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Abstract—Memory forensic tools rely on the knowledge of
kernel symbols and kernel object layouts to retrieve digital
evidence and artifacts from memory dumps. This knowledge is
called profile. Existing solutions for profile generation are either
inconvenient or inaccurate. In this paper, we propose a logic
inference approach to automatically generating a profile directly
from a memory dump. It leverages the invariants existing in ker-
nel data structures across all kernel versions and configurations
to precisely locate forensics-required fields in kernel objects. We
have implemented a prototype named LOGICMEM and evaluated
it on memory dumps collected from mainstream Linux distribu-
tions, customized Linux kernels with random configurations, and
operating systems designed for Android smartphones and embed-
ded devices. The evaluation results show that the proposed logic
inference approach is well-suited for locating forensics-required
fields and achieves 100% precision and recall for mainstream
Linux distributions and 100% precision and 95% recall for
customized kernels with random configurations. Moreover, we
show that false negatives can be eliminated with improved logic
rules. We also demonstrate that LOGICMEM can generate profiles
when it is otherwise difficult (if not impossible) for existing
approaches, and support memory forensics tasks such as rootkit
detection.

I. INTRODUCTION

Advances in memory forensics [13], [14], [37] have shown
practical applications in a number of important fields, such
as crime investigation, rootkit and malware detection, etc.
Memory forensics is capable of revealing a substantial amount
of memory-residential information such as encryption keys,
network traffics, running processes, and in-memory malware,
and analyzing volatile memory from various devices, including
desktops, smartphones, embedded devices, etc.

In order to reveal evidence and artifacts from captured
physical memory, complete understanding of kernel symbols
and kernel data structures is required, which, in the context
of memory forensics, is called a profile. To perform memory
forensics on a memory dump, a profile of the target system
must be generated in advance to the analysis. For Windows
operating systems, generating a profile is less challenging.
The layout of kernel objects can be retrieved from Microsoft
symbol server [10], which contains pre-built kernel debug
symbols. Moreover, Windows kernels have limited versions
such that users can reuse profiles from symbol servers without

needing to know product names, releases or build numbers.
However, for Unix-based OSes like Linux, kernel versions
upgrade frequently and kernels are highly configurable. Dis-
tributors and personal users can customize their own kernels
by enabling or disabling various kernel configurations for
new features or special hardware. Figure 1 shows some con-
figurations (#ifdef) in task_struct. Though forensics-
required fields are not controlled by configurations in general,
their offsets are affected by configurations because enabling
or disabling configurations result in adding or removing fields
and pushing forensics-required fields to different offsets. While
official distributions could potentially provide kernel symbols
and debugging information when a new version is released, it is
infeasible for user-customized Linux kernels, Android systems,
and embedded devices, in which cases vendors do not release
debug symbols and the layouts of kernel data structures are
extremely diverse due to specific preferences such as tmpfs
support, control groups, and security options (e.g. SELinux,
AppArmor). In conclusion, it is impossible to have pre-built
profiles that work for all Linux kernels.

Researchers have proposed solutions to tackle the Linux
profile generation problem. The most popular approach
adopted by memory forensics and virtual machine introspec-
tion tools (e.g., Volatility [13], LibVMI [6], and DECAF [27])
is extracting the profile from kernel debug symbols. However,
this approach is not designed for binary-only memory foren-
sics. First of all, it needs access to the live system and requires
that kernel headers and toolchains be installed. Second, a test
kernel module must be built or inserted to collect debug sym-
bols, which is often not feasible for production environments.
Moreover, human intervention is needed to update the test
kernel module along with kernel upgrades, which is rather
inconvenient for both developers and users.

Another approach attempts to reconstruct kernel objects
for binary-only memory forensics by analyzing the assembly
code of kernel functions [16], [22], [35], [36]. The intuition
is, when an object member is accessed, a memory-dereference
instruction is executed and the offset of this object member is
revealed in that instructions. However, this approach can hardly
be generalized because kernel functions can be compiled into
various instruction formats by different compilers on different
architectures. Moreover, it is difficult to precisely locate these
offset-revealing memory dereferences from a large number of
memory-dereference instructions in the kernel code.

In this paper, we present a logic inference approach that
reasons about offsets of forensics-required fields in kernel
objects in an accurate and efficient manner, without knowing
the exact kernel version and the configuration. Our approach
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is motivated by the observation that only a small number of
kernel object fields are required to perform memory forensics
(forensics-required fields) and those fields exhibit invariants
that remain unchanged regardless of kernel versions and
build configurations. To support this observation, we con-
ducted kernel evolution analysis over 47 major Linux versions.
Note that the offsets of forensics-required fields may vary due
to different kernel configurations [42] and versions [48]. Our
approach considers such uncertainty and codifies version- and
configuration-agnostic invariant patterns for forensics-required
fields, allowing the inference engine to efficiently locate their
offsets in kernel objects.

We have implemented a prototype LOGICMEM to demon-
strate the efficacy of our proposed approach. We evaluate LOG-
ICMEM on 16 memory dumps collected from the mainstream
Linux distributions, e.g., CentOS, Debian, and Ubuntu, 30
memory dumps from customized Linux kernels with random
configurations, six long-term support (LTS) or stable releases
of recent Android kernels, and two kernel images designed
for embedded devices. The evaluation results show that LOG-
ICMEM can infer forensics-required fields with perfect accu-
racy for the mainstream Linux kernels and 100% precision
and 95% recall for customized Linux kernels with random
configurations. The false negatives can be further eliminated
after a minor adjustment of the logic rules. In the case studies,
we demonstrate that, while existing memory forensics tools are
unable to analyze Android and embedded systems due to the
absence of kernel symbols, LOGICMEM can still support eight
Volatility plugins. Furthermore, we show that LOGICMEM can
enable the rootkit detection plugin in Volatility to analyze a
rootkit-infected memory dump.

We summarize our contributions as follows:

• We propose a logic inference approach to locating
offsets of forensics-required fields in kernel data struc-
tures without any knowledge about kernel versions and
configurations.

• We design and implement LOGICMEM to demonstrate
the efficacy of our proposed approach, and evaluate
LOGICMEM on 16 memory dumps collected from
mainstream Linux distributions and 30 kernels built
with random configurations. The evaluation results
show that LOGICMEM can achieve 100% precision
and at least 95% recall with reasonable efficiency.

• We demonstrate the ability of LOGICMEM to support
some memory forensics tasks for memory dumps
collected from Android systems and embedded de-
vices, which is difficult (if not impossible) for existing
approaches such as Volatility.

To facilitate further research, we make the source code and
dataset publicly available1.

II. BACKGROUND AND MOTIVATION

A. A Running Example

A profile contains the locations of kernel symbols and
kernel object layouts that guide memory forensic tools to

1https://github.com/bitsecurerlab/LogicMem

01. struct task_struct {

02. #ifdef CONFIG_SMP

03.     struct llist_node wake_entry;

04.     int on_cpu;

05. #endif

       ...

06.     struct list_head tasks;

07. #ifdef CONFIG_SMP

08.     struct plist_node pushable_tasks;

09. #endif

10.     struct mm_struct *mm, *active_mm;

       ...

11.     pid_t pid;

12.     pid_t tgid;  

13. #ifdef CONFIG_CC_STACKPROTECTOR

14.     unsigned long stack_canary;

15. #endif

16.     struct task_struct *real_parent;

17.     struct task_struct *parent;

       ...

18.     char comm[TASK_COMM_LEN];

17. }

06.     struct list_head tasks;

10.     struct mm_struct *mm, *active_mm;

16.     struct task_struct *real_parent;

17.     struct task_struct *parent;

18.     char comm[TASK_COMM_LEN];

   Offset: 1904

   Offset: 1984

   Offset: 2164

   Offset: 2160

   Offset: 2176

11.     pid_t pid;

12.     pid_t gid;

   Offset: 2184

   Offset: 2584
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Fig. 1: An example of using a profile to retrieve information
about running processes in Linux kernel.

find a kernel object of interest and retrieve values from
desired fields. Figure 1 shows an example of using a profile
to retrieve the process information from task_struct.
Firstly, a memory forensic tool obtains the virtual address
of the first process from the init_task symbol. Then
it translates it into the corresponding physical address and
locates the task_struct object in the memory dump. Next,
the offsets of the desired fields (highlighted in Figure 1) in
task_struct are obtained from the profile. As presented
in Figure 1, the big challenge is that Linux kernel profiles are
configuration- and version-specific: Linux project upgrades fre-
quently and contains various compile configurations, a profile
generated for specific version and configurations is not likely
to be reused by another kernel. Existing approaches [6], [13],
[27] build a profile from kernel headers and configurations
used to built this kernel. However, it requires access to the
live system and installation of kernel headers and compiler
toolchains, which is impossible for binary-only forensics such
as crime scene investigation, cloud service, and production en-
vironment. Other approaches [16], [22], [35] proposed binary-
only approaches to solve this problem, but, according to their
papers, failed to achieve high precision and recall. In this paper,
we propose a logic inference approach that has high generality
and accuracy with reasonable efficiency.

B. Existing Techniques

a) Compiler-based Approach: Compiler-based profile
generation is the most common approach adopted by memory
forensics [13] and virtual machine introspection [6], [27]
tools. It produces a profile by collecting kernel symbols from
System.map file in a live system and compiling a kernel
module to emit debugging information. Therefore, it is capable
of generating a profile with 100% accuracy. However, this
approach is by nature impractical for binary-only forensics.
First, it requires access to the live system to collect the
System.map file and compile a test kernel module. More-
over, it requires compiler toolchains and kernel headers to be
installed in the target system, which is hardly the case for
servers, IoT devices, and smartphones.

b) Assembly-based Approach: Assembly-based profile
generation extracts kernel object layouts directly from the

2

https://github.com/bitsecurerlab/LogicMem


memory dump. The insight is that when an object member is
accessed, an offset-based memory deference is performed, and
this offset is observable from assembly instructions, which are
defined as Offset-Revealing Instructions (ORIs) [22]. There-
fore, an assembly-based approach utilizes ORIs from binary
to infer the offsets of object members. RAMPARSER [16]
reconstructs kernel objects based on ORIs. RAMPARSER first
identifies multiple kernel functions that operate on forensics-
required fields. Then it obtains addresses of identified functions
from System.map file and disassembles kernel functions
from a memory dump. To locate ORIs that access forensics-
required fields, it compares ORIs from multiple functions that
access the same field, and performs an intersection to find
ORIs using the same offset. Eventually, offsets of forensics-
required fields are extracted from identified ORIs and used for
memory forensics analysis. ORIGEN [22] is another work that
recovers offsets of object fields in a similar fashion. ORIGEN
can generate profiles for cross-version memory forensics. More
specifically, it first identifies ORIs from one version of software
whose profile is available. Then it performs Control Flow
Graph (CFG) based code search to locate equivalent ORIs in
an unseen version of the same software. Afterwards, it retrieves
offsets of object fields from the located ORIs and generates a
new profile. Another work proposed by Pagani [35] identifies
ORIs by monitoring runtime memory access patterns. Simi-
larly, it first finds kernel functions that operate on forensics-
required fields in kernel objects and extracts them from a
memory dump. Then it re-executes kernel functions using
the Unicorn emulator [12]. Along the execution, it monitors
memory footprints to reveal offsets of forensics-required fields.
However, one major drawback of this work is heavy execution
overhead: it takes hours to generate a profile for one memory
dump.

This assembly-based approach faces several fundamental
challenges. First of all, the same source-code-level statement
can be compiled into instructions in various formats by dif-
ferent compilers and compiler options. Therefore, to support
kernels built by different compilers on different architectures,
it needs to exhaust all possibilities of instruction formats.
Secondly, it is hard to precisely locate ORIs from kernel
function code, especially for large functions where there are
many memory access instructions.

C. Design Goals

We would like to support binary-only memory forensics
with high accuracy and reasonable efficiency. More specifi-
cally, our design goals are as follows:

• Binary-only Approach. We assume the only input
to our forensic analysis is a memory dump. A good
solution should generate a profile directly from a
given memory dump and support the existing memory
forensic tasks.

• High Generality. The proposed technique should be
general enough for different kernel versions, configu-
rations, CPU architectures, and compilers.

• High Accuracy. Obviously, the generated profile
should be accurate to ensure correct analysis results.

• Reasonable Efficiency. The proposed technique
should generate a profile within a reasonable time
frame and can deal with large memory dumps.

III. KERNEL EVOLUTION ANALYSIS

The Linux kernel is a large collaborative project and it
upgrades frequently. On average, 8.5 changes are accepted into
the Linux kernel every hour [7]. Many researchers have studied
the evolution of Linux kernel. As discovered by Godfrey et al
[26], the kernel project size and lines of code (LOC) grow at
a super-linear rate, but the size of header files grows at a sub-
linear rate. A more recent study by Lotufo et al. [34] found
that around 75% of changes in kernel evolution are at func-
tion level, including functionality additions and retiring, bug
fixes, etc. These findings imply that only a small fraction of
code changes happened to kernel object definitions. Moreover,
Israeli et al. [29] found that arch and drivers directories,
which account for about 60% of Linux codebase, grow at a
similar rate with the whole kernel codebase. However, most
of kernel objects required by memory forensics are defined in
the include directory. Theses studies show that changes to
kernel objects are a very small subset, compared with function-
level changes. To further understand changes in kernel objects
along Linux upgrades, we conduct our own evolution analysis
on kernel objects in 47 major versions.

Previous works have shown that value invariants can be
inferred during the execution of kernel and can be used to
ensure kernel integrity [20]. In this work, we analyze the
kernel object evolution at the source code level, and derive
different types of invariants that remain unchanged along
kernel upgrades. Based on invariants of forensics-required
fields, we design logic rules for these fields, which are used
by LOGICMEM to infer their offsets.

A. Invariant Detector

To automatically identify differences and invariants in
kernel objects during kernel evolution, we develop an invariant
detector. Particularly, it detects four types of changes, i.e., field
addition, deletion, modification, and swap. Invariants are then
derived from fields that do not involve these types of changes
(referred to as unchanged fields). Field addition and deletion
capture added fields in new versions and deleted fields from old
versions. Field modification refers to changes of field types.
Field swap captures the offset changes of the same field in
different kernel versions.

The invariant detector relies on a simple text parser to
scan and extract information from source code. It scans the
object definitions in source code and summarizes likely object
invariants over a large variety of kernel versions. For one kernel
object, the invariant detector first tokenizes its field definitions
and parses data types, compiler attributes, and field names.
Afterward, it compares tokenized object definitions between
every pair of two adjacent kernel versions and derives differ-
ences and invariants of the object in the two versions. There
are syntax level changes in the source code that are removed
for consideration. For instance, some fields in newer versions
are associated with compiler attributes, while the types and
field names are unchanged. Therefore, when tokenizing object
fields, compiler attributes are removed. Type abstraction is
another kind of syntax level changes, e.g., unsigned int is
defined as u32. While the type name changed, the variable
length is still the same. To ensure consistency, we expand the
type tokens to their original types.
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TABLE I: Linux kernel object evolution analysis over 47 kernel versions. The # of required fields shows the number of fields
in this object that are required to perform memory forensics. The # of changed required fields shows the number of changed
(added, deleted, modified or swapped) fields in required fields

Object Name task_struct mm_struct vm_area_struct fs_struct mount dentry module fdtable vfsmount
Tot. # of added fields 146 26 7 0 11 3 24 1 0
Tot. # of deleted fields 66 20 6 0 6 2 21 1 0
Tot. # of modified fields 19 4 0 0 2 1 7 2 0
Tot. # of swapped fields 7 0 2 0 7 1 0 0 0
Avg. # of all fields 213 58 20 7 27 18 47 6 3
# of required fields 15 13 6 2 6 8 8 2 3
# of changed required fields 1 0 0 0 0 0 4 0 0
% of unchanged fields 97.6% 98.2% 98.5% 100% 97.9% 99.2% 97.7% 98.7% 100%

Overall, we analyzed 47 major versions of Linux kernel
from version 3.3 to 5.5 and invariants were accumulated
incrementally by comparing each pair of adjacent versions.
Table I shows the analysis results for eight kernel objects,
and the full analysis results can be found in §C. Table I lists
the total number of changed fields over 47 kernel versions.
Specifically, for each pair of adjacent versions, the invariant
detector detects added, deleted, modified and swapped fields,
then counts the total number of changed fields for 47 versions.
Then we show the average number of all fields for each
object across these 47 kernel versions. For each comparison
between two adjacent versions, we calculate the percentage
of unchanged fields and show the average percentage for 47
versions in the last row. According to the results, over 97% of
kernel fields remain unchanged for each kernel upgrade. Based
on the kernel object evolution analysis, we summarized three
types of object invariants.

a) Type Invariants: Type invariants refer to fields that
exist in all observed versions and do not involve in type
changes. For example, in task_struct, the pid field
always contains an integer, the comm field contains a process
name, which is a string and tasks is a list_head pointer
that points to next task_struct in the doubly linked list.

b) Order Invariants: Order invariants refer to fields
whose relative orders are not changed over the observed
versions. According to our analysis, sometimes fields are
swapped or moved to another offset for better cache alignment,
but order changes happen less frequently compared with other
types of field changes. Order invariants of two fields consider
configurable fields may exist in between, thus only indicate
relative orders instead of exact distance.

c) Range Invariants: Along Linux kernel upgrades,
new object fields are added and some old fields are removed,
but the total number of object fields is within a reasonable
range. For instance, task_struct has a relatively large
number of field additions and deletions. Along 47 kernel up-
grades, there are a total of 146 fields added to task_struct
and 66 fields are removed. Compared with task_struct,
changes of field numbers are much fewer in other data struc-
tures. For instance, fs_struct is not involved in any field
addition or deletion over 47 kernel versions.

We focus on collecting invariants for forensics-required
fields. In total, there are 220 unique forensics-required fields
in 56 kernel objects(more details can be found in §VI). In
Table I, the 7th row shows the number of forensics-required
fields in each object, and the 8th row shows the number of

changed fields in kernel upgrades among forensics-required
fields. As presented in Table I, only a small subset of fields is
required by Volatility and a few of them are changed during
kernel evolution. For instance, there are a total of 238 field
changes along 47 kernel upgrades in task_struct, but
only 15 fields in task_struct are demanded by Volatility
plugins, and only one (real_start_time) of them are
affected by kernel upgrades. This field is used to retrieve
process start time and was deleted in Linux 5.5. As presented
in Table I and Table V, most forensics-required fields remain
unchanged during kernel evolution. Therefore, we are able to
summarize invariants for those fields. For changed forensics-
required fields that do not exhibit invariants across all versions,
we discuss the solution in §C. Admittedly, in a newly released
kernel, some of these invariants might not hold. In this case,
we can run the invariant detector on new kernel versions, and
adjust our rules based on the new invariants. More details about
handling invariant changes can be found in §VII.

In summary, although offsets of forensics-required fields
can be shifted by changed fields due to kernel upgrade and
configurable fields that are determined during compilation,
numerous invariants existing in the forensics-required fields
may help us find the offsets of these fields in a memory dump
regardless of kernel versions or configurations.

IV. SYSTEM OVERVIEW

Figure 2 illustrates the overview of LOGICMEM. It con-
sists of three key components: a kernel symbol detector, a
lightweight fact collector, and a logic inference engine. To
infer forensics-required fields in a kernel object from memory
bytes, LOGICMEM first recovers kernel symbols from the
memory dump and looks up symbols to locate the target
object. Forensics-required objects can be found in recovered
kernel symbols since memory forensics tools also rely on those
symbols to locate desired kernel objects. Then LOGICMEM
translates the virtual address of a kernel object and locates its
physical address in the memory dump. The fact collector is
then invoked to scan memory bytes in the target object and
lift them to low-level facts. These facts serve as a search
space for the logic inference engine. Guided by the pre-
defined logic rules, the logic inference engine infers forensics-
required fields from the facts collected in the target memory
region. Eventually, the recovered kernel symbols and offsets
of forensics-required fields are integrated as a profile for
downstream memory forensics tools.
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Fig. 2: The overview of LOGICMEM.

A. Kernel Symbol Table Recovery

Kernel symbols map the global functions and objects
to their addresses in the kernel memory. Such information
is essential for memory forensics to locate desired kernel
objects. Normally, the kernel symbols are available from the
System.map file in the live system. However, for binary-
only memory forensics, where the live system is not available,
recovering the kernel symbol table directly from the memory
dump is the only feasible approach. To this end, we develop
a signature-based search method to locate and recover kernel
symbols from a given memory dump.

a) Kernel ELF detection: Kernel symbols reside in the
kernel data section. To avoid the overhead of searching in a
large memory space and eliminate false candidates outside
kernel memory, LOGICMEM locates and extracts the kernel
ELF. This is done by searching the unique string “swapper\0”,
which is the process name in task_struct for the very
first process in Linux kernel. Then LOGICMEM searches for
the ELF header around the unique string and extracts the whole
kernel memory.

b) Kernel Symbol Recovery: Kallsyms is a mecha-
nism in Linux kernel for resolving all symbols for de-
bugging. Specifically, kallsyms extracts symbols from all
sections in the kernel and stores them in relevant data
structures. The layout of the related data structures are
presented in Figure 3. As defined in </kernel/kallsyms.c>,
kallsyms_addresses is an array that stores virtual ad-
dresses of kernel symbols. kallsyms_num_syms is an
unsigned long number that represents the number of kernel
symbols. To reduce memory usage, kernel symbol names
are compressed and stored in three relevant data struc-
tures, namely, kallsyms_names, kallsyms_token-
_index and kallsyms_token_table. After kernel ver-
sion 4.6, a new configuration was introduced to save the
memory usage of symbol addresses by storing a relative
base address and an array of offsets, which are named
kallsyms_relative_base and kallsyms_offsets
respectively. We closely inspect values stored in the aforemen-
tioned data structures and identify unique patterns for each of
them. Details about data structure patterns can be found in §B
in Appendix.

B. Virtual-to-Physical Address Translation

Virtual-to-physical address translation is an indispensable
component for memory forensics. When locating a global
object using its virtual address from the kernel symbol table,
or following a pointer in one object to retrieve information
from another object, a virtual-to-physical address translation

0xffffffff97012740

Kallsyms_addresses 0xffffffff97012cd0

...

Kallsyms_relative_base 0xffffffff9d400000

T__event

_0sk_0ap0

Cl0ext4_

...

0x0001c0d0 0x000166c9

... ...
Kallsyms_offsets

0x166c9Kallsyms_num_syms

Length Index

... ...

Kallsyms_names

Kallsyms_token_table

Before 4.6

0000 0a00 0d00 1000

After 4.6

... ... ... ...
Kallsyms_token_index

Fig. 3: Kallsyms data structures layout in memory.

is needed. To perform kernel address translation, the physical
address of the kernel page table is required, which is exported
as the symbol init_level4_pgt (on x86 arch with 4-level
page tables) or init_top_pgt, and can be recovered using
the above step. Normally, we can leverage the fact that kernel
memory is contiguously mapped, and obtain the physical
address of the kernel page table by subtracting a fixed offset
from its virtual address. However, when KASLR [4] is enabled,
that fixed offset is randomized by an unknown KASLR shift.
Volatility [13] requires a valid profile to recognize the shift
between kernel virtual addresses and physical addresses. More
specifically, it retrieves the virtual address of init_task
from the profile, and obtains the offset of comm fields, which
is the process name. Then it adds them up to get the virtual
address of the process name for init_task, which is known
as “swapper\0”. Next, it searches for the string “swapper\0”
in the memory to locate its physical address and calculates
the shift between its virtual address and physical address.
However, a valid profile is not always available in advance
to analyze a memory dump.

Inspired by Volatility [13] and approaches proposed by
Pagani [35] and Zhang et al. [47], we leverage the kernel
symbol table recovered in the previous step to identify the
KASLR shift. Specifically, we utilize the fact that some
strings are exported as global symbols with the prefix of
__kstrtab_ in __kstrtab section. We choose a string in
__kstrtab section, e.g., kallsyms_on_each_symbol,
and search it in the memory dump to locate its physical
address. Then we calculate the shift by subtracting the physical
address from the virtual address obtained in recovered symbols
(__kstrtab_kallsyms_on_each_symbol). The kernel
ELF detection step also avoids the overhead of searching for
symbols from the whole memory in this step.

C. Fact Collector

A memory dump is captured from the RAM of a running
system, which is a collection of volatile memory bytes. LOG-
ICMEM employs the fact collector to lift memory bytes into
low-level facts. The fact collector is invoked on demand by
LOGICMEM to scan one page of memory bytes, instead of
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the whole memory dump, as we found one page is enough to
include bytes in the target object. More specifically, the fact
collector scans from the base address of an object, decodes
the value at each aligned address, and makes an educated
prediction about its type. Compilers always place fields at
even-byte alignment unless the data structure is annotated
with __attribute__((packed)). According to our kernel evolu-
tion analysis, this attribute does not affect forensics-required
objects, which is also substantiated by our evaluation results II.
Therefore, it is safe to collect facts at aligned addresses.
Handling unaligned fields is straightforward because we only
need to modify the fact collector to also label unaligned
values. The fact collector conservatively predicts three kinds
of primitive data types: pointers, strings, and numbers (shorts,
integers or longs). To facilitate the following discussions, we
assume a 64-bit architecture when introducing the heuristics
used by the fact collector to predict data types. The heuristics
can be easily adapted to support 32-bit architectures.

a) Pointer: To collect pointer type fields, the factor col-
lector scans the given memory region at an 8-byte granularity.
Then it performs a virtual-to-physical address translation with
the obtained 8-byte value. If it can be translated to a valid
physical address, then this field is considered a pointer.

b) Strings: Strings are stored in char arrays with
different sizes. In Linux kernel data structures, strings usu-
ally represent names, e.g., process name and module name.
Therefore, strings contain printable ASCII symbols and end
with a NULL terminator. The fact collector scans the memory
bytes following the above heuristics to collect string fields.

c) Numbers: If the value is not a pointer, then the fact
collector checks whether it is a possible number. Specifically,
the fact collector predicts three types of numbers, short, integer,
and long, each of them takes 2 bytes, 4 bytes, and 8 bytes
respectively on 64-bit architectures.

A value may be predicted to have several types. For
instance, a small number may also be a string; a zero can be
a NULL pointer, a NULL string and a number. In such cases,
the fact collector predicts all possible types for the value.

40 27 01 97 ff ff ff ff

00 00 00 00 00 00 00 00

00 4B 01 97 ff ff ff ff

00 00 00 02 00 00 00 02

73 77 61 79 79 65 72 00

(00 Ptr 0xffffffff97012740)

(08 Ptr 0xffffffff97014b00)

(16 Ptr 0x0)

(16 Num 0x0)

(32 String swapper)

(20 Num 0x0)

(24 Num 0x2) (28 Num 0x2)

Raw Bytes Facts (offset, type, value)

Fig. 4: A synthetic example of low-level facts. Offset is the
distance to the initial address of the object scanned by the fact
collector.

Based on the aforementioned heuristics, the fact collector
collects low-level facts in the form of (Offset, Value,
Type). Figure 4 shows a synthetic example of collected low-
level facts. The offset is the distance to the beginning of the
object scanned by the fact collector. Afterwards, collected facts
are fed into the logic inference engine as the search space to
infer forensics-required fields. Notably, as shown in Figure 2,
the fact collector is invoked on demand to scan target objects,
instead of whole kernel memory.

D. Object Layout Inference

LOGICMEM infers forensics-required fields by matching
a set of logic rules over facts collected from the inferred
object. Logic rules are built based on generated invariants in
kernel evolution analysis. These invariants describe features
(e.g., type) and relations (e.g., order and value) that forensics-
required fields should hold, thus can be used to guide the logic
inference engine to search for desired fields. Note that the
generated invariants already consider the fact that configurable
fields may or may not present in the memory. For example,
in Figure 1, the pushable_tasks field at line 8 is config-
urable, thus only relative order of tasks and mm, instead of
precise distance between them, is collected as an invariant. As
discovered in the kernel evolution analysis, forensics-required
fields are not configurable and those fields exhibits invariants
across 47 observed kernels. Therefore, following the logic
rules based on these invariants, the logic inference can locate
the forensics-required fields regardless of kernel configurations
and kernel versions. More details about the logic rules and how
they can help the inference engine precisely locate the desired
fields are discussed in §V.

V. LOGIC INFERENCE ENGINE

Essentially, the logic inference engine performs an opti-
mized search over the finite domain determined by collected
facts, and find solutions that satisfy the predefined logic rules.

A. Constraints for Logic Inference

We summarize seven types of constraints based on the three
types of invariants observed in the kernel evolution analysis
(§III).

a) Type Constraints: Type constraints apply to fields
who have unchanged types along kernel upgrades, and can
help the logic inference engine reduce the search space from
collected facts for certain fields. For example, the pid field
in task_struct contains an integer. To infer pid field,
the logic inference engine only needs to evaluate integers in
collected facts. The comm field contains a string representing
the process name. Therefore, the type constraint can narrow
the search space for comm to only strings facts.

b) Object Type Constraints: Object type constraints
specify types for inferred pointer fields whose types remain
unchanged along kernel upgrades. When inferring a pointer
field, the logic inference engine first invokes the fact collector
to collect facts from the memory region pointed by the pointer,
and determines if the memory region is of the expected
object type by checking the logic rules associated with that
object type. For example, the mm field in task_struct
contains a pointer to a mm_struct. When inferring the mm
field, the logic inference engine will evaluate each pointer
in the collected facts and query whether it points to a valid
mm_struct. Another property for pointers is whether a
pointer can refer back to the current object. Pointers of a
doubly linked list (e.g., list_head) or of the same type
with the current object can point back to the current object.
Otherwise, pointers refer to a different memory region. We
also utilize this property as constraints for pointers.

6



c) Order Constraints: An order constraint specifies that
two fields follow a strict order: one always appears after
(or before) another. For example, according to the kernel
evolution analysis, the parent field comes after the tasks
field in task_struct. After the logic inference engine
pinpoints the tasks field, it only needs to search for parent
from pointer facts after tasks. Order constraints consider
uncertainty of fields offsets caused by kernel configurations,
i.e., constraints do not specify the exact offset of two fields
if one or more configurable fields exist in between. As a
result, LOGICMEM is able to locate forensics-required fields
disregarding kernel configurations. We notice that since Linux
4.3, structure randomization is introduced as a new security
feature. When it is enabled, the order of object fields will be
randomized during compile time, thereby breaking the order
constraints. We discuss about this in details in §VII.

d) Adjacency Constraints: An adjacency constraint is a
strict type of order constraint that specifies the spatial offset
between two fields. According to the kernel evolution analysis,
some fields are always adjacent to each other and there are no
configurable fields in between. For instance, pid and tgid
are two integer fields in task_struct. mm and active_mm
are two adjacent pointer fields. In such cases, we can specify
the offset between fields with adjacency constraints.

e) Structural Constraints: Structural constraints apply
to structures in which all fields are not changed along kernel
upgrades. For those structures, if there is no kernel config-
uration, we build strict logic rules to describe fixed offsets
of its fields. For instance, according to the analysis results,
vfsmount remains unchanged among analyzed kernel ver-
sions and has no #ifdef directive. Having a set of strict rules
for vfsmount can help the logic inference engine quickly
locate the offset of vfsmount type fields in fs_struct.

f) Range Constraints: Range constraints narrow the
search space of LOGICMEM within a specific boundary for
each inferred object. According to our kernel evolution anal-
ysis (§III), although fields are added or removed along kernel
upgrades, the offsets of object fields are bounded in a rea-
sonable range. The object range is estimated during invariant
detection, in which we calculate the maximum size of objects
assuming all #ifdef directives are enabled and each field
takes 8 bytes.

g) Value Constraints: Value constraints refer to the
value range for a field and the value relations between fields.
Since value constraints cannot be observed by the invariant
detector from source code, we only consider fields whose
value constraints can be derived from field definitions in source
code and domain knowledge. For example, in mm_struct,
arg_start and arg_end contain the start and end ad-
dresses of program arguments. It is reasonable to constraint
arg_start to be less than arg_end. Some value con-
straints can be derived from field definitions. For instance,
vm_flags in vm_area_struct contains bit flags that
specify the behavior of and provide information about mem-
ory pages. According to the flag definition in </include/lin-
ux/mm.h>, the VM_MAYREAD flag specifies the VM_READ flag
can be set, and so for the write, execute and share flags. The
relations between flags can be utilized as value constraints.
According to our evaluation, value constraints are simple and

Algorithm 1: Logic Rules Construction Algorithm.
Input : Forensics-required fields: fr_fields;

Forensics-required objects: fr_objects;
Output: Logic rules: rules

1 T ← type constraints; OBJ ← object constraints;
2 O ← order constraints; A ← adjacency constraints;
3 S ← structural constraints; R ← range constraint;
4 Function rule_gen(object):
5 foreach a ∈ fr_fields do
6 if a is a pointer then
7 rules.add(ispointer(a));
8 if pointer_type(a) ∈ fr_objects then
9 rules.add(rule_gen(pointer_type(a));

10 end
11 end
12 if a is a number then
13 rules.add(isnumber(a));
14 end
15 if a is a string then
16 rules.add(isstring(a));
17 end
18 end
19 foreach a, b ∈ fr_fields do
20 if a, b ∈ O then
21 rules.add(|a| < |b|);
22 if a, b ∈ A or S then
23 rules.add(|b| = |a|+ |a, b|);
24 end
25 rules.add(|b|) < R);
26 end
27 end
28 return rules

only for selected fields, but effective in eliminating false
candidates.

B. Logic Rules Construction

The logic rules generation for an inferred object is pre-
sented in algorithm 1. For each forensics-required field, we first
apply type constraints in logic rules (line 7, 13, and 16). For a
pointer field of forensics-required object type, we recursively
generate a set of logic rules following the same algorithm (line
9). Then we add order constraints for forensics-required fields
(line 21). Particularly, if fields follow adjacency constraints
or structural constraints as detected by the invariant detector,
we add rules to specify the spatial offsets between them (line
23). Moreover, we apply range constraints to narrow down the
search space (line 25).

As an example, Listing 1 presents the Prolog logic rules
for partial fields in task_struct. In Prolog, variables start
with capital letters and logic rules are defined to constrain
variables. The Base_addr at line 1 is the initial address of
a task_struct. A description of logic rules can be found
in Table VI in the Appendix.

a) Rules based on type constraints: As shown in al-
gorithm 1, we first apply type constraints using logic rules.
At line 3 in Listing 1, Ptr_fields declares a list of
variables that represent offsets and values of inferred pointer
fields. Str_fields (line 4) and Num_fields (lines 5) are
used to constrain string fields and number fields respectively.
Collected facts are stored in Ptr_facts, Str_facts, and
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Num_facts. tuples_in (lines 6–8) is a built-in function
that constrains those variables to be in certain types of facts.
Therefore, the logic inference engine only searches candidates
for a field within its respective type facts. Then we apply
object type constraints for pointer fields. If the target object
of a pointer field is also forensics-required, we build logic
rules for forensics-required fields in it following the same rule
generation algorithm 1. Then these logic rules are used by
a child inference process to infer forensics-required fields. In
Listing 1, mm_struct (line 16) is a logic rule that queries
whether the address in MM_addr points to a mm_struct. It
creates a new process (line 20) that first collects facts from the
target address, then infers forensics-required fields using logic
rules defined in query_mm_struct (line 22). The parent
query receives results from the child query and continues the
logic inference process.

b) Rules based on order constraints: Next, we build
logic rules to apply order constraints. As shown in Listing 1,
we use the Prolog built-in function chain() (lines 10) to con-
strain the order of object fields. The “<” symbol specifies that
offsets of these field should be in increasing order. Notably,
we only constraint the relative order instead of exact offsets
between fields because there may be configurable fields in
between, which push forensics-required fields into different
offsets when compiled with different configurations. When
fields are detected to be adjacent by the invariant detector
(i.e., no configurable field in between), we build rules to apply
adjacency constraints or structural constraints, which describe
the precise offsets between these fields. At line 12, we show
an example of adjacency constraints.

c) Rules based on range constraints: Range constraints
are estimated by the invariant detector assuming all fields are
present and each field takes 8 bytes. The range constraint does
not have to be precise since we only need it to narrow down
the search space. Line 14 in Listing 1 shows an example of a
range rule. In the logic rules, we do not have to build range
rules for every field because they are already constrained by
order rules.

d) Rules based on value constraints: Value constraints
are derived based on source code and human knowledge. We
only build simple and intuitive value constraints for selected
fields, thus it’s not presented in algorithm 1. Listing 1 shows
some value constraint rules for mm_struct at line 22. For
example, mmap_base denotes the starting point for memory
mappings in the virtual address space. Its value is architecture-
specific and is greater than 0x7f0000000000 in Intel
x86_64 architecture (line 30). arg_start and arg_end
point to the start and end addresses of arguments. Therefore
arg_start is less than arg_end (line 31).

Listing 1 also presents a logic query at line 33 implement-
ing structural constraints. According to the kernel evolution
analysis, the vfsmount remains the same over observed
kernel versions. Therefore, we use logic rules (line 41–43)
to constraint its fields to fixed offsets.

C. Logic Inference

a) Direct Predicates: Direct predicates utilize logic
rules that directly derive conclusions from facts collected for
the inferred object. In Listing 1, MM_struct and Tasks

1 query_task_struct(Base_addr) :-
2 %Type constraint
3 Ptr_fields([[MM_offset, MM_val], [Parent_offset,

Parent_val]]),↪→
4 Str_fields([[Comm_offset, Comm_val]]),
5 Num_fields([[Pid_offset, Pid_val], [Tgid_offset,

Tgid_val]]),↪→
6 tuples_in(Ptr_fields, Ptr_facts),
7 tuples_in(Str_fields, Str_facts),
8 tuples_in(Num_fields, Num_facts),
9 %Order constraint

10 chain([MM_offset, Pid_offset, Parent_offset,
Comm_offset], <),↪→

11 %Adjacency constraint
12 Tgid_offset = Pid_offset + 4,
13 %Range constraint
14 range_constraint(Comm_offset, Base_addr,

Obj_size),↪→
15 %Recursive rules
16 mm_struct(MM_val),
17 task_struct(Parent_val).
18

19 mm_struct(Base_addr) :-
20 process_create(query_mm_struct, Base_addr).
21

22 query_mm_struct(Base_addr) :-
23 %Type constraint
24 Ptr_fields([[Mmap_offset, Mmap_val]]),
25 Num_fields([[Mmap_base_offset, Mmap_base_val],
26 [Arg_start_offset, Arg_start_val],
27 [Arg_end_offset, Arg_end_val]]),
28 ...
29 %Value constraint
30 Mmap_base_val > 0x7f0000000000,
31 Arg_start_val < Arg_end_val,
32

33 query_vfsmount(Base_addr) :-
34 %Type constraint
35 Ptr_fields([[Mnt_root_offset, Mnt_root_val],
36 [Mnt_sb_offset, Mnt_sb_val]]),
37 Num_fields([[Mnt_flags_offset, Mnt_flags_val]]),
38 tuples_in(Ptr_fields, Ptr_facts),
39 tuples_in(Num_fields, Num_facts),
40 %Structural constraints
41 Mnt_root_offset = 0,
42 Mnt_sb_offset = Mnt_root_offset + 8,
43 Mnt_flags_offset= Mnt_sb_offset + 8.

Listing 1: Part of Prolog logic rules for task_struct,
mm_struct, and vfsmount.

are constrained to be pointers (line 4–5 and line 13). Thus
the logic inference engine will only consider pointers from
collected facts as candidates. The order invariant rule specifies
inferred fields in increasing order. The range invariant rule
restricts the offset of comm field within a estimated size of
task_struct. These logic rules can derive conclusions from
collected facts and reduce the search space along the inference.

b) Recursive Predicates: Recursive predicates are used
when direct predicates cannot draw a conclusion from current
facts. For instance, reasoning about the type of a pointer
over current facts cannot produce any conclusion. Therefore,
recursive predicates invoke a sub-process that performs a new
logic inference. The fact collector is invoked on demand by the
new logic inference process to scan target address and collect
facts. Then it performs logic inference following rules defined
for the requested object. For instance, as presented in Listing 1,
the recursive predicate mm_struct() (line 19) invokes a
new process which uses rules defined in query_mm_struct
(line 22) to infer the mm_struct layout from the target
memory region pointed by MM_addr. Eventually, it returns
the inference results back, then the logic inference engine
precedes.
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To avoid endless recursive loops when applying recursive
predicates on doubly linked list pointers and pointers pointing
to the same type of objects, we restrict the recursive level to
one in such cases. For instance, when inferring the parent
field in a task_struct, the logic inference engine will
not apply recursive predicates in the child inference process.
Therefore, the runtime of the logic inference engine is bounded
by the recursive level. In the evaluation §VI-F, we found that
setting the recursive level to one is enough to infer these
pointer fields.

VI. EVALUATION

A. Implementation

We have implemented a prototype of LOGICMEM in
Python and SWI-Prolog [44]. Overall, LOGICMEM has around
2 KLOC in Python and 2 KLOC in Prolog.

B. Experiment Setup

a) Scope: It is worth noting that only a small subset
of kernel objects are required to perform memory forensics
analysis. Therefore, LOGICMEM focuses on objects and fields
required by a popular memory forensics tool, Volatility [13],
and extracts forensics-required objects and fields accessed
by Volatility plugins (2.6.1). To collect forensics-required
information, we run all instrumented Volatility Linux plugins
and print unique fields and objects that are accessed by each
plugin. There are 39 Volatility plugins in total and two of
them are removed for consideration. linux_route_cache
requires Linux routing cache which was deleted after kernel
3.6, and linux_bash requires information gathered by gdb
from a live system. Therefore, we run the rest 37 Volatility
plugins to monitor accessed fields in kernel objects. As a result,
we identified 220 unique fields in 56 kernel objects. In the
experiments, we evaluate the ability of LOGICMEM to infer
offsets of these forensics-required fields and make Volatility
plugins functional in a binary-only situation.

b) Dataset: We first collected 16 memory dumps cap-
tured from several mainstream Linux distributions, including
CentOS, Debian, and Ubuntu. We also included kernel versions
that are unseen by the invariant detector to evaluate the ro-
bustness of logic rules on “future” kernel versions. To acquire
memory dumps with diverse kernel configurations, we built
Linux kernels with randomly determined #ifdef directives.
More specifically, we utilized the randconfig feature in
Linux Kbuild to generate random kernel configurations. The
randconfig randomly chooses to disable or enable #ifdef
directives in a way that is subject to dependency checks.
Note that it is impossible to randomize all directives because
the resulting kernel is unlikely to be bootable. Therefore,
we used randconfig to randomly determine up to 100
directives in 56 forensics-required kernel objects, and left the
rest directives as default values. Note that kallsyms is enabled
in the default Kbuild configuration. We repeated this process
until we obtained 10 bootable kernels for one version. Overall,
we obtained 30 memory dumps running Linux 4.15, 4,17,
and 4.19 with unbiased kernel configurations for forensice-
requried fields. To collect memory dumps, we boot up the
system using the x86_64 system emulator, QEMU [15] with
8GB RAM, and dump the RAM content using QEMU built-in

functionality. Before the RAM content is dumped, we simulate
user actions by randomly starting user programs (e.g., FireFox,
PDF Viewer, etc.) until the memory usage is over 50%.

c) Ground Truth: We use Volatility to generate profiles
as ground truth for collected memory dumps. Volatility gener-
ates a profile by collecting kernel symbols from System.map
file in the live system and extracting debugging symbols
from a test kernel module. Therefore, it requires that the
System.map file is generated when the kernel in target
system is built, and compiler toolchain (e.g., dwarfdump) and
kernel headers are installed. Then we follow the instructions
provided by Volatility to generate profiles for these systems as
ground truth.

d) Evaluation Metrics: We use precision and recall to
quantify the correctness of profiles generated by LOGICMEM.
The precision is calculated as P = TP

TP+FP , where TP is
the number of fields that are correctly extracted, FP is the
number of incorrectly extracted results. The recall is calculated
as R = TP

TP+FN , where FN is the number of fields whose
correct offsets are not extracted by LOGICMEM. To measure
the efficiency, we reported the runtime of each component in
LOGICMEM, including kernel ELF extraction, kernel symbol
recovery, KASLR calculation, and logic inference.

C. Recovering Kernel Symbols

As mentioned in §IV-A, kernel symbols are stored in kernel
data section when kallsyms is enabled. This configuration is
enabled by default for the mainstream Linux distributions and
the kernels with random configurations, and LOGICMEM is
able to recover kernel symbols for memory dumps in the
evaluation dataset.

D. Precision and Recall

In this section, we evaluate the performance of LOG-
ICMEM’s logic inference engine and show precision and recall
of the inference results. We run LOGICMEM on a given
memory dump to infer the offsets of 220 forensics-required
(i.e., required by Volatility) fields in 56 kernel objects. Then we
compare the results with ground truth to calculate the precision
and recall.

a) Efficacy against various kernel versions: As pre-
sented in Table II, LOGICMEM produces no false positives
and false negatives for kernels with vendor-customized con-
figurations. The results show that invariants hold across kernel
versions and logic rules based on these invariants are pre-
cise and sound to locate forensics-requried fields. Note that
LOGICMEM has 100% precision and recall for Linux 5.9
and Linux 5.10, which are unseen by the invariant detector.
This result suggests that invariants summarized from kernel
evolution analysis are robust and not likely to change in new
releases.

As presented in Table II, kernels built by official distribu-
tions are compiled using different versions of gcc. Neverthe-
less, LOGICMEM is robust enough to correctly infer forensics-
required fields and compilers do not affect our approach.
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b) Efficacy against various kernel configurations: Ta-
ble III show the performance of LOGICMEM on memory
dumps with random configurations. Compared with vendor-
customized kernels, kernels with random configurations have
diverse object layouts. According to the results, LOGICMEM
can still infer forensics-required fields with 100% precision
and 95% recall. We further investigated the results and found
that the false negatives are caused by the overly strict range
constraints for neigh_table and mount structures. Our
range estimation is overly simplified by assuming each field
to be 8 bytes long, ignoring the fact that some fields are
embedded structures. Then we fixed the range estimation
in the invariant detector by expanding embedded structures
according to their definitions in source code. According to
the experiment, logic rules with adjusted range constraints can
achieve 100% recall for all kernels with random configurations
without affecting the precision. Overall, the results show that
logic inference with rules based on object invariants is well-
suited to locate forensics-required fields for Linux kernels with
diverse configurations.

E. Baseline Comparison

We would like to perform a head-to-head comparison
with three aforementioned related works, RAMPARSER [16],
ORIGEN [22], and the approach proposed by Pagani et al.
[35]. However, none of them are publicly available. Therefore,
we cited statistics reported in their papers, and compared them
with LOGICMEM.

In RAMPARSER [16], no precision and recall about offsets
identified from ORIs was reported. Moreover, it only works
on Linux 2.6.27. In order to work beyond Linux 2.6, new
logic must be added to accommodate substantial changes in
kernels. ORIGEN [22] shows a case study of identifying ORIs
in Linux 3.13. According to their results, ORIGEN can achieve
a precision of 78% when identifying offsets of seven fields
in task_struct, while LOGICMEM is able to achieve a
precision of 100%. Pagani et al. evaluated their approach on
Debian/Linux 4.19, Openwrt/Linux 4.4, Goldfish/Linux 3.18,
and Ubuntu/Linux 2.6, and compared the extracted field offsets
with ground truth generated by Volatility. As presented in
the paper, they can achieve precisions ranging from 74% to
89%. Compared to the above related works, LOGICMEM can
generate a profile directly from a memory dump with 100%
precision and 95% recall on average (before manual adjustment
of rules).

In addition, we compared LOGICMEM’s kernel symbol
recovery with another approach developed by Pagani [3] that
extracts kallsyms symbols. Both approaches can correctly
recover kernel symbols from memory snapshot.

F. Runtime Performance

a) End-to-end performance: In this section, we evalu-
ated the runtime performance of LOGICMEM. To average the
impact of KASLR, we booted up target systems three times
and collected three memory dumps for each trail. Then we
calculated the average runtime. Figure 5 presents the runtime
of four components in LOGICMEM. LOGICMEM first performs
sequential search to locate and extract the kernel ELF. The
runtime of this step depends on the memory size and KASLR

TABLE II: The precision and recall of profiles generated by
LOGICMEM. * indicates this kernel version is not observed in
kernel evolution analysis.

OS Compiler Ver. Release Date Precision Recall
CentOS/Linux-3.10 gcc-4.8.5 07/30/2013 100% 100%
CentOS/Linux-4.18 gcc-8.3.1 08/12/2018 100% 100%
Debian/Linux-4.19 gcc-8.3.0 10/22/2018 100% 100%
Debian/Linux-5.9* gcc-8.3.0 10/22/2018 100% 100%
Debian/Linux-5.10* gcc-8.3.0 10/22/2018 100% 100%
Ubuntu/Linux-4.11 gcc-6.3.0 04/30/2017 100% 100%
Ubuntu/Linux-4.12 gcc-6.3.0 07/02/2017 100% 100%
Ubuntu/Linux-4.13 gcc-7.2.0 09/03/2017 100% 100%
Ubuntu/Linux-4.14 gcc-7.2.0 12/02/2017 100% 100%
Ubuntu/Linux-4.15 gcc-7.2.0 01/28/2018 100% 100%
Ubuntu/Linux-4.16 gcc-7.2.0 04/01/2018 100% 100%
Ubuntu/Linux-4.18 gcc-8.2.0 08/12/2018 100% 100%
Ubuntu/Linux-4.19 gcc-8.2.0 11/22/2018 100% 100%
Ubuntu/Linux-4.20 gcc-8.2.0 12/23/2018 100% 100%
Ubuntu/Linux-5.3 gcc-9.2.1 09/15/2019 100% 100%
Ubuntu/Linux-5.4 gcc-9.2.1 12/24/2019 100% 100%

TABLE III: The precision and recall LOGICMEM on mem-
ory dumps with randomized kernel configurations. The first
column represents configurations with different randomized
#ifdef directives.

Linux 4.15 Linux 4.17 Linux 4.19
Config Precision Recall Precision Recall Precision Recall
Rand_1 100% 100% 100% 93.6% 100% 100%
Rand_2 100% 97.3% 100% 97.3% 100% 93.6%
Rand_3 100% 100% 100% 100% 100% 97.3%
Rand_4 100% 96.4% 100% 96.4% 100% 93.6%
Rand_5 100% 93.6% 100% 93.6% 100% 93.6%
Rand_6 100% 93.6% 100% 93.6% 100% 96.4%
Rand_7 100% 96.4% 100% 93.6% 100% 93.6%
Rand_8 100% 93.6% 100% 93.6% 100% 93.6%
Rand_9 100% 93.6% 100% 93.6% 100% 93.6%
Rand_10 100% 93.6% 100% 93.6% 100% 93.6%

shift. For these 8GB memory dumps (KASLR enabled) in our
dataset, it takes 36 seconds on average to finish the kernel ELF
extraction step. Then LOGICMEM recovers kernel symbols and
computes the KASLR shift from the detected kernel ELF. As
presented in Figure 5, the average runtime to finish these two
steps is 17 seconds and 0.39 second respectively. Afterward,
LOGICMEM performs logic inference to reconstruct layouts of
56 selected kernel objects, which takes 51 seconds on average.
Overall, the end-to-end runtime of LOGICMEM ranges from
89.2 to 119.36 seconds.

b) Runtime on memory dumps of different sizes: As
illustrated in Figure 5, it takes similar amount of time to finish
the kernel symbol recovery, KASLR computation and logic
inference. The main difference lies in the runtime of kernel
ELF extraction, which is determined by KASLR that shifts
the kernel memory to a random location in the memory space.
To further investigate the impact of KASLR and memory
size, we collected a set of memory dumps of difference
RAM sizes. More specifically, we ran four Linux systems,
Ubuntu-16.04/Linux-4.18, Ubuntu-16.04/Linux-4.19, Ubuntu-
16.04/Linux-4.20 and Ubuntu-20.04/Linux-5.3, with five RAM
sizes ranging from 512MB to 8GB. To average the impact of
KASLR, we boot the target systems three times to collect three
memory dumps with different KASLR randomization, and
calculate the average runtime. Figure 6 shows the breakdowns
of runtime in this experiment. From four sub-figures, we can
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TABLE IV: Runtime of LOGICMEM with different recursive
levels.

Config Linux 4.18 Linux 4.19 Linux 4.20 Linux 5.3
Recur_1 48.9s 47.9s 48.1s 49.3s
Recur_2 142.9s 147.8s 159.2s 152.3s
Recur_3 3178.4s 3105.3s 3197.8s 3201.9s
Recur_4 >10h >10h >10h >10h
Recur_5 >24h >24h >24h >24h
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Fig. 5: Runtime performance of LOGICMEM

see that the runtime for kernel symbol recovery, KASLR com-
putation and logic inference is similar for different memory
sizes. This is because these three steps are performed on the
extracted kernel memory, which is of similar size. As shown
in Figure 6, the runtime for kernel ELF extraction varies for
memory dumps with different sizes, and it is linearly-related
with the size of memory. This is because the KASLR shifts the
kernel memory into random locations in the memory. Since
LOGICMEM searches sequentially to locate the kernel ELF
region, it is expected to spend more time for larger memory
dumps. For the Linux 4.19 and Linux 4.20 memory dumps,
we can see that the runtime to extract kernel memory for 8GB
memory dump is non-linear with others. The reason is KASLR
shifts the kernel to lower memory region, thus it takes less time
when searching sequentially. In conclusion, only the runtime
of kernel extraction is affected by the size of the memory
dump. Therefore, the impact of memory dump size on the
performance of LOGICMEM is insignificant.

c) Performance of different recursive levels: The eval-
uations above show that LOGICMEM can already achieve
high precision and recall with one level recursive query. To
evaluate LOGICMEM with different recursive levels, we set the
recursive predicates on the double linked list pointer (tasks
field in task_struct) to different levels. The tasks field
points to the next task_struct, by doing so, LOGICMEM
recursively evaluates task_struct in the process list. We
confirmed that the accuracy of logic inference remains the
same with different recursive levels, but, according to the
results Table IV, the execution time increases greatly. The
reason is that Prolog recursively reasons every valid pointer
to see if it satisfies logic rules defined for task_struct.
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Fig. 6: Runtime of LOGICMEM on memory dumps of different
sizes.

Along the recursive reasoning, a large amount of facts are
collected and the query process of Prolog can be quite slow
with recursive queries on large search spaces. Since the same
type objects have exactly the same layout in memory and our
logic rules describe what the layout should be, logic rules that
hold for one object will also hold for other objects with the
same layout. Therefore, it is safe to choose one level recursive
query for efficiency purposes.

G. Case Study

In this section, we evaluated LOGICMEM in real-world
scenarios where it is difficult (if not impossible) to apply
existing memory forensics tools such as Volatility. First, we
evaluated LOGICMEM on memory snapshots acquired from
Armv8 64-bit Android system with Cortex-A53 CPUs. Second,
we tested LOGICMEM on two memory dumps acquired from
OSes designed for embedded devices (x86_64 and Arm64
architectures). Finally, we ran LOGICMEM on a memory dump
collected from a system infected by a kernel rootkit.

In the experiments, Volatility failed to generate profiles
for these memory dumps because kallsyms is not enabled
and installation of required toolchains in target systems is not
allowed. As discussed in §VII, when kallsyms is disabled,
forensics-required kernel symbols are not stored in kernel
memory, thereby making it impossible to recover them from
memory. Nevertheless, this problem can be solved by locating
required kernel objects using their field patterns. To demon-
strate this idea, we develop field patterns for task_struct
and module objects based on the fact that these objects
contain unique strings (e.g., process and module names) and
pointers that connect them with same type objects in doubly
linked lists. LOGICMEM can locate their addresses in the
memory dump and perform logic inference on these two
objects as well as 14 objects connected to them. These 16
kernel objects are accessed by eight Volatility plugins in
Table VII that output information about processes, memory
mappings, and loaded kernel modules. Screenshots of sample
plugin results can be found in §A.
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a) Memory forensics for Android systems: In this ex-
periment, we selected all recent long-term support (LTS) or
stable kernel releases from Android kernel tree [1] and cross-
compiled six ARMv8 64-bit Android kernels (android-4.4-
release and android-4.9-release, android-4.14-stable, android-
4.19-stable, android11-5.4-lts, and android12-5.10-lts) from
source code with configurations shipped with kernel releases.
We then booted each Android kernel using the whole-system
emulator QEMU (qemu-system-aarch64) with Cortex-A53 vir-
tual CPUs and dumped the RAM content using QEMU.
Volatility failed to generate a profile because the installation of
required toolchains was not allowed. In contrast, LOGICMEM
can find addresses of two global objects, task_struct
and module, and the physical address of the kernel page
table. Moreover, LOGICMEM was able to infer forensics-
required fields in task_struct and module as well as
14 kernel objects connected to them. Then we used offsets
of inferred forensics-required fields in 16 objects to run eight
Volatility plugins. To verify the correctness of plugin outputs,
we compared plugin outputs with information obtained from
the live system. More specifically, the first four plugins in
Table VII dump information about running processes. We
ran “ps aux” command in the live system to obtain pro-
cess information and verified that the process names, PIDs,
etc, were consistent. linux_memmap, linux_proc_maps, and
linux_dump_map plugins print process memory information.
We compared and verified the page size, addresses of mem-
ory pages, etc, with /proc/vmallocinfo file in the live
system. The linux_lsmod plugin outputs a list of loaded
kernel modules and we verified that the module names and
addresses were consistent with the lsmod command output.
For information that is not available in the live system (e.g.,
page flags), we checked if the plugin outputs were valid based
on domain knowledge. According to the results, we claim that
LOGICMEM can make these plugins work correctly.

b) Memory forensics for embedded devices: In this ex-
periment, we evaluated LOGICMEM on a well-known operat-
ing system designed for routers, OpenWRT [11], and a fork of
OpenWRT, Lede [5]. We downloaded router images (x86_64
and ARM64 architectures) from vendor’s official website [5],
[11] and booted the systems up using the whole-system emula-
tor QEMU. Volatility also failed to generate profiles because it
was forbidden due to security settings (i.e., the kernel module
cannot be inserted). For the OpenWRT/ARM64 system, we
found that the underlying address translation mechanism was
unknown. Therefore, we utilized the fact that kernel memory
is continuously mapped and simply subtracted the kernel base
offset from a virtual address to compute the physical address.
This offset can be calculated using the same method intro-
duced in §IV-B. For the OpenWRT/ARM64 and Lede/x86_64
system, LOGICMEM could locate two required global objects
using the pattern matching method. Then we ran LOGICMEM
to infer forensics-required in these two objects and 14 kernel
objects connected to them. Similarly, we compared plugin
outputs with information collected from the live system and
verified that they were consistent. According to the results, we
claim that the generated profile can make Volatility plugins
work correctly.

c) Rootkit Detection: To demonstrate the usability of
LOGICMEM on security-related applications, we ran LOG-
ICMEM to generate a profile for a rootkit-infected mem-

ory dump. We chose a popular Linux kernel rootkit named
Average Coder [2], which is able to escalate the privilege
of a user process by sharing its cred structure with a root
process. As presented in Figure 10, we installed the Average
Coder rootkit in the target system running Linux 3.0, and
escalated the privilege of the current process (PID 1851) to
root. Afterwards, we acquired the memory dump and ran
LOGICMEM to generate a profile. As shown in Figure 11,
the linux_check_creds plugin was able to detect the
escalated process 1851 using the profile generated by LOG-
ICMEM. This experiment shows that LOGICMEM can support
the rootkit detection plugin without running any code in the
victim system, while Volatility needs to build a profile in the
victim system in advance to analysis.

VII. DISCUSSION

a) Recovering Kernel Symbols: Kallsyms is a mecha-
nism utilized by Linux kernel to resolve all symbols for de-
bugging purposes. As we found in the evaluation, mainstream
Linux distributions are shipped with this feature by default for
debugging. But it is possible for customized kernels to disable
this feature. When disabled, there is no possible method to re-
cover all kernel symbols from memory. In this work, we focus
on inferring object layouts and consider recovering symbols
a less challenging problem, because kallsyms is enabled by
default and if not, kernel objects can be located using their
unique patterns [20], [32]. To demonstrate the feasibility, we
develop a pattern matching method for two forensics-required
objects, task_struct and module. We use value patterns
such as unique strings in these objects representing process and
module names, and points-to patterns such as doubly linked
list fields that point to other objects with the same type. For
example, a valid task_struct contains a printable string
with a null terminator. It also contains a pointer field that points
to the next task_struct which also contains a valid process
name. We also developed a pattern matching method similar to
the one proposed by Saur et al. [38] to locate the kernel page
table when it cannot be found in kallsyms symbols. Algorithms
in question can be found in this anonymous repository [9].
LOGICMEM is able to locate these two objects when kallsyms
is not available and infer offsets of 47 fields within these two
objects and 14 objects connected to them. As presented in
Table VII, LOGICMEM, generated profiles can support eight
Volatility plugins even when kallsyms is disabled. As we found
during the study, all existing memory forensics tools [6], [13],
[27] and profile generation tools [3], [16], [22], [35], [47] rely
on kernel symbols either from the live system or kallsyms in
the memory dump. Our approach sheds some lights on memory
forensics without kernel symbols available.

b) Data Structure Randomization: Structure random-
ization [8] is a new feature introduced recently to improve
the security of Linux kernel. This feature, if enabled, will ob-
fuscate the structure layouts, making the kernel hard to exploit.
While public Linux distributions do not enable this configu-
ration because distributors need to publish the randomization
seeds to users for module-building, this is useful for private
kernel builds. Therefore, for customized kernels with structure
randomization enabled, order invariants in kernel objects are
broken, which affects the precision of LOGICMEM. In the
future, we can extend LOGICMEM to tolerate uncertainties like
randomization using probabilistic logic inference [19], [21],
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[23], in which rules and facts are annotated with probabilities.
By doing so, LogicMEM may still generate valid results
when some ordering rules are violated. Moreover, we can
take advantage of deep learning frameworks to automatically
learn new logic rules [45] or probabilities of logic rules from
kernel dataset with structure randomization. Such rules can be
independent of order constraints.

c) Changes of Invariants: Our logic inference approach
relies on kernel field invariants that are summarized from
a large variety of kernel versions. According to our kernel
evolution analysis and experiments, the invariants remain per-
sistent over observed kernel versions and remain so in new
versions. For a newly released kernel, we can run our invariant
detector and check whether generated invariants still hold. If
so, the existing logic rules are still valid. If not, we will adjust
the logic rules based on new invariants. More details about
handling changes of invariants can be found in Appendix §C.

d) Automatic Logic Rule Generation: In principle, it
is feasible to automatically generate these rules from the
observed invariants by following the algorithm algorithm 1,
and fine tune the rules if necessary. We have not implemented
this by the time of writing. Instead, we manually create these
rules by following the algorithm. Since the rule generation
only needs to be done once for Linux kernel and, as shown
in the evaluation, the rules work for a wide range of kernel
versions. Thus, there is no need to repeat the rule generation
and automating this process brings little benefit at this stage.

VIII. RELATED WORK

a) Memory Forensics: Many research works [13], [14],
[25], [33], [37], [40] have been proposed to facilitate memory
forensic analysis from different perspectives. They aim to
extract object layouts for forensic analysis purposes or propose
robust memory forensics methods. Existing techniques rely
on static analysis or dynamic analysis of kernel functions
to locate offset-revealing instructions and figure out layout
of objects. However, static approaches cannot achieve high
precision in locating offsets of forensics-required fields and
dynamic approaches require high-coverage seed inputs. In this
paper, we propose a logic inference approach to tackle the
Linux profile generation problem and it is shown to have much
higher precision and recall than existing approaches. Tools
like DeepMem [41] use deep learning approach to generate
abstract representations for kernel objects. However, it requires
a large volume of qualified training memory dumps, while our
proposed approach only requires a set of logic rules.

b) Virtual Machine Introspection (VMI): VMI monitors
system-level states of a running virtual machine and has been
widely applied for security applications such as malware detec-
tion [30], [46] and whole-system dynamic binary analysis [18],
[27]. Similarly, VMI also requires a profile of kernel objects in
the guest system. LOGICMEM can generate profiles to support
VMI tools.

c) Kernel Object Identification: Dolan-Gavitt et al. [20]
presented an approach to generating robust signatures for
kernel objects using their value invariants. In this work,
we explore other types of invariants in kernel objects and
reconstruct object layouts based on those invariants. Sig-
Graph [32] is another work that derives signatures for kernel

objects using points-to relations between objects. SigGraph
only utilizes pointer fields to generate object signatures, while
LOGICMEM uses more types of fields such as strings and
numbers. DIMSUM [31] and DEC0DE [43] leverage a prob-
abilistic inference-based approach to recovering data structure
from unmappable memory regions. However, they only focus
on specific data structures such as call logs, browsers, etc,
while LOGICMEM can support memory forensics plugins
implemented in Volatility. Laika [17] detects objects from
memory and derives object signatures for malware identifi-
cation. Specifically, it infers layouts of data structures using
unsupervised Bayesian learning. However, the accuracy of this
approach falls below the expectation of memory forensics.

d) Logic Inference and Its Applications: Logic infer-
ence has demonstrated its usefulness in solving security-related
problems, including C++ reverse engineering [39], binary
disassembly [24] and security policy analysis [28], etc. It
is motivated by the fact that some analyses rely on domain
knowledge or simple patterns, which can be expressed into
logic rules and evaluated by a logic reasoning system. In this
paper, the evaluation results suggest that the logic inference ap-
proach is well-suited for locating offsets of forensics-required
fields in kernel objects.

IX. CONCLUSION

In this paper, we proposed a novel solution to generate
profiles for binary-only memory forensics using a logic in-
ference approach. We have implemented a prototype named
LOGICMEM and demonstrated that the proposed logic infer-
ence approach is well-suited for locating offsets of forensics-
required fields in kernel objects. To the best of our knowl-
edge, LOGICMEM is the first approach that generates profiles
for binary-only memory forensics with 100% precision and
95% recall on average. We also demonstrated the efficacy of
LOGICMEM to enable memory forensics for memory dumps
collected from Android and embedded systems.
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APPENDIX A
VOLATILITY PLUGIN OUTPUTS

We run LOGICMEM on memory dumps collected from an
Android system and router OSes. Since there is no ground truth
of profiles, i.e., Volatility failed to generate profiles for these
systems, we run Volatility plugins with profiles generated by
LOGICMEM and verify the correctness of plugin outputs based
on domain knowledge and information obtained from live
systems. Figure 7, Figure 8, and Figure 9 present screenshots
of three Volatility plugins. Figure 10 and Figure 11 show
the screenshots of using profile generated by LOGICMEM to
support a rootkit detection plugin.

Fig. 7: The output of linux_psaux plugin on an OpenWRT
memory dump using a profile generated by LOGICMEM.

APPENDIX B
KERNEL SYMBOL RECOVERY

We identify value patterns for data structures that store
symbol addresses and names. As presented in Figure 3, symbol
virtual addresses are stored in kallsyms_addresses (defined in
kernel/kallsyms.c). We use the pattern that these addresses are
valid kernel addresses with the same prefix, in a increasing
order and reside continuously in kernel data section. After

Fig. 8: The output of linux_proc_maps plugin on an Goldfish
memory dump using a profile generated by LOGICMEM

Fig. 9: The output of linux_lsmod plugin on an Lede memory
dump using a profile generated by LOGICMEM.

Linux 4.6, a new configuration is introduced to save memory
usage by storing a relative base address and an array of
offsets. Kallsyms_offsets contains a list of 4-byte integers
with patterns similar to kallsyms_addresses. Symbol names are
compressed and stored in three data structures. kallsyms_names
contains lengths of symbol names and indexes to kall-
syms_token_index, and kallsyms_token_index contains indexes
to kallsyms_token_table, which stores compressed strings of
symbol names. Therefore, kallsyms_token_table contains print-
able strings terminated with zero. kallsyms_token_index con-
tains a list of unsigned short numbers in increasing order
and start from zero. We then follow the kernel function
kallsyms_expand_symbol (defined in kernel/kallsyms.c) to de-
compress symbol names.

APPENDIX C
KERNEL EVOLUTION ANALYSIS

Table V presents the full kernel evolution analysis results
for objects required by Volatility. According to the analysis,
we found that most of fields required by Volatility are not
changed along kernel upgrades. In the experiments, we did
encounter cases where the layout of a kernel object has
noticeable changes and invariants cannot be summarized. For
example, after Linux 4.5, four fields in module structure
were wrapped into other data structures and the order of those
fields also changed. Also, there are 53 field swaps happened
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TABLE V: Linux kernel object evolution analysis on 56 kernel objects over 47 kernel versions. *pid_link was deleted since
Linux 4.19. *module_layout was introduced since Linux 4.5.

Object Name
Tot. # of

added fields
Tot. # of

deleted fields
Tot. # of

modified fields
Tot. # of

swapped fields
Avg. # of
all fields

# of
required fields

# of changed
required fields

% of
unchanged fields

task_struct 146 66 19 7 213 15 1 97.6%
mm_struct 26 20 4 0 58 13 0 98.2%
vm_area_struct 7 6 0 2 20 6 0 98.5%
fs_struct 0 0 0 0 7 2 0 100%
mount 11 6 2 7 27 8 0 97.9%
dentry 3 2 1 1 18 6 0 99.2%
cred 4 1 0 0 27 4 0 99.6%
pid_namespace 14 4 1 0 17 4 1 97.7%
pid 1 0 0 0 6 1 0 99.6%
upid 0 1 0 0 3 1 1 99.4%
pid_link* 0 0 0 0 2 2 0 100%
file 10 3 0 0 22 2 0 98.8%
qstr 2 2 0 0 3 2 0 97.8%
vfsmount 0 0 0 0 4 3 0 100%
fdtable 1 1 2 0 6 2 0 100%
inode 19 6 7 1 53 4 1 97.1%
module 24 21 7 0 47 8 4 97.7%
module_layout* 1 0 0 0 7 3 0 99.3%
seq_operations 0 0 0 0 5 1 0 100%
tty_driver 3 4 1 0 23 7 0 99.2%
tty_struct 14 40 14 1 47 5 0 96.9%
tty_ldisc 2 2 0 0 3 1 0 97.3%
file_operations 14 7 2 0 29 7 0 98.4%
rb_root 0 0 0 0 1 1 0 100%
file_system_type 3 1 1 0 14 3 0 99.3%
kset 0 0 0 0 5 1 0 100%
kobject 1 0 1 0 13 4 1 99.7%
kernel_param 3 1 1 0 9 4 0 98.8%
kparam_array 0 0 0 0 6 5 0 100%
module_kobject 1 0 0 0 6 2 0 99.6%
kref 0 0 0 0 2 1 0 100%
neigh_table 6 2 0 0 27 4 0 99.3%
neigh_hash_table 2 2 0 0 5 1 0 98.3%
neighbour 5 1 0 1 26 6 0 99.4%
net_device 67 28 11 32 123 7 0 97.6%
in_device 3 0 0 0 20 2 0 99.7%
in_ifaddr 5 0 1 0 16 2 0 99.2%
socket 1 3 0 0 9 4 0 99.1%
inet_sock 6 3 0 0 21 4 1 99.1%
sock 36 13 4 53 71 2 0 96.9%
ipv6_pinfo 10 10 0 0 28 2 1 98.5%
unix_sock 5 7 18 0 12 4 0 95.1%
sockaddr_un 0 0 0 0 3 1 0 100%
cpuinfo_x86 13 12 0 0 32 2 0 98.4%
resource 1 0 0 0 8 7 0 99.7%
radix_tree_node 13 31 2 1 10 2 0 88.2%
tcp_seq_afinfo 1 4 0 0 4 4 2 97.6%
udp_seq_afinfo 1 4 0 0 5 4 2 98.1%
files_struct 5 2 0 0 10 2 0 98.6%
list_head 0 0 0 0 2 2 0 100%
hlist_head 0 0 0 0 2 2 0 100%
hlist_node 0 0 0 0 2 2 0 100%
rb_node 1 1 0 0 4 2 0 98.9%
sock_common 2 3 32 0 30 6 2 98.1%
proc_dir_entry 12 5 2 14 16 12 4 95.7%
timekeeper 19 10 4 8 19 6 4 95.4%

Fig. 10: Escalating the privilege of a user process using
Average Coder kernel rootkit.

Fig. 11: The Volatility rootkit detection plugin output using
profile generated by LOGICMEM.

to sock structure, and most of them are between Linux 4.9
and 4.10. In such cases, it is hard to summarize invariants and

have generic logic rules for all observed versions. Therefore,
we build different sets of logic rules to accommodate kernel
changes that break our invariants.
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TABLE VI: Logic rules and descriptions

Logic Rules Description
Field = [Offset, Val] Offset and value representing an inferred field
Ptr_fields(Field, ...) Create an array containing all inferred fields that should be pointers
Num_fields(Field, ...) Create an array containing all inferred fields that should be numbers
Str_fields(Field, ...) Create an array containing all inferred fields that should be strings
Ptr_facts An array that contains all pointer type facts collected in the inferred object
Num_facts An array that contains all number type facts collected in the inferred object
Str_facts An array that contains all string type facts collected in the inferred object
tuples_in(Ptr_fields, Ptr_facts) Constraint all inferred pointer fields should be in collected pointer facts
chain(Field_A[offset], Field_B[offset], ..., ’<’) Constraint spatial order of inferred fields
Field_B[offset] = Field_A[offset] + distance Constraint spatial distance between two inferred fields
Field_A[offset] < Range_constraint Constraint the offset of a field within a certain range
Field_A[value] >/</= Value_constraint Constraint the value of a field with in certain range
query_obj_name(obj_addr) A query that contains all logic rules designed for an inferred object, with the object address as an argument
procress_create(obj_name, obj_addr) Create a sub-process to infer a typed pointer, with the target address as an argument

TABLE VII: Eight Volatility plugins that are functional using generated profiles.  means the plugin is functional using the
generated profile, and # means the plugin does not work due to misidentifications of some fields.

Goldfish-3.8 Android-4.4-release Android-4.9-release Android-4.14-stable Android-4.19-stable Android11-5.4-lts Android12-5.10-lts Openwrt/Linux-4.5 Lede/Linux-4.11
linux_pslist          
linux_psaux          
linux_pstree          
linux_lsof          
linux_memmap          
linux_proc_maps          
linux_dump_map          
linux_lsmod          
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