
COOPER: Testing the Binding Code of
Scripting Languages with Cooperative Mutation

Peng Xu†‡ Yanhao Wang§ Hong Hu¶ Purui Su†∥�

†TCA/SKLCS, Institute of Software, Chinese Academy of Sciences
‡University of Chinese Academy of Sciences
§QI-ANXIN Technology Research Institute

¶Pennsylvania State University
∥School of Cyber Security, University of Chinese Academy of Sciences

Abstract—Scripting languages like JavaScript are being inte-
grated into commercial software to support easy file modification.
For example, Adobe Acrobat accepts JavaScript to dynamically
manipulate PDF files. To bridge the gap between the high-level
scripts and the low-level languages (like C/C++) used to imple-
ment the software, a binding layer is necessary to transfer data
and transform representations. However, due to the complexity
of two sides, the binding code is prone to inconsistent semantics
and security holes, which lead to severe vulnerabilities. Existing
efforts for testing binding code merely focus on the script side,
and thus miss bugs that require special program native inputs.

In this paper, we propose cooperative mutation, which modifies
both the script code and the program native input to trigger
bugs in binding code. Our insight is that many bugs are due to
the interplay between the program initial state and the dynamic
operations, which can only be triggered through two-dimensional
mutations. We develop three novel techniques to enable practical
cooperative mutation on popular scripting languages: we first
cluster objects into semantics similar classes to reduce the
mutation space of native inputs; then, we statistically infer the re-
lationship between script code and object classes based on a large
number of executions; at last, we use the inferred relationship to
select proper objects and related script code for targeted mutation.
We applied our tool, COOPER, on three popular systems that
integrate scripting languages, including Adobe Acrobat, Foxit
Reader and Microsoft Word. COOPER successfully found 134
previously unknown bugs. We have reported all of them to the
developers. At the time of paper publishing, 59 bugs have been
fixed and 33 of them are assigned CVE numbers. We are awarded
totally 22K dollars bounty for 17 out of all reported bugs.

I. INTRODUCTION

Scripting languages, like JavaScript and Python, have been
adopted in commercial software to provide convenient interfaces
to the underly complicated systems. For example, Adobe
Acrobat accepts JavaScript code to manipulate internal PDF
objects [1], while IDA Pro provides a Python binding for
third-party developers to inspect binary attributes [23]. As
commercial software is usually written in low-level languages

like C/C++, a binding layer is necessary for transferring the
arguments and transforming the representation for the high-
level scripting languages. However, since the software and the
script are developed independently, the binding layer is prone
to produce inconsistent representations or miss security checks,
which lead to tons of severe security vulnerabilities [6, 11].

To mitigate the threat from the binding code, researchers
have proposed multiple program analysis techniques to detect
various vulnerabilities, like unhandled crashes [27, 30, 53], type-
safety violations [15, 16, 53] and memory-safety violations [6,
31]. Most techniques statically analyze the binding code to
detect specific violations. For example, Brown et al. develop a
set of static checkers, each of which aims to locate a particular
type of bugs, such as implicitly casted variables [6]. These
methods are limited by the nature of static methods: unscalable
to handle large code base; the inaccuracy leading to many
false alarms; lack of concrete inputs to trigger the bug. Instead,
Lee et al. build a dynamic analysis tool to detect specification
violations at runtime [28]. However, it merely reports bugs
triggered by the given inputs and thus has limited bug coverage.

Recently, fuzzing is widely used to test many programs
and systems [20, 32, 61] and successfully found thousands of
bugs [49]. The basic idea of fuzzing is to randomly generate
a large number of inputs and run the program with these
inputs to expose visible anomaly behaviors, like crashes or
security violations [12, 33, 47, 48]. Because of the efficacy on
finding bugs and the scalability to handle complicated systems,
fuzzing is recently used to test the runtime and the binding
code [11, 14, 21, 40, 45, 60] of JavaScript – the most popular
scripting language [62]. Among them, Dinh et al. develop a
tool, favocado, to generate semantically valid JavaScript code
to solely test the JavaScript binding code and found lots of
exploitable bugs in PDF readers and web browsers [11].

Although previous works demonstrate the feasibility of
fuzzing binding code, we notice their limitation on exploring
the program states due to one-dimensional mutation [59].
Specifically, favocado merely modifies JavaScript statements in
order to trigger bugs in the binding layer. However, binding code
is designed to connect the high-level scripting languages and the
underlying systems written in low-level languages. Therefore,
it accepts inputs from two dimensions: the code written in the
scripting language (i.e., the script) and the native input for the
underlying system (e.g., PDF files for Adobe Acrobat). Both

Network and Distributed Systems Security (NDSS) Symposium 2022
24-28 April 2022, San Diego, CA, USA
ISBN 1-891562-74-6
https://dx.doi.org/10.14722/ndss.2022.24353
www.ndss-symposium.org

dimensions can affect the execution of the binding code, and
one cannot completely replace another. Mutating one dimension
of the inputs cannot discover all bugs in the binding code. For
example, although Adobe Acrobat accepts both PDF files and
JavaScript code as its inputs, particular program features such
as font are only mutable from the native input, i.e., the PDF file
– merely mutating JavaScript code cannot trigger such bugs [1].

The solution to address this limitation seems straightforward:
we mutate the inputs from two dimensions: modifying native
inputs to prepare the program’s initial states, and synthesizing
valid scripts to trigger more diverse states. However, the simple
method that randomly mutates two dimensions cannot explore
the binding code effectively due to the large mutation space:
the native input contains many objects but not all of them are
related to the binding code, while the script code only accepts
particular program states for further operations.

To reduce the mutation space from two dimensions, we
propose cooperative mutation, which uses the relationship
between native inputs and script code to guide the fuzzing
process. Specifically, it first modifies native objects that are
related to the binding code; then, it synthesizes script code
that will manipulate the program state triggered by the current
native input. In this way, all mutation energy is used towards
affecting the execution of the binding code. However, we need
to address two challenges before adopting cooperative mutation.
First, it is nontrivial to infer the relationship between the
native input and the binding code. Considering the complicated
underlying system and diverse scripting languages, manual
effort is unscalable for handling real-world binding code.
Second, it is hard to tell whether each script code accepts the
program state triggered by a given native input. This problem
is even worse in commercial software, where the source code
is usually unavailable and the document is not given in detail.

We design three novel techniques, object clustering, statis-
tical relationship inference and relationship-guided mutation,
to address the aforementioned challenges to enable practical
cooperative mutation. First, we cluster objects in native inputs
based on their semantics similarity. The clustering helps reduce
the input mutation space significantly. Then, we rely on the
large number of concrete executions to statistically infer the
relationship between the native input and the script code.
Specifically, we record the objects and script code in each
file, and open it using the application to collect the execution
result of the script code (i.e., success or failure). If the
success of the execution highly correlates with the inclusion
of particular objects, we believe such objects are internally
related to the script statement. Although such relationship is
not formally confirmed, the large number of executions provide
a statistical guarantee. Our evaluation in §V shows that the
inferred relationship can help find a large number of severe
bugs in the binding code. At last, we define a set of mutation
policies that use the inferred relationship to guide the object
modification and script generation. Specifically, we only modify
objects related to script code, and update the corresponding
script code to generate various runtime operations.

We implement COOPER, a prototype that uses cooperative
mutation to test the binding code of scripting languages.
COOPER contains 1,581 lines of Python code for object
clustering and relationship inference, and 2,756 lines of Python
code for relationship-guided mutation. Currently, it supports

testing two binding types, JavaScript with PDF files and Visual
Basic with Microsoft Word documents. Since the idea of
cooperative mutation is general, it is straightforward to extend
COOPER to other scripting languages, like Python and Perl.

To understand the effectiveness of COOPER, we applied
it on three popular binding systems, Adobe Acrobat, Foxit
Reader and Microsoft Word. COOPER successfully detected
134 unknown bugs, including 60 for Adobe Acrobat, 56 for
Foxit Reader, and 18 for Microsoft Word. We have reported all
these bugs to their developers. At the time of paper publishing,
103 bugs have been confirmed and 59 bugs of them have been
fixed. Due to the severity of the reported bugs, we have received
33 CVE numbers and $22K bug bounties from various sources.
Besides the bug detection, we also conducted unit tests to
understand the contribution of each component of COOPER.
The evaluation result shows that our relationship inference can
deduce strong relationships between objects and script code,
while the relationship-guided mutation improves the fuzzing
efficacy by finding significantly more unique bugs in one week.

In summary, we make the following contributions.

• We propose cooperative mutation, which simultaneously
modifies the native input and the related script code to
test the binding code of scripting languages.

• We design COOPER, a prototype that infers relationships
between the native input and the script code, and utilizes
the relationship to guide the two-dimensional mutation.

• We applied COOPER on real-world popular commercial
software and detected 134 bugs, which results in 33 CVEs
and $22K bug bounties.

We plan to release the source code of COOPER at https:
//github.com/TCA-ISCAS/Cooper to help improve the security
of binding layers of scripting languages.

II. BACKGROUND AND MOTIVATION

To explain the research problem, we first briefly introduce
scripting languages and the binding code. Then, we use one
example to demonstrate common vulnerabilities in the binding
code. Next, we demonstrate why existing work fails to trigger
or detect such bugs and how the cooperative mutation addresses
the limitation. At last, we analyze the challenges of adopting
cooperative mutation and provide an overview of our solution.

A. Scripting Languages and Binding Code

Scripting languages are designed to automate the execution
of tasks. Each underlying complicated task is encapsulated
as a high-level API call, while developers usually combine
necessary API calls to achieve diverse functionalities. Scripting
languages are intended to be easy to learn and use, and most of
them get interpreted at runtime instead of statically compiled.
While several scripting languages are designed for specific
domains, like Bash for Unix operating system, many are general-
purpose programming languages, like Python and Perl. With
the high demand of quick development, scripting languages
are getting more and more popular. For example, JavaScript,
the scripting language designed for web browsers, have been
the most popular programming language for many years [62].

2

https://github.com/TCA-ISCAS/Cooper
https://github.com/TCA-ISCAS/Cooper

1 %PDF-1.3
2 1 0 obj << /Pages 2 0 R >> endobj
3 2 0 obj << /Kids [3 0 R] >> endobj
4 3 0 obj << /Resources << /Font << /TT1 4 0 R >> >>
5 /AA << /O << /S /JavaScript
6 /JS 5 0 R >> >> >> endobj
7 4 0 obj << /FirstChar 0
8 /Widths [778 778 ... 556 500] % 256 + 1 elements
9 /LastChar 255 >> endobj

10 5 0 obj << /Length 539 >>
11 stream
12 this.zoomType=zoomtype.refW; % Trigger the bug
13 endstream
14 endobj
15 trailer << /Root 1 0 R >>

Fig. 1: Simplified PDF file that triggers a heap buffer overflow
of Adobe Acrobat. To trigger this bug, the PDF file must take two
steps: overflowing the memory (line 8) and run JavaScript (line 12).

Many commercial software integrate the runtime of scripting
languages so as to support unified, convenient and cross-
platform programming interfaces. For example, PDF processing
applications such as Adobe Acrobat and Foxit Reader allow the
embedded JavaScript code in PDF documents to dynamically
manipulate PDF objects or trigger dynamic actions [1, 13].
Binary decompilers like IDA Pro and Ghidra also provide
Python bindings so that third-party developers can easily access
the binary attributes and construct various extensions [18, 23].

Since scripting languages are designed in high-level and
encapsulate the details, the commercial software that written in
low-level languages (e.g., C/C++) cannot directly communicate
with the script code due to different memory models and
type systems. A binding layer is necessary to bridge gaps
by transforming the data from one representation to another.
However, since the underlying commercial system and the high-
level scripting languages are developed independently, even at
different ages, it is challenging for the binding code to correctly
handle all transformations. Missing security checks, unhandled
exceptions and inconsistent semantics have led to a large
number of severe security vulnerabilities [6, 11, 27, 30, 53].

B. Motivating Example

Figure 1 shows a simplified PDF file that triggers a heap-
based buffer overflow of Adobe Acrobat. We found this bug
using our tool and reported it to Adobe. At the time of
paper writing, the bug has officially been fixed. PDF files
are organized as trees of objects. Each object has a unique
identifier and its content is defined within a pair of keywords
obj and endobj. In the example, the PDF tree starts from the
root object 1 defined at line 2. Object 1 contains one Pages
object 2, which in turn has only one Kids object 3. Object 3
uses the font TT1 that is defined in object 4. Object 4 includes
an array Widths that specifies the width of each glyph in the
character set (line 8). Object 3 further specifies the additional
action /AA when opening /O this file, which runs JavaScript
code defined in object 5 (line 10-14). The JavaScript statement
at line 12 changes the zooming type of the file to ReflowWidth.

This bug can be triggered by an interplay between PDF
objects and JavaScript statements, shown in Figure 2. Specifi-
cally, when Adobe Acrobat opens this file, it will follow the
instruction in object 3 to execute the JavaScript statement at
line 12. The JavaScript engine invokes the functions defined
in the reflow.api module, which is implemented in C++. The
reflow.api module first creates a fixed-length heap buffer

JavaScript engine

1 0 obj … endobj
2 0 obj … endobj
3 0 obj … endobj
4 0 obj … endobj

stream
zoomType = refW
endstream

native
objects

JS
code

PDF file

binding layer

Adobe Acrobat

parser GUI

reflow.api✷ …

Fig. 2: Two-dimensional inputs to Adobe Acrobat. A PDF may
define both native PDF objects and JavaScript code, where the former
is processed by the native Acrobat modules (e.g., reflow.api) while
the latter is handled by the embedded JavaScript engine. JavaScript
code invokes native APIs through the binding layer.

that occupies 256 four-bytes. Then, it copies the content of the
Widths array in the object 4 to the fixed-length buffer. However,
the array in this file contains 257 four-byte elements, and thus
the copy will exceed the boundary of the fixed-length buffer
and overwrite the following four-byte. Our manual analysis
reveals that reflow.api checks the length of Widths before
the memory copy, but it carelessly allows the marginal size
257 due to the confusion between > and ≥. If we manually
replace the ja instruction (i.e., jump if above) with jae (i.e.,
jump if above or equal), the program will work well without
any crash. Our further analysis reveals that attackers can
use any value between 0 and 0x7fffffff to overwrite the
following four-byte. Therefore, they can prepare special heap
layouts [10, 52, 56] to either overwrite function pointers to
execute arbitrary code [4, 46, 50], or modify critical data for
similar malicious purposes [7, 25].

This bug received a CVE number CVE-2021-28638. We
are awarded $2,500 bounty for reporting this particular bug.

C. Necessity of Cooperative Mutation

To generate the bug-triggering PDF file in Figure 1 from
normal inputs, we need to modify both PDF objects and
JavaScript statements. On the one hand, we need to actively
modify the Widths array to add extra elements. Based on the
PDF format reference [2], in a simple font (e.g., the TT1 object
in this example), each character code is represented by one byte.
Therefore, the Widths array which specifies the glyph width of
each supported character can have at most 256 elements. As a
demonstration, among 16,000 PDF files collected from public,
we did not find any one containing Widths objects with 257
or more elements. More importantly, Adobe Acrobat does not
provide an interface for JavaScript code to modify the glyph
width [1]. This means that merely updating JavaScript code can
never trigger this bug. On the other hand, the action of changing
the zoom type to reflowW will redraw the PDF file as single
column whose width is the same as the current window (mainly
for easy reading). This action cannot be specified in any PDF
native objects, and we have to resort to the JavaScript code to
dynamically trigger this action at runtime. Manually enabling
the reflow mode is also possible by clicking the corresponding
button on the Acrobat graphics interface, but that will disable
the efficient automatic program testing.

Previous work cannot effectively detect this bug. Static
analysis techniques either ignore this type of violations [15, 16,
27, 30, 31, 53] or cannot handle the code of Adobe Acrobat [6].

3

JavaScript engine

1 0 obj … endobj
2 0 obj … endobj
3 0 obj … endobj
4 0 obj … endobj

stream
zoomType = refW

endstream

native
objects

sample
collection

PDF file

binding layer

Adobe Acrobat

parser GUI

reflow.api✷ …

obj(a)

obj(i)

obj(x)

……

……

Object Clustering

class(A)

class(B)

Relationship Inference

1 0 obj … endobj
2 0 obj … endobj
3 0 obj … endobj
4 0 obj … endobj

stream
a=this.getAnnot()

endstream

PDF files

(Annotation API,
class(A),

success rate)

API references

object
classes

Relationship-Guided Mutation

Seed Selection

Script Generation

File Mutation Bug reports

Fig. 3: Overview of COOPER. It takes the program binary, script manuals and sample documents as inputs, and reports memory-safety
bugs. COOPER first clusters objects based on their high-level semantics. It then infers the relationship between objects and script APIs. Such
relationships help COOPER cooperatively mutate objects and script code. The generated document is sent to the target program to trigger bugs.

It is worthwhile to note that the bug does not happen inside the
binding layer, but in the native reflow.api module. Statically
analyzing such a large code base without source code is known
to be challenging [6], if not impossible. Dynamic program
analysis [28] can neither detect this bug without a malformed
PDF file that is generated from two-dimensional mutation.

The recent fuzzing work favocado tries to generate
semantic-valid scripts to test the binding code of JavaScript
in PDF readers and browsers [11]. However, favocado only
modifies the JavaScript statements and does not make any
changes to the PDF native objects. Considering that most of
the normal PDF files do not have more than 256 elements in
the Widths array, it is challenging for favocado to identify this
bug using its current method. As demonstrated in [11], other
JavaScript testing tools could not be used to test binding code
in non-browser environments [22, 24, 29, 40, 54].

Our solution, COOPER, utilizes cooperative mutation to
synthesize PDF files and successfully triggered this bug for the
first time. Different from static analysis techniques, COOPER
runs Adobe Acrobat with concrete PDF files and only watches
for externally visible abnormal behaviors, like execution crashes.
Therefore, it can test large programs regardless of the code size
or the bug location and captures a wide range of violations.
It actively and continuously generates diverse inputs to stress
Adobe Acrobat, especially the binding layer, to run different
code paths. Most importantly, it modifies both the JavaScript
code and the PDF objects to trigger bugs as many as possible.

D. Challenges of Cooperative Mutation

Although the idea of cooperative mutation is easy to
understand, it is nontrivial to implement the solution. The
main challenge comes from the large mutation space of both
dimensions. First, the native input file can have many objects,
but not all objects are related to the binding layer [44]. In the
case of Figure 1, the key step is to insert an extra element into
the Widths array, whereas the concrete values of the existing
256 elements does not affect the execution of the binding layer.
Second, the scripting code can combine any number of functions
from thousands of APIs provided by the underlying system [11].
The synthesized script should accept the program state created
by the underlying system by parsing the native input. Otherwise,
the script either cannot trigger new program states, or even
fails to execute. Previous work like favocado proposed API
grouping to reduce the code search space. Specifically, they
classify various APIs into several independent groups based on
the high-level semantics. For each time of mutation, favocado
only synthesizes code using APIs from one group. However,
API grouping only partially addresses our challenges as the
input space is still too large to be handled easily.

To reduce the mutation space, we propose to use the
relationship between the input and the script code to guide the
mutation. Specifically, we modify the input and the related script
to divert the execution path of the binding layer. The guidance
of input-script relation helps us focus on testing binding code.
However, we need to address the following challenges.

C1. How to effectively infer relationships between the native
input and the script code?

C2. How to use the inferred relationship to guide the input
mutation from two dimensions?

To address challenge C1, we need a general solution to
automatically infer the relationship for any given scripting
languages and underlying systems. It is not scalable to use
tedious human effort to understand the language specification,
which usually contains hundreds of pages [1]. For challenge
C2, the solution should be general while flexible so that users
can adjust the policy when necessary. Other than these two
challenges, we realize that the tremendous input space could
prevent any effective solutions in the first place. We plan to
follow the methodology used in favocado and classify input
objects into different classes, which leads to the third challenge.

C3. How to cluster input objects to semantic-similar classes?

In the following sections, we will present our solutions to
these challenges and assemble them into a system, COOPER,
that can effectively test binding code of scripting languages.

III. COOPER DESGIN

COOPER leverage the relationship between the native
objects and the script code to guide the mutation. Figure 3
provides an overview of our system, which takes API references,
program binaries and sample documents as inputs and produces
various bug reports of the tested program. In the beginning,
COOPER parses the given sample documents to extract native
objects. To reduce the object search space (i.e., challenge C3),
COOPER categorizes objects into different classes based on
their attributes (§III-A). COOPER also adopts method proposed
in previous work to group APIs [11]. Then, COOPER infers
the relationship between object classes and API groups to
tackle challenge C1. Specifically, it produces a large number
of documents by combining different object classes and API
groups, and records the execution results of the embedded
scripts. Based on the success rate of the script execution
and the distribution of object classes, COOPER infers the
relationship between API groups and object classes (§III-B). At
the end, COOPER leverages the inferred relationship to guide the
object selection, script generation and object mutation (§III-C).
We design several cooperative mutation strategies to address

4

1
2 <map name="map1">
3 <area href=search.html alt="Search" shape=rect coords="184,0,276,28">
4 <area href=shortcut.html alt="Go" shape=rect coords="118,0,184,28">
5 </map>

(a) HTML file for graphical navigational toolbar

1 <w:rPr>
2 <w:rFonts w:ascii="Preeti" w:hAnsi="Preeti" />
3 <w:sz w:val="32" />
4 <w:szCs w:val="32" />
5 </w:rPr>

(b) XML file for a DOCX document
Fig. 4: HTML and XML files commonly use attributes to define native objects.

challenge C2. The generated document is sent to the target
program for execution, and any crash indicates a potential bug.

A. Native Object Clustering

Suppose one document contains M native objects and the
binding layer supports N script APIs to manipulate objects,
in theory we need to infer relationships of M ∗ N pairs of
object-API combinations. Considering the large value of M ∗N ,
it is impractical to conduct the inference for each pair. Instead,
relationships are actually defined between object classes and
API groups. In other words, objects of the same type can be
manipulated by the same set of APIs. Therefore, in the first
step we cluster the large number of objects into type-based
classes in order to simply the relationship inference task.

Object Attributes. It is common that an object in the
document is described as a set of attributes, as shown in
Equation 1. Each attribute A has a name and a value. An
attribute name is usually a readable string that has high-level
semantics, like Length for variable size, while an attribute value
is either a constant, or another object (we call it value object)
defined by more attributes. While Equation 1 shows an abstract
representation, we can find different implementations of objects
and attributes from popular document formats: in the PDF file
of Figure 1, object 1 has one attribute /Pages whose value is
object 2, and object 4 has three attributes where all of them
are constant values; in the HTML file of Figure 4a, we can
find the img object has three attributes, where the value of the
usemap attribute is another map object; Figure 4b shows part of
an XML file included in a DOCX document, where we can find
the object w:rPr is defined with three attributes w:rFonts, w:sz
and w:szCs and each attribute value is also an object defined
by other attributes. After analyzing 16,000 randomly collected
PDF files, we find that more than half of the PDF objects are
Dictionarys, which are defined as lists of attributes. Therefore,
object attributes are widely used in popular documents, and
we can use it to reliably cluster objects.

O : object =

A0 : name0 = object0,
A1 : name1 = object1,
A2 : name2 = object2,

... = ...

 (1)

Since attribute names deliver high-level semantics, we
decide to use them to cluster objects. On the one hand, objects
of the same type should share common attribute names by
design. This is the theoretical foundation of our attribute-based
clustering. On the other hand, due to optional attributes (i.e.,
objects may or may not have the attribute), even if two objects
have the same type, they may have different sets of attributes.
In this case, we decide to use the attribute similarity, instead of
the exact attribute set, to cluster different objects. Our clustering
process follows two steps: first, we create a new class for each
attribute, and put all its value objects into the class; second,

based on the similarity of attributes, we split classes into smaller
ones or merge them into larger ones.

1) Clustering Value Objects: In the first step, we use the
attribute name to cluster its value objects. Intuitively, if two
objects can be used as the value of the same attribute, they must
have similar high-level semantics. Specifically, we will check
every (name,object) pair: if we find a new attribute name, we
will create a new class, and put the object into the class; if we
have seen the attribute name, we will find the existing class and
put the object there. Based on our experiment, most objects are
used as the value of other objects, and therefore this method
can handle objects well. For objects that are not used as values,
we simply put them into a special class. In Equation 2, four
objects objectx, objecty, objectz and objectw are used as
values of the same attribute namea. Therefore, we will create a
namea class, and put these four objects there.

Oi := {..., namea = objectx, ...}
Oj := {..., namea = objecty, ...}

Ok := {..., namea = objectz, namea = objectw...}
(2)

Although the attribute-based clustering is reasonable, we
observe two issues that decrease the result accuracy. First,
attribute names could have overly general meanings, which
renders the created classes contain semantically different objects.
We need to split these classes into fine-grained ones. For
example in Figure 1, attribute /AA means additional action,
whose value is a Dictionary object containing a set of concrete
actions. Based on the value-object clustering, we will put
all such Dictionary objects into one class, no matter they
contain actions for /Page, /Field or other significantly different
objects. Second, semantically similar objects could be put into
multiple classes due to different attribute names. For example,
attributes /Parents and /Kids play similar roles in organizing
PDF documents and can be manipulated by the same set of
script APIs. We should put them together. However, due to the
different attribute names, they are split into two classes.

2) Clustering with Attribute Similarity: We rely on the
common attributes between objects to split existing classes into
smaller ones or merge them into larger ones. Note that our
method does not distinguish large or small classes, but simply
applies the algorithm to all existing classes for splitting or
merging. Specifically, we use the Dice coefficient to gauge the
similarity, shown in Equation 3. A and B are the attributes sets
of two objects; |A| is the element number in A while |B| is
the element number in B; A

⋂
B produces the set of common

attributes of A and B. Intuitively, a larger Dice coefficient
means that A and B have more common attributes, indicating
their stronger underlying connections. If sim(A,B) is larger
than a threshold θ, we will put them into the same class;
otherwise, we will separate them into two classes. The threshold
can be defined empirically to achieve the optimal fuzzing result.
In our experiment, we use two different thresholds for splitting
and merging to achieve fine-grained clustering results. Even if

5

that brings in extra classes, the relationship inference algorithm
should be able to capture them. Based our empirical evaluation,
we set θ to 0.3 for splitting and use θ=0.7 for merging.

sim(A,B) =
2 (|A

⋂
B|)

|A|+ |B|
(3)

Equation 3 could bring heavy calculation when we extend it
to support classes: we have to calculate the Dice coefficient for
each member of the Cartesian product of two classes, which
may take a lot of time and resources to finish. To simplify the
calculation, we decide to use the high-frequency attributes to
represent all objects in a class. We identify a high-frequency
attribute if it is used by at least half of all objects in the class.
With the high-frequency attribute, we can still use Equation 3 for
calculation: A and B now represents the set of high-frequency
attributes of the classes. Note that, we will update the high-
frequency attributes after adding a new object into the class,
which means the result could depend on the order of object
analysis. If we cannot find any high-frequency attribute from
one class, we will not take any more action on the class.

Now, we consider the aforementioned examples where the
simple attribute-based clustering fails. First, for value objects
of /AA, since each Dictionary object is defined with different
actions, we can use attribute similarity to further classify them.
For example, /Page objects only accept open and close actions,
so we can get a new class to hold them. /Field objects accept
keystroke, format, validate and calculation actions, and we
successfully split them into a new class. Second, regarding
/Parents and /Kids objects, we find that most of them
internally contain /Parents and /Kids attributes. Therefore,
we combine these two classes as one.

Real-world Statistics. We applied our clustering method on
16,000 collected PDF files. The algorithm splits 12,374,420
objects into 901 classes. The value-object clustering introduces
169,973 classes; the high-frequency attribute-based method
further splits them into 209,453 classes; we remove classes that
have less than 64 objects; after merging, we have 901 classes
ready for the next-step analysis.

B. Statistical Relationship Inference

To support cooperative mutation, we take a statistical
method to infer the relationship between script APIs and various
object classes. Note that our goal is to obtain the possible
relationship through light-weight methods. Confirming inferred
relations would take a large amount of reverse engineering
efforts and thus is out of the scope of this paper. Our inference
mechanism has three steps: interface recognition, execution
logging and relationship inference.

1) Interface Recognition: In the first step, we manually
analyze the official manual, specifically interface definitions
and API references, to recognize APIs that can access objects
defined in documents. Usually, these APIs are well organized
in the language specification, and we can identify them quickly
by scanning the specification. Figure 5a show an example
simplified from the JavaScript for Acrobat API Reference [1]:
API getAnnot() returns all Annotation objects in a PDF file.
The argument is the document object (i.e., this). If the file
has no Annotation objects, this API will return NULL. Line
2 shows the way to modify the strokeColor property of the

1 var annots = this.getAnnot();
2 annot[0].strokeColor = color.blue;

(a) Original JS code

1 + try{
2 var annots = this.getAnnot();
3 + app.alert(annots.length + " Annots Found");
4 annot[0].strokeColor = color.blue;
5 + } catch(e) {
6 + app.alert("ERROR: " + e);
7 + }

(b) After instrumentation

Fig. 5: Example JavaScript code for accessing PDF annotations.
(a) Line 1 gets the list of all available annotation objects, and line 2
updates the strokeColor attribute of the first annotation to blue. (b)
We insert extra code to the original JS to inspect the execution results.

first Annotation object. JavaScript has both read and write
permissions here.

Coverage of Mutable Properties. It is worthwhile to note
that not all object properties accessible by script APIs can be
modified — some are read-only to scripts. For example, based
on the reference [1], Adobe totally exposes 578 properties to
JavaScript and only 314 (i.e., 54.2%) of them can be modified.
Other exposed properties can only be modified through direct
object mutation. Previous work that merely mutates scripting
code and does not change any documents cannot explore
binding code that interacts with such immutable objects.

To reduce the mutation space of script APIs, we adopt
the method proposed in favocado [11] to group APIs based
on their high-level semantics. The intuition is that functions
and properties in the same section of the manual should work
for similar high-level semantics, like updating annotations or
checking form fields. Based on API groups and the language
specification, we construct templates corpus for code generation.

2) Execution Logging: With API groups, we will construct
simple testing scripts that use APIs to access native objects.
Our system can automatically insert these scripts into each
provided document. It opens each modified document with
the tested application, and records the execution result of the
embedded script. To record the execution result, our scripts
must contain two logging operations. First, after one invocation
of any API, we will use a proper statement to save the return
value, like through printing functions or saving to log files. A
successful call indicates that the document contains objects that
are necessary for the current API to complete. Second, to record
unexpected errors that throw exceptions, we insert fault handling
code to hook exceptions and log the error message. This step
produces a set of tuples in the form of (document,API,result),
where document identifies the tested file, API means the related
APIs and result indicates the execution result. Figure 5b shows
the JS code updated from the original version in Figure 5a.
Code at line 3 prints the return value, while code at lines 1, 5,
6, and 7 hook exceptions and save the error message.

3) Relationship Inference: With object classes and execution
results, we try to map each script API to related object classes.
Our system takes Algorithm 1 to achieve this goal. First, for
each API f we find all related execution results, including
successes (denoted as Sf , line 4) and failures (denoted as Ff ,
line 5). Then, for each object class c, we find all the files that
contain at least one object in class c (denoted as IN , line 7).
Next, we calculate, among all successful files, the ratio of files

6

Algorithm 1: Relationship Inference Algorithm
Input: ExecResult = {(doc, API, res)},

ObjClassSet = {ObjClass}
Output: RelationMap = {API → {(ObjClass, rate)}}

1 APIset = {API | (doc,API,res) ∈ ExecResult}
2 for API f ∈ APIset:
3 RelationMap[f] = ∅
4 Sf = {(doc,API,res) ∈ ExecResult | API=f ,res=success}
5 Ff = {(doc,API,res) ∈ ExecResult | API=f ,res=fail}
6 for class c ∈ ObjClassSet:
7 IN = {doc | ∃ object o ∈ doc, o ∈ c}
8 SIN = {(doc,API,res) ∈ Sf | doc ∈ IN}
9 FIN = {(doc,API,res) ∈ Ff | doc ∈ IN}

10 rateS = |SIN | /
∣∣Sf

∣∣
11 rateF = |FIN | /

∣∣Ff

∣∣
12 rate = rateSucc – rateFail

13 if rate > δ:
14 RelationMap[f].add((c,rate))
15 return RelationMap

that contain any objects in c (line 8, 10), denoted as rateS ;
similarly, we also calculate among all failed files, the ratio of
files that contain any objects in c (line 9, 11), denoted as rateF .
Finally, if the difference of rates and rateF is larger than a
threshold δ, we will add class c to the relationship set of API
f , together with rate. We can tune δ to filter out less-related
classes. In our experiment, we set it to 0 to keep all classes.

Handling Common Objects. rateS tells among all files
supporting the current API, how many of them contain objects
in the current class. A higher rateS indicates a stronger
connection. However, this method may fail in the case of
common objects. A common object exists in almost all normal
files, like /Pages and /Resources in the PDF format. Therefore,
rateS of common objects is usually very high (even reaches
100%), which will mislead our algorithm to conclude that
these objects are strongly related to every API. To mitigate
this problem, we further consider rateF , which shows among
all files not supporting the current API, how many of them
contain any object in the current class. If the ratio is also high,
it indicates that such objects are likely to be common objects.
Therefore, we take the difference of rateS and rateF to rank
the inferred relationship for each API.

C. Relationship-Guided Mutation

In the last step, we utilize the inferred relationship between
object classes and API groups to guide the generation of new
files. First, we choose one group of APIs as the testing target.
If these APIs have entries in the RelationMap map (results
of relationship inference in Algorithm 1), we will perform
cooperative mutation on both scripts and objects. Otherwise,
we randomly choose scripts and objects for mutation. We
take a standard method to generate script code that invokes
selected APIs. Second, we mutate the objects related to these
APIs. Given APIs, we can find a set of object classes from
RelationMap, where each class has a rate value that represents
its relationship with these APIs. We distribute our fuzzing
energy based on the rate value. Specifically, we add all rate
values of related object classes together, and normalize them by
diving each rate by the sum. Equation 4 defines the probability
that the class c gets selected for mutation, where the API
includes all selected APIs while the i covers all classes related
to these APIs. Therefore, classes with higher rates are likely to

1 !begin lines
2 <Annotation pointer>.alignment=<int_Annotation_alignment>;
3 <new int>=<Annotation pointer>.alignment;
4 !end lines
5

6 !begin block annot_handler array_name
7 if (<array_name>.length <lt> n){ //<lt> represents ’<’ character
8 :expand add_annots
9 <array_name>=this.getAnnots();

10 }
11 for(var i = 0;i <lt> <array_name>.length;i++){
12 :fuzzall Annotation <array_name>[i]
13 }
14 !end block

Fig. 6: Templates for creating new script codes. Statements between
lines (e.g., line 2 and 3) represent individual lines, while statements
between blocks (e.g., line 7-13) should be used as a whole; new int
indicates a variable of type int; <A> represents a symbol A that can
be expanded with the user-defined rules.

be selected for mutation. After selecting the class, we randomly
choose several objects from the class for mutation.

P (class c) =
rate(c)∑

API

∑
i RelationMap[API][i].rate

(4)

1) Script Code Generation: We takes a traditional method
to generate script code, similar to the grammar-based fuzzer
domato [14]. It takes language grammars, statement formats,
predefined templates and other information such as type and
value scope as inputs, and creates a script that uses the selected
APIs. Figure 6 shows one simple code template we use to
generate JavaScript code for manipulating PDF’s Annotation
objects. To create the corpus and templates, we initially scan
the API declarations from the manual of binding code and then
manually edit the API operation templates to make them more
likely to generate valid behavior sequences. Additionally, we
expand several strategies to create statement blocks and make
the operation logic more complex, such as expand and fuzzall
operations. Lines 7-13 of Figure 6 show an example of code
blocks, which we will use as a whole for the code generation.
We leave the details of these strategies to §IV.

In this paper we focus on cooperative mutation, and do not
try to improve the script generation process. Therefore, we use
any other advanced generators here as long as the generated
code contains selected APIs. For example, the state-of-the-
art work, favocado, focuses on generating valid, semantically
correct JavaScript code for testing the binding code [11]. We
can plug this tool into our system to improve the quality of
generated scripts. Our cooperative mutation techniques are
general enough to collaborate with contemporary or even future
script generators to handle different bindings code.

2) Object Mutation: Our system modifies document objects
based on the generated script. Specifically, for objects related to
current APIs, we insert, delete and modify properties to trigger
different behaviors. We also randomly update common objects
in the document to change the global states of the program.

Attribute Mutation. Our basic mutation strategy modifies
each attribute (i.e., one name-value pair). First, we randomly
choose one attribute of one object and replace it with another
attribute from other objects within the same class. The large
number of samples will provide diverse attributes for each class
of objects. Second, we randomly choose one attribute and insert
it into other objects within the same class. Since attributes could

7

be optional, the insertion operation may increase the number
of object properties. Third, we delete optional attributes from
the object to reduce its properties. At last, we replace the value
of one attribute with other values from other attributes.

Whole-object Mutation. Other than the fine-grained attribute
mutation, we also modify whole objects to improve the mutation
efficiency. This is particularly necessary when an object is
never used as a value. The whole-object mutation also includes
three operations: object replacement, insertion and deletion.
For replacement, we randomly select another object within the
same class to replace the current one. We retain the identifier
of the object so that all references to the old object now refer to
the new one. For deletion, we randomly choose one object and
replace its content with random bytes. Meanwhile, we locate
all references to the old object and replace them with Null. For
insertion, we only add new elements into Array objects, where
the new objects come from the classes of existing objects.

Universal Mutation. We randomly update API-unrelated,
common objects to change the global program states. We iden-
tify common objects during the relationship inference §III-B.
Specifically, if one class of objects have a high value in both
rateS and ratef , we treat them as common objects. Our
mutator accordingly performs two mutations. First, we insert
well-known interesting values in order to trigger boundary
conditions. For example, for integers, the mutator replaces
them with infamous values such as the maximum and the
minimum values of integers; for strings, we replace them with
Null objects and randomly insert 0 to the sequence of characters.
Second, we modify the size of particular objects. For strings and
arrays, we set their length to zero or an extremely large value.
In object level, we delete all attributes in them or duplicate
existing attributes to the maximum number.

IV. IMPLEMENTATION

We implement COOPER, our prototype of cooperative
mutation, with 4.3K lines of code in Python. In particular, we
modified PyPDF2 [42], an open-source PDF parser, to parse PDF
files into objects and construct a graph of mutual references
between objects. For DOCX file, we use the python library
zipfile to decompress the file into hierarchical directory files.
Then, we use the python library xml to modify the file structure.

Insert JavaScript Code into PDF Files. We modify PyPDF2
python library to parse the original PDF file and find its first
page object. Then, we create an opening JavaScript action to
hold the generated JavaScript code, and insert the action into
the first page. When the file is opened, the PDF viewer (e.g.,
Adobe Acrobat) will display the first page, which will trigger
the embedded opening event and execute the JavaScript code.

Insert VBA Code into DOCX Files. Microsoft provides
the Automation mechanism for one application to modify the
objects implemented in another application [36]. With this
mechanism, we can use the win32com module in pywin32
[43] to insert VBA code to a DOCX file and save the
file in the DOCM format (only the DOCM format accepts
VBA code). However, if we directly save the updated file,
Microsoft Word will rewrite the content based on its internal
settings, like adding new tags or changing the file structure.
The rewriting could reduce the diversity of the seed inputs,
which are generated by various tools in different versions.

Even worse, it modifies the particular file structure that we
intentionally create during the cooperative mutation. To avoid
such unexpected modifications, we first generate the VBA
code, and use win32com to insert it into an empty DOCX file,
named a.docx. Next, we extract the VBA-related components
from a.docx, like word/vbaData.xml, word/vbaProject.bin,
and word/_rels/vbaProject.bin.rels. At last, we insert these
modules into the original DOCX file, modify VBA-related
configuration and save it as a new DOCM file. When the DOCM
file is opened, the embedded VBA code will get executed. In
this way, all the mutation steps are under our control and the
resulting files are expected.

Get Script Execution Result. Our relationship inference
module in §III-B relies on the execution result of the script
code to correlate objects and script. However, we did not find a
general interface to retrieve the execution results of JavaScript
and VBA. Instead, we use the popup-window APIs to obtain
such information. For the PDF format, API app.alert(string)
pops up a window to present the message of string. We insert
the app.alert call to JavaScript code of PDF files to show the
result in the window (see Figure 5b for an example). Meanwhile,
We use another process to detect the creation of the window and
parse the window’s content to get the script execution result.
For Microsoft Word and VBA, the similar API is MsgBox,
while for HTML and JavaScript, the counterpart is alert.

Block-level Template for Script Generation. From the previ-
ous experience, we observe that existing single-line template for
code generation [11, 14] is relatively monotonous, and difficult
to form a complicated script sample. We introduce block-level
template consisting of multiple lines, which allows us to easily
construct code with complicated loops and condition statements.
We further design two extension commands to extend the block
template. The first one is “expand subblock_name”, which
inserts another block into the current block template, like
the include primitive in C language. The second command
is “fuzzall objtag objname”, which covers all single-line
operations related to objtag in the current place. objname is a
name that already defined in the current context. In the objtag-
related template, it will replace objtag tag with the existing
variable name. The purpose is to fully test all properties and
methods of the object in a specific context (e.g., loop).

These extensions help generate complicated code. For
example in Figure 6, we use the block template annot_handler
to throughly test each annotation in the document. We check
whether the number of annotations is less than a threshold. If so,
it will use the add_annots block to add more annotations into
the sample. After that, it will iterate every annotation and use all
line-templates related to Annotation to test it. The complexity
finally helps find more bugs. Like we will show in §V-B1,
the vulnerability in Figure 8 can be easily triggered by this
block, through iteratively accessing the first two annotations,
and sequentially modifying their attributes and invoke their
methods. Without the block template, it is unlike for single-line
template to form such an API access sequence.

Supporting New Languages. At the early stage of COOPER
development, it takes one of our authors about two weeks to
support JavaScript in PDF documents. Lately, the same author
spent two days to support VBA for DOCX files. We believe
supporting more scripting languages for other programs will

8

Program Format Language Script Source Free

Adobe Acrobat PDF C++ JavaScript ✗ ✗
Foxit Reader PDF C++ JavaScript ✗ ✔
Microsoft Word DOCX C++ Visual Basic ✗ ✗

TABLE I: Programs used for evaluation. The “language” means
the programming language for implementing the program.

take less than one-week effort. Here we list the necessary
manual efforts to apply COOPER to a new language. (1) For
object clustering, users can reuse existing parsers to parse
sample documents to get object attributes. Then, COOPER could
group native objects automatically. It is usually easy to find
open-source parsers for widely used file formats. For example,
we use PyPDF2 to parse PDF files, and use zipfile and xml to
parse DOCX files. All of them are open-source tools and can
be found online. (2) For statistical relationship inference, users
need to prepare a piece of API-testing scripts for COOPER to
infer the relationship. To prepare API-testing scripts, users can
find object-related APIs from the language specification. These
APIs are well organized in the specification, and users can
even find example code snippets. (3) For relationship-guided
mutation, users need to prepare some templates and can also
reuse the templates of existing tools or specifications. To collect
templates, we can use a crawler to retrieve API sample code
from the specification.

V. EVALUATION

In this section, we evaluate COOPER on real-world programs
to understand its strength regarding the following aspects:

Q1. Can COOPER find new vulnerabilities from real-world
programs that adopt scripting languages? (§V-B)

Q2. How accurate can COOPER cluster different objects into
semantically similar classes? (§V-C1)

Q3. Can COOPER infer reasonable relationships between
document objects and script APIs? (§V-C2)

Q4. Does the cooperative mutation find more unique bugs
than other configurations and existing tools? (§V-D)

Q5. Can COOPER explore more unique code coverage than
other configurations and existing tools? (§V-E)

A. Evaluation Setup

Target Programs. We select three widely used programs
that adopt scripting languages as the testing targets. Table I
shows the program details. Adobe Acrobat and Foxit Reader are
PDF viewers and editors; both are developed with the unsafe
language C++, and embed JavaScript engines to support JS code.
Microsoft Word can process DOCX files, and permits scripts
written in Visual Basic for Applications (VBA) to modify files.
All programs are proprietary, where the source code is not
available and users may need to purchase them with expensive
cost. As they are popular targets of advanced attacks, most of
them have bounty programs to reward bug reporters.

Sample Collection. We collect a large number of documents
from public resources as the native inputs to the tested programs.
To test Adobe Acrobat and Foxit Reader, we use the Google
search engine to fetch 16,000 normal PDF files, which contain a
total of 12,374,420 Dictionary objects. Based on our analysis,
90% of the samples contain about 1,290 Dictionary objects,

Experiment Relation Object Script
Guidance Mutation Generation

COOPER-full
COOPER-random
COOPER-object
COOPER-script
Domato

TABLE II: Experiment configurations. indicates feature enabled;
means feature disabled; means non-default feature.

but in the extreme case, one PDF sample contains 151,460
Dictionary objects. To test Microsoft Word, we search in
Google and collect 18,000 normal DOCX files, which contain
288,617,886 Tag objects — the basic elements in XML files.
90% of the samples contain about 30,046 Tag objects, but in the
extreme case, one DOCX file contains 3,606,234 Tag objects.

Experiments Design. To answer questions Q4 and Q5, we
design five experiments that test the selected programs with
different configurations, shown in Table II. COOPER-full is the
full-featured COOPER, which utilizes the inferred relationship to
select objects and APIs, and modifies both through cooperative
mutation. COOPER-random does not use the relationship-based
guidance, but just randomly chooses and mutates objects and
APIs. COOPER-object only modifies objects that are related
to binding code, while COOPER-script merely changes the
script and does not mutate any object. The last experiment is
conducted using the existing JavaScript fuzzer Domato, which
only modifies the JavaScript code in a slightly different way
from COOPER-script. Since Domato is design to test general
JavaScript code, we add our JS templates for it to generate
PDF documents and VBA templates to generate DOCX files.

Evaluation Setup. We conducted our experiments on
three servers, each with 32 Intel(R) Xeon(R) CPU E5-2630
V3@2.40GHZ cores, 64GB RAM and 64-bits Ubuntu 14.04
TLS. To fully utilize all resources, we create multiple virtual
machines (VMs) where each has two cores and 4GB RAM.
For the long-term bug-finding experiment in §V-B, we have
used eight VMs to test Adobe Acrobat and Foxit Reader for
four months, and got eight VMs to test Microsoft Word for one
week. To compare different configurations and tools on bug
detection (§V-D) and code coverage (§V-E), we tested each
program for one week and repeated the experiment five times.
All experiments start with the same initial seed set. To catch
all heap corruptions, we enabled full PageHeap [35].

B. Summary of Bug Finding

COOPER successfully found 134 unique, previous-unknown
bugs during the four-month testing. Table III shows the bug
details and lists script APIs that trigger these bugs. We have
responsibly reported all of them to their developers. At the
time of paper publishing, 103 of them have been confirmed
and 59 of them have been fixed. 33 fixed bugs are assigned
CVE numbers due to severe security impacts. From column
Type we can see that COOPER can identify bugs in common
types of memory issues, including stack buffer overflow, heap
buffer overflow, use-after-free, null pointer dereference, and so
on. Attackers can use these bugs to run arbitrary code or steal
sensitive information (shown in column Impact). 53 bugs have
“High” severity, indicating that they are highly likely exploitable.
Other “Moderate” bugs may lead to denial-of-service attacks.

9

ID Type Impact Severity Status APIs

A
do

be
A

cr
ob

at

1 use-after-free arbitrary code execution High CVE-2020-3748 Annot.page
2 use-after-free arbitrary code execution High CVE-2021-21035 Annot.popupOpen ...
3 use-after-free arbitrary code execution High CVE-2021-21033 Annot.setProps
4 use-after-free arbitrary code execution High CVE-2021-21028 Annot.getProps ...
5 use-after-free arbitrary code execution High CVE-2021-21021 Doc.getAnnots
6 use-after-free arbitrary code execution High CVE-2021-35981 App.LanchURL
7 use-after-free arbitrary code execution High CVE-2021-28635 Doc.addField
8 heap buffer overflow arbitrary code execution High CVE-2021-28638 Doc.zoomType
9 stack buffer overflow arbitrary code execution High CVE-2020-3799 Doc.getNthFieldName ...

10 buffer error arbitrary code execution High CVE-2020-9698 -
11 buffer error arbitrary code execution High CVE-2020-9699 -
12 buffer error arbitrary code execution High CVE-2020-9700 -
13 buffer error arbitrary code execution High CVE-2020-9701 Doc.getLegalWarnings
14 buffer error arbitrary code execution High CVE-2020-9704 Doc.exportAsFDFStr
15 heap buffer overflow arbitrary code execution High CVE-2021-28561 Doc.zoomType
16 null pointer deference denial-of-service Moderate CVE-2021-39849 Annot.stateModel
17 null pointer deference denial-of-service Moderate CVE-2021-39850 Annot.setProps ...
18 null pointer deference denial-of-service Moderate CVE-2021-39851 Annot.popupOpen
19 null pointer deference denial-of-service Moderate CVE-2021-39852 Field.getItemAt ...
20 null pointer deference denial-of-service Moderate CVE-2021-39853 -
21 null pointer deference denial-of-service Moderate CVE-2021-39854 Doc.zoomType
22 stack exhaustion denial-of-service Moderate CVE-2020-9702 Doc.getLegalWarnings
23 stack exhaustion denial-of-service Moderate CVE-2020-9703 Doc.layout ...
... stack exhaustion denial-of-service Moderate Confirmed Doc.exportAsFDFStr ...
52 use-after-free arbitrary code execution High Confirmed -
... use-after-free arbitrary code execution High Confirmed Annot.vertices ...
56 use-after-free arbitrary code execution High Reported Doc.removeField ...
57 buffer error arbitrary code execution High Reported -
58 heap overread memory leakage High Reported Doc.zoomType
59 instruction acces violation arbitrary code execution High Reported Annot.popupOpen
60 instruction acces violation arbitrary code execution High Reported Annot.transitionToState ...

Fo
xi

t
R

ea
de

r

1 use-after-free arbitrary code execution High CVE-2021-31441 Annot.destroy
2 use-after-free arbitrary code execution High CVE-2021-31451 Annot.destroy
3 use-after-free arbitrary code execution High CVE-2021-31456 Annot.popupOpen ...
4 use-after-free arbitrary code execution High CVE-2021-31457 Annot.destroy
5 use-after-free arbitrary code execution High CVE-2021-31458 Annot.destroy
6 use-after-free arbitrary code execution High CVE-2021-34831 Field.richText ...
7 use-after-free arbitrary code execution High CVE-2021-34832 Annot.readonly ...
8 use-after-free arbitrary code execution High CVE-2021-34852 Field.delay ...
9 use-after-free arbitrary code execution High CVE-2021-34974 Annot.delay ...

10 use-after-free arbitrary code execution High CVE-2021-34975 Annot.trasitionToStat ...
... use-after-free arbitrary code execution High Confirmed Doc.pageNum ...
19 heap buffer overflow arbitrary code execution High Confirmed Doc.deletePages
20 heap overread memory leakage High Confirmed Bookmark.createChild
... heap overread memory leakage High Fixed Doc.getField ...
27 buffer error arbitrary code execution High Fixed Field.signatureValidate
28 stack exhaustion denial-of-service Moderate Fixed Field.textColor
... stack exhaustion denial-of-service Moderate Fixed Doc.deletePages ...
32 null pointer deference denial-of-service Moderate Fixed Annot.popupOpen ...
... null pointer deference denial-of-service Moderate Fixed Doc.getPageLabel ...
46 null pointer deference denial-of-service Moderate Reported Doc.deletePages ...
... null pointer deference denial-of-service Moderate Reported Doc.doNotScroll ...
54 instruction acces violation arbitrary code execution High Fixed Annot.fillColor ...
55 instruction acces violation arbitrary code execution High Confirmed Annot.readonly ...
56 security check failure denial-of-service Moderate Confirmed Doc.addAnnot ...

M
ic

ro
so

ft
W

or
d 1 use-after-free arbitrary code execution Moderate Reported Range.TCSCConverter ...

... use-after-free arbitrary code execution Moderate Reported Paragraph.Style ...
4 heap overread memory leakage Moderate Reported Range.InsertXML ...
... heap overread memory leakage Moderate Reported ActiveWindow.Panes ...
9 null pointer deference denial-of-service Moderate Reported Range.FormattedText ...
... null pointer deference denial-of-service Moderate Reported Pane.NewFrameset ...
17 memory error denial-of-service Moderate Reported Range.Duplicate ...
18 instruction acces violation arbitrary code execution Moderate Reported Range.Previous ...

TABLE III: Deteced bugs: 134 bugs from 3 applications with 2 scripting languages. These bugs fall into 10 categories and 40% have high
impact on the application security. We have reported all of them to their developers. 59 bugs have been fixed and 33 of them were assigned
CVEs. ... means additional APIs are needed to trigger the bug (Table VIII has the complete API list).

All these bugs are triggered using 90 script APIs in 11 object
classes. Table VIII in Appendix provides more details of the
bug-triggering APIs for each detect bug.

Adobe Acrobat. We detected 60 new bugs from Adobe
Acrobat, including 12 use-after-free, one heap buffer overflow
and one stack buffer overflow. Among them, 23 vulnerabilities

10

1 %PDF-1.3
2 1 0 obj << /Pages 2 0 R >> endobj
3 2 0 obj << /Kids [3 0 R 4 0 R] >> endobj
4 3 0 obj << /AA << /O << /S /JavaScript
5 /JS 7 0 R>> >>
6 /Annots [5 0 R] >> endobj
7 4 0 obj << /Parent 2 0 R >> endobj
8 5 0 obj << /Popup 6 0 R /NM ()
9 /Subtype /Circle >> endobj

10 6 0 obj << /NM () >> endobj
11 7 0 obj << /Length 237 >>
12 stream
13 var annot=this.getAnnots()[0];
14 annot.setProps(annot.getProps());
15 annot.page=1;
16 endstream
17 endobj
18 trailer << /Root 1 0 R >>

Fig. 7: Simplified PoC of CVE-2021-21028, a use-after-free vulner-
ability in Adobe Acrobat Reader DC Version-2020.012.20048.

have been assigned CVEs and 15 of them are marked as critical
by the vendor, indicating that this vulnerability allows attackers
to execute arbitrary malicious code. Such vulnerabilities include
use-after-free, heap overflow, untrusted point dereference, stack-
based overflow, and buffer error. We are awarded $18K bounty
due to seven of these exploitable vulnerabilities.

Foxit Reader. COOPER identified 56 vulnerabilities in Foxit
Reader, including 18 use-after-free, one heap overflow and
seven heap overread. We have reported all these bugs. 10 use-
after-free vulnerabilities have been assigned CVEs and marked
as critical by the vendor. We received $4K bug bounty.

Microsoft Word. Microsoft Word has many inter-content
elements. Due to the time limit, we only tested APIs Paragraph,
Table, Range and Pane for one week. The quick test revealed 18
unique bugs, including three use-after-free, five heap overread,
eight null pointer reference, one memory error and one access
violation bug. We have reported all of them to Microsoft.

1) Case Studies: We inspect several vulnerabilities to help
understand their root causes and security consequences.

Bug Triggered with Empty Names. Figure 7 shows a simpli-
fied PoC of CVE-2021-21028, a use-after-free vulnerability in
Adobe Acrobat. This PDF file contains two pages represented
by object 3 and object 4. The first page has an annotation object
5, which we call the main annotation. Object 5 refers to another
annotation object 6 through attribute /Popup, which we call the
popup annotation. The first page has an additional action, which
will be executed once the page is opened. The vulnerability
is triggered by the JavaScript code at line 15. To generate
such a bug-triggering input from normal PDF files, we need to
conduct two-dimensional mutation: the main annotation and
the popup annotation should both have an empty name (/NM ()
at line 8 and 10); the script should reset the properties of the
main annotation (lines 13 to 15) and move the annotation to
the second page (line 15). Our manual debugging and analysis
reveal the root cause: a heap block was allocated when Acrobat
parses the PDF objects; at line 15, JavaScript engine uses the
binding code to invoke the native Annots.api module, which
frees the heap block and accesses it with a dangling pointer,
leading to the use-after-free vulnerability.

Bug Triggered with Abnormal Actions. Figure 8 shows
the simplified PoC of CVE-2021-21035, another use-after-free
vulnerability in Adobe Acrobat. This PDF file has two pages
and the first page contains three annotation objects 5, 6 and 7.

1 %PDF-1.3
2 1 0 obj << /Pages 2 0 R >> endobj
3 2 0 obj << /Kids [3 0 R 4 0 R] >> endobj
4 3 0 obj << /AA <</O <</S /JavaScript
5 /JS 8 0 R >> >>
6 /Annots [5 0 R 6 0 R 7 0 R] >> endobj
7 4 0 obj << /Parent 2 0 R >> endobj
8 5 0 obj << /Subtype /Caret >> endobj
9 6 0 obj << /T (Total Improvement area Y)

10 /Subtype /FreeText >> endobj
11 7 0 obj << /Action /GoTo/GoTo >> endobj
12 8 0 obj << /Length 401 >>
13 stream
14 var a0 = this.getAnnots()[0];
15 var a1 = this.getAnnots()[1];
16 a0.setProps({type:"Polygon",page:1,});
17 a0.popupOpen=true; a0.popupOpen=false;
18 a1.setProps({type:"Polygon",page:1,popupRect:[...]});
19 a1.popupOpen=true; a1.popupOpen=false;
20 endstream
21 endobj
22 trailer << /Root 1 0 R >>

Fig. 8: Simplified PoC of CVE-2021-21035, a use-after-free vulner-
ability in Adobe Acrobat Version-2020.012.20048.

Metadata class id: 449; object count: 335482
leadattributes: /Pg, /Kids, /O, /Dest, /D, /Names, /OpenAction

High-frequency Attributes Values

/Type: 335482 /Page: 335482
/Parent: 335480 id_504: 335480
/Contents: 335296 id_10: 298364, <array of id_10/440>: 36923
/Resources: 334701 id_527/524/525/...: 334701
/MediaBox: 329356 <array of 0/1/2/...>: 329356
/Rotate: 232937 0: 221864, 90: 8776, 270: 1337, ...
/CropBox: 226735 <array of 0/1/2/...>: 226735
/StructParents: 124785 <array of 0/1/2/...: 124785
/Tabs: 89893 /S: 85482, /W: 4364, /R: 42, /A: 5
/Annots: 58027 <array of id 456/742/127/506/...>

Other high-frequency attributes: /Group: 84705, /BleedBox: 75765,
/TrimBox: 70210, /ArtBox: 57511, /Thumb: 20773, /B: 9670,
/Trans: 5669, /PieceInfo: 4864, /ID: 3273, /LastModified: 2306, ...

TABLE IV: Details of object class 449, which contains 335,482
objects, commonly used as values of attribute in leadattributes.
Attributes and Values show the popular attributes within the objects.
Digits are the number of objects containing such attributes.

Similarly, triggering this bug requires to mutate both objects
and script code: in the object dimension, the third annotation
object 7 contains an /Action attribute with an abnormal value
/GoTo/GoTo; in the script dimension, we need to repeatedly set
the properties of the first two annotations, and change their
popupOpen property twice (lines 17 and 19). Finally, the bug is
triggered by the native module AcorRd32.dll, invoked by the
JavaScript engine through the binding layer.

C. Qualitative Analysis of Clustering and Inference

Object clustering and relationship inference are prerequisites
to cooperative mutation. However, due to the large number
of objects and script APIs, it is impractical to quantitatively
measure the clustering and inference results (we do not have the
ground truth). To understand the rationality of our method, we
manually inspect some intermediate results to demonstrate the
consistency between our insight and the outcome. Specifically,
we check one object class produced by the clustering process,
inspect its high-frequency attributes, and try to compare them
with the object definition in the format specification. We also
analyze the RelationMap of one concrete script API, and verify
its quality by cross-checking the API manual.

11

Attribute Type Value

Type name required, must be Page
Parent dictionary required, parent of this page
LastModified date required if PieceInfo is present
Resources dictionary required, resources required by page
MediaBox rectangle required
CroBox rectangle optional
BleedBox rectangle optional
TrimBox rectangle optional
ArtBox rectangle optional
BoxColorInfo rectangle optional
...

TABLE V: Entries of Page objects. The PDF format defines 30
entries (attributes). We show the first 10 here due to the space limit.

1) Object Clustering: The clustering process on 12,374,420
PDF objects finally leads to 901 object classes. We pick one
class with a large number of objects and compare its content
with the corresponding description in the PDF specification.
Table IV shows the details of this class, which has ID 449
and contains 335,482 objects. In the collected PDF files, these
objects are used as values of several attributes (leadattributes
in the table), like /Pg and Kids. The table also presents the high-
frequency attributes. For example, all objects have attribute
/Type, whose values are always /Page. All but two objects
have attribute /Parent, and the value objects belong to another
class with ID 504. 98.2% of objects have attribute /MediaBox,
and the value objects are arrays of numbers, like [0 0 10 9].

Based on our knowledge of the PDF format, this class
should be related to Page objects. Table V shows the first
10 attributes of Page objects defined in the official document
(another 20 skipped). By cross-checking with the specification,
we confirm that all high-frequency attributes shown in Table IV
are legitimate for the Page object. Values of different attributes
are also consistent with the specification. For example, Type
is required for each Page object, and its value must be /Page.
All objects in class 449 satisfy this requirement.

We also identify non-Page objects from this class (false
positives) and found that their percentage is very low. For
example, among all attributes that do not belong to page,
eCpyResolution has the maximum number (744) of objects.
However, based on the PDF specification, we did not find any
object should have this attribute. It is likely an attribute used
by third-party applications. By default, Acrobat will ignore
such unknown attributes and thus having them in the class will
not affect the program execution. From another perspective,
MediaBox is a required attribute for each Page object. Table IV
shows that 98.2% of all objects in the class have this attribute,
meaning invalid objects only account for 1.8%.

2) Relationship Inference: RelationMap maps each API to
a set of object classes, where each class has an associated
mutation probability. We inspect the APIs related to annotation
objects in Acrobat and Foxit Reader to understand the rationality
of our inference algorithm. Table VI shows the inference details.
Based on the attribute of each related class, we manually search
the PDF documentation and JavaScript reference to confirm
whether they are related to Annotations or not. Since two
results are similar, we focus on analyzing the one for Adobe
Acrobat. In this result, the most relevant class has attribute /AP.
According to the PDF specification, /AP is a valid attribute in
the annotation dictionary, referring to the appearance object.

Prog Succeed (s) Failed (f) Diff Attributesin rate in rate

A
do

be
A

cr
ob

at
(s

10
8,

f
15

61
1) 102 0.944 420 0.026 0.917 /AP

103 0.953 3676 0.235 0.718 /Fm45, /Fm44, ...
66 0.611 46 0.002 0.608 /Annots
83 0.768 3703 0.237 0.531 /Resources
59 0.546 1693 0.108 0.437 /AcroForm
58 0.537 1677 0.107 0.429 /DR
...

Fo
xi

t
R

ea
de

r
(s

17
4,

f
15

77
8) 156 0.897 388 0.025 0.872 /AP

158 0.908 3673 0.232 0.675 /Fm45, /Fm44, ...
107 0.614 5 0.000 0.614 /Annots
130 0.747 3732 0.236 0.511 /Resources
93 0.534 1694 0.107 0.427 /AcroForm
92 0.528 1676 0.106 0.422 /DR
...

TABLE VI: Relation between object classes and annotation APIs.
Succeed and Failed are the execution result of injected scripts. in
means files that contain objects in the current class.

Although /AP can also be used in other objects (e.g., field), our
further analysis on 12,374,420 objects reveals that other uses
are very rare. The second class with attribute /FMxx are names
of formXObject objects, which can participate in forming the
appearance of annotations. The third class with attribute Annots
refers to an array of annotations in a page object — the main
form to include annotation objects in one PDF file.

Summary. Our manual analysis reveals that the results of
object clustering and relationship inference match our intuition.
Although the analysis is not complete, we will use them to guide
the testing process. As we will show in §V-D, the relationship-
guided COOPER outperforms all other configurations.

D. Unique Bug Finding

To understand the contribution of COOPER components, we
tested Adobe Acrobat and Foxit Reader using five different
configurations shown in Table II. We ran each experiment for
one week (i.e., seven days, 168 hours). For reported crashes, we
combine call stacks and manual efforts to remove duplicated
bugs. Figure 9 shows the number of real bugs, while Table VII
shows the bug types and bug IDs (defined in Table III).

Benefit of Relationship-guided Mutation. The full-featured
COOPER outperforms all other configurations in detecting
unique bugs. Specifically, it triggers 18 unique bugs in Adobe
Acrobat and 14 unique bugs in Foxit Reader within one week.
COOPER-random that randomly but simultaneously mutates
objects and JavaScript code detects 12 unique bugs in Adobe
Acrobat, 9 bugs in Foxit Reader. Therefore, the relationship
guidance helps find 50% more unique bugs for Adobe Acrobat,
and helps detect 55.6% more unique bugs for Foxit Reader.

Benefit of Two-dimensional Mutation. COOPER-object uses
inferred relationship to guide the object mutation, but it does not
change any JavaScript code. COOPER-script does not modify
any object and just mutates JavaScript code. After one-week
testing, the former finally reports 4 bugs in Adobe Acrobat
and 3 bugs in Foxit Reader, while the latter identifies 8 bugs
in Adobe Acrobat and 5 bugs in Foxit Reader. Compared with
results from COOPER-full (18 bugs from Acrobat, 14 bugs
from Foxit), such results demonstrate the necessity of the two-
dimensional mutation: over object-only testing, cooperative

12

0 24 48 72 96 120 144 168

Hours

Adobe Acrobat

0

2

4

6

8

10

12

14

16

18
B
u
g
 c

o
u
n
t

Cooper-full
Cooper-random
Cooper-object
Cooper-script
Domato

0 24 48 72 96 120 144 168

Hours0

2

4

6

8

10

12

14

B
u
g
 c

o
u
n
t

Cooper-full
Cooper-random
Cooper-object
Cooper-script
Domato

Foxit Reader

Fig. 9: Unique bugs with different configurations. We tested Adobe
Acrobat and Foxit Reader with five different settings shown in Table II.
Each experiment is conducted for one week.

mutation helps find 3.5× more unique bugs from Acrobat, and
helps find 3.7× more real bugs from Foxit; over script-only
mutation, cooperative mutation helps find 1.3× more unique
bugs from Acrobat and 1.8× more unique bugs from Foxit.

An interesting observation is that even with the relationship-
based guidance, object-only mutation COOPER-object has the
worst performance. Our understanding is that (1) Adobe
Acrobat has been extensively tested [20, 32, 61] and thus
it is challenging to find bugs in the native code; (2) Object-
only mutation can hardly trigger binding code as the interfaces
are invoked through scripting languages. Therefore, we should
mutate both objects and scripts to test the binding code.

Comparison with Domato. The existing JavaScript fuzzer,
Domato, detected 6 bugs from Adobe Acrobat and 6 bugs from
Foxit Reader. It is not surprising that Domato found fewer
bugs than the full-featured COOPER as it merely modifies
JavaScript code and never touches native objects. Domato even
fails to compete with COOPER-random, which does not use
any relationship to guide object and API mutation. This result
is consistent with our observations among different COOPER
configurations: both two-dimensional mutation and relationship
guidance are necessary to improve the bug-finding efficiency.

Venn Diagram. Since it is difficult to draw Venn Digram for
five sets, we use Table VII to show the relationships between
bugs detected by different configurations and tools. For both
Adobe Acrobat and Foxit Reader, the full-featured COOPER
covered almost all bugs found by other configurations and

Target ID† Type full random object script Domato

A
do

be
A

cr
ob

at

26 Stack exhaustion ✔ ✗ ✔ ✗ ✗
37 Stack exhaustion ✔ ✔ ✔ ✗ ✗
55 Use-After-Free ✔ ✔ ✗ ✔ ✗
32 Stack exhaustion ✔ ✔ ✗ ✔ ✗
33 Stack exhaustion ✔ ✔ ✗ ✔ ✗
56 Use-After-Free ✔ ✔ ✗ ✔ ✔
39 Stack exhaustion ✔ ✔ ✗ ✔ ✔
40 Stack exhaustion ✔ ✔ ✗ ✔ ✔
41 Stack exhaustion ✔ ✔ ✗ ✗ ✔
21 Null pointer deref ✔ ✔ ✗ ✗ ✔
43 Stack exhaustion ✔ ✔ ✗ ✗ ✗
45 Stack exhaustion ✔ ✗ ✔ ✗ ✗
16 Null pointer deref ✔ ✗ ✗ ✔ ✔
49 Stack exhaustion ✔ ✗ ✗ ✔ ✗
53 Use-After-Free ✔ ✗ ✗ ✗ ✗
54 Use-After-Free ✔ ✗ ✗ ✗ ✗
58 Heap overread ✔ ✗ ✗ ✗ ✗
47 Stack exhaustion ✔ ✗ ✗ ✗ ✗
24 Stack exhaustion ✗ ✔ ✗ ✗ ✗
18 Null pointer deref ✗ ✔ ✗ ✗ ✗
48 Stack exhaustion ✗ ✗ ✔ ✗ ✗

Fo
xi

t
R

ea
de

r

36 Null pointer deref ✔ ✔ ✔ ✗ ✗
38 Null pointer deref ✔ ✔ ✔ ✗ ✗
32 Null pointer deref ✔ ✔ ✗ ✔ ✗
11 Use-After-Free ✔ ✔ ✗ ✔ ✔
39 Null pointer deref ✔ ✔ ✗ ✔ ✔
40 Null pointer deref ✔ ✔ ✗ ✗ ✔
24 Heap overread ✔ ✔ ✗ ✗ ✗
17 Use-After-Free ✔ ✗ ✗ ✔ ✔
30 Stack overflow ✔ ✔ ✗ ✗ ✔
45 Null pointer deref ✔ ✔ ✗ ✔ ✗
46 Null pointer deref ✔ ✗ ✗ ✗ ✗
49 Null pointer deref ✔ ✗ ✗ ✗ ✗
18 Use-After-Free ✔ ✗ ✗ ✗ ✗
19 Heap overflow ✔ ✗ ✗ ✗ ✗
42 Null pointer deref ✗ ✗ ✔ ✗ ✗
43 Null pointer deref ✗ ✗ ✗ ✗ ✔

TABLE VII: Distribution of unique bugs found by different
testing configurations. ID† means the bug ID in Table III.

tools, showing its advantage over others. Interestingly, COOPER-
object always found one bug that is not covered by COOPER-
full within one weak. We believe this is because the object-
only mutation may reach some program states that cooperative
mutation can hardly trigger. For example, if we infer that
an object is not related to any API, we will mutate it with
the lowest priority and could miss bugs related to this object.
However, from the table we can see that such cases are rare
(only one for each program). This observation also applies to
all other configurations, as bugs found by COOPER-object have
the minimal overlap with those of other tools, including Domato
– the one having no relation with COOPER.

E. Code Coverage

Experiment Setup. Code coverage is commonly used to
evaluate greybox fuzzing techniques. COOPER does not take
code coverage as a feedback, but we can use it to understand the
capability of COOPER in exploring program states. However,
measuring the whole-program coverage does not make much
sense, as we intentionally prioritize inputs that can explore the
binding code. We should focus on the coverage of the binding
code. Unfortunately, due to the close-source nature of the tested
programs, we cannot directly distinguish binding code from
others. To address this issue, we rely on the public interfaces
of the script engine and call stacks to identify binding layer-
related code. Specifically, we run each program using Intel

13

0 24 48 72 96 120 144 168
Hours

0
1
2
3
4
5
6

Co
ve

ra
ge

×106 Adobe script coverage

0 24 48 72 96 120 144 168
Hours

1

2

3

4

5

6

Co
ve

ra
ge

×105 Foxit script coverage

0 24 48 72 96 120 144 168
Hours

0.2
0.4
0.6
0.8
1.0
1.2
1.4

Co
ve

ra
ge

×106 Word script coverage

0 24 48 72 96 120 144 168
Hours

0.4

0.6

0.8

1.0

1.2

Co
ve

ra
ge

×106 Adobe native coverage

0 24 48 72 96 120 144 168
Hours

5

6

7

8

Co
ve

ra
ge

×105 Foxit native coverage

0 24 48 72 96 120 144 168
Hours

0.6

0.8

1.0

1.2

Co
ve

ra
ge

×106 Word native coverage

Cooper-full Cooper-random Cooper-object Cooper-script Domato

Fig. 10: Unique edges discovered by different configurations and tools. “script” means the code related to the script engine and the binding
layer; “native” means code for other components. We record all documents generated by COOPER in one week, and count coverage offline.

PIN [34], a dynamic instrumentation tool, and for each branch,
check whether the current call stack contains public interfaces
of script engines. If such interfaces (i.e., FXJSE_ExecuteScript
for Foxit, any function in module EScript.api for Acrobat, any
function in module VBE7.dll for Word) are in the call stack,
we treat the branch as related to the binding layer. Otherwise,
the branch is merely for the native code. We allocate a unique
ID to each branch to avoid the collision issue [17]. We first
test each program with COOPER for one week and collect all
generated documents. Then, we run the program with these
documents again in PIN to collect the code coverage.

Figure 10 shows the results of the coverage measurement
for three programs, including both script coverage and native
coverage. We can see that the full-featured COOPER consistently
outperforms other configurations and tools for both script code
and native code. For example, when testing Adobe Acrobat,
COOPER achieves 11.5%, 637.2%, 17.7% and 13.0% more
edge coverage on script code, compared to COOPER-random,
COOPER-object, COOPER-script, and Domato. Meanwhile, it
triggers 22.4%, 24.8%, 39.3% and 36.5% more edge coverage
on native code compared to others. This result demonstrates
that COOPER can improve the code coverage when testing
programs that adopt binding layers, which could explain why
it can detect so many severe vulnerabilities.

VI. RELATED WORK

We have explained favocado, the most related work and
compared it with our system COOPER in previous sections. In
this section, we discuss other works related to finding binding
bugs using program analysis and fuzzing.

A. Program Analyses for Binding Bugs

Static program analyses. Static analyses are widely used to
detect various bugs in the boundaries of multilingual programs

(i.e., programs written in more than one languages). For
example, several works are proposed to statically analyze Java
JNI code to detect mishandled exceptions [27, 30, 53]. Tan et
al. utilize static analyses to detect type safety issues where C
pointers are used in Java as integer [53]. To detect type safety
issues, Furr et al. develop a system to automatically infer types
for OCaml and Java foreign function interfaces (FFI) [15, 16].
Li et al. design static checks to identify reference counting
issues in Python/C interfaces [31]. Brown et al. investigate bugs
in JavaScript bindings of Chrome and Node.js and develop a set
of static checkers to detect crashes, type-violations and memory-
violations [6]. Although these checkers successfully found many
exploitable bugs, they are limited in the analysis scope and bug
types due to the embedded specific logics. For example, one
of their memory-safety checkers focus on detecting dangerous
uses of implicitly casted variables, which may permit time-of-
check-to-time-of-use attacks to invalidate security checks. They
cannot cover large code beyond the binding layer due to the
limited scalability nor produce inputs to trigger the bug.

As a dynamic bug detector, COOPER differs from static
analysis techniques in three ways. First, COOPER detect a large
set of bugs that finally triggers program crashes or can be
detected by security sanitizers [35]. Second, static analyses
suffer from the scalability issues as they usually require inter-
functional analysis. COOPER can handle large complicated
systems, like browsers and commercial document processors.
Third, COOPER does not report false alarms as every bug is
detected at runtime with a concrete input. In contrast, static
analyses have a higher false positive rate (e.g., checkers [6]
reported 30 false positives and 81 true bugs), and rely on manual
efforts or other external tools to generate bug-triggering inputs.

Dynamic program analysis. Jinn detects bugs in foreign
language interfaces (FFI) like Java Native Interface (JNI) and
Python/C at runtime [28]. It first constructs state machines based
on the deep understanding of the interface specification. Then,

14

it instruments the program to automatically insert checks, which
will validate the invocations of foreign language interfaces at
runtime. COOPER differs from Jinn in two ways. First, it does
not require interface-specific checks, but instead relies on the
system protection (i.e., crashes) and secure allocators [35] to
detect memory errors. Second, it actively mutates the input of
the program to trigger as many bugs as possible, while Jinn
just passively detects bugs triggered by the given inputs.

B. Fuzzing for JavaScript Bugs

Fuzzing repeatedly generated random inputs to stress the
tested program [20, 32, 37, 61]. It has been widely used to
test and successfully found thousands of bugs from various
systems, like operating systems [9, 26, 39, 58, 59], compilers
and interpreters [8, 22, 40], web browsers [11, 19, 49, 60],
network protocols [5, 41], smart contracts [38, 57] and so on.
As one of the most hacked systems, JavaScript engines have
been extensively fuzzed both in industry and academia.

The most straightforward way to test JavaScript engines is
to generate JavaScript code from scratch based on the context-
free grammar [14, 21, 45, 51]. However, this simple method
can hardly create completely valid code (syntactically correct
and semantically correct) nor reach deep program logic. Even
worse, it requires tedious manual efforts to write grammar
rules. One way to improve the testing efficacy is to use the
code coverage to guide the input generation [3, 55]: a newly
generated code is kept for future mutation only if it triggers
fresh code paths of the JavaScript engine. In this way, the
fuzzer will spend more efforts on the code-discovering inputs.

The second direction is to improve the syntax-correctness
and semantic correctness of the generated code to avoid early
termination. For example, LangFuzz combines fragments of
given valid code to improve the syntax correctness [24];
Skyfire learns context-sensitive grammar from existing code
samples [54]; CodeAlchemist maintains code context to make
sure that variables are defined before being used [22]. Several
works lift the JavaScript code into an intermediate presentation
(IR) so as to comprehensive code analysis to generate high-
quality test cases [8, 21, 60]. Among them, FreeDOM detects
browser bugs by mutating all elements of web pages, including
CSS styles, DOM tree and JavaScript statements [60]; PolyGlot
develops a general mutation method towards generating valid
test cases for different programming languages [8].

The third method obtains insights from old JavaScript bugs
so as to produce high-quality code to trigger new vulnerabilities.
For example, DIE inspects the proof-of-concepts (PoCs) of
known bugs and preserves the type and structure in order to
retain critical aspects [40]. Montage leverages neural network
to train a language model to guide the test case generation [29].

Different from these tools, COOPER is designed to test the
binding code where JavaScript runs inside another complicated
commercial software. Due to the diversity of the underlying
systems, especially in the non-browser environments, existing
JavaScript engines cannot effectively test binding layer [11].
Despite the differences in design goals, we can further improve
COOPER with existing JavaScript fuzzers. Specifically, the
current implementation of COOPER relies on the code templates
of Domato [14] to manipulate JavaScript and can still find a lot
of severe bugs thanks to the cooperative mutation. We plan to

adopt the coverage-based feedback and high-quality JavaScript
mutator to improve the fuzzing efficacy.

VII. CONCLUSION

We propose cooperative mutation, a novel approach that
tests the binding code of scripting languages to find memory-
safety issues. Cooperative mutation simultaneously modifies the
script code and the related native input to explore various code
paths of the binding code. To support cooperative mutation, we
infer the relationship between native inputs and script APIs, and
use the relationship to guide the two-dimensional mutation. We
applied our tool COOPER on three popular commercial software,
Adobe Acrobat, Foxit Reader and Microsoft Word. COOPER
detected 134 previously unknown bugs, which resulted in 33
CVE numbers and $22K bug bounty.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their helpful
feedback. We also thank Xiangkun Jia, Zheng Huang and
Zhenkai Liang for their comments on earlier drafts of this
paper. This research was supported, in part, by National Natural
Science Foundation of China (Grand No. U1936211, U1836117,
U1836113, 61902384 and 62102406), the Strategic Priority
Research Program of the Chinese Academy of Sciences, Grant
No. XDC02020300.

REFERENCES

[1] Adobe Inc, “Developing Acrobat Applications Using JavaScript (ver-
sion 02/01/2021),” https://opensource.adobe.com/dc-acrobat-sdk-docs/
acrobatsdk/pdfs/acrobatsdk_jsdevguide.pdf, (accessed July 10, 2021).

[2] ——, “Document Management - Portable Document Format - Part 1:
PDF 1.7,” https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/
PDF32000_2008.pdf, 2008.

[3] C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A.-R. Sadeghi, and
D. Teuchert, “NAUTILUS: Fishing for Deep Bugs with Grammars,” in
Proceedings of the 26th Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2019.

[4] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-Oriented
Programming: A New Class of Code-reuse Attack,” in Proceedings of
the 6th ACM Symposium on Information, Computer and Communications
Security (AsiaCCS), Hong Kong, China, Mar. 2011.

[5] boofuzz Developers, “boofuzz: Network Protocol Fuzzing for Humans,”
https://github.com/jtpereyda/boofuzz, (accessed July 10, 2021).

[6] F. Brown, S. Narayan, R. S. Wahby, D. Engler, R. Jhala, and D. Stefan,
“Finding and Preventing Bugs in JavaScript Bindings,” in Proceedings of
the 38th IEEE Symposium on Security and Privacy (Oakland), San Jose,
CA, May 2017.

[7] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-Control-
Data Attacks Are Realistic Threats,” in Proceedings of the 14th USENIX
Security Symposium (Security), Baltimore, MD, Aug. 2005.

[8] Y. Chen, R. Zhong, H. Hu, H. Zhang, Y. Yang, D. Wu, and W. Lee,
“One Engine to Fuzz ’em All: Generic Language Processor Testing with
Semantic Validation,” in Proceedings of the 42nd IEEE Symposium on
Security and Privacy (Oakland), Virtual, May 2021.

[9] J. Choi, K. Kim, D. Lee, and S. K. Cha, “NTFUZZ: Enabling Type-Aware
Kernel Fuzzing on Windows with Static Binary Analysis,” in Proceedings
of the 42nd IEEE Symposium on Security and Privacy (Oakland), Virtual,
May 2021.

[10] Y. Ding, T. Wei, T. Wang, Z. Liang, and W. Zou, “Heap Taichi:
Exploiting Memory Allocation Granularity in Heap-spraying Attacks,”
in Proceedings of the 26th Annual Computer Security Applications
Conference (ACSAC), Austin, TX, Dec. 2010.

[11] S. T. Dinh, H. Cho, K. Martin, A. Oest, K. Zeng, A. Kapravelos, G.-J.
Ahn, T. Bao, R. Wang, A. Doupé et al., “Favocado: Fuzzing the Binding

15

https://opensource.adobe.com/dc-acrobat-sdk-docs/acrobatsdk/pdfs/acrobatsdk_jsdevguide.pdf
https://opensource.adobe.com/dc-acrobat-sdk-docs/acrobatsdk/pdfs/acrobatsdk_jsdevguide.pdf
https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf
https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf
https://github.com/jtpereyda/boofuzz

Code of JavaScript Engines Using Semantically Correct Test Cases,” in
Proceedings of the 28th Annual Network and Distributed System Security
Symposium (NDSS), Virtual, Feb. 2021.

[12] A. Fioraldi, D. C. D’Elia, and L. Querzoni, “Fuzzing Binaries for
Memory Safety Errors with QASan,” in Proceedings of 2020 IEEE
Secure Development (SecDev), Virtual, 2020.

[13] Foxit, “Working with JavaScript using Foxit PDF SDK (Java),” https:
//developers.foxit.com/developer-hub/document/javascript-pdf-sdk-java/,
(accessed July 11, 2021).

[14] I. Fratric, “Domato: A DOM Fuzzer,” https://github.com/
googleprojectzero/domato, (accessed July 10, 2021).

[15] M. Furr and J. S. Foster, “Checking Type Safety of Foreign Function
Calls,” ACM SIGPLAN Notices, 2005.

[16] ——, “Polymorphic Type Inference for the JNI,” in European Symposium
on Programming. Springer, 2006.

[17] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “CollAFL:
Path Sensitive Fuzzing,” in Proceedings of the 39th IEEE Symposium on
Security and Privacy (Oakland), San Francisco, CA, May 2018.

[18] Ghidra, “Ghidra Scripting,” https://ghidra.re/courses/GhidraClass/
Intermediate/Scripting_withNotes.html#Scripting.html, (accessed July 11,
2021).

[19] Google, “ClusterFuzz,” https://google.github.io/clusterfuzz, (accessed July
10, 2021).

[20] Google, “Honggfuzz,” https://google.github.io/honggfuzz/, (accessed July
10, 2021).

[21] S. Groß, “Fuzzil: Coverage Guided Fuzzing for JavaScript Engines,”
Master’s thesis, TU Braunschweig, 2018.

[22] H. Han, D. Oh, and S. K. Cha, “CodeAlchemist: Semantics-Aware Code
Generation to Find Vulnerabilities in JavaScript Engines,” in Proceedings
of the 26th Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb. 2019.

[23] Hex Rays, “IDAPython Project for Hex-Ray’s IDA Pro,” https://github.
com/idapython/src, (accessed July 10, 2021).

[24] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with Code Fragments,” in
Proceedings of the 21st USENIX Security Symposium (Security), Bellevue,
WA, Aug. 2012.

[25] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-Oriented Programming: On the Expressiveness of Non-control Data
Attacks,” in Proceedings of the 37th IEEE Symposium on Security and
Privacy (Oakland), San Jose, CA, May 2016.

[26] K. Kim, D. R. Jeong, C. H. Kim, Y. Jang, I. Shin, and B. Lee, “HFL:
Hybrid Fuzzing on the Linux Kernel,” in Proceedings of the 27th Annual
Network and Distributed System Security Symposium (NDSS), San Diego,
CA, Feb. 2020.

[27] G. Kondoh and T. Onodera, “Finding bugs in java native interface
programs,” in Proceedings of the 27th International Symposium on
Software Testing and Analysis (ISSTA), Amsterdam, The Netherlands, Jul.
2008.

[28] B. Lee, B. Wiedermann, M. Hirzel, R. Grimm, and K. S. McKinley, “Jinn:
Synthesizing Dynamic Bug Detectors for Foreign Language Interfaces,”
in Proceedings of the 31st ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Toronto, ON, Canada, Jun.
2010.

[29] S. Lee, H. Han, S. K. Cha, and S. Son, “Montage: A Neural Network
Language Model-guided Javascript Engine Fuzzer,” in Proceedings of
the 29th USENIX Security Symposium (Security), Virtual, Aug. 2020.

[30] S. Li and G. Tan, “Finding Bugs in Exceptional Situations of JNI
Programs,” in Proceedings of the 16th ACM Conference on Computer
and Communications Security (CCS), Chicago, IL, Nov. 2009.

[31] ——, “Finding Reference-counting Errors in Python/C Programs with
Affine Analysis,” in Proceedings of the 28th European Conference on
Object-Oriented Programming (ECOOP), Uppsala, Sweden, Jul.–Aug.
2014.

[32] LLVM, “LibFuzzer - A Library For Coverage-guided Fuzz Testing,”
http://llvm.org/docs/LibFuzzer.html, (accessed July 10, 2021).

[33] LLVM, “Undefined Behavior Sanitizer (UBSan),” https://clang.llvm.org/
docs/UndefinedBehaviorSanitizer.html, (accessed July 10, 2021).

[34] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,

V. J. Reddi, and K. Hazelwood, “Pin: Building Customized Program
Analysis Tools with Dynamic Instrumentation,” in Proceedings of the
2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2005.

[35] D. Marshall and N. Schonning, “GFlags and PageHeap,”
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
gflags-and-pageheap, (accessed July 11, 2021).

[36] Microsoft, Inc, “OLE Automation,” https://docs.microsoft.com/en-us/cpp/
mfc/automation?view=msvc-160, (accessed July 23, 2021).

[37] B. P. Miller, L. Fredriksen, and B. So, “An Empirical Study of the
Reliability of UNIX Utilities,” Communications of the ACM, Dec. 1990.

[38] T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, “sfuzz: An
Efficient Adaptive Fuzzer for Solidity Smart Contracts,” in Proceedings
of the 41st International Conference on Software Engineering (ICSE),
Virtual, Jun.–Jul. 2020.

[39] S. Pailoor, A. Aday, and S. Jana, “MoonShine: Optimizing OS Fuzzer
Seed Selection with Trace Distillation,” in Proceedings of the 27th
USENIX Security Symposium (Security), Baltimore, MD, Aug. 2018.

[40] S. Park, W. Xu, I. Yun, D. Jang, and T. Kim, “Fuzzing JavaScript Engines
with Aspect-preserving Mutation (to appear),” in Proceedings of the 41st
IEEE Symposium on Security and Privacy (Oakland), San Francisco, CA,
May 2020.

[41] V.-T. Pham, M. Böhme, and A. Roychoudhury, “AFLNet: a Greybox
Fuzzer for Network Protocols,” in Proceedings of the IEEE 13th
International Conference on Software Testing, Validation and Verification
(ICST), Virtual, Sep. 2020.

[42] PyPDF2, “PyPDF Documentation,” https://pythonhosted.org/PyPDF2/,
(accessed July 23, 2021).

[43] pywin32 Developers, “pywin32:Python for windows(pywin32),” https:
//github.com/mhammond/pywin32, (accessed July 23, 2021).

[44] M. Rajpal, W. Blum, and R. Singh, “Not All Bytes are Equal: Neural
Byte Sieve for Fuzzing,” arXiv preprint arXiv:1711.04596, 2017.

[45] J. Ruderman, “Introducing jsfunfuzz,” https://www.squarefree.com/2007/
08/02/introducing-jsfunfuzz/, (accessed July 11, 2021).

[46] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T. Holz,
“Counterfeit Object-oriented Programming: On the Difficulty of Preventing
Code Reuse Attacks in C++ Applications,” in Proceedings of the 26th
IEEE Symposium on Security and Privacy (Oakland), Oakland, CA, May
2005.

[47] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
Sanitizer: A Fast Address Sanity Checker,” in Proceedings of the 2012
USENIX Annual Technical Conference (ATC), Boston, MA, Jun. 2012.

[48] K. Serebryany and T. Iskhodzhanov, “ThreadSanitizer: Data Race
Detection in Practice,” in Proceedings of the Workshop on Binary
Instrumentation and Applications (WBIA), New York, NY, Dec. 2009.

[49] K. Serebryany, “Sanitize, Fuzz, and Harden Your C++ Code.” San
Francisco, CA: USENIX Association, 2016.

[50] H. Shacham, “The Geometry of Innocent Flesh on the Bone: Return-
into-libc Without Function Calls (on the x86),” in Proceedings of the
14th ACM Conference on Computer and Communications Security (CCS),
Alexandria, VA, Oct.–Nov. 2007.

[51] W. Snyder and M. Shaver, “Building and Breaking the Browser,” Black
Hat USA, Aug. 2007.

[52] A. Sotirov, “Heap Feng Shui in JavaScript,” Black Hat Europe, Mar.
2007.

[53] G. Tan and J. Croft, “An Empirical Security Study of the Native Code
in the JDK,” in Proceedings of the 17th USENIX Security Symposium
(Security), San Jose, CA, Jul.–Aug. 2008.

[54] J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: Data-driven Seed
Generation for Fuzzing,” in Proceedings of the 38th IEEE Symposium
on Security and Privacy (Oakland), San Jose, CA, May 2017.

[55] ——, “Superion: Grammar-aware Greybox Fuzzing,” in Proceedings
of the 41st International Conference on Software Engineering (ICSE),
Surabaya, Indonesia, May–Jun. 2019.

[56] Y. Wang, C. Zhang, Z. Zhao, B. Zhang, X. Gong, and W. Zou, “MAZE:
Towards Automated Heap Feng Shui,” in Proceedings of the 30th USENIX
Security Symposium (Security), Virtual, Aug. 2021.

[57] V. Wüstholz and M. Christakis, “Harvey: A Greybox Fuzzer for Smart

16

https://developers.foxit.com/developer-hub/document/javascript-pdf-sdk-java/
https://developers.foxit.com/developer-hub/document/javascript-pdf-sdk-java/
https://github.com/googleprojectzero/domato
https://github.com/googleprojectzero/domato
https://ghidra.re/courses/GhidraClass/Intermediate/Scripting_withNotes.html#Scripting.html
https://ghidra.re/courses/GhidraClass/Intermediate/Scripting_withNotes.html#Scripting.html
https://google.github.io/clusterfuzz
https://google.github.io/honggfuzz/
https://github.com/idapython/src
https://github.com/idapython/src
http://llvm.org/docs/LibFuzzer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/gflags-and-pageheap
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/gflags-and-pageheap
https://docs.microsoft.com/en-us/cpp/mfc/automation?view=msvc-160
https://docs.microsoft.com/en-us/cpp/mfc/automation?view=msvc-160
https://pythonhosted.org/PyPDF2/
https://github.com/mhammond/pywin32
https://github.com/mhammond/pywin32
https://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/
https://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/

Contracts,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering (FSE), Virtual, Nov. 2020.

[58] M. Xu, S. Kashyap, H. Zhao, and T. Kim, “Krace: Data Race Fuzzing
for Kernel File Systems,” in Proceedings of the 41st IEEE Symposium
on Security and Privacy (Oakland), San Francisco, CA, May 2020.

[59] W. Xu, H. Moon, S. Kashyap, P.-N. Tseng, and T. Kim, “Fuzzing File
Systems via Two-Dimensional Input Space Exploration,” in Proceedings
of the 40th IEEE Symposium on Security and Privacy (Oakland), San

Francisco, CA, May 2019.
[60] W. Xu, S. Park, and T. Kim, “FREEDOM: Engineering a State-of-the-Art

DOM Fuzzer,” in Proceedings of the 27th ACM Conference on Computer
and Communications Security (CCS), Orlando, FL, Nov. 2020.

[61] M. Zalewski, “American Fuzzy Lop (2.52b),” http://lcamtuf.coredump.
cx/afl, (accessed July 10, 2021).

[62] C. Zapponi, “GitHut: a Small Place to Discover Languages in GitHub,”
https://githut.info/, (accessed July 11, 2021).

17

http://lcamtuf.coredump.cx/afl
http://lcamtuf.coredump.cx/afl
https://githut.info/

APPENDIX

APIs Bug IDs APIs Bug IDs APIs Bug IDs
Adobe Acrobat Foxit Reader Microsoft Word

Annot.page 1,4,55 Annot.destroy 1,2,3,4,5,7,9,10,14,
16,17,30,32,54,55 Paragraph.Range 1,2,3,4,5,6,7,9,10,

11,12,17,18,15
Annot.popupOpen 2,17,18,24,53,54,59 Annot.popupOpen 3,32 Paragraph.LineSpacingRule 10
Annot.setProps 2,3,4,17,43,53 Annot.readOnly 7,16,55 Paragraph.TextboxTightWrap 8
Annot.getProps 4,53 Annot.delay 9 Paragraph.InsertAlignmentTab 2
Annot.vertices 53 Annot.quads 14 Paragraph.Alignment 7
Annot.noView 53 Annot.trasitionToState 10 Paragraph.SelectNumber 11
Annot.intent 54 Annot.borderEffectIntensity 15 Paragraph.RightIndent 13
Annot.rect 55 Annot.fillColor 54 Paragraph.Style 2,12
Annot.stateModel 16 Annot.hidden 9 Range.TCSCConverter 1,5
Annot.popupRect 23 Field.richText 6 Range.SortAscending 4,15
Annot.points 43 Field.value 6,8,11,26 Range.GoToNext 5
Annot.repeat 51 Field.signatureValidate 27 Range.FormattedText 7,9,10
Annot.destroy 53,54 Field.setFocus 18,35,41,50,51 Range.PhoneticGuide 10,17
Annot.delay 53 Field.exportValues 47 Range.WordOpenXML 10,17
Annot.richContents 55 Field.rotation 50 Range.GetSpellingSuggestions 2,12
Annot.transitionToState 60 Field.delay 8 Range.ImportFragment 17
Doc.getAnnots 5 Field.textFont 11 Range.Previous 18
Doc.addField 7 Field.textColor 28,49 Range.CheckSynonyms 3
Doc.zoomType 8,15,21,33,40,41,58 Field.doNotScroll 44 Range.TwoLinesInOne 14
Doc.getNthFieldName 9 Field.comb 50 Range.InsertXML 4
Doc.layout 23,41,54,55 Field.readonly 18 Range.Next 5,6,18
Doc.addAnnot 53,54,60 Doc.embedDocAsDataObject 6,11,12,13,47 Range.Relocate 6,10,11
Doc.removeField 56 Doc.zoomType 45 Range.Text 9
Doc.exportAsFDFStr 14,44 Doc.removeDataObject 13,24,53 Range.HorizontallnVertical 10
Doc.pageNum 41,55 Doc.removeField 26 Range.InsertAfter 10
Doc.resetForm 19,31,46 Doc.resetForm 26,43,46 Range.Duplicate 2,12,17
Doc.getField 9 Doc.selectPageNthWord 48 Range.SortByHeadings 18
Doc.zoom 54,55 Doc.zoom 12,45 Range.AutoFormat 7
Doc.getLegalWarnings 13,22,29,32,39,42,47,49 Doc.pageNum 13 Range.InsertParagraphAfter 7
App.LaunchURL 6 Doc.getField 25 ActiveWindow.Panes 8,16
Field.page 9 Doc.getPageLabel 37 Pane.Previous 8,16
Field.getItemAt 19,44,56 Doc.getAnnots 54 Pane.Next 8,16
Collab.documentToStream 25 Doc.addAnnot 39,40,56 Pane.NewFrameset 8,16
AcroForm.AFSimple_Calculate 34 Bookmark.createChild 20

AcroForm.AFNumber_Keystroke 18

Doc.deletePages 18,19,24,25,31,45,
46,48,49,51,52

TABLE VIII: Objects and APIs relevant to bugs found by COOPER.

18

	Introduction
	Background and Motivation
	Scripting Languages and Binding Code
	Motivating Example
	Necessity of Cooperative Mutation
	Challenges of Cooperative Mutation

	Cooper Desgin
	Native Object Clustering
	Clustering Value Objects
	Clustering with Attribute Similarity

	Statistical Relationship Inference
	Interface Recognition
	Execution Logging
	Relationship Inference

	Relationship-Guided Mutation
	Script Code Generation
	Object Mutation

	Implementation
	Evaluation
	Evaluation Setup
	Summary of Bug Finding
	Case Studies

	Qualitative Analysis of Clustering and Inference
	Object Clustering
	Relationship Inference

	Unique Bug Finding
	Code Coverage

	Related work
	Program Analyses for Binding Bugs
	Fuzzing for JavaScript Bugs

	Conclusion
	Appendix

