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Abstract—We present ScriptChecker, a novel browser-based
framework to effectively and efficiently restrict third-party script
execution according to the host web page’s directives. Different
from all existing schemes functioning at the JavaScript layer,
ScriptChecker holistically harnesses context separation and the
browser’s security monitors to enforce on-demand access con-
trols upon tasks executing untrusted code. The host page can
flexibly assign resource-access capabilities to tasks upon their
creation. Reaping the benefits of the task capability approach,
ScriptChecker outperforms existing techniques in security, us-
ability and performance. We have implemented a prototype of
ScriptChecker on Chrome and rigorously evaluated its security
against 1373 malicious scripts and its usability with empirical
studies upon top-1000 sites. The experimental results show that its
strong security strength and ease-of-use are attained at the cost of
unnoticeable performance loss. It incurs about (.2 microseconds
overhead to mediate a DOM access, and 5% delay when loading
popular JS graphics and utility libraries.

I. INTRODUCTION

Third-party scripts provide ready-to-use functions for spe-
cialized utilities (e.g., jQuery [15] and CryptodsS [13])
and Web feature enrichment (e.g., Yahoo Partner Ads [19]
for advertisement and userreport [18] for user tracking).
According to Nikiforakis et al. [44], 88.45% of web sites
include at least one third-party script. They are greatly attrac-
tive to web page developers thanks to the remarkable saving
in implementation. However, it has been known for years
that invoking a third-party script function potentially invites
unintended or even malicious code execution with the full
privileges to access all resources [44], [37], [36], [33], [53].

The third-party script security problem is challenging for
two reasons. First, a host script and a third-party script are co-
located in the same host frame and therefore have the same ori-
gin and frame identity. Thus, frame oriented or origin oriented
policies and mechanisms, e.g., the same-origin policy [16],
iframe isolation [6], the feature-policy header [20], and CSP
[11], are unable to differentiate and handle them separately.
It is hence necessary for a solution to draw the boundary
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within a frame between the host script and the third-party
script. Second, there is no single policy to uniformly govern all
third-party scripts for all websites. It is the host page, not the
browser, that is entitled to decide what resources are accessible
to a third-party script and what are not. Moreover, a script
needs different permissions for different functionalities. Thus,
a desirable third-party script restriction scheme should allow
the host to dynamically specify the security demand.

Earlier work [42], [52] hooks function calls to third-party
code and uses filters to decide whether the requested invocation
is allowed. More recent work isolates the script with special-
ized contexts [50], [43], [34], [29] or JS scope [23], [51], [2]. A
reference across the isolation boundary is trapped and checked
by security functions to block harmful references. The idea
underpinning both approaches is to have a JavaScript layer
reference monitor intervening in the untrusted execution and
then granting or denying object references properly. Centering
on JS code, existing schemes face limitations in performance,
usability and more notably security. We briefly explain their
security drawbacks below with an elaboration in Section II.

Security of existing schemes is undermined by two issues.
In order to attain watertight security, they require security
checks on each and all JS APIs/objects relevant to concerned
resources. Although theoretically feasible, the requirement is
highly demanding for developers. An unattended API can
be used by the adversary to bypass the restriction. Hence,
the schemes are error-prone in practice. Moreover, to detect
malicious accesses only at the juncture of JS object referencing
results in false negatives, i.e., security breaches such as cookie
leakage. A seemingly innocuous JS function call from a third-
party script function may turn out to be a Confused Deputy
Attack [31], because the malicious caller can influence (or
even manipulate) the subsequent control/data flow of the callee
function.

In this paper, we propose ScriptChecker, a novel browser-
based discretionary access control framework targeting third-
party scripts. At the core of ScriptChecker is that a host
script invokes third-party script code in a separate unit for
execution scheduling' and properly assigns it with a capability
in the form of a permission set. The browser’s security
monitor treats these tasks as subjects and allows/denies their

1n Chrome, it is called a task which is the most primitive unit for
scheduling [10].



resource accesses according to their attached capabilities. Since
capability enforcement is undertaken by the browser instead of
the JS engine, ScriptChecker incurs insignificant performance
loss and has the built-in immunity against the confused deputy
attack. Web developers only need to articulate their security
policies concerning the host’s sensitive resources, with the
flexibility to dynamically assign permissions. They are relieved
from the burden of meticulously going through each relevant
JS APIL. The host-policy-browser-enforcement paradigm used
in ScriptChecker resembles CSP. However, CSP policies are
static while the host using ScriptChecker can dynamically
set policies. Moreover, CSP policies are against scripts while
policies in ScriptChecker are against tasks.

We have implemented ScriptChecker in Chromium with
case studies explaining how to dynamically specify permis-
sions for different runtime needs. We test ScriptChecker
against 1373 malicious scripts in a dataset. It successfully
blocks all illegal accesses including those from event listeners.
Our empirical study on Alexa top-1000 websites reveals how
real-life third-party scripts access host resources and whether
they are broken by ScriptChecker with a conservative policy.
The performance benchmark experiment reports 2 us overhead
(about 9%) in one DOM object access from a third-party script
execution. In average, Chrome retrofitted with ScriptChecker
drops around 0.3% in JS performance and sees 5% delay in
average when loading popular JS graphics and utility libraries.

ORGANIZATION. Section II further sheds light on the prob-
lem to explain limitations of existing techniques. Section III
overviews the design of ScriptChecker. The three key com-
ponents of ScriptChecker are elaborated in Section IV, V
and VI, respectively. Section VII describes the prototype
implementation and case studies. We evaluate its performance
in Section VIII and make a detailed comparison with existing
work in Section IX. Finally, we discuss several issues in
Section X and conclude this paper in Section XI.

II. THE PROBLEM IN CLOSE-UP
A. Limitation of Default Policy Enforcement in Chrome

In Chrome’s multi-process architecture [9], [25], the ren-
derer process parses web documents, interprets JavaScript
and renders web content using multiple threads. Except the
Web Worker [21], all JavaScript code are executed in its
main thread. The main thread schedules tasks [10] following
FIFO to accomplish designated work. The kernel process
is responsible for providing system services to the renderer
processes, including networking, IPC, and disk-resident data
such as cookies and bookmarks [25].

Like other popular browsers, Chrome has security mon-
itors [25], [35] safeguarding critical and sensitive resources
against all scripts. Residing in the renderer process, the local
security monitor enforces system-wide policies such as Same
Origin Policy (SOP) [16], Cross-Origin Resource Sharing
(CORS) [12] and Content Security Policy (CSP) [11] when
DOM objects, JS objects and network responses are accessed.
The kernel security monitor resides in the kernel process
and mediates accesses to system resources such as cookies,
bookmarks and sensors.

These origin- and frame-based policies as well as their
enforcement are ill-suited for third-party restriction. Firstly,

there is no one-size-for-all policy governing all websites’ third-
party scripts. For instance, one website may use a third-party
script to evaluate the strength of user passwords while most
sites would view such password accesses are intrusive. Hence,
it is more desirable for the host pages to define the desired
restrictions, instead of a universal policy mandatorily enforced.
Secondly, the access control framework in Chrome considers
the scripts accessing resources as subjects. It is thus susceptible
to the confused deputy attack. Moreover, since third-party
scripts and host scripts are co-located in the same frame, the
security monitors do not have sufficient contextual information
to differentiate them based on their origins or frame identities.

However, we observe that the ultimate objective of third-
script execution restriction is to prevent their resource misuses,
which is congruent to the goal of SOP and frame-based
policies. By design, the security monitors have the ability to
mediate resource accesses from all scripts including third-party
scripts. Its working is independent of the JavaScript APIs.
Thus, the security monitor provides stronger security and better
performance than JS layer solutions.

B. Existing Approaches Against Third-Party Scripts

By and large, two approaches are used for third-party script
restriction, both functioning at the JavaScript layer. The first,
termed the function filter approach in this paper, is to hook
each security-critical function with a special filter called the
advice function in ConScript [42] and WeblJail [52]. As shown
in Figure 1(a), the host page’s trusted code registers advice
functions in the JS engine. Before a sensitive function is called,
the JS engine executes the corresponding advice function to
decide whether the function call is allowed.

We term the other approach the reference restriction ap-
proach as it restricts the third-party code’s ability to reference
JS objects. Two methods are used for restriction in the litera-
ture. One is to relocate the untrusted code to a special context,
for instance, a dedicated cross-origin frame in AdJail [50] and
Pivot [43], a Web Worker context in TreeHouse [34], and a
shadow JS engine in AdSentry [29]. Depending on the context
in use, the JS engine controls the code’s behavior accordingly.
For instance, code in a Worker context is not provisioned with
browser APIs for system resource accesses. As depicted in
Figure 1(b), due to the change of the context, the third-party
functions cannot reference the JS objects in the host frame,
and must use the postMessage API to send its request
[34]. The host page script then uses API stubs to examine the
requests and grants/denies them. The other reference restriction
method is to declare a dedicated JS scope for third-party code
by leveraging JavaScript features [51], [2], [23]. For instance,
Jate [51] uses the with keyword to define a new JS scope of
the third-party script and supplies it with the proxy objects
only. Without the capability of referencing the real objects in
the host script, the confined script only accesses the proxy
objects and the JS engine is triggered to run the call-back
functions in the host script for policy checking.

C. Limitations of Existing Approaches

Both the function filter and reference restriction approaches
have limitations in security and adaptability. The discussion
below also reveals the challenges in handling third-party
scripts.
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Fig. 1.

Security. Although it is the critical DOM and system re-
sources that demand protection, existing approaches are aimed
to stall the attacks from the JavaScript layer. Two issues
arise from this strategy of anchoring the countermeasure at
the attack vectors. First, the coverage on the attack vec-
tors must be complete. The solution must assess all rel-
evant JS functions in the function filter approach and JS
objects in the reference restriction approach. For instance,
the host page developer must provide filters/call-backs for
the long list of APIs — document.getElementsBylagName,
document.getElementByld, document.getElementsByName and
document.getElementsByClassName, just to name a few. It is
therefore highly demanding and error-prone to come up with
a proper list and treat every item therein. An update of the JS
engine with new and/or deprecated APIs and objects would
entail a re-examination of the attack vectors.

Secondly, these approaches are susceptible to the con-
fused deputy attack [31]. A malicious script can leverage
its “legitimate” executions to misuse the host script’s code
and built-in JS APIs as a deputy to access resources. This
problem has been acknowledged by Acker et al. who remarked
that the implementation should “restrict access to sensitive
operations in other execution contexts” [52]. It is infeasible
to block a third-party script’s all references to the host JS
objects universally, since it impedes the intended functionality.
Functions rightfully accessible to the third-party script can
become the confused deputy without being caught by existing
schemes.

The issue may deteriorate when the host frame applies
different policies on multiple third-party scripts. Scripts can
collude to complement their respective privileges by calling
another’s functions. For instance, one script is granted with a
cookie permission only and another is granted with network
permissions only. A collusion between them essentially gives
both to the accesses to cookies and the network.

Adaptability. Existing approaches lack adaptability to meet
changing demands at runtime. A third-party script has various
ways to interact with the host frame, e.g., to reference a dy-
namically generated DOM or an event object. As the behavior
may not be derived from the static code, existing systems
have to create new API stubs or new proxy objects on the fly.
Moreover, in order to follow the well-known least-privilege-
principle, the security policy governing the third-party scripts
may evolve throughout the lifetime of the web page. Different
invocations of the same script could be subject to different
restraints. However, existing schemes rigidly implement the

(b) Reference Restriction Schemes (using contexts).
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Comparison with function filter and reference restriction schemes for confining third-party scripts considered as risky code.

policies in the form of code (i.e., filters) and objects, which
are not easy to be adapted accordingly.

III. SKETCH OF SCRIPTCHECKER

We propose ScriptChecker, a framework that reins
third-party script execution at the host page’s command.
ScriptChecker pivots on Chrome security monitors, with the
assistance of the JS engine, to enforce on-demand permission
checks upon tasks executing third-party scripts considered as
risky by the host. It does not rely on attack vector elimination
at the JavaScript layer, and thus avoids the pitfalls in existing
schemes.

Trust Model. We trust Chrome sandbox and V8 JS engine
including the just-in-time compiler, and do not consider attacks
on software implementation vulnerabilities, such as memory
corruption exploits [35], [46] and control flow attacks [24],
[40], [41]. The adversary in our model is rogue third-party
scripts in a host frame with the goal to illegally access sensitive
resources such as the host frame’s JS/DOM objects and system
resources (e.g., network, persistent storage and sensors).

A. Overview

The basic idea of ScriptChecker is to start a third-party
script execution in a new Chrome task with a host-specified ca-
pability stipulating access control permissions for the browser
to enforce. The working of ScriptChecker is illustrated in
Figure 1(c). The architecture consists of three key components:
(i) a sandbox context for third-party scripts for the purpose
of context segregation; (ii) a capability-based discretionary
access control system against tasks; and (iii) a set of APIs
that asynchronously execute the callee function.

Sandbox Context. We introduce the sandbox context for the
risky code to run within while other code remains in the default
main context. The sandbox context has the full set of JS APIs
to access DOM objects and system resources.

The sandbox context serves for a different purpose from the
special contexts in by Jate [51] and TreeHouse [34]. The latter
two are used to restrict the script’s access to JS objects and/or
APIs as they are potential attack vectors. Hence, those special
context are meticulously designed for a full-scale isolation. In
contrast, our sandbox context is for context separation only,
in the sense that the third-party’s accesses to host JS objects
become cross-context and are subsequently checked by the
security monitor. It therefore protects the host against the



environment poisoning attack [42], [52] in which the malicious
script modifies the legitimate JS functions or variables to gain
the advantage of evading policy checking. The host can declare
which JS objects to be shared and which not. More details of
the sandbox context are in Section IV.

Task Capability System. ScriptChecker provides a permis-
sion dictionary for the host script to dynamically compose
policies in the form of capabilities regarding accesses to
cross-context JS objects, DOM objects and system resources.
Capabilities are created and attached to a task during its
creation according to either the explicit specification in the host
script or inheritance from its parent. Permissions specified in a
task’s capability are enforced by ScriptChecker via the security
monitors at the juncture of Chrome’s default policy enforce-
ment (e.g., SOP checking) for all JS scripts. Tasks without
capabilities are trustworthy because they do not execute any
untrusted JS code. The details of the task capability system
are presented in Section V.

Asynchronous Execution. To leverage the capability system
to restrict third-party scripts, the web developer must change
the way to invoke those risky functions so that they run in
a separated task with tailored permissions. For this purpose,
ScriptChecker provides a suite of APIs that create a new task
for the callee function. Moreover, ScriptChecker also retrofits
Chrome to use these APIs to execute risky code during script
inclusion and listener execution. The details of asynchronous
execution are presented in Section VI.

In short, ScriptChecker differentiates trusted and risky
tasks. A trusted one does not run any risky code. While a
risk task may execute both risky code and host script code, it
is always governed by the assigned capability.

B. An Example

Suppose that the frame developer wants to prevent a
third-party script utility. js from accessing cookies. With
ScriptChecker, the frame developer simply uses the code in
Listing 1.
l<secript sre="https://.../utlity.]js" risky

task_capabitity="No_Access" />
2<script>
function accessCookie() { return document.cookie;

}

var secret = "user_info";
function shareData() { ...}

w2

// invoke untrusted code with restriction

var permissions = "JS_WL:shareData";

var data_to_hash = "data_to_hash";

10 wvar result = "";

11 asynCallCap (function() {

12 result = windowRisky[0].UtilityJS.Processing(
data_to_hash);

13 '}, permissions);

15 //followup computation
17</script>

Listing 1. Example of restricting a third-party script

ScriptChecker modifies Chrome’s frame parser to sup-
port the risky and task_capability attributes on

the script tag. With the risky attribute, the parser

task places utility.js into the sandbox context and
creates a risky child task with the capability generated
according to the task_capability attribute. Function
UtilityJS.Processing from the utility library is called
asynchronously through asynCallCap (), one of the APIs
provided by ScriptChecker. It creates a child task 7' to run the
callee function with a capability generated according to the
second parameter. In this example, the child task is disallowed
to access cookies of the parent task’s origin, but it can
reference shareData function.

Like in normal tasks, a resource access from 7' is trapped
into Chrome’s security monitor. Before performing the default
policy, the security monitor examines whether the access is
compliant with its capability. Suppose that the downloaded
utility. js in Listing 1 is malicious. It will never manage
to read the frame’s cookie regardless the functions it calls.

Among all JS objects in the host script, 7' can only refer-
ence shareData. Note the even if the developer mistakenly
includes JS_WL:accessCookie in Line &, it still cannot
access the cookie even if calling accessCookie function.
This is because the security monitor is the final gatekeeper for
resource access and denies the access based on 71”s capability.

The example already shows advantages of ScriptChecker
over existing schemes from the developer’s perspective. The
developer specifies the resources to protect without considering
how the adversary may access them. The restriction can be
flexibly set for the host script’s each invocation of the utility
function according to the runtime security demand.

IV. CONTEXT SEPARATION

In the following, we describe the sandbox context and ex-
plain how cross-context references are supported and checked.
The main purpose of placing a risky script to the sandbox
context is to cope with the environment poisoning attack [42],
[52] wherein the adversary modifies trusted code and/or its
dependent JS objects to bypass security checks.

A. Sandbox Context

ScriptChecker introduces the risky attribute in the
script tag and the sandbox context as a new type of context.
When encountering the risky attribute, the parser creates a
new sandbox context and loads the script to it instead of the
default main context. Risky scripts do not share the sandbox
context since they may execute with different permissions.

The sandbox context is initialized with the default built-
in JS objects and functions as shown in Figure 2. Unlike
the Web Worker context used in [34] with reduced APIs, the
sandbox context has the full suit of APIs to reference DOM
and system resources as the main context does. Chrome’s JS
binding module provides the same view of DOM and system
resources to both the sandbox context and the main context.
Hence, no change is needed for the third-party script to access
DOM objects, system resources, and built-in JS objects.

Frame Structure. The risky script uses objects relevant
to the frame structure (e.g., parent and frames) to ref-
erence other frames or send messages in the same way as
in the main context. It still references its hosting frame
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using document .defaultView for which Chrome returns
the sandbox context’s own window object whose associated
Blink objects (e.g., LocalDOMWindow) are cloned from their
counterparts of the main context respectively.

Event Listeners. A risky script can register its event listeners
to DOM elements. When the event is triggered, listeners run
in the respective contexts which they are registered from. The
JS window object supports event binding as well (e.g., the
load event). Chrome locates and executes both listeners in
the main context and sandbox context.

Code Extension. A risky script in its sandbox context may
extend its code by embedding another script or using an inline
script. We modify Chrome to ensure that the added code
remains in the sandbox context. For script embedding, the
risky attribute is attached to the newly created script tag.
Once the risky attribute is set, ScriptChecker tags the script
element to be risky and never removes this tag in the further
processing. Hence, restricted tasks cannot reset the script to
be non-risky. For inline script and code sinks such as eval,
ScriptChecker utilizes the same strategy by tagging the new
code with proper non-removable attributes.

Cross-Context Reference. Since ScriptChecker relocates
the third-party script from the main context to the sandbox
context, the references between the two scripts become cross-
context. To support it, we make minor changes on both of
them as shown in Figure 2. We add a windowRisky/[]
object to the main context and respectively. Each element
in the windowRisky [] array points to a sandbox context
confining a third-party script. Thus, the host script can enclose
multiple third-party scripts and isolate each of them with
different permissions. We add the windowMain object to the
sandbox context. A third-party script uses it to reference JS
objects in the main context. Note that for compatibility and
modularity reasons, it is seldom for a third-party script to
directly reference JS objects created by the host script.

B. Oneway Cross-Context Isolation

If a risky script alters its environment objects and functions
in its own context, there is no adverse effects on scripts in
other contexts. Hence, the adversary has to make cross-context
references to launch the environment poisoning attack [42],
[52]. By default, Chrome’s local security monitor checks all
such cross-context references.

ScriptChecker imposes one-way isolation between the two
types of contexts. One the one hand, non-risky tasks that
execute from code in the main context without involving risky
code are always allowed by the security monitor to access
objects in the sandbox context. As explained in the next
section, they do not hold any capabilities and are not subject
to restrictions imposed by ScriptChecker. On the other hand,
risky tasks, namely those executing third-party code within
sandbox contexts, are not allowed to reference objects in the
main context by default, unless the referenced objects are
explicitly whitelisted in their capabilities.

One-way isolation effectively prevents a third-party script
from accidentally or maliciously tampering with the host
script’s objects and code. At the same time, the host script has
the flexibility to specify objects to share with tasks running
third-party functions. Thus, context separation protects the
integrity of the JS environment the host script execution
depends on.

V. CAPABILITY SYSTEM

ScriptChecker outfits Chrome’s security monitors with a
new capability system to enforce policies against untrusted
tasks. In the following, we begin with definitions of key
elements in ScriptChecker’s capability system, followed by
descriptions of capability management and enforcement.

A. Definitions

Task. By default, Chrome assigns each task generated in the
renderer process a unique sequence number as its identifier. We
use 1), to denote the task with identifier n. 7T}, is defined as the
parent task of T, if the first function executed in 7, is chosen
by T),. At runtime, T;,, can be created in one of the following
ways: (a) T, explicitly creates T},, by using an asynchronous
API; (b) T, designates a JS function as an event listener or
as an IPC handler for processing a requested resource (e.g.,
a network request) and 7;,, is the task created to execute that
function upon the corresponding event.

The purpose of introducing the parent-child relation is to
capture runtime scenarios that one task can determine the code
executed in another task, considering that a sly script may
hide its malicious activities through asynchronous execution.
Since we define the relation from the security perspective, it is
not always consistent with the conventional notion of parent-
child from the task generation perspective. For instance, in
the second scenario above, it is the Chrome system task that
creates T, instead of T,.

A task is defined as risky if it is either created by a non-
risky task through one of ScriptChecker’s asynchronous APIs,
or a child task of a risky task. Hence, all descendants from a
risky task are risky as well, even if these descendant tasks may
execute JavaScript code from the host script. It is security crit-
ical to maintain the parent-child relation among risky tasks as
it provides the basis for capability assignment and ensures that
no untrusted code execution evades ScriptChecker’s restriction.

Permissions. ScriptChecker’s permission dictionary consists
of three groups. Firstly, the system resource permission set,
denoted by Pg, govern accesses to system resources includ-
ing the persistent storage (e.g., cookie and local storage),



network, inter-frame communication (e.g., postMessage) and
user resources (e.g, sensors, clipboard and files). Secondly,
the DOM resource permission set, denoted by Pp, dictate
whether a task can read or write DOM elements or register
event listeners. Lastly, the cross-context reference permission
set, denoted by P, determine whether the task can reference
JS functions and objects in the main context. For example, the
JS_WL:shareData permission in Listing 1 is a permission
in this category.

Capability and Provenance Label. A task’s capability is
essentially a set of permissions granted with respect to the
aforementioned three categories. We use 27, to denote 13,’s
capability. It is expressed as Q7 = (Ps, Pp, Py), where Ps C
Ps, Pp C Pp, and P; C P; are the set of permissions in
respective categories.

Since the tasks are within the renderer process, the kernel
security monitor is unable to retrieve their capabilities to make
access control decisions regarding IPC messages. To address
this issue, ScriptChecker introduces the provenance label at-
tached to IPC messages. A provenance label is essentially a
copy of Ps in the sending task’s capability. (Note that Pp
and Pj; are irrelevant to the kernel security monitor’s access
control.) The kernel security monitor uses the label in an IPC
message to decide whether it is allowed to access a system
resource such as cookies.

Note that all capabilities and provenance labels are created,
stored and maintained by ScriptChecker. They are inaccessible
to any JavaScript code, including the host scripts. As a result,
no fake capability or label is used in policy enforcement and
no risky task can transfer or delegate its capability to others.

B. Task Creation and Capability Assignment

Capabilities are assigned to risky tasks only. Tasks execut-
ing the host scripts do not have capabilities. According to our
definition of risky tasks, a capability is created and assigned
to T}, in the following three cases.

Case I. T, is created by a host script using ScriptChecker’s
asynchronous API. For example, the host script in Listing 1
uses asynCallCap () to execute a third-party function
in a newly created child task that is considered as risky.
ScriptChecker generates the capability for it according to the
parameter in the API during task creation.

Case II. T, is created by a risky task using the standard
JavaScript asynchronous APIs such as setTimeout and
setInterval. ScriptChecker checks every child task gen-
eration. If a parent task is assigned with a capability, the task
it creates is also assigned by ScriptChecker with the same
capability by default. A risky task is also allowed to use
ScriptChecker asynchronous API to assign a new capability
to its child task. ScriptChecker ensures that the child task’s
capability is a subset of the parent’s. This prevents a risky
task from escalating its permissions.

Case III 7T, is created by Chrome’s system task to execute
code which is labeled as risky using the metadata (e.g.,
risky) introduced by ScriptChecker. There are two sub-
cases: script inclusion and listener execution. When a script
with risky in its tag is downloaded and executed by Chrome
in a new task, ScriptChecker assigns to the task the capability

generated according to the associated task_capability
attribute as exemplified in Listing 1. ScriptChecker modifies
the listener registration procedure in Chrome. If a listener func-
tion is registered by a risky task 7),, ScriptChecker attaches it
with the task’s identifier n. When such a listener is executed,
ScriptChecker assigns ()7, to the generated listener task since
it is the child task of T;,.

We highlight that ScriptChecker does not determine
whether a listener task is risky or not based on its code source.
In a confused deputy attack, the malicious third-party script
can register a host script’s function as an event listener for
its malicious purpose. While not being able to tamper with
the listener execution, the attacker control the data flow to or
from it, which could result in undesirable consequences such
as cookie deletion.

C. Capability Enforcement

A task’s capability is applied at runtime by Chrome’s
security monitors to make access control decisions. The scope
of permission checking comprises: cross-frame and in-frame
DOM objects, system resources, cross-context JS objects, all
of which are trapped to the local/kernel security monitor in
Chrome by default. Namely, ScriptChecker does not introduce
new trappings for enforcement but an additional policy in
existing junctures of enforcement.

To support ScriptChecker, both the local and the kernel
security monitors are retrofitted to make capability enforce-
ment with respect to tasks. For the kernel security monitor,
it just retrieves Pg from the provenance label attached to the
IPC message and then evaluates whether the system resource
request conforms with permissions stipulated therein.

We equip the local security monitor with a reference
to the current task, i.e., the one accessing the resource.
If the current task is bound with a capability, the local
security monitor first checks permissions in the capability
before applying the default JS access control policies such
as SOP. Otherwise, the default policies are enforced only.
Hence, ScriptChecker has no effect upon non-risky tasks. As
compared with executions without ScriptChecker, a risky task
has only one extra occasion for permission checking: cross-
context references, since ScriptChecker places the third-party
script code in the sandbox context instead of the main context.

VI. ASYNCHRONOUS EXECUTION OF RISKY CODE

In this section, we elaborate how ScriptChecker allows
a risky code invocation to begin in a newly generated task.
We have categorized task creation scenarios to three cases
in Section V-B. Since this section focuses on the details of
asynchronous execution instead capability assignment, we re-
group the scenarios into function call, script inclusion and
listener execution.

A host script’s call to a function in a third-party script is
arguably the most common among them, as third-party scripts
are often used as libraries providing utility functions. In script
inclusion, the risky script is automatically executed after being
loaded by Chrome. Listener functions are invoked through the
callback mechanism which requires the listener function to be
priorly registered. Note that listeners are called by Chrome



instead of the host script. In the following, we explain the
details for each scenario and also deal with a side-effect due
to asynchronously calling a risky function which itself makes
asynchronous executions.

A. Restricted Risky Function Call

The key issue of converting a synchronous function call
to an asynchronous one is to preserve the execution logic.
Namely, the ensuing execution flow must be the same as
the synchronous one. Thus, two new tasks are created: one
for the callee function and the other for the caller’s code
following the function call. To minimize the incurred delay due
to scheduling, the first task needs to be immediately executed
after the function call.

ScriptChecker introduces two asynchronous APIs:
asynCallCap(f,c) for third-party functions and
asynCallNoCap (f,tid) for host functions. The
former creates a child task to execute function £ with a
new capability generated based on c and returns the task’s
identity. The new task is given the top priority and inserted
into the head of the task queue. Hence, it is the next one to
execute after the completion of the current caller task. The
second API creates a child task to execute function £ without
any capability. The new task is inserted next to task Ti;q
in the task queue so that it executes immediately after 73;4.
Supposing that a host script function needs to invoke a third
party function, it uses asynCallCap to asynchronously to
run the callee and uses asynCallNoCap to asynchronously
execute the rest of the host script following the third-party
function.

We use an example below to illustrate how a synchronous
call is converted into an asynchronous execution using the two
APIs above. Listing 2 shows the existing way to synchronously
call foo from a third-party script, while Listing 3 shows
the corresponding asynchronous invocation with customized
permission restriction. (Note that foo is referenced using
windowRisky since the third-party script is loaded in the
sandbox context as explained in Section IV.)

1function myfunc (params) {

2 // Call an untrusted function foo with parameters

3 var results = windowRisky.foo (params) ;

4 // Handle the return value for the untrusted
function

5 rest_of mycode (results);}

Listing 2. To synchronously call a third-party function foo ()

l1function asyn _myfunc(params) {

2 wvar results;

3 ...

4 // create a child task to run untrusted function
foo

tid= asynCallCap (function () {

results = windowRisky.foo (params);

}, "No_Cookie_Access");

// create another child task to run the rest

asynCallNoCap (function() {rest_of mycode (results)
i}, tid); 1}

O 003N W

Listing 3. To asynchronously call foo () in ScriptChecker

The combined use of the two APIs produces the effect
illustrated in Figure 3. Let 7, be the running task exe-
cuting asyn_myfunc and T, be the supposed next-to-
run task when 7, starts. The invocation of asynCallCap

results in Ty;4 to head the task queue and the invocation
of asynCallNoCap places T};q4+1 next to T3;4. Essentially,
the asynchronous execution involves three tasks 7;,,7;4 and
T;q+ 1 which are executed consecutively. Since Chrome’s task
scheduling is non-preemptive and strictly follows the order in
the queue, Listing 3 has exactly the same execution semantics
as Listing 2.

rest_of_mycode foo asyn_myfunc
""" 1 1 | N

T Tiige1 Tag T,

Task Queue Head Current

Fig. 3. Two child tasks are created after asyn_myfunc().

Due to the parent-child task relation introduced in Sec-
tion V-A, all child tasks spinning off from 7j;; and their
descendants are constrained by ScriptChecker under the same
capability of T3;4. It is unnecessary for the host script to deal
with scenarios wherein foo might make its own asynchronous
calls such as setTimeout, or register an event listener.

However, there is one special case in which the asyn-
chronous function call has a side effect. A host script may call
a third-party function to generate a network request and speci-
fies the response function. For instance, as shown in Listing 4,
the host calls axios to download data. json and designates
its own function h_handler to process the network response.
When axios is invoked asynchronously using the method
described above, the task executing h_handler inherits
the capability from its parent task, i.e, the one executing
axios.get. This inherited restriction is actually undesired,
because the task starts its execution from the host script
function and is not controlled by axios.

axios.get ("data.json") .then (response=>{h_handler (
response) });

Listing 4. Host-specified handler in third-party execution

The host script can have an alternative way to handle the
network response to avoid the side effect. The method, as
illustrated in Figure 4, is to convert the network response
handler into an event listener registered directly by the host
script. As a result, h_handler runs in the child task of
the host task with full privileges and is thus not subject to
restrictions.

Host Task Target Listener

Respon:
Host page |asyn. exec,[ | network [
axios.get
script | |
% I

..., Child of .

se
trigger
I £8 I h_handler

Fig. 4. Restricting asynchronous function axios.get. Grey boxes denote
tasks with restricted privileges.

Listing 5 shows the details in the host script. It binds an
event to a DOM element O set as inaccessible to any risky
task, and registers its handler function as the event handler
(Line 6). Next it asynchronously calls axios.get using
asynCallCap. When the network operation is completed,
the response function dispatches an event to trigger the handler
execution. Note that the third-party function cannot directly
dispatch the event by itself, due to denied accesses to DOM
element O and the reference in the main context.
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var results;
var ele_o = document.getElementById(’'0O_id’);
var event_name = "h_handler";
function h_handler () {...}
// register an event listener for DOM element 'O’
ele_o.addEventListener (event_name, h_handle);
asynCallCap (function () {
windowRisky.axios.get ("data.json") .then (response
=> {
results = response;
ele_o.dispatchEvent (new Event (event_name));
});}, capability);
Listing 5. Run axios.get in the asynchronous manner

B. Restricted Risky Script Inclusion

A third-party script can be included into the host frame
by direct script inclusion through a script tag or dynamic
inclusion using JS APIs such as document.createElement. In
both cases, a network request is sent to the kernel process and
the downloaded script is automatically executed without using
a caller. It is therefore necessary to restrict risky execution
incurred by script inclusion.

ScriptChecker’s approach is to constrain the network re-
quest task which is the child task of either the parser in the
case of direct inclusion or the host script task in the case of
dynamic inclusion as illustrated in Figure 5. ScriptChecker
introduces the risky and the task_capability attributes
to mandate that the downloaded script be placed to a sandbox
context and the network request task be restricted with the
capability. If the script has no async attribute, it is executed
within the request task; otherwise it is within the network
response task which is a child of the network request task
(as shown in Figure 5). In both cases, the script execution is
restricted by the capability specified by the host script.

Host or Parser Listener

asyn. exec,

Request Response .
| network [“3@party | register [
script [

Fig. 5. Direct or dynamic inclusion of a script with async attribute. Grey
boxes denote tasks with a capability.

An example of direct script inclusion has been shown
in Listing 1 wherein the frame parser creates the network
request task with the capability. For dynamic inclusion, the
host script uses ScriptChecker’s asynchronous APIs presented
in Section VI-A.

C. Restricted Risky Listener Execution

Event listeners registered by a third-party script are risky
as well. For instance, a faked Modernizr script collects user
information when a submit button is clicked [7]. They deserve
permission restriction as much as a third-party script does.

ScriptChecker copes with risky listener functions by hing-
ing on the parent-child relation between tasks. According to
Section V-A, the task executing a listener is the child of
its registration task and inherits the capability from it (as
illustrated in Figure 5). ScriptChecker modifies how listeners
are invoked in order to run a risky listener in a separate task.
It supports two types of listeners below.

Chrome Listener. When a risky task registers a listener
function to a Chrome event, ScriptChecker records its task
identifier n as the metadata stored together with the listener.
When the event is triggered, the renderer process’ handler task
checks each listeners. If a listener carries with a task identifier
n, the handler creates a new task to run it and assigns it with
the capability Qr, i.e., its registration task’s capability.

jQuery Listener. As a popular third-party library for DOM
access and manipulation, jQuery [15] can bind a custom event
with a DOM object without involving the browser. Scripts
accessing the object can register their listeners to the event.
When one task calls the event-triggering function, all registered
listeners, including those registered by a third-party script,
are executed in the same task. ScriptChecker handles this
situation without modifying jQuery. The idea is to separates
safe listeners and risky ones using two events which are always
triggered together.

Task T,

trigger(e’) = host-listener

Task T,
asynCallCap(trigger(e),..., NO_COOKIE) trigger(e) > risky-listeners

Fig. 6. Host listeners on e’ and risky listeners on e

Figure 6 illustrates our approach. Suppose that jQuery
event e is created for DOM object O. The host page script
creates an additional DOM object O’ and a jQuery custom
event ¢’ associated with O’. Host listeners are registered to
event ¢’ while risky listeners are registered to event e, which
preserves the third-party script’s view of the DOM. The host
page script applies the techniques in Section VI-A and VI-B
to disallow any third-party script to access the object O’ along
with other desired restrictions. This protects listener separation
as no third party script can register its listener to ¢’ due to
prohibited access to O’.

When the host script needs to activate e, it first triggers ¢’
to run its trusted listeners, and then uses asynCallCap to
asynchronously trigger e in a child task (75, in Figure 6) whose
capability is properly set to restrict the listeners. Security is not
breached even if e is triggered by a risky script, because the
triggering task has already assigned with a proper capability
and the restriction is automatically applied to the listeners’
execution as well.

VII. IMPLEMENTATION

A. ScriptChecker Prototype on Chromium

We implement ScriptChecker on Chromium 67.0.3391.0.
The prototype consists of around 2200 SLOC in C++. The
source code is available for downloading at https://github.com/
Iwyeluo/ScriptChecker.

Code & Data Modification. As illustrated in Figure 7,
ScriptChecker is a new component in Chromium’s renderer
process. The ScriptChecker component maintains capability
for each risky task. Various Chromium functions in different
modules are hooked for ScriptChecker. The involved core
functions are listed in Table I below.

Specifically, ScriptChecker creates a capability for a new-
born risky task by hooking the Task Generator and tracks task
switches by hooking the Task Scheduler in order to acquire



Major Functions Module
TaskAnnotator::RunTask, base
IncomingTaskQueue:: PostPendingTaskLockRequired, — base
ThreadControllerImpl::DidQueueTask,
ScriptLoader::ExecuteScriptBlock, — LocalWindow-  blink
Proxy::Initialize, html_attribute_names.json5,

Task Scheduler
Task Generator

Frame Parser

IPC Client InterfaceEndpointClient::Accept, mojo,
RenderFramelmpl::OnMessageReceived, content

Security DocumentThreadableLoader: :StartBlinkCORS, blink,

Monitor BindingSecurity::ShouldAllowAccessTo, content
TreeOrderedMap::Get, blink::Cookies,
blink::SetCookie,

Events EventTarget::SetAttributeEventListener, —EventTar- blink

Handler get::FireEventListener, blink::AddListenerToVector,

JS API DOMTimer::Install, window_timers.idl, window.idl, blink

TABLE 1. CORE FUNCTIONS HOOKED TO INVOKE SCRIPTCHECKER.

the running task’s identity. The Frame Parser is modified to
recognize the risky attribute and requests the JS engine
to create the sandbox context. For risky script execution
(e.g., in  ScriptLoader::ExecuteScriptBlock)
or  risky event listener  triggering (e.g., in
EventTarget::FireEventListener), the modified
Chromium’s renderer process runs the target JS code in
restricted tasks. The JS engine is extended with two built-in
objects (i.e. windowMain and windowRisky) and two
functions (i.e. asynCallCap and asynCallNoCap).

Sandboxed Renderer Process Browser Kernel Process

Renderer Layer

Frames
—_— Frame Parser €
v Task Security

ScriptChecker Monitor

‘\ Events Handler *
Tocal Security |\, H
Monitor IPC Client
— Servi
e | | L5570

; 1
El Interpreter ” JIT Compiler | GC E Sensors

Update capability
table U777 >

Task Generator Kernel Cookie

Bookmark

Network

0

Retrieve task's
capability

The architecture for the implemented prototype.

Piggyback task’s
capability

Fig. 7.

We also modify the security monitors to support
ScriptChecker. The IPC Client is hooked to retrieve the current
task’s capability, and piggybacks them as the provenance label
to the source frame identity field in Chromium’s
IPC structures. We add capability checking logics within the
local security monitor’s access control functions, such as
ShouldAllowAccessTo for cross-context JS and DOM
objects accesses and StartBlinkCORS for network ac-
cesses. Functions including TreeOrderedMap: :Get are
also modified to check in-frame DOM objects accesses from
a sandbox context.

Permission Expression. In our prototype, Ps con-
sists of two permissions for system resource accesses:
Network_Access and Cookie_Access. These two per-
missions representing the privilege of accessing all network
or cookie resources respectively. However, a risky task grant-
ing these permissions cannot access network response or
cookie from other origin/domain except the host frame’s, since
Chrome’s default policy, e.g., SOP (and CSP), is still enforced
in ScriptChecker. The permission setup can be extended for
a wider coverage, such as sensors and inter-frame commu-
nications. It can also be enhanced with finer granularity, for
example, to separate privileges for GET and POST requests, or
allow network requesting for a allowlist of network servers.

Our prototype supports two methods to specify DOM
access permissions. One is to use the permission macros:
No_DOM_Access and DOM_Access_Protective. The
former denies accesses to all DOM objects while the latter
grants accesses to all DOM objects except those attached with
the non-removable task_sensitive label. Essentially, the
developers uses the label to group DOM objects into two
classes: the sensitive one under protection and the other open
to accesses. The other method uses the DOM_Access (Type,
List) macro. All selected DOM objects in List are inacces-
sible and the remaining ones are accessible if Type indicates
a blocklist; or the opposite if Type is an allowlist.

We have also implemented Py, i.e., the permissions for
cross-context JS object references initiated from a sandbox
context. The host script uses JS_WL:List to define Py,
where List are JS objects in the main context. Since a
third-party script typically does not access a large number
of host script’s objects, JS_WL:List produces a allowlist
permissions. Namely, JS objects in the List are accessible to
the sandbox context while others are not.

B. Security and Usability Evaluation

We run several experiments to demonstrate security and
usability of ScriptChecker.

1) National Baseball Hall web page: We build a test page
based on an archived National Baseball Hall web page? which
was reported [22] to be attacked by a malicious analytics
script (named gbh. js) from googletagstorage.com.
We modify the test page to further include two malicious
scripts: the fake Modernizr script that stole data from sensitive
forms in marveloptics.com [38] by registering event
listeners on button clicks for form submission, and a modified
CryptoJS [13] script that steals the cookie by a direct access
the cookie and by calling the test page’s accessCookie
function (forming as a confused deputy attack (CDA)). More
details of the test page are in Figure 10(a) in Appendix A. All
attacks succeed on the stock Chrome.

Experiment with ScriptChecker. We show how the web
developer safeguards the page by using ScriptChecker. Table II
below summarizes the capabilities assigned to each script.

3rd-party script de- Attacks Capability

scription

gbh.js for analytics billing form (di-

rect access)

DOM_Access_Protective,
Network_Access,
Cookie_Access

modernizr.js for net-
work feature checking

billing form
(event tracking)

DOM_Access (Deny,
{Tag: form, textarea, input}) R
Network_Access

fake-crypto.js for
SHA256 computation

cookie (direct ac-
cess, CDA)

NO_Cookie_Access

TABLE II. TO RESTRICT THREE SCRIPTS IN THE TEST PAGE

The capability assignment is decided in accordance with
the expected functionality of each script and the protection of
the billing form against all of them. In total, we make 9 lines
of changes including adding the sensitive tag to the billing
form. Figure 10(b) in Appendix A presents more details.

Zhttps://web.archive.org/web/20190205100422/https:/shop.baseballhall.org/
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Chrome with ScriptChecker successfully blocks all attacks,
including the CDA attack from fake—-crypto. js. The test
case illustrates that the web developer does not need to con-
sider how the third-party script runs and what JavaScript API
it calls. The developer can use ScriptChecker APIs to flexibly
compose permissions for a third-party script execution.

2) Adaptive Capability Assignment: Our second experi-
ment uses a web page with jQuery to show adaptability
of ScriptChecker. In other words, the host can dynamically
assign the capability to an upcoming execution of the third-
party script, according to the security needs. The JS code of
the test page is shown in Listing 6 below.
l<script src="https://.../jquery.min.js" risky

task_capabitity="DOM_Access_Protective" />

2<script>
3 asynCallCap (function () {

4 windowRisky.$.ajax ({url:"config. json", async:
false}) .responseJSON;

5 '}, "Network_ Access", 0);

6 // protect sensitive DOM after the user login

7 asynCallCap (function () {

8 windowRisky.$ ("#status") .html ();

9 '}, "DOM_Access_Protective", 0);

0</script>

Listing 6. Dynamic permission setting for jQuery

The host script imposes two different permissions on
jQuery in three scenarios. For script loading, it assigns
DOM_Access_Protective permission because the library
needs to access certain DOM elements e.g., slot, but is
disallowed to access sensitive ones. The host page makes two
invocations to jQuery in two tasks with different capabilities.
Its first asynCallCap call allows jQuery to access the
network only (i.e., Network_Access). Hence, the task
cannot access any DOM objects or cookies. The second
invocation of asynCallCap takes place after the user logs
in. In order to protect sensitive user information, the second
invocation assigns DOM_Access_Protective to restrict
jQuery’s DOM access, without networking permission.

3) Malicious Script Benchmark: We create a simple web-
page with a few DOM objects (including a password submis-
sion form) and a cookie. We test ScriptChecker against 1373
malicious scripts in a Github repository [14], using the most
restrictive policy, namely to deny all accesses to DOM, cookie
and network. The results show that 1021 scripts are blocked
and 332 scripts end up with a crash (e.g., referencing non-exist
APIs in Chrome). The remaining 20 scripts are not caught.
Among them, twelve inhibit their attacks due to environmental
errors and four use a popup which is out of the permission
scope of our prototype®. Among the attacks, 1003 scripts inject
arbitrary DOM/script using document.write, and 20 scripts
create new DOM through document.createElement.

Many scripts use obfuscation techniques to evade code
analysis. Some convert their code into String and decode
them through unescape and eval. We also find 16 scripts
using nested eval and 19 scripts registering event listeners.
There are 8 scripts attempting to poison the environment
by redefining the built-in objects, e.g., Array.from and

3We could not identify the reason manually for the remaining four because
of their strong obfuscation.
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Array.prototype.indexOf. Despite various ways of at-
tack and obfuscation, ScriptChecker successfully blocks them
according to the policy, by virtue of using task-capability based
access control and sandbox context isolation.

4) Empirical Study on Popular Websites: We run an em-
pirical study to assess how ScriptChecker may impact real-life
websites. The first experiment is to understand how existing
third-party scripts “invade” the hosts’ sensitive resources. We
modify Chrome to automatically label all third-party scripts
as risky and any DOM object as sensitive if it contains
a keyword from the dictionary {passwd, password, secret,
credential, card, privacy, private, security, input, form,
button}. ScriptChecker applies the same capability to the
scripts so that accesses to sensitive DOM objects, network, and
cookie are considered as policy violation. Nonetheless, to fully
reveal the script behaviours, ScriptChecker is modified not to
block illegal accesses, but to record them. The experiment with
4356 pages in Alexa top-1000 sites shows that 760 domains
with either DOM or cookie invasive scripts. The details are
reported below.

Cookie Access. There are 711 sites having third-party scripts
accessing their cookies. Among them, 453 sites have the
cookie-invasive scripts accessing the network, thus facing a
higher risk of cookie leakage. Figure 8(a) plots the distribution
of host sites according to the number of cookie-invasive scripts.
The majority of them has less than five while the extreme one
uses 40 such scripts. The ten sites using most cookie-invasive
third-party scripts are reported on the left side of Table III.
The invasive scripts in the experiment are from 551 different
domains including those well-known ones under Google. The
right side of Table III reports the domains owning most popular
scripts with cookie accesses. As expected, analytical scripts
make the most cookie accesses. Some websites share cookies
with scripts from their sibling or parent domains.

539 588
127 o 149 g
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2 1

# of host sites

1~5 6~10 11~2021~30 >30
# of cookie-invasive scripts in a host

1~2 3~5 6~10 11~15 >15
# of DOM-invasive scripts in a host
(b) Usage of DOM-invasive third-
party scripts

# of host sites

(a) Usage of cookie-invasive third-
party scripts

Fig. 8. Histogram of Alexa top-1000 sites using risky third-party scripts (in
logarithmic scale)

Host Site # of Scripts Script Domain # of Hosts
squarespace.com 40 googletagmanager 451
td.com 33 doubleclick.net 116
trustpilot.com 27 google-analytics.com 102
uol.com.br 23 cookielaw.org 70
etrade.com 22 googletagservices.com 62
latimes.com 21 go-mpulse.net 41
freee.co.jp 20 googlesyndication.com 41
aliexpress.ru 18 licdn.com 41
linkedin.com 17 facebook.net 37
igbroker.com 17 baidu.com 32
TABLE III. WEBSITES USING MOST COOKIE-INVASIVE THIRD-PARTY

SCRIPTS AND PROVIDERS OF MOST POPULAR COOKIE-INVASIVE SCRIPTS.

Sensitive DOM Access. There are 509 sites with third-party
scripts accessing their DOM objects containing keywords in



our dictionary. Figure 8(b) plots the distribution of host sites
according to the number of third-party scripts accessing to
sensitive DOM objects (in our definition). The majority of the
websites have one or two such scripts while the extreme case
has seventeen. These third-party scripts are from 538 different
web domains. As shown in Figure 9 below, DOM objects
with “input” and “form” keywords are read much more often
than others, possibly because they are more used user-activity
analysis. The figure also shows many scripts accesses multiple
sensitive DOM objects. Accesses to objects with “password”
and “secret” may require more prudent examination. Note that
only the website owners can determine whether the accesses
are desirable or not.

passwd |3
credential [5'lg

secret [#-29;

private [#-25,9
password |34 o)
security [EEEELAQ, g

privacy

card 212

<button A
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Fig. 9. Distribution of DOM accesses by third-party scripts and affected host
domains
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Our second experiment is to assess how ScriptChecker’s
enforcement breaks third-party script executions. We use the
same policy and browser setup in the first experiments, except
that ScriptChecker blocks all illegal accesses. For each domain
having cookie or DOM invasive scripts, we randomly choose
one page for testing. In total, the dataset consists of 760
pages. The results show that 676 pages are rendered normally
(i.e., the document .readyState being set as complete),
66 pages have their loadings timeout and 18 pages result in
browser crashes. Among the crashed pages, four are due to
the Chromium version in use and other crashes are potentially
due to bugs in our modifications. The data shows that websites
seem robust against third-party script execution failure. The
specific consequence varies from case to case, e.g., terminat-
ing the script code snippet interpreted by JS engine due to
referencing null pointer. Since the host script’s execution is in
separate context from third-party script execution, termination
of an offending script execution does not disrupt the rendering
of the host pages.

In short, our experiments show that it is not uncommon
to find cookie or DOM invasive third-party scripts among
popular sites. Although we do not have the knowledge to
determine whether those accesses are justifiable, the current
practice is clearly against the least-of-privilege principle and
induces security risks. ScriptChecker can help hosts to flexibly
and selectively grant or deny accesses to sensitive resources.

C. Webpage Development & ScriptChecker

Like dealing with supply chain attacks, security problems
due to third-party scripts cannot be fully resolved without
efforts from the webpage developers. Legacy websites are
oblivious to the deployment of ScriptChecker in Chrome and
are rendered normally without any setback. We show below
how a web developer can benefit from ScriptChecker.

Grant or Not-Grant. With ScriptChecker, a developer no
longer treats a third-party script in the all-or-nothing fashion:
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either not using at all or using with the same privileges as
host scripts. She can follow the least-privilege principle and
grant permissions discreetly. Nonetheless, there are two thorny
problems: (i) how to know the permissions demanded by a
third-party script and (ii) how to assign permissions with no
or little functionality disruption. Note the developer also face
similar questions when using the existing JS based schemes.
ScriptChecker helps developers to better answer them.

A developer can test her webpages with third-party scripts
using the log-only variant of ScriptChecker used in our
empirical study. The testing outcome reveals the whole set
of permissions demanded by the scripts. The developer can
make proper decisions for each prospective execution scenario.
In general, we recommend that developers use an allowlist
approach to explicitly grant system resource permissions in
‘Ps and cross-context reference permissions in Py, since those
accesses often have direct and well-defined justifications. For
DOM access permissions in Pp, we recommend the blocklist
approach (i.e., DOM_Access_Protective) to safeguard
sensitive DOM objects. Security-critical webpages may need
more fine-grained considerations.

Thanks to its fine-granularity and flexibility, ScriptChecker
is more advantageous to defuse the conflict between security
and functionality as compared with exiting schemes. It allows
customised permission combos for different executions of the
script including loading, function invocation. It also allows
object-level permissions with different operation parameters.
Hence, it is easier to accommodate the script’s execution needs.
Note that our prototype can be extended to support more
permissions, including endorsement.

Host Script Modifications. The developer needs to make a
few changes to her current JS code to use ScriptChecker. For a
third-party script, she needs to make one line change for script
loading to add the risky label and the loading-time capability.
For each function call made by her code to the script, she needs
to change three places: to create the capability for the callee
execution, to asynchronously call the script, and to resume her
own code execution. Depending on the permissions in use, she
may also add the tasks_sensitive label to DOM objects
deserving protection. In short, the amount of required efforts
is limited and locating the code for change is easy.

Limitations of ScriptChecker. Access control is arguably
the last line of defence against resource misuses. It does not
neutralise malware attacks by itself. Like its counterparts in file
systems and databases, ScriptChecker has inherent limitations.
After a task is granted with permissions, ScriptChecker cannot
discern whether the granted access is for good or bad purposes.
Moreover, it follows the DAC model. The host’s policies
may have loopholes leading to data leakage. Section IX-B
elaborates how ScriptChecker can be reinforced by information
flow checking.

VIII. PERFORMANCE EVALUATION

Our performance evaluation experiments run on a desktop
with 16 Intel Core i7-10700K 2.9 GHz processor and 64 GB
DRAM installed with Ubuntu 16.04 x64 with Linux kernel
4.4.0. We first measure the main component overheads of
ScriptChecker and then evaluate its performance impact to



DOM accesses followed by an overall assessment on third-
party script loading and usage. In the end, we measure the
performance impact on JavaScript performance on Chrome.

A. Component Overheads

As compared with third-party script execution without
restriction, the main cost of ScriptChecker is contributed by
asynchronous function execution, sandbox context creation and
capability-based checking. We build a simple webpage with a
home-made third-party script that accesses the host’s DOM,
cookie and network interface. The purpose is to measure the
CPU time taken by individual steps in ScriptChecker. Note
that the sum of them does not represent the total cost of
ScriptChecker, as it depends on behaviors of both the host
and the third-party scripts.

Asynchronous Execution. We run experiments to evaluate
the overhead due to converting synchronous function calls to
asynchronous execution. To avoid measurement noise due to
JavaScript engine’s code optimization for hot JS code, we
measure the time usage at Chrome’s binding layer which is
programmed using C++. The binding layer intercepts the API
call from the JS engine and invokes the API implementation
code in Chrome’s Blink.

According to our results, the task creation using
setTimeout costs about 162 ps in average while task
creation using asynCallCap takes about 197 ps due to
capability generation and assignment. We also measure costs
due to task scheduling as the gap between the binding layer
finishing the asynCallCap call and the new task beginning
to run the DOM timer. The experiments show that it takes 21
Us in average.

Hence, the cost of asynchronous execution in Listing 1
comprises two task creation and two task scheduling, which
amounts to approximately 0.44 ms. Note that the two child
tasks are inserted to the head of the task queue, which avoids
the waiting time for other tasks in the queue to complete.

Sandbox Context Creation. We also build a page to measure
the time cost for initializing the sandbox context. Chrome
creates a main context for each frame when the frame begins
to loading. Since the creation of a sandbox context always
follows the main context creation, ScriptChecker copies those
objects instead of creating new one. As a result, creating a
sandbox context requires only 2.6 ms, less than the main
context creation time (4.2 ms).

In ScriptChecker, the sandbox context creation is the only
step needed for setup. Hence, we compare it with the setup
time with other schemes in Table IV. ScriptChecker needs
much less time to setup than AdSentry [29], TreeHouse [34]
and Jate [51], though it probably takes more than Con-
Script [42] whose policy file loading time is not reported.

Cross-Context Permission Checking. We also use the
aforementioned web page to measure the overhead of cross-
context permission checking. The page allows the risky JS
code in the sandbox context to access a selected object in main
context. In the experiment, we measure the execution time of
the security monitor BindingSecurity::ShouldAllowAccessTo.
An access from the main context to the sandbox context which
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Schemes
AdSentry [29]
TreeHouse [34]

Setup Overhead

31ms (9 %107 cycles), script loading to shadow JS engine
350 ms (9 x 108 cycles), script loading to Web Workers

58 ms, script rewriting growing drastically with dynamic
code (No CPU frequency reported)

Jate [51]

2 ps (7.2% 10% cycles) for environment creation plus time

ConSeript [42] for policy loading

ScriptChecker

TABLE IV. COMPARISON OF THE SETUP COST. THE NUMBER OF CPU
CYCLES IS CALCULATED BASED ON THE RESPECTIVE CPU FREQUENCY.

2.6 ms (7.5x10° cycles) for sandbox context creation

incurs no checking costs 0.9 us, while an access from the other
direction costs about 2.6 us in average.

Resource Access Permission Checking. We also evaluate
the overheads for DOM, cookie and network accesses after
script loading. The time is measured in Chrome’s binding
layer to exclude the time taken by JS engine. Table V reports
the results. Note that the network access incurs the highest
CPU time for checking due to two child tasks being generated
and creation of provenance labels. However, it is the least
significant since the access itself costs longer time than others.

DOM Cookie Network
Baseline 2.1 346 6690
With ScriptChecker 2.3 387 6818
Overhead [ 0209%) | 41 (12%) | 128 %)

TABLE V. PERMISSION CHECKING IN RESOURCE ACCESSES (IN us).

In short, the overall overhead incurred by ScriptChecker on
a webpage can roughly be expressed as 2.6¢5+0.44¢;+0.128¢,
milliseconds, where c;, ¢;, ¢,, refer to the number of third-party
scripts with ri sky attributes loaded in the page, the number of
asynchronous executions, and the number of network accesses
during all those invocations, respectively. Note that the over-
head due to DOM accesses is negligible since it is four orders
of magnitude smaller than the loading overhead. The formula
shows that the overhead for a specific website is more likely
to be dominated by the number of third-party scripts, unless
there exist intensive asynchronous invocations. As compared
with the time delay of average webpage loading, the added
delay appears unnoticeable to human users.

B. Macro-benchmark Experiments

Performance of Restricted Third-party Scripts. The
overall impact on third-party script depends not only on
ScriptChecker, but also on the script’s own behaviors. Since
there is no common benchmarks, we choose top 10 graphic
libraries [17] to represent heavy-duty scripts which make
intensive DOM accesses and 5 utility libraries [17] to rep-
resent light-duty ones. We build the webpage by cloning the
JS libraries’ website and measure the time interval between
the start of page loading and the moment when the library
functionality is completed (e.g., when the draw is finished
for graphic libraries), with and without ScriptChecker. To
avoid the networking impact on the results, all scripts are
stored locally. For each library, ScriptChecker blocks its access
to a private form in the web page. Table VI reports the
experiment results. The average performance tolls upon the
graphic libraries and the utility libraries are 3% and 9%,
respectively.



Graphic T chartjs highcharts | particlesjs raphael d3
Baseline 1218.37 | 415.87 237.69 248.69 625.04
Script- 1223.17 | 427.57 248.19 258.95 670.68
Checker 4.8) (11.7) (10.5) (10.26) (45.64)
Graphic IT threejs mathjax amcharts supersized | googlecharts
Baseline 3211.22 | 3081.13 5922.22 188.65 2118.10
Script- 3227.09 | 3130.03 5996.25 200.30 2154.44
Checker (15.87) (48.9) (74.03) (11.65) (36.34)
Utility jquery lodash modernizr | moment underscore
Baseline 102.88 85.28 200.40 68.47 55.86
Script- 111.64 93.75 206.55 75.36 63.62
Checker (8.76) (8.47) (6.15) (6.89) (7.76)
TABLE VI LATENCY (IN MS) ON LOADING WEB PAGES AND

INVOKING THE FUNCTIONALITIES OF JS LIBRARIES REPORTED IN [17].

In these experiments, we do not visually notice the perfor-
mance difference incurred by ScriptChecker. The experiment
results show that the performance impact varies from case to
case. As explained in our micro-benchmark experiments, the
overhead is by and large decided by the number of scripts
to load. The amcharts test suits has the highest overhead
because its loads 5 scripts and registers 1757 listeners. Hence,
webpages with more third-party scripts and frequent invoca-
tions of light-weight third-party script tasks suffer a higher
relative overhead.

Performance of Host Scripts.  Three benchmark suites
are used to evaluate the speed and smoothness of executing
the host’s JS code which does not involve any third-party
scripts. We run the Kraken [5] benchmark with and without
ScriptChecker. Kraken uses a myriad of test cases, including
audio processing, image filtering, JSON parsing and cryp-
tographic routines. For each test, the average time usage is
reported in Table VII. The total overhead is about 0.1%.

ai audio| imaging | json stanford Total
Baseline 249 398 426 783 1409 3266
ScriptChecker | 249 397 428 782 1413 3269
TABLE VIIL. JAVASCRIPT PERFORMANCE FOR KRAKEN (IN MS).

The JetStream?2 [8] benchmark suite scores 31.88 and 31.75
in the stock Chromium and Chromium with ScriptChecker, re-
spectively. It amounts to roughly 0.4% drop. To assess whether
the host’s DOM access is affected, we choose the Dromaeo
DOM Benchmark [4]. The experiment reports 0.304% drop in
average.

These experiments show that ScriptChecker inflicts neg-
ligible collateral performance loss on the host scripts not
using third-party scripts. Because these host tasks do not have
a capability, ScriptChecker neither converts them into asyn-
chronous execution nor checks their permissions at runtime.
The reported loss is mainly attributed to the checking whether
a task carries a capability.

IX. COMPARISON WITH EXISTING SCHEMES

A. ScriptChecker vs. Third-party Script Restriction Schemes

Table VIII summarizes the comparisons between
ScriptChecker and existing schemes from three perspectives:
performance, usability and security.
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Performance. Reference restrictions schemes take a heav-
ier performance toll than other approaches, mainly due to
the overhead to cross the restriction boundary. Attributed
to messaging passing, AdSentry reports 590 times overhead
in one DOM access* and Treehouse incurs about 15 times
overhead to DOMTRIS [3]. Although Jate [51] uses proxy
objects instead of messages, it still incurs 219% overhead
in loading jQuery because of dynamic script-rewriting and
object creation. The runtime overhead of function filtering
schemes (e.g., ConScript [42] and WeblJail [52]) depends on
the advice functions executions. It is especially efficient when
a JS function makes a batch of resource accesses and can be
arbitrated as a whole. Its main performance drawbacks are code
expansion and costs of protection over the advice functions.

Usability. Because all existing schemes work at the JS layer,
they place a heavy burden on web developers who must express
the desired policies into JS functions, i.e., advise functions
in function filtering schemes and the call-back functions in
resource restriction schemes. These functions are additional
security logics which require security expertises and prudence
to develop. In contrast, with ScriptChecker in the browsers,
developers only need to specify the resources to protect and
leave the enforcement details to the browser. Another remark-
able advantage of ScriptChecker is its adaptability to change
policies at runtime as evidenced by the JQuery restriction case
in Section VII-B. None of the existing scheme supports dy-
namic policy changes. In terms of deployability, ScriptChecker
involves non-negligible changes on Chrome while Treehouse
[34] does not require any client end support.

Security. ScriptChecker provides the strongest security. Ex-
isting schemes are susceptible to the confused deputy attack,
including collusion attacks where a script gets another script’s
privilege by calling its function. Moreover, existing schemes
requires a manual effort to cover the entire attack surface at
the JS layer, which is error prone and must be kept consistent
with the latest JavaScript engine. In contrast, ScriptChecker’s
assurance is independent of the JS layer attack surface.

B. ScriptChecker v.s. Information Flow Checking

Information Flow Checking (IFC) schemes [39], [28], [45],
[27] track and regulate runtime data flows to stall sensitive
data leakage to unauthorized parties. These schemes enforce
a system-wide policy governing all DOM objects and scripts
including third-party ones. Its ability of restricting third-party
scripts depends on whether it is fine-grained enough to dif-
ferentiate them from the host scripts. Since third-party scripts
are often co-located with host scripts in the same frame, fine-
grained IFC incurs a remarkably high overhead. Moreover, IFC
imposes a rigid and uniform policy and hence is ill-suited
to the divergent use of third-party scripts. As explained in
Section II, the least-privilege principle requires that third-party
scripts used in one webpage may need different permissions for
their respective purposes and the same for different executions
of the same script. It is hard to attain an elastic IFC for dynamic
policy changes.

4 AdSentry reports only 4.08% overhead in confining advertisement scripts
because, according to its authors, the the network cost is “typically much more
significant than local computation time in web browsers” [29].



Main Sch Runtime Overhead Usability p— Securicty —
. ttacl onfuse
Approach DOM Page Loading Developer’s Policy En- Ad?ptable Surface Deputy  Attack
Access work forcer Policy .
Coverage & Collusion
Resource AdSentry [29] 590x 4.08% on Ads restriction write 1) Manually
restriction TreeHouse [34] N/A 15x on DOMTRIS [3] call-b'ack No done by A
Jate [51] 11.97% 19.5% on Ads restricli'on; functions Host JS codd support ?evelopers, ' Vulnerable
219% on JQuery loading; ii) error prone;
Function ConScript [42] 15% N/A write advice iii) Need to
filtering WebJail [52] N/A 42% on self-made pages functions update with JS;
Task . 9% on utility libraries [17] ) replace )
capability ScriptChecker 9% , 6!;‘;0 on -})QSE/KRIS ) tupc:tlll(jfn call Browser Easy Orthogonal Secure against
.67% on 3 interface
TABLE VIIL COMPARISON WITH EXISTING SCHEMES RESTRICTING RISKY SCRIPS.

In contrast to IFC, ScriptChecker is a machinery enforcing
the host-declared policies for third-party scripts. The strength
or correctness of the policies is beyond its scope. For instance,
the host page copies its cookie to a DOM object and then
invokes a third-party script without cookie access permission.
Although ScriptChecker prevents the script’s execution from
accessing the cookie, it cannot stop the leakage from the
aforementioned DOM object which is unprotected.

The methodologies behind ScriptChecker and IFC can be
combined together to reinforce each other. On the one hand, an
IFC scheme using tasks as subjects do not update data labels
along the instruction flow. It greatly reduces tracking occasions
and simplifies rules so that a coarse-grained IFC scheme can
meet the security demands. On the other hand, ScriptChecker
can be augmented by a Mandatory Access Control (MAC) and
by a data tainting mechanism to trace sensitive data flows so
that the aforementioned leakage can be caught. It releases the
developer’s from the onus of defining a watertight policy.

X. DISCUSSIONS
A. Confining Code with Untrusted Inputs

Besides risky scripts, the host frame’s own code receiving
untrusted inputs poses threats as well, especially when the
untrusted inputs are converted to code using eval. Existing
defenses sanitize inputs based on the known attack patterns
and vulnerabilities [26], [32], [48], [11]. These approaches
may not be able to detect zero-day attacks.

ScriptChecker can be applied in tandem with input sanitiza-
tion to restrict those risky executions. Even if a malicious input
is missed by the sanitizer, its execution is still restricted by the
assigned capability which can stall the attack or mitigate the
damage. ScriptChecker hence provides the last line of defense
while existing techniques at the JS layer form the front line
defense. Furthermore, the existing defense can benefit from
ScriptChecker as it provisions more knowledge to examine
untrusted inputs. For instance, if a message is sent from a
restricted task, the receiver frame may need to apply more
rigorous checking with the relevant contextual data.

For instance, a special case of untrusted input is the so
called permission re-delegation attack [30]. A malicious third-
party function may “invoke” its deputy code by delivering
messages using postMessage. The task that processes the
message does not inherit the sender’s capability, and its ex-
ecution could be influenced by the adversary due to its own
vulnerability. To counter the attack, the message handler can
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spin off a new task with downgraded privilege to process the
incoming message. The new task can be deprived of accessing
any sensitive DOM or critical JS objects.

B. Third-party Script Modification

As described in Section IV, ScriptChecker places a third-
party script into a sandbox context to counter environment poi-
soning attacks. The relocation the script to use windowMain
of the sandbox context to directly reference JS objects created
by the host script. There are two approaches to automatically
handling the change. One approach is loading-time script
rewriting. The third-party script is screened upon loading so
that direct references to JS objects of the host script are
replaced by an indirect reference through the windowMain
object. The other approach is to modify the JS engine to detect
such scenarios at runtime. When executing a script in the
sandbox context, the JS engine always try to locate the JS
object in references from the sandbox context by default. If
the target object is not found, it searches the corresponding
main context for the object under the same name.

The first approach is more lightweight and incurs less
overall runtime overhead since the script is only screened
once. However, it may not able to replace all the references.
The second approach is more complete and yet incurs heavier
overhead especially when the script is executed frequently. A
hybrid approach may strike a good balance between efficiency
and completeness.

C. JavaScript Access Control: Code vs. Task

Access control against JavaScript code is one of the fun-
damental security responsibilities the browser undertakes. By
default, Chrome’s local/kernel security monitor enforces SOP
[16] for all JS scripts, regardless whether they are from the
host or a third-party, though various frame based policies are
proposed in the literature, e.g., COWL [47].

From the access control perspective, the security monitor
considers the JS code as the subject and determines whether its
origin and/or frame attributes conform to the prevailing policy.
Unfortunately, it is known to be susceptible to the confused
deputy attacks in the same way to attack existing third-party
script restriction schemes as shown in Section II-C. Malicious
code can evade the access control restrictions by calling
legitimate JS code. Several attacks have been discovered
including cross-site request forgery [49], clickjacking [1] and
permission re-delegation [30], all of which are embodiments
of the confused deputy attack in different settings.



ScriptChecker can be easily extended to harden SOP and
other frame-based policies against the confused deputy attack,
in that they are all enforced by the local/kernel security
monitor. To strengthen SOP and frame-based policies, the
capability scheme of ScriptChecker as described in Section V
needs to be extended to attach frame related metadata for each
task. At the moment of SOP checking, the security monitor
consults the metadata of the requesting task, instead of the
origin of the requesting JS code. We remark that the task
oriented access control resembles process oriented permission
checking in modern operating systems.

D. Deployment Considerations

Backward Compatibility. With ScriptChecker, web applica-
tions depend on the browser to restrict their third-party scripts.
If a web application does not find ScriptChecker APIs in the
browser, it then falls back to a JS layer scheme to confine third-
party scripts. Note that ScriptChecker and JS layer schemes
can co-exist in the same browser without conflicting each
other. We believe that ScriptChecker can be deployed in an
evolutionary fashion. Since ScriptChecker is fully transparent
to legacy webpages, web browsers can take the lead to deploy
it without breaking existing webpages.

Deployment on Other Browsers. The design principle
of ScriptChecker hinges on two fundamental functions of a
browser: task scheduling and security monitors, which are
components in other mainstream browsers. The former is
mandated by the HTML standard. Browsers should use an
even-loop to coordinate various executions including scripts.
Moreover, mainstream browsers have their respective security
monitors enforcing SOP and CSP. Hence, ScriptChecker can be
built in browsers other than Chrome, although the implemen-
tations details, such as APIs for task generation are different
from our prototype.

XI. SUMMARY

We propose and implement ScriptChecker, a browser-based
capability system enforcing policies defined by the host script
against risky third-party script executions. Unlike in the exist-
ing work, web developers can focus on resources to protect,
instead of covering all attack vectors. By combining tasks with
capabilities, ScriptChecker has the built-in resistance against
the confused deputy attacks. Our experimental results show
that the security and usability advantages are gained at the
cost of modest performance loss.
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APPENDIX A

The case study shown in Section VII-B1 examines the ef-

fectiveness and adaptability of ScriptChecker. The original web
page and the modified one with ScriptChecker are depicted in
Figure 10(a) and Figure 10(b), respectively.



1 <!DOCTYPE html>

1 <!DOCTYPE html> 2 <head>

2 <head> 3 e

3 e 4 <script

4 <script> 5 risky task_capability=

5 6 'DOM_Access_Protective;Network_Access;Cookie_Access;">}

6 (function(i,s,o,q,r,a,m){i['GoogleAnalyticsObject"]=r; 7 (function(i,s,o,q,r,a,m{i['GoogleAnalyticsObject']=r;

7 ilrl=ilr]l||function(){(ilr]l.o=il[r]l.q||[]).push(arguments)}, 8 ilrl=ilr]||function(){(ilr].q=il[r].q||[]).push(arguments)},

8 i[r].\=1xnew Date();a=s.createElement (o), 9 i[r].l=lxnew Date();a=s.createElement(o),

9 m=s.getElementsByTagName(o) [@] ;a.async=1;a.src=g; 10 m=s.getElementsByTagName(o) [@];a.async=1;a.src=g;
10 m.parentNode. insertBefore(a,p) 11 m.parentNode. insertBefore(a,m)
11 })(window,document,'script',lhttps://.../.../gbh.js'l'gadw'); 12 }) (window, document, 'script’, *https://.../.../gbh.js', 'gadw');
12 13 </script>
13 </script> 14 .
14 ces 15 <script type="text/javascript" src="https://.../.../modernizr.js"
15 <script type="text/javascript" IsrcThttps://. ../.../modernizr.js"y 16 risky task_capability=

=
o
=
~

"Network_Access;DOM_Access (Deny, {Tag: form, textarea, input}) ;"
</script>
<script type="text/javascript" src="fake-crypto.js"

|risky task_capability="No_Cookie_Access;">|

17 </script>

-
©

2o
© ®

N
S

19 <script type="text/javascript" [s rc="fake-crypto.js"> ]

20 21 </script>
21 </script> Three 22 -
22 ves un!n._|sted 23 </head>
23 </head> scripts 24 <body>
24 <body> 25 .
25 e 26  <form action="" method="get" id="co-billing-form"
26 <form action="" method="get" id="co-billing-form"> 27 <p>Email:
27 <p>Email: 28 <input type="text" name="email" value="xxx@xxx.com"/>
28 <input type="text" name="email" value="xxx@xxx.com"/> 29 </p>
;: </ p; . 30 <p>Password:

<p>Fassword: , ) , , 31 <input type="text" name="pwd" value="123456"/>
31 <input type="text" name="pwd" value="123456"/> 2 </p>
32 </p> DOM 33 <in e ——

X " o " . put type="submit" value="Submit" />
:i - <input type="submit" value="Submit" /> elements 34 </form>

orm=> 35 <textarea rows="10" cols="30">A textarea</textarea>

35 <textarea rows="10" cols="30">A textarea</textarea> 36
:‘G} <scr1 t type="text/javascript"> 37 <script type="text/javascript">

Pt type= javascrip . 38 function accessCookie() { return document.cookie; }
38 function accessCookie() { return document.cookie; } 39 </script>
39 </script>

40
40 3 A : 3 1,
41 <script type="text/javascript"> :;‘ <script type= :Xtﬁ J:\.lascrlpt z
42 test feature API using Modernizr Invoke P v Suszrl‘oc f !
43 supportSocket = Modernizr.websockets;| Modernizr vaj capability = X
a4 — 44 "Network_Access;DOM_Access(Deny,{Tag: form, textarea, input});";
45 // the business logic according the result of feature testing 45 tid = asynCallCap(function () { )
46 runWithFeature (supportSocket); 46 suppc.art.Socket = windowRisky[1] .Modernizr.websockets;
47 </script> 47 }, capability);
48 48 asynCallNoCap(function runWithFeature(supportSocket tid);
49 49 </script>
50  <script type="text/javascript"> 50 ) . ) .
51 // randomString generates string with given size 51 <script type="text/javascript">
52 data = randomString(64%1024); I 52 data = randomString(64%1024);
53 var hashes; Invoke 53 ar hashes, capability = "No_Cookie_Access;";
54 Ihashes = CryptoJS.SHAZSS(data).toString(data);I CryptoJS 54 id = asynCallCap(function () {
55 55 hashes = windowRisky[2].CryptoJS.SHA256(data).toString();
56 Handle(hashes); // handle the hash results 56 }, capability);
57 </script> 57 )i ¥, tid):
58 - 58 </script>
59 59 ana
60 </body> 60 </body>
61  </html> 61  </html
(a) The original web page. (b) The modified web page for Chromium with ScriptChecker.

Fig. 10. The modified National Baseball Hall web page used in Section VII-B1. It embeds three malicious scripts with different types of attacks.
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