replay. A genetic algorithm is used to find the
minimal configuration changes that can preclude the accident.
The root cause is hence derived from the minimal set.

(2) Spoofing Attacks. If the accident cannot be faithfully
reproduced by the vanilla replay, some sensor(s) must have
been spoofed. The genetic algorithm is no longer applica-
ble for spoofing attacks because spoofing signals cannot be
considered as instantaneous events as they usually last for a
time duration in order to have the desired effects. Modern
RV systems often have multiple sensors that measure various
kinds of information. There is often overlap between sensors,
meaning two sensors measuring a same physical property
in different manners (e.g., both GPS and barometer provide
altitude information). In addition, sensors may measure inter-
dependent properties (e.g., linear accelerations and linear po-
sitions). RVPLAYER leverages such overlap and dependencies
to infer spoofed sensors and also spoofing start time. It first
replays based on sensor readings that can be directly compared
with the genuine accident information. After validating these
sensor readings, it further uses them as reference in follow-
up replay runs to validate other sensors that overlap or have
dependence with the validated ones. The process repeats until
the spoofed sensors are found. Sometimes determining if a
case is due to spoofing may appear subtle. Such an example
is discussed at Appendix A.

A. Diagnosing Non-spoofing Attacks with What-if Reasoning

In this paper, we focus on two kinds of non-spoofing
attacks: parameter tampering [12], [25] and defective safety-
check conditions [27]. Safety checks determine if an RV is
in some critical condition, e.g., crashing and out-of-control,
such that counter-measures should be activated such as landing,
turning off motors, and shooting a parachute. They are an
integral part of modern RV control software. These checks are
usually comparisons with some constant thresholds. Defective
safety checks are due to problematic thresholds. Under certain
environmental conditions (e.g., crafted by the attacker), the RV
may fail to detect a real crash (i.e., false negative) or raise a
false alarm (i.e., false positive).

The what-if reasoning in diagnosing these non-spoofing
attack is through a large number replays driven by a genetic
algorithm. Intuitively, we use the genetic algorithm to sys-
tematically disable discrete events during replay and change
thresholds in safety checks to see if such changes can avoid
the accident. The smallest set(s) of changes identified by the
genetic algorithm denotes the root cause.

We define a replay run as a function as follows.

R(x1, x2, ..., xm, y1, y2, ...yn) in range {0, 1},

with xj a boolean configuration variable denoting if a recorded
event ei is enabled during replay (e.g., a parameter update
event), and yi a real configuration variable in a range [lbi, ubi]
denoting the threshold used in a safety check. The replay
function yields 1 when it reproduces the accident, 0 otherwise.

As such, we have R(x1=1, x2=1, ..., xm=1, y1=θ1, ...,
yn=θn)=1, with θ1, ..., θn the current threshold values of the
n safety checks, because the configuration 〈x1=1, x2=1, ...,
xm=1, y1=θ1, ..., yn=θn〉 denotes the vanilla replay.
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Given a configuration from the entire space, denoted as
c ∈ C, a mutant c′ ∈ C can be acquired by changing the
values of a set of configuration variables in their ranges. For
example, a mutant 〈x1=0, x2=1, ..., xm=1, y1=θ1, ..., yn=θn〉
means that we disable the first discrete event during replay.
With such abstraction, the diagnosis problem is reduced to
finding the minimum mutation to the initial configuration that
can suppress the accident and in the mean time does not affect
normal operations (i.e., the operation trace before the accident
can be reproduced). Note that the latter is needed otherwise a
simple mutation that shuts down the RV will suffice.

RVPLAYER uses a genetic algorithm to find the minimum
mutation. Starting from an initial population, i.e., a set of
configurations c1, c2, ..., and cp. An offspring configuration can
be derived as a mutant of some existing configuration, or by a
cross-over operation on a pair of existing configurations, i.e.,
exchanging the values of a subset of corresponding configura-
tion variables [59]. These offsprings form the new generation.
Each configuration denotes a replay run. RVPLAYER selects
the healthy offsprings by a fitness function computed from dy-
namic information collected during replay. The process repeats
and the fitness of new generations continues to improve.

Our fitness function requires that (1) the replay function
yields 0 with normal mission completion. (i.e., accident sup-
pressed); (2) the set of disabled discrete events is small; and
(3) the set of changed safety check thresholds is small and
their value changes are small.

Given an initial configuration c0 ∈ C such that R(c0) = 1,
finding the root cause (i.e., minimum mutation) can be formu-
lated as a multi-objective optimization (MOP) problem [60].

minimize F(c) = {f1(c), f2(c), ..., fm(c)}
subject to G(c) = {g1(c), g2(c), ..., gn(c))}, c ∈ C. (6)

where C is the configuration space, F : C → Rm consists of m
objectives denoted as f1, ..., fm and Rm is the objective space.
G is defined by n constraints denoted as g1, ..., gn. For our
fitness functions, g1(c) = {R(c) = 0} denotes the condition
(1), f1(c) is the condition (2), and f2 and f3 denote the
condition (3), where each function fi is defined as ∆i(c0, c),
where ∆i(·) denotes a distance function using the Lp-norm
distance of an offspring from the initial configuration. We use
L1 for f1 and f2, and L2 for f3. To select healthy offsprings for
the genetic algorithm, we leverage the non-dominated sorting
algorithm NSGA-II [61] based on our multi-objective fitness
function. An example of how RVPLAYER identifies the root
cause for a defective safety-check attack can be found in
Section S-C of our online document. Genetic algorithm is
widely used in searching for discrete event root causes that
may be correlated, that is, multiple working together to cause
failure [62]–[64]. A popular alternative is gradient descent,
which requires the domain to be continuous, which is not our
case as we reason about the presence/absence of an event.

B. Diagnosing Spoofing Attacks with What-if Reasoning

When the vanilla replay cannot reproduce an accident,
it is likely due to spoofing. The goal is hence to identify
the sensor(s) that are spoofed and the time that the spoofing
started. Many spoofing attacks such as gradual spoofing [4], [6]
only introduce small errors. Locating the starting time entails

distinguishing the spoofing errors and the intrinsic errors,
which is challenging.

RVPLAYER leverages a state computation graph (SCG)
constructed for each RV category that describes how sensor
readings are used and fused to derive system states. The
states are fed to the control software to compute control
signals in each iteration of the main control loop. SCG also
denotes sensor dependences and redundancy. Starting from a
set of states/sensors that are already verified (to have genuine
values), RVPLAYER identifies a set of verifiable sensors whose
genuineness can be determined by using only the verified ones
in replay. Initially, the set only contains the genuine accident
states. After RVPLAYER identifies a spoofed sensor, it further
analyzes the second order derivative of the spoofed signal
during replay to determine the start time of spoofing.

State Computation Graph (SCG). In an SCG, nodes denote
states (in oval) or sensor readings (in yellow and blue boxes)
and edges denote dataflow, that is, a source state/sensor is
used in computing the value for a target state. Operator ⊗
denotes a fusion operation, meaning that the output signal
is a weighted sum of the multiple input signals. States are
classified to plain states such as linear and angular positions,
first-order states such as velocities, and second-order states
such as accelerations.
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Linear Position

IMU

Angular Velocity

Angular Position
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CompassBarometer

①
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Fig. 7: State computation graph for drones

Figure 7 shows an example SCG for drones. Observe
that the acceleration and angular velocity signals of the IMU
sensor(s) at the bottom are used to compute linear accelerations
(edges 1© and 2©). Angular velocities are needed in frame
transfer from the IMU’s sensor frame to the world frame [65].
Intuitively, IMU readings are represented in a coordinate
system regarding the IMU sensor (i.e., how the sensor sees
the RV’s movements) whereas readings in the world frame
describes how the world sees the RV’s movements. Linear
acceleration can be further used to derive linear velocity.
The computed velocity signal is fused with GPS readings
and barometer readings to derive the final linear position
states (edges 3©- 5©). Additional sensors (in blue boxes) can
provide more redundancies of sensors readings. Similarly, the
computed angular velocities are fused with compass readings
and tilt readings to derive angular position. 2

Identifying Spoofed Sensor Reading(s) by Gradual Vali-
dation Based on SCG. Starting from an initial state/sensor-
reading verified by directly comparing with the genuine ac-
cident states, RVPLAYER gradually verifies more and more
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states/sensor-readings, until the spoofed ones are identified. A
typical process is to first verify the low order sensors (e.g.,
GPS) and then the higher order ones. There are two reasons.
First, the genuine accident states are usually low order (e.g.,
linear positions). Second, using high order sensor readings
(e.g., IMU) in replay may lead to non-trivial drifting errors
over time [66] due to the intrinsic uncertainty of these readings.
As such, verifying low order sensor readings (e.g., GPS) via
the replayed results by higher order (verified) sensor readings
(e.g., IMU) may be error-prone. Specifically, given a set of
states/sensor-readings that have been verified, a sensor-reading
(beyond the set) becomes verifiable if a dataflow path from
the sensor meets with another dataflow path from verified
sensor(s)/state(s) at a fusion operator. For example, we use
{x@GPS , y@GPS} to denote that the initial verified set
contains the x and y position readings of GPS, as they can
be easily verified by comparing to the genuine crash sites.
Given this set, IMU becomes verifiable as the dataflow path
consisting of 1©, 2©, and 5© meets with that from GPS (i.e., 3©)
at a fusion operator. In other words, the two data paths denote
redundancy and hence can be used for verification. After IMU
is verified, barometer and compass become verifiable.

To determine if a verifiable reading is spoofed, the replay
policy is the following. RVPLAYER disables the data path
from sensors that have been verified at the fusion operator
and replays using only the readings from a verifiable reading.
The replayed states are then cross-checked with states when
replaying exclusively with verified sensors to confirm the
validity of the verifiable reading. In the drone case, to verify
IMU, RVPLAYER replays exclusively using IMU (without
using GPS) and then compares the replayed run with that using
only GPS. The process is automated given the SCG, whose
construction is one-time effort. In Section F, we present a case
study how RVPLAYER verifies sensors gradually and identifies
the source of spoofing.

There are cases that none of the sensors is verifiable,
meaning that there is not enough reference to determine which
of these sensor(s) is spoofed. RVPLAYER will conservatively
claim all these sensors are spoofed. This may occur when
multiple sensors are spoofed. For example, if both GPS and
IMU are spoofed, there is no way RVPLAYER can determine
if barometer and compass are spoofed. Note that this is not
a technical limitation of RVPLAYER, but rather due to the
intractability of the problem.

Further Pinpointing Spoofing Start-time by Second Deriva-
tive Analysis. After identifying spoofed sensor readings,
RVPLAYER further identifies the spoofing start-time. This is
critical to understanding attack causation. However, a direct
comparison of replayed results of sensors (such as GPS and
IMU) to identify spoofing start-time is practically difficult due
to the intrinsic drifting errors. We observe that the second
derivative analysis of replay errors can disclose spoofing start-
time. In the following, we formally explain the method using
a case in which GPS is spoofed and IMU is genuine. Note that
here we are not using IMU to determine if GPS is spoofed.
Instead, we assume that we have determined that GPS is
spoofed (using the validation process mentioned ealier) and
here we are using the (genuine) IMU to determine the GPS
spoofing start-time. Specifically, when RVPLAYER replays
using only IMU, the position p̂(t) is integrated from the linear

(a) Latitude Position (b) Longitude Position

(c) First Derivative of Error (d) Second Derivative of Error

Fig. 8: Second derivative analysis of GPS spoofing start-time.

acceleration reading â(t) of IMU that is composed of the
true value a(t) and a small intrinsic error b(t) as shown in
Equation (7). In Equation (8), p(t) denotes the true position
integrated from true acceleration. The second term denotes the
drifting error.

p̂(t) =

tx

0

â(t) dt =

tx

0

a(t) dt+

tx

0

b(t) dt (7)

p̂(t) = p(t) +

tx

0

b(t) dt (8)

pm(t) = p(t) + d(t) (9)

Since GPS is spoofed, the measured position pm(t) is com-
posed of the true position and the injected error d(t) as shown
in Equation (9). Hence, the replay error is:

e(t) = pm(t)− p̂(t) = d(t)−
tx

0

b(t) dt (10)

Let the start-time of spoofing be t0 and the injected offset
increase gradually at a rate c after t0 (a typical setup of gradual
spoofing [6]). Then e(t) can be rewritten as Equation (11).

e(t) =

{
−

s t

0
b(t) dt , t < t0

c · (t− t0)−
s t

0
b(t) dt , t ≥ t0

(11)

The first and second derivatives of replay error, ė(t) and ë(t),
are then shown in Equation (12) and Equation (13). The former
has a linear order of growth and the latter is the IMU intrinsic
error which tends to be small before and after t0.

ė(t) =

{
−
∫ t

0
b(t) dt t < t0

c−
∫ t

0
b(t) dt t > t0

(12)

ë(t) =

{
−b(t) t < t0
−b(t) t > t0

(13)

Note that they are not continuous at the attack time t0
because c > 0. In practice, the recorded positions are sampled
discretely at a frequency fs. Let ta be the last sample before
t0 and tb the first sample after t0 (∆t = tb− ta = 1/fs), then
ë(t0) can be approximated by Equation (14). Combined with
Equation (13), ë(t) can be written as Equation (15). Observe
that the value at t0 is much larger than the rest, which serves
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as a strong indicator of start-time of spoofing.

ë(t0) =
ė(tb)− ė(ta)

tb − ta
=
c−

∫ tb
ta
b(t) dt

∆t
=̇ cfs − b(t0) (14)

ë(t) =̇

{
−b(t) , t 6= t0

cfs − b(t0) , t = t0
(15)

Intuitively, the second derivative analysis undoes the accumula-
tion of drifting error, and inverses it to the small error term b(t)
such that the spoofing effect clearly stands out. The method
also works when IMU is spoofed and GPS is genuine. The
formal analysis is elided.

Figure 8 shows the second derivative analysis for a gradual
GPS longitude spoofing started at the 36.3s. As shown in (a)
and (b), the recorded latitude and longitude positions (from
the GPS and the replayed states by IMU) have increasing
errors, due to drifting and spoofing. By directly observing the
positions and errors, it is very difficult to identify the spoofing
and the start-time. Figures (c) and (d) show the the first and
second derivatives of the longitude error. The first derivative is
an ascending curve, whereas the second derivative has a surge
that clearly suggests the spoofing start-time.

V. EVALUATION

A. Evaluation Setup

Implementation. RVPLAYER includes: (1) a non-linear mod-
eling method with System Identification in MATLAB; (2)
an online adaptive logging module for each target control
program; (3) a replayer; (4) a root-cause analyzer that system-
atically performs what-if reasoning to identify root cause. The
logger records runtime values through built-in logging APIs in
the individual systems. Modern vehicles commonly utilize sen-
sor fusion, which combines information from multiple sensors
to generate a single output by voting or weighted averaging,
e.g., using Extended Kalman Filter (EKF) [67]. RVPLAYER
records raw sensor measurements instead of states after fusion
since corrupted sensor information could be filtered out by
fusion. RVs also often use filters (e.g., Butterworth low-pass
filter [68]) to suppress noises. As such, spoofing signals need
to have certain strength to get through filtering and fusion.

Subject Systems. We evaluate our technique on 3 control
programs with 5 different types of real/simulated vehicles.
Additionally, we use real-world traces for 2 autonomous cars
from [4]. The vehicles perform diverse physical maneuvers,
and the control programs have various software stacks, sup-
porting that our technique provides a generic solution.

TABLE I: Subject Systems

Controller Version SLOC Vehicle Type Log
Freq Vehicle # State Sensors

Ardupilot 4.0.1 267,593 Quadrotor 400 SimQuad 12 G I B C R

OpenSolo 4.0.0 413,012 Quadrotor 400 3DR Solo 12 G I B C

Ardupilot 4.0.1 267,593 Quadrotor 400 IRIS+ 12 G I B C

APMRover2 4.0.0 257,444 4-Wheel Rover 50 SimRover 6 G I C

APMRover2 3.2 203,266 4-Wheel Rover 50 Erle-Rover 6 G I C

G: GPS, I: IMU, B: Barometer, C: Compass, R: Rangefinder

Table I shows the drones and rovers used in our evaluation.
The simulated vehicles (i.e., SimQuad and SimRover) run on

TABLE II: Real-world AD Datasets

Source Road Real
Traces (#)

Attack
Instances (#)

Freq
(Hz)

Duration
(s) Sensor Data

Baidu
Apollo Urban 1 256 100 257 GPS LiDAR IMU

KAIST
Complex

Urban /
Highway 4 890 100 553-1937 GPS LiDAR IMU

Wind blower

Anemometer

3DR Solo
(Drone)

Ground 
Control System

Traffic Corns 
(Obstacles)

Ground 
Control System

Erle-Rover
(Autonomous Car)

Fig. 9: Real vehicles and experimental tools. Aerial vehicle setup
(left): drone, GCS, wind generator, and anemometer. Ground vehicle
setup (right): traffic cones, GCS, and autonomous vehicle.

Ubuntu 18.04LTS with Intel i7-8700 and 32GB RAM. The real
aerial vehicle, 3DR Solo (left in Figure 9), contains an open-
source autopilot system, Pixhawk 2.1, running on an ARM
Cortex-M4 STM32F427 CPU with 256KB RAM, a 32GB SD
card and various onboard sensors. IRIS+ contains a Pixhawk 1
with a 8GB SD card and various sensors. The ground vehicle,
Erle-rover (right in Figure 9), runs on Erle-brain, which is a
Linux-based autopilot system running on an ARM Coretex-A7
with 1GB RAM, 16GB flash memory, and sensors.

For auto-driving cars, we follow a similar setup in [4]
to use real-world operation trace datasets, due to the lack of
real auto-driving cars. Table II shows the two datasets used in
our evaluation. We use one trace from the Apollo [69] dataset
that includes sensor traces of urban driving and 4 traces from
the KAIST Complex Urban [70] dataset that provides complex
driving environments.

Missions and Disturbances. We evaluate our technique with
various autonomous missions (e.g., flight plans) and different
types/levels of environmental disturbances. The autonomous
missions consist of straight-line mission, square mission, zig-
zag mission and star-shape mission, covering diverse maneu-
vers. The straight-line mission is to move towards north for
30 meters, then stop/land. The square mission has a square-
shape trajectory with 30 meters edge length and 4 waypoints.
In the zig-zag mission, the vehicles moves in a zig-zag fashion
(so that they turn both left and right) with 11 waypoints.
The star-shape mission has a hexagonal-star trajectory with
13 waypoints with sharp turns. During these missions, the
real vehicles have random natural winds as environmental
disturbances. For the simulated vehicles, no environmental dis-
turbances are applied to the first two missions (i.e. straight and
square missions) and random winds from various directions
with 0-22 mph speed are applied to the zig-zag and star-
shape missions. We also evaluate RVPLAYER’s performance
under different levels of environmental disturbances. We have
three settings: small, medium and strong. In testing 3DR
Solo, we used wind blower and anemometer (left bottom
in Figure 9). The wind blower can generate multiple levels
of wind at different distances from the vehicle. We use the
wind blower at 2m, 1m, and 0.5m away from a hovering
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drone, creating 10mph (Beaufort Level 3), 20mph (Level 5)
and 50mph (Level 9) wind disturbances, respectively. For the
Erle-Rover, the three levels of disturbances are generated using
traffic cones (top right in Figure 9) and the wind blower. Small
and medium effects are generated using the wind blower 45-
degree and directly ahead of the vehicle, respectively. Strong
effect comes from hitting the center of a traffic cone. For
the simulated vehicles, the different levels of environmental
effects are generated by environmental plugins [47] in simu-
lation. We set SIM_WIND_SPD=4, SIM_WIND_SPD=9 and
SIM_WIND_SPD=20 to generate the three levels of external
disturbances.

RV Attacks. We implemented 5 kinds of popular RV attacks
(with 1194 attack instances with 48 on drones and rovers,
and 1146 on auto-driving cars) from the literature: parameter
tampering [12], [32], short-duration sensor spoofing [3],
[26], gradual sensor spoofing [6], multi-sensor fusion (MSF)
attack [4] and defective safety check attack [27]. They are on
the square route mission (M1) and the zig-zag route (M2).
Details about RV Attacks, the implementation of RVPLAYER,
datasets used, and demos are available at https://sites.google.
com/view/rvplayer.

B. Efficiency and Effectiveness of Logging and Replay

We performed several experiments to evaluate the logging
and replay functionalities of RVPLAYER, focusing on effi-
ciency and effectiveness. For efficiency, we measure space and
runtime overheads, and show the log reduction by our adaptive
logging method. For effectiveness, we show that RVPLAYER
reproduces original traces of simulated and real flights under
different scenarios (i.e., different missions and disturbances)
with small errors. We further show that RVPLAYER is effective
to find root cause of accidents of real-world flights in an
urban area where diverse errors are introduced (e.g., GPS urban
canyon, wind, etc.). We also show that the reproduction results
are stable, by studying the tradeoffs between replay errors and
log reduction rates.

Performance Overhead. RVPLAYER enlarges the firmware
size by 0.10% to 0.28% on average. Without adaptive logging,
Ardupilot-based drones have the space consumption rate of
4.04GB/day and APMRover-based rovers have the rate of
0.35GB/day. After adaptive logging, RVPLAYER reduces more
than 90% of the space consumption for normal operations.
In contrast, MAYDAY’s space consumption is 40.5 times
of RVPLAYER’s. The runtime overhead of RVPLAYER is
lower than 8%. In contrast, MAYDAY’s overhead is 19.6%.
Additionally, we measure the CPU utilization rate for the
real vehicles. The rate increases from 55.19% to 57.07% and
20.03% to 20.46% for 3DR Solo and Erle-rover respectively.
Such marginal overhead does not affect normal operations.
Details can be found in Appendix B.

Replay Accuracy. We show how accurately RVPLAYER
reproduces the original executions of simulated and real flights
in various conditions. We log states at the highest frequency
possible (i.e., every control loop iteration) and use them as
the ground truth. We then compare the replayed executions
with the ground truth. We also evaluate a baseline in which
we replay without using the recovered disturbances. For all the
RVs and missions, the mean position error of RVPLAYER is

less than 0.73 meter and the mean attitude error of reproduction
is less than 6.4 degrees. In comparison, the baseline’s mean
position and attitude errors are 364.8% and 290.5% larger, and
361.3% and 453.6% larger in high variance durations. Details
and a case study can be found in Appendix C.

IRIS+

Solo 2 

Solo 1 

Controllers

Ground Control 
System

0 25 50

(m)

Fig. 10: Real drones and real flight trajectories in an urban area

Problem Diagnosis in Real-world Missions. In reality, there
are lots of (small) errors that may cause accidents (e.g, sub-
stantial deviations). Hence in this experiment, we run physical
experiments with real drones in an urban area where diverse
errors (e.g. GPS signal loss, wind, etc) can be encountered.
We use missions that are (relatively) long lasting with some
reaching the maximum battery capacity and have multiple
waypoints (being repeated many times). Besides natural errors
(e.g., wind and intrinsic GPS errors), we artificially generate
GPS urban canyon effects via an injected code snippet in the
control loop, which intentionally degrades GPS signals2. We
activate these effects randomly with various duration in the
missions. We consider deviation larger than one meter as an
accident and then study if RVPLAYER can determine the real
root causes.

We use three drones of two models: 3DR Solo1, Solo2
(without GPS glitch protection), and IRIS+ as shown in
Figure 10 (left). The missions are shown in Figure 10 (right).
The flight distances are all longer than 3km. Due to safety
concerns, when an accident occurs (i.e., a large deviation), we
let the vehicles land via our fail-safe function3. We perform the
experiments over several days, trying to maximize the range
of weather conditions we cover. We have covered wind speed
from 0-12mph, temperature from 27-61°F and humidity from
35-78%.

Table III summarizes the results. The first column shows
the error conditions, the second column the subject vehicles,
the third and fourth columns flight distance and time, the
fifth column the maximum position deviation from the target
trajectory, the sixth column the maximum position error during
replay, the seventh column reporting if an accident occurs, the
eighth column the identified root cause, the ninth column the
error of identified root cause start-time, and the tenth column
the SCG path that RVPLAYER uses in replay. The winds are
not strong enough to induce accidents, whereas the artificial

2Natural urban canyon effects are unlikely in the geographical locations of
the authors.

3All the real drones have been registered with the FAA and controlled by a
certified operator with LAANC (Low Altitude Authorization and Notification
Capability) permission.
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TABLE III: RVPLAYER with real-world flights

Conditions Vehicle FD
(km)

FT
(min)

D
(m)

RErr
(m)

A
(Y/N)

R TErr
(sec)

SCG
Path

Wind
(0-4mph)

Solo1 3.26 10.8 0.09 0.2 No - - -
Solo2 3.23 10.5 0.08 0.2 No - - -
IRIS+ 3.14 13.1 0.11 0.32 No - - -

Wind
(4-8mph)

Solo1 3.58 11.8 0.10 0.21 No - - -
Solo2 3.60 11.9 0.10 0.2 No - - -
IRIS+ 3.14 13.2 0.13 0.31 No - - -

Wind
(8-12mph)

Solo1 3.61 12.0 0.12 0.37 No - - -
Solo2 3.60 12.0 0.11 0.39 No - - -
IRIS+ 3.66 15.2 0.23 0.43 No - - -

GPS Glitch
(1-3s)

Solo1 3.25 10.8 0.38 0.49 No - - -
Solo2 3.36 11.2 2.93 0.41 Yes GPS 0.0 G
IRIS+ 3.21 13.4 0.44 0.35 No - - -

GPS Glitch
(3-5s)

Solo1 3.38 10.8 0.51 0.38 No - - -
Solo2 1.32 4.4 4.52 0.42 Yes GPS 0.0 G
IRIS+ 3.22 13.4 0.56 0.45 No GPS 0.0 G

GPS Glitch
(5s>)

Solo1 1.52 5.0 2.21 0.39 Yes GPS 0.0 G
Solo2 1.48 4.9 8.26 0.42 Yes GPS 0.0 G
IRIS+ 2.18 9.08 3.34 0.39 Yes GPS 0.0 G

FL: flight distance, FT: flight time, D: deviation, A: if accident is encountered, RErr: replay
error, R: root cause identified, TErr: identified start-time error, N/A: not available

GPS urban canyon effects indeed cause a few failures. For
all these accidents, RVPLAYER accurately identifies the GPS
signal loss as the root cause without any start-time error.
Besides these normal flights, extreme wind conditions and the
investigation results are available in Table V. In addition, we
extensively evaluate urban canyon effects in different settings
(e.g., effect duration and GPS protection enabled/disabled)
with real drones. The evaluation results and demo videos are
available in Section S-G of our online document.

Fidelity of What-if Analysis. In this experiment, we show that
the what-if analysis on a simulator can produce high fidelity
results as in physical field tests. In particular, we demonstrate
that the replayed runs (on a simulator) with certain events
disabled have small errors compared to the real runs (in the
physical world) with the same set of events disabled.

We use a mission with a square trajectory. During the flight,
three paraemters are updated (A) WP_YAW_BEHAVIOR, (B)
WPNAV_SPEED and (C) FS_THR_VALUE. We first collected
a replay trace of the flight on a day with normal environmental
conditions (with SE wind of level 2, light breeze). On the same
day, we disabled different subsets of the update events, re-flied
the same mission, and collected detailed state traces. For each
configuration, we flew five times to mitigate environmental
uncertainty. Later in the simulation environment, we used
RVPLAYER to replay the first trace multiple times, each having
the corresponding subset of update events disabled. We then
compared the replayed runs and the corresponding real runs.
Figure 11 shows that the replay errors are small. It demon-
strates that RVPLAYER indeed can serve as an alternative
to expensive field tests. Also observe that disabling different
subsets leads to different state traces such that a faithful replay
technique without what-if reasoning capabilities would not
work.

C. Attack Root Cause Analysis

Parameter Tampering Attacks Results. Table IV summarizes
the results of parameter tampering attack analysis. The sec-
ond column shows the vehicles, the third column the attack
consequences, the fourth column the number of parameters
updated, the fifth column the root cause parameter updates,
the sixth column the number of replays needed (to identify

(a) Replay original trace (b) Replay with A and B

(c) Replay with A and C (d) Replay with B and C

(e) Replay with A (f) Replay with B

(g) Replay with C (h) Replay without events

Fig. 11: Comparison of physically reruns and replayed runs under
different combinations of cyber events. Figure (a) shows RVPLAYER
can faithfully replay the first flight (with none of the events disabled)
and the error is negligible. Figures (b-h) show that even when different
events are disabled, e.g., (c) showing B disabled, RVPLAYER can
closely reproduce the corresponding real runs.

the root causes), the seventh column the total analysis time,
and the last column reporting if RVPLAYER identifies the
root causes. Some of the attacks require compromising more
than one parameters. Observe that RVPLAYER can precisely
identify the root causes for all the attack cases, including
those having multiple root causes, with reasonable analysis
time. The large number of replays needed indicate that such
what-if forensics analysis cannot be afforded in field tests. Our
technique can also correctly distinguish the attacks by strong
external disturbances from parameter tamperings. Advanced
attackers may exploit multiple root causes to make the search
process of RVPLAYER more difficult. We discuss this advanced
attack in Section S-F of our online document.

Short-duration and Gradual Sensor Spoofing Attacks Analysis.
We mix the 23 spoofing attacks with 3 physical attacks.
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TABLE IV: Parameter Tampering Attack Analysis Result

Mission &
Attack

V Attack
Consequence

PC
(#)

Root Cause RC
(#)

RT
(min)

ID?

M1

A1 SQ Crash 10 ATC_RAT_RLL_P 133 53 YES

A2 SL Crash 10 ATC_RAT_RLL_P 112 34 YES

A3 SQ Oscillation 10 PSC_VELXY_P 148 74 YES

A4 SQ Crash 10 ATC_RAT_PIT_I
ATC_RAT_PIT_FF 154 64 YES

A5 SR Oscillation 10 ATC_STR_RAT_P 129 97 YES

A6 ER Oscillation 10 ATC_STR_RAT_P 119 44 YES

A7 SQ Drift away 9 External Dist. 87 62 YES

A8 SQ Oscillation 9 External Dis. 74 51 YES

A9 SR Crash 9 External Dis. 89 68 YES

M2

A10 SQ Crash 10 ATC_RAT_RLL_P 159 101 YES

A11 SL Crash 10 ATC_RAT_RLL_P 140 54 YES

A12 SQ Oscillation 10 PSC_VELXY_P 125 85 YES

A13 SQ Crash 10 ATC_RAT_PIT_I
ATC_RAT_PIT_FF 178 116 YES

A14 SR Oscillation 10 ATC_STR_RAT_P 143 141 YES

A15 ER Oscillation 10 ATC_STR_RAT_P 124 33 YES

A16 SQ Drift away 9 External Dist. 102 99 YES

A17 SQ Oscillation 9 External Dis. 96 94 YES

A18 SR Crash 9 External Dis. 83 64 YES

V: Vehicle, SQ: SimQuad, SR: SimRover, SL: 3DR Solo, ER: Erle-Rover
PC: Parameter Count, RC: Replay Count, RT: Total Replay Time, ID: Identified

TABLE V: Sensor Spoofing Attack Analysis Result

Attack Attack
Impact V AST

(s)
ADT
(s)

RC
(#)

RT
(s) IDR STE SCG

Path

GPS
Gradual Crash

SQ 19.23 44
2

128
GPS

+0.77
GSR 20.78 43 153 +0.72

SL 16.12 53 138 +0.88
ER 11.14 10 43 +0.86

Barometer
Gradual Crash SQ 25.43 6 3 93 Baro +0.57 GBSL 12.53 7 58 +0.97

Barometer
Short-time Crash SQ 16.96 1 3 61 Baro +0.54 GBSL 9.89 1 128 +0.61

Rangefinder
Gradual Crash SQ 21.24 6 4 108 Range-

finder +0.76 GBR

Rangefinder
Short-time Crash SQ 22.12 1 4 106 Range-

finder +0.88 GBR

Rangefinder
& Barometer Crash SQ 23.78 1 5 243 Baro

Range
+0.67
+0.67 GBR

Gyroscope
Short-time Crash

SQ 18.92 0.5
5

212
IMU

+1.58
GBRISR 42.82 0.5 242 +0.68

SL 12.03 0.5 106 +0.97

Gyroscope
Gradual Crash SQ 32.52 8 5 204 IMU +1.98 GBRISR 36.11 8 310 +0.89

Accel.
Short-time Crash SL 10.47 1 5 68 IMU +0.99 GBRI

Accel.
Gradual Crash

SQ 36.88 7
5

228
IMU

+1.12
GBRISR 31.46 7 287 +1.04

SL 4.99 6 57 +1.01

Gyro.&Acc.
Gradual Crash SQ 36.88 7 5 228 IMU +1.12 GBRISR 36.32 12 242 +1.18

Compass
Gradual Crash SQ 8.7 32 6 535 Compass +2.3 GBRICSR 18.92 67 669 +1.08
Strong
Dist. Crash SQ 30.52 16 2 93 Dist. - -SR 30.72 15 92 -

Strong
Dist.

Drift
Away SQ 13.39 18 2 118 Dist. - -

Strong
Dist.

Strong
Oscillation SQ 16.53 21 2 82 Dist. - -

V: Vehicle, SQ: SimQuad, SR: SimRover, SL: 3DR Solo, ER: Erle-Rover,
AST: Attack Start Time, ADT: Attack Duration Time, RC: Replay Count,
RT: Total Replay Time, IDR: Identified Root Cause, STE: Identified Start-Time Error

Table V summarizes the results. The first column shows the
spoofed sensor and the spoofing method, the second column
the attack consequence, the third targeted vehicle(s), the fourth
column the start-time of attack, the fifth column the attack
duration, the sixth column the number of replays, the seventh
column total replay time, the eighth column identified root-
cause, the ninth column the error of identified start-time, the
tenth column the SCG path (Section IV-B) that RVPLAYER
uses in replays. Observe that the root causes are correctly

detected for all these attacks and the start times are identified
with mostly around 1 second errors. Observe that although the
SCG paths are different, they are the prefixes of the same
validation path. The last three attacks show that when the
accidents are not caused by spoofing, RVPLAYER correctly and
exhaustively validates all sensors along the SCG path and does
not report any spoofing, that is, it produces no false positives.

MSF Attacks Analysis. Table VI summaries the results for the
MSF attacks. In the table, we show the datasets and the trace
ids (columns 1 and 2). The traces are obtained from different
types of roads (column 3) with different lengths (column 4),
and the required deviations for a successful attack (column
5) are correspondingly different based on the width of roads.
Based on the optimal attack parameters in the original paper
(column 6), a number of attack are performed with different
start-times (column 7). Column 8 reports the number of
successful attacks (i.e., achieving the required deviation) with
the average attack duration in column 9. Column 10 shows
that the average difference between the spoofed GPS position
and the accident position. According to the SCG for AD
cars, RVPLAYER leverages data redundancy in linear positions
from LiDAR and GPS. It first compares {x@GPS , y@GPS}
and {x@LiDAR, y@LiDAR} to the accident position. This
allows to decide which sensor is spoofed. Figure 12 shows
the average position differences of GPS and LiDAR from
the genuine accident positions (normalized to zeros) upon
accidents. Observe that the LiDAR positions are very close
to the ground truth. In contrast, the GPS position differences
are around 5 to 11 meters, exceeding normal GPS errors in
modern AD systems. The last column shows the average error
of identified start-time of spoofing. RVPLAYER identifies a
sudden increase of the second derivative of replay errors using
GPS and LiDAR. Observe that the means error is less than 0.9
seconds for all the attacks.

Defective Safety-check Attack Results. Table VII summarizes
the results for attacks exploiting defective safety-checks. The
first column shows the safety-check functions from various
control programs, the second column the defect type, the
third column the triggering conditions, the fourth column the
attack consequences, the fifth column the number of predicates
involved, the sixth the number of replays, the seventh total
replay time, the eighth the number of identified root causes.
Observe that RVPLAYER successfully identifies all the root
causes. Case studies can be found in Appendix F.

D. Comparison with Other RV Forensics Techniques

We compare RVPLAYER with two other techniques: Soft-
ware Sensor (SS) [17], and MAYDAY [25]. SS builds a model
for a physical sensor (called software sensor) that can convert
other sensors’ readings to approximate the sensor’s reading.
While SS was proposed for robust control, software sensors’
reading can be compared with their physical counter-parties
to identify attacks and start-times. That is, any substantial
deviation of a sensor’s readings from its software counterparts
indicates the sensor is spoofed. We use the 38 RV attacks
from the previous experiment (Table IV, V, VII), randomly
selected 30 MSF attacks for AD, and 10 accidents by natural
disturbances. Table VIII shows the results. Each row represents
a kind of attack and the number of instances. The columns
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Source Trace Road
Type

Data
Len. (s)

Required
Dev. (m)

Attack
Par. (d/f)

Attacks
(#)

Accidents
(#)

Attack
Dur. (s)

Pos.
Diff. (m)

Time
Err. (s)

Apollo ba-local Urban 257 2.405 0.6 / 1.5 256 126 1.63 5.13 0.7608

KAIST
Complex

Urban

ka-local31 Urban 1014 2.405 0.5 / 1.2 217 208 1.92 4.37 0.0034
ka-local07 Urban 553 2.405 0.3 / 1.1 231 228 2.07 6.61 0.0017

ka-highway17 Highway 1186 2.855 0.3 / 1.2 162 162 10.64 6.88 0.0063
ka-highway06 Highway 1937 2.855 1.1 / 1.5 280 277 9.30 11.12 0.9027

TABLE VI: MSF Attack (through GPS Spoofing) [4] for Autonomous Driving Fig. 12: Position difference

TABLE VII: Root Cause Analysis for Defective Safety-check attack

Software / Check Function Defect (FN) Triggering
Physical Condition

Accidents
(R(·)=1)

Mutated
Conditions (#)

Replays
(#)

Time
(m) Root Cause Replay Constraints (R(·)=0)

ArduCopter / Crash checker Missing crash Wall Out of Control 7 Predicates 144 73 2 Predicates Checking successful detection and disarm
APMRover2 / Crash checker Missing crash Person (Dummy) Injury 8 Predicates 152 113 2 Predicates Checking successful detection and stop

PX4 / Ground contact Detection fail Wind gust Fly away 4 Predicates 48 24 1 Predicate Checking an alert message

TABLE VIII: Comparison with Other RV Forensics Techniques

Attack #
SS MAYDAY RVPLAYER

TP FP FN STE TP† FP FN STE TP FP FN STE

P 12 7 7 7 7 6 6 0 0.57 12 0 0 0
S 23 10 0 13 1.13 7 7 7 7 23 0 0 1.02
C 3 7 7 7 7 7 7 7 7 3 0 0 0
A 30 22 0 8 4.37 7 7 7 7 30 0 0 0.73
D 10 7 7 7 7 7 7 7 7 0 0 0 7

Total 78 32 0 21 - 6 6 0 - 78 0 0 -
- P: parameter attack, S: sensor spoofing, C: safety check attack, A: AD MSF attack, D: disturbance
- 7: Not available
† MAYDAY does not pinpoint real root cause parameter(s), rather it reports code region associated

with the parameters (we count this as TP).

contain the results for different techniques, including the
number of false positives/negatives and the average start-time
error. For SS and MAYDAY, we use the moment they detect
anomaly as the attack start time. Symbol 7 means that the
technique does not support analyzing an attack. Observe that
SS and MAYDAY each can analyze only one or two kinds of
attack, whereas RVPLAYER supports all. Even for the attack
categories SS and MAYDAY focus, RVPLAYER outperforms
by having no false positives or negatives, and precise attack
start time. As discussed in Section II, MAYDAY relies on
thresholds to find root causes and in many attacks, multiple
code components easily exceed the thresholds. SS compares
physical sensor readings with approximated sensor readings
to report root causes. In many gradual spoofing attacks, the
difference between the two readings is marginal, leading to
false negatives. Five case studies of analyzing four different
kinds of attacks can be found in Appendix F.

VI. DISCUSSION

Model Accuracy. Our model is not perfect as it is constructed
by regression analysis (i.e., SI) from traces. A ”less perfect”
model means that we may log a bit more information than
necessary because RVPLAYER simply records the states that
cannot be precisely predicted. We evaluate the impact of model
accuracy on the performance of RVPLAYER in Appendix E.

TABLE IX: Sensors and Data Redundancy

Data Type GPS Gyro Accel Mag Baro Sonar Cam* LiDAR RADAR

Positional 3 3 3 3 3 3 3
Rotational 3 3 3 3 3 3
Distance† 3 3 3 3 3

3: Included. † Relative position to objects or the ground. *With post-processing via AI models

Multiple Sensor Attacks and Software Hijacking. We rely
on SCG to identify spoofed sensor reading(s). When multiple
sensors are attacked, RVPLAYER may still be effective if
there is at least a clean path in the SCG, In practice, it
may be difficult to attack all paths in SCG simultaneously.
In addition, modern RVs heavily leverage sensor fusion, in
which multiple sensors of the same or different kinds provide
overlapping/redundant information. Table IX shows data re-
dundancy in the current practice of sensor fusion. RVPLAYER
belongs to forensic analysis, which is opportunistic. If all
evidences are indeed destroyed, it is unlikely that any forensic
technique, including RVPLAYER, can work. If the control
software is hijacked, the log cannot be trusted. RVPLAYER
will be ineffective.

Adaptive Attacks. If the attacker is aware of RVPLAYER, he
could devise adaptive attacks that aim to evade our technique.
The first possible adaptive attack aims at the adaptive sampling
strategy. Specifically, the attack can be made stealthy such
that the errors are not large enough to trigger high-frequency
logging. RVPLAYER is resilient to the attack to some extent.
In particular, it regularly records vehicle states (with a low
frequency) such that the replayed states are regularly synchro-
nized with these recorded states. According to our definition
of accident and reproduction of accident in Section IV, we
assume the genuine states are known upon accidents. There-
fore, during forensics, RVPLAYER can reproduce the (spoofed)
vehicle states through regular state synchronization. They are
different from the genuine states, allowing to reproduce the at-
tack. However since the errors are very small, RVPLAYER may
not precisely pinpoint the attack start time without detailed
logs. To mitigate this limitation, we could leverage on-the-
fly time-series compression algorithms [71], [72] to compress
logs, or offload the collected traces to an edge router. Our goal
is attack forensics. If the objective is to secure RV systems after
all, existing on-the-fly defense techniques [12], [28], [73] can
be leveraged to prevent such attacks in the first place.

Another adaptive attack is to induce drastic errors such
that RVPLAYER logs at the max rate and fills up the storage
space, flushing out important events associated with the root
cause. However, to fill up the 32GB storage space (excluding
other data like videos), the attack has to last for 16 hours.
The vehicle hence likely crashes (with such large errors) long
before the space runs out. In addition, a simple online checker
can be employed to detect such long-lasting mis-prediction.
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VII. RELATED WORK

Autonomous CPS Attack Countermeasures. In recent years,
significant efforts have been invested on CPS attack counter-
measures. Runtime attack detection approaches detect physical
anomalies at runtime via control invariants [12], [13], [28],
[74], redundancy-based technique [75], [76], and rule-based
detection [77]–[80]. Runtime attack recovery techniques miti-
gate attack impact via software sensors [17], fault identification
and isolation [73], [81] and checkpoint-based recovery [16].
Meanwhile, there have been other efforts on control program
vulnerability identification. SI-based testing technique [82]
provides a test oracle for bug localization. CPI [27] presents a
technique to identify cyber-physical inconsistency vulnerabili-
ties in safety checks of control software. These techniques pro-
vide a preventive or protective countermeasure. However, state-
the-art CPS attacks (e.g., stealthy and APT-style attack [4], [6],
[12], [26]) may evade them. In contrast, our technique aims
to provide a postmortem analysis to find the root causes of
sophisticated attacks. They are hence complementary.

Attack Provenance Analysis. Existing log-based causality
analysis [42], [83]–[88] utilize event logs (e.g., syscalls). They
correlate events through dependences to trace back attack root
causes or trace forward to identify attack damages. Tainting-
based analysis [89]–[93] utilizes provenance propagation. It
starts from given taint sources and monitors information flow
to capture program dependencies during execution. Both ap-
proaches induce significant runtime and space overhead. Also,
they are originally designed for cyber-attack investigation and
not suitable to handle physical attack vectors in resource-
constrained CPS. Record and replay based provenance analysis
[39], [41]–[45], [84], [94] are also a widely used approach to
attack investigation. They record program inputs and replay
original executions to analyze the root cause of attacks. These
approaches are effective in deterministic software-oriented
(i.e., cyber) execution environments. Our approach is inspired
by traditional replay-based provenance analysis. It however
focuses on reproducing physical system behaviors. Our novelty
lies in that we isolate and record non-deterministic environ-
mental conditions and exploit them in what-if analysis.

CPS Forensic Analysis. CPS forensics is less investigated.
Some research efforts have been placed on various types
of CPS such as industrial control system [19], [95], smart
grid [20], smart home [21], and autonomous CPS [22]).
However, these existing methods are mostly dedicated to
cyber components and networks. For autonomous CPS,
MAYDAY [25] discussed in Section II presented a post-
investigation technique by connecting program analysis and
physical anomaly detection. It supports source code level de-
bugging and is highly effective in locating defective controller
and mission command bugs. It does not handle convoluted
anomaly and requires heavy-weight program instrumentation
and trace collection. Our technique supports what-if reasoning
to investigate various kinds of attacks such as parameter-
tampering attacks, sensor spoofing attacks and defective codes
attacks with low overhead. This makes it complementary to
MAYDAY.

VIII. CONCLUSION

We present RVPLAYER, a novel forensic analysis technique
for RVs. RVPLAYER captures environmental disturbances at
runtime and replays them in simulation to reconstruct actual
attack traces offline. Our adaptive logging technique is efficient
in meeting resource-constrained CPS requirements by adjust-
ing a logging frequency based on a target-specific predictive
model and recording only significant runtime disturbances.
Our what-if analysis technique supports various replay policies
for different attacks to identify root causes, by selectively
enabling/disabling recorded information. Our evaluation and
case studies with 5 types of state-of-the-art RV attacks (1194
instances) on various simulated and real vehicles demonstrate
our technique’s effectiveness and efficiency. It also shows that
RVPLAYER outperforms the state-of-the-art.
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APPENDIX

A. A Subtle Spoofing Case

The attacker jams the camera sensor to disable the ob-
stacle detection system, making it impossible to recognize an
object in front, then the drone will collide with the obstacle.
According to the definition of an accident in Section IV,
we assume genuine accident states are collected, which may
not be the states observed by the vehicle. In this case, the
genuine states include the presence of an obstacle, while the
observed states do not include the obstacle. According to
the definition of reproduction of an accident, an accident is
considered reproduced when all genuine states are reproduced.
In this case, they are not as the obstacle is invisible. Hence,
the accident is considered not reproduced and a spoofing
case. Intuitively, the vehicle’s failure to see the obstacle upon
crash indicates spoofing. Note that our SCG-based method can
handle such cases as other sensors like LiDAR allow us to
localize the compromised sensor.

B. Performance Overhead

Please see Section S-D of our online document.

C. Replay Accuracy

Please see Section S-E of our online document.

D. Effect of Parameter Emax

Please see Section S-H in our online document.

E. Impact of Model Accuracy

Please see Section S-I of our online document.

F. Case Studies

In this section, we demonstrate various case studies to show
effectiveness of RVPLAYER in attack investigation.

Parameter Tampering Attack. In the first case, we launch
an APT-like parameter tampering attack [12], [32], which
requires a multi-staged and long-term procedure. The drone
first performs five normal missions (e.g., straight flies) and 8
commands are issued to modify various parameters (available
in our online document) during the flights. Among these
parameters, ATC_RAT_RLL_P affects control behaviors sig-
nificantly when the vehicle performs an extreme maneuver
under harsh environmental conditions. After the five normal
missions, the drone performs another mission which includes
a 90-degree turn. During this flight, we generate a strong wind
(i.e., 50 mph/h) via our wind generator to trigger malicious
behaviors causing a crash. Note that the same speed of wind
gust does not cause a crash during the same turn under the
original parameter value. Figure 13a shows the snapshot from
the actual accident under the attack.

Attack Investigation. To diagnose the attack, RVPLAYER first
reproduces the accident. It checks that the replayed run faith-
fully reproduces the genuine accident states in simulation to
verify the attack is caused by a non-spoofing attack. Figure 13b
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Fig. 13: Snapshots from videos of the actual and reproduced param-
eter attacks (Videos: real attack [https://youtu.be/jD9D9lCdEjQ] and
3D simulation [https://youtu.be/T6b4-KD7LK0]
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Fig. 14: Comparison of state changes during the real and reproduced
parameter attacks

shows the replay trajectory. Figure 14 shows the comparison
of attitude traces of the actual (in blue) and reproduced runs
with all the updates enabled (in red) and disabled (in black).
It is hence clear that the accident is caused by some parameter
update(s). RVPLAYER then performs what-if reasoning to find
the root cause update. Specifically, we collect the parameter
update events 〈e1, e2, ..., e8〉 from the runtime log and abstract
them to boolean configuration variables 〈x1, x2, ..., x8〉 for
replay. Given the initial configuration c0 = 〈x1=1, x2=1, ...,
x8=1〉 such that R(c0) = 1, RVPLAYER runs the genetic algo-
rithm with our fitness function (defined in Section IV-A). After
4 evolutionary iterations (population size N=20), RVPLAYER
reports 〈x1=1, ..., x7=1,x8=0〉 (i.e., ATC_RAT_RLL_P) as the
root cause.

Short-duration IMU Sensor Attack. This is a split-second
attack [26], [96]. It injects malicious signals between two
logging events of a target sensor to trigger abnormal behaviors.
As such, the malicious signal is not recorded. In the attack,
we directly modified internal sensor measurements without
losing generality, due to the lack of special attack devices (e.g.,
a distant vibration generator). Our attack code modifies the
gyro’s x-axis roll rate from the original value to 0.3. The attack
frequency is 25Hz with 0.5 second duration. It is calibrated
in a way that it avoids the regular state logging at the same
frequency of 25Hz. The attack is launched at 12.03 seconds
after taking off. Figure 15a illustrates the attack consequences.

Attack Investigation. Since we are uncertain if this is a spoofing
attack, we first use RVPLAYER to perform a vanilla replay.
Figure 15 shows snapshots from the videos of the actual and
the reproduced attacks. In Figure 16a, we denote the recorded
roll angle with the blue solid curve and the reproduced one
with the red dashed curve. Observe that the reproduced roll
angle in the vanilla replay is inconsistent with the recorded

Under attack
(split-second attack)

Planned Hovering

(a) Actual attack (b) Reproduced attack

Fig. 15: Snapshots from videos of the actual and reproduced split-
second attacks. (Videos: real attack [https://youtu.be/4Bj-Fnd5tVg]
and 3D simulation [https://youtu.be/LKAfSEIx0-o])
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Fig. 16: Spoofing analysis of gyroscope attack.

angle (e.g., the opposite peaks). We hence decide this is a sen-
sor spoofing attack. Then, RVPLAYER starts the procedure of
sensor spoofing analysis as the inconsistency could be induced
by attack on any sensor. In the spoofing analysis, RVPLAYER
first validates {x@GPS , y@GPS , z@GPS} from GPS by
comparing the accident position with the recorded GPS posi-
tion. They match well, and hence GPS is verified. Given the
SCG for drones with the verified set {z@GPS}, the barometer
becomes verifiable, and RVPLAYER compares the replayed
barometric altitude with GPS altitude. As shown in Figure 16b,
they also match well, and the barometer is genuine. Next,
RVPLAYER validates the IMU through replaying with the IMU
data. IMU is verifiable regarding GPS and barometer, i.e., the
set {x@IMU , y@IMU , z@IMU } is verifiable. Figure 16c
shows the already verified longitude position (i.e., y@GPS )
denoted by the blue solid curve, the IMU-replayed position
(i.e., y@IMU ) denoted by the red dashed curve and their
difference (i.e., replay error) denoted by the yellow area.
Observe that the error starts growing at 14s. Through the
second derivative analysis in Figure 16d, we observe a peak
at 13s, which is identified as the start-time of IMU spoofing.
Recall that the attack was launched at the 12th second. The
small time error is often due to sampling interval.

Additional case studies (a gradual GPS spoofing attack and
two defective code attacks) can be found online [37].
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