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Abstract—We analyzed the generation of protocol header
fields in the implementations of multiple TCP/IP network stacks
and found new ways to leak information about global protocol
states. We then demonstrated new covert channels by remotely
observing and modifying the system’s global state via these
protocol fields. Unlike earlier works, our research focuses on
hosts that reside in firewalled networks (including source address
validation – SAV), which is a very common scenario nowadays.
Our attacks are designed to be non-disruptive – in the exfiltration
scenario, this makes the attacks stealthier and thus extends
their longevity, and in case of host alias resolution and similar
techniques – this ensures the techniques are ethical. We focused
on ICMP, which is commonly served by firewalls, and on UDP,
which is forecasted to take a more prominent share of the Internet
traffic with the advent of HTTP/3 and QUIC, though we report
results for TCP as well.

The information leakage scenarios we discovered enable the
construction of practical covert channels which directly pierce
firewalls, or indirectly establish communication via hosts in
firewalled networks that also employ SAV. We describe and test
three novel attacks in this context: exfiltration via the firewall
itself, exfiltration via a DMZ host, and exfiltration via co-resident
containers. These are three generic, new use cases for covert
channels that work around firewalling and enable devices that
are not allowed direct communication with the Internet, to still
exfiltrate data out of the network. In other words, we exfiltrate
data from isolated networks to the Internet. We also explain how
to mount known attacks such as host alias resolution, de-NATting
and container co-residence detection, using the new information
leakage techniques.

I. INTRODUCTION

Our research focuses on how to exploit global state in
the UDP and ICMP protocol stacks to mount attacks against
firewalled networks and hosts. The attacks we are interested
in are data exfiltration, host alias resolution and de-NATting,
and co-residency detection – see Table I. In some cases, the
same attacks can be carried out over TCP, in a more efficient
manner than existing techniques.

A. Motivation

Our motivating example is a highly secured network,
wherein internal machines are not allowed to communicate
directly with the Internet. This is enforced by a network
firewall, which prevents the network hosts from accessing
the Internet, but may allow them to access services on a

TABLE I: Attack Use Cases

Use Case Sender
Location Target Host Receiver

Location
Firewall Piercing
(exfiltration)

Isolated
network Firewall Internet

Exfiltration
(via DMZ)

Isolated
network

Firewalled
host in DMZ Internet

Co-Resident
Container
Exfiltration

Isolated
network

Two co-resident
containers
(internal+external)

Internet

Alias Detection
and de-NATting Internet Firewalled/NATted

host
Internet
(=Sender)

neighboring internal network and/or management access to
the firewall itself. Such isolated networks can be found in
financial institutions, defense industries, hospitals, sensitive
infrastructure sites, etc. The attacker’s goal is to exfiltrate data
out of an isolated network, to the Internet. The compromised
data may consist of small “strategic” pieces of data, such as
cryptographic keys, or compressed text files.

We assume that an attacker controls a compromised internal
machine. For example, the attacker may have installed malware
on that machine, by means out of scope for this research. The
attacker’s goal is to exfiltrate data from this machine. It should
be noted that the machine may be part of an attacker network
of compromised machines, such that the attacker funnels the
data to be exfiltrated from other machines to the machine from
which the exfitration is to take place.

Our techniques are able to circumvent the firewall’s en-
forcement, and allow the attacker to exfiltrate data from a
machine in an isolated network to an Internet host the attacker
controls. The exfiltration throughput is hundreds to thousands
bits per hour (except for Windows), which suffices to transmit
e.g. a 128-bit key in less than 22 minutes.

It should be stressed that this is an example to one use case
(firewall circumvention); in the paper we also outline other
attacks, such as host alias resolution and de-NATting, and co-
residency detection. The motivation for these use cases is to
provide operational intelligence as part of a larger attack effort.
Detecting that two services reside on the same host may enable
an attack against a weaker (vulnerable) service to take over a
host which also runs a more strategic (but not vulnerable in
itself) service.

B. Organization

Next in this section we provide background on terms and
concepts we use throughout the paper (stateful firewalls, host
alias resolution, and co-residency), followed by a summary
of our contributions. In Section II we discuss related work.
Section III describes the current algorithms that generate the
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protocol fields of interest. Section IV outlines our attack
concepts, Section V then explains how the concepts are imple-
mented per-OS, and Section VI describes our experiments. A
discussion of remediation options is provided in Section VII.
We draw our conclusions in Section VIII, and finally we report
on the vendor status in Section IX.

C. Stateful Firewalls and SAV

A stateful firewall is a “network-based firewall that individ-
ually tracks sessions of network connections traversing it” [44].
According to [28], “[a] stateful inspection firewall is the de
facto standard for network protection”. SAV, and some features
of stateful firewalls can eliminate known data leakage attacks.
We explain this below, and we note that our techniques are
not affected by SAV and by stateful firewalls.

In response to an incoming invalid packet – a TCP packet
or a UDP packet destined to a closed port, or a TCP packet
(other than SYN-only to an open port) that does not belong to
an already established TCP session – a firewall may either
silently drop the packet, or actively reject it. Rejection is
carried out by sending back a TCP RST packet in the TCP
case, or by sending back an ICMP Type 3 Code 3 packet
(“port unreachable”) in the UDP case.

Dropping invalid packets is considered a somewhat more
secure choice (at the expense of a slight overall performance
degradation due to a delay in responsiveness at the remote
party when no rejection packet is sent), and is oftentimes set
as the default firewall behavior. In Appendix A, we report the
results of an experiment in which we measured and estimated
the portion of widely-used Internet hosts that do not send any
response for UDP and TCP packets arriving to closed ports.
We found that the vast majority of the Internet hosts silently
drop such UDP/TCP packets. Therefore, attacks that assume a
response for an invalid, connecion-less UDP/TCP packet will
fail for most servers. Our attacks, on the other hand, only
use valid and acceptable packets, and are thus unaffected by
stateful firewalls.

A firewall can also employ Source Address Validation
(SAV), such that it does not allow traffic from a first network
into a second network with source addresses outside the
first network. This security measure can prevent some trivial
information leaking attacks. For example, a host A on an
isolated, internal network which is prevented from sending
packets to the Internet can send a spoofed packet whose source
address C is an Internet address, to host B in the DMZ network
which is allowed to send data to the Internet. Host B will then
respond by sending a packet to C, an Internet address. This
can be used as a covert channel signal. SAV prevents this
by dropping A’s spoofed packets since their spoofed source
address C does not match their origin (the internal network).

Henceforth, we use the term firewall as a shorthand for “a
stateful firewall that silently drops invalid packets, with SAV
between all its networks”.

D. Host Alias Resolution, De-NATting and Co-Residency De-
tection

Note: we use the term host throughout this paper to denote
a single instance of an operating system kernel. This can be

TABLE II: Information Leaking Fields and Their Channel
Properties

OS Protocol Field Sender
Capabilities Channel Bandwidth

Linux UDP/IPv4,
ICMP/IPv4 IPv4 ID IP Spoofing 400 b/h (UDP),

3000 b/h (ICMP)

Windows UDP/IPv4,
TCP/IPv4 IPv4 ID IP Spoofing 47.4 b/h (UDP),

41.4 b/h (TCP)

macOS UDP/IPv4 IPv4 ID Web Traffic
Emission 1800 b/h

macOS ICMP/IPv4 (rate limit) Web Traffic
Emission 1800 b/h (estimated)

OpenBSD
UDP/IPv4,
TCP/IPv4
ICMP/IPv4

IPv4 ID Web Traffic
Emission

720 b/h (UDP, throttled),
360 b/h (TCP, throttled)
4200 b/h (ICMP)

NetBSD TCP/IPv4,
TCP/IPv6 TCP ISN Web Traffic

Emission 7200 b/h (throttled)

NetBSD TCP/IPv6 IPv6 Flow
Label

Web Traffic
Emission Untested

a physical host, or – if virtual machines are used – a single
virtual machine. We use the term physical host to explicitly
exclude the latter case.

A host alias resolution [40] (also host alias detection [10])
technique enables a remote party to infer whether two given IP
addresses map to the same host or to two different hosts. We
can extend this into inferring whether two services (defined
by IP address, the listening port and the transport protocol –
TCP or UDP) map to the same host or not. For example, one
can ask whether 1.2.3.4:80 (over TCP) and 5.6.7.8:443 (over
UDP) map to the same host.

De-NATting [4] [35] is a use case of host alias detection,
wherein the host(s) in questions reside behind a NAT, and thus
the two services are mapped from their external endpoints into
internal endpoints by a NAT device.

In this research, we focus on server de-NATting, meaning,
discerning whether two external endpoints refer to the same
host or to two different hosts. This is in contrast to client
de-NATting, which refers to discerning whether two outbound
connections (designated by their external address endpoints)
are made by a single client or by two different clients. The
material difference is that a NATted client is likely to use a
single internal IP address, whereas a NATted server may use
two IP addresses for two different services. Some operating
systems use the (IPSRC , IPDST ) tuple to generate network
fields, making it trivial to de-NAT clients, but not servers.

Co-Residency Detection for Containers [39] is a concept
similar to host alias detection, which aims to detect whether
two endpoints on two different containers are hosted by the
same physical host. If virtualization is used, then the containers
may run on two different virtual machines. We are interested
in a variant of this concept, which is to detect whether two
endpoints on two different containers are hosted by the same
operating system kernel.

Container technology (e.g. Docker) is available for Linux
and Windows. Our co-residency detection attacks apply to
Linux, but not to Windows.
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E. Our Contribution

• New information leakage techniques based on the
statefulness of IPv4 ID, TCP ISN (IPv4 and IPv6) and
IPv6 flow label in popular server operating systems:
Linux, Windows Server, macOS Server, OpenBSD and
NetBSD. In the IPv4 ID and TCP ISN cases, this is
done without accurately predicting the full values of
these protocol fields. Our results are summarized in
Table II. These techniques are non-disruptive, and can
be used even when the target host is firewalled, includ-
ing SAV. The attacks are algorithmic, and therefore are
not hardware-specific, nor do they require fine-grained
timing or rely on race conditions. And since they rely
on kernel implementations, they are agnostic to the
nature of applications/services the operating system
runs.

• Exfiltration from a firewalled network (including SAV)
and exfiltration between co-resident containers – a
new covert channel use case for exploitation of
stateful IPv4 ID, TCP ISN and IPv6 flow label. In
this use case, an internal device is prevented from
directly connecting to the Internet, by a firewall, but
is allowed to connect to the firewall itself, or to a
DMZ host, or to an internal container co-residing
with a 3rd party container. Our attacks exploit the
host’s global protocol states to exfiltrate data from the
internal device to the Internet. The covert channels’
bandwidth (in bits/hour) depends on the information
leakage techniques’ bandwidth listed in Table II.

• Constructing a covert channel based on the new infor-
mation leakage techniques and exploiting it for well
known attack use cases: server alias resolution, de-
NATting, container co-residency detection, and idle
scanning. Previously, these attacks were inapplicable
either due to the underlying information technique
being mitigated, or due to the disruptive nature of the
underlying technique or other limitations.

• A description of the present day algorithm used by
Windows to manage (IPSRC , IPDST ) tuples, includ-
ing IPv4 ID management.

II. RELATED WORK

A. IPv4 Global State and Side Channels

1) Prediction of IPv4 ID values: The IPv4 ID field is a
16 bit identifier used to reassemble IP packets from smaller
fragments. This field is populated by the OS regardless of
whether fragmentation is actually needed. If the IPv4 ID
field is generated in a predictable manner, e.g. sequential
increment per packet, then it is possible to sample the field
twice and determine whether the target host sent another packet
in between. For this approach, the IPv4 ID field must be highly
predictable, i.e with a near-zero entropy. Note of course that
if the ID is static (e.g. 0), which is legitimate for atomic
(DF=1)1 packets [43, Section 4], then no information is leaked.
However, some operating systems (e.g. Linux) do set DF=1 for

1The IPv4 DF (“Don’t Fragment”) header flag controls fragmentation by
routers. Setting DF=1 prohibits routers from fragmenting the packet.

short packets, yet still populate the ID field with a non-static
value.

The original idle-scan technique [38] exploited sequential
IP IDs which were very common in the operating systems of
that era (1998). Later in 2008, [23] cryptanalyzed the IPv4
ID mechanism of OpenBSD and macOS Server and showed it
to be predictable. In response, OpenBSD and macOS Server
changed their algorithm. In 2019, [25] attacked the IP ID
generation in Windows TCP/IPv4 and UDP/IPv4, and in Linux
UDP/IPv4. In response, Windows and Linux changed their
algorithms. Recently, [24] showed that the Linux TCP/IPv4
ID field is also predictable, and in response Linux changed
that algorithm as well.

The only operating systems nowadays that generate pre-
dictable (sequential) IPv4 IDs are FreeBSD (UDP/IPv4 only)
and NetBSD (only for packets longer than 68 bytes, thus
excluding e.g. TCP RST packets). With the exception of
FreeBSD and NetBSD, all operating systems we surveyed
upgraded their IPv4 ID generation scheme to a non-predictable
algorithm, hence attacks that rely on IPv4 ID prediction are
no longer applicable to them.

Moreover, in general, idle-scanning, which relies on
the pivot server to send an RST packet for “unexpected”
SYN+ACK packet, does not apply to a firewalled pivot server.
A firewall is likely to silently drop the SYN+ACK packet,
or alternatively the firewall may respond with an RST packet,
without forwarding it to the pivot server. We do, however, note
that our NetBSD flow label attack can be used for efficient idle
scanning TCP/IPv6 hosts with NetBSD as a pivot server, when
the latter is not firewalled.

In 2008, Danezis described how to construct covert chan-
nels from incremental IPv4 IDs [11]. But Danezis’s use case
is different than ours. Danzeis assumes the monitored party
can still connect to the Internet, and as such, he focuses on
channel robustness, rather than on the technicalities of imple-
menting the technique for firewalled networks. Additionally,
that work does not describe UDP-based techniques, IPv6-based
techniques and container-based techniques.

In contrast, the global IPv4 ID states we describe exist
in modern IPv4 ID generator implementations. These global
states are typically subtle and not easily observed.

2) Attacks on the Linux IPv4 ID Generation Algorithm for
UDP and TCP Connection-Less Packets: The Linux IPv4 ID
generation algorithm for connection-less packets (ICMP, UDP
packets unless connect() is used, and TCP RST packets
not in a connection context) is described in Section III-A. This
construction was attacked in several recent papers.

Some attacks against Linux TCP connections exploited this
algorithm, either when used for TCP RST packets [46] [3],
or through a “downgrade attack” from the more secure TCP
IP ID generation scheme [14]. However, these attacks do not
affect Linux UDP and ICMP traffic, which is the object of
our research. Additionally, these attacks practically require the
attacker to own thousands of IPv4 addresses.

In 2019, [25] exploited the Linux IP ID generation structure
to find partial hash collisions and extract the hashing key. In
response, the hash function was modified to use a larger key.
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A recent DNS cache poisoning attack [47] involving Linux-
based recursive resolvers hinges on the fact that when two
machines are behind the same NAT, their external IPv4 address
is identical, and hence the packets sent by a Linux host to
both machines share the IPv4 ID counter. But to exploit this
for exfiltration, the sender and receiver must be on the same
network and behind the same NAT, which is inapplicable to
an exfiltration scenario.

Similarly to the above attacks, our attacks exploit the
counter array of the Linux IPv4 ID algorithm, but in contrast
to the previous attacks, our attacks target ICMP and UDP
services, and they do not require ownership of thousands of
IPv4 addresses, or having the sender and the receiver reside
on the same network, and can target any host.

3) IPv4 De-fragmentation Cache: Another global IPv4
state is the memory limit for the de-fragmentation cache,
a kernel data structure that maintains the incoming IPv4
fragments. The limit can be applied per source IP address,
or globally. Overflowing the de-fragmentation cache can be
detected remotely, as explained in [16], and can thus be used
as a side channel. This technique requires IPv4 fragments
to traverse the Internet unmodified. However, the prevalence
of Carrier Grade NATs (CGNATs) reduces the attack surface
of this technique. In CGNATs, the attacker cannot space the
arrival time to the target host of fragments that belong to the
same IP packet. Rather, the first fragment will await virtual
de-fragmentation on the CGNAT device, and will only be
transmitted when the second fragment arrives at the CGNAT.
In fact, anecdotal evidence from our lab’s ISP indicates that
CGNATs may employ an even more destructive strategy,
wherein they reassemble the IPv4 packet and forward the
complete packet.

Additionally, since this attack overflows the de-
fragmentation cache, it is disruptive, as organic inbound
fragments may be evicted from the cache before re-assembly,
resulting in dropping of organic inbound packets.

B. UDP Global State and Side Channels

The UDP protocol does not contain global states per-se.
However, [2] describes a global state based on a rate limit
imposed by some kernels on ICMP protocol “port unreach-
able” messages, sent in response to incoming UDP packets
destined to closed ports. It should be noted though, that
firewalls handle UDP packets sent to closed ports themselves
(without forwarding them to the destination host), and are
likely not to send back ICMP messages, due to security
reasons. In Appendix A we report that an estimated 85% of the
widely-used Internet hosts/firewalls do not send ICMP “port
unreachable” messages.

C. TCP Global States and Side Channels

Our attack on NetBSD is TCP-based, and our attacks on
Windows and OpenBSD IPv4 ID can also be used in TCP
protocols. Therefore, we also survey TCP-based side channels,
but only if they are relevant to any of these operating systems.

In 2005, Kohno et al. [26] demonstrated device identi-
fication based on the device clock skew, observed in the
TCP timestamp field. This work was later improved in [31].

Windows, OpenBSD and NetBSD do not implement TCP
timestamps useful for the [26] and [31] attacks (Windows
Server does not send a TCP timestamp at all, and OpenBSD
and NetBSD have TCP timestamp at 0.5s resolution). In the
past, TCP Timestamps could be used as a “passive” side
channel for host alias resolution, as described in [7] [20], but
nowadays this only applies to macOS.

In 2010, Ensafi et al. [13] used model checking to discover
information leakage due to the rate limit on a global TCP
RST counter. Exploiting this requires the sender client to send
the server either SYN packets for a closed port, or otherwise
packets that purportedly belong to a non-existing TCP circuit.
In both cases, a stateful firewall may silently drop the packets
and thwart the attack. In Appendix A, we report that an
estimated 92% of the widely-used Internet hosts/firewalls drop
such packets.

Additional side channels are described by [13], [8] and [9],
which are based e.g. on TCP SYN cookies and TCP challenge
ACKs. But these mechanisms are not employed (at least not
by default) by Windows, OpenBSD and NetBSD.

We see, therefore, that for firewalled Windows Server,
OpenBSD and NetBSD hosts, there are no currently known
remotely exploitable TCP global states.

D. Host Alias Detection and De-NATting

Early host alias detection and de-NATting relied on global
states that are trivial to observe and follow, and compared such
global states between two endpoints. Bellovin’s seminal 2002
de-NATting paper [4] is based on a globally incrementing IPv4
ID as a global state. This concept was later applied to host alias
resolution, e.g. with IPv6 ID [5]. Client de-NATting based on
the IPv4 ID of outbound DNS queries over UDP was described
in [35]. This attack relies on the incremental nature of the IP ID
for a fixed (IPSRC , IPDST ) tuple, and thus cannot be applied
to server de-NATting where a single host may use multiple
source IP addresses.

Nowadays, IP IDs are not generated via a global counter
(except for FreeBSD and NetBSD), and TCP timestamps are
usually generated per TCP connection (except for macOS),
thus these techniques are no longer in effect. Conceptually, it
is still possible to mount host alias detection and de-NATting
attacks using the more sophisticated global states described in
the previous sub-sections, but here too, the severe limitations
described above for these techniques apply.

A host alias resolution technique based on packet delay
sequences is described in [41], however this technique aims
at router IP aliasing, which does not address the question of
whether two IP addresses are served from a single host or from
two distinct hosts on the same network.

E. Container Co-residency Detection and Cross Container
Information Leakage

A container co-residency detection technique is described
in [39], but this attack is local, i.e. the attacker’s container must
co-reside with the target container. Our attack can remotely
detect that two containers reside on the same host.

Cross-container leaks are reviewed in [15], but the attacks
described there cannot be remotely mounted, whereas our
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TABLE III: Exfiltration from Networks

Target
Network

Typical
Throughput

Typical
Requirement Examples

Air-Gapped 8b/h-4Kb/s Proximity
(0.4m-30m) [18], [19]

Isolated 1b/h-10Kb/h IP spoofing
(in some cases) This paper, [31]

Regular
(Firewalled)

100Kb/s and
above None [30], [6], [45], [22]

attack is remote, and does not require the attacker to control
a co-resident container.

F. Other Side Channels and Exfiltration Techniques

Our exfiltration attacks are focused on isolated networks.
Isolated networks are less secure than air-gapped (or nearly air-
gapped) networks, but are more secure than ordinary networks.
As can be expected, exfiltration techniques that work on less
secure networks generally tend to have better throughput,
but cannot be applied to more secure networks. Specifically,
techniques that apply to less secure networks typically cannot
be applied to isolated networks, and therefore cannot be
compared, throughput-wise, to our techniques, that do work
against isolated networks. Likewise, our exfiltration techniques
do not work against air-gapped networks, or nearly air-gapped
networks (networks behind a network pump).

Exfiltration from air-gapped networks requires close prox-
imity (0.4m-30m) [17], which is a serious limitation. The
throughput varies drastically among the techniques, from 8b/h
to 4Kb/s [19]. A typical example is [18] which describes an
acoustical covert channel based on hard drive noise, yielding
3b/s throughput.

Our work is a rare example of exfiltration from an isolated
network (without the proximity constraint). Another example
is [31], which is effective against Linux TCP services only,
with 2b/h-8b/h throughput.

Finally there are examples of exfiltration techniques that do
not apply to isolated networks. For example, [30] uses a web
counter as a covert channel, but this requires the DMZ target
host to have (1) a shared web application between the internal
and the external networks; and (2) to have a web counter in that
application. [6] uses public cloud service as a covert channel,
and [45] uses multiple public services as a covert channel. All
these covert channels are very unlikely to apply for isolated
networks as their prerequisites are obviously inconsistent with
network isolation. In 2004, [22] demonstrated a covert channel
via DNS queries (“DNS tunneling”). A throughput analysis can
be found in [1]. Though it focuses on the downlink, it can be
inferred that the uplink throughput is in the hundreds of Kb/s,
many orders of magnitude better than our techniques. However,
since DNS tunneling is well-known and well-understood for
almost two decades, it is very unlikely to find isolated networks
with unrestricted access to an Internet-connected DNS resolver.

Table III compares exfiltration techniques for the three
network types.

III. CURRENT PROTOCOL HEADER FIELD GENERATION
ALGORITHMS

A. Linux IPv4 ID for Connection-Less Protocols

Starting with kernel v3.16, the Linux IPv4 ID generation
algorithm for connection-less packets (e.g. UDP, ICMP) uses
an array β of 2048 counters, and a corresponding array τ of
their last access times. Algorithm 1 describes how an IPv4
ID is generated. Note that the time is measured in “jiffies” (a
clock whose frequency is set at kernel compile time: f=250Hz
by default, f=1000Hz for some MIPS platforms), h is a hash
function, proto is the IANA protocol number (1 for ICMP and
17 for UDP) and net key adds a container-dependent quantity,
if applicable. Also define RANDOM(∅) = 0.

Algorithm 1 Linux IPv4 ID Generation for Connection-less
Protocols

1: procedure GENERATE-IPID
2: i← h(IPDST , IPSRC , proto, net key) mod 2048
3: hop← 1 + RANDOM({0, . . . , tnow − τ [i]− 1})
4: β[i]← (β[i] + hop) mod 216

5: τ [i]← tnow
6: return β[i]

B. Windows Server IPv4 ID

Note: since Windows is closed-source, extracting via re-
verse engineering, and documenting the Windows Server IPv4
ID generation logic is part of our contribution.

As of version 1903, Windows Server generates the IPv4
ID of outbound IPv4 packets as follows. Windows implements
the IPv4 ID as a counter per each (IPSRC , IPDST ) tuple that
corresponds to outbound traffic, where IPSRC is an address
on the local machine, and IPDST is a peer address. Such
tuple-specific data is kept in an object called Path. The
set of Path objects is maintained in a hash table called
PathSet. Windows keeps a PathSet per compartment, i.e.
one IPv4 PathSet instance per container. A new Path object
is created upon the first attempt to send a packet from IPSRC

to IPDST , where there is no existing Path object with these
indices. When a new Path object is created, the IPv4 ID
field is initialized with random data. Then, for each packet
sent from IPSRC to IPDST , the IPv4 ID in the corresponding
Path object is incremented and used as ID. Naı̈vely speaking,
this setup provides no leakage, since each tuple runs its own
independent IPv4 ID counter. However, an important aspect of
the PathSet life-cycle was left out so far – how Windows
handles the potentially almost infinite growth of PathSet.
Obviously PathSet cannot be allowed to grow indefinitely,
so PathSet objects must occasionally be purged. Indeed,
Windows removes objects from the PathSet in batches,
which we term purge sequences. Generally speaking, a purge
sequence can be triggered either by PathSet’s size exceeding
some (pretty high) thresholds, or by a PathSet growth rate
of 10,000 new Path objects per second (“flood detection”). In
both cases, a purge sequence is initiated, which goes over all
the Path objects in the PathSet at a rate of 2000/sec and
removes “stale” Path objects – objects that were last accessed
over 60 seconds2 ago.

210 seconds in Windows 10, determined by TcpipIsServerSKU.
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C. macOS Server (Connection-Less Protocols) and OpenBSD
IPv4 ID

Both macOS (for connection-less protocols only – e.g.
UDP and ICMPv4) and OpenBSD implement their IPv4 ID
generation along the concept of keeping a list of the M
recently used IPv4 ID values, picking a random ID value out
of the remaining 65536−M values, and updating the list of
used values accordingly (popping the oldest value and pushing
the freshly generated value). For macOS, M = 4096, and for
OpenBSD, M = 32768. Thus, it is guaranteed that the IPv4
ID value is unique in intervals of length M, at the cost of
reducing the entropy from 16 bits to log2(65536−M) bits.

Note: the IPv4 ID in macOS is generated at the macOS
kernel – XNU. Therefore, the attack techniques we describe
are actually inherent to XNU. However, macOS Server is the
only widely-used operating system based on the XNU kernel,
therefore we name macOS as the attack target, rather than
XNU.

D. NetBSD TCP ISN

A TCP Initial Sequence Number (ISN) is generated by
each TCP connection party at the beginning of the connection,
as a 32-bit random starting point for the sequence numbers it
generates for the connection. A TCP client generates and sends
ISN with the TCP SYN packet, and a TCP server generates
and sends ISN with the TCP SYN+ACK packet.

NetBSD generates the most significant 8 bits of the ISN as
a sum of a 2Hz timer and a TCP connection counter, modulo
256.

IV. ATTACKS

A. Threat Model

All our attacks are built around the same concept. In our
attacks, there is a sender, a receiver and a target host (or hosts),
identified by one or more endpoint designations, where an
endpoint is defined as a combination of IP address, protocol –
TCP, UDP or ICMP, and port (for TCP and UDP only). The
attacker controls the sender and the receiver entities, but has
no control whatsoever over the target host(s). Therefore, one
of the main concerns of this research is to determine what
attacks can be mounted in various implementations (operating
systems) and roles of the target host. Thus, when we refer to
an attack against an operating system, it is a shorthand to an
attack against a target host running that operating system.

In one use case, the target host is a firewall preventing
the sender and receiver from communicating directly. In other
use cases, the target host is firewalled. The receiver and sender
cooperate to fulfill their task, and are furthermore synchronized
to a sub-second accuracy.

We use a covert channel through the target host wherein its
global state can be read and altered by sending and receiving
packets, as described below. In Section V we will see that such
a covert channel exists for many target host operating systems,
though the covert channel details differ between the operating
systems.

The sender entity signals a single bit by sending packets
to one of the target host’s designated endpoints. In most of

our attacks, the sender can be an non-privileged process at the
system it runs on, sending conventional packets. In fact, for
web protocols, such traffic can be emitted by an HTML page
rendered by a browser. However, in the Windows and Linux
attacks, the sender must be able to spoof the source IP address
of its packets, thus the sender must run as a privileged process
on its machine.

The receiver entity reads this bit by sending packets to
one of the target host’s designated endpoints (not necessarily
the one used by the sender), receiving packets from the target
and analyzing them. The receiver entity typically needs access
to the raw packets at the IP level, and as such may need to
run as a privileged process on its system. This is a reasonable
assumption since the receiver is an attacker-controlled machine
on the Internet.

In general, the attack proceeds by having the receiver send
and receive some packets, thus recording the global state of
the target host. Then the sender either sends packets to the
target host (thereby changing its global state) to signal the bit
“1”, or does nothing (thereby retaining the global state in the
target host) to signal the bit “0”. Finally, the receiver reads the
global state again, and determines whether it changed or not,
thereby reading “1” or “0” respectively.

Naturally, there are timing constraints involved. For exam-
ple, the receiver must conclude its first global state extraction
before the sender is allowed to send its packets, and the
sender must conclude its global state modification (if it takes
place) before the receiver is allowed to send packets for its
second global state extraction. Additional timing constraints
are required for Windows covert channels.

Our attacks work best against network-wise idle (or almost
idle) target hosts. Organic traffic may interfere with our
techniques, although a minimal amount of traffic can be easily
mitigated by adding some margins to the threshold parameters.
For example, our Linux technique (Section V-A) expects an
increase of no more than ∆t · f in some counter when the
machine is idle. When some traffic happens to use that counter,
it is incremented further, say by up to n packets per ∆t time
slice. In such case, we choose M > n + ∆t · f (instead of
M > ∆t · f ). A mild amount of traffic can be mitigated
by introducing redundancy (e.g. majority over three same-
bit transmissions) and/or error correction codes (e.g. Reed-
Solomon [36]).

We demonstrate our UDP attacks using the HTTP/3 pro-
tocol. Specifically, the sender sends QUIC Initial packets [21]
to the target host, and the receiver sends Initial packets and
receives QUIC response packets. We demonstrate our TCP
attacks using the HTTP/1.1 and SSH protocols. In both cases,
the attack uses open UDP/TCP port on the target device. In
our ICMP attacks, we use the standard, built-in ICMP Echo
Request-Reply mechanism, which is commonly open3 to the
Internet. In Appendix A we report that 89% of the widely-
used Internet hosts/firewalls surveyed responded to ICMP Echo
requests.

In the firewall bypassing scenarios, we focused on data
exfiltration attacks, but in general, the opposite direction –

3We do not consider opening ICMP to the Internet a security vulnerability.
The security issue is with the implementation of the underlying IP layer.
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Fig. 1: Network Diagram for (a) Firewall Piercing Exfiltration; (b) Exfiltration (via DMZ); (c) Exfiltration between
Co-Resident Containers; (d) Host Alias Detection and de-NATting

sending data into an internal network – is also possible. This
can facilitate e.g. a Command & Control channel for the
malware. We demonstrated this direction in one test (LF-1).

B. Source Address Spoofing and Sender Privileges

For the Linux and Windows attacks, the sender needs to be
able to spoof the source IP address of its packets. This requires
the sender to have root privileges on a machine which is on
an internal network. With root privileges, spoofing is typically
trivial, using e.g. raw sockets or libpcap. The firewall’s SAV
protection still allows a device on the internal network (the
sender) to send packets with a source address from the same
(internal) network to the firewall or to the DMZ. This suffices
for our firewall subversion and exfiltration attacks. For the host
alias resolution attacks where the sender is on the Internet, SAV
employed by ISPs may prevent address spoofing. According
to [29, Fig. 4], 11.9%-30.5% of the ASes do not employ such
filtering on their customers (outbound filtering), hence can be
used by the attacker to send spoofed packets from. Naturally,
the attacker is free to choose such a network, thus having
enough non-filtering networks guarantees that the attacker can
mount the attack. We conclude therefore that packet spoofing
over the Internet is feasible, hence the Linux and Windows
host alias resolution attacks over the Internet are practical.

C. Firewall Piercing Exfiltration

This use case places minimal requirements on the network
topology. The attacker’s goal is to exfiltrate information from a
compromised machine (the sender) in a well guarded enterprise
network. It is assumed that the sender cannot send packets
to the Internet. Fig. 1a illustrates the network topology (each
network has its own background color, blue arrows represent
direct communication, bold black lines define network bound-
aries enforced by the firewall).

The attacker uses an ICMP-based covert channel to exfil-
trate one bit at a time from the sender to the receiver. The
only requirement is that the firewall responds to ICMP Echo
requests both from the Internet and from the internal network.

D. Firewall Subversion and Exfiltration (via DMZ)

In this use case, the attacker’s goal is to exfiltrate infor-
mation from a compromised machine (the sender) in a well
guarded enterprise network. It is assumed that the sender
cannot send packets to the Internet directly. Fig. 1b illustrates
the network topology. The sender can send and receive packets
to/from a server host in a DMZ segment of the enterprise
network (the target host). This server serves both internal
clients such as the sender, and external Internet clients such
as the receiver. The target host is protected by a stateful
firewall both from the internal network and from the Internet.
The firewall also enforces SAV between the three networks
(internal network, DMZ and Internet).

The attack uses the covert channel to exfiltrate one bit from
the compromised machine (the sender) through the target host
(the DMZ server) to the attacker machine on the Internet (the
receiver).

E. Exfitration via Co-Resident Containers

A special case of the exfiltration technique described in
Section IV-D is exfiltration between containers. Fig. 1c illus-
trates this attack scenario. In this case, there are two co-resident
containers on the same host (kernel), which are supposedly
completely isolated. The “isolated container” resides in a com-
pletely isolated local network, shown as the green network in
Fig. 1c. The other container, depicted as “3rd party container”
can belong to any entity, and is only required to run an Internet-
facing service in the protocol designated for exfiltration. None
of these containers is assumed to be controlled by the attacker.

A malicious sender that resides on the local network can
exfiltrate data to an Internet receiver using the same technique
described in Section IV-D, assuming the global state is shared
between the containers.

In a variation of this use case (not depicted in Fig. 1c),
the sender may be malware running on the isolated container,
without root privileges. Such a sender can use 127.x.y.z as
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local address destinations, instead of spoofing packet source
addresses.

F. Host Alias Resolution, De-NATting and Co-Residency De-
tection

In this use case, the attacker’s goal is to determine whether
two endpoints reside on the same host (even across containers,
if possible) or not. The attacker is an Internet machine, and the
endpoints are located behind a stateful firewall. The attacker
runs both the sender logic and the receiver logic, thus there
is no importance in distinguishing between the receiver and
the sender, and we will use the term “attacker” for both. The
attack applies the receiver logic to one endpoint, and the sender
logic, specifically writing the bit “1”, to the other endpoint. If
both endpoints reside on the same host, the receiver will read
the bit “1”, but if the two endpoints reside on different hosts,
then writing to one host does not affect the other host, and the
receiver will read the bit “0”. This use case is illustrated in
Fig. 1d. If the specific covert channel works across containers,
then so will this attack.

Since the attack implementations for host alias resolution
and de-NATting are identical, we will henceforth use the term
“host alias resolution” to denote both, and we will note whether
the attack also applies to container co-residency detection, per
case.

V. INFORMATION LEAKAGE AND COVERT CHANNELS:
GLOBAL STATES IN PROTOCOL FIELDS

We now show the existence of information leakage in the
ICMP/IPv4 and UDP/IPv4 implementations of some popular
server operating systems, and in the TCP implementation of
NetBSD. The information leakage enables the receiver – a
client of the server – to obtain information on the state of the
server. We then show how to exploit this weakness to construct
a covert channel, in which a sender client, typically running on
a different machine than the receiver, signals a bit by forcing
the server state to meet a certain condition or fail to meet the
said condition. Thus, the receiver and sender engage in a covert
channel protocol in which the sender sends an arbitrary bit to
the receiver. Our attacks share some common principles, but
differ in their technical details between operating systems. In
some cases, our techniques can also be applied to TCP/IPv4.

A. Linux Connection-Less IPv4 ID

The global state that enables a covert channel is the IP ID
counter used by the target host to send packets to the receiver,
i.e. β[R] (defined in Section III-A) where

R = h(IPRCVR, IPTARGET , proto, net key) mod 2048

The sender needs to send packets to the target rapidly.
When the sender can force the target to send more than f
packets per second from β[R], the receiver will be able to
detect this by sampling packets generated by the target host
using the β[R] counter, and observe that β[R] incremented at
a rate > f . Whereas when the target host does not receive
sender packets, β[R] will increment at a rate ≤ f .

There is a problem with the above approach, though. The
probability of the sender’s IP address hash to collide with R is

1
2048 . The solution is simple: note that the sender needs only to
force the target host to send packets whose IP ID is generated
using β[R]. The sender does not need to actually receive and
read those packets. And so, the sender can simply craft packets
that elicit the target host’s response, spoof the source address
of these packets (to an unused internal network IP address), go
over enough source addresses to practically guarantee that one
of the responses uses β[R] (as explained below), and thereby
fulfill the condition for the attack.

We now expand the above technique into a covert channel.
For simplicity, we assume that the receiver owns a single
Internet IP address, however practically, we expect the attack
to be mounted with a receiver that owns multiple IP addresses.
Assume the receiver can sample the target host at ∆t intervals,
i.e. at a frequency of 1

∆t . Denote by M an attack parameter
(threshold) ∆t · f ≤M ≪ 216. Ideally, M should be minimal
to reduce the required bandwidth of both parties (and also to
avoid wrapping around), yet should take into consideration
possible noise and jitter, i.e. M should be slightly higher
than ∆t · f . The sender chooses a list of IP addresses that
will be used for spoofing. The list length L is a function
of the acceptable probability p of bit read error (for bit
“1”), which happens when all L addresses do not elicit an
answer that uses β[R]. We choose a parameter Λ, such that
p = (1 − 1

2048 )
Λ ≈ e−

Λ
2048 < 0.001, i.e. Λ ≥ 14148. For

a receiver with a single IP address, we set L = Λ (in our
experiments, we rounded this down to L = 14000). Assume
the sender can send B packets per second. Then transmitting
one bit takes (2M−1)·L

B seconds. The attack works as follows:

• Receiver: During the transmission time of a single bit,
i.e. for (2M−1)·L

B seconds, the receiver samples the
target host at intervals ∆t and records the IPv4 ID
field of the server packets – ID i. It then checks, for
each i > 0, if (ID i − ID i−1) mod 216 ≥ M + 1. If
this is met for any i > 0, then the bit transmitted is
determined to be “1”. Otherwise the bit is determined
to be “0”. We show below that it is guaranteed that the
sender increments the IP ID counter by at least M for
one interval, and the receiver’s first sample increments
it at least by 1, hence a signalled interval should have
an increment of at least M + 1.

• Sender: To send a bit “1”, the sender goes through
the L addresses, and for each, spoofs 2M −1 packets
originating from the address and whose destination is
the target host, during a ∆t time interval, over ICMP
or the UDP protocol of choice. To send a bit “0”, the
sender does nothing.

The sender needs to send 2M−1
∆t packets per second from each

spoofed address, since there is no expectation to synchronize
the time the sender’s packets arrive at the target host, with
the time the receiver’s packets arrive at the host. All 2M −
1 packets from the same spoofed address should be sent in
rapid succession. By sending 2M − 1 packets at an arbitrary
∆t interval, the sender ensures that at least one ∆t interval
sampled by the receiver will have at least M sender packets in
it. In other words, the sender can send a burst of 2M−1 packets
from one spoofed address (assuming this takes less than ∆t)
and move on immediately to the next spoofed address.
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Note that for this technique to yield correct results, no other
network traffic emitted by the target host, other than to the
sender and to the receiver, must be using the β[R] counter.
This is a reasonable assumption, since the probability of the
host’s outbound traffic to a random address to use β[R] is 1

2048 .

This covert channel works across containers. Even though
the net key introduces dependency in the container for which
the hash is calculated, the β table itself is shared among all
containers. Since the attack does not rely on having the same
hash function for the receiver and the sender, it follows that
the attack covers the case wherein the receiver is served by
one container, and the sender is served by another container.

The covert channel also works across protocols
(protocol=1 for ICMP, 17 for UDP), by the above argument.

Ideally, the attack is carried out with a receiver that owns
n ≫ 1 IPv4 addresses. In such a case the sender needs to
spoof only L = Λ

n IPv4 addresses (similar to the birthday
paradox), and thus the attack speeds up by a factor of n. This
requires the receiver to send an aggregate of n

∆t packets per
second to the host. The receiver needs to first ensure that each
IP address it owns uses an exclusive counter. For this, the
receiver can employ the techniques described in [25, Section
6] to detect collisions in pairs of IP addresses, and remove one
address from each such pair, which results in a collision-free
list. Also, once the receiver knows which IP addresses have
counters that collide with those of the sender’s addresses, the
receiver can send packets only to these IP addresses, which
saves bandwidth. Moreover, for the firewall piercing attack, the
sender (assuming it is on the internal network) cannot spoof
too many IP addresses, since the addresses it spoofs are on the
firewall’s local network4, and thus the firewall has to have them
in its ARP cache, which is limited in size. As long as there are
less than gc_thrash1 (defaults to 128) ARP entries, garbage
collection will not run [27], therefore the sender must keep the
number of spoofed addresses below 128 (e.g. L = 127). This
is feasible as explained above when the receiver can listen on
n ≥ ⌈ Λ

127⌉ IP addresses.

The limiting factors in this attack are the sender’s band-
width (vs. M ·L), and the network jitter between the receiver
and the host (vs. ∆t) as a jitter value close to ∆t may cause
the receiver’s probe packets to arrive at the host out of order.

Note that it is possible to improve this attack if an opposite
direction channel exists. In such a case, the receiver and
the sender can iteratively find out which (single) spoofed IP
address used by the sender is effective (collides with one of
the receiver’s IP addresses), and use this to significantly reduce
the traffic, bandwidth, and number of addresses required for
the channel.

Linux generates the IPv6 Identification header extension
field in a very similar manner, and using the same table. IPv6
fragmentation attacks are out of scope for this research.

B. Windows Server IPv4 ID

1) Information Leakage: Suppose at time t, a receiver at
IPv4 address IP1 received a packet from a Windows Server

4This restriction does not apply to other attack scenarios, since there, the
sender and the target host reside on different networks.

target host at IP2, with IPv4 identifier ID , and at time t′′ > t,
the receiver received a second packet from the target host, with
IPv4 identifier ID ′′. ID originated from a Path object indexed
by (IP1,IP2), at time t. ID ′′ originated from a Path object
indexed by (IP1,IP2), at time t′′. If the Path object indexed
by (IP1,IP2) remained intact in the time window [t, t′′] then
ID ′′ = ID + 1 mod 216. However, if, at some time t′, t <
t′ < t′′, this Path object was purged, then the second packet
originated from a freshly created Path object, whose IPv4
ID is initialized with a random value, i.e. ID ′′ = ID + 1
mod 216 with probability 2−16. The leakage then is whether
a purge occurred at time t′ or not.

The purge timing is essential for the leakage to occur.
One restriction is t′ − t ≥ 60s, as only Path objects whose
last access time is over 60 seconds ago are purged. Another
restriction relates to the exact purge timing of the Path object.
As we will see below, there may be up to 20000 Path objects
in the PathSet (or even a bit higher, if the target host is not
completely idle). Since the purge rate is 2000/sec, it may take
up to 10 seconds for the specific Path object to get purged.
Therefore, the additional condition is t′′ − t′ ≥ 10s.

From the above t′′−t ≥ 70s, i.e. the minimal time between
receiver samplings is 70 seconds. We also need take into
account the fact that the flood detection triggering consumes
another second, i.e. the probes have to be 71s apart. Practically,
we need to pad this a bit to accommodate for Path objects
that organically get inserted into PathSet during the normal
system run. An additional 1s accommodates 2000 such objects.

Interestingly, due to a bug in Windows, oftentimes there
is an additional purge sequence right after the first purge
sequence, taking additional 5 seconds in our use case. This
additional purge sequence does not interfere with our covert
channel, because if it extends a few seconds beyond the next
probe, that probe will not be affected, as it is not stale.

It should be noted that a leakage does not occur across
containers (compartments), since each compartment maintains
its own IPv4 PathSet.

2) Covert Channel: The receiver and the sender have
synchronized transmission cycles. The receiver samples the
IPv4 ID of the host at the beginning and at the end of every
transmission cycle, by sending K UDP requests that elicit UDP
answers from the host, and observing the IPv4 ID of the host
packets. Multiple requests are needed to cater for packet loss.
The receiver determines that the transmitted bit is “0” if the
difference (modulo 65536) between the IDs is less than the
number of packets sent to the host during the cycle – 2K.
Otherwise, the bit is determined to be “1”. The choice of K
can be arbitrary, as long as the value is very small, with very
little impact on the channel’s performance.

The sender signals a bit “0” by not doing anything during
the transmission cycle. This guarantees that the Path object
in the host, that belongs to the receiver, is not purged, and
therefore the IPv4 IDs will remain sequential for the end-of-
cycle probe. On the other hand, for the bit “1”, the sender needs
to force that Path object to get purged. In the end-of-cycle
probe, the receiver will be assigned a new Path object, with
a random IPv4 ID base, which is very likely to fall outside the
range for bit “0”.
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Thus, to transmit the bit “1”, the sender needs to inflict
a purge cycle on the target host. For this, the sender can
trigger the PathSet flood detection, by forcing the target
host to send packets to 10000 different IP addresses in a single
second. Since the flood detection is measured in intervals of 0.5
seconds (5000 new Path objects per 0.5 second), this ensures
that flood detection will be triggered. In the QUIC use case, the
sender can achieve this by sending QUIC Initial packets (1228
bytes at the IP layer) from spoofed IP addresses to a UDP port
on the target host listening to a protocol that is on top of QUIC,
e.g. HTTP/3. The target host is then obliged to send a QUIC
response to the IP address from which the packet allegedly
originated. The required bandwidth is therefore 98.24Mb/sec,
well below the limit of modern WiFi and Ethernet networks,
and an achievable upload speed by fiber Internet connections.

This attack’s performance is conditional upon the sender
having bandwidth of at least 10000 packets/s in the chosen
protocol, and takes at least 71s per bit.

A “1” bit can be interpreted as a “0” when the new Path
object contains an IP ID that accidentally falls into the range
allowed for bit “0”. This happens with probability 2K/65536,
and only for “1” bits. Therefore, the bit error rate is K/65536.

Note that this attack is not disruptive. Organic Path
objects are indeed removed from the PathSet, but only if
their last access time was over 60 seconds ago. This means
that two IPv4 packets/fragments generated over 60 seconds
apart may have the same IPv4 ID, with probability 1/65536.
This is not an issue since it is highly unlikely that the first
fragment will not be reassembled at the destination for this
long.

An Internet attack cannot be mounted over ICMP, because
Windows only responds to ICMP Echo requests from the local
network.

C. macOS Server (Connection-Less Protocols) and OpenBSD
IPv4 ID

For two IPv4 ID values ID0, IDm sampled m > 0 packets
apart, we have (recall that M is the uniqueness interval):

Pr{IDm = ID0} =

{
0 m ≤M
1/(65536+m−2M−1) M < m ≤ 2M
≈ 1/65536 2M < m

Thus when we sample two IPv4 ID values, we can statistically
distinguish between a case where m′ ≥ M packets were
generated in between (in such case, Pr{IDm′+1 = ID0} ≥
1/65536) and a case where m′ < M packets were generated
(Pr{IDm′+1 = ID0} = 0). Practically, the receiver first gets
K packets from the target host, as rapidly as possible. Then
the sender forces the target host to send M packets to signal
the bit 1, and no packets to signal the bit 0, and finally the
receiver gets additional K packets. K should be picked such
that K2 ≫ 65536 and 2K < M (ideally K ≪ M). The
receiver now checks whether there are any collisions between
the two sets. When a bit “0” is transmitted, we clearly have
Pr{C = 0} = 1. When a bit “1” is transmitted, the probability
of no collisions is:

Pr{C = 0} =
∏

0≤i,j<K

(1− Pr{IDj+M+K = IDi})

≤
∏

0≤i,j<K

(1− 1/65536) ≈ e−
K2

65536

Since K2

65536 ≫ 1 this probability is negligible.

To summarize, we described a covert channel, in which the
receiver forces the target host to send back K packets, then the
sender forces the target host to send backM packets (or none
at all), and finally the receiver forces the target host to send
back additional K packets. The receiver looks for collisions
in the IPv4 IDs of the two K packet sets. If collisions are
found, the receiver infers that the sender interacted with the
target host (bit “1”). If no collisions are found, the receiver
infers the sender did not interact with the target host (bit “0”).

The limiting factors for this attack is the receiver’s band-
width (vs. K) and the sender’s bandwidth (vs. M). The jitter
(assuming low values) has almost no significance here, as the
order of packet arrival is unimportant neither for the sender,
nor for the receiver. And since both the sender and the receiver
are required to send thousands of packets, which takes a lot
more time than the typical jitter, the bandwidth overshadows
the jitter as a dominant factor.

See Appendix B for a stealthier variant of this attack.

In macOS 11.3 and above, an ICMP Echo rate limit is
imposed, with a threshold value in the range 251-500 chosen
at random once per boot, and applied to 1-2 second intervals.
When the rate limit is exceeded in an interval, the ICMP Echo
response is generated with probability inversely proportional to
the excess ICMP Echo request packets. That is, if the random
rate limit is R and N > R ICMP Echo requests were already
received in the interval then the next ICMP Echo request will
be answered with probability 1

N−R . The above attack can be
mounted almost as-is by throttling it to under 125 packets/s.
But a more efficient attack can simply take advantage of the
rate limit to signal bits. To signal “1”, the sender sends a burst
of e.g. 600 ICMP Echo requests (which guarantees an excess
of at least 100 requests, thus ensuring that subsequent ICMP
Echo requests in that time period has a probability ≤ 1

100 to
be answered by macOS). The sender does nothing for “0”.
The receiver then sends an ICMP Echo request to the host,
which is always answered if the sender sent nothing (“0”), but
is not answered (with probability > 0.99) if the sender sent
600 requests. This procedure needs to be fortified with some
error correction logic (to take care of the occasional response
from the server even in the case the rate limit was exceeded).
Thus a single bit can theoretically be signalled in two seconds.
Due to logistic reasons, we could not test this attack.

D. NetBSD TCP ISN

The TCP ISN -based global state is the number of TCP
connections established since boot (modulo 256).

The covert channel works as follows: the receiver sends
a TCP SYN packet to the NetBSD target host, and records
the most significant 8 bits of the ISN in the target host’s
SYN+ACK response – m. The sender then sends two or more
TCP SYN packets to the host, for bit “1”, or no packets for
bit “0”. Finally, after ∆t time, the receiver sends a TCP SYN
packet to the host, and records m′ from the host’s SYN+ACK
response. Then if (m′−m) mod 256 > 1+⌈2∆t⌉, there was
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another connection served by the target host, i.e. the sender
signalled the bit “1”, otherwise the sender signalled “0”.

The attack requires that the jitter be much smaller than ∆t.

Note that unlike the well known sequential IPv4 ID attack
for NetBSD, our attack also works with TCP/IPv6, and can
combine TCP/IPv6 and TCP/IPv4 senders and receivers.

E. Additional Attacks

We also found additional new attacks against NetBSD, that
are disruptive and/or inferior in performance (packets required)
to the attacks described above. For sake of completeness, we
describe these attacks in Appendix C. Note that if/when the
attacks described above are addressed by NetBSD, the attacks
in Appendix C may take their place as the most effective
attacks (unless they are fixed as well).

F. Practical Considerations

1) RTT: Our attacks require some synchronization between
the time of arrival of the sender packets and the receiver
packets, at the target host. Interestingly, such synchronization
is not affected by the RTT itself, assuming each party knows
its RTT to the target host beforehand. For simplicity, let us
assume a fixed, symmetric RTT. In order for a packet to arrive
at time t to the target host, the sending party needs to send
it at time t − RTT

2 , assuming the party’s machine time itself
is synchronized. In reality, RTT is not fixed, and the RTT
variance, or jitter, determines the synchronization granularity.
Likewise, in reality, RTT

2 is only an approximation to the end-
to-end time between two parties – the actual value may differ
somewhat due to asymmetry in routing paths. This unknown
quantity can also be accumulated into the synchronization
granularity.

Moreover, in our attacks, each packet sent by the sender
and by the receiver is independent of the previous packets, i.e.
the attacks are entirely non-adaptive. This means that neither
party needs to wait for any response (to a previous packet)
to arrive from the target host, before sending the next packet.
Therefore, there is no significance to the RTT in timing the
attacks. The only exception is some TCP/IP attack scenarios
wherein one or two parties send an RST in response to the
host’s SYN+ACK answer. The RST packet contains the host-
generated TCP sequence number from the host’s SYN+ACK,
and thus it relies on a previous packet from the host, i.e. subject
to RTT. However, sending the RST packets can be done in
parallel with the attack’s main packet stream, and thus the
RTT does not affect the overall attack time in this case as
well.

2) Jitter and Bandwidth: The limiting factor for the attack
speed is the sender’s bandwidth (which we throttle for some
attacks) and the jitter, which is typically at milliseconds granu-
larity. In fact, due to its typically low value, jitter is a limiting
factor only in Linux and NetBSD, and the sender bandwidth is
a limiting factor in Linux, OpenBSD and macOS. In Windows,
the attack time is dominated by the 60s time-to-live limit
imposed on stale Path objects, and is thus unaffected by jitter
and bandwidth (except that it requires the sender to be able to
send 10000 packets/s bursts).

3) Synchronization between the Sender and the Receiver:
We assume that the sender and receiver machines are synchro-
nized at 0.1s resolution. This is a fair assumption, given the
accuracy of present day hardware clocks, combined with NTP
which keeps the clocks from drifting [34]. Thus the sender and
receiver can decide on a UTC time (in seconds) when they
begin the exfiltration session. Since the exfiltration techniques
are based on the receiver polling the state before and after the
sender, the receiver can poll 0.1s before the bit transmission
start time, and poll again 0.1s after the bit transmission end
time (all times are in the target’s time frame, i.e. both sender
and receiver should compensate based on their respective
RTTs, by transmitting at their t − RTT

2 ). This compensates
up to 0.1s synchronization offset between the sender and the
receiver. A coarser-grained synchronization (e.g. 0.2s) can be
accommodated via increasing the bit transmission time by 0.2s.

4) Interference (Organic Outbound Traffic from the Target
Host): In the firewall piercing scenario, using ICMP, the
firewall can be considered idle in terms of network traffic,
since the vast majority of the traffic it handles is as a router,
where the firewall is not required to generate e.g. IPv4 IDs.

In general, our techniques are not sensitive to a mild level
of interference. The macOS and OpenBSD techniques only
require that the organic outbound traffic bandwidth (in terms
of packets/s) be lower than the bandwidth generated by the
sender (or more precisely – lower that the threshold that the
reader interprets as a signalled bit “1”). Raising this threshold
can compensate for interference. The Windows technique can
easily compensate several thousands IP tuples (our experiment
setup actually already has such compensation in place) by
allowing a bit more time for purging them (purging 2000 tuples
takes 1s). The Linux technique is affected by interference only
if the specific bucket used for the communication happens to
also serve organic traffic, which is very unlikely (probability

1
2048 per destination IP address).

5) Packet Loss: Our techniques are not sensitive to a mild
level of packet loss. In general, the attacks need a certain
number of packets, or a certain rate of packets in order to
succeed. Packet loss can be compensated by increasing the
number/rate of packet sent accordingly.

6) Stealth vs. Throughput: We throttle the sender’s band-
width to 100Mb/s-150Mb/s in order not to disrupt the normal
network usage on a 1Gb/s LAN. Note that in all cases
(except Windows) we could get an almost order of magnitude
improvement in the exfiltration bit rate by consuming almost
all the 1Gb/s LAN bandwidth, though this can disrupt the
network functionality for other LAN users and end up in
exposing the channel. On the other hand, we could throttle
the sender and receiver much further, reducing the throughput,
but also the probability to get flagged by network IPS/IDS.
Specifically, the NetBSD TCP ISN technique only requires a
few TCP connections per second, and the Linux technique’s
sender bandwidth can be reduced by a factor of n if the receiver
controls n IP addresses. Additionally, see Appendix B for
stealthier attack variants against macOS and OpenBSD.
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VI. EXPERIMENTS

A. A Setup for the Exfiltration (via DMZ) and Firewall Pierc-
ing Experiments

The exfiltration experiments have the target host and the
sender on 1Gb/s Ethernet network (the lab network). This
network is connected to the Internet via a firewall+NAT
device. Where possible, we ran two tests per attack: one with
the receiver in a transcontinental location A, 3300Km from the
target host, and one with the receiver in a transatlantic location
B, 9600Km from the target host.

We also measured the RTT average and standard deviation
(the latter is indicative of the network jitter) between the
two locations and the lab network. The average RTT for A
is 79.9ms, with standard deviation 0.3ms, and the average
RTT for B is 146.9ms with standard deviation 1.4ms. This
is slightly better than the results reported in 2014 [37] which
is expected in light of the Internet technology improvement
over the last seven years.

A single exfiltration test transmits 128 bits from the sender
on the internal network, to the receiver on the Internet. This
message size was chosen as a benchmark since it demonstrates
that AES-128 keys can be exfiltrated in a reasonable amount
of time.

Where needed, we used libpcap to craft arbitrary network
packets, particularly for spoofing the source IP address of
packets, and for accurate timing of packets and packet bursts.

For HTTP/3 server (over QUIC and UDP), we used Caddy
Server with the experimental_http3 directive. For SSH
server (over TCP), we used OpenSSH, and for HTTP/1.1
server (over TCP) we used Apache Web Server. We used
Docker version 19.03.8 for the Linux containers.

B. A Setup for the Host Alias Resolution Experiments

Given two services (designated by IP address and port),
host alias resolution (and de-NATting) provides a single bit of
information – whether the two services reside on the same host
(kernel). To implement this, the attacker runs a sender logic
for bit “1” against one service, and a receiver logic against
the other service. If the receiver logic reads “1”, then the two
services run on the same host. If the receiver logic reads “0”,
then the services run on different hosts.

To demonstrate that our results are not randomly correct,
we conducted a series of 10 bit “1” transfers, for each of the
following configurations:

• Target addresses on the same host

• (Where applicable) target addresses in different con-
tainers on the same host (kernel)

• Target addresses in different hosts

The expected result for the first two configurations, where
the addresses are served by the same kernel, is an all-“1”
readout. The last configuration is expected to result in an
all-“0” readout, since the sender changes the state of one
kernel, but the receiver probes another kernel. In other words,
assuming correct results in the above tests, we are able to tell
apart a situation in which the two target addresses are served

from the same host (kernel), and a situation in which they are
served from two different hosts. This demonstrates host alias
resolution, including across containers, as well as de-NATting
and container co-residency detection.

We could only test host alias resolution with Linux, Win-
dows and OpenBSD, because we only had one instance of
macOS and NetBSD in our lab. We tested Linux and Windows
with an attacker in the lab, because the test involves the
attacker spoofing packet source IP addresses, and we categor-
ically do not run such tests over the Internet. With OpenBSD,
there is no need to spoof packet source IP addresses, and thus
it was tested with an attacker in location A.

Other aspects or the experiment are identical to the ones
described in Section VI-A.

C. Description of the Hosts and the Network

The target hosts used in the experiments are listed in
Table IV. All hosts are located in our lab network, which is a
1Gb/s Ethernet network connected to the Internet over IPv4,
through a firewall + NAT device.

D. Experiment Descriptions

Our results are summarized in Table V. Only the sender
and receiver locations are listed – the target host is always on
the lab net (except for OF-1). Column “Section” refers to the
below sections for further information. An empty cell indicates
the results are self explanatory.

1) Linux Exfiltration (via DMZ) over UDP/IPv4: In tests
LE-1 and LE-2 (locations A and B, resp.), the target is an
Intel x64 machine, therefore f=250Hz. The covert channel
was defined with ∆t = 10ms (considerably lower values
are not usable due to the jitter). Theoretically, we could have
used M = 3 with this ∆t, but we set M = 6 to eliminate
the occasional timing deviation in sampling caused by jitter.
Due to logistic and budgetary constraints, the receiver in our
experiments used only a single IP address.

During the preliminary tests, we noticed that the target
machine’s CPU was mildly loaded during the transmissions of
the bit “1”. This is not expected to happen in a production
system, where the server hardware is typically much more
powerful than our Dell machine. However, given the Dell
machine’s CPU load, one could argue that the effects we
observe have to do with CPU load (either due to application
processing, or due to network processing). Ironically, this
points at another potential covert channel – measuring the
effects of CPU load on the network traffic shape. But as we
mention above, this is unlikely to happen in a production
network, where the CPU power is more in balance with the
network capacity.

To make sure the effect we measure is only related to the
IPv4 ID information leakage, we altered the channel definition
for the purpose of the experiment. Instead of staying idle
(not transmitting anything) for bit “0”, in the experiment,
we transmit the same amount of packets, but using a small
subset of 90 spoofed source IP addresses whose counters
do not collide with the receiver’s counter. A-prioi, choosing
90 counters out of 2048 yields a good likelihood of this
condition to be met. A-posteriori, we can verify this easily.
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TABLE IV: Hosts

OS Hardware Protocol Service Server SW
Ubuntu 20.04 Linux
(Linux kernel 5.8.12)

Dell E7450: Intel i7-5600U CPU,
16GB RAM, 1Gb/s Ethernet (USB) UDP/IPv4 HTTP/3 Caddy 2.2.0

Windows 20H2
build 9042.685 Intel i7-3770 CPU, 16GB RAM, 1Gb/s Ethernet UDP/IPv4 HTTP/3 Caddy 2.2.0

TCP/IPv4 HTTP/1.x Apache 2.2.25
macOS Big Sur 11.1
(xnu-7195.60.75-1)

MacBook Air Model A1466: Intel i5-5250U CPU,
8GB RAM, 1Gb/s Ethernet (Thunderbolt) UDP/IPv4 HTTP/3 Caddy 2.2.0

OpenBSD 6.8 Dell E7450: Intel i7-5600U CPU,
16GB RAM, 1Gb/s Ethernet (USB)

UDP/IPv4 HTTP/3 Caddy 2.2.0
TCP/IPv4 SSH OpenSSH 8.4

NetBSD 9.1 Intel NUC7CJYH: Intel Celeron J4005 CPU,
8GB RAM, 1Gb/s Ethernet

TCP/IPv4 SSH OpenSSH 8.0
TCP/IPv6 SSH OpenSSH 8.0

TABLE V: Experiments

Test OS Test Scenario Protocol Sender Receiver Bits/Repetitions Success Bit rate Section
LE-1

Linux

Exfiltration (via DMZ) UDP/IPv4 Lab Net Loc. A 128 128/128 400 b/h VI-D1
LE-2 Exfiltration (via DMZ) UDP/IPv4 Lab Net Loc. B 128 128/128 400 b/h VI-D1
LE-3 Exfiltration (container) UDP/IPv4 Lab Net Loc. A 128 128/128 400 b/h VI-D2
LE-4 Exfiltration (container) UDP/IPv4 Lab Net Loc. B 128 128/128 400 b/h VI-D2
LF-1 Firewall Piercing (IPfire, slow) ICMP/IPv4 Lab Net Lab Net 128 128/128 400 b/h VI-D3
LF-2 Firewall Piercing ICMP/IPv4 Lab Net Lab Net 128 128/128 3000 b/h VI-D3
LA-1a Alias Resolution (1 host) UDP/IPv4 Lab Net Lab Net 10 10/10 N/A
LA-1b Alias Resolution (2 containers) UDP/IPv4 Lab Net Lab Net 10 10/10 N/A
LA-1c Alias Resolution (2 hosts) UDP/IPv4 Lab Net Lab Net 10 10/10 N/A
WE-1

Windows

Exfiltration (via DMZ) UDP/IPv4 Lab Net Loc. A 128 128/128 47.4 b/h VI-D4
WE-2 Exfiltration (via DMZ) UDP/IPv4 Lab Net Loc. B 128 128/128 47.4 b/h VI-D4
WE-3 Exfiltration (via DMZ) TCP/IPv4 Lab Net Loc. A 128 128/128 41.4 b/h VI-D5

WE-4 Exfiltration (via DMZ) UDP/IPv4 (Sender),
TCP/IPv4 (Receiver) Lab Net Loc. A 128 128/128 47.4 b/h

WA-1a Alias Resolution (1 host) UDP/IPv4 Lab Net Lab Net 10 10/10 N/A
WA-1b Alias Resolution (2 hosts) UDP/IPv4 Lab Net Lab Net 10 10/10 N/A
ME-1 macOS Exfiltration (via DMZ) UDP/IPv4 Lab Net Loc. A 128 128/128 1800 b/h VI-D6
ME-2 Exfiltration (via DMZ) UDP/IPv4 Lab Net Loc. B 128 128/128 1800 b/h VI-D6
OE-1

OpenBSD

Exfiltration (via DMZ) UDP/IPv4 Lab Net Loc. A 128 128/128 720 b/h VI-D7
OE-2 Exfiltration (via DMZ) UDP/IPv4 Lab Net Loc. B 128 128/128 720 b/h VI-D7
OE-3 Exfiltration (via DMZ) TCP/IPv4 Lab Net Loc. A 128 128/128 360 b/h VI-D8

OE-4 Exfiltration (via DMZ) UDP/IPv4 (Sender),
TCP/IPv4 (Receiver) Lab Net Loc. A 128 128/128 720 b/h

OF-1 Firewall Piercing (slow) ICMP/IPv4 Loc. B Lab Net 128 128/128 720 b/h VI-D9
OF-2 Firewall Piercing (Esdenera ruleset, slow) ICMP/IPv4 Lab Net Lab Net 128 128/128 1200 b/h VI-D9
OF-3 Firewall Piercing ICMP/IPv4 Lab Net Lab Net 128 128/128 4200 b/h VI-D9
OA-1a Alias Resolution 1 host UDP/IPv4 Loc. A Loc. A 10 10/10 N/A
OA-1b Alias Resolution 2 hosts UDP/IPv4 Loc. A Loc. A 10 10/10 N/A
NE-1

NetBSD

Exfiltration (via DMZ) TCP/IPv4 Lab Net Loc. A 128 128/128 7200 b/h VI-D10
NE-2 Exfiltration (via DMZ) TCP/IPv4 Lab Net Loc. B 128 128/128 7200 b/h VI-D10
NE-3 Exfiltration (via DMZ) TCP/IPv6 Lab Net Lab Net 128 128/128 7200 b/h VI-D11

NE-4 Exfiltration (via DMZ) TCP/IPv6 (Sender),
TCP/IPv4 (Receiver) Lab Net Loc. A 128 128/128 7200 b/h

If the receiver’s IP address IP ID counter does collide with
one of the 90 counters, the vector of bits the receiver reads
will be all 1’s. We verified this is not the case. This revised
experiment ensures that the host’s CPU load is comparable for
both “0” and “1” bits.

Given the above results, we estimate that the bit error
rate in this channel is below 0.004. In this case, simple error
correction code can be used to correct any sparse errors.

2) Linux Exfiltration via Containers over UDP/IPv4: The
LE-3 and LE-4 tests (locations A and B resp.) are very similar
to the previous section, with two co-resident containers running
on a single host (kernel). The sender resides in the internal
(isolated) network, communicating with the internal (isolated)
container over HTTP/3, and the receiver resides on the Internet,
communicating with the second container over HTTP/3. In all
other aspects, these tests are identical to the one in the previous
section.

3) Linux Firewall Piercing over ICMP/IPv4: Due to techni-
cal reasons, we could only conduct the Linux firewall piercing
attacks in the lab. For test LF-1, we installed a typical Linux-
based firewall image (IPfire 2.25 (x86 64) running Linux ker-
nel 4.14.112) on a dedicated device, and configured it to block
communications between the internal “green” network and the
external “red” network (an Internet-facing lab network). We
then ran our attack, but for simplicity of testing, we sent data
from the red network to the green network. The data transfer
rate was limited by the sender machine’s effective bandwidth –
we could only send up to ≈14,000 ICMP packets/s. A stronger
sender machine would have achieved a higher throughput.

In order to compare the speed of ICMP exfiltration to that
of QUIC/UDP exfiltration, we conducted another experiment
(LF-2), this time using the same target machine as in VI-D1.
We used a stronger sender that was able to send ≈130,000
ICMP packets/s, and the throughput was 1.2 bits/s (3000 b/h),
which is 7.5 times faster than the QUIC/UDP variant. Here too,
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we could use a stronger sender to get even higher exfiltration
throughput.

4) Windows Server Exfiltration (via DMZ) over UDP/IPv4:
We did not have at our disposal a Windows Server on a
network that allows spoofing, so instead, for tests WE-1 and
WE-2 (locations A and B, resp.), we simulated Windows
Server on a Windows 10 platform. This was done by setting
TcpipIsServerSKU to 1 and the default compartment’s
IPv4 PathSet purge threshold (32 bit quantity at offset 332
of PathSet) to 32768. This made the system behave identi-
cally to Windows Server for the purpose of our experiments.

For the channel definition, we used K = 6. A single bit
transfer took 76s (theoretically this could be done with 71s per
bit, but due to technical issues, and to make sure the channel
can handle some organic network traffic, we padded it by 5s).

5) Windows Exfiltration (via DMZ) over TCP/IPv4: In
experiment WE-3, we demonstrated that the Windows covert
channel can be used over TCP. In essence, this is a very similar
experiment to the one described in Section VI-D4, but this
time we used TCP. The sender sent SYN packets with spoofed
source IP address to the target host. These packets are short
(40 bytes at the IPv4 level) and can be transmitted rapidly.
Assuming the spoofed IP addresses are not associated with
any machines, there will not be any transmission from these
IP addresses following the spoofed SYN packets. Windows re-
sponds immediately with a SYN+ACK packet, with additional
two retransmissions (the default “Max SYN Retransmissions”
is 2) at exponential backoff, so the first retransmission is sent
after an “Initial Retransmission Time-Out” seconds, henceforth
IRTO (in Windows Server, by default IRTO=3s), and the
second retransmission packet is sent 2 · IRTO after the first
retransmission. These packets are not answered of course, so
finally Windows sends an RST packet, 4 · IRTO seconds after
the third SYN+ACK packet is sent (7 ·IRTO seconds after the
SYN packet is received). Therefore, Windows sends the last
packet to a spoofed IP address 21s after a SYN is received
from it. This overlaps with the 10 seconds the receiver needs
to wait after the sender’s burst in order for the purge to be
concluded, so only 11 seconds are actually added to the time-
per-bit compared to the UDP case. In a lab experiment, we
found that Windows’ SYN cache is not exhausted even by
13000 half-open connections, thus our technique for TCP/IPv4
in Windows is non-disruptive.

As for the receiver, we implement it to send an RST packet
to the target host as soon as the target host’s SYN+ACK arrives
at the receiver, thus the Path object’s last access time is only
extended by the RTT between the target host and the receiver,
having a negligible impact on the attack timing.

We carried out the experiment similar to Section VI-D4,
with the modified attack timing. Since we used Windows 10
as a target host, we had to adjust its Initial RTO value to
3000ms to simulate Windows Server (the default Windows 10
value is 300ms).

6) macOS Exfiltration (via DMZ) over UDP/IPv4: In tests
ME-1 and ME-2 (locations A and B, resp.), the channel was
defined with K = 700, thus ensuring that the probability
for a sent bit “1” to be received as “0” is very low (1/1767).
The sender transmitted 5000 packets per bit. Theoretically, the
sender needed to send 4096 packets to signal the bit “1”, but

in practice, due to server responsiveness issues, we had the
sender send some extra packets. With throttling, this took 0.39
seconds. Due to some overheads incurred by our specific test
implementation, each bit transmission took two seconds.

7) OpenBSD Exfiltration (via DMZ) over UDP/IPv4: In
tests OE-1 and OE-2 (locations A and B, resp.), the channel
was defined with K = 700, thus ensuring that the probability
for a sent bit “1” to be received as “0” is very low (1/1767).
The sender transmitted 40000 packets per bit. Theoretically,
the sender needed to send 32768 packets to signal the bit “1”,
but in practice, due to server responsiveness issues issues, we
had the sender send 40000 packets. This took 3.32 seconds.
Due to some overheads incurred by our specific test, each bit
transmission took 5 seconds.

8) OpenBSD Exfiltration (via DMZ) over TCP/IPv4: In test
OE-3, the sender sent SYN packets to the target host. Both
the sender and the receiver were implemented to send an RST
packet to the target host as soon as the target host’s SYN+ACK
arrives at the sender/receiver, to ensure no retransmissions
clutter the network and that the host’s SYN cache is not
overflowed, since the pending connection is removed from it
once the RST packet for it arrives.

We throttled the sender to about 6000 packets/sec in order
to make sure the host’s TCP SYN cache is not exhausted (the
OpenBSD SYN cache size limit is 10255 entries). Due to the
throttling, the time per bit was extended to 10s.

9) OpenBSD Firewall Piercing: Test OF-1 was conducted
over the Internet, with a very weak machine running OpenBSD
6.7 in Location B. That machine could only handle ≈9,000
ICMP Echo Requests per second, which set the constraint on
the throughput. We achieved a single bit transfer in 5s.

We also ran in-the-lab tests with firewalls (we could not
deploy Internet-facing firewalls). In test OF-2, we simulated
an OpenBSD-based firewall. For this, we used a PF ruleset
we extracted from an Esdenera Firewall-3 installation [33].
This ruleset explicitly allows ICMP traffic to and from the
firewall, on all interfaces. We tested OpenBSD 6.9 in this
case. In test OF-3, we measured the speed of the attack with
a sender capable of sustaining ≈68,000 ICMP Echo Requests
per second, against the usual Dell target running OpenBSD
6.8, which can serve ≈260,000 Echo Requests per second.
We obtained a 0.85s bit transfer time, but using a stronger
sender machine can significantly increase this figure.

10) NetBSD Exfiltration (via DMZ) over TCP/IPv4: Our
covert channel for NetBSD over IPv4 is not in itself interesting,
because NetBSD already has a TCP/IPv4 covert channel in
the form of its global IPv4 ID counter. However, we wanted
to emphasize the applicability of our TCP/IPv4 technique
over the Internet since we cannot demonstrate our TCP/IPv6
technique over the Internet due to technical constraints. By
demonstrating our TCP/IPv4 covert channel over the Internet,
we infer that the same holds for our TCP/IPv6 channel.

In our NE-1 and NE-2 experiments (with senders at A and
B, resp.), we set ∆t=0.2s, with total time per bit 0.5s (this
is due to some limitations of our testing code, and we note
that theoretically NetBSD’s covert channel can be run at much
higher speeds), thus theoretically threshold for m−m′ should
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have been 2, but we set it to 3 to avoid false positives from
occasional TCP connections established with the target host.

11) NetBSD Exfiltration (via DMZ) over TCP/IPv6: In test
NE-3 we had to use a local receiver since our lab does not have
IPv6 connectivity to the Internet.

VII. REMEDIATION AND SUGGESTIONS

We begin with the easy parts, in which the attack can be
completely eliminated:

• TCP/IPv4 packets, and IPv4 packets with DF=1 –
these packets can have ID=0 or a completely random
ID. In Linux, all TCP packets, and UDP packets whose
length is below the PMTU are sent with DF=1. In
Windows and macOS, all TCP packets are sent with
DF=1. Moreover, in macOS, the TCP packets have
ID=0, which demonstrates that simply setting ID=0
suffices for these cases. Note that e.g. QUIC requires
setting DF=1 in UDP [21, Section 14], but Caddy
Server leaves the choice of DF to the operating system.

• TCP ISN – this field should not contain state infor-
mation, i.e. should contain random data and client
information only.

• IPv6 Flow label (see Appendix C1 and Appendix C2)
– can be chosen at random (i.e. using a “regular”
PRNG). There is no RFC requirement for the flow
label to have a unique value in any time duration.

In some operating systems, a built-in filtering functionality
facilitates overriding a protocol field value with a fixed/random
value.

The challenging case is UDP/IPv4 (and ICPMv4/IPv4) ID
with DF=0. In this case, there is a real need for the ID field to
be non-repeating to some extent. We can make the following
suggestions to reduce the attack surface and eliminate some
attack variants, but the underlying issue is still in effect even
with our suggestions:

• Maintain a separate IPv4 ID state according to the
destination address: one state for RFC1918 destination
addresses (internal networks) and another state for
external destinations. This eliminates the exfiltration
attacks where the sender is on an internal network
and can only spoof internal network addresses.

• Maintain an IPv4 ID generator state per service (i.e.
per a listening IP address and port). This eliminates
the host alias resolution attacks. A weaker version is
to maintain a state per listening IP address.

• Maintain an IPv4 ID generator state per container –
this eliminates the cross-container attacks.

Another approach is to ensure that connection-less protocols
emit IPv4 packets whose length is below a reasonably chosen
minimal PMTU, and simply set DF=1 and ID=0 for all these
packets. For example, DNS over UDP/IPv4 can function with
message length limit of 512 bytes (540 bytes including UDP
and IPv4 headers), QUIC over UDP/IPv4 can function with
message length limit of 1200 bytes (1228 bytes including

UDP and IPv4 headers), and ICMP Echo Requests whose size
exceeds PMTU can be discarded.

Finally, it is possible to simply randomize the IP ID, which
guarantees maximum security, at the expanse of somewhat
increased malformed/dropped packet rate (due to the possible
ID collisions and their effect on fragment reassembly).

Note that ICMP rate limits do not eliminate the covert
channels: even an aggressive per-destination rate limit is in-
effective against the attack, as the attacker may use multiple,
possible spoofed, source IP addresses. A global rate limit, on
the other hand, facilitates a covert channel via overflowing (or
not) the packet counter.

VIII. CONCLUSIONS

We conclude that global states in network protocols of
server hosts can be exploited in various ways to weaken
the security of networks where such hosts reside, and to
glean information on the implementation of services which
is otherwise abstracted from their consumers.

While a global state can be as obvious as an incremental
counter, we also demonstrated that it can take a more subtle
form. For example in the case of OpenBSD and macOS IPv4
ID, the observation of collisions in IPv4 ID values (or lack
thereof) is an indication of the internal global state, which is
not directly exposed to the attacker. Other such non trivial
examples are the Linux IPv4 ID generation scheme, and the
Windows IPv4 ID generation scheme.

Our work focused on firewalled hosts, which is a very
common scenario for Internet-facing servers. A stateful firewall
eliminates many known information leakage attacks, and there-
fore poses a serious obstacle for techniques that rely on infor-
mation leakage via a global protocol state. We described three
new attack scenarios based on information leakage via a global
protocol state: firewall piercing, exfiltration form a secure net-
work, and exfiltration across containers. We demonstrated our
three new scenarios, as well as a host alias resolution scenario
and a host alias resolution across containers scenario. All these
scenarios were demonstrated with the sender (and the host,
where applicable) behind a firewall, in realistic conditions, and
over the Internet where possible. We also demonstrated some
cross protocol attacks, e.g. where the sender uses UDP/IPv4
and the receiver uses TCP/IPv4, and where the sender uses
TCP/IPv6 and the receiver uses TCP/IPv4. We measured the
exfiltration bandwidth achieved, and found it to be sufficient
for e.g. key material exfiltration in hours or minutes.

The problem of secure IPv4 ID generation seems to be
theoretically intractable, due to the conflicting requirements
– generating long sequences of unique values, at least per
(IPSRC , IPDST ) and leaking no information, while maintain-
ing a “reasonably sized” state, which is much smaller than the
number of expected concurrent tuples. Intuitively, this is due
to the pigeonhole principle, as it is impossible to maintain an
independent state per tuple with less bits than the number of
concurrent tuples. However, we do list some recommendations
that considerably reduce the attack surface and specifically
address the attacks scenarios we described.

It is important to understand that information leakage
from network protocol global states can affect the security of
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networks and systems in surprising and unexpected ways. In
our research, we highlight three novel attack scenarios. It is
quite possible that additional attack scenarios exist, and thus
there is room for future research on this topic.

IX. VENDOR STATUS

All vendors were notified on January 27th, 2021. Linux
issued a patch [12] for kernel version 5.13-rc1 that significantly
increases the size of the β table. This patch was back-ported
to versions 5.12.4, 5.11.21, LTS branches 5.10.37, 5.4.119,
4.19.196, 4.14.238, 4.9.274 and 4.4.274. Back-ports to all 4.x
branches were provided by us based on the back-port to the
5.x versions. Linux also issued a patch replacing the existing
IPv6 ID algorithm (similar to the IPv4 ID algorithm) with
a completely randomized IPv6 ID [42] which is included
in version 5.14-rc1, and was back-ported to kernel versions
5.13.3, 5.12.18, 5.10.51, 5.4.133, 4.19.198, 4.14.240, 4.9.276
and 4.4.276. Microsoft informed us on March 15th, 2021, that
“[Microsoft] determined your finding does not meet our bar
for servicing”. Apple informed us on November 8th, 2021
that “We [Apple] are planning to address this issue in a
security update by the end of 2021”. The ICMP rate limit
was reported to Apple separately on June 11th, 2021, and
regarding it, Apple informed us on July 21st, 2021, that “while
we [Apple] do not see any security implications, we have
forwarded it on to the appropriate team to investigate for
potential future enhancements”. OpenBSD has not responded
to multiple requests for status, has not informed us about any
decision/resolution, and has not fixed the issue in their public
source code repository. NetBSD included a patch [32] that
randomizes all the affected protocol fields in NetBSD 9.2.
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APPENDIX

A. Experiment: A Survey of Responses from Widely-Used
Internet Servers to UDP, TCP and ICMP Probing

We estimate the portion of widely-used Internet hosts
which do not respond to a UDP packet to a closed port,
i.e. hosts that do not send back an ICMP message of any
type (or any non-ICMP message) for such invalid packets.
We also estimate the portion of widely-used Internet hosts
which silently drop TCP SYN packets to closed TCP ports.
Finally, we estimate the portion of widely-used Internet hosts
that respond to ICMP Echo Request (via the Ping utility).

We use the top 1000 domains in the Alexa top 1M domain
list obtained on December 13th, 2020 as a starting point. We
then query for the DNS NS (name server) record-set for each
domain, take the first NS record from the answer, and resolve
its IPv4 address (by sending a DNS A query and take the
first record from the answer). This yields an IP address of
an authoritative DNS server for the domain at hand. This host
answers UDP queries to port 53 (DNS). As such, it serves as a
model for a reliable host that runs a UDP-based service, similar
to a QUIC server. Moreover, since the host is an authoritative
DNS server for a popular domain, we expect it to be highly
available, i.e. we can assume there are no downtime/service
issues for this host. We eliminated the duplicates in the IP
address list, and ended up in a list of 748 unique IP addresses.

UDP Closed Ports: For each IP address, we sent a UDP
packet for three randomly chosen high ports. These UDP
ports are un-assigned by IANA, and have no popular service
associated with them, hence are very likely to be closed. We
observe whether we receive any response from the host, either
over UDP or over ICMP. As expected, the only responses
we received were ICMP Type 3 messages (“Destination Un-
reachable”), mostly with Code 3 (“Port Unreachable”), but
in three cases, we received Code 10 (“Communication with
Destination Host is Administratively Prohibited”) and in two
cases we received Code 13 (“Communication Administratively
Prohibited”).
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TCP Closed Ports: We sent three TCP SYN packets to
each port used above, and recorded whether we received any
response back. As expected, most servers that responded, did
so with an RST packet, although one server responded with
SYN+ACK on two ports, which is likely a deceptive practice.
Regardless, we count this server as responsive to TCP probes
for closed ports.

ICMP Echo Requests: We sent each server three ICMP
Echo Request messages, and we recorded whether we received
any ICMP Echo Reply messages back.

The results are as follows: 116 (15.5%) servers responded
to the UDP probing, and 59 (7.9%) servers responded to the
TCP probing. The overlap was significant – 42 servers re-
sponded to both UDP and TCP probing. Overall, 133 (17.8%)
servers responded to either UDP or TCP. 667 (89.2%) servers
replied to ICMP Echo Requests. This set almost completely
covers the set of servers that responded to either UDP or TCP
probing – the overlap was 125 servers. In other words, the
ICMP probing is almost a complete superset of the TCP or
UDP probing – it misses about 1% of the space covered by
UDP or TCP, and contributes additional 72.5% of coverage.

B. A Stealthier IPv4 ID Attack for macOS and OpenBSD

For macOS and OpenBSD, the IPv4 ID attack can be made
stealthier by having the sender and receiver run “native” QUIC
sessions with the target host. For example, the sender can
request a 4.9152MB (macOS) or 39.3216MB (OpenBSD) file
(or larger) from the target host. This ensures that at least 4096
(macOS) or 32768 (OpenBSD) QUIC packets are sent from
the target host to the sender (as each QUIC packet carries at
most 1200 payload bytes). Likewise the receiver can request
a 840KB file (or larger) file from the target host to force the
host to send the receiver at least 700 QUIC packets. Of course,
instead of requesting one file (or resource), the sender and the
receiver can request multiple resources so that the total number
of packets sent by the host is above the respective thresholds.

This can also be applied to OpenBSD with TCP traffic. In
this case, there is an additional benefit, which is that there is
no pressure on the TCP SYN cache in the target host.

C. Additional Information Leakage Attacks

1) A Covert Channel via NetBSD TCP/IPv6 Flow Label
– Cryptanalysis: NetBSD’s TCP/IPv6 flow label field (20
bits) is generated by the A2/20 PRNG (following the naming
convention introduced in [23]). The flow label field comprises
a most significant bit (MSB) part, and 19 least significant bits
part. The PRNG is reseeded every 180 seconds or 200000
internal PRNG steps (whichever comes first). As part of the
reseeding procedure, the parameters for generating the least
significant 19 bits are sampled from a strong kernel PRNG,
and the MSB is flipped. The cryptanalysis itself is too long to
be included in this paper, and will be provided in an extended
version. It results in the ability, given ≈ 100 consecutive flow
label values, to predict the next internal PRNG steps.

This cryptanalytic result can be employed in order to
implement a covert channel between a sender and a receiver.
The receiver first establishes around 100 consecutive TCP
connections with the target host, extracts the IPv6 flow labels,

and obtains the next PRNG internal outputs using the cryptan-
alytic techniques. The sender then either establishes four TCP
connections with the target host, to signal the bit “1”, or does
nothing, to signal the bit “0”. Finally, the receiver establishes
another TCP connection with the target host, and extracts the
final IPv6 flow label. The receiver then matches this value
to the series of eight possible future values (corresponding to
the PRNG internal steps). If a match is found in positions 2-
8 of the list, then the receiver infers that the sender did not
establish four TCP connections with the target host (because
each TCP connection incurs at least two internal steps, and the
receiver’s final connection also consumes at least two internal
steps – altogether 10 internal steps at the minimum). This is
interpreted by the receiver as bit “0”. Otherwise, the receiver
assumes the bit sent was “1”.

For host alias resolution use case, the attacker can improve
the basic technique a bit, since the attacker can observe the
flow label received from both endpoints, and match them to
the same series (for endpoints that are mapped to the same
host) or not (for endpoints that are mapped to different hosts).

2) A Covert Channel via NetBSD TCP/IPv6 Flow Label
Most Significant Bit: We now describe an attack against the
NetBSD TCP/IPv6 flow label generation, which does not make
any use of the specific algorithm that generates the least
significant 19 bits of the flow label field. This is a more
generic attack, compared to Appendix C1, but at the price
of being much less efficient, in terms of number of packets
(TCP connections) required.

The attack is based on the observation that a “passive”
side channel exists in the flow label generator, in the form
of the timing of the MSB flip. When two TCP/IPv6 services
are served from a single NetBSD host, the MSB in their flow
label fields will flip simultaneously. But when the services are
served from different NetBSD hosts, this is unlikely to happen.

We now calculate how many TCP connections are needed
to force a reseed. In general, let S be the internal steps the flow
label PRNG executed while generating n flow labels, then S is
a sum of 2n IIDs whose distribution is uniform on {1, 2, 3, 4}.
Therefore, S ∼ N (5n,

√
10n
2 ), and Prob(S ≥ 200000) =

Φ( 5n−200000√
10n/2

). We can thus force an immediate algorithm
reseed and MSB flip with probability ≈ 1 by establishing
n = 41000 TCP connections with the target host.

This can be turned into an “active” covert channel. The
sender and receiver agree on time t0. Shortly before t0, the
sender establishes 41000 TCP connections with the target host
and forces an algorithm reseed. Then every ∆t seconds the
sender either establishes 41000 TCP connections with the
target host to send the bit “1”, or does nothing to send the
bit “0”. Every ∆t seconds the receiver establishes a single
TCP connection with the target host, and observes whether
the MSB bit flipped (signalling the bit “1”) or not (“0”). ∆t
should be chosen such that the sender can establish 41000
TCP connections with the target host during this time period.
Special care must be taken if 180 seconds elapse since the last
transmission of the bit “1”, as this will cause the bit to flip
due to a 180s timeout, and may thus result in a false positive
(reading bit “1” by the receiver). To counteract this, the sender
and receiver can decide to skip the time slice in which 180s
elapsed since the previous bit “1” was transmitted.

18


	Introduction
	Motivation
	Organization
	Stateful Firewalls and SAV
	Host Alias Resolution, De-NATting and Co-Residency Detection
	Our Contribution

	Related Work
	IPv4 Global State and Side Channels
	Prediction of IPv4 ID values
	Attacks on the Linux IPv4 ID Generation Algorithm for UDP and TCP Connection-Less Packets
	IPv4 De-fragmentation Cache

	UDP Global State and Side Channels
	TCP Global States and Side Channels
	Host Alias Detection and De-NATting
	Container Co-residency Detection and Cross Container Information Leakage
	Other Side Channels and Exfiltration Techniques

	Current Protocol Header Field Generation Algorithms
	Linux IPv4 ID for Connection-Less Protocols
	Windows Server IPv4 ID
	macOS Server (Connection-Less Protocols) and OpenBSD IPv4 ID
	NetBSD TCP ISN

	Attacks
	Threat Model
	Source Address Spoofing and Sender Privileges
	Firewall Piercing Exfiltration
	Firewall Subversion and Exfiltration (via DMZ)
	Exfitration via Co-Resident Containers
	Host Alias Resolution, De-NATting and Co-Residency Detection

	Information Leakage and Covert Channels: Global States in Protocol Fields
	Linux Connection-Less IPv4 ID
	Windows Server IPv4 ID
	Information Leakage
	Covert Channel

	macOS Server (Connection-Less Protocols) and OpenBSD IPv4 ID
	NetBSD TCP ISN
	Additional Attacks
	Practical Considerations
	RTT
	Jitter and Bandwidth
	Synchronization between the Sender and the Receiver
	Interference (Organic Outbound Traffic from the Target Host)
	Packet Loss
	Stealth vs. Throughput


	Experiments
	A Setup for the Exfiltration (via DMZ) and Firewall Piercing Experiments
	A Setup for the Host Alias Resolution Experiments
	Description of the Hosts and the Network
	Experiment Descriptions
	Linux Exfiltration (via DMZ) over UDP/IPv4
	Linux Exfiltration via Containers over UDP/IPv4
	Linux Firewall Piercing over ICMP/IPv4
	Windows Server Exfiltration (via DMZ) over UDP/IPv4
	Windows Exfiltration (via DMZ) over TCP/IPv4
	macOS Exfiltration (via DMZ) over UDP/IPv4
	OpenBSD Exfiltration (via DMZ) over UDP/IPv4
	OpenBSD Exfiltration (via DMZ) over TCP/IPv4
	OpenBSD Firewall Piercing
	  NetBSD Exfiltration (via DMZ) over TCP/IPv4
	  NetBSD Exfiltration (via DMZ) over TCP/IPv6


	Remediation and Suggestions
	Conclusions
	Vendor Status
	References
	Appendix
	Experiment: A Survey of Responses from Widely-Used Internet Servers to UDP, TCP and ICMP Probing
	A Stealthier IPv4 ID Attack for macOS and OpenBSD
	Additional Information Leakage Attacks
	A Covert Channel via NetBSD TCP/IPv6 Flow Label – Cryptanalysis
	A Covert Channel via NetBSD TCP/IPv6 Flow Label Most Significant Bit



