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Abstract—First implemented in Bitcoin, Nakamoto Consensus
(NC) is the most influential consensus protocol in cryptocur-
rencies despite all the alternative protocols designed afterward.
Nevertheless, NC is trapped by a security-performance tradeoff.
While existing efforts mostly attempt to break this tradeoff via
abandoning or adjusting NC’s backbone protocol, we alterna-
tively forward the relevance of the network layer. We identify
and experimentally prove that the crux resides with the pro-
longed block propagation latency caused by not-yet-propagated
transactions. We thus present a two-step mechanism to confirm
only fully-propagated transactions, and therefore remove the
limits upon NC’s performance imposed by its security demands,
realizing NC’s untapped potential. Implementing this two-step
mechanism, we propose NC-Max, whose (1) security is analyzed,
proving that it provides stronger resistance than NC against
transaction withholding attacks, and (2) performance is evaluated,
showing that it exhausts the full throughput supported by the
network, and shortens the transaction confirmation latency by
3.0 to 6.6 times compared to NC without compromising security.
NC-Max is implemented in Nervos CKB, a public permissionless
blockchain.

I. INTRODUCTION

Implementing Nakamoto Consensus (NC), Bitcoin [53],
the most popular digital currency, allows all network partic-
ipants to reach agreement on a chain of blocks containing
confirmed transactions, and reignited the now well-known
blockchain technology. In NC, miners—a special kind of
network participants—compete for block rewards by solving
a cryptographic puzzle generated from the latest block in the
blockchain and a group of new transactions. A valid solution to
the puzzle allows the miner to broadcast a new block packing
these transactions, extending the blockchain. At the core of
NC, a backbone protocol (1) periodically adjusts the puzzle
difficulty via a difficulty adjustment mechanism (DAM), and
(2) guides the miners to choose the same main chain when
more than one block extends the same predecessor block.

As disruptive as Bitcoin is, its application is limited by
its low throughput and long transaction confirmation latency,

demanding further technological advances. Such a demand
has been answered enthusiastically by both academia and the
now hundred-billion-dollar industry of cryptocurrencies [16],
where the legitimacy of new consensus protocols and new
cryptocurrencies mostly resides in radical innovations and,
particularly, outperforming NC. Consequently, a considerable
number of new consensus protocols emerged, hoping to over-
come NC’s limitations by abandoning its backbone protocol.
However, all of these new designs—represented by proof-
of-stake (PoS) [20], [21], [36] and blockDAG protocols [2],
[5], [50], [78], [79]—introduce hard-to-solve challenges in
their security or functionality, as they forgo NC’s simplic-
ity. Specifically, PoS protocols, which select participants to
compose blocks based on their possession of some scarce
resources, demand additional security assumptions and protec-
tion mechanisms to prevent attackers from generating conflict-
ing histories. These assumptions, however, are often difficult
to meet [4], [65], and new attack vectors emerge even when
the protection mechanisms are in place [11], [30], [42], [58].
BlockDAG protocols, which replace NC’s linear blockchain
structure with a direct acyclic graph of blocks, either abandon
the global order of transactions [78], therefore limiting the
smart contract functionality, or do not specify their transaction
fee distribution [2], [50], [79] or DAM [2], [5], [79], rendering
a complete security analysis infeasible. Due to these limitations
and uncertainty brought by such radical innovations, NC and
its variants remain the foundation of most of the leading
cryptocurrencies such as Bitcoin, Litecoin [67], Ethereum [12],
Bitcoin Cash [7] and Zcash [76]. Also built on NC are some
influential protocol designs, represented by Fruitchains [62]
and Bitcoin-NG [28].

Nevertheless, a key challenge confronting these NC-based
designs is to improve NC’s performance without compromising
security, due to a well-known tradeoff rooted in its security
and performance’s conflicting requirements on the block size
and the block interval—its security demands small blocks and
long block intervals, while its performance demands larger
blocks and shorter intervals [19], [80]. To break this tradeoff,
a constant endeavor is to adjust NC’s backbone protocol [47],
[74], [80]. However, it has been shown [44], [91] that such
adjustments often complicate the protocol and thus also lead
to new attack vectors.

While it is a general belief that the security-performance
tradeoff is coupled with NC’s backbone, we, in this paper,
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alternatively forward the importance of the network layer in
breaking the tradeoff. We identify and experimentally prove
that the tradeoff resides in the network layer via the existence
of fresh transactions—transactions that have just, or have not,
started to propagate to the network—contained in a block.
Therefore, to eliminate fresh transactions, we focus on the
network layer and propose a two-step mechanism, ensuring all
transactions are not fresh when their full content is embedded
in the blockchain. This mechanism, therefore, removes the
limits on the block size and interval placed by the security
demands. The resulted consensus protocol, named NC-Max,
not only maintains the same level of security as NC, but also
achieves the full throughput supported by the network and
significantly reduces the transaction confirmation latency. Our
contributions include:

Breaking NC’s Security-Performance Tradeoff. We identify
and remove the bottleneck of fresh transactions in this tradeoff.
Through experiments deployed on, or with data collected from,
the Bitcoin network, we unveil the detailed mechanism of how
the block size and interval affect NC’s security through the
existence of fresh transactions. Specifically, a fresh transaction
demands the nodes to request its content before forwarding the
block to their peers. This extra request-and-reply round trip
invalidates the compact block mechanism—Bitcoin’s current
block propagation acceleration technique [17]. The extended
block propagation latency leads the protocol more vulnerable
to various attacks [19], [23], [32], [80].

To remove this bottleneck, we introduce a two-step mecha-
nism including transaction proposal and commitment, pipelin-
ing fresh transactions’ synchronization and non-fresh transac-
tions’ confirmation, illustrated in Fig. 1. The resulting block-
size-independent propagation latency reaches the lower limit
permitted by the network, enabling more aggressive block size
and block interval choices without compromising security.

Our evaluation shows that NC-Max, under Bitcoin’s net-
work condition, can confirm transactions at the network’s full
throughput. When anchoring the same block generation event
sequence, NC-Max’s throughput outperforms recent high-
throughput blockDAG designs. Anchoring an orphan rate—
percentage of non-main-chain blocks, also known as stale
block rate [35]—of 5%, NC-Max achieves an average block
interval of five seconds, whereas the interval must be 52
seconds in NC. Meanwhile, under the six-block confirma-
tion convention, NC-Max reduces NC’s five-minute transac-
tion confirmation latency to 80 seconds, similar to that of
Prism [2]—a blockDAG protocol characterized by its short
latency.

Inheriting and Strengthening NC’s Security. NC’s security
is carefully scrutinized [24], [26], [29], [31]–[33], [43], [45],
[61], [72], [75], [86] thanks to its simple backbone proto-
col. We ensure that NC-Max inherits NC’s backbone by re-
coupling the required data of the two steps in an updated
block structure so that no new message type is introduced. This
approach simplifies both the security analysis and the reward
distribution, as there is no need to share the rewards among
different types of blocks. We show that our modifications to
NC meet the assumptions made by previous formal analyses,
which enables us to invoke existing theorems on the backbone
protocol to prove the persistence and liveness of NC-Max. We
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Fig. 1: To balance the security-performance tradeoff, cryp-
tocurrencies implementing NC usually choose long block inter-
vals, leaving long idle time now and then with no transactions
confirmed. NC-Max decouples transaction synchronization
from confirmation to allow better bandwidth utilization and
a shorter block interval without raising the orphan rate.

further show that NC-Max offers stronger resistance than NC
against transaction withholding attacks, a variant of selfish
mining [29] where miners deliberately pack fresh transactions
in their blocks to delay the blocks’ propagation. According to
Neudecker and Hartenstein’s measurement [57], miners may
have conducted this attack, possibly unconsciously, in Bitcoin.

Advocating a Broader View in Designing Consensus Pro-
tocols. Through this work, we aim to raise awareness of
the importance of the network layer in designing protocols.
Our protocol modification is built upon accurate identification
and experimental verification of NC’s network-layer bottle-
neck, which allows NC-Max to achieve better performance
while preserving NC’s security and flexibility. With NC-Max,
we thus forward the configurational nature of a consensus
protocol—that it shall be understood as a combination of the
backbone protocol and the external rules—including those who
concern the network layer, and the latter deserves no less
attention for the former to exert its full potential and promises.

II. THE LIMITATIONS OF BLOCKCHAIN CONSENSUS
PROTOCOLS

This section provides a brief overview of blockchain con-
sensus protocols and their limitations, elaborating why we
choose NC’s backbone protocol as a base for improvements.

A. Nakamoto Consensus

NC helps all nodes agree on and order the set of confirmed
transactions in a decentralized, pseudonymous way. There
are two components in NC: backbone protocol, including its
chain selection rules and DAM; external rules, including its
transaction packing details, block validity rules, and reward
distribution mechanism.

Backbone Protocol. Each block contains an 80-byte header in
addition to the transactions. A block header includes (1) the
block’s height—distance from the hard-coded genesis block,
(2) the hash value of the parent—the latest block in the
blockchain, (3) the Merkle root of the transactions, (4) a
timestamp, and (5) a nonce. Embedding (2) ensures that a
miner chooses its parent before starting to mine. Based on
this parent-child relationship, all blocks form a tree, and each
root-to-leaf path in the tree is called a chain. To construct a
valid block, miners work on finding the right nonce so that the
block hash is smaller than a target T , which is computed by the
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last iteration of the DAM. Dynamically adjusting T ensures a
stable expected block interval, hence a stable throughput limit,
regardless of the total mining power. We omit the details of the
DAM and refer interested readers to [31]. Compliant miners
publish blocks the moment they are found.

When more than one block extends the same parent, miners
work on the main chain that is most computationally chal-
lenging to produce, which is sometimes inaccurately referred
to as the longest chain. When several chains are of the same
“length”, miners choose the first chain they receive. Blocks not
in the main chain are orphaned and discarded by all miners.

External Rules. The transactions must not conflict with those
in previous blocks of the same chain. The size of a block
must not exceed a predefined block size limit. Miners are
incentivized by two kinds of rewards. First, a block reward is
allocated to the miner of every blockchain block via a special
coinbase transaction in the block. Second, the value difference
between the inputs and the outputs in a transaction is called
the transaction fee, which goes to the miner who includes the
transaction in the blockchain. We omit other details as they
are not relevant to this study.

Security-Performance Tradeoff. NC exhibits stronger secu-
rity properties when the expected block interval is signifi-
cantly larger than the block propagation latency [32], which
minimizes the number of blocks mined during other block’s
propagation. Violating this condition leads to a high orphan
rate—percentage of orphaned blocks—which lowers the ad-
versarial mining power threshold to secretly generate a longer
chain, downgrading the system’s security threshold. However,
short block propagation latency demands a small block size
limit, which, together with a long block interval, results in
low throughput and long transaction confirmation latency. This
tradeoff is formally modeled by Sompolinsky and Zohar as
early as 2015 [80].

Bitcoin and Ethereum, the two largest cryptocurrencies,
stand at two extremes of this tradeoff. Bitcoin favors secu-
rity, choosing a long expected block interval of ten minutes;
Ethereum favors performance, leading to a 9.1% long-term
orphan rate with a 13-second average block interval [69], [71].
Such a high orphan rate translates to a systematic uncertainty
in the miners’ income. To reduce this uncertainty, Ethereum
issues uncle rewards to compensate the orphaned blocks’
miners, which further weaken the system’s security [59], [73].

Despite such a strong preference for performance,
Ethereum cannot fully exploit the nodes’ bandwidth to confirm
transactions. In 2015, 90% of Bitcoin public nodes have
bandwidth at least 3.03 Mbps, translating to a synchronization
capacity of 758 transactions per second (TPS) [19]; in 2017
the numbers raised to 5.7 Mbps and 1425 TPS [34]. However,
Ethereum, with a presumably similar bandwidth distribution,
cannot process faster than 15 TPS as of 2021 [27], leaving long
idle time now and then between blocks (Fig. 1). Even if we
further abandon security, more aggressive re-parameterization
does not allow us to fully exploit the nodes’ bandwidth,
because orphaned blocks do not contribute to the transaction
confirmation, yet still consume bandwidth to propagate [80].

Both cryptocurrencies are under high pressure to raise
their performance. Whether to stay at the conservative end

of the tradeoff is the most heavily debated topic in the Bitcoin
community in recent years [19], [89]. Ethereum’s daily average
transaction fee raises to 70 USD in May 2021 [70] due to its
high transaction confirmation demand.

B. Innovative Protocols: Into the Unknown

Inspired by the success of NC, a considerable number
of consensus protocols have emerged. These efforts can be
categorized into two groups: NC’s chain-based variants—
which adjust the backbone—and innovative protocols—which
abandon the backbone. Nevertheless, while the variants of NC
introduce new attack vectors where they modify the back-
bone [91], innovative protocols all lead to new and unsolved
challenges in their security, performance, or functionality. We
now briefly introduce the limitations of existing innovative
protocols, which are further divided into two approaches.

Proof-of-Possession Protocols. PoS (e.g., Algorand [36],
Ouroboros Praos [21], and Snow White [20]) and proof-of-
space (e.g., Spacemint [60]) protocols avoid the energy con-
sumption in NC by selecting participants to compose blocks
based on their possession of some scarce resources. Since
the resources are not consumed during the block generation,
extra security assumptions and protection mechanisms must
be in place to prevent attackers from constructing multiple
history versions. These systems usually rely on stronger-than-
NC synchrony and online assumptions, or even trusted parties
to checkpoint the blockchain, which lead to new attack vectors
if these assumptions are not met. As an example of the
protection mechanisms, Algorand demands that each block
be accompanied by a certificate comprised of hundreds of
digital signatures [36]. Broadcasting these signatures consumes
bandwidth that could be used to synchronize transactions.
More discussions on these limitations are in [4], [11].

BlockDAG Protocols. SPECTRE [78], Meshcash [5], PHAN-
TOM, GHOSTDAG [79], Prism [2], and Conflux [50] suggest
that, rather than referring to a single parent, a block contains
hashes to all blocks the miner has received satisfying certain
conditions. By confirming transactions with blocks not nec-
essarily in a chain, these protocols hope to achieve higher
throughput than chain-based protocols.

BlockDAG protocols’ actual throughput is yet to be quan-
tified, as it is difficult to model how much bandwidth is wasted
due to transactions embedded multiple times in simultaneous
blocks [49]. This duplicate-packing problem further compli-
cates the transaction fee distribution, whose mechanism is
omitted in PHANTOM, GHOSTDAG, Prism, and Conflux.
Moreover, Prism, with its three kinds of blocks, may also
introduce incentive issues in block reward distribution and new
attacks against its difficulty adjustment, whose mechanisms
are also omitted in its design. At last, as the global order
of transactions is not known when constructing a block,
transaction validity can only be evaluated after the neighboring
blockDAG topology is settled, resulting in a long confirmation
delay. Alternatively, SPECTRE abandons the global order, thus
it does not support smart contracts.

C. NC’s Backbone: a Promising Base

Despite the emergence of numerous alternatives, NC’s
backbone protocol still has a threefold advantage compared
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to its alternatives. First, it is built on only a minimum set of
security assumptions. Consequently, its security is carefully
scrutinized and well-understood [26], [29], [31], [32], [43],
[61], [75], [86]. Alternative protocols often open new attack
vectors, either unintentionally [42], [91] or by relying on
assumptions that are difficult to realize [65]. Second, coupling
the block producer election and transaction confirmation min-
imizes the consensus protocol’s communication overhead [1].
In contrast, alternative protocols often demand a non-negligible
communication overhead to certify that certain nodes have
witnessed a block or to transmit the same transactions multiple
times. Third, NC’s chain-based topology ensures that a trans-
action global order is determined at block generation, which
(1) minimizes the transaction verification and confirmation
latencies, and (2) supports all smart contract programming
models [12], [64].

Therefore, we argue that NC’s backbone still provides
one of the most promising bases for future protocol designs.
Nevertheless, NC’s security-performance tradeoff signals some
fundamental limitations in its design. As prior attempts trying
to break this tradeoff via modifying the backbone often in-
troduce new attacks, a natural question arises: is it possible to
break the tradeoff while keeping the backbone protocol intact?
To answer it, we first pinpoint the bottleneck in this tradeoff.

III. BOTTLENECK IN NC’S SECURITY-PERFORMANCE
TRADEOFF

NC’s security limits its performance as larger blocks and
shorter intervals—i.e., better performance—cause longer block
propagation latency and more frequent blocks, respectively;
both approaches raise the orphan rate, thus weakening security.
The Bitcoin developers are among the first to recognize the
importance of short block propagation latency. They, therefore,
introduced compact blocks (CB) in 2016 to reduce this latency.
However, with CB implemented, fresh transactions became the
obstacle to lowering the block interval and to raising the block
size. This section first introduces CB, and then elaborates on
how fresh transactions defer the block propagation and enable
a transaction withholding attack, followed by experiments that
confirm the identified bottleneck.

A. Compact Blocks

CB was proposed to reduce both the block propagation
bandwidth and the latency. Before it was enabled, most trans-
actions were transmitted twice to every node: first when it
was propagated, then with the block packing it. Observing this
repetitiveness, the Bitcoin developers suggested not transfer-
ring full transactions in a block by default, but to replace each
transaction, typically two to five hundred bytes, with a 48-
bit shortid. Such replacement compresses a 1 MB block into
around 13 KB [52], which is significantly faster to transfer.

We briefly overview the protocol here and refer interested
readers to [17] for the specification. With CB enabled, each
connection chooses among three different modes of block
propagation. We focus on the High Bandwidth (HB) mode
here, which is responsible for most blocks’ propagation. Each
node supporting CB enables the HB mode with the last three
peers that have sent blocks to the node. Whenever a new
block is available at an HB peer, the peer constructs a CB

by replacing each transaction with a shortid, and adding two
extra fields: (1) a connection-specific 64-bit random salt and
(2) a list of transactions for which the peer is certain that
the receiving node is not aware of them—just the coinbase
transaction in the current implementation. The second field
is called prefilled transactions. A shortid is computed as
siphash-2-4(txid,SHA-256(header||salt)), where siphash-2-4
and SHA-256 are two hash functions, txid is the transaction
hash, and header contains the block’s metadata. The CB is then
sent to the node. After receiving the CB, the node computes
shortids for transactions in its unconfirmed transaction pool,
matches them with those in the CB, and requests the missing
transactions. Once the node receives these transactions, it con-
structs and forwards relevant CBs to its other peers, and starts
verifying the newly-received transactions in the meantime.

CB is proven effective in Bitcoin. After it was enabled in
2017, on most occasions, a node receives a block with one CB
message, rather than the 1.5 round trip of announcing, request,
and reply. Bitcoin’s orphaned blocks dropped from roughly one
per day to a few blocks per year [9].

Thanks to CBs’ small size, their propagation latency is
independent of their sizes [19]. As the theoretical analysis on
the security-performance tradeoff is built on the correlation
between the block size and the propagation latency [80], CB
seems to break this tradeoff. Next, we show that this is not the
case.

B. Fresh Transactions and Transaction Withholding Attacks

Although effective in saving bandwidth, CB reduces the
block propagation latency only when the receiver has already
received all non-coinbase transactions. When some transac-
tions are new, the latency gain is negligible, as it still takes a
round trip to request them (Fig. 4). We call these transactions
fresh, as they are broadcast at most a few seconds before they
are mined in a block. As of 2020, most Bitcoin blocks have
no fresh transactions, thanks to the long block interval.

However, this optimistic situation may not be sustain-
able. As pointed out by Maxwell, a Bitcoin Core developer,
resourceful miners can raise their revenues by deliberately
packing transactions known only to themselves [52]. We term
this attack transaction withholding attacks. The slower block
propagation gives them more time to mine on their blocks
before other miners have received them, hoping to orphan
honest blocks mined during this period as they do not extend
the longest chain, thus constituting a de facto selfish mining
attack. As selfish mining’s profitability raises superlinearly
with the attacker’s mining power, more resourceful miners
have less incentive to accelerate their blocks’ propagation [29].
Transaction withholding attacks are stealthier than selfish min-
ing, thus are more likely to be deployed [52], as the latter can
usually be detected by a gap between the block’s timestamp
and its first announcement.

There is plausible evidence of this attack in the wild,
although miners may not attack consciously. Neudecker and
Hartenstein [57] observed that, of all the Bitcoin forks before
CB was activated, if a branch wins by two consecutive blocks
from the same miner, the interval between these two blocks
is often shorter than the different-miner case. The authors
suspected that “the block propagation delay gives the miner
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Fig. 2: The block preparation latency δprep is higher with fresh
transactions, i.e., nfresh > 0. The ends of a box are the 25th
and 75th percentiles of the data set; a horizontal line inside
the box marks the median. A few abnormal data points have
more-than-two-second latency, which are not displayed.

of the last block an advantage in finding the subsequent block,
until other miners have received the block.”

Even in the absence of attacks, fresh transactions are also
the crux in NC’s security-performance tradeoff. This is because
lowering the block interval or raising the block size both lead
to more fresh transactions, largely removing the latency gain.
Next, we confirm this bottleneck.

C. Confirming the Bottleneck

Fresh Transactions Affect the Block Propagation Latency.
We first study how the number of fresh transactions, denoted
as nfresh, affects the one-hop block propagation latency δ. The
multi-hop latency is studied in Sect. VI.

The one-hop latency is decomposed into two parts: δ =
δCB + δprep, where δCB denotes the CB transmission latency
from a node’s upstream peer to the node and δprep denotes the
block preparation latency, i.e., the time between the node’s
receiving a CB and forwarding CBs to its peers. As CBs are
small, δCB equals the latency between the upstream peer and
the node, typically 1 to 50 ms [25], as upstream peers are
usually a node’s most well-connected peers. The extra round
trip to request the missing transactions happens during δprep.

As δCB is relatively short and independent of nfresh, we
focus on the relation between nfresh and δprep. We modified the
Bitcoin client v0.17.1 to reject a fraction of new transactions
to increase nfresh when receiving a new block, and to log
nfresh and δprep for every block it receives. We deployed three
instances of the modified client on IP addresses 47.251.4.119,
47.244.165.26, and 8.208.203.101, located in the US, Hong
Kong, and the UK, respectively, and collected data from the
Bitcoin network between May 10th and May 18th, 2019.

As shown in Fig. 2, when there is no fresh transaction,
δprep is short and stable, typically around 100 ms. In this case,
the latency is the time to reconstruct the block from the CB
and to generate CBs for its peers. When nfresh > 0, even
if the number is small, the median of δprep raises to around
500 ms, due to the request-and-reply round trip. The latency
becomes even higher when there are more fresh transactions,
as larger messages take longer to transmit. The data variation
is smaller when nfresh > 501, as 78% of our data points have
nfresh ≤ 500.

The Fraction of Fresh Transactions Increases When the
Block Interval Decreases. Next, we study the relation between

Fig. 3: The percentage of fresh transactions in a block pfresh
increases when the block interval tin decreases.

the expected block interval, denoted as tin, and the fraction of
fresh transactions, denoted as pfresh.

We simulate the Bitcoin network with a higher transaction
processing workload of 100 TPS. Our simulation setting—
details on the network scale, latency, mining, and transaction
generation—will be described in Sect. VI-A. A miner packs up
to 100 TPS×tin transactions from its memory pool, prioritizing
those with the oldest timestamps, as the block. “Packing from
the oldest” results in a lower pfresh than in reality, where miners
pack from the highest fee-per-byte transaction. Each block’s
pfresh is averaged over all the receiving nodes.

The results in Fig. 3 show very few fresh transactions
in blocks when tin = 120 seconds, which is consistent
with Bitcoin and Litecoin’s current situation. However, pfresh
increases when the block interval decreases, especially when
it drops below the total transaction propagation latency.

We expect pfresh to be higher under the highest-fee-per-
byte (HFPB) transaction packing rule, because the newest
transactions, by definition, are least likely to be packed in the
oldest-first rule. Specifically, unlike the oldest-first rule, the
HFPB rule cannot ensure pfresh = 0 regardless of how large
tin is and how many pending transactions are in the pool, as
new transactions with the highest fees may appear anytime.

Combining these results, we conclude that, when reducing
the block interval, more fresh transactions appear in the blocks,
which prolong the block propagation. Previous studies [23],
[80] demonstrate that increasing the block size also raises this
latency as more transactions take longer to synchronize, which
is confirmed in Sect. VI. Longer block propagation latency
directly results in a higher orphan rate, harming security. Next,
we present our solution to this bottleneck.

IV. TWO-STEP CONFIRMATION

Fresh transactions invalidate the CB mechanism as they re-
couple the block propagation latency with the block size and
interval. If we can ensure that the block propagation latency
is short and block-size-independent, the security-performance
tradeoff is broken: we can shorten the block interval to the
lower limit permitted by the security demands, and raise the
block size until the throughput exhausts the nodes’ bandwidth,
which is already a hundreds-of-times performance gain com-
pared to Ethereum (cf. Sect. II-A). Moreover, there is no need
to modify NC’s backbone protocol.
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A naı̈ve approach is to recommend miners to wait for
a fixed amount of time after receiving a transaction before
packing it into a block. However, this approach leads to a
prisoner’s dilemma, where eventually all miners ignore the
recommendation. Specifically, rational miners may slightly re-
duce the waiting time to include fresh transactions with higher
fees, causing other miners to adopt more aggressive strategies
to compete for these transactions. Similarly, this approach
exacerbates the Miner Extractable Value problem, which is
considered a pressing threat to Ethereum [63], by extending
the “attack” window of non-compliant miners. Moreover, it
relies only on miners’ goodwill, thus offering no protection
against transaction withholding attacks.

The number of fresh transactions can be reduced by accel-
erating transaction propagation. However, such an approach
enables an attacker to learn the transaction sender by listening
to all public nodes [6], [48]. Therefore, Bitcoin slows down
its transaction propagation to protect the users’ privacy [6]. As
of 2020, it takes ≈ 5 seconds for a transaction to reach 50%
of nodes, but only 526 ms for a block [25].

Set reconciliation protocols, such as Erlay [54], cannot
reduce fresh transactions, as these protocols can only synchro-
nize transactions within a connection. If neither peer of the
connection has received a fresh transaction, they still need to
request and synchronize it after receiving the block.

Our solution is the two-step transaction confirmation mech-
anism, which introduces two adjustments to NC:

Prescribing a Transaction Proposal Step. A transaction
proposal zone is added to each block, containing txpids—
the first several bytes of transaction hashes—of some possibly
fresh transactions. We consider these transactions proposed
in this block. The set of full transactions in a block is
now called the transaction commitment zone. The proposed
transactions—unlike their txpids—are not part of the block,
therefore they do not affect the block’s validity: a block may
still be valid if some txpids refer to malformed or double-
spending transactions, or the miner refuses to provide the
full content of proposed transactions. The most important rule
about the proposal zone is that a transaction in the commitment
zone of a block with height h must be proposed in a main
chain block with height between h − wfar and h − wclose, a
range we termed the proposal window. This rule is illustrated
in Fig. 5 and formally defined in Sect. IV-A. The prescribed
wclose-block propose-commit distance does not lead to longer
transaction confirmation latency, as this two-step mechanism
enables shorter block intervals.

Modifying the Block Propagation Protocol. As proposed
transactions do not affect a block’s validity, a node forwards
the CBs—including the full proposal zone—to its downstream
peers as soon as it finishes reconstructing the commitment
zone, whose transactions are already synchronized after re-
ceiving the blocks in the proposal window. The request to the
node’s upstream peer for missing proposed transactions in the
latest block is sent in the meantime. Consequently, the round-
trip time of requesting the missing transactions is removed
from the critical path of block propagation, as shown in Fig. 4.
Malicious miners may still conduct transaction withholding
attacks by refusing to provide the full transactions they pro-
posed and then hoping to commit these secret transactions in

Upstream 
peer Node

Downstream 
peer

Upstream 
peer Node

Downstream 
peer

NC NC-Max

often
> 0.5 sec

Fig. 4: Block propagation in NC and NC-Max. “Transactions”
is abbreviated as “txs”. On most occasions, our protocol allows
nodes to forward CBs to their peers as soon as they received
them, as all committed transactions are already synchronized.

N B

hh-wcloseh-wfar

block B’s proposal window
time

parent

Fig. 5: Block B can only commit transactions proposed in its
proposal window. In this example, wclose = 2, wfar = 4.

the future; however, the success rate and the damage of this
attack are lower in NC-Max than in NC, as shown in Sect. V-D.

Next, we formally define the two steps and the block struc-
ture, and then introduce the new block propagation protocol
and our reward distribution mechanism.

A. Definitions

Definition 1 (Proposal id). A transaction’s proposal id txpid
is defined as the first ℓpid bits of the transaction hash txid.

A txpid does not need to be globally unique as the 32-
byte txid, as a txpid is used to identify a transaction among
several neighboring blocks. Since we embed txpids in both
blocks and CBs, sending only the truncated txids reduces the
bandwidth consumption. When multiple transactions share the
same txpids, all of them are considered proposed. Our block
propagation protocol ensures that a txpid collision slows down
only the first hop in the block’s propagation (R3 in Sect. IV-C).
In practice, we set ℓpid large enough so that finding a collision
is no easier than finding a block, e.g., ℓpid = 144 in Bitcoin,
rendering such attacks irrational.

Definition 2 (Transaction proposal). A transaction is proposed
at height hp if its txpid is in the proposal zones of the main
chain block with height hp.

The proposal zone facilitates transaction synchronization.
The proposed transactions’ validity does not affect the block’s
validity, thus cannot be used to fork the blockchain.

Definition 3 (Transaction commitment). A non-coinbase trans-
action is committed at height hc if all of the following
conditions are met: (1) it is proposed at height hp of the
same chain, where wclose ≤ hc − hp ≤ wfar; (2) it is in
the commitment zone of the main chain block with height
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hc; and (3) it is not in conflict with any previously-committed
transactions in the main chain. The coinbase transaction is
committed at height hc if it satisfies (2) and (3).

Unlike txpids in the proposal zone, committed transactions
must be valid. A transaction is considered embedded in the
blockchain when committed. Parameters wclose and wfar de-
fine the proposal window—the closest and farthest on-chain
distance between a transaction’s proposal and commitment, as
shown in Fig. 5. Enforcing a proposal window guarantees that
the “proposed transaction pool” fits in a node’s memory. We
suggest the proposal window w, defined as wfar −wclose + 1,
to be at least four to ensure liveness (Sect. V-C). Although
a longer window gives the miners more time to commit a
transaction, a shorter window offers stronger resistance against
transaction withholding attacks (Sect. V-D).

We require wclose be large enough with a lower bound of
two, so that wclose block intervals are long enough for newly-
proposed transactions to finish propagation, and as small as
possible to reduce the transaction confirmation latency. We
suggest two mechanisms to ensure a large enough wclose. First,
to dynamically adjust wclose based on the block propagation
information of recent epochs. For example, we can increase
wclose by one if the last epoch’s orphan rate is larger than a
predefined target, and reduce it by one if the last ten epochs’
orphan rates are all smaller than another predefined target.
Second, to fix wclose and dynamically adjust the block interval,
as discussed in Sect. VII-B. The relationship between wclose,
the expected block interval and the transaction processing
workload is empirically analyzed in Sect. VI-D.

B. Block and Compact Block Structure

Data Structure. A block includes the following fields:

header block metadata
commitment zone full transactions
proposal zone txpids

The header contains the Merkle root of the commitment
zone and that of the proposal zone, rather than just the Merkle
root of transactions in NC’s header. Similar to NC, a CB
replaces the commitment zone with the transactions’ shortids,
a salt, and a list of prefilled transactions. The header and the
proposal zone remain unchanged in the CB.

A block size limit is applied to the total size of the block, to
limit the data size to synchronize across the network along with
each PoW solution. The number of txpids in a proposal zone
also has a hard-coded upper bound. Two heuristic requirements
can help practitioners to choose the parameters. First, the upper
bound on the number of txpids in a proposal zone should be no
smaller than the maximum number of committed transactions,
so that this bound is not the protocol’s throughput bottleneck.
Second, ideally, a CB should be no bigger than 80 KB, as
“≤ 80 KB” messages have similar propagation latency in
the Bitcoin network in 2016 [19]; larger messages propagate
slower as the nodes’ bandwidth becomes the bottleneck. This
number changes as the network condition improves.

C. Block Propagation Protocol

In line with [3], [29], [39], [90], nodes should broadcast
all blocks with valid PoWs, including orphans. Valid PoWs

cannot be utilized to pollute the network, as constructing them
is energy-consuming.

On most occasions, NC-Max’s block propagation protocol
removes the round trip of fresh transactions, as illustrated in
Fig. 4, so that block propagation latency is constant regardless
of how many transactions are proposed; when the round trip
is inevitable, NC-Max ensures that it only lasts for one hop
in the propagation and the additional latency is limited. Note
that our modifications to the block propagation protocol do
not affect the blockchain’s convergence, which is guaranteed
by the backbone protocol. The block propagation protocol’s
pseudocode is in Alg. 1, which differs from that of NC’s in
the following three rules.

Algorithm 1 Our Block Propagation Protocol
procedure OnReceiveCompactBlock(CB , fromPeer )

1: freshCommitShortid = ∅, freshProposeTxpid = ∅
2: add CB .prefilledTx to memoryPool
3: for all shortid ∈ CB .commitmentZone do
4: if shortid.tx /∈ memoryPool then
5: add shortid to freshCommitShortid

6: if freshCommitShortid ̸= ∅ then
7: request freshCommitShortid .tx from fromPeer
8: start timer t
9: if t = timeOut and no reply then

10: turn off the HB mode with fromPeer
11: initiate the HB mode with another peer
12: return ▷ missing tx in the commitment zone
13: for all shortid ∈ CB .commitmentZone do
14: if shortid.tx /∈ CB .proposalWindow then
15: return invalid block ▷ commit without proposing first
16: Execute Line 17, 19 and 23 in parallel:
17: for all tx ∈ freshCommitShortid .tx do
18: verify tx ’s validity
19: for all toPeer do ▷ forward the CB
20: construct CB toPeer from CB
21: add freshCommitShortid .tx to CB toPeer .prefilledTx
22: send CB toPeer to toPeer
23: for all txpid ∈ CB .proposalZone do ▷ request new txs
24: if txpid.tx /∈ memoryPool then
25: add txpid to freshProposeTxpid

26: if freshProposeTxpid ̸= ∅ then
27: request freshProposeTxpid .tx from fromPeer
28: add the replied transactions to memoryPool

R1: non-blocking transaction query. As soon as the com-
mitment zone is reconstructed, a node forwards the CBs to its
downstream peers and queries the newly-proposed transactions
from its upstream peers simultaneously (Line 16 in Alg. 1).

The block propagation will not be affected by these trans-
action queries as long as they are answered before the next
wclose-th block is mined. Transactions are validated as soon
as their full content is received. The txpids and their block
heights are stored in the memory until they are no longer in
the proposal window, regardless of whether their corresponding
transactions are missing or invalid. This will not become a DoS
attack vector as the maximum sizes of the proposal window
and the proposal zone are hard-coded.

To prevent the attacker from launching memory exhaustion
attacks with large-sized transactions, an additional upper limit
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is prescribed on the total size of all newly-proposed transac-
tions in a proposal zone. Once this limit is reached, the node
(1) deletes all large-sized transactions that appear only in this
proposal zone from its memory pool, and (2) blacklists the
upstream peer that contributes the most to these large-sized
transactions. The threshold for tagging large-sized transactions
is not a consensus parameter, and thus can be set locally, as,
e.g., twice the average size of transactions confirmed in the
ten most recent blocks.

R2: missing transactions, now or never. If certain committed
transactions are unknown to a CB receiver, the receiver queries
the sender with a short timeout (Line 6 to Line 7). Failure to
send these transactions in time leads to the receiver turning off
the HB mode for the sender and turning on the HB mode for
the next fastest peer (Line 8 to Line 12). If the downgraded
sender was an outgoing connection, the receiver establishes a
new connection to a random node. Moreover, the incomplete
block will not be propagated further before receiving these
transactions from another peer. No punishment is prescribed
to upstream peers who do not respond to the queries on newly-
proposed transactions, as it is difficult to locate the responsible
parties for the delay.

Proposed-but-not-received transactions are committed ei-
ther (1) in a successful transaction withholding attack, or
(2) when wclose consecutive blocks are mined before the
transactions proposed in the first one are synchronized. If the
upstream peer is honest, as in (2), a short timeout is adequate
to transfer the missing transactions, as an honest upstream
peer must not send the CBs before receiving these transactions
(Line 16 is unreachable if Line 12 is executed). In the case
of (1), the attacker cannot delay the first hop of the block
propagation more than the timeout value without the block
being discarded. In practice, we set the timeout to be 3.5
seconds, which is adequate for the round trip in 95% of the
cases according to our measurement (Sect. III-C, Fig. 2).

R3: transaction push. If certain committed transactions are
previously unknown to a CB sender, they will be embedded
in the prefilled transaction list of the outgoing CBs (Line 19).

This rule removes the round trip if the sender and the
receiver share the same list of proposed-but-not-broadcast
transactions. In a transaction withholding attack or a txpid
collision, this rule ensures that the secret transactions are only
queried in the first hop of the block’s propagation, and then
pushed directly to the receivers in subsequent hops.

Memory Consumption and Computational Costs. In the
memory, each proposed transaction needs to be accompanied
by its txpid and the heights of the main chain blocks proposing
it. When each block contains 2500 txpids of 18 bytes each,
the block height is 4 bytes and the proposal window w = 10,
the extra memory consumption is 539 KB. The main computa-
tional cost, in addition to NC, is to verify whether a committed
transaction is in the proposal window after receiving a CB
(Line 14). We modify the full NC-Max client (Sect. VI-G)
with the larger parameters above and time this operation on a
laptop manufactured in 2015. This check never exceeds two
milliseconds per block.

D. Reward Allocation

A fixed block reward goes to every main chain block miner.
For each committed transaction, 70% of its transaction fee,
denoted as the commitment fee, goes to the main chain block
miner who commits it; while the other 30%, denoted as the
proposal fee, goes to the earliest main chain block miner who
proposes the transaction within the proposal window. This
fee allocation balances the miners’ incentives to earn higher
fees and to extend the longest chain. We describe how this
distribution is chosen in Appendix A, which is inspired by
that of Bitcoin-NG [28] with several subtle differences.

V. SECURITY ANALYSIS

Having introduced the core design, next, we analyze the
protocol’s security. A comprehensive security evaluation of a
blockchain consensus protocol involves analyzing its (1) back-
bone protocol, and (2) transaction ledger. These two aspects,
covered in Sect. V-B and Sect. V-C respectively, focus on
the worst-case values of some fundamental security properties,
which guarantee the blockchain’s smooth operation regardless
of the attacker’s goals and strategies. We show that NC-Max
inherits all properties of NC’s backbone, and only slightly
weakens its ledger liveness—it takes more blocks to confirm
a transaction with high confidence. Luckily, in practice, the
extended waiting time caused by the two-step mechanism is
canceled by the shortened block interval (Sect. VI-F). More-
over, the stronger resistance against transaction withholding
attacks (Sect. V-D) ensures that the worse cases in (1) and
(2)’s analyses happen less often.

A. Threat Model

NC’s security is formally analyzed by a long line of
research [24], [26], [31]–[33], [43], [45], [61], [72], [86].
Our threat model is identical to several recent studies [24],
[33], [72], which is more realistic than prior ones. We use
a continuous-time model, which is proven equivalent to the
discrete-time model [33]. We assume the total mining power
and the adversarial mining power share remain unchanged
throughout the attack. Non-adversarial mining power abides
by the protocol. In each time unit, e.g., one millisecond, the
probability that the total mining power can find a block is p.
Messages sent or forwarded by honest miners can be reordered
and delayed up to a fixed time duration ∆ by the attacker,
but cannot be discarded. The attacker receives messages with
zero propagation delay, and can arbitrarily withhold or delete
his own blocks. We do not consider the effect of transaction
fees [14], [51], [83], as it only makes up 1% of the miners’
rewards in Bitcoin [8]. As in all PoW consensus protocol
designs, neither do we consider network partitions, regardless
of whether they are caused by eclipse attacks [40], [55].
Partitions lead to long forks, during which NC’s safety is
violated [32], [72].

B. Analysis of the Backbone Protocol

As the first formal analysis against NC, Garay et al. [32]
separated NC into (1) its backbone protocol—including the
longest chain rule and the DAM—and (2) external rules. All
subsequent studies [24], [26], [31], [33], [43], [45], [61], [72],
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[86] follow the same separation. As NC-Max faithfully instan-
tiates the backbone protocol and only modifies the external
rules, we only need to show that, our modifications do not
violate the assumptions on these rules listed in [32].

Our modifications to the external rules are the content val-
idation predicate and the input contribution function in [32]’s
terminology. We define the modified rules here, which will be
used in our liveness proof (Sect. V-C):

• Content Validation Predicate. When receiving a chain
C as input, the predicate returns True if and only if (1)
the contents are consistent with the application imple-
mented on top of C, and (2) for any (committed, tx ) ∈
Blocki, there exists a (proposed, pid) ∈ Blockj such
that txpid(tx ) = pid and wclose ≤ i−j ≤ wfar, where
Blocki denotes the block with height i in C.

• Input Contribution Function. When constructing
a block, a miner embeds all proposed-but-not-
committed valid transactions in the proposal window
as committed, and all not-yet-committed and not-in-
the-proposal-window valid transactions as proposed.
If a block is mined, the miner outputs the block along
with the proposed transactions.

NC’s security proofs make only two assumptions on the
external rules, both of which are satisfied by NC-Max. First,
each block introduces enough entropy. This is satisfied by
all proof-of-work consensus protocols as the attacker, without
knowing the block miner’s private key, cannot predict the
coinbase transaction. Second, a block mined by an honest
miner is valid to the others. NC-Max meets this assumption
as the content validation predicate does not involve a miner’s
local information. In sum, NC-Max is an instantiation of NC’s
backbone, and thus is compatible with its future updates.

Another assumption in [32] regarding the DAM, that the
block propagation latency ∆ is significantly shorter than the
expected block interval, is made unnecessary by two recent
studies [24], [33]. Nevertheless, NC-Max meets this assump-
tion if we set the expected block interval larger than a few
seconds.

C. Ledger Persistence and Liveness

Next, we analyze the robustness of the transaction ledger,
specified as persistence and liveness properties in the literature.
The former measures the difficulty for the attacker to modify
the ledger; the latter measures the difficulty to postpone a
transaction’s confirmation, i.e., censorship resistance. We omit
the persistence proof as it only concerns the backbone protocol,
thus is identical to that of NC’s. The liveness proof, however,
is not the same, as we modify the content validation predicate
and the input contribution function.

General Form of NC’s Liveness Theorem. Existing liveness
theorems of NC [24], [31]–[33], [43], [61], [72] have the
following general form:

Theorem 1 (NC Liveness). In ΠNC, if (1) the adversarial
mining power share α < λ(1−α), and (2) a valid transaction
tx is given as input to all honest parties continuously for at
least uNC(∆, λ, p) time, then all honest parties will report

(committed, tx ) more than w(∆, λ, p) blocks from the end of
the ledger, with probability at least PNC

live = 1− e−Ω(ϵ(∆,λ,p)).

Where ΠNC denotes NC protocol, λ quantifies the honest
mining power’s advantage against the attacker’s, uNC(·), w(·),
and ϵ(·) are polynomial functions of ∆, λ, and p. Existing
results only differ in these polynomial functions.

We informally summarize the backbone protocol’s chain
growth, common prefix, and chain quality results, with nota-
tions corresponding to this theorem. The chain growth property
states that after T time, any honest chain grows by at least
T/(1/(1 − α)p + ∆) blocks [24], [33]; the common prefix
property states that for any two honest chains which may be
from different times, the shorter one, after pruning the last
w(∆, λ, p) blocks, is a prefix of the longer one; the chain
quality property guarantees that there is at least one honest
block in any w(∆, λ, p) consecutive blocks in an honest chain.

General Form of NC-Max’s Liveness Theorem. Now we
present the liveness theorems of NC-Max also in its general
form, so that any instantiation of uNC(·), w(·), and ϵ(·) is
directly applicable to NC-Max.

Theorem 2 (NC-Max Liveness). In ΠNC-Max, if (1) the
adversarial mining power share α < λ(1− α), (2) we set the
proposal window size w = w(∆, λ, p) (from Theorem 1), and
(3) a valid transaction tx is given as input to all honest parties
continuously for at least uMax = uNC(∆, λ, p)+wfar(

1
(1−α)p+

∆) time, then all honest parties will report (committed, tx )
more than w(∆, λ, p) blocks from the end of the ledger, with
probability at least PMax

live = (PNC
live)

2.

We stress the scope of applicability before presenting
the proof. Conditions (2) and (3) in Theorem 1 and 2,
respectively, highlight that the liveness property only concerns
honest transactions that are broadcast in conformity with the
protocol. In particular, these theorems provide no guarantee on
the transactions deliberately withheld by malicious parties. A
proposed txpid without a corresponding confirmed transaction
in the next wfar blocks does not disprove our theorem if the
full transaction is unavailable to honest parties.

Proof: Because NC-Max uses the same backbone protocol
with NC, we can invoke the chain growth, common prefix, and
chain quality properties directly. Invoking Theorem 1 on the
transaction proposal step, after uNC time, all honest parties will
report (proposed, pid) more than w blocks from the end of
the ledger. Assuming the smallest honest-chain growth during
this uNC time is w1 + w blocks and (proposed, pid) is the
i-th block among the first w1 blocks. In the remaining uMax−
uNC = wfar(

1
(1−α)p + ∆) time, invoking chain growth, any

honest chain grows by at least wfar blocks. Therefore, in total,
the smallest honest-chain growth is at least w1 + w + wfar

blocks. Consider the w-block sequence between block number
i + wclose and i + wfar for any honest party, invoking chain
quality, there is at least one honest block that would commit
tx . Invoking common prefix, all honest nodes share the same
first w1 +wfar blocks, which include the first i+wfar blocks.

Now we compute PMax
live . We invoke Theorem 1 with

success probability PNC
live. Note that “all honest parties have

the same first w1 blocks” is inherent in the security proofs of
Theorem 1. We then invoke chain growth, chain quality, and
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common prefix each once, with a combined success probability
PNC
live (see [32], [61]). Therefore the overall success probability

is (PNC
live)

2.

Note that this proof covers the case of txpid collisions.
Invoking Theorem 1 on the proposal step on one transaction
permits the honest parties to confirm all transactions with the
same txpid. The rest of the proof works independently for all
these transactions.

We gain the following insights from Theorem 2. First, the
adversarial mining power threshold of NC-Max is identical
to that of NC. In other words, if an attacker cannot censor
transactions in NC, neither can he censor transactions in NC-
Max. Second, NC-Max has a longer waiting time, measured
by blocks, compared to NC. In practice, the extended waiting
time is canceled by the shortened block interval. Third, the
proposal window size w should be long enough so that there
is at least one honest block in any w-block window. In [32],
w(∆, λ, p) must be no smaller than 4 so that no equation
degenerates. Although a larger w gives us larger PMax

live , a
smaller w helps NC-Max to resist better against transaction
withholding attacks, which are analyzed next.

D. Resistance Against Transaction Withholding attacks

Success Rate. We compare the fraction of attacker blocks—
blocks mined by the attacker—that can be slowed down in
NC and NC-Max, denoted as Fslow. We neglect the attack’s
outcome by assuming all the blocks are in the main chain.
This simplification does not affect the comparison: the more
attacker blocks delayed, the more honest blocks orphaned.

In NC, this attack can be performed with every attacker
block, namely FNC

slow = α. In NC-Max, a block’s propagation
can only be delayed if its commitment zone contains proposed-
but-not-broadcast transactions. To trigger this case, the attacker
needs two blocks not too far from each other in the chain: the
older one to propose these secret transactions, and the younger
one to commit. Namely, for every attacker block with height
h, it can commit secret transactions only if there is another
attacker block between h−wclose and h−wfar. The probability
that there is such a block is 1− (1−α)w. Therefore, FMax

slow =
α(1 − (1 − α)w). Clearly, FNC

slow > FMax
slow , namely, NC-Max

offers stronger resistance than NC.

Simulation. We simulate both protocols to demonstrate NC-
Max’s resistance against this attack in a more realistic setting.
Our simulation models how α, the proposal window size w, the
maximum attack-incurred latency, and orphaned blocks affect
the attacker’s unfair percentage of main chain blocks. The
results show that after incorporating these real-world factors,
NC-Max enjoys a greater advantage over NC than that in the
success rate analysis. The detailed model and our results are
in Appendix B.

VI. SIMULATION AND IMPLEMENTATION

In this section, we experimentally confirm that NC-Max
breaks the security-performance tradeoff and compare the per-
formance of NC-Max with existing designs. First, we measure
the block propagation latency and the orphan rate of NC
and NC-Max under several transaction processing workloads
and block intervals in an environment simulating the Bitcoin

network. The results show that NC-Max has a stable low
orphan rate independent of the throughput, therefore allowing
a shorter block interval with the same level of security. Then
we compare the throughput and the transaction confirmation
latency of NC-Max with NC and blockDAG protocols, which
also claim to exhaust the nodes’ bandwidth. The results
demonstrate that NC-Max enables the full utilization of the
nodes’ bandwidth, whereas all blockDAG protocols suffer from
the duplicate-packing problem. Furthermore, the transaction
confirmation latency is similar to that of Prism, a recent
blockDAG protocol featured by its short latency. At last, we
provide data from a real-world implementation and compare
them with several high-value proof-of-work projects.

A. Experimental Setup

The environment is written in Rust with 3k LOC. Each
node is implemented as a thread and nodes communicate
through Rust channels. Network latency is simulated with
the sleep function. A simulation is executed 40 times; each
instantiates a new network topology and generates 200 blocks.

Network. There are 6000 nodes, each establishing 8 random
outgoing connections. All connections have the same band-
width of 10 Mbps (1.25 MBps), which corresponds to a full
throughput of 2500 TPS with an average transaction size of
450 bytes. Such a low bandwidth allows us to reveal more
intricacies on the network layer: at 4000 TPS, transaction
verification becomes the throughput bottleneck [19].

The network latency between any two peers δa,b is sampled
from data collected by a public Bitcoin crawler maintained
by KIT [25]. The compact block (CB) transmission latency
δCB equals δa,b. Each time a node receives a CB, the block
preparation latency δprep is a function of nfresh and δa,b.
The δprep(·) function parameters, detailed in Appendix C, are
learned via maximum likelihood estimation (MLE) from the
data we collected from the Bitcoin network (Sect. III-C).

Mining. There are altogether 20 miners whose mining power
distribution follows Bitcoin’s on September 15, 2019 [81]. The
top five miners control 17.42%, 17.39%, 16.63%, 13.51%, and
8.65% of mining power, respectively. The PoW is replaced
with a scheduler that triggers block generation events at
intervals following an exponential distribution with tin as an
input. Orphaned blocks emerge if some blocks are mined
before the latest block is received by their miners. All but
one block of the same height would be orphaned. Whether the
winner is the earliest one does not matter in our evaluation as
we only care about the orphan rate.

Transaction Generation and Propagation. A fixed number
of transactions are generated per second, each from a random
node. Transactions are gossiped to the network from their
initiators, with a fixed one-hop latency of 3.59 seconds so that
the total propagation time—usually five hops—is similar to
those of Bitcoin’s 15 seconds [25]. A transaction is simulated
as a dummy message with an ID and a timestamp. Each node
maintains a memory pool of unconfirmed transactions up to
3000 MB; old transactions are dropped if it is full.

As a side note, although there are always enough transac-
tions to confirm in Bitcoin and Ethereum, it is non-trivial to
perform memory- or bandwidth-exhaustion attacks by flooding
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Fig. 6: Blocks propagate faster in NC-Max. Latency distribu-
tion is displayed as the kernel density estimation [85]; a wider
value indicates higher density. A white dot marks the median.

transactions in the networks, as when a node’s memory pool or
bandwidth is exhausted, it would stop propagating and delete
transactions with the lowest fee-per-byte (Bitcoin) and the
lowest gas price (Ethereum).

Transaction Packing and Data Collection. We consider three
transaction packing workloads: 100, 1000 and 2500 TPS, and
eight average block intervals tin: 1 to 5, 10, 20 and 40 seconds.
In the 100 TPS setting, 100 transactions are generated per
second; each block packs up to 100 TPS × tin transactions.
Other settings follow similar constraints. The 2500 TPS setting
exhausts the nodes’ bandwidth to synchronize transactions.
Note that the initial transaction propagation does not affect
the block propagation as blocks have priority in propagation
over transactions.

Accuracy. The emulated network differs from the Bitcoin
network in two ways: we prescribe (1) a uniform bandwidth
and (2) a stable network topology, which does not account for
heterogeneous node resources and the joining and leaving of
nodes. Yet NC’s block propagation latency and its distribu-
tion in our simulation match well with the Bitcoin network,
verifying the reasonableness of the environment. Specifically,
in Bitcoin, the average block propagation latency to 50% of
nodes is 526 ms as of 2020; it is 482 ms in our NC simulation
when tin = 600 seconds and 5 TPS.

Fig. 7: Orphan rates. NC-Max with large-enough wclose. Three
NC-Max curves largely overlap with each other.

26 21 17 13 10

Fig. 8: The orphan rate increases when wclose < wmin
close.

B. Block Propagation Latency

Figure 6 shows the time distribution for blocks to propagate
to 50% and 90% of nodes. We only display the 2500 TPS
setting and defer the 100 and 1000 TPS settings and the
detailed analysis to Appendix D.

In NC, due to the presence of fresh transactions, the median
block propagation latency is over two seconds in all settings.
Moreover, the latency grows along with the block size. In NC-
Max, when wclose is large enough, the latency is independent
of the block interval and the block size. The 50% block
propagation latency concentrates at two values: 450 ms and
520 ms, because sometimes it takes a block four hops to reach
the 50th percentile, sometimes it takes five. The 90% latency
is within 600 ms for 95% of blocks. In other words, NC-Max
achieves Bitcoin’s current block propagation latency [25] by
removing fresh transactions’ synchronization from the critical
path without demanding a long block interval as in Bitcoin.

C. Orphan Rate

An orphan rate here is computed as the number of orphaned
blocks, divided by the number of main chain blocks. As
displayed in Fig. 7, in NC, as the workload increases, the
orphan rate deteriorates, since larger blocks take longer to
propagate; whereas in NC-Max, the orphan rate is almost
independent of the workload. Consequently, NC-Max reduces
the block interval with the same orphan rate. For example,
when tin = 4, the orphan rate is 6% in NC-Max; whereas in
NC, the same orphan rate demands tin = 20 with 100 TPS,
tin = 40 with 1000 TPS, and tin > 40 with 2500 TPS.
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Fig. 9: NC-Max—in orange—outperforms other protocols in
throughput. The lines of NC—in blue—and other DAG (lower
bound)—in green—overlap except when tin = 40.

D. Minimum Propose-Commit Distance

NC-Max’s near-constant block propagation latency and low
orphan rate require that newly-committed transactions have
finished synchronization, which is ensured by the minimum
propose-commit distance wclose. The minimum wclose to guar-
antee performance, denoted as wmin

close, is a function of (1) tin,
(2) the block size limit S, and (3) the network condition Z ,
which encompasses the network’s topology, the joining and
leaving of nodes, and the nodes’ heterogeneous resources.

We find wmin
close(tin, S,Z) in our simulated environment by

simulating with ascending wclose values until the orphan rate
is stable. The wmin

close values we located and how the orphan
rate raises when wclose < wmin

close are in Fig. 8. For NC-Max,
100 TPS and all other omitted settings, wmin

close = 2. The orphan
rate is stable when wclose ≥ wmin

close; otherwise it is sensitive to
wclose even when tin is small: a change from 26 to 25 in the
tin = 1, 2500 TPS setting doubles the orphan rate.

In reality, finding a closed-form expression to compute
wmin

close may not be practical due to the dynamic nature of Z .
However, choosing wmin

close to be no smaller than those in our
simulation should be enough because our environment (with
10 Mbps throughput) is slower than the current network.

E. Throughput

Now we compare the throughput with NC and blockDAG
protocols. For each setting, we generate a sequence of block
generation events—a (blockTime, miner) array—targeting an
average main chain block interval in NC-Max, denoted tmain

in .
The general block interval tin, which also takes orphaned
blocks into account, is shorter than tmain

in . We then apply the
same (blockTime, miner) array to all other protocols of the
setting. Transactions are generated at 2500 TPS; a block packs
up to 2500 TPS × tmain

in transactions from the miner’s pool.

Modeling blockDAG Protocols. These protocols have no
prescribed transaction inclusion rules, except that blocks do
not include transactions in their predecessor blocks. For sim-
plicity, we only implement two extreme transaction inclusion
strategies to represent SPECTRE, Meshcash, PHANTOM,
GHOSTDAT, and Conflux: the lower bound and the upper
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Fig. 10: NC-Max achieves similar transaction confirmation
latency with Prism. The latency of Prism is simulated as lower
bounds as we simplify its block-ordering logic. Values over
500 seconds are omitted.

bound. In the former setting, miners pack from the oldest
transactions; in the latter, miners pack uniformly at random
from their pools. Transaction inclusion is different in Prism:
each transaction has a color, possibly determined by its txid;
all transactions in a transaction block are of the same color.
Each miner maintains, for each color, a queue of unconfirmed
transactions, and simultaneously mines on all queues. We
simulate Prism with two, four, and six colors.

Results. NC-Max reaches at least 2498 TPS, outperforming
all other protocols (Fig. 9). When tmain

in decreases, especially
when the block interval is often shorter than the block propa-
gation latency, blockDAG protocols cannot exhaust the nodes’
throughput due to the duplicate-packing problem. Specifically,
some transactions are included multiple times in competing
blocks, wasting the processing capacity. Here we slightly abuse
the term competing blocks to denote a group of blocks with
no predecessor relation among them. Smaller tmain

in leads to
more competing blocks, thus more processing power wasted.
Other DAG (upper bound) performs only slightly worse than
NC-Max. Other DAG (lower bound) has almost the same
throughput as NC, because when miners pack from the oldest
transactions, competing blocks contain almost the same set
of transactions. In reality, the throughput of a blockDAG
protocol should be between the lower and the upper bounds:
to maximize their fees, miners prefer transactions with higher
fees but randomize their selection to decrease the overlap with
competing blocks [49]. Prism’s mitigation of the duplicate-
packing problem is more effective with more colors. However,
more colors lead to longer transaction confirmation latency, as
demonstrated in the next simulation.

Our results do not contradict blockDAG protocols’ claims
that they can exhaust the nodes’ bandwidth. To achieve this
goal, these protocols demand higher block frequency than ours.

F. Transaction Confirmation Latency

Simulating Prism. DAG protocols usually involve compli-
cated transaction confirmation rules, therefore we only im-
plement a part of the transaction confirmation procedure of
Prism to show that NC-Max achieves similar latency. We
measure NC-Max’s latency as wmin

close + 6 main chain block
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TABLE I: Six-block transaction confirmation latency Tconf of
NC and NC-Max with the same orphan rate o and the same
transaction processing workload. All data are in seconds.

100 TPS 1000 TPS 2500 TPS

o tMax
in TMax

conf TNC
conf TMax

conf TNC
conf TMax

conf TNC
conf

19% 1 8 30 17 60 32 156
11% 2 16 60 30 132 54 228
8% 3 24 90 39 180 69 264
6% 4 32 120 44 210 76 300
5% 5 40 132 50 228 80 312

2.5% 10 80 246 80 384 110 726
1% 20 160 480 160 780 180 960

0.5% 40 320 708 320 1044 320 1272

intervals after the transaction is broadcast: the first block to
propose it, the (wmin

close + 1)-th block to commit it, and the last
five to settle it. In Prism, a transaction is confirmed in three
steps: (1) a transaction block of the same color to embed it,
which may take several block intervals; (2) a proposer block
whose miner has received this transaction block to propose
the latter; (3) several voter blocks to vote for this proposer
block. Unlike NC-Max, there is no need for these blocks to
be in the main chain in Prism. We consider a transaction
settled when the sixth voter block is mined, regardless of
the voter blocks’ referring relationships. This simplification
underestimates Prism’s confirmation time, thus is in favor of
Prism. We assume the same average block interval for each of
the three kinds of blocks in Prism and blocks in NC-Max.

Comparison with Prism. Two Prism instances and NC-Max
achieve similar latency (Fig. 10). The median latencies of
Prism range from 50% to 90% of those of NC-Max when
tin < 5, as all blocks in Prism contribute to transaction
confirmation regardless of whether they are in the main chain.
NC-Max outperforms them as tin grows, because (1) orphaned
blocks diminish, and (2) there is no need to wait for a same-
color transaction block. Moreover, the latency advantage of
Prism, 2 colors comes at the price of lower throughput. Prism,
6 colors suffers from long worst-case confirmation latency—
two to three times that of NC-Max, as it takes longer before
a transaction meets a same-color block. As an additional
observation, blocks propagate faster are confirmed sooner in
blockDAG protocols; whereas NC-Max confirms transactions
at roughly even latency, providing more stable user experience.

Comparison with NC. We compare the average transaction
confirmation latency of NC and NC-Max, denoted TNC

conf and
TMax
conf respectively, when anchoring the same orphan rate

and the same transaction confirmation workload. We compute
TMax
conf as (wmin

close + 6)tMax
in , where the expected block interval

tMax
in and its corresponding orphan rate are from our orphan

rate simulations (Sect. VI-C), and wmin
close is from Sect. VI-D.

Estimating TNC
conf is more challenging. To achieve the same

orphan rate, NC’s expected block interval tNC
in needs to be

larger than tMax
in . Given a transaction processing workload, we

use a binary search to locate the tNC
in , in whole seconds, whose

corresponding orphan rate is closest to the target. Specifically,

we narrow down the searching region by simulating with tNC
in

at the region midpoint, and then compare the orphan rate with
the target until the searching region is less than a second. At
last we compute TNC

conf = 6tNC
in .

The results are displayed in Table I. NC-Max speeds up
the transaction confirmation from 3.0 to 6.6 times, with an
average speedup of 4.1 times.

G. Implementation and Comparison with Other Projects

NC-Max is implemented in Nervos CKB, a public per-
missionless blockchain launched in Nov. 16, 2019, and has
operated smoothly since then. Nervos CKB uses a dedicated
hash function Eaglesong [82] as its mining puzzle.

The protocol parameters are instantiated as follows. The
maximum block size is 597 KB, which translates to around
1000 two-input-two-output committed transactions and a pro-
posal zone of at most 1500 txpids. The minimum and maxi-
mum propose-commit distances, i.e., wclose and wfar, are set
to two and ten, respectively, so that unconfirmed transactions
in the proposal window consume only a few dozen megabytes
of memory. The target epoch duration Lideal = 4 hours. We
designed a dynamic DAM that adjusts the expected block
interval based on the orphan rate. The lower and upper
bounds on the expected block interval are 8 and 48 seconds,
respectively. Other details of our DAM can be found in [88].

The effectiveness of the two-step mechanism can be testi-
fied by the low orphan rate. In its first two years, Nervos CKB
achieved a 2.5% long-term average orphan rate with a 10.5-
second average block interval. During this period, the network
hash rate has grown from 7.35×1013 to 9.25×1016 hashes per
second. As of November 2021, the network processes 20 to
30 thousand transactions per day. An in-depth analysis of the
block propagation requires a well-connected network monitor,
which we leave for future work.

A comparison between Nervos CKB and several NC-based
projects with high market capitalization is in Table II. We did
not manage to find the orphan rates of Dogecoin and Bitcoin
Cash, although their market capitalizations are higher than
Monero’s. Neither did we find the global orphan rate regarding
Ethereum Classic and Monero, so we instead use the statistics
provided by their mining pools. This comparison is not entirely
fair as these systems differ in block propagation protocols and
transaction processing workloads. However, the results still
demonstrate the effectiveness of the two-step mechanism as
other systems’ orphan rates do not deviate far from our NC
simulation. Only Litecoin and Nervos CKB outperform our
NC simulation by more than four times.

VII. DISCUSSION

A. Generalizability

Applicability of the Bottleneck. The network-layer bottleneck
identified in this study is not unique to NC: a similar but
stealthier mechanism resides in blockDAG protocols. We will
analyze how transaction synchronization affects the security
and performance of these protocols in future works.

Applicability of the Solution. The two-step mechanism ap-
plies not only to PoW protocols, but also to all blockchain
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TABLE II: Comparison with other NC-based projects. Mea-
sured periods end on July 22nd, 2021. Orphan rates are denoted
oreal. We simulated NC’s orphan rate with their tin. The results
are denoted oNC

sim(tin).

Project tin (s) oreal oNC
sim(tin) Span Data

Nervos CKB 10.5 2.5% 10.5% 2 year [56]
Ethereum 13 9.1% 8.7% 6 year [69], [71]

Ethereum Classic 14 3.6% 8.2% 1 day [68]
Monero 120 1.1% 0.5% 7 year [37]
Litecoin 150 0.03% 0.3% 10 mon [66]

designs with uneven block intervals, including proof-of-space
protocol Chia [15], proof-of-elapsed-time protocol Hyper-
ledger Sawtooth [41], and PoS protocol PoSAT [22].

Pipelining vs. Concurrency. There is an emerging awareness
in blockchain designs towards parallel block processing to
exhaust the nodes’ bandwidth. While parallel processing is
mostly through concurrency as in blockDAG protocols, we
highlight the potential of pipelining. Compared to concurrency
protocols, which often involve duplicate transaction pack-
ing [49] and complicated algorithms to order blocks [50],
[78], [79], a pipelining protocol, such as NC-Max, enjoys the
advantage of simplicity, which leads to stronger security and
functionality. Admittedly, pipelining protocols, including the
recent BFT protocol Hotstuff [87], mandate an additional la-
tency. In NC-Max, however, this propose-commit distance is to
ensure that most nodes have received the transactions, which is
necessary for all blockchains—including blockDAGs—before
the transactions are considered confirmed. Explicitly mandat-
ing this latency strengthens the security, as demonstrated in
our analysis of transaction withholding attacks.

In sum, as our pipelining approach already enables the full
utilization of the nodes’ bandwidth, we avoid introducing more
complex rules—which often lead to more attack vectors and
more limitations on functionality—to the protocol. We hope
that this incremental approach allows us to accumulate NC’s
security merits, rather than abandoning them.

B. Limitations and Further Extensions

Remaining Performance Limit. While the block size limit
can increase until the throughput exhausts most nodes’ band-
width, our protocol does not support arbitrarily low block inter-
vals as it would lead to too high an orphan rate. For example,
the orphan rate may undesirably exceed 10% and discourage
some miners when tin is one or two seconds. Accordingly,
although NC-Max reduces the transaction confirmation latency
of NC, a lower bound remains on this latency. Also, the
correlation between the transaction processing workload and
the confirmation latency remains, as transactions propagate
slower when the nodes’ bandwidth is exhausted.

The leading cause of orphaned blocks in NC-Max is the
random nature of the mining process. Specifically, as block
intervals follow an exponential distribution, it is impossible
to enforce a lower bound on all of them. One approach to
modify the distribution is to combine the current reversing-a-
hash-function puzzle with a verifiable delay function [10].

Dynamic Difficulty Adjustment. It is impractical to prescribe
one set of parameters to fit changing network conditions.
According to Fig. 8, when wclose = 4, the system achieves
a lower orphan rate at tin = 5 seconds under 1000 TPS
workload than tin = 10 seconds under 2500 TPS. In other
words, to ensure a consistent level of security—measured as
the orphan rate, mandating tin = 10 seconds is too aggressive,
i.e., too short, when the network is busy, but too conservative
otherwise. Therefore in Nervos CKB we also introduce a
dynamic DAM to balance its security and performance under
real-time network conditions. The main idea is to adjust
the block interval based on the orphan rate of the previous
epoch. Previous dynamic DAMs [13], [77] can only signal the
adjusting direction—towards a longer or shorter interval. In
contrast, our DAM pinpoints the accurate expected interval
matching the network condition through delicate modeling
to explore the throughput limit without the possibly time-
consuming trial and error.

We provide the high-level idea of our DAM here but leave
the detailed design to [88] as it is not the focus of this paper.
To maximize compatibility and attack resistance, our DAM
inherits four constraints from NC:

C1. All epochs have the same target duration Lideal.

C2. The maximum block reward issued in an epoch R(i)
depends only on the epoch number i so that the rewards are
distributed at a predetermined rate. In other words, the attacker
cannot manipulate the inflation rate.

C3. The hash rate estimation of the last epoch does not change
too fast, to prevent attackers from manipulating the DAM and
forging a blockchain [3], even if some miners’ network is
temporarily controlled by the attacker.

C4. The expected block interval should abide by predetermined
upper and lower bounds. The upper bound guarantees service
availability; the lower bound guarantees that NC-Max does not
generate more traffic than most nodes’ capacity, thus ensuring
decentralization.

To explore the performance limit, our DAM targets a
fixed orphan rate oideal, rather than a fixed block interval as
in NC. The number of orphaned blocks is available to the
DAM as we require miners to attach these PoW solutions to
their blocks. As our two-step confirmation ensures a relatively
stable block propagation process, we can solve the expected
block interval that matches the target orphan rate with the
last epoch’s duration, orphan rate, and the main chain block
number. As the target epoch duration is fixed (C1), we can
solve the next epoch’s main chain block number, block reward,
and difficulty target after applying several dampening factors
and upper/lower bounds to safeguard C2, C3, and C4. Note
that our DAM does not depend on the two-step mechanism,
thus can be implemented independently.

VIII. RELATED WORK

We omit alternative designs introduced in Sect. II-B and
refer readers to Bano et al. [4] for these non-PoW and hybrid
consensus protocols. Neither do we include off-chain [38] and
sharding [84] protocols, where not all transactions are syn-
chronized by all nodes. These protocols are compatible with
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NC-Max, and therefore can further increase the throughput.
NC-Max draws wisdom from two lines of works:

Decoupled Consensus. Bitcoin-NG by Eyal et al. [28] de-
couples NC’s leader election and transaction serialization,
allowing the nodes’ full bandwidth to be utilized. Unlike NC-
Max, which shortens NC’s transaction confirmation latency,
this latency remains the same in Bitcoin-NG as in NC.

Block Propagation Acceleration Techniques. The FIBRE
network maintained by Corallo [18] deploys several high-speed
nodes across the globe to help miners synchronize blocks the
moment they are found. Bloxroute by Klarman et al. [46] is a
network design that deploys high-speed nodes that start to relay
blocks before receiving the full content. Both approaches are
centrally coordinated. Although centralized systems can further
accelerate block propagation, the P2P acceleration techniques,
including the one we proposed, serve as safety nets that are
immune to single points of failure.

IX. CONCLUSION

While the current scholarly and engineering efforts to
improve blockchains’ performance concentrate on designing
innovative consensus protocols, we alternatively highlight the
importance of the network layer in the issue. By optimizing
NC’s block propagation mechanism on both the consensus and
the network layer with a two-step mechanism, we break the
throughput limit of NC without compromising security. We
believe such an “incremental” approach, though not necessarily
in line with the blockchain industry’s eagerness for “revo-
lutionary breakthroughs”, is meaningful and inspirational. It
reveals the significance of a long-overlooked aspect of protocol
design—the network layer, and even more importantly, pre-
serves the value and allows an easy transfer of our knowledge
around NC—the knowledge that we, as scholars and engineers,
collectively accumulated through the last decade.
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APPENDIX A
TRANSACTION FEE ALLOCATION

Let rp be the ratio of proposal fee and α be the strategic
miner’s mining power share. We want a fee distribution that (1)
it is more profitable for the miner to propose a transaction in
his block and to publish this block, rather than to withhold the

block and to mine selfishly, hoping to gain both the proposal
and the commitment fees; (2) at the end of a proposal window,
it is more profitable to commit a transaction than to propose it
again and hope to get both the proposal and the commitment
fees.

From (1) we have

rp + α(1− rp) > αwclose + (1− αwclose)α(1− rp) ,

where the left rp+α(1− rp) is the proposal fee and potential
commitment fee for honest mining; the first αwclose on the right
is the expected fees of mining wclose consecutive secret blocks
(with probability αwclose ) after the transaction-proposing block,
so that the miner gets both the proposal and the commitment
fees (with a total fee of 1); (1 − αwclose)α(1 − rp) is the
expected commitment fee if the selfish mining attempt failed
(with probability 1 − αwclose ), but the miner mines another
block (with probability α) and gets the commitment fee
(1 − rp). Note that we did not take into consideration of
the selfish miner’s loss of block rewards, which is in the
attacker’s favor. By assuming wclose = 2 and α < 0.5, we get
rp > 0.143. NC-Max is more resilient than Bitcoin-NG against
this attack, whose corresponding threshold is 37%, thanks to
the mandatory proposal-commitment gap.

From (2) we have

1− rp > rp + α(1− rp) ,

where the left 1 − rp is the commitment fee, the first rp on
the right is the proposal fee, α(1 − rp) is the expected profit
of the miner gets to commit the transaction (with probability
α) and earns the commitment fee. By assuming α < 0.5, we
get rp < 0.333. NC-Max’s resilience to this attack is identical
to that of Bitcoin-NG. We choose a stronger attacker, which
results in a lower threshold.

Therefore, we choose rp = 0.3, which satisfies both
requirements.

APPENDIX B
TRANSACTION WITHHOLDING ATTACK SIMULATIONS

Our simulation supports attackers with arbitrary mining
power share α and arbitrary success rate of winning a tie,
denoted as γ. To simplify the demonstration, we assume a
strong attacker with α = 0.4, who also wins all the ties—
i.e., γ = 1, by immediately pushing his blocks to all the nodes
after the competing blocks are mined. We omit natural orphans
and assume that honest blocks are propagated immediately
after they are mined, but not before the competing attacker
block if there is one. The block interval follows an exponential
distribution with expectation tin as an input.

In both protocols, every “delayable” attacker block is
delayed up to tdelay, during which the first honest block,
if there is one, is orphaned. The attacker only delays the
last block if he mines several blocks in a row. In NC, all
attacker blocks are delayable. In NC-Max, the attacker delays
his latest block only if there is another attacker block in the
proposal window. The NC-Max simulation has an additional
parameter w = wfar −wclose +1. For every set of parameters,
our simulation generates a chain of two million blocks and
computes ρ, the proportion of main chain blocks mined by the
attacker.
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Fig. 11: NC-Max resists better against transaction withholding
attacks than NC. The proposal window size w = wfar−wclose+
1; “delay” denotes tdelay, the maximum time an attacker can
delay the propagation of its blocks.

The results are displayed in Fig. 11. With the same tdelay,
when w = 1 and 2, NC-Max reduces the damage ρ − α by
roughly a half and a third, respectively. Although we compute
the results where tdelay = 2 and 5 seconds for both protocols,
in reality, tdelay is shorter in NC-Max than in NC, thanks to
R2 and R3 introduced in Sect. IV-C.

APPENDIX C
BLOCK PREPARATION LATENCY ESTIMATION

Each time a node receives a CB, the block preparation
latency δprep is a function of nfresh:

δprep =


max{n1, 0}, nfresh = 0

max{1.33233× 10−4nfresh

+ 0.544959 + n2,
δa,b + 3.6× 10−4nfresh}, nfresh > 0

. (1)

Equation (1) is chosen based on our understanding of
the block propagation. When nfresh = 0, there is no
round trip to query the fresh transactions, therefore we
use n1 ∼ N (0.101102, 0.04317022) to estimate the local-
message-processing time, lower bounded with 0. The param-
eters of the Gaussian distribution are learned via maximum
likelihood estimation (MLE) from the data we collected from
the Bitcoin network (Sect. III-C). We chose Gaussian distribu-
tion for its simplicity. When nfresh > 0, the best-case latency
is the sum of the network latency δa,b and the latency incurred
by the bandwidth constraint 3.6× 10−4nfresh, assuming each
transaction is 450 bytes and the bandwidth is 1.25 MBps.
In reality, the best case rarely happens; thus to model the
randomness of the reality, we use n2 ∼ N (0, 0.4202092) to
encompass the local-message-processing and network latency,
adding 1.33233 × 10−4nfresh to so that the average latency
grows linearly with the number of transactions. These param-
eters are also learned via our measured data in Sect. III-C.
Parameters n1, n2, δa,b, and δprep are in the unit of one
second. We choose not to sample from the measurement data
directly because those data miss certain nfresh values. This
equation also applies to NC-Max for querying transactions in
the proposal zone. In both NC and NC-Max, the propagation
of CBs is not affected by synchronizing fresh transactions; for
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Fig. 12: Blocks propagate faster in NC-Max than in NC.

each node, different blocks’ δprep do not overlap each other
to avoid violating the bandwidth constraint.

APPENDIX D
BLOCK PROPAGATION LATENCY

Figure 12 shows the time distribution for blocks to prop-
agate to 50% and 90% of nodes in the 100 and 1000 TPS
setting in NC. We omit the NC-Max figures as they are almost
identical to Fig. 6b.

In the NC, tin = 40, 100 TPS setting, 50% of blocks
contain no fresh transaction, which finish propagation within
600 ms; the other 50% take more than two seconds to
finish propagation. These results match well with Bitcoin’s
current situation: when tin = 600, most blocks’ propagation
delay is within 600 ms, with a few exceptions over two
seconds [25]. When tin decreases, fewer and fewer blocks
contain no fresh transaction. Also as tin decreases, blocks
with fresh transactions propagate slightly faster, because the
block size decreases along with tin in a fixed-TPS setting.
However, the speedup is not proportional to the block size,
especially in the worst case, as a smaller tin also means a
higher fraction of fresh transactions. At last, blocks propagate
slower as the workload increases, since the bandwidth, rather
than the latency, becomes the bottleneck.
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