
Hazard Integrated: Understanding Security Risks in
App Extensions to Team Chat Systems

Mingming Zha
∗1, Jice Wang

∗2, Yuhong Nan
#3, XiaoFeng Wang

#1, Yuqing Zhang
#2,4,5, and Zelin Yang2,4

1Indiana University Bloomington, {mzha, xw7}@indiana.edu
2National Computer Network Intrusion Protection Center,

University of Chinese Academy of Sciences, {wangjc, zhangyq, yangzl}@nipc.org.cn
3School of Software Engineering, Sun Yat-sen University, nanyh@mail.sysu.edu.cn

4School of Cyber Engineering, Xidian University
5School of Cyberspace Security, Hainan University

Abstract—Team Chat (TACT) systems are now widely used for
online collaborations and project management. A unique feature
of these systems is their integration of third-party apps, which
extends their capabilities but also brings in the complexity that
could potentially put the TACT system and its end-users at risk.

In this paper, for the first time, we demonstrate that third-
party apps in TACT systems indeed open the door to new security
risks, such as privilege escalation, deception, and privacy leakage.
We studied 12 popular TACT systems, following the key steps of a
third-party app’s life cycle (its installation, update, configuration,
and runtime operations). Notably, we designed and implemented
a pipeline for efficiently identifying the security risks of TA APIs,
a core feature provided for system-app communication.

Our study leads to the discovery of 55 security issues across
the 12 platforms, with 25 in the install and configuration stages
and 30 vulnerable (or risky) APIs. These security weaknesses are
mostly introduced by improper design, lack of fine-grained access
control, and ambiguous data-access policies. We reported our
findings to all related parties, and 8 have been acknowledged. Al-
though we are still working with the TACT vendors to determine
the security impacts of the remaining flaws, their significance
has already been confirmed by our user study, which further
reveals users’ concerns about some security policies implemented
on mainstream TACT platforms and their misconceptions about
the protection in place. Also, our communication with the vendors
indicates that their threat models have not been well-thought-out,
with some assumptions conflicting with each other. We further
provide suggestions to enhance the security quality of today’s
TACT systems.

I. INTRODUCTION

Team Chat (TACT) systems [48] (aka. business communi-
cation platforms and collaborative software) support persistent

∗ Mingming Zha and Jice Wang are co-first authors.
Yuhong Nan, XiaoFeng Wang and Yuqing Zhang are co-corresponding

authors.

communications among a large number of individuals work-
ing on the same projects through direct messaging, group
information exchange organized by public or private topics,
online (web, audio or video) meetings and others. Prominent
examples include Slack [60], Microsoft Teams [41], Webex
Teams [10], Facebook Workplace [15] and Zoom [88]. With
the surge of demands for remote collaborations, particularly
under the ongoing pandemic, these systems have become
hugely popular: Slack is reported to have over 10 million
downloads [22], and both Microsoft Teams and Zoom are
all utilized by over 100 million users around the world [21],
[23], for the purposes ranging from managing government
digital HQ [89], helping with commercial projects [59] to
enabling remote education [39]. These systems can also be
extended by integrating similar or complementary systems
through Team chat Apps (aka. bots, integrations). For example,
Slack can enrich its functionalities with over 2,200 apps,
including those for Zoom, Teams, Dropbox, Gmail, Salesforce,
etc. The problem is that such enrichment also introduces
complexity, which coupled with loose protection on those
platforms, could potentially put security-critical tasks at risk.
With its importance, this issue, however, has never been
studied before.

Shadow of security risks. Indeed, for the first time, our
research shows that such Team chat Apps (called TAs in
our research) integrated into TACT systems could punch
holes in their already fragile protection, opening the door to
various security risks, including privilege escalation, deception
(spoofing), and privacy leak. More specifically, such a system
typically implements simple role-based access control with an
admin in charge of a workspace and the owner of each channel
to manage the operations within the channel; an ordinary
member is not supposed to interfere with other members’
activities, and those outside a private channel do not even
see its existence. Although the details of such a security
model are only vaguely documented at best, its efficacy is
clearly under testing in the presence of TAs. Once added to a
workspace, a TA will be able to automatically perform a set
of operations, such as reading or writing messages, managing

Network and Distributed Systems Security (NDSS) Symposium 2022
24-28 April 2022, San Diego, CA, USA
ISBN 1-891562-74-6
https://dx.doi.org/10.14722/ndss.2022.24387
www.ndss-symposium.org

calls, etc., based upon the permissions granted by its installer
(e.g., an admin or a normal user). A critical question is whether
these permissions remain consistent with the security model
of the TA’s host: e.g., whether an unprivileged member can
install a TA to access the resources she is not entitled to, like
messages from a private channel. Note that in the presence
of the permission with an overly broad mandate, a malicious
TA could look completely innocent: e.g., an app meant to get
specific messages such as the posted URL links for its owner
can legitimately acquire the related permission, which if not
well designed might allow it to read from not only the channels
the owner joins but also those he does not.

Fundamentally, the threat models of most TACT platforms,
particularly their interactions with TAs, are likely not well
thought out, nor are they clearly stated. As a result, not
only cannot one easily understand the policies enforced on
a platform and be convinced of their soundness, but she could
fail to configure her workspace properly, even when some
protection is indeed there to control security risks.

Security analysis on TACT platforms. To unravel this
myth, we conducted the first in-depth study on 12 popular
TACT platforms (i.e., Slack [60], Microsoft Teams [41],
Webex Teams [10], Facebook Workplace [15], Discord [13],
Mattermost [36], Bitrix24 [9], etc.), covering the key steps
of a TA’s lifecycle, particularly its installation, configuration,
update and runtime operations. Based upon a set of common-
sense security policies collected from various sources (Sec-
tion III-C), our study brought to light surprising weaknesses
at each of these steps, with security and privacy implications.

More specifically, due to the lack of effective TA vetting,
a malicious TA can easily get installed, even without admin
or other users’ awareness. Making security threats of TAs
particularly serious and realistic is the fact that none of the
TACT platforms we analyzed properly inform their users of
this security risk and related workspace settings. So there is
no evidence that the workspace admin is adequately prepared
to address the problem. Actually, we found that on 5 out of
the 12 platforms, by default, an ordinary member can install
any TA without even being aware by the admin. Particularly
on Slack, an already installed TA can be stealthily updated
by its owner, which enables a malicious member to add and
remove dangerous capabilities unrelated to the TA’s stated
functionality, such as access to the whole message history of
a private channel [57].

Further, a malicious TA can perform various attacks due
to the problematic design across the TA’s update and con-
figuration. For example, a malicious TA can be configured
to hijack the Slash Command for invoking a legitimate TA
(Section IV-B); as a result, users on Slack, Teams, Webex
Teams, etc., can be cheated into running malicious TAs as
popular ones such as Zoom for Slack, leading to information
leaks or phishing attacks. Also, the link unfurling [56] function
in Slack and Facebook Workplace turns out to be a privilege
escalation avenue: it allows a TA to be configured to respond to

any event related to a given domain, even those from a private
channel; so an unprivileged member can simply install a TA
registering with a popular domain like docs.google.com
for unauthorized reception of any URLs prefixed by that
domain, such as a google doc link posted in a private channel.
For the 12 TACT platforms investigated in our research,
we manually reviewed the aforementioned TA lifecycle (i.e.,
installation, configuration, and update) and totally identified
25 unique instances of the above issues.

API scanning and discoveries. During the runtime stage
of its lifecycle, a TA accesses resources within a workspace
through TACT APIs, as regulated by different permissions,
for the purposes such as making audio/video calls, viewing
messages from approved channels, etc. Although such per-
missions are supposed to fall in line with the TA installer’s
privilege (e.g., only reading messages from the channels she
joins), in practice, some of them may go beyond the intended
scope, leading to security and privacy risks. Finding vulnerable
APIs is nontrivial, as each platform we studied has tens
to over a hundred APIs. Besides, an effective analysis of
them requires not only setting the correct parameters for each
call but also configuring the right context: e.g., the API for
adding/removing call participants can only be evaluated after
a call has been initiated. To address these challenges, we
developed an automated tool, called TAPIS , to analyze a large
number of APIs cross various platforms for finding those with
design weaknesses. More specifically, TAPIS utilizes Natural
Language Processing (NLP) to recover from each platform’s
manual parameters for each API and the interdependency
among them, further construct and run call sequences inside a
TA in an attempt to access the resources outside its installer’s
authority, so as to detect the APIs that can be exploited.

Running TAPIS on such TACT platforms, our study reports
a total of 30 risky APIs which are used at a TA’s runtime,
affecting prominent systems like Slack, Webex Teams, Flock,
etc. These APIs allow one to perform unauthorized operations
on the channels, including disbanding a channel, removing
channel members, modifying or deleting messages posted by
others, and interfering with phone calls created by others.
More specifically, Slack call APIs enable a channel member
to update the audio/video call information posted by another
member and even terminate group calls initiated by others;
the APIs of Zoho Cliq (Cliq for short) allow an arbitrary
user to edit or delete the messages of other channel members;
a Webex Teams API allows a member to stealthily list all
messages from the channel he does not join, so his access
to the messages is not known to others; Twist APIs grant
some of a group owner’s privileges to ordinary members,
such as evicting group members. Besides, in 4 out of the
12 TACT systems, an admin can freely access other users’
private messages through APIs, even though this is explicitly
prohibited by the platforms such as Microsoft Teams [19] [75]
and perceived to be illicit by platform users (Section VII-B)
and has never been documented by most platforms. More
surprisingly, on the 11 platforms, a malicious TA can send

2

spoofing URLs to a chat box via message posting APIs, which
can effectively trick users into clicking innocent-looking yet
malicious links.
Impacts and mitigation. We have been reporting our findings
and concerns to affected parties, including Slack, Webex
Teams, Cliq, and others, and are committed to helping them
address all those issues. So far, both Slack and Cliq have
acknowledged some problems we reported, and Slack has
awarded us $1,000 bonus. Our demos, the code of TAPIS and
other information are posted online [27]. Also discovered in
our study is the lack of a clear delineation of the security
policies each TACT system enforces and the misconceptions
about them among the users of these systems. For example,
we are surprised to find that Twist and Webex Teams grant
anyone joining a channel some privileges supposed to be
solely possessed by the channel owner (e.g., removing channel
members), which has never been clearly explained in their
documents. To understand such confusion and the impacts
of our findings, we conducted a user study with over 100
TACT users. Our study not only confirms the users’ serious
concerns about the access control weaknesses we discovered,
but also reveals the gap between their understanding of the
TACT policies and those actually implemented. For example,
about 74.87% of the users did not know and disagreed that
their admin can access their conversations in private channels.
Over 75% of the participants believed that a member should
not be allowed to interfere with others’ communication (calls,
posting, etc.). Further from our conversation with Slack and
other TACT providers, we feel that their threat models might
not be clearly defined (Section VI-C). We further discuss how
to enhance the security protection of these platforms.
Contributions. We summarize our contributions as follows:
• New findings. We conducted the first security analysis on the
integration of third-party apps into popular TACT systems. Our
research has led to the discovery of unexpected vulnerabilities
and design weaknesses on highly popular platforms, allowing
an unauthorized member to access other team members’
sensitive information and interfere with their operations.
• New understanding. Our study also brought to light the
questionable practice of popular TACT platforms that may
have serious security implications. Particularly, their opaque,
sometimes counterintuitive security policies and error-prone
settings render their users less clear about what is under
protection and what is not. Such misconception, coupled with
the design weaknesses found, makes security-critical tasks
running on those platforms harder to be protected than they
should be.
• Concrete step toward better protection of the TACT ecosys-
tem. Our research presents an opportunity to enhance the
protection of the TACT ecosystem. The reported weaknesses
could better inform the platform users, so actions could be
taken to vet TAs to be installed, configure a workspace and
manage a channel in a more secure way. Our new tool,
TAPIS , helps automate the discovery of vulnerable APIs.
TACT providers can also learn from our new understanding to

Fig. 1. Initiate a Zoom call in Slack chat box

better communicate with their users and improve their security
models.

II. BACKGROUD

In this section, we introduce the background knowledge of
team chat systems and team chat apps, together with their
current access control design.

A. Team Chat Systems and Team Chat Apps

Like real-world organizations with shared physical
workspace, a team chat system provides a virtual environment,
allowing team members to collaborate online. Compared with
personal messaging platforms (e.g., Facebook Messenger,
KakaoTalk, and iMessage), TACT systems are characterized
by two prominent features: (1) TACTs users are focusing
more on group chat than one-on-one direct messaging. On
a TACT platform, everyone can see the conversations that
take place in a public channel. For example, on Slack [60],
people from the same company are typically all members of
a “workspace” (also called “teams”, in other systems such
as Microsoft Teams [21]). In the workspace, one can further
join channels (also named “space” in Webex Teams, “group”
in Facebook Workplace, respectively.) to discuss different
topics or work on different projects. These channels could
be either publicly accessible or made private so only invited
members can participate. (2) A TACT system is explicitly
designed to support collaborations, such as group video/audio
chat, screen/file sharing, and project management. These
features are often supported by the availability of both public
and private channels and the enhancement of in-channel
user interactions through integrating other collaboration tools
using third-party apps (TAs, aka. integration, bots, extensions,
depending on platforms). As an example shown in Figure 1,
once installing a Zoom app [61] in Slack, one can directly
create and initiate a Zoom call within a Slack chat box.
Therefore, with the presence of other text messaging systems
such as iMessage [28], WhatsApp [81], and Signal [55] that
also support group chats, we consider these systems out of
the scope of our research if they do not come with such
unique features for team collaborations (public channels and
TAs in particular).

Many TACT platforms run TA markets, in which TAs tend
to be built by well-known third-party vendors (e.g., Google,

3

Dropbox) that provide popular online services. Besides, any
team member can develop and create her own TA specifically
for her workspace, which may or may not be uploaded to the
market. Further, depending on the setting of a TACT system,
a TA can be directly installed either by the user herself or
approved and installed by her workspace admin.

A TA accesses TACT resources through APIs. Such APIs
are typically in the REST-API format [25], providing function-
alities such as reading, writing and updating TACT system
resources (e.g., message history, file, and meeting call). An
API request issued by a TA is handled on the platform’s server-
side, which further returns a response including either the
requested data (in JSON format) or a status code as feedback.

B. Access Control Models

Access control in TACT systems TACT systems implement
role-based access control to protect data and other information.
In most cases, there are three types of communication channels
in a TACT system: public channel, private channel, and direct
message channel3. For a public channel, all team members can
freely join and leave the channel, and all data and resources
are meant to be made public. A private channel can be created
by any team member but only those invited can participate.
Team members can also choose to chat via one-on-one direct
messaging, which is not observable to others.

Under this model, each team member is assigned a role (e.g.,
the admin or the normal user), and each role is given a set of
privileges to access data in the workspace. The admin has the
highest privilege, capable of managing all channels created
in the workspace. However, some platforms imply the role’s
limit in accessing the conversation within a private channel,
which is in line with TACT users’ perception (Section VII-B).
A general user has a lower privilege, who is allowed to read
and post messages in the channels she joins and edit and delete
her own messages. However, she is not supposed to read, edit
or delete the posts in a private channel she is not part of.
Access control on TAs. The TACT system also utilizes
permission-based access control, similar to that of the Single-
Sign-On system [12], to manage TAs, which leverages a
unique access token and a list of permissions to control the
information a TA can touch. The permission list specifies the
APIs the TA can invoke. For instance, in Slack, the permission
calls:read allows one to view information about ongoing and
past calls through calls.info; calls:write enables an app to
start and manage calls via a set of APIs such as calls.add.
Note that such permissions can be granted to a TA either by
the workspace’s admin, or by the team member who installs
the app, depending on the system’s design and configuration.

C. Security Risks in TACT Systems

It has been reported that a Zoom vulnerability allows
uninvited attendees to break in and disrupt meetings with
hate-filled or pornographic content [82]. Also, its company’s
security practices have drawn a lot of attention – along with

3In Webex Teams, the private channel is called as moderated space [79].

TABLE I
POPULAR TACT PLATFORMS AND THE AMOUNT OF

TAS AVAILABLE IN THE PLATFORMS.

Platform Number of
Downloads

Number of
TAs

Slack 10M+ 2200+
Microsoft Teams 100M+ 700+

Webex Teams 1M+ 447
Facebook Workplace 10M+ 104

Flock 100,000+ 53
Discord 100M+ 25600+

Rocket. Chat 100,000+ 118
Cliq 100,000+ 56
Twist 50,000+ 31

Mattermost 100,000+ 29
Bitrix24 1M+ 539
Zoom 100M+ 1572

three lawsuits [29]. Further concerned by users are the TAs
hosted in TACT systems. Miscreants are reported to move their
attention from Android and iOS app stores to TA markets [70]:
some Discord TAs are found to be malicious, aiming at ex-
filtrating sensitive data from workspaces using a key feature
called webhook [68].

Given the two access control models for protecting data
on a TACT platform and regulating a TA’s behavior, the
question becomes whether the current design and their security
policies in TACT systems as well as TAs are indeed sound.
Otherwise, a malicious member exploiting the weakness of
a platform can put security-critical tasks running on the
platform at risk. Indeed, our research shows that such security
problems are present in today’s TACT systems (Section IV
and Section V-E), allowing unauthorized users to escalate their
privilege through TAs, and further perform various attacks on
other members in the same workspace.

III. OVERVIEW OF OUR STUDY

A. The Big Picture

Platform selection. Table I summarizes the 12 TACT plat-
forms covered by our study. To identify representative plat-
forms, we first reviewed public reports [38], [76] for popular
TACT systems. Then, we selected from those systems ones
that meet the following three standards: (1) the platform sup-
ports group-based messaging with fine-grained access control
(e.g., providing public and private channels for different group-
chat scenarios); (2) the platform provides third-party app
integration, allowing users to develop and install such apps
into their systems; (3) the platform is popular with a large
number of users. For example, all TACT platforms analyzed
in our research have more than 100k downloads in Google
Play (Table I). Through such a selection procedure, we believe
our research can sufficiently cover most of the popular TACT
platforms. Note that extending our study to other platforms
is feasible. For example, we have proposed an automated
API Scanning framework TAPIS (Section V), to support a
more efficient discovery of security weakness in APIs across
different TACT systems.

4

Goal and procedure. Given the 12 selected TACT platforms,
our goal is to effectively detect and analyze potential security
weaknesses in the integration of third-party apps on these
platforms. More specifically, we aim at finding the extent to
which a malicious member in the TACT system can take
advantage of such apps to attack other users in the same
workspace.

For this purpose, we first laid down a set of Common Sense
Security Policies (CSSPs) for platform evaluation to overcome
the opaqueness of TACT security models (Section III-C).
These policies were summarized from security literature and
recent public discussions (i.e., vulnerability reports of TACT
platforms [26] [51]) and meant to be general across different
platforms and their TAs. For example, a TA should only access
resources within the scope of its installer.

Under the CSSPs, we reviewed the documentation, designs,
and implementations of the 12 TACT systems to identify
their potential violations of these rules. More specifically,
on each of the platforms, we analyzed the whole life cycle
of a TA (installation, configuration, update, and execution):
our analysis started from an app’s installation, update, and
configuration (Section IV), looking for signals indicating se-
curity risks; further, to understand the security risks introduced
during a TA’s execution, particularly when it interacts with its
hosting platform through APIs, we designed and implemented
a framework called TAPIS to test whether a given API violates
any CSSP. Running TAPIS on all 12 platforms, we were
able to discover 30 risky APIs with security or privacy risks
(Section VI). Lastly, we conducted a user study to understand
the significance of our findings and the gap between the
security policies actually implemented on these platforms and
TACT users’ perception.
Key findings. We summarize our key findings as follows:
(1) TACT security risks. Our research has led to the discovery
of 55 new TACT security issues (8 has already been confirmed
as vulnerabilities by TACT vendors). Examples include the
“Slash Command” feature that can be hijacked for invoking
a malicious TA, URL unfurl that enables an unauthorized TA
to collect information from private channels (Section IV-B),
lack of protection against spoofing links that can be utilized
for phishing, and a set of problematic APIs that unduly grant
ordinary channel members privileges to interfere with others’
activities and access others’ resources (Section VI).
(2) Opaque policies and settings with security implications.
Our research shows that the security models of today’s TACT
platforms are often not well documented, and their security-
critical settings are often unknown to users, and some of their
security policies significantly deviate from user perception. For
example, installing TAs on some platforms is unknown to the
workspace admin by default and no warning is given to the
user (Section IV-A). As another example, most of the TACT
users do not know whether the admin can access their private
messages, indicating that there are strong misconceptions in
TACT users on certain TACT data access.
(3) Confusing threat model. We found that the threat models of

some TACT platforms are rather confusing, as evidenced by
conflicting security policies they put in place. For example,
we found that Slack users in a channel are prohibited from
changing or deleting each others’ messages but allowed to
edit or block each others’ video/audio calls (Section VI-C).

B. Threat Model

In our research, we assume that the adversary is a workspace
member with the privilege to install a third-party app into the
workspace. The TA can take any action permitted under the
current security model (Section II-B). Besides, we assume that
the adversary performs all attacks remotely without accessing
the victim’s system and software. Note that the malicious TA
discussed in our study may not be published at any app market.
Instead, it could be directly developed and installed in the
system by a normal member or the workspace admin.

C. Common Sense Security Policies

Since clear specifications of TACT security models are hard
to come by, we have to collect from various sources a set
of Common-Sense Security Policies (CSSPs) that we believe
should underlie the security designs of these systems. In our
research, we collected four critical CSSPs. Particularly, the
first two (i.e., CSSP #1 and #2) come from the security
practice of related systems (e.g., mobile computing) and the
general design principle of secure systems; the other two are
summarized from TACT-specific security requirements (CSSP
#3) and known vulnerabilities (CSSP #4). Below we elaborate
on these policies and the procedure to get them.
General security practice and principle. The security risks
of third-party apps have been extensively studied in other areas
(e.g., Android [17] [20], iOS [4] [80] and Chrome Exten-
sions [32]). A common agreement among these studies is that
third-party apps should be securely vetted before installation
to avoid potential malicious behaviors. Also, the users should
be informed of app installation and update, particularly when
the app requires critical privileges or gains additional ones
for resource access during this process. For example, all iOS
apps need to go through a strict vetting process [4], including
manual review before they become available in the Apple app
store. Also, stealthy installation of third-party apps on these
systems has long been considered to be a serious security
risk [46].

CSSP #1: A third-party application must go through thor-
ough security vetting during its installation and updates,
and the affected users should be explicitly notified.

Besides, we believe that the least privilege principle [84]
underlying almost every single secure computing system (e.g.,
OSes like Unix) should also be upheld by TACT platforms.
For example, an ordinary Linux user is only allowed to operate
on her own resources and public resources. Similarly, a TACT
member is not supposed to acquire any privilege through her
TA that goes beyond her roles in a workspace and a channel,
and her TA should act within her privileges and not be allowed
to access any resource unrelated to its functionalities.

5

CSSP #2: Access control on TAs should follow the least
privilege principle, avoiding granting any unnecessary priv-
ilege that may bring security risks to other TACT users.

TACT-specific security requirement. TACT introduces new
usage scenarios (e.g., public and private channels) compared
to social messaging. Therefore, new security design choices
should be made, which need to be clearly communicated to
TACT users. A prominent example is the privilege of the
workspace admin: our user study shows that many TACT users
believe that even the admin cannot access their private chats
(Section VII-B), which has been confirmed by online discus-
sion [16] [19]. However, this security design choice has never
been clearly stated in any TACT platform’s documentation.
CSSP #3: TACT systems should clarify their access control
design choices for sensitive user data, e.g., whether private
messages can be accessed by the workspace admin.

Known vulnerabilities. Lastly, we looked into recently
revealed vulnerabilities in TACT systems to find out whether
any security property could be missed by these systems.
In our research, we went through all vulnerabilities in
Slack [26] and Rocket.Chat [51] reported by the HackerOne
program [3] [50] [71]. Although these security flaws tend to
violate the least privilege principle (CSSP #2), there is indeed
a generic risk concerning user interfaces (UIs) that needs a
new policy solution. The problem was discovered on Slack
[71], which causes the discrepancy between a posted URL
and its displayed text, and therfore it could be exploited for a
spoofing attack. It can be addressed with the following policy:
CSSP #4: To avoid URL spoofing, TACT systems should
provide adequate warning if the text of a presented link is
different from the actual one it redirects.

IV. RISKS IN APP INSTALL AND CONFIGURATION

In this section, we elaborate our findings of security risks at
the early stage of a TA’s life cycle, including app installation,
update, and configurations that could violate one or multiple
CSSPs on a TACT platform.

A. Perils in App Install and Update

App install. As mentioned earlier, one can either directly
install a TA from the official app market (called public TA in
our research) or develop her own TA (called private TA) and
install it in her workspace. This option brings security risks
since our research shows that most TACT platforms today do
not properly vet private TAs, allowing a malicious TA to get
installed easily and affect other team members.
(1) Install without vetting. We found that 4 TACT systems
(e.g., Slack, Twist) do not vet at all, letting any team member
install private TAs on the workspace by default. While this
is not the default setting for other platforms, our user study
(Section VII) shows that only 21.3% of admins set “install
private TA by admin” as the only option, which indicates that
many admins are willing to extend this privilege to a normal
user, thereby exposing their workspace to malicious TAs.

Fig. 2. A sample malicious app which obtains extra permissions via stealthy
update.

(2) Install without notification. We found that 5 TACT systems
allow a malicious app to be installed in their workspace
without notifying affected users. Specifically, in Slack, Cliq,
Twist, Webex Teams, and Flock, a TA can be installed silently
without causing any notification to be issued to any workspace
member.
(3) Install by deception. Also, our study shows that it is
completely feasible for a malicious TA to masquerade as a
legitimate one to deceive the admin and other team members
since a private TA can easily use another TA’s name and icon.

Given the weak protection mentioned above, a malicious TA
can often be easily installed, which opens the door to follow-
up attacks on the workspace.
App update. On all TACT platforms, a TA needs to first
request permissions before accessing related resources, which
is an effective way for the admin and others to be aware of the
TA’s capability when proper vetting is in place. However, we
found that the adversary can circumvent the protection in some
systems by installing a TA with harmless permissions and later
updating it with more sensitive ones. It can be done since the
update can be unaware to others, including the admin.

Specifically, our research shows that 5 out of the 12 TACT
systems are vulnerable to this app-update attack. Slack and
Twist allow an arbitrary update of an installed TA without
issuing any notification. Figure 2 illustrates an example of the
attack we implemented on Slack. Here, the malicious TA first
claims less sensitive permissions (e.g., app mentions:read)
when installed. Then the attacker updates it and requests
more sensitive permissions to receive private messages. Note
that although Slack does not explicitly notify users of such
an update, one can inspect the TA’s main page to find all
permissions requested. Even this opportunistic protection can
be easily defeated: the adversary can simply update the TA
twice to acquire a sensitive permission for an attack (e.g.,
read sensitive messages) and later drop the permission after
the attack.

B. Configuration Trapdoors

When creating a TACT app, the developer can configure
the TA to facilitate its interactions with its hosting TACT
platform and the workspace. However, our research shows that
the design of such configurations does not fully respect the
TACT platform’s access control model. More specifically, we
found that two key settings of a TA – “Slash Command” [18],

6

[37], [42], [58], [72], [86], [87] and “link unfurling” [11],
[40], [56], can be abused for privilege escalation: through
these configurations, an ill-intended member can hijack the
invocation of a benign TA so as to cheat other members into
exposing their private information, or harvest the messages
that she is not supposed to receive.

The root cause of the problem here is a misalignment
between the security model of a TACT platform and that for
controlling its TAs. Specifically, while an unprivileged team
member cannot access resources in a private channel that
she does not join, it is less clear what the actual permission
scope of the TA she installs would be. Indeed, our research
shows that in some circumstances, the permission scope of
an installed TA can go beyond its installer’s purview: e.g.,
affecting all channels in the workspace, including those private
ones, even when the app has not been added into the channels.
In this way, the TA becomes a stealthy avenue to escalate
its installer’s privilege. Following this line of thought, we
discovered two configuration trapdoors, as follows:

Invocation hijacking via Slash Command. Slash Com-
mand [58] (aka., Command in some systems) is a mechanism
that enables a member of a workspace to launch an installed
TA by typing a command string in her message composer
box. For example, one can invoke Zoom for Slack from her
workspace to create a meeting by simply entering "/zoom".
For this purpose, the Zoom TA needs to claim the command
"/zoom" on its configuration page, so it can be notified once
the command is typed by someone to generate a Zoom meeting
link and post it in the Slack chat box.

With its critical role in triggering an installed TA, the
Slash Command has not been fully specified by these doc-
umentations of most TACT platforms, nor has it received
proper protection: particularly, it is not clear at all which
TA should be triggered when more than one app claims the
same command. In our research, we discovered that on some
platforms, including Slack, Rocket.Chat, Cliq and others, a
malicious TA can strategically claim the Slash Command
registered by a legitimate app in its configuration to hijack
the attempt to activate the app, so as to stealthily replace the
app and impersonate it to other members who may use the
legitimate app. Even more seriously, in Slack, a TA installed
by anyone can hijack the Slash Command set for any existing
TA, even when the legitimate TA has been installed and
configured by the admin. This problem, coupled with the weak
TA vetting and installation control enforced on these platforms
(Section IV-A), enables a malicious member to cheat anyone
within the same workspace, including those inside a private
channel the attacker is not part of, into disclosing their private
information whenever they use the TA the attacker installs.

As an example, consider that the workspace admin has
installed the Zoom TA using "/zoom", so anyone in the
workspace can simply enter the command to run the TA and
create her meeting link posted on her public or private channel.
Later a malicious member installs a malicious TA (MTA),
which also claims "/zoom" in its configuration (which may

not be observed to any member in the workspace, including the
admin, see Section IV-A). Now when a member in a private
channel that the attacker does not even know its existence
posts a Zoom link by using "/zoom", the MTA is triggered
to return the meeting link the attacker controls. As a result,
all the conversations (voice or text) during the online meeting
could be stealthily recorded by the attacker, even though he
does not have the privilege to access such communication.
In addition to the information leak, the MTA can be used to
launch other attacks, such as a denial of service that renders
legitimate apps inaccessible through Slash Commands.

Among the 12 TACT platforms, our study has revealed that
the risk is present on 5 platforms, though in three different
forms: (1) Slack lets one TA seize a command already claimed,
as mentioned earlier; (2) Cliq, Rocket.Chat, Bitrix24 and flock
allow two TAs to claim the same command, so they will
both be invoked by the command; (3) Cliq, Rocket.Chat,
Bitrix24 and Flock broadcast every command to all TAs
installed and those with the code for parsing and handling
the command will respond. Although (2) and (3) do not seem
to be particularly threatening, a malicious member can still
exploit the weaknesses to escalate his privilege. Specifically,
on Cliq, a TA can delete anyone’s message (Section VI-C)
so the attacker can draft a MTA to claim another TA’s Slash
Command for receiving the event triggered by the command,
and then automatically delete the TA’s message and post a
new one. For the remaining 7 platforms, 4 do not support
the Slash Command at all. The rest 3 (Zoom, Discord and
Mattermost) have strict policies on using the command based
TA invocation: e.g., Zoom disallows a TA to claim the Slash
Command of any TA in its app market to avoid conflict, even
when the app has not been installed in a specific workspace.

In addition, we also found that the Slash Command hijack-
ing on Slack causes the privacy leak. Specifically, once a TA
on Slack is invoked through a Slash Command, a notification
will be sent to its server, carrying sensitive information about
the user running the command, including user ID, private
channel ID, and others. The exposure of such information
to unauthorized parties undermines the user’s privacy. For
example, a MTA impersonating Zoom for Slack (by playing
man-in-the-middle) can stealthily cluster the users who invoke
Zoom through it, so as to find out those in the same pri-
vate channel and titles of their Zoom meetings (a parameter
attached to "/zoom"). Our video demos of this attack are
posted online [27].

Message monitoring via link unfurling. Link unfurling pro-
vides a customized experience for a TA to generate previews
for URLs posted by workspace members. Once a specific link
is spotted by a TACT platform, the TA configured to handle
the link (or domain) will receive a notification, together with
the full link for it to parse. For example, if a TA registers
"docs.google.com" as an unfurl link, it will receive any
URLs starting with this prefix, then it can post the preview of
the google doc to the chat box.

Similar to the Slash Command, unfurl links can also be

7

TABLE II
SUMMARIZED SECURITY RISKS DURING TA INSTALLATION, UPDATE AND CONFIGURATION.

Platform App Install and Update App Configurations
Installation
w/o vetting

Installation
w/o notification

Installation
w. deception

Stealthy
update

Slash Command
hijacking

Message
monitoring

Slack Yes Yes Yes Yes Yes Yes
Microsoft Teams
Webex Teams Yes Yes Yes
Facebook Workplace* Yes
Flock Yes Yes Yes Yes Yes
Discord*

Rocket.Chat* Yes
Cliq Yes Yes Yes Yes
Twist Yes Yes Yes Yes
Mattermost*

Bitrix24* Yes
Zoom
of affected systems 4 5 4 5 5 2
* In these TACT systems, only admin can create TA.

configured in a TA, which a malicious member can lever-
age to monitor all URLs related to the links posted across
all channels, including private ones. For example, setting
"docs.google.com" in the configuration enables a TA to
receive all google docs sharing links issued by any member
from any channel in the workspace. Our analysis over the 12
TACT systems shows that 2 of them have this vulnerability,
including Slack and Facebook Workplace. As an example,
Slack allows a TA to include no more than 5 domains for
unfurling; in our research, we built a simple MTA, only 10
lines of code, to monitor all posted google docs links in a
way entirely unaware to other members in the workspace. The
demo of this attack is posted online [27].

C. Summary

We summarize all the identified security risks and affected
TACT systems in Table II. As we can see, the problems we
discovered cover all 12 systems with 25 unique instances. We
have reported these findings to all platforms. So far, Slack
has acknowledged the risk of Slash Command hijacking and
awarded us a bounty. Interestingly, they do not think that
the link unfurling attack is a threat because all members in
the workspace are considered to be “trusted”, even though
they put protection in place for the conversations within
private channels. This indicates that their threat model has not
been well defined, which we discuss in Section VI-C. Other
platforms are in different stages of evaluating our reports.

V. TA API ANALYSIS FRAMEWORK - TAPIS

Unlike other stages of a TA’s lifecycle (installation, update,
and configuration), which can be evaluated through manual
review on each TACT platform, the runtime operations of the
TA entail invocation of a large number of APIs, whose security
implications cannot be effectively analyzed without the help
of an automated tool. In this section, we present our design
of such a technique – a pipeline that enables the efficient
detection of vulnerable TA APIs on different TACT platforms.

A. Motivation, Challenges and Design

Finding security risks of TA APIs is non-trivial, due to
hundreds of APIs involved in each TACT system and extensive
manual efforts required for analyzing such APIs. Specifically,
the 12 TACT systems we studied include a total of 1,721 APIs,
about 143 APIs for each platform on average. Manual analysis
of all these APIs requires significant effort and also does not
scale, particularly when a new security policy is introduced.
Therefore, it becomes important to develop a more automated
and efficient way to evaluate these APIs.
Our idea. Our framework, called TAPIS , is designed for
analyzing a large number of TA APIs on different TACT
platforms that may violate given security policies. The main
idea is to automatically parse the TACT API specification
from the developer guide, finding the key information (e.g.,
API URLs and required parameters) for triggering the API,
and then evaluate whether the API can be exploited to violate
a CSSP at runtime. A potential violation can be found by
invoking an API in an attempt to escalate a TA owner’s
privilege or execute a known attack. For example, given a
message-editing API, if it can be used by a normal user to
revise other members’ messages, we consider that this API
has access control risks (violating CSSP #2 in our research).
Challenges. Although the general approach is straightfor-
ward, achieving this goal is by no means trivial. A naive
solution could be simply getting all URLs and their required
parameters for testing such APIs. However, this will not work
in practice, and it is far from sufficient for identifying those
problematic ones. Particularly, the implementation of such
an API risk exploration framework faces two challenges, as
elaborated below.
• API dependency parsing. Most TA APIs are connected
with dependency relations. Specifically, one API needs to be
invoked before another, and one’s required parameters rely
on the returned values of another API request. For example,
a message delete operation depends on a valid message ID,
which has to be first obtained from invoking the sending mes-

8

API Parameter

API Description

API Description Parser

API

Specification

Crawling

Data Object

Operation Action

Dependency Analyzer

Explicit
Dependency

Implicit
Dependency

Runtime API Invocation

Risky API
Identification

Legitimate
Invocation

Results
(Vulnerable

APIs)

Common Sense Security Policies (CSSP)

Invocation
Sequence

Fig. 3. Workflow of TAPIS .

sage API. Hence, the first challenge lies in how to effectively
understand the dependency relations between each API within
a single platform.
• Efficient API invocation and ordering. An effective way to
invoke each API relies on setting up a series of parameters
with valid values. While such parameters can be obtained at
runtime (e.g., the app’s access token), the ordering of invoking
each API significantly affects the efficiency of API testing. For
example, the API of modifying a message should be tested
before message delete. Otherwise, the message delete API will
destroy the valid message ID, which is mandatory for invoking
message modify.
Design of TAPIS . Figure 3 shows the workflow of TAPIS ,
which mainly consists of three components. Specifically, Spec-
ification Parser employs a set of NLP techniques to parse the
TA API specifications for extracting relevant key information.
Then, Dependency Analyzer takes the collected information
and constructs the API (parameter) dependency relations as
an API sequence. Ideally, the inspection of a given API needs
to invoke other APIs first if it depends. Here, TAPIS extracts
both explicit dependencies that are directly described in API
specifications, as well as those implicit dependencies based
on the types of such APIs (e.g., running message edit before
message delete.). Lastly, Runtime API Invocator takes the
summarized information to perform the runtime testing. It is
done by first invoking the inspected API in its legitimate usage
scenario and then confirming whether the API still works when
the invocation violates specific CSSPs. Specifically, TAPIS in-
tegrates a set of mechanisms to obtain the valid parameter
values required for invoking each API. For those APIs that
can be effectively invoked, TAPIS further constructs the CSSP
violation scenarios by changing specific parameter values and
further determines whether the API is indeed vulnerable either
automatically or with moderate human assistance.

B. API Specification Analysis

Specification crawling. TAPIS utilizes a platform-specific,
semi-automatic approach to collect the API descriptions of
TACT systems. Specifically, for each TACT platform, we
manually identified the root URL of its API documentation
as an input to our crawler, together with an “anchor” for the
crawler to locate the API descriptions from related HTML
files. As an example, the anchor for Slack is a tag with meta

Fig. 4. A snapshot of sample API document, TAPIS collects texts in red
squares for future processing.

name="description" that includes the description for
each API. As shown in Figure 4, for each API description,
TAPIS collects the API URL, parameters (request type, body,
etc.), their natural language descriptions, and examples when
they exist. For each parameter, TAPIS also records whether
it is mandatory or optional for the API usage (i.e., the one
marked as “required”). All such information was used to not
only construct a valid API call for runtime testing but also
recover the dependency relation between APIs.

Here, TAPIS employs Beautiful Soup [8] and Selenium [54],
two widely used web crawling frameworks to crawl the API
documentation. We note that while for each platform, crawling
the API information would require manually assigning those
interesting regions (HTML elements). It is a one-time effort
and can be done within minutes. For example, among the 12
TACT systems in our research, it only takes twenty minutes for
an undergraduate to locate and assign the interesting regions
for web crawling.
API description parser. After collecting the related in-
formation, for each API, TAPIS employs NLP techniques
to understand its semantics based on the API name and
descriptions. More specifically, TAPIS summarizes the key
semantic of each API as a pair that consists of two key
elements– (action, object). In this pair, action indicates the
actual operation performed on the resource (create, read, edit,
and delete). object refers to the data subject the API operates
(e.g., message, file, calls). In other words, it describes what
kind of information or service is accessed by the API. For
example, given the API description “This method retrieves
public profiles of users belonging to this group”, TAPIS iden-
tifies “retrieve” as the API action and “profiles of users” as
the API object .

Here, TAPIS employs POS tagging [67] and Dependency
parsing [65] to get the grammatical structure and semantic
information of the API description. Both POS tagging [67]
and Dependency parsing [65] are widely used NLP techniques
for information retrieval. For example, previous research [45]

9

relies on POS tagging and dependency parsing with a set of
heuristics to locate privacy-related semantics. In our research,
both the action and the object of a given API are determined
based on specific dependency relations extracted from the
API description. For instance, by parsing the syntax tree of
the API description from root to its leaves, we first seek
for verb and the noun (phrase) pair in which contained in
the “Direct-object (Dobj)” relation. Here, both the identified
action and object will further facilitate TAPIS to determine
the optimum API invocation ordering that can more efficiently
invoke APIs that required testing at runtime (Section V-D). In
Appendix X-A, we present the more detailed heuristics for
locating the (action, object) pair based on POS tagging and
Dependency parsing.

C. Dependency Analyzer

As mentioned earlier, to obtain the actual value of its
mandatory parameters, the invocation of one API often relies
on invoking other APIs. To this end, TAPIS systematically
parses the parameter descriptions of each API, and finds the
dependencies required for invoking each API. Here, we sum-
marize the API dependency as two types: explicit dependency
and implicit dependency.
Explicit dependency. Explicit dependency refers to those
dependencies explicitly described in the parameter descriptions
or reflected in the arguments and responses between two APIs.
As shown in Figure 4, based on the description of parameter
“scheduled message id”, we can easily infer that the two
APIs, chat.scheduleMessage should be invoked before
chat.deleteScheduledMessage. To this end, for each
parameter description, TAPIS finds keywords like “returned
by”, “returned from” and further locates the dependency
relation between the two APIs.

Another type of explicit dependency is the case that the
parameter name of one API exactly matches the API response
of another (mostly in JSON format). For identifying this type
of dependency, TAPIS first records all response keys of each
API (i.e., the keys in JSON format); Then, when parsing the
parameters of each API in the second round, if there is an
identical string which TAPIS has previously seen in another
API’s response, it will mark the two APIs with dependency
relation.
Implicit dependency. Other than those dependencies that
are explicitly declared in the argument descriptions, there are
certain implicit dependencies between the APIs with the same
objects (e.g., all APIs related to file operations) based on the
type of its actions. For example, it is mandatory to invoke the
API file.create before invoking file.edit. Similarly,
the API for modifying a file depends on either creating a new
file, or reading an existing file in advance.

To this end, TAPIS classifies the action of each given API
into four atom operations: create, read, modify, and delete. For
the same object, we consider operations such as read, modify
and delete depend on its create API. Similarly, the operation
delete depends on read API as well.

Here, since different platforms use various verbs to indicate
the same operation (for example, “gets all groups”, “lists
all groups” both indicate to retrieve the information about
groups). To better classify different action terms, we manually
labeled the Slack API’s action verbs into four categories and
used these verbs as seeds to construct synonyms of the four
action categories using babelnet [7], a multilingual lexicalized
semantic network. As a result, for each API with the same
object (e.g., all APIs related to operating files), TAPIS specifies
that an object’s data operation needs to follow a temporal order
of the four data operations.

D. Runtime Invocation

At runtime, TAPIS relies on the following two procedures
to discover APIs that may contain security risks (e.g., vio-
lating the CSSPs we highlighted in Section III-C). Firstly,
TAPIS needs to invoke the API in its legitimate usage
scenario successfully. Secondly, the response information of
the legitimate API invocation can further help TAPIS to
identify whether a CSSP violation scenario indeed works
(Section V-E).
Invocation mechanisms. To effectively invoke as many
APIs as possible, TAPIS uses the following mechanisms to
go across all APIs of a given platform. (1) TAPIS runs all
APIs whose action falls into the create category. It ensures
that most of the parameters in the platform can be initialized
through create API. In the meantime, TAPIS builds a lookup
table, which records all the runtime values of different pa-
rameters. For example, as shown in Figure 4, by invoking
chat.scheduledMessage, TAPIS will obtain the real
value of the scheduled message’s id and other information
in the response, which might be used in other future API
invocations (i.e, chat.deleteScheduledMessage). (2)
TAPIS follows the temporal order of the rest of the data
operations (i.e., read, modify, and delete) to invoke the APIs of
all objects. During this process, TAPIS follows the dependency
relations parsed earlier and runs all the dependent API before
invoking the tested API. (3) For those mandatory parameters
that do not exist in the lookup table, TAPIS tries different types
of random values (e.g., string, integer, float, etc.) to increase
the success rate of API invocation.

We note that through the above mechanisms, while most
of the required parameters can be obtained automatically,
TAPIS still needs manual specification of a few parameters
as inputs, particularly those required for initiating the whole
analysis process, such as the access token of the TA and the
token of a TACT system user. Acquisition of such parameters
is a one-time effort, which we performed in our research to
bootstrap the analysis.
Identify successful invocations. While the returned response
of a successfully invoked API may vary, the response of an
invalid API invocation is relatively fixed. The specification
of each TACT system often provides concrete examples for
those invalid responses for developer debugging. To this end,
for TAPIS , successful API invocations are the ones that do
not fit any kind of invalid response. Particularly, by reviewing

10

the documentation of all 12 TACT systems in our research, we
summarized that the invalid response contains the following
two types: (1) A POST API invocation may return a JSON
file containing the specific error message. Notably, the term
“error” is often included in this JSON. (2) Otherwise, those
responses which do not return any JSON file (e.g., a GET API
invocation) can be identified by their returned HTTP status
code (e.g., status code 400, 403, 502). For example, status code
403 refers to the invocation is forbidden by the server [73].

E. Risky API identification

TAPIS validates whether a given CSSP can happen by
changing specific parameters (as CSSP violation scenarios)
and checking whether the API still works. If the API in-
vocation under the CSSP violation scenario still returns a
valid response, it very likely indicates that this API introduces
security risks. Note that depending on different CSSP violation
scenarios, those access control violations (i.e., CSSP #2, least
privilege compliance) can be automatically confirmed based
on their response, while others (e.g., CSSP #3 private message
reading, and CSSP #4, URL spoofing) require extra manual
inspection for its final confirmation.
Access-control violation inspection. Following the CSSP #2,
we consider that a data object created by one member should
not be accessed by another unless intentionally designed. Iden-
tifying this type of risk is achieved by first creating different
objects on behave of a victim user and further performing
other operations (i.e., read, edit, delete) of the same object on
behalf of another (i.e., the malicious TA). For example, to test
the security risk of the message’s delete API, TAPIS invokes
it by assigning the message id of a victim user instead of
the attacker. To detail, for each TACT object, TAPIS creates
one TA as the victim and another as the adversary. Then, for
each object (e.g., file, call, etc), TAPIS invokes the object’s
create API on behalf of the victim, meaning that the object
belongs to a normal user in a legitimate scenario. Further,
TAPIS invokes other data operation APIs of this object on
behalf of the adversary. In this way, if the API still returns a
valid response, we can confirm this API as risky.

Besides, we also inspect whether an adversary can operate
TACT resources of other channels. In this scenario, TAPIS fol-
lows a similar procedure as it does for same-channel violation
inspection, but with an alternative victim TA, which object is
created in a different channel.
Private message reading by system admin. For private
message reading, TAPIS first locates the APIs related to user
messages. This is done by searching for the keyword “mes-
sage” from the identified objects of a given TACT platform.
Further, TAPIS invokes those APIs whose action are classified
as read on behalf of the admin who created a TA for invoking
the APIs, together with a message id from a private channel.
If the API invocation returns a valid response, we confirm
that the system admin can access private messages via the
TA. Note that whether such an API is risky depends on the
admin’s privilege, which should be specified in the platform’s

documentations (whether the admin is allowed to access
private messages). We discuss this issue in Section VI-C.
URL spoofing inspection. Since URL spoofing mostly
happens with those APIs for sending messages, TAPIS inspects
the same list of APIs as those in the aforementioned private
message reading. Based on the reports of this vulnerabil-
ity [71], URL spoofing mostly happens when parsing the
texts in Markdown [33] format. To this end, TAPIS first
invokes the message sending APIs by assigning a normal
URL in Markdown format. For instance, by default, the
Markdown text “www.facebook.com[www.facebook.com]” is
shown as www.facebook.com on the user screen, and
it will redirect users to the same URL once being clicked.
Next, TAPIS alters the actual URL into a malicious one (e.g.,
“www.facebook.com[www.evil.com]”). Finally, we performed
a manual inspection to confirm whether the URL spoofing
attack indeed works. More specifically, we manually confirmed
whether the user can still be directed to www.evil.com
by clicking the on-screen text (i.e., www.facebook.com).
Note that this manual verification step is necessary because
some TACT platforms may have anti-spoofing protection in
place. For example, Discord pops up an alerting window when
it detects inconsistency between UI text and URL, which
mitigates the risk of the URL spoofing attack.

F. Summary of TAPIS

TAPIS aims at facilitating the identification of problematic
TA APIs in TACT systems. Serving this goal is its pipeline
designed to significantly reduce the manual effort in building
and testing each TA API. Specifically, TAPIS automates API
testing in the following perspectives: (1) TAPIS automatically
parses the API documentation to extract key information for
generating test cases; (2) using the information, TAPIS auto-
matically produces parameters for API invocations and further
creates instances (i.e., the combinations of specific parameters)
that may lead to violation of a given security policy.

In the meantime, we acknowledge that TAPIS still needs cer-
tain human interventions to complete the testing process due to
the complexity of detecting problematic APIs. Particularly, to
capture potential violation of CSSPs, we manually converted
the policies to different testing scenarios: for example, our
testing TA attempts to modify another user’s resources in the
same channel or access the resources in a different private
channel without proper authorization (Section V-E); any suc-
cess in doing so indicates a potential violation of the least
privilege principle. Note that in each of such scenarios, the
API to be tested and the parameters for the invocation are
all automatically determined. Also, certain CSSP violations
require manual confirmation: for example, we need human
inspections to find out whether any warning is given to the
message with URL spoofing (Section V-E).

VI. API RISK DISCOVERY AND ANALYSIS

In this section, we elaborate on the security risks at a
TA’s runtime, as discovered in our study, such as the risky
APIs adversaries can employ for various attacks including

11

unauthorized access to sensitive data, denial-of-service (DoS),
message spoofing, etc.

A. Experiment setting

We collected all documentations of the 12 TACT platforms,
including the descriptions of 1,721 TA APIs, with an average
of about 143 APIs for each TACT platform. To initialize
automated API invocation, we manually opened an account
for each platform, created and installed a TA, requested user
authorization, and issued a POST request to obtain the access
token for the TA. For example, in Zoom, one can send a POST
request to https://zoom.us/oauth/token with the
proper HTTP request headers and request body; if successful,
the response body will be a JSON representation of the user’s
access token. All experiments in our research were run on a
Macbook laptop featuring 32GB memory and an 8 core CPU.

B. TAPIS Effectiveness

Effectiveness of API semantics parser. Our manual valida-
tion shows that TAPIS correctly parsed the action and object
of most APIs, reaching an average precision of 91.45% and
88.44%, respectively, for the 12 TACT platforms. Most false
positives in parsing the action were caused by misidentifying
the verbs in POS tagging. For example, the action verb in
the API description “List all IDP Groups linked to a channel”
should be “List.” However, the POS tagging in spaCy [66]
mistakenly identifies the word “List” as a noun. Another type
of false positive was caused by the ambiguity of API descrip-
tion. For example, for the API description “This method allows
removing members from a given channel”, our tool mistakenly
recognizes the verb “allows” as action. Such misidentification
of the action verb also leads to misidentifying object. Besides,
since the patterns we summarized for object identification are
incomplete, some noun phrases were not accurately located
in certain circumstances. For example, for the description,
“Retrieve a list of event objects,” our approach identified the
object as “list of objects” instead of “list of event objects.”

In addition, for the 12 TACT systems, TAPIS correctly
classified 90.64% of action verbs into the four data operation
types. To this end, we manually labeled 189 APIs from Slack
and then constructed synonym sets for each operation with a
total number of 929 verbs. These synonyms helped us classify
the action verbs of the rest of 1,532 APIs in the 12 TACT
system.
Effectiveness of API invocator. To identify the potential
CSSP violations, as we elaborate in Section III-C, TAPIS does
not need to invoke all APIs present in the TA API documen-
tations, since some platforms, such as Facebook Workplace,
only allow the admin to install TAs. Such a design choice
naturally blocks the potential security risks of violating CSSP
#2 by a normal workspace member. Thus, TAPIS skips most
APIs for these platforms (particularly for CSSP #2). In this
end, we analyzed totally 712 APIs across all platforms.

We inspected whether a given API can be effectively
invoked based on the information from its return. Specifically,
according to the documentation of each TACT platform, the

TABLE III
OVERALL STATISTICS OF TAPIS EFFECTIVENESS.

Platform # of
APIs

Success
rate

Potentially
problematic APIs

Confirmed
problematic APIs

Slack 189 86.8% 18 6
Webex Teams 114 61.4% 5 4
Flock 11 100% 1 1
Cliq 105 80% 20 3
Twist 116 73.3% 7 7
Zoom 169 67.5% 4 1
Others 8 100% 8 8
Total 712 75.3% 63 30

return of an API in each TACT system has its specific feature
that indicates whether its invocation is successful or not. For
example, in Slack, if the API response contains a JSON with
the element {"ok":true}, it indicates that the invocation is
successful.

Among the 712 APIs, TAPIS successfully invoked 536 APIs
under the right context, as discovered from their dependency
relations. This results in a success rate of 75.2%. The main
reasons for the failures in testing the rest 176 APIs are as
follows:

Firstly, most failures were caused by invalid arguments.
Specifically, TAPIS failed to generate correct values for
some parameters since no concrete example of related re-
quests can be found in the API documentation, nor do
these parameters ever show up in the returns of other APIs
we can invoke. In the absence of such information, even
security experts cannot determine correct values for such
parameters to invoke their APIs. As an example, to call
the API SendTrialLicenseWarnMetricAck on the
Mattermost platform [35], TAPIS needs to provide a valid
warn_metric_id. However, Mattermost’s API documenta-
tion does not contain any specification for the parameter. Also,
it cannot be found in the return values of other APIs. As a
result, so far, we have not figured out how to set the parameter
even manually. Another reason is lack of authorization for
testing certain APIs. For example, on Slack, invocation of
the log access API [63] requires a paid enterprise license
granted by the Slack vendor. Finally, some invocation failures
are caused by server errors out of our control, such as
server-side configuration problems. For example, using the
correct parameters, we still could not call Twist’s get message
API [74] successfully (which kept returning an error code 403)
due to a server-side problem.

We note that as a framework for facilitating problematic TA
API discovery, TAPIS does not aim at achieving guaranteed
coverage. Instead, its coverage can be further improved by
integrating other techniques such as NLP-based documentation
analysis, REST API testing, etc.

C. Large-scale scanning and findings

Overall, it takes TAPIS around 40 minutes to perform its
analysis over the 12 TACT platforms. In Table III, Column
4 and 5 summarize the number of potentially problematic
APIs TAPIS identified, as well as the risky APIs confirmed
by our manual inspection. Specifically, TAPIS reported 63

12

TABLE IV
SUMMARIZED RISKY TA APIS IDENTIFIED BY TAPIS .

Platform API Description CSSP violation

Slack

POST /methods/calls.end End a Call. Access control
POST /methods/calls.update Update information about a Call. Access control
POST /methods/calls.participants.add Add new participants to a Call. Access control
POST /methods/calls.participants.remove Remove participants from a Call. Access control
POST /methods/files.sharedPublicURL Enable a file for public/external sharing. Access control
POST /chat.postMessage* Send a message to a channel. URL spoofing

Webex Teams

GET /messages/list-messages List all messages in a room. Access control
DELETE /rooms/{roomId} Delete a room, by ID. Access control
PUT /rooms/{roomId} Update details for a room, by ID. Access control
POST /api/v1/messages* Post a plain text or rich text message. URL spoofing

Microsoft Teams GET /teams/id/channels/id/messages Retrieve the list of messages. Private message reading
POST /teams/team-id/channels/channel-id/messages Send a new chatMessage in the specified channel. URL spoofing

Facebook Workplace POST graph.facebook.com/app-id/subscriptions Add new webhook subscription. Private message reading
POST graph.facebook.com/group-id/feed Post into a group. URL spoofing

Flock POST /v1/chat.sendMessage Allow an app to send a message to a user or a group. URL spoofing
Discord GET /channels/channel.id/messages Return the messages for a channel. Private message reading
Rocket.Chat POST /api/v1/chat.postMessage* Post a new chat message. URL spoofing

Cliq
PUT /chats/{chat id}/messages/{message id}* Edit a message in a conversation. Access control
DELETE /chats/{chat id}messages/{message id}* Delete a message in a conversation. Access control
POST /channelsbyname/chanel-name/message Post message in a channel. URL spoofing

Twist

POST /groups/remove user Remove people from a group. Access control
POST /groups/remove users Remove a person from a group. Access control
GET /conversations/remove users Remove people from a conversation. Access control
GET /conversations/remove user Remove a person from a conversation. Access control
GET /api/v3/conversation messages/get Get the messages from a conversation. Private message reading
POST /api/v3/comments/add* Adds a new comment to a thread. URL spoofing
POST /api/v3/conversation messages/add* Add a message to an existing conversation. URL spoofing

Mattermost POST /posts* Create a new post in a channel. URL spoofing
Bitrix24 POST /imconnector.send.messages Send messages in Open Channel. URL spoofing
Zoom POST /v2/im/chat/messages Send chatbot messages from chatbot app. URL spoofing
* The API has been confirmed as a vulnerability by the platform.

APIs that may violate our highlighted CSSPs. Further, we
manually inspected these APIs and confirmed 30 of them can
indeed bring security risks to TACT users. The numbers in
row “others” refer to APIs of the remaining 6 TACT systems.
Here, most APIs in these systems were not tested because
invoking these APIs require the admin privilege rather than a
normal user. In our research, we only used the admin privilege
to evaluate the access to private messages (Section V-E).

Among the reported 63 APIs, our manual inspection con-
firms that 33 APIs should not be counted as valid risky APIs
because of the scenarios in which invoking these APIs does
not pose any actual threats to TACT users. For example,
TAPIS reports the API for listing users [62] as an access
control violation; however, getting the list of users on the team
is typically allowed by any team member.

Table IV presents the APIs that violate different CSSPs
together with their detailed descriptions. Below we elaborate
on the details of these risky APIs based on their functionalities.
Access control violations. Among the APIs that violate
access control, Slack’s call APIs allow a TA to either integrate
a third-party call service (e.g., Zoom or Webex meeting) or
directly use Slack’s own service [64]. Through these APIs,
we found that a channel member can eavesdrop on and block
any private calls without authorization from the original call
participants. Note that such attacks are not limited to a specific
type of calls: all the call services supported by Slack are
vulnerable to the unauthorized interference. More specifically,
since the call id is public to all members in the same channel,
an attacker could leverage the exposed id to invoke the call

APIs and launch such an attack. For example, using the API
"calls.update", the attacker can stealthily replace a call
link (e.g., a zoom vanity URL the attacker does not have access
to) in the invitation issued by a channel member with her
own, possibly leading to an eavesdropping attack. Also, the
attacker can run "calls.end" to continuously disrupt the
call created by other members, causing a Denial of Service
attack.

In Cliq, a malicious channel member can utilize APIs to
edit and delete messages sent by other members in the same
channel, violating CSSP #2. So far, Cliq has acknowledged
that these APIs are risky and awarded us. In Webex Teams, the
API "/v1/messages" [78] allows an outsider to stealthily
monitor the messages posted in a channel without explicitly
notifying channel members. More specifically, by design in
Webex Teams, anyone who joins a channel will be publicly
announced to every channel member, and the user can only
read chat messages from the channel that she explicitly joins.
However, using the list message API through a TA, an outsider
of a public channel can stealthily monitor the messages
inside the channel (without being known to other channel
members). This API capability is unexpected and undocu-
mented. In addition, on multiple TACT platforms, an ordinary
member is unexpectedly granted some of a channel owner’s
privileges. Particularly, two Webex Teams APIs ("DELETE
/rooms/roomId" and "PUT /rooms/roomId") allow
the ordinary user to perform unauthorized edit, or delete of a
room (channel) created by others. Also, some Twist APIs grant
an ordinary member a group owner’s privilege for evicting

13

group members. None of these kind of functionalities have
been properly explained to the TACT users in these platforms’
documentations.
Private message reading by system admin. From the doc-
umentations of the TACT platforms analyzed in our research,
we found that none of them explicitly allow the admin to read
private messages. These messages should be considered off-
limits to any non-channel member, including the admin, which
has not only been discovered in our user study (Section VII)
but also been confirmed by the TACT user’s communication
with Microsoft Teams [19] [75]. However, on the four plat-
forms we investigated (including Microsoft Teams, Facebook
Workplace, Discard, and Twist), we successfully accessed the
user’s private messages using the privileges of workspace ad-
mins. This could be a problem given the different perceptions
that TACT users have, which could cause unwanted exposure
of private information, based upon their false assumption about
how the private messages should be protected. Besides, using
the TACT system under the admin’s privilege, we did not
find any related function that supports the access to the user’s
private messages from their user interfaces. In other words,
such functionality is “hidden” since it is not provided through
the official UI for platform control, nor has it been properly
documented. Hence, for these affected systems, we consider
that the TA APIs actually open a stealthy avenue for access to
private messages without any user consent, which is supported
by our user study (Section VII).
URL link spoofing. Surprisingly, we discovered that 11
TACT systems have the risk that allows a malicious TA to
send spoofed URLs via message posting APIs. Only Discord
employs a defense strategy against the attack by disabling a
URL link inconsistent with its appearance (i.e., a different
URL link) on its user interface. Note that URL spoofing is
considered to be a vulnerability with a significant consequence
by Slack [27], which awarded us $500 for our finding that
demonstrates the inadequacy of their original protection [71].
Also, three other platforms (Rocket.Chat, Webex Teams, and
Twist) we informed have all acknowledged that the problem
is indeed a security vulnerability [27].

VII. USER PERCEPTION ANALYSIS

Given that the TACT systems are relatively new, it is
important to understand how users react to their privacy-
related design choices. In this section, we elaborate on how
we performed a user study to understand user perceptions of
the security risks detected in our research.

A. Design of the User Study

Our study was done through Amazon Mechanical Turk
(mTurk) [2], a popular task recruitment platform, under the
IRB approval of our institution. To ensure the correctness of
the study, we presented to the participants a set of questions
to verify that they were indeed familiar with TACT systems.
Specifically, we first asked them whether they had used at
least one TACT platform (Q1); then, we gave them detailed
questions (Q9-Q10) to confirm their TACT experience. For

TABLE V
THE USAGE RATIO OF DIFFERENT TACT SYSTEMS AMONG THE

PARTICIPATES

Paltform Usage
Microsoft Teams 68.45%
Slack 51.34%
Discord 39.57%
Webex Teams 27.27%
Facebook Workplace 16.58%
Mattermost 6.95%
Twist 5.88%
Rocket.Chat 5.35%
Cliq 3.74%
Bitrix24 3.74%
Others 7.49%

example, we require participants to provide the (partial) link
to their workspace. Only those giving the correct answers
(reviewed by our experts) were considered to be qualified
participants.

Further, we presented to the participants different data
access scenarios, where each of them relates to one of our
identified security issues as elaborated in Section IV and
Section V. Specifically, for each data object (Slash Command,
posted URLs, messages, files, calls, etc.), we described the
scenario in which it is accessed by an unauthorized party.
Then, we asked the participants whether they felt that their
data rights were violated. For example, we showed a scenario
in which the participant posts a message to his channel, and
the message is later edited by Alice, another member of the
channel, without his consent; we then asked the participant
whether this should happen. The answer can be “Yes” or “No.”

To understand the admin’s perceptions of security protection
on TACT, we recruited those with TACT administration expe-
rience (verifying their backgrounds with additional questions)
and further sought their answers on the management of TAs.
For example, we asked them how they managed TA installation
(e.g., “As an administrator, how did you manage third-party
app installation settings for your workspace?”). A participant’s
response can be “Allow any member of the workspace to
install third-party apps,” “Only allow certain members of
the workspace to install third-party apps,” “Only myself (the
administrator) is allowed to install third-party apps,” or “I just
kept the default settings.” Details of the survey questions and
the participants’ responses are presented on our anonymous
project website [27].

B. Results and Findings

The survey study began in May 2021 and lasted two weeks.
We collected 187 valid responses from 1,090 participants.
The main reason for the low valid response ratio is that
659 (60.46%) participants did not finish the survey. Among
the complete responses (431), many answers turned out to
be incorrect, particularly those for verifying the participants’
TACT experiences. For example, 244 (56.61%) submitted
incorrect Workspace URLs that do not belong to any TACT
system (Q9). Among the 187 valid participants, 54 of them are
normal users, while the rest 133 also have admin experience.

14

The median age of all valid participants (110 male and 77
female) is 36. 81.28% of them hold a bachelor’s or a higher
degree. Table V shows the ratio of the TACT systems used by
the participants.
User perceptions of access control risks. From the survey,
we found that most TACT users are indeed concerned about
the access control risks identified by our research. Specifically,
for Questions 11 to 23 that ask the participants their percep-
tions of risky APIs, 80.13% of the participants agreed that
accessing such data under the survey scenarios violates their
privacy rights. Remarkably, the answers to Question 12 show
that most (84.49%) participants agree that cross-channel data
access (i.e., reading URLs) is a substantial privacy violation.
Similarly, based on the collected answers from Question 14
to 24, we can see that most participants believe that even in
the same channel, the data created by one member should not
be accessed by another member in an unauthorized way. For
example, for Question 15, 89.30% of the participants indicate
that the messages created by one member should not be re-
edited by another without the message creator’s awareness.
The overall results also reveal that the threat model TACT
users perceive is actually quite different from that assumed
by most TACT systems (i.e., assuming members in the same
workspace or the same channel can be fully trusted).
User perceptions of private message access. The answers
to Question 8 indicate that most users (74.87%) prefer their
workspace admin not to access their private messages. In the
meantime, answers to Question 25 show that 92.51% of the
participants do not know the default access control settings
(i.e., whether the admin can access their private messages).
Given that four out of the 12 TACT systems allow the admin
to read private messages (Section IV), we conclude that there
is a clear gap between user perceptions and the access control
design of these systems.
User perceptions of app installation. As mentioned earlier
(Section IV), the default setting for TA installation in most
TACT systems introduces security risks, allowing a malicious
TA to be stealthily installed. In our user study, we investigated
whether the TACT admins would take any action against such
risks (Q5-Q7). Interestingly, our results show that only 21.38%
of them choose to control TA installation fully, though most
(87.04%, see Q6) know that they can, and the rest (over 76%)
grant this privilege to their team members without proper
vetting in place.

VIII. DISCUSSION AND RISKS MITIGATION

Responsible disclosure. We have reported all security issues
identified in our research to the 12 vendors. As of this
submission, eight of them have been officially confirmed to
be security vulnerabilities by six vendors. Specifically, Slack
has acknowledged the security risks of its Slash Command
and URL spoofing issues and awarded us a bounty. Cliq has
notified us that the problematic APIs we reported (i.e., unau-
thorized edit/delete a message) are indeed vulnerabilities with
significant security implications, and also gives us a bounty.

Rocket.Chat, Webex Teams, and Twist have all corroborated
the URL spoofing vulnerabilities. Particularly, Rocket.Chat has
told us that they followed our suggestion to fix the problem
in their most recent releases (i.e., 3.14.6, 3.15.4, 3.16.3).
Although 20 other issues we reported have not been accepted
by the TACT vendors, such as Slack, our user study shows that
they are indeed security concerns the TACT users care about
(Section VII-B). We have not yet received any feedback about
the remaining 27 issues from related vendors. A more detailed
summary of the confirmed vulnerabilities can be found on our
anonymous project website [27].
Limitations. With all the findings made in our research, it is
still preliminary: (1) due to the challenges in data collection
and vulnerability confirmation (particularly the issues unre-
lated to TACT APIs), our study has not covered all TACT
systems in the wild; (2) TAPIS has made the first step toward
discovering the security risks of TACT APIs with a generic
framework to accommodate different security policies, but so
far we have only evaluated the framework on our CSSPs. Its
effectiveness in supporting other policies remains to be seen,
and its automation level needs further improvement. Down the
road, we will explore the techniques for enhancing TAPIS .
For example, the current design of TAPIS may randomly

generate specific parameter values if the required information
is not presented in the API documentation (Section V-D). To
improve the success rate for API invocation, TAPIS needs
better mechanisms to generate such values, instead of using
those random ones.
Lessons Learned. Following are our suggestions for miti-
gating the security risks on TACT platforms: (1) to avoid the
misconceptions as shown in our user study, TACT vendors
should better define their threat models, clarifying that what
is trusted in different scenarios (e.g., what actions a member
of a channel is allowed to take on another channel member’s
message); (2) the scopes of the operations that can take place
on a platform should be clearly specified (e.g., whether a
private message can also be read by a privileged party) and
those who performs the operations should be granted the
minimum privilege.

IX. RELATED WORK

Messaging software security. Previous works have mostly
focused on the security and privacy issues not specifically re-
lated to team chat scenarios. For example, Schnitzler et al. [53]
studied users’ preferences for the deletion functionality in
instant messengers. Particularly, they conducted their research
on software such as WhatsApp, Skype, Facebook Messenger.

There are a few recent studies related to TACT systems [31],
[47], [52]. However, most of them focus on individual security
or privacy issues rather than a comprehensive analysis across
different TACT platforms like our research. For example,
Kampmann et al. [24] report a study on the delivery of
phishing messages via business chat tools, in which they
analyzed business chat software to identify those allowing
the attacker to impersonate other members by changing their

15

names and profile pictures and others. Ling et al. [31]
performed a measurement study on Zoombombing attacks,
which can intercept video and audio calls by an adversary.
They found that most calls for Zoombombing come from
insiders who have legitimate access to the meetings. Our
research shares a similar adversary model in which the attacker
is a legitimate member of the TACT system.

Third-party app security. Third-party app security has
been extensively studied by previous research across different
platforms. For example, prior work [14], [49], and [44] focuses
on the security issues of mobile apps. Recently, researchers
have extended the scope of this topic to IoT platforms, such as
IFTTT [77] and voice assistant devices [85]. Particularly, Qi et
al. [77] lay out the inter-rule vulnerabilities among the various
third-party apps on the IFTTT markets. Ahmadpanah et al. [1]
studied JavaScript-driven TAPs and discovered weaknesses
that could lead to attacks on IFTTT, Zapier, and Node-RED
(i.e., information leakage from unsuspecting users and usurp-
ing of the entire platform). Nan et al. [85] identified two new
attack surfaces in voice assistant systems (i.e., voice squatting
and voice masquerading). Compared with these works, the
unique scenarios in TACT systems also raise new security and
privacy issues, which have been extensively discussed in our
research. For example, in TACT systems, third-party apps can
be directly installed by one of the users, and its functionality
may affect other members, which further raises new access
control risks such as privacy leakage.

Web API analysis and testing. The TA APIs provided
by TACT systems in our research follow the specification
of REST API [83], which is widely used for communication
across webpages and web apps. There are a number of research
projects focusing on testing and analyzing the security of Web
APIs. Specifically, Najib et al. [43] investigated the security
performance of REST API authentication using the SHA1
and MD5 encryption algorithms in the security system of
a mobile application. Tang et al. [69] summarize the REST
API security strategies and mechanisms and compare the
security features provided by 10 API gateway providers. Li
et al. [30] modeled the REST API as a special type of
Colored Petri Net and developed a tool based on the Petri Net
model to describe REST APIs, which can automatically check
the violations of the REST constraints. Atlidakis et al. [6]
introduced an automatic, stateful fuzzing tool for REST APIs,
which analyzes the Swagger specification of the REST APIs
to infer dependencies among request types automatically and
dynamically generates tests guided by feedback from service
responses. Alberto et al. [34] implemented a testing framework
using AI techniques. It leverages some testing techniques
(e.g., combinatorial, search-based, and metamorphic testing) to
generate test inputs by analyzing API specifications. Further,
it evaluates the test outputs automatically by using patterns
summarized from SUT (system under test) executions and
the knowledge learned from the analysis of similar programs.
Atlidakis et al. [5] designed a stateful REST API fuzzing tool,
which trains a statistical model to learn common usage patterns

of a target REST API, and adds small noise to generate
syntactically valid and learning-based mutations. Although
these approaches provide different automated mechanisms
for web API testing, they cannot be directly applied to our
research. Particularly, TAPIS is the first framework designed
specifically for (1) collecting and understanding TACT system
documentations with data of interests (Section V-B), and (2)
constructing TACT-specific testing logic to evaluate access
control violations (violations of CSSPs) through TA APIs
(Section V-D) The TA API testing pipeline TAPIS introduced
in our research complements these previous works and iden-
tifies new security and privacy issues in TACT systems.

X. CONCLUSION

In this paper, we report the first study over the security
and privacy issues of third-party apps in different Team Chat
Systems. More specifically, our research covers the lifecycle
of third-party apps in TACT systems, including its installation,
update, configuration, and runtime operations. The study leads
to the identification of new security and privacy risks on the
TACT platforms due to their design weakness, such as the
misaligned access control models between the TACT system
and TA, and the gap between their threat models and the risk
perceptions of their users. To facilitate the identification of
problematic TA APIs, we also developed a pipeline that tests a
large number of APIs based on given security policies. Lastly,
we offer suggestions to TACT vendors on how to mitigate
security risks.

ACKNOWLEDGMENT

We thank all anonymous reviewers for their valuable com-
ments and feedback to improve this paper. Jice Wang, Yuqing
Zhang and Zelin Yang are supported in part by the National
Natural Science Foundation of China (No. U1836210) and the
Key Research and Development Science and Technology of
Hainan Province (ZDYF202012). The author of Sun-yat Sen
University is supported in part by the National Natural Science
Foundation of China (No. 62032025).

REFERENCES

[1] M. M. Ahmadpanah, D. Hedin, M. Balliu, L. E. Olsson, and
A. Sabelfeld, “Sandtrap: Securing javascript-driven trigger-action plat-
forms,” in 30th USENIX Security Symposium (USENIX Security 21),
2021.

[2] Amazon, “Amazon mechanical turk,” https://www.mturk.com/, 2021.
[3] Andrew, “bug report,” https://hackerone.com/reports/1089116, 2021.
[4] Apple, “App review,” https://developer.apple.com/app-store/review/,

2021.
[5] V. Atlidakis, R. Geambasu, P. Godefroid, M. Polishchuk, and B. Ray,

“Pythia: grammar-based fuzzing of rest apis with coverage-guided feed-
back and learning-based mutations,” arXiv preprint arXiv:2005.11498,
2020.

[6] V. Atlidakis, P. Godefroid, and M. Polishchuk, “Restler: Stateful rest
api fuzzing,” in IEEE/ACM 41st International Conference on Software
Engineering (ICSE 19). IEEE, 2019, pp. 748–758.

[7] BabelNet, “The largest multilingual encyclopedic dictionary and seman-
tic network,” https://babelnet.org/, 2021.

[8] Beautiful Soup, “Beautiful soup documentation,” https:
//beautiful-soup-4.readthedocs.io/en/latest/, 2021.

[9] Bitrix24, “Bitrix24,” https://www.bitrix24.com, 2021.
[10] Cisco Webex, “Cisco webex,” https://www.webex.com, 2021.

16

https://www.mturk.com/
https://hackerone.com/reports/1089116
https://developer.apple.com/app-store/review/
https://babelnet.org/
https://beautiful-soup-4.readthedocs.io/en/latest/
https://beautiful-soup-4.readthedocs.io/en/latest/
https://www.bitrix24.com
https://www.webex.com

[11] Cliq, “Deep linking,” https://www.zoho.com/cliq/help/platform/
deep-linking.html, 2020.

[12] J. De Clercq, “Single sign-on architectures,” in International Conference
on Infrastructure Security (InfraSec 2002). Springer, 2002, pp. 40–58.

[13] Discord, “Discord,” https://discord.com, 2021.
[14] W. Enck, D. Octeau, P. D. McDaniel, and S. Chaudhuri, “A study

of android application security.” in 20th USENIX Security Symposium
(USENIX Security 11), vol. 2, no. 2, 2011.

[15] Facebook Workplace, “Facebook workplace,” https://www.workplace.
com, 2021.

[16] M. Fathallah, “Chats accessible by admins?” https://techcommunity.
microsoft.com/t5/microsoft-teams/chats-accessible-by-admins/m-p/
103612, 2017.

[17] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the 18th ACM conference on
Computer and communications security (CCS 11), 2011, pp. 627–638.

[18] Flock, “Flock faster with slash commands,” https://blog.flock.com/
flock-slash-commands, 2021.

[19] J. French, “Confidentiality, safety and secrecy of private chat in
ms teams,” https://techcommunity.microsoft.com/t5/microsoft-teams/
confidentiality-safety-and-secrecy-of-private-chat-in-ms-teams/m-p/
1067095, 2019.

[20] Google, “Publish your app,” https://support.google.com/googleplay/
android-developer/answer/9859751?hl=en, 2021.

[21] Google Play, “com.microsoft.teams,” https://play.google.com/store/apps/
details?id=com.microsoft.teams, 2021.

[22] Google Play, “com.slack,” https://play.google.com/store/apps/details?id=
com.Slack, 2021.

[23] Google Play, “us.zoom.videomeetings,” https://play.google.com/store/
apps/details?id=us.zoom.videomeetingss, 2021.

[24] M. Große-Kampmann and M. Gruber, “Business chat is confused. it hurt
itself in its confusion-chishing.”

[25] L. Gupta, “What is rest,” https://restfulapi.net/, 2020.
[26] HackerOne, “Slack,” https://hackerone.com/slack/hacktivity?type=team,

2021.
[27] HazerIntegrated, “Hazer integrated,” https://sites.google.com/view/

hazard-integrated, 2021.
[28] A. iMessage, “imessage,” https://support.apple.com/messages, 2021.
[29] E. Institute, “Zoom faces multiple class action lawsuits over

privacy complaints,” https://www.expertinstitute.com/resources/insights/
zoom-video-faces-multiple-class-action-suits-over-privacy-complaints,
2020.

[30] L. Li and W. Chou, “Design and describe rest api without violating rest:
A petri net based approach,” in 2011 IEEE International Conference on
Web Services (ICWS 11). IEEE, 2011, pp. 508–515.

[31] C. Ling, U. Balcı, J. Blackburn, and G. Stringhini, “A first look at
zoombombing,” arXiv preprint arXiv:2009.03822, 2020.

[32] L. Liu, X. Zhang, G. Yan, S. Chen et al., “Chrome extensions: Threat
analysis and countermeasures.” in 19th Annual Network Distributed
System Security Symposium (NDSS Symposium 12), 2012.

[33] Mark Down, “Basic syntax,” https://www.markdownguide.org/
basic-syntax/#links, 2021.

[34] A. Martin-Lopez, “Ai-driven web api testing,” in Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion 20), 2020, pp. 202–205.

[35] Mattermost, “Request trial license and acknowledge a warning
of a metric status,” https://api.mattermost.com/#operation/
SendTrialLicenseWarnMetricAck, 2018.

[36] Mattermost, “Mattermost,” https://mattermost.com, 2021.
[37] Mattermost, “Slash commands,” https://docs.mattermost.com/developer/

slash-commands.html, 2021.
[38] McAfee, “Microsoft teams: Top 10 security threats,”

https://www.mcafee.com/enterprise/en-us/assets/white-papers/restricted/
wp-microsoft-teams-top-10.pdf, 2020.

[39] Microsoft, “Microsoft teams for education,” https://www.microsoft.com/
en-us/microsoft-teams/education, 2021.

[40] Microsoft Teams, “Link unfurling,” https://docs.microsoft.com/en-us/
microsoftteams/platform/messaging-extensions/how-to/link-unfurling,
2020.

[41] Microsoft Teams, “Microsoft teams,” https://www.microsoft.com/
microsoft-teams, 2021.

[42] Microsoft Teams, “Use commands in
teams,” https://support.microsoft.com/office/

use-commands-in-teams-88f61508-284d-417f-a53d-9e082164050b,
2021.

[43] A. F. Najib, E. H. Rachmawanto, C. A. Sari, K. Sarker, N. Rijati
et al., “A comparative study md5 and sha1 algorithms to encrypt rest
api authentication on mobile-based application,” in 2019 International
Conference on Information and Communications Technology (ICOIACT
19). IEEE, 2019, pp. 206–211.

[44] Y. Nan, M. Yang, Z. Yang, S. Zhou, G. Gu, and X. Wang, “Uipicker:
User-input privacy identification in mobile applications,” in 24th
USENIX Security Symposium (USENIX Security 15), 2015, pp. 993–
1008.

[45] Y. Nan, Z. Yang, X. Wang, Y. Zhang, D. Zhu, and M. Yang, “Finding
clues for your secrets: Semantics-driven, learning-based privacy dis-
covery in mobile apps.” in 25th Annual Network Distributed System
Security Symposium (NDSS Symposium 18), 2018.

[46] Norton, “The risks of third-party app stores,” https://us.norton.com/
internetsecurity-mobile-the-risks-of-third-party-app-stores.html, 2018.

[47] S. Oesch, R. Abu-Salma, O. Diallo, J. Krämer, J. Simmons, J. Wu, and
S. Ruoti, “Understanding user perceptions of security and privacy for
group chat: A survey of users in the us and uk,” in Annual Computer
Security Applications Conference (ACSAC 20), 2020, pp. 234–248.

[48] M. H. Olson, “Remote office work: changing work patterns in space and
time,” Communications of the ACM, vol. 26, no. 3, pp. 182–187, 1983.

[49] M. Oltrogge, N. Huaman, S. Amft, Y. Acar, M. Backes, and S. Fahl,
“Why eve and mallory still love android: Revisiting {TLS}(in) security
in android applications,” in 30th USENIX Security Symposium (USENIX
Security 21), 2021.

[50] M. Prins, “Eavesdropping on private slack calls,” https://hackerone.com/
reports/184698, 2021.

[51] Rocket.Chat, “bug report,” https://hackerone.com/rocket chat/
hacktivity?type=team, 2021.

[52] P. Rösler, C. Mainka, and J. Schwenk, “More is less: On the end-to-end
security of group chats in signal, whatsapp, and threema,” in 2018 IEEE
European Symposium on Security and Privacy (EuroS&P 18). IEEE,
2018, pp. 415–429.

[53] T. Schnitzler, C. Utz, F. M. Farke, C. Pöpper, and M. Dürmuth,
“Exploring user perceptions of deletion in mobile instant messaging
applications,” Journal of Cybersecurity, vol. 6, no. 1, p. tyz016, 2020.

[54] Selenium, “Selenium automates browsers,” https://www.selenium.dev//,
2021.

[55] Signal, “Signal,” https://signal.org/en/, 2021.
[56] Slack, “Unfurling links in messages,” https://api.slack.com/reference/

messaging/link-unfurling, 2020.
[57] Slack, “Conversation.history,” https://api.slack.com/methods/

conversations.history, 2021.
[58] Slack, “Enabling interactivity with slash commands,” https://api.slack.

com/interactivity/slash-commands, 2021.
[59] Slack, “Introducing slack connect: the future of business commu-

nication,” https://slack.com/blog/transformation/slack-connect??&utm
source=hppromo&utm medium=promo, 2021.

[60] Slack, “Slack,” https://slack.com, 2021.
[61] Slack, “Slack install zoom,” https://slack.com/apps/

A5GE9BMQC-zoom, 2021.
[62] Slack, “Slack list users api,” https://slack.com/api/users, 2021.
[63] Slack, “Slack log access api,” https://slack.com/api/team.accessLogs,

2021.
[64] Slack, “Using the calls api,” https://api.slack.com/apis/calls, 2021.
[65] spaCy, “Dependency parsing,” https://spacy.io/usage/linguistic-features#

dependency-parse, 2021.
[66] spaCy, “Industrial-strength natural language processing,” https://spacy.

io/, 2021.
[67] spaCy, “Part-of-speech tagging,” https://spacy.io/usage/

linguistic-features#pos-tagging, 2021.
[68] Steven Melendez, “Discord and slack are becoming potent tools

for malware attacks,” https://www.fastcompany.com/90622606/
discord-and-slack-are-becoming-a-potent-tool-for-malware-attacks,
2021.

[69] L. Tang, L. Ouyang, and W.-T. Tsai, “Multi-factor web api security
for securing mobile cloud,” in 2015 12th International Conference on
Fuzzy Systems and Knowledge Discovery (FSKD 15). IEEE, 2015, pp.
2163–2168.

[70] Threat Post, “Attackers blowing up discord, slack with malware,” https:
//threatpost.com/attackers-discord-slack-malware/165295/, 2021.

17

https://www.zoho.com/cliq/help/platform/deep-linking.html
https://www.zoho.com/cliq/help/platform/deep-linking.html
https://discord.com
https://www.workplace.com
https://www.workplace.com
https://techcommunity.microsoft.com/t5/microsoft-teams/chats-accessible-by-admins/m-p/103612
https://techcommunity.microsoft.com/t5/microsoft-teams/chats-accessible-by-admins/m-p/103612
https://techcommunity.microsoft.com/t5/microsoft-teams/chats-accessible-by-admins/m-p/103612
https://blog.flock.com/flock-slash-commands
https://blog.flock.com/flock-slash-commands
https://techcommunity.microsoft.com/t5/microsoft-teams/confidentiality-safety-and-secrecy-of-private-chat-in-ms-teams/m-p/1067095
https://techcommunity.microsoft.com/t5/microsoft-teams/confidentiality-safety-and-secrecy-of-private-chat-in-ms-teams/m-p/1067095
https://techcommunity.microsoft.com/t5/microsoft-teams/confidentiality-safety-and-secrecy-of-private-chat-in-ms-teams/m-p/1067095
https://support.google.com/googleplay/android-developer/answer/9859751?hl=en
https://support.google.com/googleplay/android-developer/answer/9859751?hl=en
https://play.google.com/store/apps/details?id=com.microsoft.teams
https://play.google.com/store/apps/details?id=com.microsoft.teams
https://play.google.com/store/apps/details?id=com.Slack
https://play.google.com/store/apps/details?id=com.Slack
https://play.google.com/store/apps/details?id=us.zoom.videomeetingss
https://play.google.com/store/apps/details?id=us.zoom.videomeetingss
https://restfulapi.net/
https://hackerone.com/slack/hacktivity?type=team
https://sites.google.com/view/hazard-integrated
https://sites.google.com/view/hazard-integrated
https://support.apple.com/messages
https://www.expertinstitute.com/resources/insights/zoom-video-faces-multiple-class-action-suits-over-privacy-complaints
https://www.expertinstitute.com/resources/insights/zoom-video-faces-multiple-class-action-suits-over-privacy-complaints
https://www.markdownguide.org/basic-syntax/#links
https://www.markdownguide.org/basic-syntax/#links
https://api.mattermost.com/#operation/SendTrialLicenseWarnMetricAck
https://api.mattermost.com/#operation/SendTrialLicenseWarnMetricAck
https://mattermost.com
https://docs.mattermost.com/developer/slash-commands.html
https://docs.mattermost.com/developer/slash-commands.html
https://www.mcafee.com/enterprise/en-us/assets/white-papers/restricted/wp-microsoft-teams-top-10.pdf
https://www.mcafee.com/enterprise/en-us/assets/white-papers/restricted/wp-microsoft-teams-top-10.pdf
https://www.microsoft.com/en-us/microsoft-teams/education
https://www.microsoft.com/en-us/microsoft-teams/education
https://docs.microsoft.com/en-us/microsoftteams/platform/messaging-extensions/how-to/link-unfurling
https://docs.microsoft.com/en-us/microsoftteams/platform/messaging-extensions/how-to/link-unfurling
https://www.microsoft.com/microsoft-teams
https://www.microsoft.com/microsoft-teams
https://support.microsoft.com/office/use-commands-in-teams-88f61508-284d-417f-a53d-9e082164050b
https://support.microsoft.com/office/use-commands-in-teams-88f61508-284d-417f-a53d-9e082164050b
https://us.norton.com/internetsecurity-mobile-the-risks-of-third-party-app-stores.html
https://us.norton.com/internetsecurity-mobile-the-risks-of-third-party-app-stores.html
https://hackerone.com/reports/184698
https://hackerone.com/reports/184698
https://hackerone.com/rocket_chat/hacktivity?type=team
https://hackerone.com/rocket_chat/hacktivity?type=team
https://www.selenium.dev//
https://signal.org/en/
https://api.slack.com/reference/messaging/link-unfurling
https://api.slack.com/reference/messaging/link-unfurling
https://api.slack.com/methods/conversations.history
https://api.slack.com/methods/conversations.history
https://api.slack.com/interactivity/slash-commands
https://api.slack.com/interactivity/slash-commands
https://slack.com/blog/transformation/slack-connect??&utm_source=hppromo&utm_medium=promo
https://slack.com/blog/transformation/slack-connect??&utm_source=hppromo&utm_medium=promo
https://slack.com
https://slack.com/apps/A5GE9BMQC-zoom
https://slack.com/apps/A5GE9BMQC-zoom
https://slack.com/api/users
https://slack.com/api/team.accessLogs
https://api.slack.com/apis/calls
https://spacy.io/usage/linguistic-features#dependency-parse
https://spacy.io/usage/linguistic-features#dependency-parse
https://spacy.io/
https://spacy.io/
https://spacy.io/usage/linguistic-features#pos-tagging
https://spacy.io/usage/linguistic-features#pos-tagging
https://www.fastcompany.com/90622606/discord-and-slack-are-becoming-a-potent-tool-for-malware-attacks
https://www.fastcompany.com/90622606/discord-and-slack-are-becoming-a-potent-tool-for-malware-attacks
https://threatpost.com/attackers-discord-slack-malware/165295/
https://threatpost.com/attackers-discord-slack-malware/165295/

[71] A. Tsunoda, “Url link spoofing,” https://hackerone.com/reports/481472,
2021.

[72] Twist, “Api doc,” https://developer.twist.com/v3/, 2021.
[73] Twist, “error,” https://developer.twist.com/v3/#errors, 2021.
[74] Twist, “Twist get message api,” https://api.twist.com/api/v3/inbox/get,

2021.
[75] H. W, “Private channels in microsoft teams are

here,” https://www.avepoint.com/blog/microsoft-teams/
microsoft-teams-private-channels-qa, 2019.

[76] P. Wagenseil, “Zoom security issues: Here’s everything that’s gone
wrong (so far),” Toms guide, pp. 1–3, 2020.

[77] Q. Wang, P. Datta, W. Yang, S. Liu, A. Bates, and C. A. Gunter, “Chart-
ing the attack surface of trigger-action iot platforms,” in Proceedings of
the 26th ACM conference on Computer and communications security
(CCS 19), 2019, pp. 1439–1453.

[78] Webex Teams, “List messages,” https://developer.webex.com/docs/api/
v1/messages/list-messages, 2021.

[79] Webex Teams, “Webex moderate a space,” https://help.webex.com/
en-us/gw1w6c/Webex-Moderate-a-Space, 2021.

[80] T. Werthmann, R. Hund, L. Davi, A.-R. Sadeghi, and T. Holz, “Psios:
bring your own privacy & security to ios devices,” in Proceedings
of the 8th ACM SIGSAC symposium on Information, computer and
communications security (ASIACCS 13), 2013, pp. 13–24.

[81] WhatsApp, “Whatsapp,” https://www.whatsapp.com, 2021.
[82] Wikipedia, “Zoombombing,” https://en.wikipedia.org/wiki/

Zoombombing, 2020.
[83] Wikipedia, “Overview of restful api description languages,”

https://en.wikipedia.org/wiki/Overview of RESTful API Description
Languages, 2021.

[84] Wikipedia, “Principle of least privilege,” https://en.wikipedia.org/wiki/
Principle of least privilege, 2021.

[85] N. Zhang, X. Mi, X. Feng, X. Wang, Y. Tian, and F. Qian, “Dangerous
skills: Understanding and mitigating security risks of voice-controlled
third-party functions on virtual personal assistant systems,” in 2019 IEEE
Symposium on Security and Privacy (SP 19). IEEE, 2019, pp. 1381–
1396.

[86] Zoho Cliq, “Introduction to slash commands,” https://www.zoho.com/
cliq/help/platform/commands.html, 2021.

[87] Zoom, “Slash commands and ui elements,” https://marketplace.zoom.us/
docs/guides/chatbots/slash-commands-and-ui-elements, 2021.

[88] Zoom, “Zoom,” https://zoom.us, 2021.
[89] Zoom, “Zoom for government,” https://zoomgov.com/, 2021.

APPENDIX

A. Extracting API Action and Object in TAPIS

This
DET

method
NOUN

retr ieves
VERB

public
ADJ

profiles
NOUN

of
ADP

users
NOUN

belonging
VERB

to
ADP

this
DET

group
NOUN

nsubj

det

acl prep

punct

det

prep pobjdobj

amod

action, object: retrieves, profiles of users

Fig. 5. Dependency Parsing of a sample API description in Flock.

Figure 5 shows a sample of API description in Flock
together with its parsed dependency relations, as well as the
extracted (action, object) pairs. In TAPIS , this analysis is
done via the following procedures.
Action identification. In most cases, the action of a given
API is a verb that holds the root dependency relation to the
fake root of the sentence. For example, for the API description
“This method retrieves public profiles of users belonging to

this group”, the word “retrieves” is the main predicate verb that
indicates the action of the API. Therefore, TAPIS extracts the
verb with the root dependency relation as the action for each
API. Besides, some API descriptions use a passive sentence,
for example, “This method can be used to create a new channel
with the given name, image and purpose”, where the action
word of the API follows the parse “can be used to”. For such
a case, if the word following “can be used to” is a verb,
TAPIS extracts it as the action of the API.
Object identification. The object of API descriptions could
be a none word (e.g., “user”) or a none phrase (e.g., “profile
of users”). We determine the object of an given API based on
the following dependency relations.

• Direct-object relation (Dobj): The direct object of a verb
is a noun phrase. Here, we firstly extract the direct object
of the action verb as the object: e.g., we firstly identify
the none word “profile” as the object that holds the Dobj
dependency to the action “retrieves” in the description
“This method retrieves public profiles of users belonging
to this group”.

• Noun compound modifier (compound): The noun com-
pound modifier of an NP is any noun that serves to
modify the head noun. To extract more accurate object
of the API description, if there exists a none which
has the compound dependency with the Dobj word, we
will identify the object as “compound”+“Dobj”: e.g.,
“message” is the direct object of the action “share” in the
description “Share me message into a channel”. Besides,
the word “me” is the noun compound modifier of the
word “message”, so here we extracted the phase “me
message” as the object for the API description.

• Prepositional Phrase (Prep + Pobj): The prepositional
modifier with a followed Pobj of a noun is a prepositional
phrase that serves to modify the meaning of the noun.
In our approach, we extract the prepositional phrase of
the Dobj word, then identify the object as “compound +
Dobj + Prep + Pobj”. For example, we extract the phrase
“profiles of users” as the object of the API description
“This method retrieves public profiles of users belonging
to this group”.

18

https://hackerone.com/reports/481472
https://developer.twist.com/v3/
https://developer.twist.com/v3/#errors
https://api.twist.com/api/v3/inbox/get
https://www.avepoint.com/blog/microsoft-teams/microsoft-teams-private-channels-qa
https://www.avepoint.com/blog/microsoft-teams/microsoft-teams-private-channels-qa
https://developer.webex.com/docs/api/v1/messages/list-messages
https://developer.webex.com/docs/api/v1/messages/list-messages
https://help.webex.com/en-us/gw1w6c/Webex-Moderate-a-Space
https://help.webex.com/en-us/gw1w6c/Webex-Moderate-a-Space
https://www.whatsapp.com
https://en.wikipedia.org/wiki/Zoombombing
https://en.wikipedia.org/wiki/Zoombombing
https://en.wikipedia.org/wiki/Overview_of_RESTful_API_Description_Languages
https://en.wikipedia.org/wiki/Overview_of_RESTful_API_Description_Languages
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://www.zoho.com/cliq/help/platform/commands.html
https://www.zoho.com/cliq/help/platform/commands.html
https://marketplace.zoom.us/docs/guides/chatbots/slash-commands-and-ui-elements
https://marketplace.zoom.us/docs/guides/chatbots/slash-commands-and-ui-elements
https://zoom.us
https://zoomgov.com/

	Introduction
	Backgroud
	Team Chat Systems and Team Chat Apps
	Access Control Models
	Security Risks in TACT Systems

	Overview of Our Study
	The Big Picture
	Threat Model
	Common Sense Security Policies

	Risks in App Install and Configuration
	Perils in App Install and Update
	Configuration Trapdoors
	Summary

	TA API Analysis Framework - TAPIS
	Motivation, Challenges and Design
	API Specification Analysis
	Dependency Analyzer
	Runtime Invocation
	Risky API identification
	Summary of 99993em.5TAPIS

	API Risk Discovery and Analysis
	Experiment setting
	99993em.5TAPIS Effectiveness
	Large-scale scanning and findings

	User Perception Analysis
	Design of the User Study
	Results and Findings

	Discussion and Risks Mitigation
	Related Work
	Conclusion
	References
	Extracting API Action and Object in 99993em.5TAPIS

