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Abstract—We propose an optical side-channel attack to re-
cover intellectual property in Additive Manufacturing (AM)
systems. Specifically, we use a deep neural network to estimate the
coordinates of the printhead as a function of time by analyzing
the video of the printer frame by frame. We found that the deep
neural network can successfully recover the path for an arbitrary
printing process. By using data augmentation, the neural network
can tolerate a certain level of variation in the position and angle of
the camera as well as the lighting conditions. The neural network
can intelligently perform interpolation and accurately recover the
coordinates of an image that is not seen in the training dataset.

To defend against the optical side-channel attack, we propose
to use the optical noise injection method. Specifically, we use
an optical projector to artificially inject carefully crafted optical
noise onto the printing area in an attempt to confuse the attacker
and make it harder to recover the printing path. We found that
existing noise generation algorithms, such as replaying, random
blobs, white noise, and full power, can effortlessly defeat a naive
attacker who is not aware of the existence of the injected noise.
However, an advanced attacker who knows about the injected
noise and incorporates images with injected noise in the training
dataset can defeat all of the existing noise generation algorithms.
To defend against such an advanced attacker, we propose three
novel noise generation algorithms: channel uniformization, state
uniformization, and state randomization. Our experiment results
show that noise generated via state randomization can success-
fully defend against the advanced attacker.

I. INTRODUCTION

Additive Manufacturing (AM), also known as 3D Printing,
is gaining popularity in a variety of sectors, such as automotive
[14], aerospace [24], construction [8], healthcare [37], fashion
[32], and education [1]. As the application of AM increases
rapidly, the protection of intellectual property associated with
AM becomes a concern [7], [33], [34], [36]. For example,
it could take years for a company to design a product to be
additively manufactured and then sell the product for a profit
[20]. Losing the intellectual property could mean a financial
loss. Meanwhile, there are designs that should be strictly
controlled. An example is 3D printed firearms [22]. If a design

is leaked, it could lead to unlawful production of the firearms,
causing security problems in the society.

Since AM relies on computers to work, it is possible for
intellectual property in an AM system to be stolen by cyber-
attacks. For example, the network protocols employed by two
MakerBot 3D printers can be exploited and the information
in the 3D printers can be exfiltrated [15]. To fight against
cyberattacks, common practices to secure computer networks
can be employed. For example, when transferring design files
from a host computer to a printer, encryption can be used to
protect the confidentiality of the design files [12].

Side-channel attacks are more stealthy attacks and they can
be used to break computer systems that are otherwise hard
to break [25]. In the literature, there are already many side-
channel attacks to steal intellectual property in AM systems.
For example, when the acoustic wave in a printing process is
recorded by an attacker, the attacker can potentially infer infor-
mation about the printing process by a variety of techniques,
such as signal processing and machine learning [2], [19], [29].
In addition, there are research efforts in the literature to recover
the coordinates of the printhead in a 3D printer by analyzing
the infrared video observed by an infrared camera [3].

However, existing side-channel attacks on intellectual prop-
erty in AM systems have a variety of limitations and only work
well for a few printing processes. For example, the acoustic
side-channel attacks in [2], [29] only work for printing pro-
cesses where the movement directions are restricted to four or
eight cardinal directions, and the acoustic side-channel attack
in [19] only works for printing processes where the duration
of each G-code instruction is long enough to clearly see the
boundaries between G-code instructions in the spectrogram.
The infrared video side-channel attack in [3] fails altogether in
practical printing processes potentially due to a lack of proper
methodology.

We propose an optical side-channel attack using a deep
neural network. Although the optical side-channel attack re-
quires the camera footage of a printing process, which can
be hard to acquire compared with audio data in the acoustic
side-channel attack, the optical side-channel attack can easily
overcome the limitations faced by the acoustic side-channel
attack and recover the path of an arbitrary printing process.
Additionally, it is by far the hardest side-channel attack to
defend against in practice as will be demonstrated later in
this paper. To our best knowledge, we are the first one in
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the literature to successfully perform the optical side-channel
attack on intellectual property in AM systems.

To defend against side-channel attacks on intellectual prop-
erty in AM systems, researchers came up with a variety of
methods, such as tuning manufacturing parameters [10], [11],
using fake movements [29], balancing loads on motors [2],
applying shielding [2], [19], [29], and injecting noise [19],
[29]. In this paper, we focus on the noise injection method
to defend against our proposed optical side-channel attack,
because the noise injection method, compared to many other
defense methods, has the least amount of adverse impact on
3D printers and printed objects.

Noise injection as an effective defense method requires an
algorithm to determine the pattern of the noise to be injected.
There are several existing noise generation algorithms such as
random blobs, white noise, full power, and replaying the side-
channel signal of another printing process [19]. According to
our experiments on the optical side-channel attack, although
the existing noise generation algorithms are effective against
a naive attacker, they can be easily defeated by an advanced
attacker, who is aware of the existence of injected noise and
attempts to identify and remove the injected noise in the
attack process. To defend against the advanced attacker, in
this paper, we propose three novel noise generation algorithms,
and they are channel uniformization, state uniformization, and
state randomization. Our experiments show that the state ran-
domization noise generation algorithm can effectively defend
against attackers with different prior knowledge.

Our contributions are as follows:

• We propose an optical side-channel attack against 3D
printers that enables adversaries to steal print designs
through camera recordings during printing processes.
To our best knowledge, we are the first one in the
literature to successfully perform the optical side-
channel attack on intellectual property in AM systems.

• We propose three novel noise generation algorithms
(channel uniformization, state uniformization, and
state randomization) for the noise injection method to
defend against the optical side-channel attack.

• To perform experiments, we collected approximately
one million images over a period of one month, total-
ing 240 GB, and we plan to share the datasets to the
public. Our experiment results indicate that the state
randomization noise generation algorithm succeeds
in defending against even advanced adversaries, who
have the knowledge about the deployed optical noise
injection method.

II. BACKGROUND INFORMATION

A. Additive Manufacturing

Additive Manufacturing (AM) refers to a collection of
manufacturing processes where materials are joined together
layer by layer to make objects directly from 3D models [5].
AM processes are performed by computers without human
intervention. The operation of an AM process is called printing
and the machine by which materials are joined together is
called a printer. There are seven categories of AM processes

and each category contains many types of AM processes. In
this paper, we focus on Fused Deposition Modeling (FDM)
[13], which is the most common AM process.

A general FDM process is described in Fig. 1. The AM
process starts with a 3D model that describes the shape of
the object to be printed. A specialized program called a
slicer, such as Cura, Slic3r, and MatterSlice, then asks for
manufacturing parameters, such as feed rates and temperatures,
to be specified. Afterwards, the slicer converts the 3D model
into a G-code file, which is a collection of G-code instructions.
Finally, the G-code file is sent to a printer for execution. The
printer interprets the received G-code file and instructs various
actuators in the printer to work according to the G-code file.
An object is printed as a result while various side-channel
signals are emitted.

B. State-Variable Signals

From the perspective of control theory, a printer can be
formally represented by a state variable1. The components of
the state variable may include the position of the printhead, the
position of the filament, the temperature of the nozzle(s) and
the build plate, the speed of the fans, etc. The state variable
as a function of time forms a state-variable signal, where each
component of the state variable corresponds to a channel in
the signal. A state-variable signal is described by

xSV[n, c], n = 0, 1, · · · , N − 1, c = 0, 1, · · · , CSV − 1, (1)

where n is the time index, N is the number of data points,
c is the channel index, and CSV is the number of channels.
If the sampling rate is fs, then the duration of the state-
variable signal is N/fs. Fig. 2 shows a state-variable with
three channels and they are the x, y, and z coordinates of the
printhead.

In this paper, we may write xSV[n, c] simply as xSV[n] or
xSV, where xSV[n] is a vector of CSV components and xSV

is an array (or matrix) of shape N × CSV.

C. Side-Channel Signals

Side channels are unintentional means of communication
by which information about a computer or a cyber-physical
system can be leaked to an outsider. AM systems have a variety
of side channels. For example, when an AM system is printing
an object, the system emits acoustic waves [2], [19], [29].
Other examples of side channels in an AM system include, but
are not limited to, acceleration measured by accelerometers
[6], [16], power consumption measured by power sensors
[27], [17], optical videos captured by cameras [16], [35], and
infrared videos captured by infrared cameras [3].

Mathematically, a side-channel signal is represented by

xSC[n, c], n = 0, 1, · · · , N − 1, c = 0, 1, · · · , CSC − 1, (2)

where n is the time index, N is the number of data points, c
is the channel index, and CSC is the number of channels. If
the sampling rate is fs, then the duration of the side-channel

1A variable can be a scalar, a vector, or even a matrix. A state variable can
be a vector with multiple components.
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Fig. 1: A general FDM process. A slicer converts a 3D model into G-Code instructions, which are then sent to a printer for
execution. The printer interprets the G-code instructions and instructs various actuators in the printer to work. An object is printed
and various side-channel signals (acoustic, magnetic, optical, etc) are generated.
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Fig. 2: Example of a state-variable signal xSV with three chan-
nels x, y, z, where (x, y, z) is the coordinate of the printhead.
The state-variable signal could contain more channels such as
the displacement of the filament in the extruder, the fan speed,
the temperature(s) of the nozzle(s), and the temperature of the
build plate.

signal is N/fs. Typically, fs is determined by the Analog-to-
Digital Converter (ADC) in the data acquisition system that
observes the side-channel signal.

As with xSV[n, c], we may write xSC[n, c] simply as
xSC[n] or xSC, where xSC[n] is a vector of CSC components
and xSC is an array of shape N × CSC.

III. RELATED WORK

This section presents related work about side-channel at-
tacks on intellectual property in AM systems as well as efforts
to defend against such side-channel attacks. As the time of
writing, the amount of related work is very limited and there is
no optical side-channel attack on AM systems in the literature.

A. Side-Channel Attacks on AM Systems

To perform the acoustic side-channel attack, Al Faruque
et al. proposed an algorithm to separate the acoustic signal
due to one motor and the acoustic signal due to another
motor from the combined acoustic signal [2]. After the signals
are separated, they use regression models and classifiers to
determine the speed for each motor. However, according to
[26], this approach may not be effective when the two motors
are moving at the same time.

By assuming the printing speed is constant and known,
Hojjati et al. used matching filters to determine the direction
for each movement [19]. As the matching filters typically
return multiple directions with equal probabilities, they further

used the magnetic side channel and human intelligence to
determine the most likely directions for all movements. Since
this method depends on the abrupt changes in the side-channel
signal to determine the boundaries of G-code instructions, this
method may not work well for a printing process where there
are a lot of short and rapid movements.

As with Hojjati’s research, Song et al. assumed that the
printing speed is known in advance and used magnetic fields
for assistance [29]. Instead of using matching filters, they used
five classifiers to directly determine the nozzle’s movement
and the extruder’s state. Since this attack relies on classifiers
to work, a major limitation of this attack is that it only works
well for a printing process where most movements are along
the eight cardinal directions.

Other than the acoustic side-channel attack, Al Faruque
et al. came up with an attack that uses the infrared side
channel to steal IP in AM processes [3]. They proposed a
mapping algorithm to convert an infrared video to a speed
signal. However, according to [3], the attack was not successful
due to a low resolution, a low sampling rate, a single view
point, and inability to change the focus length of the infrared
camera.

B. Defending Against Side-Channel Attacks

The authors that proposed the side-channel attacks on AM
systems also mentioned potential mitigation methods without
comprehensive evaluations in practice though. A complete list
of the defense methods is listed as follows.

Parameter Tuning. Chhetri et al. proposed to minimize
the mutual information between side-channel signals and G-
code instructions by tuning manufacturing parameters, such as
object orientation and printing speed [11]. However, the level
of protection provided by the method is limited. According to
their own performance metric, there is an average reduction of
10% in the success rate, and they acknowledge that this may
not be able to defeat side-channel attacks in practice.

Movement Obfuscation. This method injects fake move-
ments in a printing process to confuse an attacker [29], as
shown in Fig. 3. A fake movement is a movement that moves
the printhead at the extrusion speed without filament extrusion.
This breaks the important assumption by many attackers that
a low printing speed corresponds to an extrusion movement
whereas a high printing speed corresponds to a non-extrusion
movement [2], [19], [29]. However, this method introduces
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(a) No Fake Movements (b) With Fake Movements

Fig. 3: Illustration of fake movements. (a) A layer without fake
movements. (b) The same layer with fake movements.

stringing effects2, which can adversely affect the quality of
the printed object. In addition, this method may significantly
extend the printing time.

Signal Power Reduction. This method aims at reducing
the power of side-channel signals and thus reduces the Signal-
to-Noise Ratio (SNR). The power of acoustic side-channel
signals can be reduced by a better design. For example,
compared with SeeMeCNC Rostock Max V3, Ultimaker 3
is much quieter and emits acoustic waves with much lower
amplitude. The power of optical side-channel signals can be
reduced by using less lights in the environment. However,
using less lights not only makes normal operation harder but
also leaves security problems, such as potentially increased
theft activities.

Physical Shielding. This method installs physical shields
to prevent side-channel signals from reaching the attacker [2],
[19], [29]. Examples are acoustic shields for the acoustic
side channel and view blocks for the optical side channel.
However, deploying view blocks would be too expensive in
practice, since it would require internal cameras to be removed,
employees to be specially trained to recognize abnormalities
in AM processes, and for them to manually and continuously
check each printer by temporarily removing the view blocks.

Physical Uniformization. This method tries to make physi-
cal changes to an AM system such that the side-channel signals
for different states of the AM system are similar. In this way,
it will be hard for the attacker to infer the state of the AM
system by analyzing the side-channel signals. For example, Al
Faruque et al. proposed to balance the loads in the x and y
motors to make the acoustic emission from the x motor and
that from the y motor similar to each other [2]. For the optical
side channel, the color of the printhead and the build plate
can be designed to be the same (or some camouflage patterns)
to make it hard to see the printhead in relation to the build
plate. However, our experiments show that this method is not
effective as we performed tests on a printer where the printhead
and the build plate are both deep black.

2In an FDM process, when the nozzle travels from point A to point B
without extrusion, the molten filament in the nozzle continues to come out in
this process, and forms a string from point A to point B, which is undesirable.
To suppress the stringing effect, the extruder retracts the filament at the
beginning of the movement and then re-extrudes at the end of the movement.

Noise Injection. This defense method involves using signal
generators (such as speakers) to artificially create side-channel
signals to interfere with side-channel signals in AM systems
in an effort to reduce the SNR and thus thwart side-channel
attacks [29], [19]. The artificially created side-channel signals
are noise for the attacker, and thus are also referred to as side-
channel noise. This paper focuses on this method because,
according to our experiments, it is a low cost and effective
solution and it has the least amount of impact on the AM
system. The noise injection method requires an algorithm
to generate noise. Unfortunately, existing noise generation
algorithms do not work well against our proposed optical side-
channel attack as they can be easily defeated by advanced
attackers as will be demonstrated by our experiments later in
the paper. To address this problem, we propose three novel
noise generation algorithms. One of the newly proposed noise
generation algorithms, state randomization, can withstand an
advanced optical side-channel attack.

C. Use of Side Channels for Intrusion Detection

There are Intrusion Detection Systems (IDSs) that leverage
side channels in AM systems and some of these IDSs perform
side-channel attacks as an intermediate process. For example,
Chettri et al. came up with an IDS called KCAD to detect
zero-day cyberattacks on AM systems [9]. They built machine
learning models to estimate the state variable (velocities of
the printhead) from acoustic waves. Afterwards, they compare
the estimated state variable against the reference state variable
interpreted from a G-code file to determine if the system is
working as intended. Gao et al. proposed a process monitoring
system to safeguard AM systems [16]. In this system, they
estimate state variables (such as positions and velocities of the
printhead) from the acceleration and magnetic side channels.
They also provide methods to estimate the fan speed from
acoustic waves. The aforementioned defense methods work
against a different threat model where the adversaries attempt
to tamper with the integrity of the printing process, whereas
our threat model involves the confidentiality of the print design.

IV. THREAT MODEL

The threat model is illustrated in Fig. 4. A 3D printer is
printing an object of value. An attacker wishes to replicate this
object without authorization. For this purpose, the attacker uses
a variety of side-channel sensors around the printer to collect
the side-channel signals in the printing process. The attacker
then uses a variety of methods, such as signal processing and
machine learning, to recover information about the printing
process. The recovered information, namely the intellectual
property, can be used to help reconstruct the printing process.

A. Operational Definition of Intellectual Property

Strictly speaking, the intellectual property of an AM pro-
cess includes all information that is necessary to exactly
replicate the printed object. The information includes the make
and model of the printer that is used, the composition of the
materials, the geometry of the design, and the manufacturing
parameters [36]. We assume that the attacker knows the make
and model of the printer and the composition of the materials.
The geometry of the design and the manufacturing parameters
are embedded in the G-code file. In fact, many papers in the
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Fig. 5: Segmenting signals by G-code instructions. The upper
signal is a velocity signal obtained by simulating a G-code
file. The lower signal is the same velocity signal estimated by
analyzing side-channel signals. The green triangles show the
boundaries between G-code instructions. If we can only see the
estimated velocity signal, it is nearly impossible to determine
the boundaries of the G-code instructions.

literature define the intellectual property of a printing process
as the G-code file [2], [29]. However, we argue that it is not
practical to recover the G-code file from side-channel signals
(xSC) of a real printing process as it is not possible to segment
side-channel signals by G-code instructions, as explained in
Fig. 5. As a result of this, in this paper, we operationally
define the intellectual property of a printing process as its
state-variable signal (xSV). In fact, we are the first one in
the literature to define intellectual property in this way.

B. Acquisition of Optical Side-Channel Signals

In this paper, we are mainly concerned with the optical side
channel. There are various ways for an attacker to obtain the
optical side-channel signal of a printing process. The attacker
may have an employee or maintenance contractor working at
the factory to install a hidden camera on the ceiling of the
factory. The AM factory may have many devices installed on
the ceiling, such as fire detectors, sprinklers, motion sensors,
light sensors, etc. The hidden camera can be disguised as one
of these legitimate devices to evade suspicion. The AM factory

may have surveillance cameras, which may be connected to
the Internet. They may be compromised to become the part
of a botnet [4]. The attacker may be able to get a copy of
the data from a compromised camera [31]. We consider it too
risky in practice to ban surveillance cameras altogether in an
AM factory as doing so not only affects infrastructural physical
security negatively but also invites social engineering activities.
In addition, some printers have built-in process monitoring
cameras with weak access control and the attacker can access
the cameras directly.

C. Analysis of Optical Side-Channel Signals

The attacker uses signal processing and data driven meth-
ods such as template filtering and machine learning to recover
intellectual property (the state-variable signal) from an optical
side-channel signal. For a data driven method, we assume that
the attacker has access to a printer of the same model in a
similar environment. The attacker can collect a lot of training
data subject to the constraints of time and computational
resources. In addition, the attacker may manually identify the
coordinates of the printhead for a limited number of images
in the optical side-channel signal of the target AM system.

When a defense method is deployed, we assume that an
advanced attacker knows the defense method and tries to evade
the defense method by launching more sophisticated attacks.
For example, when the noise injection method is used, the
attacker tries to learn the pattern of the injected noise and arti-
ficially create training samples with the same type of injected
noise. The attacker then retrains the machine learning model
with the newly created training samples. The retrained machine
learning model may be able to automatically reject the injected
noise and proceed with the attack. We consider the advanced
attacker because the naive attacker cannot differentiate the
performance of different noise generation algorithms. We need
the advanced attacker to demonstrate the relative strength of
our proposed noise generation algorithms.

V. OPTICAL SIDE-CHANNEL ATTACK

This section describes the details of the optical side-channel
attack. We first of all mathematically describe the side-channel
attack. We then discuss the challenges in the attack process.
Finally, we present the implementation of the attack.

A. Attack Formulation

The optical side-channel attack essentially attempts to
recover the state-variable signal (xSV) from the optical side-
channel signal (xSC). The process is possible since there is
relationship between xSV and xSC. For example, the position
of the printhead directly affects the image seen by a camera.
The speed of the printhead also affects the image seen by a
camera in the form of motion blur. The relationship between
xSV and xSC can be mathematically described by

xSC[n] = f(xSV[n],
∂xSV

∂t
[n]) + e[n], (3)

where n is the time index, xSC[n] is a single frame in the
video (an image), xSV[n] is the state variable at time index
n, ∂xSV/∂t is the derivative of xSV with respect to time t, f
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is the mapping from xSV[n] and its derivative to xSC[n], and
e[n] is the noise at time index n.

Since it is very hard to mathematically solve for xSV[n]
from xSC[n], we use data-driven methods such as template
matching [19] and machine learning [29]. The outcome is the
estimated printhead trajectory throughout the printing process.

B. Challenges of the Attack

The challenges in the optical side-channel attack and the
mitigation strategies are described as follows.

Limited Relationship. The relationship between certain
channels in the state-variable signal and the optical side-
channel signal can be weak. For example, the position of the
filament, the temperatures of the nozzles, and the temperature
of the build plate do not affect the optical side-channel signal.
As a result, it is nearly impossible to directly recover these
channels in the state-variable signal. To address this challenge,
we use the common assumption in the literature to estimate
the position of the filament. That is, the attacker assumes that
the printhead mainly travels at two target speeds, a low speed
for extrusion movements and a high speed for relocating the
printhead. This assumption is used by existing side-channel
attacks [2], [29], [19]. The temperatures of the nozzle(s) and
the build plate can be easily estimated as their optical values
for a given material are typically known constants.

Camera Properties. The configuration of the camera can
affect the side-channel attack, such as the location and angle
of the camera with respect to the printer, as well as the focus
length, white balance, and exposure of the camera. To address
this challenge, we assume that, when an attacker recreates a
system to collect training images, the attacker is able to get
the same printer and camera with a similar configuration. It
is also possible for the attacker to manually label a limited
number of images in videos taken from the camera used in
the side-channel attack and use the labeled images for train-
ing purposes. In addition, the attacker augments the training
images in terms of rotation, translation, exposure, and hue, to
diversify the training dataset.

Lighting Conditions. The lighting conditions can change
over time, especially when the AM facility has windows that
let natural lights through. A robust side-channel attack should
be able to tolerate changes in lighting conditions. To address
this challenge, we use machine learning instead of template
matching to perform the attack and we augment the training
dataset by varying its exposure, brightness, and contrast, to
simulate changes in the lighting conditions.

Motion Blur Effect. It takes time for a camera to collect
enough photons to register a picture, and this time is referred
to as the shutter speed of the camera. When anything moves
significantly when the camera’s shutter is open, the moving
object gets blurred in the registered picture, and this is referred
to as the motion blur effect. To account for the motion blur
effect, we need six degrees of freedom in the label of a picture
and they are the x, y, z coordinates of the printhead as well as
the three components of the velocity vector of the printhead.
Due to the curse of dimensionality in machine learning, we
need to collect a huge number of training images with the
printhead at different locations with different velocities. This
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Fig. 6: Structure of ResNet50 in [18].

can be rather challenging. To deal with this problem, we
primarily perform experiments where the ambient light is
adequate and the camera has a fast shutter speed. In this way,
we can simply ignore the motion blur effect and we now have

xSC[n] = f(xSV[n]) + e[n]. (4)

Deposited Materials. Materials (filaments) are deposited
in a printing process. As a result, for the same location of the
printhead, it is possible for the camera to see different images
due to the deposited materials. This makes the side-channel
attack hard because for the same label (the same location of
the printhead), the attacker needs to collect multiple images
with different distribution of deposited materials on the build
plate. To make things worse, changing the deposited materials
on the build plate requires human efforts and can be very time
consuming. Fortunately, when printing an object that is smaller
than the printhead, there is a high chance that the object can
be totally obscured by the printhead. When this happens, we
do not need to consider the influence of deposited materials
on the side-channel attack.

C. Implementation of the Attack

In this paper, we use ResNet50 [18], a deep convolutional
neural network, to recover the state-variable signal from the
optical side-channel signal. The structure of ResNet50 is
shown in Fig. 6.

Modifying ResNet50. ResNet50 was originally designed
to perform image classification for 1000 classes. Hence, the
output of ResNet50 contains 1000 numbers. We modified the
last fully connected layer in ResNet50 such that it transforms
2048 neurons into 3 neurons, corresponding to x, y, and z
respectively. In the rest of the paper, we refer to the modified
ResNet50 directly as ResNet50. The input to ResNet50 is
a single image showing the printer whereas the output of
ResNet50 is the coordinate of the printhead (x, y, z).
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Training Process. To train the deep neural network, we
collect images of the printer with the printhead at various
locations without filament extrusion3. To be specific, we in-
struct the printhead to sweep the whole printing space with
a predetermined interval. To improve the robustness of the
network, we augment the training dataset by randomly rotating
the images, randomly cropping and resizing the images, and
randomly perturbing the brightness, contrast, and hue of the
images [28]. We then use the Mean Square Error (MSE) as the
loss function and the Adam algorithm [21] to train ResNet50.
We gradually reduce the learning rate in the training process.
We use a GPU for training. We select a batch size that can
fill up the available GPU memory and we shuffle the training
dataset when fetching the batches.

Testing Process. We collect two different testing datasets
with each testing dataset having its own purpose.

For the first testing dataset, we collect testing images in a
similar manner that we collect the training images. We execute
one G-code instruction at a time, wait for the instruction to
complete, take a picture, use the coordinates of the printhead
as the label for the picture, and then proceed to the next
instruction. The main advantage of this testing dataset is that
we have the ground truth label (the coordinates) for each
image and we can calculate the Mean Square Error (MSE)
between the predicted labels and the ground truth labels as the
performance metric of the neural network.

For the second testing dataset, we perform the printing
process in real time, record the printing process as a video, and
extract frames in the video one by one. The main purpose of
this testing dataset is to evaluate the performance of the neural
network on a real printing process. For this testing dataset, we
have the motion blur effect as a side effect and we do not
have the ground truth coordinates for each image because it is
hard to determine the G-code instruction that is executed for
every millisecond. Due to a lack of ground truth coordinates,
we only qualitatively measure the performance of the neural
network by visually looking at the recovered printing path.

To simulate the fact that the attacker collects training
images on an AM system that is not identical to the target
AM system, after collecting the training dataset, we remove the
camera and the printer from the experiment area and reinstall
them into the experiment area, trying our best to align the
camera and the printer such that the perspective of images in
the testing datasets looks similar to the perspective of images
in the training dataset.

VI. OPTICAL NOISE INJECTION

This section discusses the details of the optical noise
injection method. We first discuss optical projectors. We then
discuss existing and proposed noise generation algorithms.

A. Problem Definition

In this paper, we use an optical projector to generate
controllable optical signals. There are other means to generate
optical signals, such as light bulbs and Light-Emitting Diodes
(LEDs). Compared with light bulbs and LEDs, an optical

3In other words, the build plate is clean for all images in the training dataset.

projector can generate highly controllable optical signals with
a relatively large gamut.

Control Signals. For a projector to work, a control signal,
denoted by xCS, must be provided. The control signal is
typically a video file that is played by the projector. When
considering the defender’s projector and the attacker’s camera
as a system, they can be mathematically represented by

xSC[n] = g(xSV[n],xCS[n]) + e[n], (5)

where xCS[n] is the control signal at time index n, xSC[n]
is the optical side-channel signal at time index n, and e[n]
is the noise at time index n. When xCS is zero, g in Eq. 5
degenerates to f in Eq. 4.

Number of Channels. xSC, xSV, and xCS typically have
very different numbers of channels. Fig. 7 (a) shows an
example of a frame of xCS. The projector accepts images of
1024 × 768 pixels and each pixel contains 3 color values.
Hence, there are 1024 × 768 × 3 channels in xCS. Fig. 7
(b) shows the corresponding image seen by the camera and
the image contains 227 × 227 pixels and each pixel contains
3 color values. Hence, there are 227 × 227 × 3 channels in
xSC. Finally, the number of channels in xSV is equal to the
number of components in the state variable that the attacker is
attempting to recover, and in this case it is 3 for x, y, and z.

Channel Transformation. Since there are 1024 × 768
pixels in xCS and 227 × 227 pixels in xSC, xCS and xSC

are not channel compatible. Nevertheless, for every pixel in
xCS, it may have corresponding pixels in xSC. Conversely,
for every pixel in xSC, it may have corresponding pixels
in xCS. The correspondence between pixels in xCS and
pixels in xSC is referred to as channel transformation. With
channel transformation, we can express xCS using the same
channel structure of xSC. In the rest of the paper, we always
express xCS with channel transformation performed. Hence,
xCS always has the same channel structure as xSC.

Independence of Channels. In this paper, we assume that
channels are independent, although this assumption may not be
strictly true due to a phenomenon called leakage. For example,
when a projector sends a ray of light that is registered in
a single pixel in the camera, the adjacent pixels may also
be slightly affected. In this paper we neglect the leakage
phenomenon and we have

xSC[n, c] = gc(xSV[n],xCS[n, c]) + e[n, c]. (6)

In other words, xSC[n, c] is only affected by xCS[n, c]. Notice
the function here is gc, which takes xCS[n, c] as an argument.
In contrast, g takes xCS[n] as an argument.

Capability of the Projector. As shown in Fig. 7, for any
pixel in the control signal (xCS), its corresponding pixel in the
side-channel signal (xSC) typically takes on a different color.
In fact, a pixel in xCS can take any color in the whole RGB
color space. However, the corresponding pixel in xSC can only
reach a (narrow) subset of the whole RGB color space. We
refer to the color space that can be reached by a pixel in xSC

as the capability of the projector for that pixel.

If a projector has unlimited capability, we should be able to
manipulate xSC in a way to fully prevent side-channel attacks.
One way to do this is to make xSC a constant value over both
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(a) Control Signal (b) Side-Channel Signal

Fig. 7: Illustration of channel transformation and the capability
of the optical projector.

time and channel. However, due to the limited capability of
the projector, we have to carefully design xCS to maximize
the performance of protection.

B. Existing Noise Generation Algorithms

A noise generation algorithm refers to a systematic way to
create values in xCS to confuse the adversarial reconstruction
of the print design. Examples of images with injected noise
are shown in Fig. 8.

Replaying. Suppose x′
SC is the recorded side-channel

signal of a printing process that is different from the current
printing process. We let xCS = x′

SC. In other words, we replay
the side-channel signal of another printing process [19].

Random Blobs. This method fills the pixels in xCS with a
circle that has a random location, a random size, and a random
(uniform) color. The blob is maintained for a certain amount
of time and is then changed to another random blob.

White Noise. This method uses a random number genera-
tor (of a uniform distribution) to independently fill all values
in the control signal xCS.

Full Power. This method creates xCS such that the optical
projector constantly outputs the maximum power. To be spe-
cific, all values in xCS are filled with the maximum numbers.
This method attempts to blind the attacker’s camera.

C. Novel Noise Generation Algorithms

In this section, we present three novel noise generation
algorithms. These algorithms rely on the information of the
print process and hence are print-specific.

Channel Uniformization. This method attempts to make
xSC a constant over the channel index c. In other words, this
method creates a control signal such that each picture seen by
the camera is of a uniform color. In this way, it becomes hard
for the attacker to determine the location of the nozzle.

For a specific state (or a specific value of xSV[n]), if
the intersection of the ranges of xSC[n, c] (with respect to
xCS[n, c]) for all c is not empty, we can select any value in
this intersection as the constant value C[n]. We then create
xCS[n, c] by numerically solving

argmin
xCS[n,c]

|gc(xSV[n],xCS[n, c])− C[n]|. (7)

xCS[n] is simply a collection of xCS[n, c] for all c. Both C[n]
and xCS[n] depends on the specific value of xSV[n].

If the aforementioned intersection is empty, we select a
constant value C[n] that is likely to be reached by most
xSC[n, c] (as c is varied). Since xCS typically makes xSC

brighter, we can select C[n] by

C[n] = h({xSC[n, c]|c}), (8)

where h is a function to find a large value of a set, such as the
99th percentile of the set. We do not use the maximum value
of the set because it may be susceptible to outliers.

State Uniformization. When the state (xSV[n]) changes,
the image seen by the camera (xSC[n]) changes. It is this
relationship that makes it possible to infer the state from
the image. This method creates a control signal (xCS) in an
attempt to make the image (xSC[n]) a constant as the state
(xSV[n]) changes. In other words, xSC[n] as a function of
xSV[n] is uniformized.

For a specific channel index c, if the intersection of the
ranges of xSC[n, c] (with respect to xCS[n, c]) for all states
(namely all values of xSV[n]) is not empty, we can select any
value in this intersection as the constant value C[n, c]. We then
create xCS[n, c] by numerically solving

argmin
xCS[n,c]

|gc(xSV[n],
∂xSV

∂t
[n], · · · ,xCS[n, c])−C[n, c]|. (9)

xCS[n] is simply a collection of xCS[n, c] for all c. Both
C[n, c] and xCS[n, c] are constant with respect to xSV[n].

If the aforementioned intersection is empty, we select a
constant value C[n, c] that is likely to be reached by most
xSC[n, c] (as xSV[n] is varied). Since xCS typically makes
xSC brighter, we can select C[n, c] by

C[n, c] = h({xSC[n, c]|xSV[n]}), (10)

where h is a function to find a large value of a set, such as
the 99th percentile of the set.

Fig. 9 (a) shows the color of a single pixel in xSC[n] as a
function of the first two coordinates of xSV[n]. For each value
of xSV[n] or each dot in Fig. 9 (a), as the control signal for the
specified pixel sweeps all of its possible values, the range of
the color of the specified pixel in xSC[n] forms a color space.
Fig. 9 (b) shows the color spaces for four different states which
are notated in Fig. 9 (a) as red circles. We can see that the
intersection of the color spaces is empty.

Fig. 9 (c) shows the color of the corresponding pixel in
xCS[n] obtained by the state uniformization method and Fig.
9 (d) shows the color of the specified pixel in xSC[n] after
the obtained xCS[n] is applied. We can see that the pattern is
more uniform and it may be harder for the attacker to infer
(x, y) based on the observed color at this specific pixel.

State Randomization. This method attempts to randomize
the relationship between the image (xSC[n]) and the state
(xSV[n]). To be specific, we create a control signal (xCS) such
that the image (xSC[n]) for a specific state (xSV[n]) appears
to be the image (xSC[n]) for another random state (xSV[n]).
Since the relationship between xSC[n] and xSV[n] is disrupted,
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(a) No Protection (b) Replaying (c) Random Blobs (d) White Noise

(e) Full Power (f) Channel Uniformization (g) State Uniformization (h) State Randomization

Fig. 8: Example images with noise generated by different noise generation algorithms.

we can expect that it will be hard for the attacker to learn the
true relationship between xSC[n] and xSV[n].

Since a projector can only make pixels in xSC brighter, we
apply a constant value of xCS[n] for all states (or all values
of xSV[n]). This constant value is referred to as the offset. By
using the offset, it is possible for xCS to change xSC along
the opposite direction with respect to the offset. We express
the strength of the offset as the percentage of the maximum
value. By default, we apply an offset with a strength of 50%.

We now discretize the domain of xSV[n] such that there is
a finite number of states. By default, we discretize the domain
such that all states are equally spaced. These states are referred
to as master states and they serve as the targets to be matched.

For any new state xSV[n], we randomly select one of the
master states as the target state. Suppose the target state is
x′
SV[n] and its corresponding side-channel signal is x′

SC[n].
We create xCS[n] such that xSC[n] gets close to x′

SC[n]. To
be specific, we find xCS[n] by determining its value for each
channel independently, and xCS[n, c] is equal to

argmin
xCS[n,c]

|gc(xSV[n],xCS[n, c])− x′
SC[n, c]|. (11)

We repeat this process for all channels and we can obtain
xCS[n]. In this way, xSC[n] = g(xSV[n], · · · ,xCS[n]) looks
like x′

SC[n, c]. When the attacker analyzes xSC[n], he or she
will more likely infer x′

SV[n] instead of xSV[n].

This method is effectively a combination of channel uni-
formization and an advanced version of replaying. It attempts
to hide the real printhead by channel uniformization and
creates a fake printhead as best as the projector allows.

VII. EVALUATION

A. Experiment Setup

To evaluate the performance of the proposed optical side-
channel attack and the proposed defense method, we set up
a test bed as shown in Fig. 10. The test bed was composed
of a SeeMeCNC Rostock Max V3 printer, a MOKOSE UC70
camera, and a ViewSonic Pro7827HD projector. The whole
test bed was placed in a dedicated room with fully controlled
lights (two lamps and no window).

Settings. To ensure the consistency of the images, we
disabled auto white balance, auto exposure, and auto focus
in the camera. We manually set the white balance to 4600 K
and the exposure to -2. The focus length of the camera was
mechanically adjusted to clearly show the build plate of the
printer. We used default settings for all other parameters in the
camera and all parameters in the projector.

B. Optical Side-Channel Attack

Training Dataset. We collected images in the training
dataset according to the procedures outlined in Section V-C.
The printing area of the printer was a cylinder of 137.5 mm in
radius and 404 mm in height. Since most printing processes
only involved a fraction of the whole printing space, to save
time, we mainly focused on the printing area where z was less
than or equal to 5 mm.

There are two parts of the training dataset. For the first part,
we instructed the printhead to sweep the whole xy plane with a
step size of 2.5 mm and the z axis with a step size of 1.0 mm.
This part covers a large printing space with a coarse resolution.
There are 133,365 images in this part. For the second part, we
instructed the printhead to sweep the xy plane for a radius of
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Fig. 9: Illustration of the state uniformization method. (a) A
pixel of xSC[n] as a function of xSV[n, 0 : 2]. (b) Color spaces
for four different states. The four color spaces approximately
correspond to the four states with red circles in (a). (c) The
control signal obtained by the state uniformization method.
(d) A pixel of xSC[n] as a function of xSV[n, 0 : 2] after the
control signal is applied.

r = 50 mm with a step size of 1.0 mm and the z axis with a
step size of 0.25 mm. This part covers a small printing space
with a high resolution. There are 47,385 images in this part.
In total, there are 180,750 images in the training dataset.

Each image in the training dataset is of size 1280x720 but
the neural network accepts images of size 227x227. We per-
formed the following procedures to downsample and augment
images in the training dataset:

1) Resize the image into a shape of 480x270.
2) Randomly rotate the image by -3 to 3 degrees.
3) Scale the image randomly by a factor of 0.85 to 1.0.
4) Randomly crop the image with a size of 227x227.
5) Randomly change the brightness, contrast, saturation,

and hue by 20%, 10%, 10%, and 5% respectively.

Training Process. We started with a ResNet50 network
that was pretrained on the ImageNet dataset [23]. We per-
formed training on an RTX 2060 GPU with 6 GB of memory.
We used a mini batch size of 40 since it fills up most of the
available memory. We used the Mean Square Error (MSE) as
the loss function and we used the Adam algorithm [21] for
training. The initial learning rate was set to 0.001 and the
weight decay was set to 0.0005. For every two epochs, we

Fig. 10: Photo of the testbed.
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Fig. 11: Loss as a function of iteration or epoch.

reduced the learning rate by 10%. We performed the training
process for 10 epochs. The loss as a function iteration/epoch
is shown in Fig 11. We can see that the error converged and
the training process was successful.

Testing Datasets. By the procedures in section V-C, we
collected two testing datasets for a printing process that
manufactured a gear, as shown in Fig. 12 (a). To avoid multiple
superimposed layers when displaying the results, we focus on
a single layer (z = 1.3 mm) for the printing process. Fig. 12
(b) shows the ground truth of the printing path at this layer.

Testing Results. Fig. 12 (c) shows the recovered path
for the first testing dataset (a contrived printing process with
ground truth coordinates). The average error is 0.71 mm and
the maximum error is 1.50 mm. The recovered path is very
close to the ground truth. Fig. 12 (d) shows the recovered path
for the second testing dataset (a real printing process with the
motion blur effect as a side effect). The shape of the path is
very similar to the ground truth. This verifies that the motion
blur effect can be neglected in our experiments.

C. Defending Against the Naive Attacker

We applied the seven noise generation algorithms to the
printing process, one at a time, as demonstrated in Fig. 8. Since
the naive attacker was not aware of the injected noise, for each
noise generation algorithm, the attacker used the previously
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(a) Gear Model (b) Ground Truth

(c) Testing Dataset 1 (d) Testing Dataset 2

Fig. 12: Model and paths recovered by the neural network
for different testing datasets. (a) The gear model. (b) The
ground truth path. (c) The recovered path for testing dataset
1 (a printing process with ground truth coordinates). (d) The
recovered path for testing dataset 2 (a real printing process).

TABLE I: Performance Metrics

Noise Generation Algorithm
Naive Attack Advanced Attack

Mean
Error

Max
Error

Mean
Error

Max
Error

No Protection 0.71 1.50 0.71 1.50
Replaying 12.08 23.43 4.06 5.84
Random Blobs 12.11 102.04 4.19 5.58
White Noise 39.88 63.11 4.08 5.91
Full Power 67.49 104.97 5.12 7.36
Channel Uniformization 110.51 145.79 4.47 7.51
State Uniformization 90.44 117.21 4.57 7.40
State Randomization 31.86 76.20 5.48 15.35

The units of errors are in mm.

trained neural network to directly test on the protected testing
dataset4. The results and the errors are shown in Fig. 13. We
see that all noise generation algorithms defeated the attack
since the recovered paths are nothing like the true path.

D. Defending Against the Advanced Attacker

An advanced attacker knows the existence of the injected
noise and attempts to defeat the protection method. For this
purpose, the advanced attacker collects training images with

4To obtain the performance metrics, we collected the protected testing
datasets using the same procedure to collect the training dataset or the first
testing dataset.

injected noise5 and uses the new training dataset to train the
neural network, hoping that the neural network can recognize
the noise pattern, reject the injected noise, and properly recover
the coordinates in the testing images.

For noise generation algorithms that contain randomness,
such as replaying, random blobs, white noise, and state ran-
domization, the details of the injected noise in the training
dataset are different from those in the printing process to be
recovered (the protected testing dataset), such as locations and
sizes for random blobs, target states for replaying and state
randomization, and the exact distribution of pixels for white
noise. A neural network that is overfitted will not succeed in
rejecting the noise, and the neural network has to learn the
pattern of the injected noise and reject unseen noise that has
the same pattern but with different details.

Due to the high cost of obtaining images with injected
noise, we only considered a training dataset (with injected
noise) that covered the whole xy plane with a step size of 5 mm
and covered the z axis for a single point, namely z = 5 mm.
The advanced attacker used the new training dataset to further
train the previously trained neural network for additional 30
epochs, starting with a learning rate of 0.001, which was
decreased by 10% for every two epochs. The advanced attacker
then used the new neural network to test on images from the
protected testing dataset. The results are shown in Fig. 14.

We can see that the advanced attacker did a much better job
than the naive attacker in recovering the state-variable signal
from the optical side-channel signal. Although the errors in
Figs. 14 (b) to (g) are higher than those in Fig. 14 (a), a lot of
details are clearly recovered such as the number of teeth in the
gear, the overall dimension of the gear, and the infill pattern. In
Fig. 14 (h), we can also see that state randomization algorithm
was the only noise generation algorithm that could withstand
the advanced side-channel attack.

VIII. DISCUSSION

A. Performance of the Attackers

When no noise was injected, the naive attacker could do a
pretty good job in recovering the coordinates of the printhead
from the optical side-channel signal. Although the neural
network was trained on a dataset where the printhead was
located in a limited number of locations, the neural network
could properly identify the coordinates of the printhead for a
location that was not present in the training dataset. In other
words, the neural network could intelligently interpolate with
respect to the coordinates of the printhead. When noise was
injected, the naive attacker failed all together. This indicates
that the neural network was unable to analyze images with
patterns that it had never seen before.

One may notice that the colors in Fig. 12 (a) and Fig. 12
(b) do not match. The colors in the paths show the speed for
each movement. A blue color corresponds to a lower printing
speed whereas a red color corresponds to a higher printing

5To collect training images with injected noise, the attacker may setup a
testbed with a projector, imitate the noise generation algorithm, and collect the
training images at various locations of the nozzle. The attacker may also extract
images with injected noise from previous printing processes and somehow,
although very hard, manage to obtain the correct label for each image.
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mean=12.08, max=23.43

(b) Replaying
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(c) Random Blobs
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(d) White Noise
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Fig. 13: Recovered path by a naive attacker when noise generated by various algorithms was applied. The title in each figure
shows the mean and maximum errors in mm. The naive attacker was not aware of the protection methods and used a neural
network that was never exposed to any injected noise. We see that all noise generation algorithms effortlessly defeated the attack.
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(b) Replaying
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Fig. 14: Recovered path by an advanced attacker when noise generated by various algorithms was applied. The advanced attacker
was aware of the protection method. For each noise generation algorithm, the attacker used images that contain injected noise
by the same noise generation algorithm to further train the neural network. We can see that the advanced attacker could still
defeat most of the noise generation algorithms.
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speed. The colors in the paths do not match because we used
a simulator to determine the speed for each movement in the
ground truth (and the first testing dataset), whereas the speed
in the second testing dataset was determined by the firmware
in the printer. Currently, there is a noticeable error between
the simulated velocity and the actual velocity.

According to experiment results by the advanced attacker,
by seeing a limited number of images with injected noise,
the neural network was able to filter out the injected noise and
proceed with recognizing the coordinates of the printhead, even
though at a reduced accuracy. Notice that for noise generation
algorithms with randomness, the details of the injected noise in
the training dataset were different from those in the protected
testing dataset, but the neural network could still recognize and
reject the injected noise. This proves that the neural network
was not simply remembering the details of the injected noise
but intelligently learned the pattern of the injected noise.

B. Performance of the Noise Generation Algorithms

According to the evaluation results, only the state random-
ization algorithm could fight against the advanced attacker.
One way to intuitively understand the performance of different
noise generation algorithms is to visually inspect the images
after the noise is injected. For images in Fig. 8 (b) to (g),
a human being can in general see the location of the nozzle
despite the existence of the injected noise.

Full power, channel uniformization, and state uniformiza-
tion were unable to protect the intellectual property due to the
limited capability of the projector. We can expect that, as the
projector gets more powerful, the full power noise will blind
the camera and the uniformization methods will completely
hide the details.

The replaying method failed mainly due to the fact that it
did not consider the channel effect caused by the projector,
the physical space, and the projector. When a recorded video
is directly fed to a projector, the projected motion picture will
look different from the real thing. In other words, a human
being is able to differentiate the projected nozzle from the
real nozzle in Fig. 8 (b).

To mitigate the problem faced by the replaying method,
the state randomization algorithm searches for the control
signal such that the projected nozzle looks closest to a real
nozzle. In addition, the state randomization algorithm attempts
to hide the real nozzle similar to what is attempted by the state
uniformization algorithm.

C. Limitations and Future Work

In this paper, we were able to ignore the motion blur effect
by using a camera with a fast shutter speed. However, when the
ambient light is low, a camera will suffer from a low shutter
speed and we can no longer ignore the motion blur effect.
To mitigate this problem, as a direction for future work, we
can create a training dataset where the label of each image
contains not only the position but also the velocity. The main
challenge is that a lot more samples are required as the degrees
of freedom is now six instead of three. In addition, it is very
hard to precisely control the position and the velocity at the
same time for each training image.

In this paper, the position and angle of the camera largely
remained stable. The neural network was able to deal with
a small amount of variation in the position and angle of the
camera. It will be interesting to know if it is possible to train
a single neural network that can recognize the coordinates of
the printhead from multiple very different positions and angles
of the camera, especially from a position or an angle that does
not appear in the training dataset.

In this paper, the printed object was small in size and was
completely blocked by the printhead. As a result, we were
able to ignore the influence of deposited materials on the side-
channel attack. When printing a large object, the deposited
materials may affect the side-channel attack. Future work can
study how the deposited materials affect the performance of
both the naive attacker and the advanced attacker.

IX. CONCLUSION

In this paper, we proposed an optical side-channel attack
to steal intellectual property in AM systems. The intellectual
property is defined as the coordinates of the printhead as a
function of time, aka the state-variable signal. We used a
deep neural network to implement the side-channel attack.
The neural network takes as input an image of the printer and
outputs the estimated coordinates of the printhead. The neural
network can tolerate a certain level of variation in the camera’s
position and angle as well as lighting conditions. The neural
network contains a certain level of intelligence because it can
accurately determine the coordinates of the printhead for an
image that is not present in the training dataset.

We experimented with the noise injection method to defend
against the proposed optical side-channel attack. We found
that any noise generation algorithm can easily defeat a naive
attacker, who has no knowledge of the defense method and
the trained neural network is never exposed to any image with
injected noise. However, an advanced attacker, who knows the
existence of the defense method and attempts to filter out the
injected noise by adding images with injected noise in the
training dataset, can easily defeat existing noise generation al-
gorithms, such as relaying, random blobs, white noise, and full
power. To solve this problem, we proposed three novel noise
generation algorithms and they are channel uniformization,
state uniformization, and state randomization. Our experiment
results indicate that only the state randomization algorithm can
with standard the attack by an advanced attacker.

ACKNOWLEDGMENT

This project is supported by National Science Foundation
(NSF) under Grant CPS-1739259 and CPS-1931977.

REFERENCES

[1] Y. AbouHashem, M. Dayal, S. Savanah, and G. Štrkalj, “The
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APPENDIX

A. Attack on More Objects

Due to the limitation of space in the paper, when discussing
the optical side-channel attack, we only presented results for
the gear object. Fig. 15 and Fig. 16 respectively show the
ground truth paths and the recovered paths for eight different
objects. Specifically, we performed our optical side-channel
attack for a real printing process to obtain paths in Fig. 16.
We can see that our optical side-channel attack can recover the
paths for a variety of objects with different sizes.

B. Decomposition of Layers

Due to the limitation of space in the paper, we focused on
a single layer for the gear object. Figs. 17 and 18 respectively
show the ground truth paths and the recovered paths of the
gear object for multiple layers. Specifically, we performed our
optical side-channel attack for a real printing process to obtain
paths in Fig. 16. We can see that our optical side-channel attack
can recover the paths for different layers.

C. Advanced Attack on a Key

Due to the limitation of space in the paper, we focused
on the gear object when evaluating the performance of various
noise generation algorithms. Fig. 19 shows the recovered paths
by an advanced attacker for a printing process that manufac-
tures a key with various types of injected noise applied. We
can see that only the state randomization algorithm can protect
the path from being recovered by the attacker.

D. Offset in State Randomization

We performed a series of experiments to understand how
the offset strength affects the performance of the state random-
ization algorithm in defending against an advanced attacker.
The results are shown in Fig. 20. We can see that the errors
increase significantly until the offset reaches 50% from 0%.
We use an offset of 50% since it has a relatively high ratio of
performance over price (power consumption).

E. Generalization to Other Side Channels

The noise injection method can be generalized to other
side channels. For each type of side channels, there is a
corresponding signal generator, as demonstrated in table II.
Most of the noise generation algorithms can be directly applied
to other side channels. The only exception is the random blobs
generation algorithm, which is only applicable to the optical
side channel. We believe that noise generation algorithms that
are effective in fighting against the optical side-channel attack
will also be effective in fighting against other side-channel
attacks. This is because the optical side-channel attack is an
attack that can be easily launched but hard to defend. In
contrast, acoustic side-channel attacks cannot be performed
at all unless a lot of restrictive assumptions are made. More
details can be found in the next subsection.

TABLE II: Recorders and Generators

Side Channels Sensors Generators

Acoustic Microphone Speaker
Optical Camera Projector
Thermal Temperature Sensor Heater
Magnetic Magnetometer Coil
Power Power Sensor Resistor
Electromagnetic Antenna Antenna
Vibration Accelerometer Motor

F. More Discussion on the Acoustic Side-Channel Attack

The acoustic side-channel attack has its unique challenges.

Integration Drift. The acoustic side-channel signal is
strongly correlated with the velocity of the printhead and an
attacker can only recover the velocity of the printhead from
the acoustic side-channel signal. To obtain the position, the
attacker must integrate the estimated velocity over time. Since
the estimated velocity usually contains a lot of errors, there
will be more errors in the estimated position. This problem is
known as the integration drift problem [30].

Non-Unique Solution. Multiple states of the printer can
generate the same side-channel signal. As a result, it becomes
very hard to determine the exact state for a given side-channel
signal. For example, the acoustic signals for a printhead
moving along one direction and its opposite direction are
almost identical.

Due to these challenges, it is very hard to perform the
acoustic side-channel attack. Existing acoustic side-channel
attacks rely on a lot of assumptions to make it possible, and
as a consequence they only work for a very limited amount
of contrived printing processes. For example, the attack in [2],
[29] restricts the directions of movements to be eight cardinal
directions as a way to reduce the search area. The attack in
[2] further assumes that multiple layers have identical outlines
and the recovered paths are averaged to reach a reasonable
accuracy. The attack in [19] assumes that there are no short
and rapid movements. Otherwise, it is not possible to identify
the boundaries between constant-speed movements.

In contrast, the optical side-channel attack does not face
these problems and can recover the printing path for an
arbitrary printing process. This is the primary reason we
focused on the optical side-channel attack in this paper.

G. More Discussion on the Infrared Side-Channel Attack

The authors in [3] claimed that their infrared side channel
failed due to a low resolution, a low frame rate, a lack of auto-
focus capability, and a single camera perspective. However, it
is unlikely that they were the real reasons since our optical
side-channel attack faced the same problem and we have a
lower resolution (227x227). It is more likely that a root cause
of failure is a lack of proper methodology. There is a great
potential to adapt our optical side-channel attack to the infrared
side-channel attack and we may even recover more information
such as the temperature(s) of the nozzle(s) and the temperature
of the build plate.
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(a) Drone (b) Engine (c) Gun (d) Nut

(e) Propeller (f) Spanner (g) Turbine (h) Tyre

Fig. 15: Ground truth paths for eight different objects. The paths were obtained by analyzing the G-code instructions for each
object. We stacked all layers together. To prevent layers from completely blocking each other, we set the opacity level (the alpha
level) for each line segment to be 15%. The title of each sub-figure shows the spans of the path along the x, y, and z axes.

(a) Drone (b) Engine (c) Gun (d) Nut

(e) Propeller (f) Spanner (g) Turbine (h) Tyre

Fig. 16: Recovered paths by our optical side-channel attack for the eight different objects. Notice the range of the objects along
the z axis. In the training dataset, we mainly focused on layers at or below 5 mm and we had very limited samples for higher
layers. Nevertheless, the neural network did a good job recovering paths for higher layers. Some objects were not recovered with
a high precision because they were relatively tall. Overall, our optical side-channel attack works well for a range of objects.
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58.8 mm x 59.0 mm

(a) Layer 1

58.8 mm x 59.0 mm

(b) Layer 2

58.8 mm x 59.0 mm

(c) Layer 5

58.8 mm x 59.0 mm

(d) Layer 10

58.8 mm x 59.0 mm

(e) Layer 20

58.8 mm x 59.0 mm

(f) Layer 25

58.8 mm x 59.0 mm

(g) Layer 30

58.8 mm x 59.0 mm

(h) Layer 35

Fig. 17: Ground truth paths of the gear object for eight different layers. The title of each sub-figure shows the spans of the path
along the x and y axes. The color represents the relatively speed of each movement.

59.4 mm x 59.4 mm

(a) Layer 1

59.4 mm x 59.3 mm

(b) Layer 2

59.2 mm x 59.5 mm

(c) Layer 5

59.0 mm x 59.7 mm

(d) Layer 10

59.2 mm x 59.6 mm

(e) Layer 20

59.1 mm x 59.7 mm

(f) Layer 25

59.0 mm x 59.8 mm

(g) Layer 30

58.5 mm x 59.9 mm

(h) Layer 35

Fig. 18: Recovered paths of the gear object by our optical side-channel attack for eight different layers. We can see that our
optical side-channel attack can recover the path of an object for multiple layers. We estimated the layer changing moments based
on the layer changing moments in the ground truth paths. Since the simulation was not perfect, the layer changing moments
were not perfectly estimated. As a result, you may see missing or extra parts in a layer, such as the missing part in (b).
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mean=0.93, max=1.97

(a) No Protection

mean=4.06, max=5.52

(b) Replaying

mean=4.27, max=5.58

(c) Random Blobs

mean=4.08, max=5.44

(d) White Noise

mean=4.90, max=7.18

(e) Full Power

mean=4.28, max=7.28

(f) Channel Uniformization

mean=4.80, max=7.47

(g) State Uniformization

mean=5.53, max=14.00

(h) State Randomization

Fig. 19: Recovered paths by the advanced attacker on a printing process that manufactures a key. The title in each sub-figure
shows the average and maximum errors between the reconstructed paths and the ground truth paths. The state randomization
algorithm is the most effective noise generation algorithm to hide details of the printed object.

mean=4.64, max=18.50

(a) Offset=0%

mean=4.51, max=9.63

(b) Offset=25%

mean=5.48, max=15.35

(c) Offset=50%

mean=6.39, max=14.39

(d) Offset=75%

mean=6.92, max=17.63

(e) Offset=100%

mean=4.85, max=15.46

(f) Offset=0%

mean=4.56, max=9.78

(g) Offset=25%

mean=5.53, max=14.00

(h) Offset=50%

mean=6.30, max=18.58

(i) Offset=75%

mean=6.92, max=19.08

(j) Offset=100%

Fig. 20: Recovered paths by the advanced attacker on two printing processes, subject to the state randomization algorithm with
five different offset levels. The offset level is expressed in terms of the percentage of the maximum value. The title in each
sub-figure shows the average and maximum errors between the reconstructed paths and the ground truth paths.
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