
Let’s Authenticate: Automated Certificates for User
Authentication

James Conners, Stephen Derbidge, Corey Devenport, Natalie Farnsworth, Kyler Gates,
Stephen Lambert, Christopher McClain, Parker Nichols, Daniel Zappala

Brigham Young University
{ james.conners, derbiste, creedev, njf26, kylerg, stephen7150, christopher.mcclain, nicholsp, zappala }@byu.edu

Abstract—Passwords have numerous drawbacks, and as a
result many systems have been designed to replace them. Pass-
word replacements have generally failed to dislodge passwords
due to the complexity of balancing usability, deployability, and
security. However, despite this lack of success, recent advances
with password managers and FIDO2 afford new opportunities to
explore system design for password replacements. In this work,
we explore the feasibility of a system for user authentication based
on certificates. Rather than developing new cryptography, we
develop a new system, called Let’s Authenticate, which combines
elements of password managers, FIDO2, and certificates. Our
design incorporates feedback from a survey of 397 participants
to understand their preferences for system features. Let’s Authen-
ticate issues privacy-preserving certificates to users, automatically
manages their credentials, and eliminates trust in third parties.
We provide a detailed security and privacy analysis, an overhead
analysis, and a systematic comparison of the system to a variety
of alternatives using a well-known framework. We discuss how
Let’s Authenticate compares to other systems, lessons learned
from our design, and issues related to centralized management
of authentication data.

I. INTRODUCTION

Researchers seeking to improve user authentication face a
quandary—passwords have well-known flaws, but no alternative
has been shown to be better. It’s well known that users
choose weak passwords [19], that password composition rules
can be counterproductive [21], and that users have difficulty
remembering strong passwords [69]. As a result, people
often choose weak passwords or reuse passwords across sites.
Password managers greatly simplify password use, but adoption
is far from universal [58] and users may simply use them to
store weak passwords [46]. Moreover, even when users do select
strong, unique passwords, service providers may instead become
a weak link if they fail to follow best practices with respect to
password storage. Despite these issues, a thorough review of
alternatives by Bonneau et al. found that no replacement scheme
comes close to supplying the benefits of passwords, and “none
even retains the full set of benefits that legacy passwords already
provide” [5]. When replacements offer significant security
benefits in comparison to passwords, they are typically more
costly to deploy or more difficult to use. Decades of research

suggest there is unlikely to be a solution that kills off passwords,
and trade-offs among solutions will always exist.

Despite this bleak outlook, in recent years there has been a
resurgence of interest in augmenting or replacing passwords
with cryptographic authentication. FIDO2 is being touted as
the standard for public-key-based authentication on the web
and has begun to be adopted by web browsers for both single
and two factor authentication. FIDO2 works by having users
adopt authenticators, such as a hardware token (e.g., YubiKey)
or a smartphone app (e.g., Duo). The authenticator generates
a private-public key pair for a website at registration and
the website then stores the public key as an identifier. To
authenticate to the website, the user requests sign-in, and the
website asks the FIDO2 token to sign some piece of data with
the private key that matches the stored public key. The token
signs the data and returns it, authenticating the user.

While this momentum is encouraging, substantial work is
still needed to ensure that cryptographic authentication provides
a usable alternative to passwords for users. Recent work has
demonstrated users find them easy to use [33], though more
work is needed to help users with revocation and account
recovery. Currently, if a user loses a passwordless hardware
token, they cannot recover their accounts unless they have
registered a backup token, individually, with each website
where they use the tokens.

In this paper we explore an alternative design, called Let’s
Authenticate, that provides automated account registration and
login, along with simple account recovery when an authenticator
is lost. Let’s Authenticate is inspired by Let’s Encrypt1 and
seeks to similarly make it easy to issue certificates to users,
which they can then use to register and login to websites.
Certificates are issued based on proving ownership of an account
with a Certificate Authority (e.g., FIDO2 hardware token),
which allows for easy re-issuance if an authenticator device
that stores certificates is lost. Given the above usability results
for FIDO2, we believe grounding ownership of accounts in
ownership of a token, while providing more scalable account
recovery and credential management, can help users make the
transition to stronger cryptography. This also enables us to make
the user interface similar to password managers, which have
already garnered significant users. Let’s Authenticate transitions
users to managing cryptographic keys rather than passwords.

The primary complications for any system that issues
certificates to users are (a) simplifying all interactions, so
that users do not need to know anything about cryptography

1https://letsencrypt.org/

Network and Distributed Systems Security (NDSS) Symposium 2022
24-28 April 2022, San Diego, CA, USA
ISBN 1-891562-74-6
https://dx.doi.org/10.14722/ndss.2022.24272
www.ndss-symposium.org

to use the system, (b) designing for privacy, since certificates
are usually intended to identify the owner, and (c) avoiding
dependence on a trusted third party, which would allow a
malicious or hacked certificate authority to gain access to
a user’s accounts. While these are daunting challenges, our
design demonstrates that we are able to overcome all three.
Software authenticators manage all aspects of certificates for
users, privacy is enabled by issuing certificates for separate,
random identifiers for each service, and we split authentication
between certificates and keys stored in authenticators to prevent
a hacked authority from gaining access to accounts.

The Let’s Authenticate system combines a number of unique
features relative to prior work in the field:

• Automated issuance and management of certificates:
Automated issuance of certificates to individual users,
along with automated management of keys and certificates
for users to communicate with relying parties.

• Strong privacy protections for users: Unlike most
certificate systems, our system ensures that user accounts
among relying parties are not linkable and certificates do
not include any identifying information.

• No trusted third party: Our system does not require a
trusted third party, preventing a certificate authority from
impersonating users.

• Centralized administration: Our system uses FIDO2
hardware tokens to authenticate with a certificate authority.
This centralizes authentication for all relying parties a
user communicates with, so they only need to complete
FIDO2 registration once for each device they use for
authentication (instead of once per relying party) and only
need to manage backup tokens for one account.

• Simple account recovery: Our system makes it easy for
users to recover their account with the Certificate Authority
and all of their web accounts, even if losing a hardware
token associated with the account.

Our system improves on passwordless FIDO2 authentication
in significant ways. (1) Users only need to have a backup token
for their account with the Certificate Authority (CA), rather
than having to register backups with all relying parties. (2)
Users don’t need to carry their hardware tokens regularly,
since they only use them for authorizing and deauthorizing
software authenticators. (3) Users can easily recover accounts
with relying parties even if they lose all of their software
authenticators. (4) If a user loses a hardware token, they only
need to revoke it with the CA, not with every individual relying
party.

In this paper, we make the following contributions:

• We report on a survey of 397 participants that measures
perceptions toward replacing passwords generally and
toward specific features that represent trade-offs among
password alternatives. This helps shape the design of our
system.

• We provide a detailed design of the Let’s Authenticate
system, which has the benefits listed above.

• We provide source code for the system that includes a
certificate authority; a software authenticator for iOS and
Android smartphones; a browser extension that acts as
a software authenticator for Chrome, Firefox, Edge, and
Opera; a standalone software authenticator for Windows,

MacOS, and Linux systems; and a variety of test websites
and mobile applications that allow a user to login with
Let’s Authenticate.

• We perform a detailed security and privacy analysis
demonstrating how Let’s Authenticate protects against
a variety of attacks defined in our threat model.

• We include a systematic comparison of Let’s Authenticate,
passwordless FIDO2, 1Password, and Mozilla Persona,
each evaluated using the framework presented by Bonneau
et al. [5].

We emphasize that in this paper we do not develop new
cryptography. Rather, we develop a new system, which com-
bines features from password managers, FIDO2, and certificates.
This system offers a unique combination of features and thus
unique trade-offs compared to other password replacement
systems. We believe recent advances with password managers
and FIDO2 afford new opportunities to explore system design
for password replacements, and our effort represents a first
attempt at exploring these opportunities.

We demonstrate that issuing certificates to users can be
made relatively easy to use, while still preserving privacy and
avoiding the vulnerabilities that come with trusting a third party.
Our systematic comparison shows that Let’s Authenticate offers
security improvements to a password manager, while preserving
their usability properties. Our system also offers many of
the security benefits of passwordless FIDO2, with significant
usability improvements. Future work includes both lab and
long-term usability studies to better ascertain the willingness
of users to adopt the system.

II. RELATED WORK

User authentication is a large, well developed space, with
a vast number of systems in use and proposed in research.
Here we focus on systems designed to replace passwords when
authenticating on the Internet, particularly those for login on
websites and those designed to scale for use by the general
public at large.

In 2012, Bonneau et al. [5] produced a comprehensive
review of the password-replacement systems designed and
developed to date. These include encrypted password man-
agers [36], [31], proxy-based schemes [20], [44], federated
single sign-on [48], [28], [24], [64], graphical sign-on [10],
[63], cognitive [30], [66], [25], [59], paper tokens [29], [22],
[67], visual cryptography [45], hardware tokens [55], [26], [70],
[15], [61], phone-based authentication [42], [40], [34], [16],
biometrics [54], [13], [2], [8], and recovery [56], [27], [6]. The
authors developed a framework for evaluating each of these
systems, using 25 properties that are divided into categories for
usability, deployability, and security. This demonstrated that no
solution was a “silver bullet” that had only clear advantages
over passwords without any relative disadvantages. Rather, each
system offers its own trade-offs among these properties, and
passwords are likely to be around for a long time.

A. Current Authentication Systems

In the years since the review by Bonneau et al., several
systems have become fairly widely used, while many others
have never seen significant deployment. Password managers
are one system that has become more popular, with about 20

2

to 30% of Americans using a password manager, though only
5% say this is the method they use the most [9]. LastPass2

and 1Password3 are among the more well-known systems.
An early study of password managers showed that users had
difficulty using several systems, with incomplete mental models
being the primary factor [11]. More recent work shows that
users tend to adopt password managers for usability rather
than security benefits [17], though subsequent work showed
that users of separate password managers are driven more
by security [46]. Password managers can increase password
strength on average [32], and a variety of factors influence
whether people use password managers correctly [46]. There
are still a variety of security problems plaguing password
managers [38].

Federated login is another password alternative that remains
popular today. These systems offer single-sign on, allowing
a user to create an identity with a specific service such as
Facebook, Apple, or Google, and then use that identity to
log into other various websites. This reduces the number of
passwords users have to remember, but the user is placing
their trust in the identity provider, which can track their logins
and, if compromised, could access their accounts. Some work
has developed a federated login system that provides stronger
privacy guarantees [23], [4]. Apple has recently deployed a
federated service that provides users with a unique, anonymous
email address to use for each site.

B. Cryptographic Authentication Systems

Our focus is on cryptographic systems that are used for
single-factor authentication. FIDO2 is the foremost of these
systems because of the significant industry effort spent to
standardize and develop this alternative. FIDO2 consists of
two standards. First, WebAuthn [65], specifies how a web
application can use JavaScript for user registration and login.
An authenticator handles cryptographic logins and can take
many forms such as a software authenticator or a hardware
token. Second, CTAP2 [3] specifies a method for web browsers
to communicate with external authenticator via USB, BlueTooth,
or NFC. The standards specify methods for using hardware and
software tokens as both two-factor and one-factor authentication,
with the latter often referred to as passwordless.

Three recent studies have demonstrated the viability of
passwordless FIDO2 and its trade-offs for users. Lyastani
et al. conducted a large-scale lab study of passwordless
FIDO2 hardware tokens and found that users were highly
satisfied with FIDO2 and willing to consider it as a password
replacement [33]. However, they also surfaced significant issues,
including loss of access if the token is lost or stolen, lack of
suitability for everyday use, and a lack of a mental model to
understand a token’s functionality and security. Revocation and
backup are significant open issues for passwordless FIDO2.

Farke et al. deployed passwordless FIDO2 tokens in a small
company setting [18], finding that most users opted to still use
a browser-based password manager that autofilled passwords
instead of FIDO2. Participants were concerned about losing
the token and longer authentication times, and they did not see
a benefit to using the tokens.

2https://www.lastpass.com
3https://1password.com

Similarly, Owens et al. found that using smart phones as
a roaming authenticator was less usable than passwords [41].
Participants were similarly concerned about availability of smart
phone devices, account recovery and backup, as well as issues
with setting up the roaming authenticator to log into a service.

Mozilla Persona [24], a now defunct authentication method,
was a set of protocols that allowed users to authenticate to
websites using a certificate they obtained from their email
provider proving ownership of their email address. Persona
automated all interactions with certificates, and account recovery
required adding a secondary email address. Persona protected
user privacy by ensuring that email providers were not given
information they could use to track user logins to websites.
However, colluding websites could still track users because
email addresses were used as an identifier.

Another major past effort designing cryptographic au-
thentication is the SPKI/SDSI system designed by Rivest,
Lampson, and Ellison [53]. This system was intended to be
simple and bottom-up, allowing names for keys that are local
and meaningful to the user. The system was ultimately not
successful because it was designed primarily for access control
rather than for authentication [52].

Kerberos [37] has classically been used for client-server
authentication. Various proposals have been made to incorporate
public key cryptography into Kerberos, among them PKDA [57],
which distributes authentication away from key distribution
centers, eliminating a trusted intermediary. However the system
still issues a single, long-term certificate to users and requires
a trusted certificate authority.

Cryptographic authentication has been most prominently
used in Belgium [14] and Estonia [35], where citizens are
issued an electronic identification card, or eID. Citizens can
obtain an eID at a municipal center by proving their identity,
for example with a passport. Many countries have now adopted
eIDs, and some are adding systems that allow a smartphone to
be used in place of the eID using a PKI-capable SIM card and
a user-assigned PIN.

A relatively new set of systems, called decentralized identity
providers, use a blockchain to provide privacy and security for
user authentication. These systems use a wallet, which stores
a private key for a user on a secure device (e.g., a mobile
phone or hardware token). The public key is then published
on a public blockchain, such as Sovrin [60]. Once the public
key is published, the chosen blockchain will return a did, or
decentralized identifier, which is a unique identifier for the user.
The did is derived from the public key. When a user attempts
to authenticate, the relying party contacts the ledger with the
user’s did. The ledger responds with the corresponding public
key, which then allows the relying party to encrypt a challenge
with the public key, to be decrypted and returned by the user’s
wallet. Currently, recovery in the case of a lost private key
(device), has some hurdles to overcome. Some wallets do not
provide recovery, while others require users to print off a paper
with some number of specific words, in order to regain access
to the private key on a new device.

Client certificates in TLS have likewise been available
for many years, though rarely used. Using certificates to
authenticate users to servers has suffered from many usability

3

Fig. 1. Initial Conceptual Let’s Authenticate design

issues, including difficulties that plague server administra-
tion [43], the expense of getting a certificate, and the complexity
of managing keys and certificates through complex browser
interfaces. O’Neill designed a system to improve all aspects
of client authentication in TLS, demonstrating they could be
made usable by using the operating system to centralize how
certificates are handled system-wide [39]. In comparison, our
work uses certificates above TLS and HTTPS and focuses on
both privacy and account recovery.

Several academic systems have developed cryptographic
authentication systems. Loxin [71] proposed issuing a single
certificate to each user, which would be stored in a smartphone
app and used to authenticate to web sites. This has obvious
drawbacks in terms of privacy. The n-Auth system [47]
proposed using public keys and an authentication protocol to
enable a smartphone to register and login users on websites. The
system does not allow users to have multiple authenticators
or to recover accounts after an authenticator is lost. Early
work in this space used phone-based systems to help prevent
phishing [34], [42].

Finally, cryptographic systems are regularly used to provide
second-factor authentication, or 2FA, with hardware tokens
such as YubiKey4 and software systems such as Duo5 and
Google Authenticator6. The usability of 2FA systems has been
well studied recently, with studies showing that 2FA systems
may be difficult to setup [51], but are generally easy to use on
a daily basis [51], [49] and do not take significant amounts of
time to use in the aggregate [50].

Our previous work [12] introduced an initial design for
Let’s Authenticate that was similar to the concept we present
in §III-A. As discussed in §III-E and §IV, we have substantially
modified the design and protocol from this early version based
on feedback from a survey.

III. USER INPUT ON DESIGN

Due to the long history of failed attempts at replacing
passwords for authentication, we wanted to involve users in
the design of the Let’s Authenticate system. Accordingly, we
developed a conceptual design and prototype, then surveyed
users about their trade-offs of authentication systems. Our
survey was approved by our Institutional Review Board.

4https://www.yubico.com
5https://duo.com/product/multi-factor-authentication-mfa/

two-factor-authentication-2fa
6https://support.google.com/accounts/answer/1066447

A. Initial Design

We began with a conceptual design, shown in Figure 1.
The user (1) visits a website, which displays a unique login
code for that device. The user (2) scans the QR code with their
phone and approves the registration or login to the website.
The phone (3) obtains a certificate from a certificate authority
(CA), attesting to the user’s ownership of an opaque identifier
that it uses to identify them to the website. The phone (4)
provides this certificate to the website and the website can then
log the client device into the user’s account. Not shown in this
picture is that the user authenticates to the CA on their phone
using a username and a master password, similar to a password
manager. The phone then acts as a certificate manager, storing
the certificates it uses for each website.

B. Survey Development

We developed a survey designed to understand user pref-
erences regarding systems that can replace passwords and
regarding trade-offs in our conceptual system as compared
to several alternatives. For all Likert questions we used a 7-
point scale. We conducted a short pilot study of the survey
to determine whether the questions were understandable and
made minor adjustments prior to collecting results.

For alternative authentication systems we chose to compare
Let’s Authenticate to passwordless FIDO2 hardware tokens and
to password managers. We chose the former because of current
industry interest in developing this standard and the latter
because of their current popularity as a way to make managing
passwords easier (as opposed to replacing them entirely).

The survey first asks participants how important it is to them
that websites adopt new systems to replace passwords. We then
ask participants about nine different features a system may have,
such as needing to carry a smartphone or hardware token with
you, or requiring you to memorize a master password such that
if you forget it you lose access to all your accounts. For these
questions, we examined the properties from Bonneau et al. [5]
to find the properties that best illustrate trade-offs among the
systems we are comparing, adding some additional trade-offs
because neither passwordless FIDO2 nor Let’s Authenticate
were available when the systematic comparison from Bonneau
et al. was created. We then phrased questions in language that
was easy to understand and avoided jargon. We randomized
the ordering of these features for each participant.

4

23.4%

33.2%

33.5%

37.3%

45.3%

51.6%

59.5%

65.2%

77.6%

66.7%

49.6%

55.4%

51.4%

44.1%

37.0%

28.0%

22.2%

12.6%

9.8%

17.1%

11.1%

11.3%

10.6%

11.3%

12.6%

12.6%

9.8%

A new system might make it easy for you to recover your accounts if you trust a company to hold some of your
secrets, but if that company was malicious it could also login to your accounts.

A new system might require you to use a browser extension or a separate program on your device whenever you
need to login to a website.

A new system might require you to have a single secret, but if you lose or forget that secret, you lose access
to all of your website accounts, unless you previously registered a backup device with the system.

A new system might require you to use a small hardware token, similar in size to a small USB drive, whenever
you need to login to a website.

A new system might require you to use your smartphone whenever you need to login to a website.

A new system might require you to register a backup device with every website you use in order to provide easy
recovery if you lose your primary device.

Some new systems store all of your website credentials for you so that you no longer have to memorize
passwords.

Some new systems require you to register an account only once, instead of having to register separately with
each website you visit.

Some new systems replace passwords with cryptography that is so strong it would take all the computing power
in the world thousands of years to break your credentials.

100% 80% 60% 40% 20% 0% 20% 40% 60% 80% 100%

Like a great
deal
Like a moderate
amount

Like a little

Dislike a
little

Dislike a
moderate amount
Dislike a great
deal

Neither like
nor dislike

How much do you like or dislike this feature?

Fig. 2. Positive and negative features of Let’s Authenticate, Password Managers, and Hardware-based authentication

C. Recruitment and Demographics

We recruited 417 participants using Amazon’s Mechanical
Turk. To get reliable (non-spam) responses, we set the qual-
ification requirement to a 96% acceptance rate. We limited
our survey to the U.S. population. We removed 20 of the
participants for non-completion. We paid each participant $1.50
for completing the survey. The average time to complete the
survey was 6 minutes and 9 seconds, which amounts to an
average compensation of about $15 per hour, above the United
States minimum wage and exceeding the payment standards
of the Mechanical Turk community.

The age ranges of participants were as follows: 18-24 (5.5%,
N=22), 25-34 (46.6%, N=185), 35-44 (28.7%, N=114), 45-54
(9.1%, N=36), 55-64 (6.8%, N=27), 65-74 (2.5% N=10), and
declining to answer (0.8%, N=3). Our sample skewed male
(65.5%, N= 259), with fewer female (33.8% N=133), and
0.75% (N=3) self-identified as transgender, gender variant, or
nonconforming, while 0.5% (N=2) preferred to not answer.

D. Results

When we asked participants How important is it to you
that websites adopt new systems that replace passwords?,
52.4% indicated this was at least moderately important, 33.5%
indicating it was of slight to no importance, and the rest neutral.
Nearly half (49%) indicated they already use a password
manager. We asked this question after showing them the
animated video of a password manager, to ensure they knew
how one worked. This high percentage may bias our results
in favor of password managers, since they are already widely
used among our sample.

Figure 2 shows participant ratings for authentication system
features, ordered from most to least favored. Participants over-
whelmingly liked the security benefits of replacing passwords
with cryptographic methods and also rated highly usability
features such as only having to register for one account and the
convenience of not having to remember passwords. Many were
accepting of the need to register a backup account in advance
to provide account recovery (a primary drawback of hardware

tokens), likely viewing the trade-off of backup registration
favorably relative to the advantage of easy account recovery.
The most disliked features were having to use a hardware token
to login, using a high-risk master password, needing to install
separate software, and having to trust a third party. Participants
reacted more negatively to carrying a hardware token than a
smartphone.

We also asked participants about their preference for devices
to use when authenticating. Results were split between only
a cell phone (34%), only a browser extension (25%), or both
(40%).

E. Impact on Design

Based on feedback from our survey, we identified the
following changes we should make to the conceptual system
design:

• No trusted third party: Our conceptual design requires
trusting the certificate authority, which could create a
certificate that authorizes anyone to login to a user’s
accounts. While it might be possible to put in place strong
management practices for a certificate authority, and to
convince users they can place their trust in this party,
participants in our survey strongly disliked the idea of
trusting the CA. Thus, in our revised design we seek
to eliminate this flaw and ensure that users are always
protected against third-party access of their accounts.

• No master password: Survey participants indicated a
strong preference for replacing passwords with cryptog-
raphy and a strong negative reaction to using a master
password. Thus our revised design eliminates the master
password in favor of a FIDO2 hardware token, which
has received generally positive results from prior user
studies [33], [18].

• Centralized administration: Survey participants indi-
cated they strongly prefer systems that store all of their
credentials and that enable them to register once in a
central account, rather than having to complete registration
steps with each site they visit. They also prefer not to use

5

a hardware token every time they login. Thus we seek to
create a centralized way for users to manage their account
access privileges and avoid using a hardware token for
every login.

• Simple account recovery: Survey participants indicated
a desire to easily recover accounts using a backup device.
Thus our revised design provides a way for users to register
backup hardware tokens to protect against loss.

• Device independence: Numerous participants in our
survey indicated a preference for not being required to
use a smartphone, hardware token, or browser extension.
We thus aim to allow users to use either a smartphone or
a browser extension, based on their preference, expanding
on our original design that focused exclusively on a
smartphone. We also note that a browser could directly
implement our system, avoiding the need for an extension.

IV. SYSTEM DESIGN

Our high level goal for the Let’s Authenticate system is
to develop a way to automatically issue certificates to users
for website login, rather than using bare keys, such as with
FIDO2 hardware tokens. We started with our conceptual design,
shown in Figure 1, then developed goals for a revised system
based on feedback from the survey. We then completed a full
system design. Due to the complexity of designing a new
authentication system, we focus on authentication to websites,
using either a web browser or a mobile application as the front
end, leaving exploration of other use cases for certificate-based
authentication for future work.

A. Design Goals

Our design of Let’s Authenticate system is based on the
following goals, many taken from user input from our survey:

1) Automated issuance and management of certificates:
The system should simplify the entire certificate life cycle
for users, with automation employed everywhere. This
includes obtaining certificates, configuring their browser
to use certificates, and performing other associated tasks,
such as protecting private keys and handling revocation.

2) Strong privacy protections for users: The system should
prevent colluding services from tracking users using
identifiers in certificates and prevent a certificate authority
from knowing which sites a user authenticates to. This
rules out using a single certificate for all services and
including any identifying information in certificates such
as an email address.

3) No trusted third party: The system should not allow the
certificate authority to directly access a user’s accounts or
to issue certificates to unauthorized users.

4) Centralized administration: The system should provide
a centralized way for users to manage their account
access privileges, including authorizing and de-authorizing
devices that may access their accounts.

5) Account protection: Centralized credential storage must
have strong protection from attackers who are able to
breach a cloud service. We use best practices taken from
password managers, such as encrypting credentials and
storing the encryption key only locally on devices.

6) No requirement to carry tokens: Users do not need
to carry a token and use it to login to relying parties.

They only use a FIDO2 hardware token to authorize and
deauthorize software authenticators.

7) Simple account recovery: The system should make it
easy for users to recover their account with the CA and
all of their web accounts, even if losing a hardware token
associated with the account. A user who owns only a
single device used for authentication, such a smartphone
or laptop, should still be able to access their account if
they lose that device and then get a new one.

8) Device independence: The system should allow users to
choose either a smartphone or a browser extension, based
on their preference.

B. Revised Design

Our system encompasses the following entities, shown in
Figure 3. A Client is a device that can run a web browser, such
as a laptop or smartphone. An Authenticator obtains certificates
and authenticates a user to a relying party. An authenticator
may be a mobile app on a smartphone, a browser extension, or
a desktop app. A Certificate Authority (CA) issues certificates to
a user’s authenticator. A Relying Party is a server that wants to
authenticate users, either for a website or a mobile application.

We focus first on how the system uses certificates to
authorize logins. We use the notation (K,S) to refer to a
key pair, where K is the public key and S is the private key.
The CA owns a key pair (Kroot, Sroot).

The system uses the certificates shown in Figure 3:

Authenticator Certificate: An authenticator certificate
certifies that an authenticator is authorized to access a user’s
account with the CA. To obtain an authenticator certificate, the
authenticator creates a key pair, (Kauth, Sauth). The user then
accesses their account with the CA using a passwordless FIDO2
hardware token, and authorizes the creation of an authenticator
certificate for Kauth. The authenticator certificate lists the
username and authenticator public key, Kauth, and is signed
by Sroot. Renewal of this certificate requires proving possession
of the FIDO2 hardware token.

Account Certificate: An account certificate enables an
authenticator to prove ownership of an account with a relying
party. The authenticator creates a key pair (Kaccount, Saccount)
and generates a random accountID. It then uses the authen-
ticator certificate to obtain an account certificate, which lists
the account public key, Kaccount, and the accountID. The
accountID is unique to a relying party (e.g., a website). This
certificate is signed by Sroot. This certificate authorizes the
authenticator to register or login to a relying party (RP).

Session Certificate: A session certificate authorizes the
login of a given session with an RP. Each time a client logs
into an RP, the RP generates a unique session identifier for the
client. The authenticator obtains this sessionID and creates a
key pair (Ksession, Ssession). The authenticator then creates a
session certificate that lists the sessionID, the domain name
of the relying party, and Ksession. This certificate is signed by
Saccount. The authenticator needs to present both an account
certificate and a session certificate to login.

Every time the authenticator uses a certificate, it proves
ownership of the keys that it holds, to prevent a replay attack.

6

Fig. 3. Certificates used in Let’s Authenticate system

An important part of preventing unauthorized access is
the system’s use of Ksession. This is only accessible to the
authenticator and is encrypted when stored (see §IV-F). This
prevents a hacked CA from authorizing a login with fake
certificates because it does not have access to Ksession for the
account. See §V for a complete analysis.

To protect a user against lost or stolen authenticators, a
user can deauthorize an authenticator at any time by proving
possession of the FIDO2 hardware token. See §V for details.
Limiting tokens to authorizing and deauthorizing authenticators
provides major advantages as compared to passwordless FIDO2
authentication because users no longer need to carry tokens
regularly or register a backup token at each RP. See §VIII for
more details.

Finally, we note that where possible private keys used
for authentication should be stored in secure hardware. This
provides protection against private keys being inadvertently
leaked due to software errors. In our prototype, the only keys
stored in software are Ksession, Ssession.

C. Account Creation and Login

A user creates an account with the certificate authority (CA)
using the CA’s website and FIDO2 passwordless authentication.
The user chooses a username and registers an account with the
CA using a FIDO2 hardware token. The CA gives the user the
option of registering a backup token to protect against token loss.
Note that the use of passwordless FIDO2 here is orthogonal to
the Let’s Authenticate system design and could be replaced by
another form of authentication. We use passwordless FIDO2
because the user’s account with the CA is highly sensitive,
since it will store an encrypted form of their login credentials
for all RPs. The hardware token essentially acts like the user’s
master password for a password manager.

D. Authenticator Authorization

A user communicates with the CA, through its website, to
authorize and deauthorize authenticators to access accounts at
relying parties (RPs). Proving ownership of a hardware token
associated with their CA account is required to authorize and
deauthorize authenticators.

Figure 4 shows the steps to authorize an authenticator.
The authenticator first generates an authenticator key pair,
(Kauth, Sauth). It then opens a browser window to commu-
nicate with the CA, supplying Kauth via a URL parameter.
The user should already be logged into their account with the
CA, but could complete login if needed using their hardware
token. Once logged in, the user can agree to add Kauth as an

Fig. 4. Authorizing an authenticator

authorized key for their account. Finally, the user can go back to
the authenticator and request an authenticator certificate, which
authorizes the authenticator to access the user’s account with
the CA. The authenticator sends a certificate signing request
(CSR) to the CA; this request includes the username for the
account and Kauth and it is signed by Sauth. This CA only
returns an authenticator certificate, Certauth, if Kauth has been
authorized for the user’s account. Note that we have chosen
this flow, using a browser, because FIDO2 is currently best
supported in browsers; support for browser extensions to use
FIDO2 keys is disallowed and support for mobile apps is not
universal. If FIDO2 was widely supported, an alternative flow
could have the authenticator directly use the FIDO2 hardware
key to communicate with the CA.

Authenticator certificates have a default life of 10 days,
which we choose to be long enough so that the user does not
need to repeatedly re-authenticate with their hardware token,
but short enough that the user will likely not lose track of it.
Once the certificate has expired, the user will be prompted to
re-authenticate with their hardware token, and the authenticator
will automatically request a new certificate. A user can configure
the lifetime of an account certificate. Some users may prefer
to be more careful, by setting the lifetime of the authenticator
certificate to 1 day so that they must re-use the hardware
token regularly. Other users may prefer greater convenience,
by setting the lifetime to infinity so that they only use the
hardware token to authorize new devices or deauthorize lost or
stolen devices.

To cope with a lost or stolen authenticator, a user can
deauthorize an authenticator by likewise proving ownership
of the hardware token associated with their account. Figure 5
shows these steps, which are similar to the steps for authorizing
an authenticator.

7

AuthenticatorCertificate Authority

passwordless
FIDO2

Browser

username, Kauth

deauthorize(Kauth)

Fig. 5. Deauthorizing an authenticator

Fig. 6. Relying Party Authentication

We also note that, for convenience, the user assigns an
authenticator name to each authenticator, to help distinguish
among multiple authenticators.

E. Relying Party Authentication

Figure 6 illustrates the process for a user to authenticate to
a relying party. Registering and logging in are nearly identical,
with the method parameter indicating which operation to
complete. The entire process is automated except for the first
step.

1) Communicating session information to the authenticator:
A user wanting to authenticate to a relying party may either
visit a website (using either a traditional computer or a mobile
device) or use a mobile app, either of which contacts the relying
party’s back end server for authentication. To identify clients
trying to authenticate, the relying party generates a unique
sessionID for the client.

To authenticate with the relying party, the user needs their
authenticator to obtain the sessionID for their client. If using
a traditional computer, this can be done by having the web
browser display a QR code representation of the sessionID
(for an authenticator that is a mobile device) or use hidden
form fields (for an authenticator that is a browser extension). If
using a mobile device, the sessionID can be sent directly to
the authenticator software running on the same mobile device
using app linking.

If the user scans a QR code for this step, this is counted as
the user approving the login. Otherwise, the user is prompted
to confirm the login on their authenticator.

2) Obtaining an account certificate: The next step is for the
authenticator to obtain an account certificate that is signed by a
CA, indicating it owns a particular accountID. To register an
account with an RP, the authenticator generates an accountID,
which is a random, unique string, and a unique account key
pair, (Kauth, Sauth). It then creates a certificate signing request
(CSR), containing the accountID and Kaccount and signed by
Saccount. It sends the CSR to the CA along with an additional
signature of the CSR using its authenticator private key, Sauth.
It also includes its authenticator certificate. This enables the CA
to verify that the authenticator is authorized to obtain certificates
for the username listed in the authenticator certificate and owns
both Sauth and Saccount. The CA then associates accountID
with this username and returns an account certificate, listing
the accountID and Kaccount.

Account certificates have a very short lifetime, e.g., 1 minute.
This provides enough time for the certificate to be used to
authenticate with a relying party. To login to an RP after
registration, the authenticator obtains a new account certificate
for the same accountID. Account certificates are not renewed,
but are re-issued each time they are needed. This ensures
that the authenticator must contact the CA each time it wants
to authorize a login. When it does this, the CA can verify
whether the authenticator is still authorized for the account,
which protects against lost or stolen authenticators being used
to access accounts. Contacting the CA for each login has
acceptable communication overhead, similar to single sign-on,
but with improved privacy since the CA sees only the opaque
accountID and does not know which RP the authenticator
is logging into. Moreover, most websites, aside from high-
security sites like banks, use cookies to keep a user logged in
indefinitely, drastically reducing the number of actual logins.

3) Obtaining a service certificate: The next step is to obtain
a service certificate to authorize login for a given session
identified by a sessionID. The authenticator generates and
signs its own session certificate. The session certificate contains
the sessionID, the domain name of the relying party, and
Ksession for that relying party. It is signed by Saccount. The
authenticator sends the account certificate, session certificate,
and a signature of the sessionID (signed by Ssession) to the
relying party, authorizing the registration. The authenticator
does not have to be connected to the same network as the client
device, or to the client device itself. The relying party stores
Ksession with the account for that user and subsequently will
only allow logins from an authenticator that proves it owns
Ssession.7

For login, the process is nearly identical, but authenticator
must look up the Ksession that it uses for the relying party.
This mapping is only accessible to the authenticator and is
encrypted when stored (see §IV-F). It then proves that it owns
Ssession by signing the sessionID in order to login.

The expiration time in the session certificate indicates how
long the session is authorized for, which allows a relying
party to set the expiration time on a session cookie or in its
session database. The user can choose a session lifetime by

7One might imagine that Ksession could be replaced with a symmetric
key. However, this could lead to the RP accidentally storing it in plaintext (as
some sites have done with passwords) and anyone would obtains this key in a
breach has valuable information for compromising an account.

8

selecting high security (10 minutes), medium security (1 day),
low security (forever), or temporary (expires after 5 minutes of
activity). The temporary login is useful for logins on a public
computer. These levels can be customized by the user.

4) Logging out: To logout a session, the client can directly
logout as usual with the relying party (e.g., clicking a logout
button), or the authenticator can send a logout request directly
to the RP. In the latter case, the logout request includes a
signature of the sessionID with Ssession.

5) Using multiple accounts: Finally, in the case where a user
has multiple accounts with a relying party, they can distinguish
these by associating an accountName with each accountID.
This can be helpful since the accountID is a long, random
identifier.

F. Multiple Authenticators

For a user to operate multiple authenticators, the authen-
ticators need to share a mapping of domain names to the
accountID used for each domain, along with Ksession and
Ssession for that domain. This enables an authenticator to obtain
an account certificate for the appropriate accountID and then
generate a session certificate when needing to authenticate to
a relying party.

To avoid impersonation by an attacker (see §V), these are
stored in encrypted form with the CA, similar to how some
password managers store a password vault in the cloud. We
take a similar approach to the design of LastPass [31] and
1Password [1].

Specifically, authenticators manage an authenticator map:

map = [(domainName, accountName, accountID,

Ksession, Ssession)]

and a list of all the authenticators belonging to an account:

authenticatorList = [(authenticatorName,Kauth)]

The authenticator generates a secret key and a symmetric
key. It then encrypts the recovery data with the symmetric key
and encrypts the symmetric key with the secret key:

authenticatorData = E(secretKey, symmetricKey)|
E(symmetricKey, authenticatorList+map)

The authenticator prompts the user to print the secret key,
known as a recovery kit, so that it can be re-entered on any
additional authenticators the user initializes. We note that an
alternative to a secret key is to use the HMAC secret key
extension in FIDO2, which enables an authenticator to retrieve
a secret key from a hardware token.8

Each authenticator updates the authenticatorData when-
ever it registers for a new account with a service and periodically

8https://fidoalliance.org/specs/fido-v2.0-rd-20180702/
fido-client-to-authenticator-protocol-v2.0-rd-20180702.html#
sctn-hmac-secret-extension

synchronizes the data through its account with the CA. Pos-
session of an authenticator certificate and its associated Sauth

proves ownership of the account and ability to synchronize
data. A simple locking protocol can be used to ensure that no
updates are lost in case multiple authenticators try to update
the data simultaneously.

Note that users may want to have multiple accounts at a
given relying party. The system accommodates this by allowing
an authenticator to register for a second account with a relying
party and then listing the associated account information in the
authenticator map, each with a unique accountName.

G. Public Computers and Remote Logout

One advantage that comes from separating an authenticator
from a client device is that it is possible to safely login to a
public computer without sharing any sensitive authentication
data with the computer. A user can have the public computer
display a QR code that contains the domain name and session
ID, scan it with their smartphone, and authorize the login
directly with the relying party.

This same architecture also enables a user to remotely
logout of an account with a given relying party, for example
if they leave a public computer or a work computer logged
into a site and need to logout from a different location. To
make this work, each authenticator needs to synchronize session
certificates within the authenticator data whenever logging into
a relying party. These can be maintained as a list of sessions
active for the account ID in the authenticator map:

map = [(domainName, accountName, accountID,

Ksession, Ssession, sessionList)]

where

sessionList = [(authenticatorName,

[(Certsession, geoLocation)])]

The session certificates can be removed from this list as
the certificates expire. Geolocation information can help a user
identify a location where the certificate was used.

By using the authenticator list in the encrypted data along
with the map, any authenticator can display a list of all the
owner’s authenticators, a list of all their accounts being managed
with the system, and a list of all their active sessions, including
which authenticator authorized each session and when that
session expires.

One drawback of providing remote logout is that keeping the
sessionList current requires synchronizing the authenticator
data with the CA on each login instead of each registration.
Thus a CA may not want to offer this service if the overhead
is too large. We discuss overhead of the entire system in §VI.

H. Shared Accounts

Users often like to share accounts with their friends
and family. Some service providers prefer that their users
don’t do this. Authentication with usernames and passwords

9

makes it relatively easy to share accounts. However, the Let’s
Authenticate system makes it more difficult to share accounts.
To allow a friend to share their account, a user could do one
of the following:

• Authorize each login to the system by a friend, by
obtaining the session ID and domain (e.g., from a QR
code), then approving the login with their authenticator.
Their friend can’t use their own authenticator since it can’t
access the authentication data.

• Associate an additional FIDO2 hardware token with their
account, and give this to their friend, which provides
access to all of their accounts. It is unlikely a user would
want to do this. However, they could create a second
account with the CA and then only add shared services to
this account and associate a friend’s hardware token with
this second account. This could allow them to segment
sensitive accounts (e.g., email, banks) from their shared
accounts.

I. Account Recovery

A key feature of the Let’s Authenticate system is that it
allows a user to maintain access to all of their accounts with
relying parties even if they lose all of their authenticators. To
recover their accounts, a user simply obtains a new authenticator,
logs into their account with the CA using their FIDO2 hardware
token, and then authorizes the new authenticator for their
account, as described above. Once this is complete, they
can initialize the authenticator with the secret key from their
recovery kit. The authenticator uses its authenticator certificate
to authorize downloading that user’s authenticator data, and
uses the secret key to decrypt the authenticator data. The user
now has access to all of their accounts.

Account recovery for a user’s account with the CA is a
complex problem, similar to account recovery for an account
for an online password manager service. When the user first
creates an account with the CA, the system prompts the user to
associate a backup FIDO2 hardware token with their account,
and asks them to store it in a secure place.

In the case that a user loses all hardware tokens associated
with their account, and thus access to their accounts managed
with various relying parties, recovery of their accounts is still
possible with cooperation from relying parties. A relying party
can choose to use email reset or some other method that requires
the user to establish ownership of their account. In this case,
the user may create a new account with the CA, initialize an
authenticator, and then use an account recovery procedure at
individual relying party websites to associate a new accountID
with their account at the relying party.

In the event that the CA is unavailable, a user may be unable
to access their accounts with relying parties. This only occurs
if an authenticator needs to obtain a new account certificate
for a relying party. This in turn only occurs if the user is
(a) creating a new account with an RP or (b) logging into
an account with an RP after a session has expired. Section
§IV-E discusses varying lifetimes for sessions depending on the
account’s sensitivity or user preference. In practice, many low
security accounts today use indefinite session lifetimes, so short-
term CA unavailability will generally only affect access to high

security accounts. Mitigating this issue requires a CA to provide
a high-availability service, following customary practices.

J. Implementation

We developed a prototype of the Let’s Authenticate system
consisting of (1) a certificate authority, (2) a mobile app
authenticator, (2) a browser extension authenticator, and (3)
a standalone application authenticator. Our work supports
Android and iOS phones, plus the Chrome, Firefox, and Edge
browsers. The functionality of an authenticator includes (1)
registration with the CA, (2) authentication with sites, (3)
listing all currently active authenticators and the sites they are
authorized to login to (either by service or by authenticator),
(4) logging out of sessions authorized by that authenticator,
(5) and deauthorizing an authenticator (and logging out all its
sessions). We also developed prototype websites and mobile
apps that operate with the Let’s Authenticate system, including
mockups of Google, Facebook, and Netflix.

V. SECURITY AND PRIVACY ANALYSIS

An attacker has the capability to (1) compromise a relying
party, (2) compromise a certificate authority, or (3) obtain
physical access to an authenticator or client. We assume the
web PKI and TLS are safe from attacks. We also assume that
authenticators are safe from malware and any attacks against a
user require physical access to their devices.

The Let’s Authenticate system prevents passive attacks by
using TLS for communication between all pairs of entities in
the system, along with the web PKI to ensure authentication
among participants.

Our system preserves the following properties:

P1: If an attacker compromises a certificate authority,
it cannot identify which relying parties a user authenticates
to.

The attacker in this case can observe all of the accountIDs
owned by each user. However, the accountIDs by themselves
do not identify which relying parties a user authenticates to.
The authentication map, which does link relying party domains
to accountIDs is encrypted as described in § IV-F, and can
only be decrypted with knowledge of the user’s secret key. The
secret key is not shared with the CA. The attacker is unable to
brute force the secret key because it is long and random.

P2: If an attacker compromises a certificate authority,
it cannot access any user accounts at relying parties.

The attacker can identify the list of accountIDs that a user
owns. The attacker does not know which domain is associated
with each accountID because this information is encrypted in
the authentication data. A clever attacker might try to create an
account certificate and a session certificate for each accountID
and then try these certificates at popular websites. However,
the attacker does not know the Ksession and Ssession used
for this account, so they will be unable to authenticate with
the replying party. Recall that Ssession is encrypted with the
authentication data, so it is unavailable to the attacker. The
relying party can notify the user, the next time they login, of
the failed login attempt, which is indication of a breach at the
CA.

10

P3: If an attacker compromises a certificate authority
and a relying party, it can only identify which users
authenticate to the compromised relying party but cannot
tell which other relying parties a user authenticates to.

The attacker in this case also can observe the accountID
used to login to the compromised relying party. However,
obtaining a list of other accountIDs for that same user does
not provide the attacker with information it can use to identify
other non-compromised relying parties the user authenticates to.
As above, information linking accountIDs to relying parties is
encrypted and requires knowledge of the secret key to decrypt.

P4: If an attacker compromises multiple relying parties,
the Let’s Authenticate system does not provide information
that allows the attacker to link a user account at one relying
party with their account at another relying party.

A relying party sees only the account certificates and session
certificates given to it by an authenticator. The former contain
a random accountID and Kaccount and the latter contain a
sessionID, the domain name of the relying party, and Ksession.
Because the accountID and public keys are unique to the
relying party, then if these values are generated properly [7],
[62], there should be no information in a collection of keys
that allows an attacker to form associations among them.

We note that an active attacker could observe IP addresses
when users login to compromised relying parties, thus correlat-
ing the accountIDs and keys being used. However, this is true
for current authentication systems as well, and we consider
solving this outside of the scope of our work.

P5: If an attacker steals an authenticator and is unable
to bypass a PIN or biometric lock on the authenticator
software, then it is unable to access any of the user’s
accounts at relying parties that are managed by the
authenticator.

An attacker who steals an authenticator will be unable
to authenticate to any of a user’s accounts, or even observe
authentication actions using malware, since the system will not
perform any actions until unlocked with a PIN or biometric
lock.

P6: If an attacker steals an authenticator and is able
to bypass a PIN or biometric lock on the authenticator
software, then it is only able to access the user’s accounts
at relying parties that are managed by the authenticator
until the owner notices the theft and deauthorizes that
authenticator.

An attacker in this case may be able to access a user’s
accounts if the device is storing a valid authenticator certificate.
This allows the authenticator to obtain an account certificate
and then sign a session certificate. Once the authenticator
certificate expires, they will be unable to obtain a new one
without possession of a hardware token registered to the account
with the CA. The authenticator could require possession of the
hardware token to decrypt the synchronized authentication data
every time it is opened, preventing the attacker from obtaining
the session keys. However, for convenience, the authenticator
should allow this data to be unlocked with a PIN or biometric,
and the hardware token required only once every period, e.g.,
10 days.

Most importantly, a user who notices an authenticator has
been stolen can deauthorize Kauth for that device by proving
possession of a hardware token registered with their account.
This prevents the authenticator from obtaining or renewing
account certificates, thus preventing it from authenticating to
any relying party. The short lifetime of account certificates
prevents older account certificates from being used after an
authenticator is stolen. Thus, as soon as the theft is noticed,
access by the attacker can be revoked.

Threats Outside of our Threat Model: A malicious CA
could collude with a relying party to gain access to an account,
but none of the information stored at the CA helps them
gain access. Likewise, a malicious CA could collude with
relying parties to track users by sharing which identifiers
belong to the same user. An attacker who both steals an
authenticator, bypasses the PIN/biometric on the authenticator
software, and steals a hardware token registered to the account
can impersonate a user, but they cannot authorize a new
authenticator without the secret key.

VI. OVERHEAD ANALYSIS

To assess the scalability of the Let’s Authenticate system,
we examined both storage and communication requirements
for the Certificate Authority.

A. Storage Requirements

Table I shows the storage requirements for the Certificate
Authority. We focus our calculations there because the CA
will need to store data for all users. This table shows the size
of each field that the CA stores, along with how this data
scales with the number of authenticators, relying parties, and
sessions. All calculations come from our implementation of
the CA. We omit the storage for the username and info needed
for passwordless FIDO2 for the CA account, since these are
orthogonal to our system and don’t impose significant storage
requirements. All keys are generated using the 2048 bit (256
bytes) RSA algorithm and all certificates are generated using
these keys. The geolocation has an average size of 294 bytes,
which was averaged from 10 locations geographically spread
across the United States.

As an approximation, we show the total storage needed
assuming a typical user has 3 authenticators, authenticates with
50 RPs, and has active sessions authorized by all authenticators
for all RPs. The total amount required for a typical user is 306
KB.

The storage required for the CA is similar to that required for
a company that provides cloud synchronization for a password
manager. The authenticator data is similar to the password vault,
in that it stores credentials and scales per account the user has
with a RP. The primary difference is the session list, which
is not typically stored by a password manager and scales per
session per RP. This also constitutes over half of the storage.
We note that the session list is used only for remote logout.
This is a convenience feature for remote logout and also allows
a user to determine if a lost or stolen authenticator has been
used to access one of their accounts. This feature could be
removed without affecting the rest of the system.

11

TABLE I. STORAGE REQUIREMENTS

Data Field Size Number SubTotal Total (3 authenticators, 50 RPs)

Account Info Kauth 256 bytes 1 per authenticator 256 bytes 768 bytes

Authenticator List authenticatorName 256 bytes 1 per authenticator 512 bytes 1536 bytes
Kauth 256 bytes 1 per authenticator

Map domainName 253 bytes 1 per RP 1277 bytes 64 KB
accountName 256 bytes 1 per per RP
accountID 256 bytes 1 per RP
Ksession 256 bytes 1 per RP
Ssession 256 bytes 1 per RP

Session List authenticatorName 256 bytes 1 per session per RP 1597 bytes 240 KB
Certsession 1047 bytes 1 per session per RP
geoLocation 294 bytes 1 per session per RP

Total 306 KB

TABLE II. COMMUNICATION OVERHEAD

API Call End Point Description Number of Days API calls/s Number of RPs Total API calls/s
between each call per 1M users per user per 1M users

/fido/register Registration with the CA 365 0.03 1 0.03
/fido/login Login with CA 365 10 1 1.16
/user/:username/authorize Authorize an authenticator 365 0.03 1 0.03
/user/:username/deauthorize Deauthorize an authenticator 365 0.03 1 0.03
/users/:username/data Pushing authentication data to the CA 1 11.57 5 57.87
/users/:username/data Checking for updated authentication data 1/24 277.78 1 277.78
/user/:username/account Get account certificate (High security accounts) 1 11.57 5 57.87
/user/:username/account Get account certificate (Low security accounts) 30 0.39 50 19.29

Total 591.36

The authenticator likewise needs to store the authenticator
data, also about 306 KB, which should not pose a barrier.
Relying parties need to store just the accountID and Ksession.

B. Communication Requirements

Table II shows the communication requirements for the
Certificate Authority. Using each endpoint, we estimate how
often each endpoint is called by the authenticator, factor in
the number of RPs a typical user may authenticate with, and
thus arrive at an estimate for the number of API calls per
second that 1 million users would make. We assume that a
typical user has accounts with 5 RPs for high security accounts
(banks, work accounts) and 50 RPs for lower security accounts.
The estimated number of API calls were calculated as 531.36
calls/second for 1 million users.

We note that a little over half of this is due to a conservative
assumption about synchronizing authentication data. We assume
that every authenticator synchronizes the data every hour, to
allow for up-to-date session lists for remote logout purposes.
This could instead be done on demand (when the user manually
triggers synchronization), or could be rate-limited based on
how busy the CA is.

As with storage overhead, the communications overhead
for the CA is similar to that required for a company that
provides cloud synchronization for a password manager. The
primary difference is our conservative assumption about data
synchronization, along with the overhead for obtaining account
certificates for each login.

To test the communications overhead of our implementation
of the CA we performed some load testing using the K6
open source software.9 This allowed us to automatically

9https://www.k6.io/

generate 1000 virtual users that would generate requests to
our CA endpoints. K6 implements virtual users using efficient
parallel communication. Our tests indicate the CA is able to
successfully handle 355 API calls/second. Thus we estimate that
our implementation could conservatively handle about 660K
simultaneous users.

It is important to note we deployed our CA with a
single Docker container on a single server running Ubuntu.
Deployment of additional instances could be automated during
high traffic times. Additionally, load balancing would allow for
distribution of the servers. Together, these would drastically
increase the load that could be handled.

VII. SYSTEMATIC COMPARISON

We compare authentication schemes in Table III using
the framework from The Quest To Replace Passwords: A
Framework for Comparative Evaluation of Web Authentication
Schemes, by Bonneau et al. [5]. Ratings for passwords are
taken directly from their work and ratings for 1Password
are taken directly from their ratings of LastPass, with one
exception. LastPass was originally rated as having a trusted
third party because of a leak of their password database, but
1Password uses a PAKE protocol and a secret key that is
mixed into the master password on the client side. We rate
Mozilla Persona, passwordless FIDO2, and Let’s Authenticate
using the definitions for the properties in the above paper. The
properties are grouped, in order, as usability, deployability, and
security/privacy properties. We provide a detailed justification
for our ratings of Let’s Authenticate, Mozilla Persona, and
FIDO2 in the appendix.

Overall, Let’s Authenticate rates similarly to 1Password
with respect to usability, has significant improvements with
respect to security, and lags in deployability. The similarities
in usability are due to both using centralized management

12

TABLE III. RATING OF AUTHENTICATION SYSTEMS

M
em

or
yw

is
e-

E
ffo

rt
le

ss
Sc

al
ab

le
-f

or
-U

se
rs

N
ot

hi
ng

-t
o-

C
ar

ry
P

hy
si

ca
lly

-E
ffo

rt
le

ss
E

as
y-

to
-L

ea
rn

E
ffi

ci
en

t-
to

-U
se

In
fr

eq
ue

nt
-E

rr
or

s
E

as
y-

R
ec

ov
er

y-
fr

om
-L

os
s

A
cc

es
si

bl
e

N
eg

lig
ib

le
-C

os
t-

pe
r-

U
se

r
Se

rv
er

-C
om

pa
tib

le
B

ro
w

se
r-

C
om

pa
tib

le
M

at
ur

e
N

on
-P

ro
pr

ie
ta

ry

R
es

ili
en

t-
to

-P
hy

si
ca

l-
O

bs
er

va
tio

n
R

es
ili

en
t-

to
-T

ar
ge

te
d

Im
pe

rs
on

at
io

ns
R

es
ili

en
t-

to
-T

hr
ot

tle
d-

G
ue

ss
in

g
R

es
ili

en
t-

to
-U

nt
hr

ot
tle

d-
G

ue
ss

in
g

R
es

ili
en

t-
to

-I
nt

er
na

l-
O

bs
er

va
tio

n
R

es
ili

en
t-

to
-L

ea
ks

-f
ro

m
-O

th
er

-V
er

ifi
er

s
R

es
ili

en
t-

to
-P

hi
sh

in
g

R
es

ili
en

t-
to

-T
he

ft
N

o-
Tr

us
te

d-
Th

ir
d-

Pa
rt

y
R

eq
ui

ri
ng

-E
xp

lic
it-

C
on

se
nt

U
nl

in
ka

bl
e

System Usability Deployability Security

Passwords # #
1Password # # # # # # # # # #
Mozilla Persona # # # # #
passwordless FIDO2 G# I # # G G I G G
Let’s Authenticate G# # G#

 offers the benefit, # almost offers the benefit, G# G I depends on the authenticator type or website, (blank) no benefit
better than passwords, worse than passwords

of secrets or keys and having similar user interfaces. Let’s
Authenticate could thus help users transition from password
managers to cryptographic authentication. The security benefits
of Let’s Authenticate originate in its use of cryptography
rather than passwords. This likewise leads to its relatively
poor deployability, since servers need to be updated to use
Let’s Authenticate certificates and the system is less mature.

We also note some significant differences between Let’s
Authenticate and passwordless FIDO2 hardware and software
tokens. Many of these stem from the trade-offs of using
certificates versus bare keys. Both systems have strong security
properties, but Let’s Authenticate adds stronger unlinkability of
accounts and ensures consent for logins. Let’s Authenticate has
the advantage of being more scalable for users, more efficient
to use, and providing centralized account recovery. For these
properties, FIDO2 requires a separate registration of each token
with each website, a user may need to juggle multiple tokens
across various websites, and loss of a token is catastrophic
unless the user has the foresight to register a backup token. Both
FIDO2 and Let’s Authenticate have deployability challenges
relative to passwords, though FIDO2 likely can overcome these
more easily due to strong industry backing.

VIII. DISCUSSION

We discuss several important issues resulting from our
development of Let’s Authenticate.

A. Reflections on System Design

Designing an authentication system that uses certificates but
is both privacy-preserving and avoids trusting a third party is
challenging. Our design went through numerous iterations. The
result can be viewed as a set of components, each providing
essential features:

• Authentication uses a combination of account certificates
and session certificates. Session certificates are vital
because keeping Ssession secret eliminates having a trusted
third party and ensures that an attacker who compromises
the CA cannot impersonate any users at relying parties.

One might consider using only session certificates that
are self-signed, treating the authenticator as essentially a
password manager for certificates. However, using account
certificates enables a user to revoke access from a lost or
stolen authenticator.

• Account identifiers are unique and randomly generated
for each relying party. Likewise, account and session keys
are unique to each relying party. The mapping between
domains and account identifiers is kept secret. Together,
these features ensure accounts cannot be linked and no
identifying information is given to relying parties.

• The encrypted vault of authentication data enables a user
to operate multiple authenticators for the same set of
accounts and also enables remote logout.

• The FIDO2 hardware token enables users to prove own-
ership of an account with a CA and thus deauthorize
authenticators that have been lost or stolen. The token
also allows a user to maintain access to all of their
accounts with relying parties even if they lose all of
their authenticators. We allow the user to register backup
hardware tokens to protect against loss of a token. We also
give the user an emergency kit to protect against losing
the secret key, which is needed to decrypt synchronized
authentication data, and this kit should be stored in a
secure location.

• Our system separates the authenticator from the client
device. This is not standard practice for a password
manager, but is somewhat similar to a FIDO2 token. This
separation enables safe login on public computers and
remote logout.

The result of this design is a unique set of trade-offs in
the space of password alternatives. As compared to password
managers, Let’s Authenticate fills more security properties
because it replaces passwords with cryptographic secrets and
fills identical usability properties. As compared to passwordless
FIDO2, Let’s Authenticate has similar security properties as a
hardware token, but has significant usability improvements.
Let’s Authenticate is more scalable for users; it requires
registration only with the CA, after which other steps are

13

automated except for an approval step. Let’s Authenticate also
has easier recovery from loss; if a user loses an authenticator,
they can recover all of their accounts in one step by authorizing
a new authenticator with their hardware token and initializing
the authenticator with the secret key.

One significant challenge for adoption of Let’s Authenticate
is helping users migrate from an existing account where they
use a username and password or federated single-sign on. This
would require additional mechanisms at relying parties, along
with clear user interfaces that help users make the switch and
avoid phishing attacks for their existing passwords.

B. Differences From Passwordless FIDO2

Let’s Authenticate uses passwordless FIDO2 for users to
authenticate to the CA, after which the user can authorize the
use of specific authenticators. Passwordless FIDO2 could be
replaced with any other login method, but hardware tokens
provide strong protection for the synchronized authentication
data. Our design means that users only need to use their
hardware keys whenever they want to add or remove an
authenticator from their account. This allows Let’s Authenticate
to avoid carrying and using tokens on a daily basis, a major
drawback identified in previous studies [18]. Passwordless
FIDO2 tokens also require significant overhead for users, who
have to setup backups separately with each RP to guard against
loss or theft [33]. Let’s Authenticate avoids this overhead by
centralizing use of the token to the CA account. Moreover,
users can easily recover accounts with relying parties even if
they lose all of their software authenticators, and if a user loses
a hardware token, they only need to revoke it with the CA, not
with every individual relying party.

One possible improvement to the Let’s Authenticate design
could be to use passwordless FIDO2 when authenticating to
RPs in place of session certificates. The primary benefit of
this modification would be minimizing changes needed for
RPs, which could support both FIDO2 and Let’s Authenticate
at once. There are two possibilities. (1) The authenticators
could store a single FIDO key pair in software, as part of the
encrypted and synchronized authentication data. This would
require a modification of the FIDO2 specification, which states
that “it is expected that a credential private key never leaves
the authenticator”. However, this modified system would still
need account certificates to provide for deauthorization in
case an authenticator is lost, and RPs would still need to be
modified to receive and validate the account certificate. (2) Each
authenticator could use its own FIDO key pair, with the private
key stored in hardware as recommended. The system would
need to work with the RP to authorize which FIDO public
keys are allowed to use an account, to prevent the CA from
impersonating the user. This in turn leads to two possibilities if
an authenticator is stolen. (2a) A race between the thief and the
owner to see who can deauthorize the other’s FIDO key first.
(2b) A potentially cumbersome method where the hardware
token is needed to register and revoke an authenticator’s FIDO
keys with the RP, ensuring the owner maintains control of
the account. Note that registering FIDO2 backup keys at RPs
and avoiding account compromise if a key is lost or stolen is
an ongoing research problem. As future work we anticipate
exploring these option further to determine if we can better

leverage passwordless FIDO2 deployment and simplify RP
deployment requirements.

C. Centralized Management

An important feature of the Let’s Authenticate system is that
it enables centralized management of a user’s authentication
keys, similar to a password manager. Currently, passwordless
FIDO2 standards place this management load directly on the
user—they have to keep track of which tokens they use with
which website, and they have to remember which websites
they have registered a backup for in case of loss or theft of a
token. An open question is whether passwordless FIDO2 could
evolve to likewise include centralized management, or whether
tools can use automation to simplify registration and account
recovery for users so their cognitive load is lightened.

Any centralized authentication system must help users to
manage their account, which can be challenging for users. Loss
of access to this account means they lose access to every account
with a relying party. Currently, Let’s Authenticate allows a user
to register backup tokens in case they lose one. It’s an open
question whether users will be successful in managing their
backup tokens. Future work could examine a broad set of
account management strategies for centralized authentication
systems and illuminate their trade-offs.

A related question is whether users should be required
to re-authenticate with their hardware token periodically. The
current design of Let’s Authenticate requires users to use their
hardware token every 10 days. One benefit of a shorter period
is that the user is less likely to misplace their hardware token
if they must regularly use it. In addition, this short period
means that an attacker who is able to steal an authenticator and
bypass the biometric or PIN protecting the Let’s Authenticate
software, only has a short window where they can use the stolen
credentials. However, a clear downside is that the user must now
carry the hardware token with them regularly. An alternative
is to only require the hardware token when activating a new
authenticator or de-authorizing a lost or stolen authenticator.
This improves usability because the user no longer needs to
carry their token with them regularly, but could lead to users
misplacing tokens that they don’t use often and also gives
an attacker a larger window of opportunity. We note that the
owner of the account can de-authorize any authenticator using
a hardware token registered to their account, which reduces
harm for lost authenticators and may tip the balance toward
preferring the greater usability of only using the hardware
token when authorizing or deauthorizing authenticators. These
trade-offs need future study and input from users.

Finally, another open question is helping users cope with
trust when dealing with a centralized system. Users naturally
worry that a breach will result in an attacker gaining access to
all of their accounts at once. Users are also justifiably skeptical
of claims that a cloud service is secure, given news accounts
of breaches, their lack of expertise, and the overall difficulty of
ensuring that a system has no design flaws or an implementation
has no bugs. This is one advantage of using hardware tokens
alone (without centralized management), since this doesn’t
require trusting a cloud service provider.

14

IX. CONCLUSION

This work explores the creation of the Let’s Authenticate
system for certificate-based user authentication. We used a
survey of user preferences to shape our design of Let’s
Authenticate. Our design demonstrates how a certificate-based
authentication system can still preserve user privacy and
minimize the amount of trust needed, so that a compromised
certificate authority cannot impersonate users. We use a security
analysis to show how the system prevents a variety of threats,
and we use an overhead analysis to demonstrate the scalability
of the system. We also compare Let’s Authenticate to several
notable systems using a well-known framework to illustrate its
advantages.

The bar for any system aiming to replace passwords is high.
Overall Let’s Authenticate is a promising system for replacing
passwords, but further work is needed. First, both short and
long term usability studies are needed to refine the usability of
the system and assess user attitudes toward adoption. Second,
users need help understanding the security benefits of strong
encryption [68], and to develop a mental model of how the
authentication system works [33]. Finally, deployment should
be made as simple as possible for developers.

ACKNOWLEDGMENTS

We would like to express our gratitude to Ammon Mugimu
and Edward Smart for their contributions in the early concept
design stages. We would also like to thank the anonymous
reviewers for their helpful feedback and guidance. This research
is supported in part by the National Science Foundation under
Grant No. CNS-1816929.

REFERENCES

[1] 1Password, “1password security design.”
[2] P. S. Aleksic and A. K. Katsaggelos, “Audio-visual biometrics,” Pro-

ceedings of the IEEE, vol. 94, no. 11, pp. 2025–2044, 2006.
[3] F. Alliance, “Client to authenticator protocol (CTAP),” January 2019.
[4] M. R. Asghar, M. Backes, and M. Simeonovski, “PRIMA: Privacy-

preserving identity and access management at internet-scale,” in In-
ternational Conference on Communications (ICC). IEEE, 2018, pp.
1–6.

[5] J. Bonneau, C. Herley, P. C. Van Oorschot, and F. Stajano, “The quest
to replace passwords: A framework for comparative evaluation of web
authentication schemes,” in Symposium on Security and Privacy. IEEE,
2012, pp. 553–567.

[6] J. Brainard, A. Juels, R. L. Rivest, M. Szydlo, and M. Yung, “Fourth-
factor authentication: somebody you know,” in Proceedings of the 13th
ACM conference on Computer and communications security, 2006, pp.
168–178.

[7] K. H. Brown, “Security requirements for cryptographic modules,”
Federal Information Processing Standards Publication, FIPS 140-2,
pp. 1–53, 1994.

[8] A. Bud, “Facing the future: The impact of apple faceid,” Biometric
technology today, vol. 2018, no. 1, pp. 5–7, 2018.

[9] P. R. Center, “Americans and cybersecurity,” January 2017.
[Online]. Available: https://www.pewresearch.org/internet/2017/01/26/
2-password-management-and-mobile-security/

[10] S. Chiasson, E. Stobert, A. Forget, R. Biddle, and P. C. Van Oorschot,
“Persuasive cued click-points: Design, implementation, and evaluation of
a knowledge-based authentication mechanism,” IEEE Transactions on
Dependable and Secure Computing, vol. 9, no. 2, pp. 222–235, 2011.

[11] S. Chiasson, P. C. van Oorschot, and R. Biddle, “A usability study and
critique of two password managers.” in USENIX Security Symposium,
vol. 15, 2006, pp. 1–16.

[12] J. S. Conners and D. Zappala, “Let’s Authenticate: Automated Crypto-
graphic Authentication for the Web with Simple Account Recovery,” in
Who Are You?! Adventures in Authentication Workshop, ser. WAY ’19,
Santa Clara, California, USA, Aug. 2019, pp. 1–6.

[13] J. Daugman, “How iris recognition works,” in The essential guide to
image processing. Elsevier, 2009, pp. 715–739.

[14] D. De Cock, C. Wolf, and B. Preneel, “The Belgian electronic identity
card (overview).” in Sicherheit, vol. 77, 2006, pp. 298–301.

[15] S. Drimer, S. J. Murdoch, and R. Anderson, “Optimised to fail: Card
readers for online banking,” in International Conference on Financial
Cryptography and Data Security. Springer, 2009, pp. 184–200.

[16] M. H. Eldefrawy, K. Alghathbar, and M. K. Khan, “Otp-based two-
factor authentication using mobile phones,” in 2011 eighth international
conference on information technology: new generations. IEEE, 2011,
pp. 327–331.

[17] M. Fagan, Y. Albayram, M. M. H. Khan, and R. Buck, “An investigation
into users’ considerations towards using password managers,” Human-
centric Computing and Information Sciences, vol. 7, no. 1, p. 12, 2017.

[18] F. M. Farke, L. Lorenz, T. Schnitzler, P. Markert, and M. Dürmuth,
““you still use the password after all”–exploring fido2 security keys
in a small company,” in Symposium on Usable Privacy and Security
(SOUPS) 2020), 2020, pp. 19–35.

[19] D. Florencio and C. Herley, “A large-scale study of web password habits,”
in International conference on World Wide Web (WWW). ACM, 2007,
pp. 657–666.

[20] D. Florêncio and C. Herley, “One-time password access to any server
without changing the server,” in International Conference on Information
Security. Springer, 2008, pp. 401–420.

[21] D. Florêncio, C. Herley, and P. C. Van Oorschot, “An administrator’s
guide to Internet password research,” in Large Installation System
Administration Conference (LISA), 2014, pp. 44–61.

[22] N. Haller and C. Metz, “Rfc1938: A one-time password system,” 1996.

[23] S. Hammann, R. Sasse, and D. Basin, “Privacy-preserving openid
connect,” in Asia Conference on Computer and Communications Security
(ASIACCS). ACM, 2020, pp. 277–289.

[24] M. Hanson, D. Mills, and B. Adida, “Federated browser-based identity
using email addresses,” in W3C Workshop on Identity in the Browser,
2011.

[25] N. J. Hopper and M. Blum, “Secure human identification protocols,” in
International conference on the theory and application of cryptology
and information security. Springer, 2001, pp. 52–66.

[26] Ironkey, 2021, https://www.ironkey.com/en-US/.

[27] M. Jakobsson, L. Yang, and S. Wetzel, “Quantifying the security
of preference-based authentication,” in Proceedings of the 4th ACM
workshop on Digital identity management, 2008, pp. 61–70.

[28] D. P. Kormann and A. D. Rubin, “Risks of the passport single signon
protocol,” Computer networks, vol. 33, no. 1-6, pp. 51–58, 2000.

[29] M. Kuhn, “Otpw—a one-time password login package,” 1998.

[30] L. Lamport, “Password authentication with insecure communication,”
Communications of the ACM, vol. 24, no. 11, pp. 770–772, 1981.

[31] LastPass, “LastPass technical white paper.”

[32] S. G. Lyastani, M. Schilling, S. Fahl, M. Backes, and S. Bugiel, “Better
managed than memorized? Studying the impact of managers on password
strength and reuse,” in USENIX Security Symposium, 2018, pp. 203–220.

[33] S. G. Lyastani, M. Schilling, M. Neumayr, M. Backes, and S. Bugiel,
“Is fido2 the kingslayer of user authentication? a comparative usability
study of fido2 passwordless authentication,” in Symposium on Security
and Privacy (SP). IEEE, 2020, pp. 268–285.

[34] M. Mannan and P. C. Van Oorschot, “Using a personal device to
strengthen password authentication from an untrusted computer,” in
International Conference on Financial Cryptography and Data Security.
Springer, 2007, pp. 88–103.

[35] T. Martens, “Electronic identity management in estonia between market
and state governance,” Identity in the Information Society, vol. 3, no. 1,
pp. 213–233, 2010.

[36] Mozilla, 2021, https://www.mozilla.org/en-US/.

15

[37] B. C. Neuman and T. Ts’o, “Kerberos: An authentication service for
computer networks,” IEEE Communications magazine, vol. 32, no. 9,
pp. 33–38, 1994.

[38] S. Oesch and S. Ruoti, “That was then, this is now: A security evaluation
of password generation, storage, and autofill in browser-based password
managers,” in USENIX Security Symposium, 2020.

[39] M. O’Neill, “The security layer,” Ph.D. dissertation, Brigham Young
University, 2019.

[40] OneSpan, 2021, https://www.onespan.com/products/transaction-signing/
cronto.

[41] K. Owens, O. Anise, A. Krauss, and B. Ur, “User perceptions of the us-
ability and security of smartphones as {FIDO2} roaming authenticators,”
in Seventeenth Symposium on Usable Privacy and Security (SOUPS
2021), 2021, pp. 57–76.

[42] B. Parno, C. Kuo, and A. Perrig, “Phoolproof phishing prevention,” in
International conference on financial cryptography and data security.
Springer, 2006, pp. 1–19.

[43] A. Parsovs, “Practical issues with tls client certificate authentication.” in
Network and Distributed System Security Symposium (NDSS), vol. 14,
2014, pp. 23–26.

[44] A. Pashalidis and C. J. Mitchell, “Impostor: A single sign-on system
for use from untrusted devices,” in IEEE Global Telecommunications
Conference, 2004. GLOBECOM’04., vol. 4. IEEE, 2004, pp. 2191–
2195.

[45] PassWindow, 2021, https://passwindow.com/.
[46] S. Pearman, S. A. Zhang, L. Bauer, and N. Christin, “Why people (don’t)

use password managers effectively,” in Symposium on Usable Privacy
and Security (SOUPS), 2019.

[47] R. Peeters, J. Hermans, P. Maene, K. Grenman, K. Halunen, and
J. Häikiö, “n-auth: Mobile authentication done right,” in Computer
Security Applications Conference (ACSAC). ACM, 2017, pp. 1–15.

[48] D. Recordon and D. Reed, “Openid 2.0: a platform for user-centric
identity management,” in Proceedings of the second ACM workshop on
Digital identity management, 2006, pp. 11–16.

[49] K. Reese, T. Smith, J. Dutson, J. Armknecht, J. Cameron, and
K. Seamons, “A usability study of five two-factor authentication methods,”
in Symposium on Usable Privacy and Security (SOUPS) 2019), 2019.

[50] J. Reynolds, N. Samarin, J. Barnes, T. Judd, J. Mason, M. Bailey, and
S. Egelman, “Empirical measurement of systemic 2fa usability,” in
USENIX Security Symposium, 2020, pp. 127–143.

[51] J. Reynolds, T. Smith, K. Reese, L. Dickinson, S. Ruoti, and K. Seamons,
“A tale of two studies: The best and worst of yubikey usability,” in
Symposium on Security and Privacy (SP). IEEE, 2018, pp. 872–888.

[52] R. L. Rivest, “Reflections on SDSI,” given at LampsonFest (Microsoft,
Cambridge, MA) in celebration of Butler Lampson’s birthday.

[53] R. L. Rivest and B. Lampson, “SDSI – a simple distributed security
infrastructure.”

[54] A. Ross, J. Shah, and A. K. Jain, “From template to image: Reconstruct-
ing fingerprints from minutiae points,” IEEE transactions on pattern
analysis and machine intelligence, vol. 29, no. 4, pp. 544–560, 2007.

[55] RSA, “RSA secureID two-factor authentication,” 2021, https://www.
securid.com/en-us/index.

[56] S. Schechter, A. B. Brush, and S. Egelman, “It’s no secret. measuring
the security and reliability of authentication via “secret” questions,” in
2009 30th IEEE Symposium on Security and Privacy. IEEE, 2009, pp.
375–390.

[57] M. A. Sirbu and J.-I. Chuang, “Distributed authentication in kerberos
using public key cryptography,” in Proceedings of SNDSS’97: Internet
Society 1997 Symposium on Network and Distributed System Security.
IEEE, 1997, pp. 134–141.

[58] A. Smith, “What the public knows about cybersecurity,” Pew
Research Center, 2017, https://www.pewinternet.org/2017/03/22/
what-the-public-knows-about-cybersecurity/.

[59] S. L. Smith, “Authenticating users by word association,” Computers &
Security, vol. 6, no. 6, pp. 464–470, 1987.

[60] Sovrin, 2021, https://sovrin.org/.
[61] F. Stajano, “Pico: No more passwords!” in International Workshop on

Security Protocols. Springer, 2011, pp. 49–81.

[62] P. Svenda, M. Nemec, P. Sekan, R. Kvasnovsky, D. Formanek,
D. Komarek, and V. Matyas, “The million-key question—investigating
the origins of RSA public keys,” in 25th USENIX Security Symposium
(USENIX Security 16). Austin, TX: USENIX Association, Aug. 2016,
pp. 893–910. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/svenda

[63] H. Tao, “Pass-go, a new graphical password scheme,” Ph.D. dissertation,
University of Ottawa (Canada), 2006.

[64] T. W. Van Der Horst and K. E. Seamons, “Simple authentication for the
web,” in 2007 Third International Conference on Security and Privacy
in Communications Networks and the Workshops-SecureComm 2007.
IEEE, 2007, pp. 473–482.

[65] W3C, “Web authentication: An API for accessing public key
credentials,” March 2019, https://www.w3.org/TR/webauthn/
cross-platform-attachment.

[66] D. Weinshall, “Cognitive authentication schemes safe against spyware,”
in 2006 IEEE Symposium on Security and Privacy (S&P’06). IEEE,
2006, pp. 6–pp.

[67] A. Wiesmaier, M. Fischer, M. Lippert, and J. Buchmann, “Outflanking
and securely using the pin/tan-system,” arXiv preprint cs/0410025, 2004.

[68] J. Wu and D. Zappala, “When is a tree really a truck? exploring mental
models of encryption,” in Symposium on Usable Privacy and Security
(SOUPS), 2018, pp. 395–409.

[69] J. Yan, A. Blackwell, R. Anderson, and A. Grant, “Password memora-
bility and security: Empirical results,” Security & Privacy, vol. 2, no. 5,
pp. 25–31, 2004.

[70] Yubico, 2021, https://www.yubico.com/.
[71] B. Zhu, X. Fan, and G. Gong, “Loxin—A solution to password-less

universal login,” in Conference on Computer Communications Workshops.
IEEE, 2014, pp. 488–493.

APPENDIX

A. System Ratings

We include here ratings for Let’s Authenticate, Mozilla
Persona, and passwordless FIDO2 (1FA) tokens.

Let’s Authenticate:

1) Usability: The system is Quasi-Memorywise-Effortless
due to its use of a FIDO2 hardware token for CA account
authentication, when the token requires entry of a PIN. It is
Scalable-for-Users because most registration and logins require
only approval. The system does not support Nothing-to-Carry
because a user will need to carry a hardware token with them.
See §VIII-C for a discussion of how to overcome this. It
is Physically-Effortless due to needing to enter the master
password periodically. Because the user interface combines
elements of FIDO2 with password managers, and studies
show these are easy to learn, we anticipate our system is
also Easy-to-Learn, though more work is needed to ascertain
this. We judge our system Efficient-to-Use due to its centralized
management, and there are Infrequent-Errors due to automation
of all cryptographic operations. It has Quasi-Easy-Recovery-
from-Loss because a user needs to manage backup hardware
tokens only for their CA account, as opposed to for every
relying party, and must keep track of a printed secret key to
initialize new authenticators.

2) Deployability: The system may or may not be Accessible
depending on the type of hardware token, which depends
on its form, PIN entry, etc. Screen readers can help with
additional interactions (e.g., approving a login, revoking a lost
authenticator). The system does not have Negligible-Cost-per-
User due to cost of a hardware token and the per-user cost
incurred by a certificate authority. It is not Server-Compatible,

16

and it is Browser-Compatible because a user may always use
a smartphone authenticator and we have demonstrated proof-
of-concept browser extensions for most major browsers. The
system is not Mature but is Non-Proprietary.

3) Security: The system is Resilient-to-Physical-
Observation, because no one is able to observe a user
entering a secret due to its use of hardware tokens. It is
Resilient-to-Targeted-Impersonation, Resilient-to-Throttled-
Guessing, and Resilient-to-Unthrottled-Guessing because
we use a hardware token when authenticating to the CA,
and also use cryptographic secrets when authenticating with
websites. The only avenue for a targeted impersonation is if
someone has physical access to an authenticator and is able
to bypass the PIN or biometric on the authenticator software
and has access to a printed recovery kit and has access to
a hardware token registered to the account. It is Resilient-
to-Internal-Observation, due to its use of a hardware token.
It is Resilient-to-Leaks-from-Other-Verifiers, since relying
parties only validate certificates. It is Resilient-to-Phishing,
since website logins cannot be phished and account with the
CA is secured with a hardware token. It is Resilient-to-Theft
depending on the method used for encrypting authenticator
data. If the system uses a secret key that is printed for a
recovery kit, then it has full protection against theft of a
hardware token since the recovery kit is also needed to
initialize a new authenticator. If the system uses a FIDO2
hardware token to generate the secret used to encrypt the
authenticator data, then its resilience to theft depends on
whether a PIN is required for the hardware token. It has
No-Trusted-Third-Party because a malicious or compromised
CA cannot gain access to a user’s accounts. Logins satisfy
Requiring-Explicit-Consent and accounts are Unlinkable due
to use of a unique identifier and public keys for each service.

Persona:

4) Usability: Persona is Quasi-Memorywise-Effortless be-
cause a user must remember a password for their email account.
It is Scalable-for-Users, like other federated systems. Because a
user only needs to verify ownership of their email account, there
is Nothing-to-Carry, it is Physically-Effortless, Easy-to-Learn,
and Efficient-to-Use. Since there is only one password to type,
it should have Infrequent-Errors and the system should offer
easyRecovery-From-Loss since password reset is commonly
deployed for email accounts.

5) Deployability: Persona is Accessibile because the user
interaction is typing a password. Likewise, there is Negligible-
Cost-per-User for identity providers and websites. Persona does
require changes to servers, so it is not Server-Compatible, but
it does have a cross-platform JavaScript Library, enabling it to
be Browser-Compatible. It was Mature during its heyday, due
to Mozilla’s support and is open source or Non-Proprietary.

6) Security: Persona has Quasi- support for four
properties—Resilient-to-Physical-Observation, Resilient-to-
Targeted-Impersonation, Resilient-to-Throttled-Guessing,
and Resilient-to-Unthrottled-Guessing. These properties all
hinge on the fact that passwords are no longer used with
websites, so these attacks cannot be performed there, but
may be successful against the master password. It is not
Resilient-to-Internal-Observation, due to its use of an email
password. It is Resilient-to-Leaks-from-Other-Verifiers, since

relying parties only validate certificates. It is not Resilient-to-
Phishing, since email authentication can be spoofed, but is
Resilient-to-Theft like other password-based services. It cannot
satisfy No-Trusted-Third-Party due to reliance on identity
providers, but logins do offer Requiring-Explicit-Consent.
Accounts are not Unlinkable due to use of certificates certifying
email addresses, unless users go to the significant cost of
establishing a separate email address for each account.

Passwordless FIDO2:

1) Usability: FIDO2 hardware/software tokens, when used
in passwordless mode (1FA) are Quasi-Memorywise-Effortless
when the token requires entry of a PIN. They are not Scalable-
for-Users because the user must separately register a token
(and a backup if desired) at each website. Whether there is
Nothing-to-Carry depends on the type of token. Based on
recent studies [33], [18] they are Physically-Effortless and
Easy-to-Learn. They are Quasi-Efficient-to-Use and subject to
Quasi-Infrequent-Errors because a user may need to juggle
several different authenticators and remember which goes with
which website, depending on website support. They do not
support Easy-Recovery-from-Loss, since a user must manage
backup tokens separately for each relying party on their own.

2) Deployability: A token may or may not be Accessible
or have Negligible-Cost-Per-User, depending on its form, PIN
entry, etc. They are not Server-Compatible since changes to
the back end are required, but are Browser-Compatible due
to increasing support for the required APIs in browsers. The
system is not yet Mature, though support is growing, and it is
Non-Proprietary because it is based on an open standard.

3) Security: Tokens use cryptographic credentials for
login, so they are Resilient-to-Physical-Observation, Resilient-
to-Targeted-Impersonation, Resilient-to-Throttled-Guessing,
Resilient-to-Unthrottled-Guessing, Resilient-to-Internal-
Observation, Resilient-to-Leaks-from-Other-Verifiers, and
Resilient-to-Phishing. They may be Quasi-Resilient-to-
Theft, depending on the form of the token, and there is
No-Trusted-Third-Party. Logins with the scheme may be
Requiring-Explicit-Consent, depending on whether the website
asks for it. Whether the system is Unlinkable depends on
how manufacturers use attestation, because each token may
have a unique attestation key. The WebAuthn spec advises
manufacturers of authenticators to assign non-unique attestation
keys in batches of 100,000, but there is no way to enforce this
and a manufacturer may simply be careless.

Note that we disagree with the ratings for passwordless
tokens given in [33]. They rate FIDO2 as Scalable-for-
Users, but overlook the difficulty of having to setup a token
separately for each website where it is used. They rate it as
Efficient-to-Use and having Infrequent-Errors, but overlook
the difficulty of juggling authenticators among websites. They
rate it as Browser-Compatible, but not all browsers have the
necessary protocols built in for communication with hardware
and software authenticators, and we judge it not to be Mature
yet due to these difficulties and lack of adoption by websites.
They also overlook the possibility of privacy leaks that lead us
to rate it as only potentially Unlinkable.

17

B. Survey

In this survey, we are interested in learning your opinions
about ways to login to websites. New systems are being
developed to either replace passwords or improve how they
work.

Password Replacement Perceptions:

1) How important is it to you that websites adopt new systems
that replace passwords? (Likert, Extremely Important to
Not at all Important)
(Q2–Q10 randomized, Likert, Like a Great Deal to Dislike
a Great Deal)

2) Some new systems store all of your website credentials for
you so that you no longer have to memorize passwords.
How much do you like or dislike this feature?

3) Some new systems replace passwords with cryptography
that is so strong it would take all the computing power
in the world thousands of years to break your credentials.
How much do you like or dislike this feature?

4) Some new systems require you to register an account only
once, instead of having to register separately with each
website you visit. How much do you like or dislike this
feature?

5) A new system might require you to use your smartphone
whenever you need to login to a website. How much do
you like or dislike this feature?

6) A new system might require you to use a small hardware
token, similar in size to a small USB drive, whenever you
need to login to a website. How much do you like or
dislike this feature?

7) A new system might require you to use a browser extension
or a separate program on your device whenever you need
to login to a website. How much do you like or dislike
this feature?

8) A new system might require you to have a single secret,
but if you lose or forget that secret, you lose access to all
of your website accounts, unless you previously registered
a backup device with the system. How much do you like
or dislike this feature?

9) A new system might make it easy for you to recover your
accounts if you trust a company to hold some of your
secrets, but if that company was malicious it could also
login to your accounts. How much do you like or dislike
this feature?

10) A new system might require you to register a backup
device with every website you use in order to provide
easy recovery if you lose your primary device. How much
do you like or dislike this feature?

Demographics:

11) To which gender identity do you most identify?
◦ Male
◦ Female
◦ Transgender Male
◦ Transgender Female
◦ Gender variant / nonconforming
◦ Other
◦ Prefer not to answer

12) What is your age?
◦ Under 18

◦ 18–24
◦ 25–34
◦ 35–44
◦ 45–54
◦ 55-64
◦ 65–74
◦ 75–84
◦ 85 or older
◦ Prefer not to answer

13) What is the highest level of education you have attained?
◦ o Less than high school
◦ High school graduate
◦ Some college
◦ 2 year degree
◦ 4 year degree
◦ Professional degree
◦ Doctorate
◦ Prefer not to answer

14) On a scale of 1 to 5, how would you rate your current
technological expertise?
For the purposes of this survey, we’re primarily concerned
with your computer and web-based skills. We’ve defined
three points on the scale as follows. These tasks represent
some of the things a person at each level might do.
Beginner (1 to 2): Able to use a mouse and keyboard,
create a simple document, send and receive e-mail, and/or
access web pages
Intermediate (3): Able to format documents using styles
or templates, use spreadsheets for custom calculations and
charts, and/or use graphics/web publishing
Expert (4 to 5): Able to use macros in programs to
speed tasks, configure operating system features, create a
program using a programming language, and/or develop
a database.

18

