
Context-Sensitive and Directional Concurrency
Fuzzing for Data-Race Detection

Zu-Ming Jiang
Tsinghua University

Jia-Ju Bai
Tsinghua University

Kangjie Lu
University of Minnesota

Shi-Min Hu
Tsinghua University

Abstract—Fuzzing is popular for bug detection and vulner-
ability discovery nowadays. To adopt fuzzing for concurrency
problems like data races, several recent concurrency fuzzing ap-
proaches consider concurrency information of program execution,
and explore thread interleavings by affecting thread scheduling at
runtime. However, these approaches are still limited in data-race
detection. On the one hand, they fail to consider the execution
contexts of thread interleavings, which can miss real data races
in specific runtime contexts. On the other hand, they perform
random thread-interleaving exploration, which frequently repeats
already covered thread interleavings and misses many infrequent
thread interleavings.

In this paper, we develop a novel concurrency fuzzing frame-
work named CONZZER, to effectively explore thread interleavings
and detect hard-to-find data races. The core of CONZZER is a
context-sensitive and directional concurrency fuzzing approach
for thread-interleaving exploration, with two new techniques.
First, to ensure context sensitivity, we propose a new concurrency-
coverage metric, concurrent call pair, to describe thread inter-
leavings with runtime calling contexts. Second, to directionally
explore thread interleavings, we propose an adjacency-directed
mutation to generate new possible thread interleavings with
already covered thread interleavings and then use a breakpoint-
control method to attempt to actually cover them at runtime.
With these two techniques, this concurrency fuzzing approach
can effectively cover infrequent thread interleavings with concrete
context information, to help discover hard-to-find data races.
We have evaluated CONZZER on 8 user-level applications and
4 kernel-level filesystems, and found 95 real data races. We
identify 75 of these data races to be harmful and send them to
related developers, and 44 have been confirmed. We also compare
CONZZER to existing fuzzing tools, and CONZZER continuously
explores more thread interleavings and finds many real data races
missed by these tools.

I. INTRODUCTION

Data race is a common class of concurrency problems.
It occurs when two concurrently executed threads access a
shared variable, and at least one of them writes the variable
without proper synchronization operations. If the racy data
influences critical data flow or control flow of the program,
serious bugs such as memory corruption and permission bypass
can occur. Some works [7], [55], [64], [73] have shown that
data races have become a main source of runtime problems in
both user-level applications and kernel-level programs. As an

example, “Dirty COW” [20] launches a privilege-escalation
attack against the Linux kernel by exploiting a data race
in the memory management subsystem of the Linux kernel.
Furthermore, many recent CVE-assigned vulnerabilities (e.g.,
CVE-2020-1667 [16], CVE-2020-9990 [17] and CVE-2020-
11173 [18]) also stem from data races.

As data races can be harmful, many detection approaches
have been proposed. Some approaches [22], [25], [26], [42],
[77], [78] use static analysis, but they suffer from many false
positives, due to lacking exact runtime information and inac-
curacy of dataflow analysis. To reduce false positives, some
other approaches use dynamic analysis based on lockset anal-
ysis [10], [19], [21], [66], [68], happens-before relation [27],
[51], [56], [62] or sampling [5], [23]. But these approaches
require substantial test cases to cover concurrently-executed
code and different thread interleavings at runtime.

To automatically generate effective test cases, many recent
approaches [1], [4], [9], [15], [30], [45], [50], [60], [61], [70],
[72], [79], [80], [82] use fuzzing to cover infrequently-executed
code and thus to discover hard-to-find bugs. Encouraged by
the promising results of fuzzing, many developers have used
existing fuzzing tools (such as AFL [1] and Syzkaller [70])
with third-party data-race checkers (such as TSan [75] and
KCSAN [44]) to detect data races [41], [71]. However, general-
purpose fuzzing tools are limited in exploring thread inter-
leavings, due to using sequential code coverage as program
feedback and neglecting thread interleavings.

To improve fuzzing in finding concurrency problems like
data races, several recent concurrency fuzzing approaches [8],
[37], [53], [76], [81] use concurrent-execution information to
perform thread-interleaving exploration. However, these ap-
proaches still have two major limitations in testing concurrent
programs. First, existing concurrency fuzzing approaches use a
context-insensitive coverage metric as fuzzing feedback with-
out considering runtime contexts, and thus they can miss many
deep-hidden data races that occur only in specific runtime
contexts. Second, existing concurrency fuzzing approaches
perform random thread-interleaving exploration (e.g., inject-
ing random delay or randomly adjusting thread priorities), but
recent works [12], [74] reveal that such exploration is often
inefficient, namely it frequently repeats already covered thread
interleavings and misses many infrequent ones.

To solve these two limitations, we develop a novel con-
currency fuzzing framework named CONZZER, which can
effectively explore thread interleavings and detect hard-to-
find data races. The core of CONZZER is a context-sensitive
and directional concurrency fuzzing approach containing two

Network and Distributed Systems Security (NDSS) Symposium 2022
24-28 April 2022, San Diego, CA, USA
ISBN 1-891562-74-6
https://dx.doi.org/10.14722/ndss.2022.24296
www.ndss-symposium.org

new techniques. First, this approach uses a new concurrency-
coverage metric, concurrent call pair, to describe thread
interleavings with their runtime calling contexts as fuzzing
feedback. Each concurrent call pair represents a pair of two
concurrently-executed functions augmented with their calling
contexts. Second, by using an adjacency-directed mutation and
a breakpoint control method, this approach can directionally
explore thread interleavings as many as possible. Specifically,
the adjacency-directed mutation infers new possible thread
interleavings according to already covered thread interleavings,
so as to provide a promising direction for thread-interleaving
exploration. Then, the breakpoint-control method deterministi-
cally attempts to actually cover these new possible thread inter-
leavings at runtime, by adaptively affecting thread scheduling
with breakpoints. This method can increase the possibility
of covering infrequent thread interleavings generated by the
mutation. With the two techniques, this fuzzing approach can
effectively cover different thread interleavings with concrete
context information, helping discover hard-to-find data races.

Based on this concurrency fuzzing approach, we implement
a customized race checker in CONZZER, by using dynamic
lockset analysis [66], and it can achieve higher accuracy than
existing race checkers like TSan [75]. Benefiting from different
thread interleavings and related context information identified
by the fuzzing approach, this race checker can effectively
and precisely detect data races in real-world programs. We
have implemented CONZZER with LLVM [54] to automatically
test both user-level applications and kernel-level programs.
Besides, to be compatible with traditional input-driven fuzzing
process, CONZZER can mutate concurrent call pairs and pro-
gram inputs together.

Overall, we make the following main contributions:

• We first reveal the major limitations of existing concurrency
fuzzing. Then, to solve these limitations, we propose a
novel context-sensitive and directional concurrency fuzzing
approach, with two new techniques. First, this approach
uses a new context-sensitive concurrency-coverage metric
concurrent call pair as program feedback, to describe thread
interleavings with runtime calling contexts. Second, this ap-
proach performs directional thread-interleaving exploration,
to smartly infer and deterministically cover new possible
thread interleavings. With the two techniques, this fuzzing
approach can help to discover hard-to-find data races.

• Based on this fuzzing approach, we develop a new concur-
rency fuzzing framework named CONZZER, to effectively
explore thread interleavings and detect data races. To our
knowledge, CONZZER is the first systematic concurrency
fuzzing framework to directionally explore thread interleav-
ings in different runtime contexts for data-race detection.

• We evaluate CONZZER on 8 user-level applications of the
latest versions and 4 kernel-level filesystems in Linux 5.4.
It in total reports 95 real data races with no false positive.
All these data races are actually triggered in real execution.
We identify 75 of these data races to be harmful and send
them to related developers, and 44 have been confirmed. We
also experimentally compare CONZZER to existing fuzzing
tools (such as AFL++, Syzkaller, Razzer and KRACE) with
existing race checkers (such as TSan and KCSAN), and
CONZZER continuously explores more thread interleavings
and finds more real data races missed by these tools.

II. BACKGROUND AND MOTIVATION

A. Data Race

The execution of two threads can be interleaved, and thus
they can concurrently access the same shared variable. In this
case, if at least one thread writes to the variable, its value
can be uncertain or even corrupted. To solve this problem,
synchronization operations are required to protect the memory
accesses to the shared variables in concurrently-executed code.
Common synchronization operations are acquiring/releasing
locks, setting memory barriers, counting semaphores and so
on. Since these synchronization operations reduce program
concurrency and decrease program performance, they are
supposed to be used in only the code where necessary, e.g.,
minimizing critical sections. But doing so is difficult for
developers in practice, because concurrent situations at runtime
can be quite complex and unpredictable. Thus, developers
sometimes miss necessary synchronization operations or per-
form them at incorrect code places, which leads to data races.
Data races can cause the program to run abnormally or crash
directly. Furthermore, some data races can be even exploited
by malicious attackers to cause serious security problems such
as privilege escalation [20].

B. Motivating Example

Figure 1 shows a harmful data race found by CONZZER
in the jfs filesystem in Linux 5.4. Once this data race is
triggered, it can cause a null-pointer dereference that crashes
the Linux kernel. As shown in Figure 1(a), in the function
txEnd, the variable JFS_SBI(tblk->sb)->log is read
and assigned to a local variable log on line 501. In the
function ImLogClose, the variable sbi->log is assigned
to NULL on line 1455. In our testing, the read operation
of JFS_SBI(tblk->sb)->log in txEnd and the write
operation of sbi->log in ImLogClose are concurrently
executed, and the two operations access the same memory area,
causing a data race to occur. When the data race is triggered,
the read operation can be executed after the write operation,
and thus log can be NULL, causing a null-pointer dereference
when log->active is accessed on line 534.

FILE: linux/fs/jfs/jfs_txnmgr.c
487. void txEnd(...) {

501. log = JFS_SBI(tblk->sb)->log; // read

534. if (--log->active == 0) // log is NULL

564. }

FILE: linux/fs/jfs/jfs_logmgr.c
1442. int lmLogClose(...) {

1444. struct jfs_sb_info *sbi = JFS_SBI(sb);

1455. sbi->log = NULL; // write

1503. }

Thread 1 Thread 2

jfs_put_super -> jfs_umount -> lmLogClose
jfs_lazycommit -> txLazyCommit -> txEndCallPair1: Data race occurs!

jfs_remount -> jfs_umount_rw -> lmLogClose
jfs_lazycommit -> txLazyCommit -> txEndCallPair2: No data race...

(a) JFS filesystem code containing the data race

(b) Calling context for the data race

Thread 1
Thread 2

Thread 1
Thread 2

Fig. 1. A harmful data race in jfs filesystem.

This data race was first introduced in Linux 2.6.12 (June
2005) and had existed for about 15 years until CONZZER
found it, indicating the difficulty of discovering it. In general,
detecting data races is quite challenging, as they often occur
in infrequent thread interleavings with specific runtime con-
texts, which are difficult to trigger, due to non-determinism
of thread scheduling. For example, in our testing, the data

2

race in Figure 1 occurs only when the functions txEnd and
ImLogClose are concurrently executed with the calling con-
text CallPair1 shown in Figure 1(b). When the two functions
are concurrently executed with other calling contexts (such as
CallPair2 shown in Figure 1(b)), the data race never occurs.
Moreover, the thread interleaving with the calling context
CallPair1 is just infrequently executed in real execution, and
thus this data race is hard to trigger at runtime, causing it
had existed for a long time, missed by existing race-detection
tools though the Linux kernel has been extensively tested. But
occurring in an infrequent execution situation does not mean
that the data race is less critical. Once knowing the data race,
an attacker can transform it into a deterministic vulnerability
by intentionally preparing related concurrency workloads [83],
[86]. In summary, how to effectively cover infrequent thread
interleavings with specific runtime contexts is an important but
difficult problem for data-race detection.

C. State of the Art of Concurrency Fuzzing

Nowadays, fuzzing has shown promising results in bug
detection and vulnerability discovery for sequential programs.
To fuzzing concurrent programs, many developers have used
existing fuzzing tools (such as AFL [1], and Syzkaller [70])
with third-party data-race checkers (such as TSan [75] and
KCSAN [44]) to detect data races [41], [71]. However, general-
purpose fuzzing tools is limited in exploring thread inter-
leavings, due to using sequential code coverage as program
feedback and neglecting thread interleavings.

To improve fuzzing in testing concurrent programs, sev-
eral recent concurrency fuzzing approaches [8], [37], [53],
[76], [81] have been proposed. To perform thread-interleaving
exploration, they use several techniques, such as using new
concurrency-coverage metrics (e.g., alias instruction pair [81])
as program feedback and randomly adjusting thread priori-
ties [8], [53]. However, these approaches still have two major
limitations in testing concurrent programs:

1) Using context-insensitive concurrency-coverage metric.
These approaches tune traditional code coverage [8], [37], [53],
[76] or use new concurrency-coverage metrics [81] as program
feedback. However, they miss the runtime contexts of thread
interleavings. On one hand, code coverage only describes
sequential-execution situation, and thus it cannot effectively
describe thread interleavings though being tuned. On the other
hand, as the sole new concurrency-coverage metric of these
approaches, the alias instruction pair proposed by KRACE [81]
only describes the locations of two concurrently-executed
instructions, but neglects their calling contexts, and thus this
metric cannot differentiate concurrent-execution situations in
different calling contexts. For example in Figure 1, with a
context-insensitive concurrency-coverage metric, the pairs of
two racy instructions executed in CallPair1 and CallPair2 are
considered identical. But the data race occurs only when the
two racy instructions executed in CallPair1. Thus, the data
race can be missed by concurrency fuzzing in this case.

2) Performing random thread-interleaving exploration.
These approaches inject random delays at memory access
points [81] or randomly adjust thread priorities at runtime [8],
[53], to cover different thread interleavings. However, recent
works [12], [74] reveal that such exploration is often inef-
ficient, namely it frequently repeats already covered thread

interleavings and misses many infrequent ones. For example
in Figure 1, the functions txEnd and ImLogClose are
executed quickly with different calling contexts at runtime, and
thus their executions actually have little chance to interleave
with the calling contexts CallPair1. For this reason, to detect
the data race, it is important to delicately schedule Thread 1
and Thread 2 during testing. In the evaluation (Section V-D),
we try random delay injection in concurrency fuzzing for 24
hours, but the data race is missed.

Due to lacking concrete runtime contexts and missing many
infrequent thread interleavings, existing concurrency fuzzing
approaches are still limited in discovering hard-to-find data
races. Thus, solving these limitations is important to improving
concurrency fuzzing in data-race detection.

III. CONTEXT-SENSITIVE AND DIRECTIONAL FUZZING

To address the limitations of existing concurrency fuzzing,
we propose a context-sensitive and directional concurrency
fuzzing approach to effectively explore thread interleavings:

1) To ensure context sensitivity, this approach uses a new
concurrency-coverage metric, concurrent call pair, to describe
thread interleavings with their runtime calling contexts as
fuzzing feedback.

2) To reduce the inefficiency caused by randomness and
cover infrequent thread interleavings, this approach performs
directional thread-interleaving exploration, which first uses
an adjacency-directed mutation to infer new possible thread
interleavings with already covered thread interleavings and
then uses a breakpoint-control method to attempt to actually
cover these new ones at runtime.

A. Context-Sensitive Concurrent Call Pair

Inspired by existing function-level concurrency-coverage
metrics (e.g., concurrent function pair [19] and concurrent
method pair [12]), which are context-insensitive, we propose
a new metric concurrent call pair that considers the calling
contexts of concurrently-executed functions:

ConCallPair = [CallCtxa, CallCtxb] (1)

We describe the calling context of a function using its
runtime call stack (CallCtx), which contains the information
of each function call (CallInfo) at the call stack (from caller to
callee), including the location of this function call (CallLoc)
and the location of the called function (FuncLoc). Specifically,
we describe a calling context as:

CallCtx = {CallInfo1, CallInfo2, ..., CallInfon} (2)
CallInfo = [CallLoc, FuncLoc] (3)

Based on the above description, the information about each
concurrent call pair can be hashed as a key for storage, and the
number of times that each pair is covered can be represented as
a hash value. In this way, similar to the code coverage stored
in AFL [1], concurrent call pairs can be stored as key-value
pairs in a hash table:

KEY
VALUE

Hash(ConCallPair1)
0 - 255

Hash(ConCallPair2)
......

Hash(ConCallPairx)
0 - 2550 - 255

3

 Fuzzing LoopN

Inject code breakpoints

Execute the program

Cover new
concurrent call pairs within the

time limit?

End

Mutate new covered
concurrent call pairs

Y

Execute the program and
control breakpoints

Identify covered
concurrent call pairs

Infer new posssible
concurrent call pairs

Collect runtime information

Fig. 2. Process of context-sensitive and directional fuzzing.

In fact, concurrently-executed functions and their runtime
call stacks are actually decided by program execution, and
thus statically determining them is quite difficult. For this
reason, concurrent call pairs should be dynamically identified
and collected during program execution.

According to our metric, when two functions are concur-
rently executed in N different calling contexts, there will be
N concurrent call pairs. In this way, CallPair1 and CallPair2
in Figure 1(b) can be differentiated. Thus, concurrent call pair
is helpful to performing finer-grained concurrency fuzzing and
detecting data races in specific runtime contexts.

B. Directional Thread-Interleaving Exploration

We believe that the already covered thread interleavings
provide a reasonable direction to infer other possible and
infrequent thread interleavings. For example, if the function
FuncA is concurrently executed with the function FuncB , we
can infer that the callees and callers of FuncA are possible to
be concurrently executed with FuncB . Then, we can determin-
istically affect thread scheduling to check whether the inferred
possible thread interleavings are realistic at runtime.

Based on this basic idea and concurrent call pair, we pro-
pose a new directional thread-interleaving exploration method,
which contains two parts: an adjacency-directed mutation
(Section III-B1) to generate new possible thread interleavings
with already covered thread interleavings; and a breakpoint-
control method (Section III-B2) to attempt to actually cover
these new possible thread interleavings at runtime.

Figure 2 shows the process of our context-sensitive and
directional concurrency fuzzing, which has six basic steps:

(S1) At compile time, it injects a code breakpoint contain-
ing time delay at the entry of each function;

(S2) It executes the tested program without enabling any
breakpoint, and collects covered concurrent call pairs and
thread-execution information;

(S3) After program execution, it adds these covered con-
current call pairs into a global set pair set that records all
distinct covered concurrent call pairs;

(S4) It performs the adjacency-directed mutation for these
covered concurrent call pairs with thread-execution informa-
tion, to generate new possible concurrent call pairs;

(S5) It executes the tested program, uses the breakpoint-
control method to deterministically and adaptively cover the
possible concurrent call pairs, and collects covered concurrent
call pairs and thread-execution information;

(S6) After program execution, it identifies new covered
concurrent call pairs from these covered concurrent call pairs
by comparing with pair set, and iteratively mutates these new
ones using thread-execution information again as (S4) does,
which constructs a fuzzing loop.

1) Adjacency-Directed Mutation: Our mutation is inspired
by an insight that if two functions are concurrently executed,
the functions executed adjacently to them are probably concur-
rently executed as well. Based on this insight and concurrent
call pair, we propose an inference where new possible thread
interleavings can be identified in promising directions, accord-
ing to the already covered concurrent call pairs:

Inference: if FuncA and FuncB are concurrently executed
with the calling contexts CallCtxa and CallCtxb, and FuncB
and FuncC are executed adjacently with the calling context
CallCtxb and CallCtxc, so FuncA and FuncC are possible to
be concurrently executed with the calling contexts CallCtxa
and CallCtxc.

Algorithm 1: Adjacency-Directed Mutation
Input: covered pair set
Output: possible pair set

1 possible pair set ← ∅
2 for covered pair ∈ covered pair set do
3 [CallCtx1, CallCtx2] ← GetCallCtx(covered pair)
4 for AdjCallCtx1 ∈ GetAdjCallCtx(CallCtx1) do
5 ConCallPair←GenNewPair(AdjCallCtx1, CallCtx2)
6 if ConCallPair /∈ covered pair set then
7 AddConCallPair(possible pair set, ConCallPair)

8 for AdjCallCtx2 ∈ GetAdjCallCtx(CallCtx2) do
9 ConCallPair←GenNewPair(CallCtx1, AdjCallCtx2)

10 if ConCallPair /∈ covered pair set then
11 AddConCallPair(possible pair set, ConCallPair)

Our adjacency-directed mutation is shown in Algorithm 1.
The mutation takes the set of covered concurrent call pairs,
namely covered pair set as input, and outputs the set of new
possible concurrent call pairs, namely possible pair set. For
each covered concurrent call pair, the mutation gets its two
corresponding calling context CallCtx1 and CallCtx2 (lines
2-3). Then, each adjacent calling context AdjCallCtx1 of
CallCtx1 is combined with CallCtx2 to generate a new possible
concurrent call pair ConCallPair (lines 4-5). If ConCallPair
does not repeat with existing concurrent call pairs, it will be
added into possible pair set (lines 6-7). Similarly, CallCtx2 is
also handled in this way (lines 8-11) to generate new possible
concurrent call pairs. Note that AdjCallCtx is regarded as
the adjacent calling context of CallCtx if their corresponding
functions can be executed adjacently in these calling contexts.

Example. Figure 3 presents an example of our adjacency-
directed mutation, which generates four new possible con-
current call pairs and drops two repeated ones. For a given
covered concurrent call pair [CallCtxa, CallCtxb], the mutation

4

FuncA

FuncB

FuncA+1Thread1:

Thread2:

FuncA-1…… ……

CallCtxa = call stack of FuncA on Thread1
CallCtxb = call stack of FuncB on Thread2
ConCallPair = [CallCtxa, CallCtxb]

FuncB-1…… FuncB+1 ……

Generate a covered
concurrent call pair

Identify adjacent functions
for FuncA and FuncB

AdjFunc(FuncA) = {FuncA-1, FuncA+1}
AdjFunc(FuncB) = {FuncB-1, FuncB+1}
CallCtxa-1 = call stack of FuncA-1 on Thread1
CallCtxa+1 = call stack of FuncA+1 on Thread1
CallCtxb-1 = call stack of FuncB-1 on Thread2
CallCtxb+1 = call stack of FuncB+1 on Thread2

Infer new possible
concurrent call pairs

ConCallPair1 = [CallCtxa-1, CallCtxb]
ConCallPair2 = [CallCtxa+1, CallCtxb]
ConCallPair3 = [CallCtxa, CallCtxb-1]
ConCallPair4 = [CallCtxa, CallCtxb+1]

Drop repeated call pairs

Program execution

Identify call stacks of adjacent
functions on Thread1 and Thread2

Fig. 3. Example of mutating concurrent call pairs.

first selects their concurrently-executed functions FuncA and
FuncB , and identifies the runtime information about their
threads Thread1 and Thread2. Then, the mutation checks the
information about Thread1 and identifies the two functions
FuncA−1 and FuncA+1 that are executed adjacently to FuncA.
the mutation infers that FuncA−1 and FuncA+1 would be
also likely concurrent with FuncB when they are executed in
specific calling contexts. Based on this inference, from the
collected information about Thread1, the mutation identifies
the corresponding call stacks of FuncA−1 and FuncA+1,
namely CallCtxa−1 and CallCtxa+1, and then combines each
of them with CallCtxb to generate two new possible concurrent
call pairs [CallCtxa−1, CallCtxb] and [CallCtxa+1, CallCtxb].
Similarly, the mutation also handles FuncB and the runtime in-
formation about Thread2, to generate another two new possible
concurrent call pairs [CallCtxa, CallCtxb−1] and [CallCtxa,
CallCtxb+1]. In total, four new possible concurrent call pairs
are generated from the given pair, and two of them are dropped
in the comparison with existing covered ones.

2) Breakpoint-Control Method: Because thread scheduling
is often non-deterministic during concurrent execution, it is
difficult to actually cover specific possible concurrent call pairs
(generated by our adjacency-directed mutation) at runtime. To
solve this problem, our breakpoint-control method works from
two aspects: 1) for each possible concurrent call pair, the
method performs deterministic breakpoint control to attempt to
cover it; 2) for the whole set of possible concurrent call pairs,
the method performs adaptive breakpoint control to attempt to
effectively cover them as many as possible.

Deterministic breakpoint control. For a possible concurrent
call pair [CallCtxp, CallCtxq], the method aims to cover
this pair if the involved functions FuncP and FuncQ can be
concurrently executed in related calling contexts, by determin-
istically controlling the breakpoints. Figure 4 shows the main
procedure of deterministic breakpoint control. During program
execution, suppose that FuncP is executed and its calling
context matches CallCtxp, the method enables the breakpoint
of FuncP to perform time delay on the running thread, to
wait another function FuncQ to be executed. During time
delay, if FuncQ is executed and its calling context matches
CallCtxq , indicating the possible concurrent call pair is actually
covered at runtime, the breakpoint ends delay and becomes
disabled. Otherwise, when the time delay reaches the time
limit, indicating the possible concurrent call pair may never
be covered in the current running, the breakpoint ends delay
and becomes disabled.

FuncP is executed in the calling
context CallCtxp

Enable the breakpoint of FuncP

Time delay reaches
the time limit?Run the program

FuncQ is executed in the
calling context CallCtxq? End time delay and

disable the breakpoint

Y: call pair is covered!

N

N

Y: call pair is not covered

Fig. 4. Deterministic breakpoint control.

Indeed, the uncovered case can occur due to two possible
reasons. First, the possible concurrent call pair is unrealistic
because the involved functions are synchronized. Second, the
possible concurrent call pair is indeed realistic but not actually
covered in the current running, due to the non-determinism
of thread scheduling. For the second reason, the method
provides additional chance for the call pair, by running the
program several times. The number of running times is decided
when performing the adaptive breakpoint control for multiple
possible concurrent call pairs, which is introduced as follow.

Adaptive breakpoint control. Our adjacency-directed gener-
ates multiple possible concurrent call pairs, and each of them
should be properly handled with breakpoint control. If each
of these call pairs is handled in each run, the whole running
time would be too long; if all of these call pairs are handled
in just one run, the possibility of covering one call pair is
increased, but too much overhead may be introduced, making
the program run abnormally. Thus, it is important to properly
select possible concurrent call pairs in each run.

To solve this problem, the method performs adaptive break-
point control, presented in Algorithm 2. It is analogous to the
slow start of TCP congestion control [69] by exponentially
increasing the number of possible concurrent call pairs.

The method takes the set of possible concurrent call pairs
possible pair set as input. This method first initializes the
number of handling call pairs in each run (select num) to be
one (line 1). Then the method enters the main loop which
ends when possible pair set is empty or select num is larger
than the number of call pairs in possible pair set (line 2).
In the loop, the method first randomly selects select num
call pairs from possible pair set, and stores them in a set
try pair set (line 3). Then, the method runs the program and
perform deterministic breakpoint control for each call pair

5

Algorithm 2: Adaptive Breakpoint Control
Input: possible pair set

1 select num ← 1
2 while possible pair set 6= ∅ and

select num ≤ Size(possible pair set) do
3 try pair set ← RandSelect(possible pair set, select num)
4 RunProgramWithBreakpointControl(try pair set)
5 covered pair set ← GetCoveredPair()
6 common pair set ← try pair set ∩ covered pair set
7 if common pair set 6= ∅ then
8 DeletPair(possible pair set,common pair set)
9 else

10 select num ← select num × 2

stored in try pair set, to attempt to actually cover them (line
4). During program execution, the method collects covered
concurrent call pairs in a set covered pair set (line 5). After
program execution, the method compares try pair set and
covered pair set to get their intersection set common pair set,
which stores the actually covered possible concurrent call pairs
in the latest running (line 6). If common pair set is not empty,
the method deletes the call pairs existing in common pair set
from possible pair set (line 8), indicating that these call pairs
are not required to be handled any more. If common pair set
is empty, it indicates that none of the selected call pairs is
actually covered, and thus the method doubles select num to
provide more chance of covering one call pair in the next
running (line 10). Finally, the method checks back the loop
condition and prepare to enter the next iteration.

C. Discussion on Alternative Design Choices

When designing our fuzzing approaches, we considered
and tried some alternative choices for specific techniques.
When selecting the feedback granularity of concurrency
fuzzing, we also considered and tried to use concurrent in-
struction pairs or concurrent basic-block pairs. However, per-
forming instruction-level or basic-block-level dynamic analysis
introduces too much runtime overhead in program execution,
which greatly degrades the performance of overall fuzzing
process. Besides, we observed that enabling context sensitivity
on instruction pairs or basic-block pairs causes over-sensitive
problems of fuzzing, namely too many test cases are labeled
as interesting seeds. To further confirm it, in Section VI-A,
we implement an alternative tool named inst-fuzzer that uses
concurrent instruction pairs as feedback for random thread-
interleaving exploration without considering the runtime con-
texts of instruction pairs, and experimentally compare to it.
For these reasons, we finally chose to perform function-level
analysis and use concurrent call pairs as program feedback in
our concurrency fuzzing approach.

Moreover, when performing adaptive breakpoint control
in Algorithm 2, we also considered and tried two possible
strategies. First, we tried to enable all possible concurrent call
pairs for deterministic breakpoint control in program execution
(namely dropping line 3 and replacing try pair set with pos-
sible pair set on line 4). Second, we tried to linearly increase
select num if no expected concurrent pair is covered at runtime
(namely using “select num++” on line 10). However, these
two possible strategies heavily degrade the performance of
fuzzing process. For the first strategy, enabling all possible

concurrent call pairs introduces too much runtime overhead of
program execution; for the second strategy, linearly increasing
the number of possible concurrent call pairs reduces the
runtime overhead of program execution, but largely increases
the execution number of the tested program, which heavily
decreases fuzzing efficiency.

D. Beneficial Effect in Data-Race Detection

Our context-sensitive and directional concurrency fuzzing
approach can help to discover hard-to-find data races, from
two aspects. On the one hand, with a new context-sensitive
concurrency metric, namely concurrent call pair, our approach
can effectively explore thread interleavings in different runtime
contexts, to help find data races only triggered in specific
runtime contexts. On the other hand, with a new adjacency-
directed mutation and breakpoint-control method, our approach
can efficiently explore infrequent thread interleavings, to help
find data races only triggered in infrequent execution situa-
tions. To our knowledge, our approach is the first concurrency
fuzzing approach to perform context-sensitive and directional
thread-interleaving exploration, and it can help to discover
many hard-to-find data races missed by existing concurrency
fuzzing approaches [8], [37], [53], [76], [81] that use context-
insensitive and random thread-interleaving exploration.

IV. CONZZER FRAMEWORK AND IMPLEMENTATION

Based on our context-sensitive and directional concurrency
fuzzing approach, we develop a new fuzzing framework named
CONZZER, to effectively explore thread interleavings and
detect data races. We implement CONZZER with Clang 9.0 [13]
and perform analysis on the LLVM bytecode. To be compatible
with traditional input-driven fuzzing process, CONZZER is able
to mutate concurrent call pairs and program inputs together.
Figure 5 shows its architecture that has five parts:

• Code analyzer. It compiles and instruments the program
code, and finally generates an executable tested program.
• Runtime analyzer. It executes the tested program with the

generated program inputs, records runtime information of
the program, and performs breakpoint control according to
generated possible concurrent call pairs.
• Call-pair generator. It mutates covered concurrent call pairs

to generate new possible concurrent call pairs, according to
thread-execution information.
• Input generator. It exploits input-driven fuzzing process to

mutate and generate new inputs, according to code coverage.
• Race checker. It analyzes the runtime information of thread

interleavings covered by our concurrency fuzzing approach
to detect data races.

A. Customized Race Checker

The race checker heavily affects race-detection accuracy, so
selecting a precise race checker is important to CONZZER. We
intended to use a third-party data-race checker like TSan [75],
which is used by many existing fuzzing approaches [8], [76].
However, when testing real-world programs, we find that TSan
report many false positives (as shown in our comparison
experiments in Section VI-A and Table VI), due to neglecting
special synchronization primitives such as message queue
and condition variable [67]. Thus, to improve race-detection

6

Program
Source Code

Code Analyzer

Executable
Program

Race Checker

Original
Program Input

Data-Race
Reports

Runtime Analyzer

Call-Pair
Generator

Input
Generator

Runtime Information

Runtime Information

Program Inputs

Concurrent Call Pairs

Fig. 5. Overall architecture of CONZZER.

accuracy, we implement a customized race checker based on
our concurrency fuzzing approach, instead of using TSan.

Overall, this checker performs two steps: (S1) using dy-
namic lockset analysis [66] to detect possible data races during
fuzzing, and (S2) performing validation of these possible data
races to detect real ones after fuzzing.

(S1) During program execution, our checker maintains
a lockset for each running thread, and records the runtime
information about shared-variables accesses and related con-
text information. Once our checker identifies two functions
are concurrently executed at runtime, it dynamically performs
lockset analysis for the memory accesses in these two functions
to detect possible data races. For each possible data race, our
checker records its racy instructions and related concurrency
call pairs identified by our concurrency fuzzing approach.

(S2) For each reported possible data race, our checker
injects breakpoints at its racy instructions and executes the pro-
gram again. During program execution, our checker maintains
the calling context of each thread, and dynamically controls the
breakpoints to attempt to concurrently execute racy instructions
accessing to the same variable with the recorded concurrency
call pairs. If the attempt succeeds, this possible data race is
identified to be real, as it is actually triggered.

The primary advantage of our checker is no false positive,
because all the reported data race can be actually triggered in
the runtime validation. But it can introduce false negatives for
two main reasons. First, the online lockset analysis only detects
possible data races in functions that are actually concurrently-
executed. If two functions containing real data races are
not concurrently-executed in testing, it will miss these data
races. To reduce such false negatives, our concurrency fuzzing
approach can efficiently cover different thread interleavings.
Second, due to non-determinism of thread interleaving, the
runtime validation may fail to trigger some real data races
during execution. To reduce such false negatives, we suggest
to perform the runtime validation multiple times.

Note that besides our customized race checker, other third-
party data-race checkers can be also used in CONZZER. For
example in Section VI-A, we have used TSan in CONZZER to
test user-level applications, without any change of TSan and
our fuzzing approach.

B. Phases of CONZZER

P1: Code instrumentation. In this phase, the code analyzer
identifies and instruments three kinds of places in the pro-
gram’s LLVM bytecode files:

• Calls to lock-acquiring/-release functions. They are instru-
mented to maintain the locksets of memory accesses for
each running thread.
• Function definitions and calls. The entry and exit of each

function and each function call are instrumented, to collect
concurrent call pairs and calling-context information.
• Memory accesses to possible shared variables. They are

instrumented by our customized race checker for runtime
monitoring and data-race detection. For identifying these
accesses before fuzzing, we implement a static analysis
referring to [11], to automatically analyze program code.

Through compiling the instrumented LLVM bytecode files,
CONZZER generates the executable tested program for runtime
fuzzing in the next phase.

P2: Runtime fuzzing. In this phase, through the instrumented
code, CONZZER performs our context-sensitive and directional
concurrency fuzzing approach to effectively explore thread
interleavings by identifying and covering concurrent call pairs.
During fuzzing, CONZZER uses dynamic lockset analysis to
detect possible data races. After fuzzing, our customized race
checker performs runtime validation of all possible data races,
and finally reports real ones. The fuzzing process and data-race
detection are automated.

Note that though our concurrency fuzzing explores con-
current call pairs not concurrent instruction pairs, the race
detection of CONZZER is performed at instruction level for
high accuracy. On one hand, if two instructions are concur-
rently executed, their caller functions should be concurrently
executed. Thus, identifying concurrent call pairs is important to
identifying concurrent instruction pairs. On the other hand, our
customized race checker performs dynamic lockset analysis
of each instruction in the identified concurrent call pairs.
Besides, CONZZER uses common lock-acquiring/-release func-
tions (like pthread_mutex_lock) described in POSIX
thread libraries and Linux official documents. Missing some
customized lock-acquiring/-release functions would only cause
false positives in dynamic lockset analysis, which are however
dropped in runtime validation of our customized race checker.

C. Compatibility with Input-Driven Fuzzing

CONZZER is able to collaborate with traditional input-
driven fuzzing, because concurrent call pairs explored by
our concurrency fuzzing approach are orthogonal to program
inputs from files and system calls. Specifically, for CONZZER,
a test case consists of two parts, namely covered concurrent
call pairs and program inputs. In seed identification, CONZZER
considers a test case as an interesting seed when new concur-
rent call pairs or new branches are covered at runtime. In seed
selection, CONZZER gives more priority to the seeds that cover
more new concurrent call pairs, to preferentially explore new
thread interleavings. In seed mutation, CONZZER mutates and
generates concurrent call pairs and program inputs together.
At runtime, CONZZER collects and tries to cover concurrent
call pairs via concurrency fuzzing, and collects code coverage
via input-driven fuzzing. We have implemented input-driven
fuzzing process in CONZZER, by referring to AFL [1] and
Syzkaller [70]. We believe that recent input-driven fuzzing
approaches (such as AFLFast [4] and Angora [9]) can also
collaborate with CONZZER to improve fuzzing performance.

7

V. EVALUATION

A. Experimental Setup

We evaluate CONZZER on 8 user-level C applications of
the latest versions as of our evaluation and 4 kernel-level
filesystems in Linux 5.4. We select these 12 programs, as they
are open-source and widely used, and can run with multiple
threads. The information of these programs is listed in Table I
(their source-code lines are counted using CLOC [14]). We
run the evaluation on a regular PC with an eight-core Intel
i7-3770@3.40G processor and 16GB physical memory.

TABLE I. BASIC INFORMATION OF THE TESTED PROGRAMS.

Program Description Version LOC
sqlite SQL database engine v3.30.1 416K
memcached Memory-objected caching systems v1.6.5 21K
x264 Video stream encoder v0.157.x 72K
ffmpeg Solution for media processing n4.3-dev 1.1M
aget Download accelerator v0.4.1 833
axel Download accelerator v2.17.6 3K
pigz Data compression program v2.4 6K
xz Data compression program v5.2.4 24K
btrfs Linux BTRFS filesystem Linux 5.4 98K
jfs Linux JFS filesystem Linux 5.4 18K
xfs Linux XFS filesystem Linux 5.4 94K
reiserfs Linux ReiserFS filesystem Linux 5.4 21K

B. Runtime Testing

To show the effectiveness of CONZZER with fixed inputs,
we disable input-driven fuzzing and run common workloads in
testing. For the 8 user-level applications, we run their official
multi-thread test suites; for the 4 kernel-level filesystems, we
run a well-known filesystem benchmark iozone v3.429 [36].
Following the recommendations of [46], we use CONZZER to
fuzz each tested program five times, and set the time limit of
each fuzzing as 24 hours. We count the found data races by
the locations of racy instructions.

Table II shows the results. The columns “Cover”, “Gen”
and “Real” respectively show the numbers of covered concur-
rent call pairs, possible concurrent call pairs generated by our
adjacency-directed mutation and possible concurrent call pairs
actually covered at runtime. The columns “Possible”, “Final”
and “Harmful” respectively show the numbers of possible
data races reported by our customized race checker, final data
races reported by CONZZER and harmful data races manually
identified by us. From the results, we make some observations:

Thread-interleaving coverage. CONZZER generates many
new concurrent call pairs that are actually covered at runtime.
Specifically, these new concurrent call pairs account for 11%
of all generated concurrent call pairs, indicating that our
adjacency-directed mutation is useful to inferring new realistic
concurrent call pairs. Through these new concurrent call pairs,
CONZZER actually covers many infrequent thread interleavings
during execution.

Found data races. CONZZER finally reports 95 data races (the
detailed reports are shown in Appendix I), from 872 possible
ones reported by our customized race checker. All these 95
data races are real and actually triggered at runtime, and thus
CONZZER has no false positive in data-race detection. We
manually check them, and identify 75 harmful ones whose racy
variables can cause security problems like DoS, data corruption

TABLE II. TESTING RESULTS.

Program Concurrent call pair Data race
Cover Gen Real Possible Final Harmful

sqlite 66.0M 480.7K 40.4K 43 6 3
memcached 18.0K 9.6K 1.6K 53 12 12
x264 187.6K 67.2K 5.7K 234 4 3
ffmpeg 714.5K 149.1K 10.7K 139 10 10
aget 31 38 11 14 3 3
axel 572 468 62 9 1 1
pigz 956 1354 85 15 0 0
xz 2762 3139 377 6 0 0
btrfs 13.1M 362.6K 48.8K 115 34 27
jfs 515.0K 163.2K 26.1K 105 12 10
xfs 6.7M 330.4K 44.7K 133 8 5
reiserfs 630.5K 148.6K 13.6K 6 5 1
Total 87.9M 1.7M 192.1K 872 95 75

and undefined behaviors (the details are shown in Section V-C).
For the 20 benign data races, they are deliberately introduced
for concurrency execution according to code annotations, or
their racy variables are just used for debugging and logging.
We report the 75 harmful data races to related developers;
44 of them (15 in applications and 29 in filesystems) have
been confirmed. We are still waiting for the response of the
remaining ones. Among the 44 confirmed races, 19 of them
have been fixed by related developers; the developers have not
found proper ways to fix the remaining 25 races, indicating
the difficulty of fixing data races in practice.

Process of reporting harmful data races. After we reported
the 75 harmful data races, only 10 data races were immediately
confirmed by related developers, and 34 data races were finally
confirmed through our further explanation and discussion with
the developers. According to the above experience, we find
that developers often have insufficient understanding about
complex and infrequent concurrent situations, and thus data
races are hard to avoid during software development. More-
over, many data races are difficult to fix, as synchronizing
memory accesses without performance degradation requires
careful modification and substantial tests. Thus, it often takes
much time to fix a concurrency issue like data race [55].

Discussion of benign data races. We randomly select ten
benign data races found by CONZZER to discuss with related
developers. They explain that the related racy variables have
low impact on core functionalities, and thus race conditions are
allowed at runtime. Moreover, adding locks to protect these
variables may also degrade program performance. Thus, the
developers tend not to handle or fix these benign data races.

Data-race features. By reviewing the 95 data races found by
CONZZER, we have three interesting features:

1) 77 data races occur on the accesses to data structure
fields stored in heap memory, and only 18 data races occur on
the accesses to global variables. Indeed, compared to global
variables, identifying whether two variables stored in heap
memory are identical is more difficult, because their alias rela-
tionships may be implicit from their names. The harmful data
race shown in Figure 1 is such an example, and the alias rela-
tionship of the racy variables JFS_SBI(tblk->sb)->log
and sbi->log is implicit from their names. By checking the
racy variables of all found data races, we find that 16 data
races involve such implicit alias relationships.

2) 53 data races involve function-pointer calls in their call
stacks. Without exact runtime information, it is often hard to

8

TABLE III. SECURITY IMPACT OF FOUND DATA RACES.

Program Harmful
/ Benign DoS Data Corruption Undefined Behavior

sqlite 3 / 3 0 3 0
memcached 12 / 0 0 0 12
x264 3 / 1 1 1 1
ffmpeg 10 / 0 0 10 0
aget 3 / 0 0 2 1
axel 1 / 0 0 1 0
pigz 0 / 0 0 0 0
xz 0 / 0 0 0 0
btrfs 27 / 7 12 4 11
jfs 10 / 2 5 5 0
xfs 5 / 3 2 0 3
reiserfs 1 / 4 0 1 0
Total 75 / 20 20 27 28

correctly identify the targets of function-pointer calls. Most
existing static-analysis techniques either discard such cases [2],
[22], [32], [34] or identify many incorrect functions [35], [48],
[57], and thus they are very likely to miss such data races.

3) 5 data races occur in program initialization or finaliza-
tion processes. These processes are often unexpected to be
executed concurrently with the program’s main process, so
developers may neglect the synchronization in these processes.
But in fact, data races in these processes are often dangerous,
because such data races may lead to crash and memory corrup-
tion when racy data is incorrectly initialized or finalized. The 3
harmful data races that directly cause null-pointer dereferences
and data corruption are such examples.

False positives and negatives. CONZZER reports no false
positive, as its reported data races can be actually triggered.
But CONZZER may miss some real data races for three reasons.
First, CONZZER requires proper workloads and program inputs
to cover concurrency code. Second, for given workloads and
program inputs, CONZZER still cannot cover all possible thread
interleavings, due to the non-determinism of thread scheduling.
Finally, our customized race checker only detects data races
in the functions that are concurrently executed during fuzzing,
and it may fail to trigger some real data races in runtime
validation, due to the non-determinism of thread scheduling.

C. Security Impact of Found Data Races

We manually review the 95 data races found by CONZZER
to estimate their security impact. As the 20 benign data races
do not cause security problems, we focus on analyzing the 75
harmful data races. The results are shown in Table III.

First, 20 harmful data races can cause denial of service
(DoS). Specifically, 2 races can cause program crashes; 6 races
can cause unexpected terminations; and 12 races can cause
program hangs by overwriting variables for waiting operations.
We use several examples to demonstrate the security impacts.

Examples of DoS. Figure 1 shows a crashing case. The data
race causes a null-pointer dereference and thus can crash the
jfs filesystem. Figure 6 presents two harmful data races that
can cause unexpected termination and program hangs in the
btrfs filesystem. In the function btrfs_tree_unlock, the
variable eb->blocking_writters is decremented on line
313. In the function btrfs_tree_read_lock, the variable
eb->blocking_writters is read on line 135 and line
152, to be compared with zero in the conditions of unexpected

void btrfs_tree_read_lock(…) {
 ……
 BUG_ON(eb->blocking_writers == 0 && …);
 ……
 wait_event(eb->write_lock_wq,

 eb->blocking_writers == 0);
 ……

}

127.

135.

151.
152.

159.

FILE: btrfs/locking.c

Thread 2

void btrfs_tree_unlock(…) {
 …..
 btrfs_assert_no_spinning_writers(eb);
 eb->blocking_writers--;
 …..

}

300.

312.
313.

324.

FILE: btrfs/locking.c

Thread 1

Fig. 6. A harmful data race found in btrfs.

int conn_setup(...) {
 ……

 conn->http->lastbyte = conn->lastbyte;

}

285.

310.

317.

FILE: axel/conn.c

Thread 1

void reactivate_connection(...) {
 ……
 axel->conn[idx].lastbyte =

 axel->conn[idx].currentbyte + ...;
 ……

}

363.

386.
387.

390.

FILE: axel/axel.c

Thread 2

Fig. 7. A harmful data race found in axel.

termination (BUG_ON) and waiting operation (wait_event),
respectively. If eb->blocking_writters is decremented
to zero on line 313 in btrfs_tree_unlock, and then it is
read on line 135 in btrfs_tree_read_lock, BUG_ON
can be triggered to terminate the filesystem execution. If
eb->blocking_writters becomes zero, and this variable
is always decremented on line 313 in btrfs_tree_unlock
before being read on line 151 in btrfs_tree_read_lock,
wait_event will always cause the related filesystem thread
to sleep. The two data races have been fixed by the developers.

Second, 27 harmful data races can cause data corruption
and manipulation, because they change critical variables about
data processing. Depending on how these critical variables are
used, various security issues can occur.

Examples of data corruption and manipulation. Some data
races can manipulate the content of downloaded files (for
aget and axel), which can be exploited by attackers to inject
malicious code persistently; some data races can interfere
with the encoding process for media processors (for x264 and
ffmpeg), which can be exploited by attackers to manipulate
the video content displayed to users, leading to attacks such
as clickjacking and ”what you see is not what you get”.
Figure 7 presents such a data race in axel. The variable
conn->lastbyte in the function conn_setup and the
variable axel->conn[idx].lastbyte in the function
reactivate_connection can be identical, when the two
functions are concurrently executed in two threads. In this
case, a data race occurs when the read to conn->lastbyte
and the write to axel->conn[idx].lastbyte are
concurrently performed. Once this data race is triggered,
conn->http->lastbyte in conn_setup possibly gets
an incorrect value from conn->lastbyte, which can cor-
rupt the downloaded file. By exploiting this race, the attacker
can control the value of conn->lastbyte to modify the
content of the downloaded file and inject malicious code. This
data race has been fixed by the developers.

static void analyse_update_cache(…) {
 ……
 completed = h->…->orig->i_lines_completed;
 if (h->mb… + h->mb.i_mb_y*16 > completed) {

 x264_log(h, …, "internal error …\n”);
 ……

 }
 ……

}

3724.

3860.
3861
3862.

3878.

3882.

FILE: x264/encoder/analyse.c

Thread 1

void x264_frame_cond_broadcast(…) {
 ……
 frame->i_lines_completed =

 i_lines_completed;
 ……

}

678.

681.
682.

684.

FILE: x264/common/frame.c

Thread 2

Fig. 8. A harmful data race found in x264.

9

TABLE IV. RESULTS OF SENSITIVITY ANALYSIS.

Program Normal Running Random delay Insensitive CONZZER
Pair Race Pair Race Pair Race Pair Race

sqlite 59.2M 6 64.4M 6 53.9M 6 66.0M 6
memcached 13.3K 10 14.4K 10 15.4K 10 18.0K 12
x264 161.6K 3 162.3K 3 177.6K 3 187.6K 4
ffmpeg 338.7K 1 355.2K 1 483.4K 3 714.5K 10
aget 31 3 31 3 31 3 31 3
axel 557 1 559 1 567 1 572 1
pigz 932 0 954 0 812 0 956 0
xz 2651 0 2651 0 2600 0 2762 0
btrfs 9.1M 30 9.8M 30 5.5M 27 13.1M 34
jfs 421.2K 8 445.4K 8 485.0K 10 515.0K 12
xfs 6.1M 8 6.5M 8 4.6M 6 6.7M 8
reiserfs 505.8K 5 513.5K 5 406.1K 1 630.5K 5
Total 75.8M 75 82.1M 75 65.6M 70 87.9M 95

Finally, 28 harmful data races are less obvious in security
impact, but at least can cause undefined behaviors because they
can manipulate racy variables that decide critical control flows.

Example of undefined behavior. Figure 8 shows such a data
race in x264. In the functions analyse_update_cache
and x264_frame_cond_broadcast, two variables con-
taining the field i_lines_completed are identical in
our testing. Once the data race is triggered, the variable
complete in analyse_update_cache can be assigned
with an incorrect value, and the condition on line 3861 in
analyse_update_cache can be satisfied, causing x264 to
report an internal error that cause program malfunction. This
data race has been fixed by the developers.

D. Sensitivity Analysis

The core of CONZZER is our context-sensitive and direc-
tional concurrency fuzzing approach. To validate the value of
this approach, we substitute it with three testing methods in
data-race detection:

• Normal running: just repeatedly running the tested programs
with their official multi-thread test suites.

• Randomly running: repeatedly running the tested programs
with their official multi-thread test suites, by injecting ran-
dom delay (0-32ms) in each executed function.

• Insensitive: substituting our context-sensitive concurrency-
coverage metric concurrent call pair with a context-
insensitive metric concurrent function pair [19] without con-
sidering calling context, to implement a context-insensitive
concurrency fuzzing method, and then using it to fuzzing the
tested programs with their official multi-thread test suites.
This method is used to validate the value of considering con-
text sensitivity in concurrency fuzzing by using concurrent
call pair as program feedback.

We apply these three substitution methods with our cus-
tomized race checker to testing the 12 programs in Table I.
We use each substitution method to test each program five
times, and set the time limit of each fuzzing as 24 hours, as
recommended in [46]. Table IV shows the results.

CONZZER outperforms the three substitution methods in
covering concurrent call pairs. On average for each program, it
respectively covers 24%, 19% and 30% more concurrent call
pairs than the normal, random-delay, and context-insensitive
fuzzing methods. These additional concurrent call pairs are
not covered by the three substitution methods, because they
all infrequently occur at runtime.

0
100K
200K
300K
400K
500K
600K
700K

0h 4h 8h 12h 16h 20h 24h

C
o

n
cu

rr
e

n
t

ca
ll

p
ai

rs

Time

CONZZER Insensitive
Random delay Normal running

0

100K

200K

300K

400K

500K

600K

0h 4h 8h 12h 16h 20h 24h

C
o

n
cu

rr
e

n
t

ca
ll

p
ai

rs

Time

jfs

CONZZER Insensitive
Random delay Normal running

0

200K

400K

600K

800K

0h 4h 8h 12h 16h 20h 24h

C
o

n
cu

rr
e

n
t

ca
ll

p
ai

rs

Time

ffmpeg

CONZZER Insensitive
Random delay Normal running

0

5K

10K

15K

20K

0h 4h 8h 12h 16h 20h 24h

C
o

n
cu

rr
e

n
t

ca
ll

p
ai

rs

Time

memcached

CONZZER Insensitive
Random delay Normal running

reiserfs

Fig. 9. Growth of covered concurrent call pairs.

Due to the additional concurrent call pairs, CONZZER finds
20 data races missed by the normal-running and random-
delay methods, and finds 25 data races missed by the context-
insensitive fuzzing method. These additional races are hard
to find, as they occur only in infrequent thread interleavings
missed by the three substitution methods. Moreover, all of
these additional races are harmful. The data race causing null-
pointer dereference in Figure 1 is such an example, which had
existed for about 15 years, indicating the difficulty of finding
it. The results prove that our context-sensitive and directional
concurrency fuzzing is effective in covering infrequent thread
interleavings and discovering hard-to-find data races.

We also observe that the context-insensitive fuzzing method
misses 9 data races found by the normal-running and random-
delay methods. Indeed, as a concurrent function pair can be
covered in different runtime calling contexts, the context-
insensitive fuzzing method performs delay in all these cases,
which largely slows down each test. Thus, within the same
testing time, it misses some thread interleavings covered by the
normal-running and random-delay methods. But the context-
insensitive fuzzing method also finds 4 data races missed by
the normal-running and random-delay methods, as it benefits
from our adjacency-directed mutation and breakpoint-control
method to cover some infrequent thread interleavings missed
by the two methods, even though each test is slowed down.

By analyzing the growth of covered concurrent call pairs
along with the testing time, we find that the normal-running,
random-delay and context-insensitive fuzzing methods cover
new concurrent call pairs effectively but only in earlier tests,
and hardly cover new ones in the later tests. By contrast,
CONZZER continuously covers new concurrent call pairs in
the later tests, thanks to our concurrency fuzzing approach.
We select four tested programs memcached, ffmpeg, jfs and
reiserfs as examples, and show their results in Figure 9. The
completed results are shown in Figure 12 in Appendix II.

VI. COMPARISON TO EXISTING FUZZING TOOLS

A. AFL++, Syzkaller and Instruction-Level Fuzzer

To show the advantages of CONZZER over existing fuzzing
tools on concurrency fuzzing and race detection, we compare
CONZZER to two state-of-the-art and open-source fuzzing
tools, AFL++ [24] and Syzkaller [70]. As AFL [1] is outdated
and considered obsolete, we use AFL++ here. We disable
the CPU affinity of AFL++ to avoid that multiple threads of
the tested programs are bound to single CPU. To understand

10

TABLE V. COMPARISON OF CONCURRENT CALL PAIRS.

Program AFL++ Syzkaller inst-fuzzer CONZZER
x264 151.9K - 171.3K 200.6K
ffmpeg 636.6K - 667.3K 772.8K
pigz 535 - 577 977
xz 726 - 1460 3786
lbzip2 1062 - 893 1371
pbzip2 629 - 1004 1223
libwebp 307 - 323 327
ImageMagick 6542 - 6672 7683
btrfs - 12.7M 9.5M 15.4M
jfs - 471.8K 318.2K 536.9K
xfs - 2.6M 5.1M 7.1M
reiserfs - 187.8K 252.2K 679.1K

the advantages of novel techniques over alternative choices in
CONZZER, we implement a tool named inst-fuzzer that uses
concurrent instruction pairs as feedback for random thread-
interleaving exploration, without considering the runtime con-
texts of instruction pairs. This tool is similar to KRACE [81],
which uses alias instruction pairs (identical to concurrent
instruction pairs) as feedback and injects random delays.

We evaluate CONZZER and inst-fuzzer on both user-level
applications and kernel-level programs. As AFL++ can only
test user-level applications and Syzkaller can only test kernel-
level programs, we use them to test different programs in the
comparison. Among the 12 tested programs in Table I, the
inputs of sqlite, memcached, aget and axel are not simple files,
so generating their inputs needs to consider many syntactic and
semantic requirements, which is a separate research problem
that is not considered by this paper. For example, sqlite re-
ceives well-formatted and semantically-correct SQL statements
as inputs. Generating such inputs is quite difficult for existing
AFL-like fuzzing and requires much effort to modify its code.
Thus, we do not test the four programs when comparing to
AFL++. Instead, we use AFL++ to test 4 additional user-level
applications (lbzip2, pbzip2, libwebp and ImageMagick) and 4
original ones (ffmpeg, x264, pigz and xz); we also use Syzkaller
to test 4 kernel-level filesystems in Table I. Following the
recommendations of [46], we run each fuzzing tool five times
for each program, and set the time limit of each fuzzing as 24
hours. For fair comparison, we enable input-driven fuzzing in
CONZZER to test these 12 programs.

Thread-interleaving coverage. To specifically compare the
ability of covering thread interleavings, we disable our cus-
tomized race checker in CONZZER and just collect the cov-
ered concurrent call pairs of the three frameworks. Table V
shows the comparison results. On average for each program,
CONZZER covers 88%, 118% and 58% more concurrent call
pairs than AFL++, Syzkaller and inst-fuzzer, respectively. In
the experiment, CONZZER has a lower fuzzing throughput
(139 execs/min) than AFL++ (262 execs/min), due to the
instrumented code and time delays in breakpoint control. Even
so, CONZZER still covers many infrequent thread interleavings
missed by AFL++ and Syzkaller, indicating its effectiveness in
thread-interleaving exploration for fuzzing. Though inst-fuzzer
uses concurrent instruction pairs as concurrency-coverage met-
ric, it misses many infrequent thread interleavings covered by
CONZZER due to context-sensitivity loss. Moreover, collecting
concurrent instruction pairs requires instruction-level monitor-
ing, which introduces more runtime overhead than CONZZER.

Coverage growth. We measure the growth of covered con-
current call pairs along with testing time. Figure 10 shows the

TABLE VI. COMPARISON OF FOUND DATA RACES.

Program AFL++ Syzkaller inst-fuzzer CONZZER CONZZER
+TSan +KCSAN +Checker +Checker +TSan

x264 3/167 - 4/4 4/4 4/113
ffmpeg 4/16 - 7/7 10/10 10/22
pigz 0/0 - 0/0 0/0 0/0
xz 0/0 - 0/0 0/0 0/0
libzip2 0/0 - 0/0 0/0 0/0
pbzip2 0/0 - 0/0 0/0 0/0
lbwebp 0/0 - 0/0 0/0 0/0
ImageMagick 9/174 - 8/8 15/15 15/282
btrfs - 0/0 22/22 34/34 -
jfs - 1/1 8/8 12/12 -
xfs - 0/0 2/2 8/8 -
reiserfs - 0/0 5/5 5/5 -

results for 8 of the tested programs, and the completed results
are shown in Figure 13 in Appendix II. These tools quickly
cover new concurrent call pairs in earlier tests, but compared
to AFL++, Syzkaller and inst-fuzzer, CONZZER continuously
covers more new concurrent call pairs in the later tests.

Found data races. To compare the ability of finding data
races, we use two mature data-race checkers TSan [75] and
KCSAN [44] with AFL++ and Syzkaller, respectively, and
enable our customized race checker with CONZZER and inst-
fuzzer. Table VI shows the detection results. CONZZER finds
all data races found by AFL++ with TSan, Syzkaller with
KCSAN and inst-fuzzer, and additionally finds 13, 58, and
32 real data races missed by the three tools, respectively,
because CONZZER covers significantly more concurrent call
pairs which infrequently occur during execution.

Using TSan in CONNZER. As CONZZER can conveniently
support third-party race checkers, we use TSan in CONZZER
to substitute our customized race checker for testing user-
level applications (CONZZER +TSan), without any change of
TSan and our fuzzing approach. By comparing the results of
CONZZER and AFL++ with TSan in Table VI, we observe
that with CONZZER, TSan additionally finds 13 real data races
missed by using AFL++, because CONZZER covers the related
infrequent thread interleavings. In this case, TSan finds all real
data races found by CONZZER in the tested applications, but
it reports more false positives.

Precision of race detection. Figure 11(a) presents that
CONZZER produces less false positives than AFL++ with TSan
in our experiment. Indeed, TSan uses a hybrid of happens-
before-relation inference and lockset analysis, to drop false
positives of pure lockset analysis and false negatives of pure
happens-before-relation inference. But TSan still reports some
false positives caused by neglecting special synchronization
primitives such as message queue and condition variable [67].
By contrast, our customized race checker performs runtime
validation of possible data races with breakpoint control,
which can eliminate all false positives. In addition, as TSan
also considers happens-before relation in race detection, it
requires to cover different thread interleavings to reduce false
negatives, which is similar to our customized race checker.
This explains why AFL++ with TSan misses 13 data races
found by CONZZER but CONZZER with TSan finds these races.

Figure 11(a) also presents that CONZZER has less false neg-
atives than Syzkaller with KCSAN. KCSAN is a watchpoint-
based checker that observes concurrent memory accesses. To
increase the possibility of finding data races, KCSAN performs

11

0

1000

2000

3000

4000

0h 4h 8h 12h 16h 20h 24h

C
o

n
cu

rr
e

n
t

ca
ll

p
ai

rs

Time

xz

CONZZER
inst-fuzzer
AFL++

0

250

500

750

1000

0h 4h 8h 12h 16h 20h 24h

C
o

n
cu

rr
e

n
t

ca
ll

p
ai

rs

Time

pigz

CONZZER
inst-fuzzer
AFL++

0

4M

8M

12M

16M

0h 4h 8h 12h 16h 20h 24h

C
o

n
cu

rr
e

n
t

ca
ll

p
ai

rs

Time

btrfs
CONZZER
inst-fuzzer
Syzkaller

0

200K

400K

600K

800K

0h 4h 8h 12h 16h 20h 24h

C
o

n
cu

rr
e

n
t

ca
ll

p
ai

rs

Time

reiserfs
CONZZER
inst-fuzzer
Syzkaller

0

150K

300K

450K

600K

0h 4h 8h 12h 16h 20h 24h

C
o

n
cu

rr
e

n
t

ca
ll

p
ai

rs

Time

jfs
CONZZER
inst-fuzzer
Syzkaller

0

2M

4M

6M

8M

0h 4h 8h 12h 16h 20h 24h

C
o

n
cu

rr
e

n
t

ca
ll

p
ai

rs

Time

xfs
CONZZER
inst-fuzzer
Syzkaller

0

50K

100K

150K

200K

250K

0h 4h 8h 12h 16h 20h 24h

C
o

n
cu

rr
e

n
t

ca
ll

p
ai

rs

Time

x264

CONZZER
inst-fuzzer
AFL++

0

200K

400K

600K

800K

1M

0h 4h 8h 12h 16h 20h 24h

C
o

n
cu

rr
e

n
t

ca
ll

p
ai

rs

Time

ffmpeg

CONZZER
inst-fuzzer
AFL++

Fig. 10. Growth of covered concurrent call pairs in comparison.

False Positives

Fa
ls

e
 N

e
ga

ti
ve

s Syzkaller+
KCSAN

AFL++
+TSan

CONZZER

False Positives

Fa
ls

e
 N

e
ga

ti
ve

s

CONZZER

(a) Experimental (b) Theoretical

Syzkaller+
KCSAN

AFL++
+TSan

Fig. 11. Precision of data-race detection in comparison.

random delay in the watchpoint of each monitored instruction,
but catching two concurrently-executed instructions that have
race conditions is still difficult in this way. By contrast, our
customized checker extends the detection scope to all the
memory accesses in concurrently-executed functions, which
can find many data races missed by KCSAN. Moreover, our
concurrency fuzzing approach covers more thread interleavings
than Syzkaller, which can help find more data races.

Indeed, TSan just reports possible data races using lockset
analysis and happens-before relation, without validating these
data races at runtime; while our customized race checker
performs runtime validation of possible data races, and thus
it may miss some real data races when they are not triggered
in runtime validation, due to the non-determinism of thread
scheduling. As a result, in some cases, TSan is able to find real
data races missed by our customized checker. For this reason,
and considering that our concurrency fuzzing approach can
explore more thread interleavings than AFL++, it is difficult to
determine whether CONZZER have less or more false negatives
than AFL++ with TSan in theory, as shown in Figure 11(b).

B. Concurrency Fuzzing Approaches

Razzer [37]. It first uses static analysis to identify possible
racy instructions, and then injects code breakpoints at possible
racy instructions to try to trigger related race bugs at runtime.
CONZZER has three significant differences from Razzer:

1) The static analysis of Razzer is not accurate enough
and fails to identify real racy instructions involving complex
cases (such as alias relationships and function-pointer calls),
causing its dynamic analysis to miss many real data races.
By contrast, CONZZER uses a context-sensitive and directional
concurrency fuzzing approach to effectively explore infrequent
thread interleavings, helping discover hard-to-find data races.

2) Razzer finds only memory bugs and warnings caused
by race conditions, and it does not use any race checker.
However, many harmful data races never cause memory bugs.
The harmful data race shown in Figure 7 is such an example,
and it can cause malfunction not memory bug. By contrast,
CONZZER focuses on detecting data races, without checking
whether they can cause memory bugs or not.

3) Razzer can test only OS kernels with a modified virtual
machine. By contrast, CONZZER can test both kernel-level
programs and user-level applications on a physical machine,
which is more convenient to deploy.

We successfully run Razzer with its source code [63], to
test 4 kernel-level filesystems in Table I. Each filesystem is
tested for 24 hours. The static analysis of Razzer identifies
1503 pairs of possible racy instructions in the four filesys-
tems, but its dynamic analysis finds no race bug in the four
filesystems with these pairs. By contrast, CONZZER finds
59 data races (including 2 data races triggering null-pointer
dereferences) in these four filesystems.

KRACE [81]. It exploits a new concurrency-coverage metric,
alias instruction pair, to describe thread interleavings. This
metric is identical to concurrent call pair that used by inst-
fuzzer in Section VI-A. It also injects random delays to cover
different thread interleavings. To cover more concurrency code,
it uses an evolution algorithm to mutate and generate multi-
threaded syscall sequences as inputs for concurrency fuzzing.
We find a KRACE repository in the Github [47]. Unfortunately,
after much manual effort, we were still not able to run it due
to various runtime errors and the lack of its documentation.
We also compare CONZZER to KRACE in methodology:

1) The alias instruction pair used by KRACE is a context-
insensitive metric, namely it only describes the locations of two
concurrently-executed instructions without considering their
execution contexts. By contrast, CONZZER uses a new context-
sensitive metric, concurrent call pair, which considers both the
locations and calling contexts of two concurrently-executed
functions. Thus, CONZZER is more effective in finding data
races that occur only in specific runtime contexts.

2) The random delay injection used by KRACE is ineffi-
cient in thread-interleaving exploration, namely it frequently
repeats already covered thread interleavings and misses many

12

infrequent thread interleavings. By contrast, CONZZER uses a
directional fuzzing approach to infer and cover new possible
thread interleavings, which can more efficiently cover infre-
quent thread interleavings. The results in Table IV show that
this fuzzing approach indeed covers many infrequent thread
interleavings missed by random delay injection, which can help
discover hard-to-find data races.

According to the KRACE paper, three filesystems (btrfs,
ext4 and vfs) in Linux 5.4-rc5 are tested, and the found data
races are listed in the paper. Accordingly, we select btrfs and
ext4 in this kernel version and use CONZZER to test them.
We also intended to test vfs with CONZZER, but at present
CONZZER can only test filesystems running as loadable kernel
modules and vfs cannot run in this mode. The KRACE paper
presents that it finds 15 real data races in the two filesystems
(11 in btrfs and 4 in ext4). In our evaluation, CONZZER finds
39 real data races in the two filesystems (34 in btrfs and 5
in ext4). By comparing to the race reports in the KRACE
paper, we find that: (1) CONZZER and KRACE both finds
4 identical data races; (2) CONZZER finds 35 data races
missed by KRACE, because our context-sensitive and direc-
tional concurrency fuzzing approach actually covers the related
infrequent thread interleavings in specific runtime contexts;
(3) KRACE finds 11 data races missed by CONZZER, as its
evolution algorithm optimizes syscall-sequence generation and
covers more concurrency code than Syzkaller-like input-driven
fuzzing used by CONZZER. We believe that by using KRACE’s
evolution algorithm to generate syscall sequences, CONZZER
can also find these missed data races.

MUZZ [8]. It uses thread-aware instrumentation to collect
the changes of code coverage caused by thread interleavings,
in order to improve seed selection of concurrency fuzzing.
Moreover, it randomly adjusts thread priorities of the tested
program at runtime, to try to cover different thread interleav-
ings during fuzzing. Because MUZZ is not open-source, we
focus on making a methodological comparison. CONZZER has
two significant differences from MUZZ:

1) Although being enhanced with the changes caused
by thread interleavings, code coverage still mainly describes
sequential-execution situations, and thus it is limited in de-
scribing concurrent-execution situations and guiding concur-
rency fuzzing. To thoroughly replace code coverage, CONZZER
exploits a new concurrency-coverage metric, concurrent call
pair, which can effectively describe thread interleavings with
different calling contexts.

2) Similar to random delay injection, randomly adjusting
thread priorities is also inefficient in covering infrequent thread
interleavings. To solve this problem, CONZZER uses a direc-
tional fuzzing approach to perform more effective and efficient
thread-interleaving exploration.

VII. DISCUSSION

Feasibility of found data races. To affect thread scheduling
of the program, CONZZER injects and controls breakpoints
containing time delays during fuzzing. These time delays just
slightly increase the running time of related threads, and have
no effect on synchronization and concurrency logic. Moreover,
our customized race checker guarantees that all found races
are triggerable with specific inputs and thread interleavings.

Besides, the program is actually tested on a physical machine
instead of a tuned virtual machine. For these reasons, the data
races found by CONZZER are all realistic and feasible.

Identifying harmful data races. In the current evaluation,
we manually check the found data races to estimate their
harmfulness. In fact, some existing approaches [43], [59], [85]
can automatically classify data races by analyzing the runtime
information about concurrent execution or statically analyzing
source code. Thus, these approaches can help CONZZER to
reduce the manual work of identifying harmful data races.

Supporting other concurrency checkers. CONZZER is able
to conveniently support other concurrency checkers (such as
atomicity-violation checkers and other data-race checkers) to
detect hard-to-find concurrency problems, by covering infre-
quent thread interleavings. For example in Section VI-A, we
have used TSan in CONZZER to test user-level applications,
without any change of TSan and our concurrency fuzzing
approach. With CONZZER, TSan finds many data races missed
by using AFL++ in our experiments.

Limitations and future works. First, in the current evalu-
ation, CONZZER still misses much error handling code and
thus cannot find related data races. We plan to introduce
fault injection [3], [40] in CONZZER to strengthen data-race
detection in error handling code. Second, CONZZER does not
specially handle atomic instructions, which are mostly used in
low-level libraries and kernel core parts. We plan to statically
identify all atomic instructions in LLVM bytecode and neglect
these instructions in dynamic lockset analysis. Third, as shown
in Section VI-A, CONZZER has a lower fuzzing throughput
than AFL++, which limits testing efficiency. Thus, we plan to
improve CONZZER fuzzing performance, by optimizing code
instrumentation to reduce runtime overhead [33], [87] and
using parallel systems to speed up fuzzing [49], [52]. Finally,
besides data races, we plan to extend CONZZER to detect other
concurrency problems, such as atomicity violations.

VIII. RELATED WORK

A. Coverage-Guided Fuzzing

Coverage-guided fuzzing evolutionally mutates and gener-
ates program inputs to increase testing coverage, guided by
the code-coverage metric. Compared to traditional mutation
testing [38], [39], coverage-guided fuzzing can more efficiently
generate useful program inputs.

Code-coverage-guide fuzzing. AFL [1] and Syzkaller [70]
are two well-known scalable coverage-guided fuzzing frame-
works that integrate many practical mutation strategies and en-
gineering techniques. AFL tests user-level applications through
program inputs, while Syzkaller tests kernel-level programs
through system calls. These two frameworks have found
thousands of bugs and vulnerabilities in common applica-
tions and OS kernels. Based on AFL and Syzkaller, many
approaches [4], [15], [30], [45], [50], [60], [61], [72], [79],
[80], [82] have been proposed to further improve fuzzing
effectiveness for code coverage and bug detection.

Concurrency fuzzing. To fill the gaps between coverage-
guided fuzzing and concurrent program testing, several recent
concurrency fuzzing approaches [8], [37], [53], [76], [81] have

13

been proposed. As for fuzzing feedback, except KRACE [81]
using a concurrency-coverage metric, the other approaches
tune traditional code coverage. In fact, these approaches are
still limited in finding concurrency issues like data races, due
to lacking effective concurrency-coverage metric and using
random thread-interleaving exploration. To solve this problem,
CONZZER uses a new context-sensitive concurrency-coverage
metric and a new directional concurrency fuzzing approach,
to discover hard-to-find data races that occur only in specific
runtime contexts and infrequent thread interleavings.

B. Data-Race Detection

Static analysis. Many approaches [22], [42], [77], [78] are
based on flow-sensitive static lockset analysis. RacerX [22]
uses inter-procedural and context-sensitive analysis to maintain
and check locksets of memory accesses in each code path. To
speed up static analysis, it creates a summary cache for each
analyzed function to store the information about inside mem-
ory accesses and related locksets. Some approaches [25], [65]
are based on flow-insensitive type-based analysis. Flanagan et
al. [25] propose a type-based approach that uses formal type
annotations to capture synchronization patterns from program
code, and detects data races based on these patterns.

Static analysis approaches can achieve high coverage of
data-race detection without running the tested program. But
they suffer from overwhelming false positives, without exact
runtime information about concurrent memory accesses.

Dynamic analysis. Some approaches [10], [19], [21], [66]
are based on lockset analysis. They maintain a lockset for
each running thread, and compute the intersection between the
locksets of shared-variable accesses to detect data races. But
due to neglecting concurrent contexts of memory accesses and
non-lock synchronization primitives, these approaches often
have many false positives. To reduce false positives, some
approaches [27], [51], [56], [62], [84] perform happens-before-
relation inference. They track memory accesses and synchro-
nization events to infer happens-before relation between these
events. But they have many false negatives and introduce much
runtime overhead caused by tracking memory accesses and
inferring happens-before relation. Some approaches [5], [23]
are based on sampling, and they monitor memory accesses at
intervals to reduce runtime overhead. But they may miss many
real races when the sampling frequency is low and have much
runtime overhead when the sampling frequency is high.

Dynamic analysis approaches need to cover different thread
interleavings for race detection. For this purpose, they often
perform random delays to cover more thread interleavings,
but this method frequently repeats already covered thread
interleavings and miss many infrequent ones [12], [74]. To
solve this problem, CONZZER uses a new context-sensitive and
directional concurrency fuzzing approach to efficiently explore
thread interleavings, helping discover hard-to-find data races.

C. Thread-Interleaving Exploration

To find more concurrency problems during runtime testing,
some approaches [6], [28], [29], [31], [58] use randomized
thread scheduling to explore thread interleavings. PCT [6] is
an effective priority-based and randomized scheduler that can

increase the probability of finding concurrency bugs when the
program is repeatedly executed. When a thread is created,
PCT assigns it a random scheduling priority, and dynamically
changes this priority at some randomly chosen steps.

Similar to random delay injection, the efficiency of thread-
interleaving exploration for these approaches is also limited,
as they frequently repeat already covered thread interleavings
and miss many infrequent ones [12], [74]. To solve this prob-
lem, CONZZER uses a new context-sensitive and directional
concurrency fuzzing approach to deterministically infer and
cover new possible thread interleavings, according to already
covered thread interleavings.

IX. CONCLUSION

In this paper, we design CONZZER, a novel and practi-
cal concurrency fuzzing framework for data-race detection.
It uses a new context-sensitive and directional concurrency
fuzzing approach to perform thread-interleaving exploration,
with a new concurrency-coverage metric, concurrent call pair,
as program feedback. This approach can effectively cover
infrequent thread interleavings with concrete context infor-
mation, to help discover hard-to-find data races. We have
evaluated CONZZER on 8 user-level applications and 4 kernel-
level filesystems, and found 95 real data races. CONZZER is
available at https://oslab.cs.tsinghua.edu.cn/CONZZER/.

ACKNOWLEDGMENT

This work was mainly supported by the National Natural
Science Foundation of China under Project 62002195. Kangjie
Lu was supported in part by the NSF awards CNS-1931208
and CNS-2045478. Jia-Ju Bai is the corresponding author.

REFERENCES

[1] American Fuzzy Lop. http://lcamtuf.coredump.cx/afl/.
[2] Jia-Ju Bai, Julia Lawall, Qiu-Liang Chen, and Shi-Min Hu. Effective

static analysis of concurrency use-after-free bugs in Linux device
drivers. In Proceedings of the 2019 USENIX Annual Technical Confer-
ence, pages 255–268, 2019.

[3] Jia-Ju Bai, Yu-Ping Wang, Jie Yin, and Shi-Min Hu. Testing error
handling code in device drivers using characteristic fault injection. In
Proceedings of the 2016 USENIX Annual Technical Conference, pages
635–647, 2016.

[4] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-
based greybox fuzzing as Markov chain. IEEE Transactions on Software
Engineering (TSE), 45(5):489–506, 2019.

[5] Michael D Bond, Katherine E Coons, and Kathryn S McKinley.
PACER: proportional detection of data races. In Proceedings of the
31st International Conference on Programming Language Design and
Implementation (PLDI), pages 255–268, 2010.

[6] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and San-
tosh Nagarakatte. A randomized scheduler with probabilistic guarantees
of finding bugs. In Proceedings of the 15th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 167–178, 2010.

[7] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zel-
dovich, and M Frans Kaashoek. Linux kernel vulnerabilities: State-of-
the-art defenses and open problems. In Proceedings of the 2nd Asia-
Pacific Workshop on Systems (APSys), pages 1–5, 2011.

[8] Hongxu Chen, Shengjian Guo, Yinxing Xue, Yulei Sui, Cen Zhang,
Yuekang Li, Haijun Wang, and Yang Liu. MUZZ: thread-aware grey-
box fuzzing for effective bug hunting in multithreaded programs. In
Proceedings of the 29th USENIX Security Symposium, pages 2325–
2342, 2020.

14

http://lcamtuf.coredump.cx/afl/

[9] Peng Chen and Hao Chen. Angora: efficient fuzzing by principled
search. In Proceedings of the 2018 IEEE Symposium on Security and
Privacy, pages 711–725, 2018.

[10] Qiu-Liang Chen, Jia-Ju Bai, Zu-Ming Jiang, Julia Lawall, and Shi-Min
Hu. Detecting data races caused by inconsistent lock protection in
device drivers. In Proceedings of the 26th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pages 366–
376, 2019.

[11] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan,
Vivek Sarkar, and Manu Sridharan. Efficient and precise datarace
detection for multithreaded object-oriented programs. In Proceedings of
the 23rd International Conference on Programming Language Design
and Implementation (PLDI), pages 258–269, 2002.

[12] Ankit Choudhary, Shan Lu, and Michael Pradel. Efficient detection of
thread safety violations via coverage-guided generation of concurrent
tests. In Proceedings of the 39th International Conference on Software
Engineering (ICSE), pages 266–277, 2017.

[13] Clang compiler. https://clang.llvm.org/.
[14] CLOC: count lines of code. https://cloc.sourceforge.net.
[15] Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili,

Shuang Hao, Christopher Kruegel, and Giovanni Vigna. DIFUZE:
interface aware fuzzing for kernel drivers. In Proceedings of the 24th
International Conference on Computer and Communications Security
(CCS), pages 2123–2138, 2017.

[16] CVE-2020-1667. https://nvd.nist.gov/vuln/detail/CVE-2020-1667.
[17] CVE-2020-9990. https://nvd.nist.gov/vuln/detail/CVE-2020-9990.
[18] CVE-2020-11173. https://nvd.nist.gov/vuln/detail/CVE-2020-11173.
[19] Dongdong Deng, Wei Zhang, and Shan Lu. Efficient concurrency-

bug detection across inputs. In Proceedings of the 2013 International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 785–802, 2013.

[20] Dirty COW: a privilege escalation vulnerability in the Linux kernel.
https://dirtycow.ninja/.

[21] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks: a race and
transaction-aware java runtime. In Proceedings of the 28th International
Conference on Programming Language Design and Implementation
(PLDI), pages 245–255, 2007.

[22] Dawson Engler and Ken Ashcraft. RacerX: effective, static detection of
race conditions and deadlocks. In Proceedings of the 19th International
Symposium on Operating Systems Principles (SOSP), pages 237–252,
2003.

[23] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk
Olynyk. Effective data-race detection for the kernel. In Proceedings
of the 9th International Conference on Operating Systems Design and
Implementation (OSDI), pages 151–162, 2010.

[24] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse.
AFL++: Combining incremental steps of fuzzing research. In Proceed-
ings of the 14th USENIX Workshop on Offensive Technologies (WOOT),
August 2020.

[25] Cormac Flanagan and Stephen N Freund. Type-based race detection
for Java. In Proceedings of the 21st International Conference on
Programming Language Design and Implementation (PLDI), pages
219–232, 2000.

[26] Cormac Flanagan and Stephen N Freund. Detecting race conditions in
large programs. In Proceedings of the 2001 International Workshop on
Program Analysis for Software Tools and Engineering (PASTE), pages
90–96, 2001.

[27] Cormac Flanagan and Stephen N. Freund. FastTrack: efficient and
precise dynamic race detection. In Proceedings of the 30th International
Conference on Programming Language Design and Implementation
(PLDI), pages 121–133, 2009.

[28] Pedro Fonseca, Cheng Li, and Rodrigo Rodrigues. Finding complex
concurrency bugs in large multi-threaded applications. In Proceedings
of the 6th European Conference on Computer Systems (EuroSys), pages
215–228, 2011.

[29] Pedro Fonseca, Rodrigo Rodrigues, and Björn B Brandenburg. SKI:
exposing kernel concurrency bugs through systematic schedule ex-
ploration. In Proceedings of the 11th International Conference on
Operating Systems Design and Implementation (OSDI), pages 415–431,
2014.

[30] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu
Pei, and Zuoning Chen. CollAFL: path sensitive fuzzing. In Pro-
ceedings of the 39th IEEE Symposium on Security and Privacy, pages
679–696, 2018.

[31] Sishuai Gong, Deniz Altinbüken, Pedro Fonseca, and Petros Maniatis.
Snowboard: finding kernel concurrency bugs through systematic inter-
thread communication analysis. In Proceedings of the 28th International
Symposium on Operating Systems Principles (SOSP), pages 66–83,
2021.

[32] Haryadi S. Gunawi, Cindy Rubio-González, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, and Ben Liblit. EIO: error handling is
occasionally correct. In Proceedings of the 6th International Conference
on File and Storage Technologies (FAST), pages 207–222, 2008.

[33] Shantanu Gupta, Florin Sultan, Srihari Cadambi, Franjo Ivancic, and
Martin Rotteler. Using hardware transactional memory for data race
detection. In Proceedings of the 2009 International Symposium on
Parallel and Distributed Processing, pages 1–11, 2009.

[34] Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson R. Engler.
A system and language for building system-specific, static analyses.
In Proceedings of the 23rd International Conference on Programming
Language Design and Implementation (PLDI), pages 69–82, 2002.

[35] Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing analysis using
CLA: a million lines of C code in a second. In Proceedings of the
22nd International Conference on Programming Language Design and
Implementation (PLDI), pages 254–263, 2001.

[36] IOzone filesystem benchmark. http://iozone.org.
[37] Dae R Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung Lee,

and Insik Shin. Razzer: finding kernel race bugs through fuzzing. In
Proceedings of the 2019 IEEE Symposium on Security and Privacy,
pages 754–768, 2019.

[38] Yue Jia and Mark Harman. Higher order mutation testing. Information
and Software Technology (IST), 51(10):1379–1393, 2009.

[39] Yue Jia and Mark Harman. An analysis and survey of the development
of mutation testing. IEEE Transactions on Software Engineering (TSE),
37(5):649–678, 2010.

[40] Zu-Ming Jiang, Jia-Ju Bai, Kangjie Lu, and Shi-Min Hu. Fuzzing
error handling code using context-sensitive software fault injection. In
Proceedings of the 29th USENIX Security Symposium, pages 2595–
2612, 2020.

[41] Viktor Johansson and Alexander Vallén. Random testing with sanitizers
to detect concurrency bugs in embedded avionics software, 2018.

[42] Vineet Kahlon, Nishant Sinha, Erik Kruus, and Yun Zhang. Static data
race detection for concurrent programs with asynchronous calls. In
Proceedings of the 2009 International Symposium on Foundations of
Software Engineering (FSE), pages 13–22, 2009.

[43] Baris Can Cengiz Kasikci, Cristian Zamfir, and George Candea. Data
races vs. data race bugs: telling the difference with Portend. In Pro-
ceedings of the 17th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), pages
185–198, 2012.

[44] KCSAN: concurrency sanitizer for the Linux kernel. https://github.com/
google/ktsan/wiki/KCSAN.

[45] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu,
and Taesoo Kim. Finding semantic bugs in file systems with an
extensible fuzzing framework. In Proceedings of the 27th International
Symposium on Operating Systems Principles (SOSP), pages 147–161,
2019.

[46] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael
Hicks. Evaluating fuzz testing. In Proceedings of the 2018 International
Conference on Computer and Communications Security (CCS), pages
2123–2138, 2018.

[47] KRACE repository. https://github.com/sslab-gatech/krace.
[48] Chris Lattner, Andrew Lenharth, and Vikram S. Adve. Making context-

sensitive points-to analysis with heap cloning practical for the real
world. In Proceedings of the 28th International Conference on Pro-
gramming Language Design and Implementation (PLDI), pages 278–
289, 2007.

[49] Wang Hao Lee, Murali Srirangam Ramanujam, and SPT Krishnan.
On designing an efficient distributed black-box fuzzing system for
mobile devices. In Proceedings of the 10th International Symposium

15

https://clang.llvm.org/
https://cloc.sourceforge.net
https://nvd.nist.gov/vuln/detail/CVE-2020-1667
https://nvd.nist.gov/vuln/detail/CVE-2020-9990
https://nvd.nist.gov/vuln/detail/CVE-2020-11173
https://dirtycow.ninja/
http://iozone.org
https://github.com/google/ktsan/wiki/KCSAN
https://github.com/google/ktsan/wiki/KCSAN
https://github.com/sslab-gatech/krace

on Information, Computer and Communications Security (ASIACCS),
pages 31–42, 2015.

[50] Caroline Lemieux and Koushik Sen. FairFuzz: a targeted mutation
strategy for increasing greybox fuzz testing coverage. In Proceedings of
the 33rd International Conference on Automated Software Engineering
(ASE), pages 475–485, 2018.

[51] Guangpu Li, Shan Lu, Madanlal Musuvathi, Suman Nath, and Rohan
Padhye. Efficient scalable thread-safety-violation detection: finding
thousands of concurrency bugs during testing. In Proceedings of the
27th International Symposium on Operating Systems Principles (SOSP),
pages 162–180, 2019.

[52] Jie Liang, Yu Jiang, Yuanliang Chen, Mingzhe Wang, Chijin Zhou,
and Jiaguang Sun. PAFL: extend fuzzing optimizations of single mode
to industrial parallel mode. In Proceedings of the 2018 International
Symposium on the Foundations of Software Engineering (FSE), pages
809–814, 2018.

[53] Changming Liu, Deqing Zou, Peng Luo, Bin B Zhu, and Hai Jin. A
heuristic framework to detect concurrency vulnerabilities. In Proceed-
ings of the 34th Annual Computer Security Applications Conference
(ACSAC), pages 529–541, 2018.

[54] LLVM compiler infrastructure. https://llvm.org/.
[55] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning

from mistakes: a comprehensive study on real world concurrency bug
characteristics. In Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 329–339, 2008.

[56] Pallavi Maiya, Aditya Kanade, and Rupak Majumdar. Race detection
for Android applications. In Proceedings of the 35th International
Conference on Programming Language Design and Implementation
(PLDI), pages 316–325, 2014.

[57] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Precise call
graphs for C programs with function pointers. Automated Software
Engineering, 11:7–26, 2004.

[58] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Pi-
ramanayagam Arumuga Nainar, and Iulian Neamtiu. Finding and
reproducing heisenbugs in concurrent programs. In Proceedings of
the 8th International Conference on Operating Systems Design and
Implementation (OSDI), pages 267–280, 2008.

[59] Satish Narayanasamy, Zhenghao Wang, Jordan Tigani, Andrew Ed-
wards, and Brad Calder. Automatically classifying benign and harmful
data races using replay analysis. In Proceedings of the 28th Interna-
tional Conference on Programming Language Design and Implementa-
tion (PLDI), pages 22–31, 2007.

[60] Shankara Pailoor, Andrew Aday, and Suman Jana. MoonShine: opti-
mizing OS fuzzer seed selection with trace distillation. In Proceedings
of the 27th USENIX Security Symposium, pages 729–743, 2018.

[61] Van-Thuan Pham, Marcel Böhme, Andrew Edward Santosa, Alexan-
dru Razvan Caciulescu, and Abhik Roychoudhury. Smart greybox
fuzzing. IEEE Transactions on Software Engineering (TSE), 2019.

[62] Eli Pozniansky and Assaf Schuster. Efficient on-the-fly data race
detection in multithreaded C++ programs. In Proceedings of the
9th International Symposium on Principles and Practice of Parallel
Programming (PPoPP), pages 179–190, 2003.

[63] Razzer repository. https://github.com/compsec-snu/razzer.
[64] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, and Gernot Heiser. Dingo:

taming device drivers. In Proceedings of the 4th European Conference
on Computer Systems (EuroSys), pages 275–288, 2009.

[65] Amit Sasturkar, Rahul Agarwal, Liqiang Wang, and Scott D Stoller.
Automated type-based analysis of data races and atomicity. In Proceed-
ings of the 10th International Symposium on Principles and Practice
of Parallel programming (PPoPP), pages 83–94, 2005.

[66] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro,
and Thomas Anderson. Eraser: a dynamic data race detector for
multithreaded programs. ACM Transactions on Computer Systems
(TOCS), 15(4):391–411, 1997.

[67] Konstantin Serebryany and Timur Iskhodzhanov. ThreadSanitizer: data
race detection in practice. In Proceedings of the Workshop on Binary
Instrumentation and Applications, pages 62–71, 2009.

[68] Ohad Shacham, Mooly Sagiv, and Assaf Schuster. Scaling model
checking of dataraces using dynamic information. In Proceedings of

the 10th International Symposium on Principles and Practice of Parallel
Programming (PPoPP), pages 107–118, 2005.

[69] Slow start of TCP congestion control. https://www.keycdn.com/support/
tcp-slow-start.

[70] Syzkaller: a coverage-guided kernel fuzzer. https://github.com/google/
syzkaller.

[71] Data races found by Syzkaller+KCSAN in the Linux kernel. https:
//syzkaller.appspot.com/upstream?manager=ci2-upstream-kcsan-gce.

[72] Seyed Mohammadjavad Seyed Talebi, Hamid Tavakoli, Hang Zhang,
Zheng Zhang, Ardalan Amiri Sani, and Zhiyun Qian. Charm: facilitating
dynamic analysis of device drivers of mobile systems. In Proceedings
of the 27th USENIX Security Symposium, pages 291–307, 2018.

[73] Lin Tan, Chen Liu, Zhenmin Li, Xuanhui Wang, Yuanyuan Zhou,
and Chengxiang Zhai. Bug characteristics in open source software.
Empirical Software Engineering, 19(6):1665–1705, 2014.

[74] Valerio Terragni and Mauro Pezzè. Effectiveness and challenges in
generating concurrent tests for thread-safe classes. In Proceedings of
the 33rd International Conference on Automated Software Engineering
(ASE), pages 64–75, 2018.

[75] ThreadSanitizer: a data race detector for C/C++. https://github.com/
google/sanitizers/wiki/ThreadSanitizerCppManual.

[76] Nischai Vinesh, Sanjay Rawat, Herbert Bos, Cristiano Giuffrida, and
M Sethumadhavan. ConFuzz: a concurrency fuzzer. In Proceedings
of the 1st International Conference on Sustainable Technologies for
Computational Intelligence, pages 667–691, 2019.

[77] Vesal Vojdani, Kalmer Apinis, Vootele Rõtov, Helmut Seidl, Varmo
Vene, and Ralf Vogler. Static race detection for device drivers: the
Goblint approach. In Proceedings of the 31st International Conference
on Automated Software Engineering (ASE), pages 391–402, 2016.

[78] Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. RELAY: static
race detection on millions of lines of code. In Proceedings of the
2007 International Symposium on Foundations of Software Engineering
(FSE), pages 205–214, 2007.

[79] Haijun Wang, Xiaofei Xie, Yi Li, Cheng Wen, Yuekang Li, Yang Liu,
Shengchao Qin, Hongxu Chen, and Yulei Sui. Typestate-guided fuzzer
for discovering use-after-free vulnerabilities. In Proceedings of the 42nd
International Conference on Software Engineering (ICSE), pages 1–12,
2020.

[80] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Superion: grammar-
aware greybox fuzzing. In Proceedings of the 41st International
Conference on Software Engineering (ICSE), pages 724–735, 2019.

[81] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Taesoo Kim.
KRACE: data race fuzzing for kernel file systems. In Proceedings of
the 2020 IEEE Symposium on Security and Privacy, pages 1643–1660,
2020.

[82] Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning Tseng, and
Taesoo Kim. Fuzzing file systems via two-dimensional input space
exploration. In Proceedings of the 2019 IEEE Symposium on Security
and Privacy, pages 818–834, 2019.

[83] Junfeng Yang, Ang Cui, Sal Stolfo, and Simha Sethumadhavan. Con-
currency attacks. In Presented as part of the 4th USENIX Workshop on
Hot Topics in Parallelism (HotPar), 2012.

[84] Kunpeng Yu, Chenxu Wang, Yan Cai, Xiapu Luo, and Zijiang Yang.
Detecting concurrency vulnerabilities based on partial orders of memory
and thread events. In Proceedings of the 29th International Symposium
on the Foundations of Software Engineering (FSE), pages 280–291,
2021.

[85] Lu Zhang and Chao Wang. RClassify: classifying race conditions in
web applications via deterministic replay. In Proceedings of the 39th
International Conference on Software Engineering (ICSE), pages 278–
288, 2017.

[86] Shixiong Zhao, Rui Gu, Haoran Qiu, Tsz On Li, Yuexuan Wang,
Heming Cui, and Junfeng Yang. OWL: understanding and detecting
concurrency attacks. In Proceedings of the 48th International Con-
ference on Dependable Systems and Networks (DSN), pages 219–230,
2018.

[87] Pin Zhou, Radu Teodorescu, and Yuanyuan Zhou. HARD: hardware-
assisted lockset-based race detection. In Proceedings of the 13th
International Symposium on High Performance Computer Architecture
(HPCA), pages 121–132, 2007.

16

https://llvm.org/
https://github.com/compsec-snu/razzer
https://www.keycdn.com/support/tcp-slow-start
https://www.keycdn.com/support/tcp-slow-start
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://syzkaller.appspot.com/upstream?manager=ci2-upstream-kcsan-gce
https://syzkaller.appspot.com/upstream?manager=ci2-upstream-kcsan-gce
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual

Appendix I

Detailed Reports of the Data Races Found by CONZZER

ID Program Racy instruction pair Impact Status ID Program Racy instruction pair Impact Status

1 sqlite sqlite3.c, line 61097 ↔ sqlite3.c, line 61110 B - 49 btrfs block-group.c, line 404 ↔ free-space-cache.c, line 1643 B -

2 sqlite sqlite3.c, line 60429 ↔ sqlite3.c, line 61048 H R 50 btrfs block-group.c, line 404 ↔ free-space-cache.c, line 1629 B -

3 sqlite sqlite3.c, line 60429 ↔ sqlite3.c, line 61048 H R 51 btrfs transaction.h, line 151 ↔ disk-io.c, line 1388 H R

4 sqlite sqlite3.c, line 60357 ↔ sqlite3.c, line 61162 B - 52 btrfs transaction.h, line 152 ↔ disk-io.c, line 1390 H C

5 sqlite sqlite3.c, line 61048 ↔ sqlite3.c, line 60269 H R 53 btrfs block-group.c, line 754 ↔ block-group.h, line 246 H F

6 sqlite sqlite3.c, line 60352 ↔ sqlite3.c, line 61110 B - 54 btrfs block-group.c, line 736 ↔ block-group.h, line 246 H F

7 memcached items.c, line 1401 ↔ memcached.c, line 7535 H C 55 btrfs block-rsv.c, line 391 ↔ block-rsv.c, line 23 H R

8 memcached items.c, line 1182 ↔ memcached.c, line 7535 H C 56 btrfs transaction.c, line 512 ↔ delayed-ref.c, line 112 H C

9 memcached memcached.c, line 6334 ↔ memcached.c, line 7535 H C 57 btrfs tree-log.c, line 3125 ↔ transaction.h, line 151 H R

10 memcached items.c, line 488 ↔ memcached.c, line 7535 H C 58 btrfs inode.c, line 6935 ↔ inode.c, line 6935 H F

11 memcached items.c, line 1202 ↔ memcached.c, line 7535 H C 59 btrfs block-rsv.c, line 195 ↔ block-rsv.c, line 228 H C

12 memcached crawler.c, line 161 ↔ memcached.c, line 7535 H C 60 btrfs extent_io.c, line 4194 ↔ extent_io.c, line 4085 H C

13 memcached items.c, line 663 ↔ memcached.c, line 7535 H C 61 btrfs locking.c, line 282 ↔ locking.c, line 308 B -

14 memcached items.c, line 1526 ↔ memcached.c, line 7535 H C 62 btrfs block-group.c, line 650 ↔ block-group.h, line 246 H C

15 memcached items.c, line 1497 ↔ memcached.c, line 7535 H C 63 btrfs block-rsv.c, line 51 ↔ transaction.c, line 512 H C

16 memcached items.c, line 1475 ↔ memcached.c, line 7535 H C 64 btrfs locking.c, line 152 ↔ locking.c, line 118 H F

17 memcached items.c, line 1534 ↔ memcached.c, line 7535 H C 65 btrfs locking.c, line 287 ↔ locking.c, line 313 H F

18 memcached crawler.c, line 151 ↔ memcached.c, line 7535 H C 66 btrfs locking.c, line 293 ↔ locking.c, line 282 B -

19 x264 threadpool.c, line 161 ↔ threadpool.c, line 55 B - 67 btrfs transaction.c, line 2259 ↔ transaction.c, line 720 B -

20 x264 analyse.c, line 3860 ↔ frame.c, line 681 H F 68 btrfs disk-io.c, line 1388 ↔ file.c, line 1997 H R

21 x264 analyse.c, line 363 ↔ frame.c, line 681 H F 69 btrfs ctree.c, line 132 ↔ ctree.c, line 1131 H R

22 x264 encoder.c, line 3353 ↔ lookahead.c, line 92 H F 70 btrfs block-rsv.c, line 391 ↔ block-rsv.c, line 226 H R

23 ffmpeg mpeg4video.h, line 224 ↔ mpeg4video.h, line 274 H R 71 jfs jfs_logmgr.c, line 2001 ↔ jfs_logmgr.c, line 2193 B -

24 ffmpeg mpeg4video.h, line 223 ↔ mpeg4video.h, line 274 H R 72 jfs jfs_logmgr.c, line 2001 ↔ jfs_logmgr.c, line 2207 B -

25 ffmpeg mpeg4video.h, line 224 ↔ mpegvideo.c, line 1918 H R 73 jfs jfs_txnmgr.c, line 932 ↔ jfs_logmgr.c, line 979 H R

26 ffmpeg mpeg4video.h, line 223 ↔ mpegvideo.c, line 1918 H R 74 jfs jfs_dmap.c, line 437 ↔ jfs_logmgr.c, line 979 H R

27 ffmpeg mpeg4video.h, line 224 ↔ mpegvideo.c, line 1919 H R 75 jfs jfs_xtree.c, line 242 ↔ jfs_xtree.c, line 242 H R

28 ffmpeg mpeg4video.h, line 223 ↔ mpegvideo.c, line 1919 H R 76 jfs jfs_xtree.c, line 357 ↔ jfs_xtree.c, line 357 H R

29 ffmpeg mpeg4video.h, line 224 ↔ mpegvideo.c, line 1932 H R 77 jfs jfs_dmap.c, line 2421 ↔ super.c, line 140 H C

30 ffmpeg mpeg4video.h, line 223 ↔ mpegvideo.c, line 1932 H R 78 jfs super.c, line 130 ↔ jfs_dmap.c, line 2421 H C

31 ffmpeg mpeg4video.h, line 224 ↔ mpegvideo.c, line 1933 H R 79 jfs jfs_txnmgr.c, line 489 ↔ jfs_txnmgr.c, line 332 H F

32 ffmpeg mpeg4video.h, line 223 ↔ mpegvideo.c, line 1933 H R 80 jfs jfs_metapage.c, line 651 ↔ jfs_metapage.c, line 651 H R

33 aget Download.c, line 120 ↔ Download.c, line 118 H R 81 jfs jfs_imap.c, line 2734 ↔ jfs_imap.c, line 2592 H R

34 aget Download.c, line 120 ↔ Download.c, line 106 H R 82 jfs jfs_txnmgr.c, line 501 ↔ jfs_logmgr.c, line 1455 H F

35 aget Misc.c, line 184 ↔ Misc.c, line 192 H R 83 xfs xfs_log_cil.c, line 444 ↔ xfs_log_cil.c, line 917 H F

36 axel conn.c, line 310 ↔ axel.c, line 386 H F 84 xfs xfs_trans_ail.c, line 733 ↔ xfs_inode_item.c, line 371 H C

37 btrfs locking.c, line 136 ↔ locking.c, line 308 B - 85 xfs xfs_file.c, line 156 ↔ xfs_inode.c, line 3892 B -

38 btrfs locking.c, line 135 ↔ locking.c, line 313 H F 86 xfs xfs_inode_item.c, line 146 ↔ xfs_inode_item.h, line 30 H F

39 btrfs locking.c, line 152 ↔ locking.c, line 313 H F 87 xfs xfs_super.c, line 1033 ↔ xfs_inode.h, line 175 B -

40 btrfs locking.c, line 285 ↔ locking.c, line 313 H F 88 xfs xfs_inode_item.c, line 531 ↔ xfs_inode.h, line 134 B -

41 btrfs locking.c, line 285 ↔ locking.c, line 118 H F 89 xfs xfs_trans_inode.c, line 141 ↔ xfs_inode_item.h, line 30 H C

42 btrfs transaction.c, line 490 ↔ delayed-ref.c, line 112 H C 90 xfs xfs_inode_item.c, line 424 ↔ xfs_inode_item.h, line 30 H F

43 btrfs transaction.c, line 2095 ↔ transaction.c, line 720 B - 91 reiserfs lock.c, line 26 ↔ lock.c, line 64 B -

44 btrfs block-rsv.c, line 195 ↔ delayed-ref.c, line 112 H C 92 reiserfs lock.c, line 28 ↔ lock.c, line 26 B -

45 btrfs block-rsv.c, line 51 ↔ block-rsv.c, line 195 H C 93 reiserfs lock.c, line 79 ↔ lock.c, line 26 B -

46 btrfs extent_io.c, line 3481 ↔ inode.c, line 6935 H F 94 reiserfs lock.c, line 26 ↔ lock.c, line 47 B -

47 btrfs extent_io.c, line 4194 ↔ extent_io.c, line 4194 H C 95 reiserfs inode.c, line 2523 ↔ inode.c, line 2943 H R

48 btrfs block-rsv.c, line 391 ↔ delalloc-space.c, line 277 H R

The column “Racy instruction pair” shows the source file name and code line number of the racy instructions.

The column “Impact” shows whether the data race is harmful. “H” means that the data race is identified to be harmful; “B” means that the

data race is identified to be benign.

The column “Status” shows the current status of the data race. “R” means that the data race has been reported but has not been replied; “C”

means that the data race has been confirmed. “F” means that the data race has been confirmed and fixed by related developers. Note that we

only report harmful data races.

17

Appendix II
Figure 12 shows the completed sensitivity results about the growth

of covered concurrent call pairs for all the 12 tested program in
Section V-D. CONZZER covers more concurrent call pairs than other
alternative methods, which proves the effectiveness of CONZZER in
thread-interleaving exploration.

0

5K

10K

15K

20K

0h 4h 8h 12h 16h 20h 24h

Co
nc

ur
re

nt
 c

al
l p

ai
rs

Time

memcached

CONZZER Insensitive
Random delay Normal running

0
10M
20M
30M
40M
50M
60M
70M

0h 4h 8h 12h 16h 20h 24h

Co
nc

ur
re

nt
 c

al
l p

ai
rs

Time

sqlite

CONZZER Insensitive
Random delay Normal running

0

200K

400K

600K

800K

0h 4h 8h 12h 16h 20h 24h

Co
nc

ur
re

nt
 c

al
l p

ai
rs

Time

ffmpeg

CONZZER Insensitive
Random delay Normal running

0

50K

100K

150K

200K

0h 4h 8h 12h 16h 20h 24h

Co
nc

ur
re

nt
 c

al
l p

ai
rs

Time

x264

CONZZER Insensitive
Random delay Normal running

0
5

10
15
20
25
30
35

0h 4h 8h 12h 16h 20h 24h

Co
nc

ur
re

nt
 c

al
l p

ai
rs

Time

aget

CONZZER Insensitive
Random delay Normal running

0
100
200
300
400
500
600
700

0h 4h 8h 12h 16h 20h 24h

Co
nc

ur
re

nt
 c

al
l p

ai
rs

Time

axel

CONZZER Insensitive
Random delay Normal running

0
200
400
600
800

1K
1K

0h 4h 8h 12h 16h 20h 24h

Co
nc

ur
re

nt
 c

al
l p

ai
rs

Time

pigz

CONZZER Insensitive
Random delay Normal running

0
500

1K
2K
2K
3K
3K

0h 4h 8h 12h 16h 20h 24h

Co
nc

ur
re

nt
 c

al
l p

ai
rs

Time

xz

CONZZER Insensitive
Random delay Normal running

0
100K
200K
300K
400K
500K
600K

0h 4h 8h 12h 16h 20h 24h

Co
nc

ur
re

nt
 c

al
l p

ai
rs

Time

jfs

CONZZER Insensitive
Random delay Normal running

0
2M
4M
6M
8M

10M
12M
14M

0h 4h 8h 12h 16h 20h 24h

Co
nc

ur
re

nt
 c

al
l p

ai
rs

Time

btrfs

CONZZER Insensitive
Random delay Normal running

0
100K
200K
300K
400K
500K
600K
700K

0h 4h 8h 12h 16h 20h 24h

Co
nc

ur
re

nt
 c

al
l p

ai
rs

Time

reiserfs

CONZZER Insensitive
Random delay Normal running

0
1M
2M
3M
4M
5M
6M
7M
8M

0h 4h 8h 12h 16h 20h 24h

Co
nc

ur
re

nt
 c

al
l p

ai
rs

Time

xfs

CONZZER Insensitive
Random delay Normal running

Fig. 12. Complete results about the growth of concurrent call pairs in
sensitivity analysis.

Figure 13 shows the completed comparison results about the
growth of covered concurrent call pairs for all the 12 tested program
in Section VI-A. CONZZER covers more concurrent call pairs than
other fuzzing tools, which proves the effectiveness of CONZZER in
thread-interleaving exploration.

0

50K

100K

150K

200K

250K

0h 4h 8h 12h 16h 20h 24h

Co
nc

ur
re

nt
 c

al
l p

ai
rs

Time

x264

CONZZER
inst-fuzzer
AFL++

0

200K

400K

600K

800K

1M

0h 4h 8h 12h 16h 20h 24h

Co
nc

ur
re

nt
 c

al
l p

ai
rs

Time

ffmpeg

CONZZER
inst-fuzzer
AFL++

0

1000

2000

3000

4000

0h 4h 8h 12h 16h 20h 24h

Co
nc

ur
re

nt
 c

al
l p

ai
rs

Time

xz

CONZZER
inst-fuzzer
AFL++

0

250

500

750

1000

0h 4h 8h 12h 16h 20h 24h

Co
nc

ur
re

nt
 c

al
l p

ai
rs

Time

pigz

CONZZER
inst-fuzzer
AFL++

0

250

500

750

1000

1250

1500

0h 4h 8h 12h 16h 20h 24h

Co
nc

ur
re

nt
 c

al
l p

ai
rs

Time

lbzip2

CONZZER
inst-fuzzer
AFL++

0

250

500

750

1000

1250

1500

0h 4h 8h 12h 16h 20h 24h

Co
nc

ur
re

nt
 c

al
l p

ai
rs

Time

pbzip2

CONZZER
inst-fuzzer
AFL++

0

100

200

300

400

0h 4h 8h 12h 16h 20h 24h

Co
nc

ur
re

nt
 c

al
l p

ai
rs

Time

libwebp

CONZZER
inst-fuzzer
AFL++

0

2000

4000

6000

8000

0h 4h 8h 12h 16h 20h 24h

Co
nc

ur
re

nt
 c

al
l p

ai
rs

Time

ImageMagick

CONZZER
inst-fuzzer
AFL++

0

4M

8M

12M

16M

0h 4h 8h 12h 16h 20h 24h

Co
nc

ur
re

nt
 c

al
l p

ai
rs

Time

btrfs
CONZZER
inst-fuzzer
Syzkaller

0

150K

300K

450K

600K

0h 4h 8h 12h 16h 20h 24h

Co
nc

ur
re

nt
 c

al
l p

ai
rs

Time

jfs
CONZZER
inst-fuzzer
Syzkaller

0

200K

400K

600K

800K

0h 4h 8h 12h 16h 20h 24h

Co
nc

ur
re

nt
 c

al
l p

ai
rs

Time

reiserfs
CONZZER
inst-fuzzer
Syzkaller

0

2M

4M

6M

8M

0h 4h 8h 12h 16h 20h 24h

Co
nc

ur
re

nt
 c

al
l p

ai
rs

Time

xfs
CONZZER
inst-fuzzer
Syzkaller

Fig. 13. Complete results about the growth of concurrent call pairs in
comparison experiment.

18

	Introduction
	Background and Motivation
	Data Race
	Motivating Example
	State of the Art of Concurrency Fuzzing

	Context-Sensitive and Directional Fuzzing
	Context-Sensitive Concurrent Call Pair
	Directional Thread-Interleaving Exploration
	Adjacency-Directed Mutation
	Breakpoint-Control Method

	Discussion on Alternative Design Choices
	Beneficial Effect in Data-Race Detection

	Conzzer Framework and Implementation
	Customized Race Checker
	Phases of Conzzer
	Compatibility with Input-Driven Fuzzing

	Evaluation
	Experimental Setup
	Runtime Testing
	Security Impact of Found Data Races
	Sensitivity Analysis

	Comparison to Existing Fuzzing Tools
	AFL++, Syzkaller and Instruction-Level Fuzzer
	Concurrency Fuzzing Approaches

	Discussion
	Related Work
	Coverage-Guided Fuzzing
	Data-Race Detection
	Thread-Interleaving Exploration

	Conclusion
	References

