
The Droid is in the Details: Environment-aware
Evasion of Android Sandboxes

Brian Kondracki
Stony Brook University

bkondracki@cs.stonybrook.edu

Babak Amin Azad
Stony Brook University

baminazad@cs.stonybrook.edu

Najmeh Miramirkhani
Stony Brook University

nmiramirkhani@cs.stonybrook.edu

Nick Nikiforakis
Stony Brook University
nick@cs.stonybrook.edu

Abstract—Malware sandboxes have long been a valuable tool
for detecting and analyzing malicious software. The proliferation
of mobile devices and, subsequently, mobile applications, has led
to a surge in the development and use of mobile device sandboxes
to ensure the integrity of application marketplaces. In turn,
to evade these sandboxes, malware has evolved to suspend its
malicious activity when it is executed in a sandbox environment.
Sophisticated malware sandboxes attempt to prevent sandbox
detection by patching runtime properties indicative of malware-
analysis systems.

In this paper, we propose a set of novel mobile-sandbox-
evasion techniques that we collectively refer to as “environment-
aware” sandbox detection. We explore the distribution of artifacts
extracted from readily available APIs in order to distinguish real
user devices from sandboxes. To that end, we identify Android
APIs that can be used to extract environment-related features,
such as artifacts of user configurations (e.g. screen brightness),
population of files on the device (e.g. number of photos and songs),
and hardware sensors (e.g. presence of a step counter).

By collecting ground truth data from real users and Android
sandboxes, we show that attackers can straightforwardly build a
classifier capable of differentiating between real Android devices
and well-known mobile sandboxes with 98.54% accuracy. More-
over, to demonstrate the inefficacy of patching APIs in sandbox
environments individually, we focus on feature inconsistencies
between the claimed manufacturer of a sandbox (Samsung, LG,
etc.) and real devices from these manufacturers. Our findings
emphasize the difficulty of creating robust sandbox environments
regardless of their underlying platform being an emulated en-
vironment, or an actual mobile device. Most importantly, our
work signifies the lack of protection against “environment-aware”
sandbox detection in state-of-the-art mobile sandboxes which can
be readily abused by mobile malware to evade detection and
increase their lifespan.

I. INTRODUCTION

Mobile devices have become an integral part of our lives.
With Android having over 70% of mobile market share [14],
these handheld devices now hold our most sensitive personal
and financial information. This data, as well as the powerful
devices that house it, have increasingly become a target for
attackers.

In 2009, the security community started observing malware
samples, such as, Spitmo and Zeus [33], which were equipped
with a mobile counterpart used to steal two-factor authentica-
tion tokens. Mobile malware samples found at the time were
most often accompanied with a desktop counterpart that would
be responsible for stealing banking information. Soon after
however, as mobile devices started to get more traction, mobile
malware evolved. Namely, new malware surfaced that per-
formed on-device phishing, subscribed to premium numbers,
and stole sensitive information [56]. This shift to mobile-first
malware, emphasized the growing need for mobile malware
detection.

Unlike desktop applications, which are independently
downloaded and installed from the software manufactur-
ers’ websites, mobile applications are commonly distributed
through centralized application stores; such as, the Google
PlayStore [9] and the iOS App Store [10] hosting 2.9 million
and 1.96 million apps respectively at the time of writing [21].
This makes the parties responsible for hosting and delivering
these applications the first line of defense to stop mobile
malware before reaching the user’s device. To that end, de-
fenders have proposed static and dynamic analysis methods
for malware detection that app stores have, to a certain extent,
adopted [22], [23], [25], [30], [54], [57], [61]. Over time,
however, mobile malware increased in complexity, introducing
evasion techniques such as code obfuscation to hinder static
analysis, and sandbox detection to bypass dynamic analy-
sis [47], [55].

A requirement for sandbox environments is scalability and
the capability to revert to a clean state to evaluate new samples.
This makes Android emulators the primary option for building
mobile sandboxes. Thus, there exists a large body of work
(from both academic research as well as malware samples)
describing techniques to fingerprint emulated environments,
mostly revolving around artifacts of emulation [27], [34], [49],
[51]–[53], [58]. These approaches focus on features of the
emulator, such as, the CPU architecture and instruction-level
behavior, performance of emulators, and the discrepancy of
OS-level APIs in real vs. emulated environments.

An important distinction between desktop and mobile sand-
box fingerprinting comes from the limited variation of mobile
devices. These devices ship with specific hardware features
(e.g., sensors, camera, and storage) as well as distinct soft-
ware properties (e.g., system applications and bloatware). This
makes building believable mobile-sandbox environments more
challenging, as sandboxes must hide signs of emulation, mimic
real-device configurations, and display signs of real-device

Network and Distributed Systems Security (NDSS) Symposium 2022
24-28 April 2022, San Diego, CA, USA
ISBN 1-891562-74-6
https://dx.doi.org/10.14722/ndss.2022.23056
www.ndss-symposium.org

usage. With these details in mind, we propose “environment-
aware” sandbox evasion which uses artifacts from the mobile
environment to identify sandboxes, rather than the specific
behavior of emulators.

To evaluate an attacker’s ability to evade sandboxes based
on environment artifacts, we implement an Android application
that extracts statistics from an extensive list of mobile APIs
(e.g. the number of contacts, the number of calls, the number
of photos, etc.). We select these APIs by reviewing Android
API reference documentation, focusing on those that expose
environment-related information. We submit this application to
12 popular Android sandboxes (including VirusTotal) as well
as multiple app stores (e.g. Google PlayStore and Samsung
Galaxy Market), with the expectation that apps uploaded in
app stores are also executed in mobile-specific sandboxes for
malware-detection purposes. In parallel, we conduct an IRB-
approved study inviting users from a crowdsourcing platform
as well as our institution to participate in our experiments
by downloading and installing the same app. Through this
process, we were able to obtain data from 1,245 user Android
devices and collect environment statistics that we later use
as ground truth in our machine-learning-powered classification
models.

Based on the collected information, we build a classifier
that detects mobile sandbox environments with 98.54% accu-
racy, demonstrating the power of artifact-based classification
and thereby sandbox evasion, without the need of emulation
artifacts that may change every time the emulating software
updates. We show that the trained models are robust to incre-
mental sandbox patches, finding that defenders can “remove”
more than 60 out of 81 features, without radically affecting
the performance of the classifier.

Finally, we build manufacturer-specific models based on
the settings, system applications, and factory bloat on devices
of popular manufacturers. We discover that for only three
sandboxes, the claimed device model matches the environ-
ment features based on the manufacturer-specific classifiers.
Contrastingly, for 75% of sandboxes, we observe that our
manufacturer-specific classifiers trained on data from real user
devices, identify that the sandboxes are effectively lying about
their make. Through our experiments, we demonstrate that a
sandbox can be discovered, not just because it looks like other
sandboxes (in terms of its artifacts) but also because it does
not look like a device from the manufacturer (Samsung, LG,
etc.) that it claims to be.

In summary, we make the following contributions:

• We collect data on environment artifacts from physical
Android devices and mobile sandbox services which
we use to identify trends and large differences in their
distributions.

• We train a machine-learning classifier utilizing a wide
range of Android device artifacts that is capable of effec-
tively differentiating real Android devices from sandbox
environments of top anti-malware services.

• We utilize device-hardware configuration artifacts to train
an ensemble of manufacturer-specific machine learning
classifiers, and use them to discover discrepancies in
the Android device manufacturers reported by sandbox
services, enabling manufacturer-based sandbox evasions.

II. BACKGROUND

Detection and analysis of computer malware is an impor-
tant, yet challenging task. One of the most vital tools for this
task are malware sandboxes. In this section, we provide a brief
background on sandboxes and how malware has evolved to
bypass them.

A. Malware Sandboxes

Sandboxes are isolated environments where software can
execute under observation. They allow defenders to examine
unknown software for malicious behavior, as well as known
malware in order to create behavioral signatures for use in
anti-malware systems. These systems can be physical ma-
chines (known as bare-metal sandboxes) with limited network
capabilities in order to contain the unwanted side effects of
potentially malicious code. However, due to the vast number
of software executables analyzed, virtual machines and other
system emulators provide a scalable platform to create malware
sandboxes.

The explosion of mobile-device adoption has led to a surge
in new software in the form of mobile applications. The Google
PlayStore, the largest application marketplace on the Android
platform, currently has nearly 3 million applications available
for download, with that number increasing every day [21]. This
massive influx of new applications makes manual analysis of
every single app impossible. Rather, application marketplaces
and security firms turn to malware sandboxes to automate the
process of finding and removing malicious applications from
the ecosystem.

B. Sandbox Evasion

Evading detection from defenders is a crucial aspect of
modern malware. Once malware is discovered by a sandbox,
signatures are created describing the malware sample and its
behaviors. These signatures are then distributed throughout
the anti-malware ecosystem, severely hampering (from the
attacker’s point of view) the number of affected victims.
Thus, attackers are always improving upon their methods
to detect sandbox environments so that malware does not
demonstrate its malicious behavior while under the observation
of defenders.

a) Device-based Evasion: One of the most trivial meth-
ods used to detect a sandbox environment is to look for so-
called “Red Pills” i.e., static values that betray the presence
of sandboxes. As many sandboxes utilize virtual machines,
a common check conducted by malware is to look for VM-
specific system properties. These come in the form of static
identifiers such as MAC addresses or serial numbers, device
drivers, and system modules. Malware can easily evade sand-
boxes by simply checking the value of these tell-tale system
properties.

Additionally, sandboxes running in an emulated environ-
ment must ensure they report realistic values for all hardware
and software on the system. Inclusion or exclusion of unusual
hardware or software can lead to successful malware evasion.
For example, a mobile sandbox neglecting to emulate a camera
module when its existence is expected, can raise a red flag for
attackers.

2

Feature Extraction Agent

Online Sandbox
and AV Engines

App Stores

Real user devices

Collected Artifacts

Sandbox vs real human device model

Device specific models

Feature Extractor APK

Design an APK that collects
various features from the device
and sends them to our server.

Data Collection

Submit this APK to online
application stores along with a
user study to collect sandbox
vs real device features.

Analysis of Artifacts

At this step, artifacts from various
categories (contacts, calendar,
reminders, photos, network and
songs) are collected.

ML Model Training

Train an ML model to detect Sandbox vs
Real human device as well as device
specific models that can detect real devices
based on the artifacts inherent to specific
device models.

Fig. 1: Flow of data from sources to our machine learning model.

Sophisticated sandboxes tackle these issues by presenting
realistic values for these variables (e.g. reporting a realistic
MAC address or serial-number value rather than the default
VM-specific values). While this raises the bar for attackers,
these sandboxes can still be evaded through analysis of runtime
behaviors. For instance, previous work has shown how certain
code sequences have implicitly different behavior when exe-
cuting on a bare-metal machine compared to an emulator [60].

b) Environment-based Evasion: Some sandboxes
choose to utilize bare-metal devices rather than virtual
machines and emulators. This eliminates the chance of
evasion due to the detection of emulation as all hardware and
software is authentic. However, many sandboxes neglect to
prepare their environments to appear genuine (e.g. a Windows
sandbox claiming to be a three-year old installation but
showing little user activity in terms of installed programs and
user files). Researchers have shown that these differences can
be capitalized by malware to evade sandboxes and to even
estimate the true age of a machine based on the presented
wear and tear [48].

III. DATA COLLECTION

In this section, we begin with an overview of the artifacts
we collect to differentiate real Android devices from sandbox
environments. We then describe the Android application we
designed and implemented for data collection, the sources we
collect data from, and the details of our user study. Lastly, we
analyze the collected data to discover trends in real Android
devices compared to sandboxes, and identify differences in
their distributions which would allow for the creation of a
machine-learning classifier capable of differentiating between
them. Details of our entire data collection and analysis pipeline
is listed in Figure 1.

A. Artifact categories

To effectively evade mobile sandboxes, attackers must uti-
lize as many sources of information as possible. This allows for
the creation of a detailed model of real Android devices, which
is robust against incremental improvements to sandboxes. To
this end, we followed the methodology of Kurtz et al. [44]
by systematically searching the Android SDK documentation
for any API endpoint returning environment information. We

identified a total of 81 features, split into three major artifact
groups unique to mobile devices. Below, we describe these
groups as well as the features belonging to each one, with a
full listing of all artifacts located in Table VIII of the Appendix.

1) Wear-and-Tear Artifacts: Wear-and-tear artifacts are the
natural side effect of mobile device usage. They describe the
behavior of the user and can be used to estimate the age of
the device. The different categories of these artifacts that we
used for our study are as follows:

Photos For this feature category, we collect the number of
pictures on the device, their average orientation (ratio of
vertical to horizontal images), and the last time a picture
was taken. Note that for photos (as well as other potentially
PII-revealing artifacts listed later in this section), we collect
statistics about them (such as the quantity of photos) but not
the actual photos themselves.

Songs and albums For songs, we look at their total number,
the number of artists, and the oldest and newest release dates.

Contacts We collect information such as the total number
of contacts, as well as the number of those with a phone
number or a picture associated with them. We also collect
the number of “starred” contacts, custom ringtones, the total
number of calls, and time of the last call. As with photos and
songs, we calculate the statistics on the device (e.g. the number
of contacts) and collect these statistics. We never extract the
underlying sensitive information for obvious privacy reasons.

Calendars, events, and reminders We collect the total num-
ber of calendars, event types and their status (i.e. accepted,
tentative, and canceled), and whether there is a reminder
associated with these events. For reminders, we look at the
reminder medium (i.e., Alarm, SMS, Email, and Default). We
collect these features in bulk and not for individual calendar
entries.

Packages, file system and running processes We extract the
total number of packages installed on user devices. While
malicious actors can go one step further and also extract
individual package names and their installation dates, we chose
not to do so in our study for privacy reasons. Similarly, we
collect the number of documents, downloaded files, and files

3

listed under the /proc directory to obtain the number of
running processes. Access to /proc has been discontinued
since Android 6.0 and therefore our collection of that specific
feature works on a best-effort basis.

Network and location For this set of features, the most notable
feature that we take into consideration is the number of WiFi
configurations saved on the device which, in principle, should
correlate with the usage of the device (the longer users own
a device, the larger the number of stored configurations on
their phones). Moreover, we extract the number of ARP cache
entries, which represents the number of devices on the local
network that the Android device has recently communicated
with.

2) Device Configuration Artifacts: Similarly to wear-and-
tear artifacts, user-provided configuration options can show
a degree of customization of a mobile device. When one
begins to use their device, they change specific values in the
device settings to meet their specific needs. By considering
the values of specific configuration options, we can estimate
the degree of customization of the device. However, while
these configuration options indicate device usage, they are not
quantifiable over long periods of time. Therefore, we discuss
them separately from wear-and-tear artifacts.

We collect certain values under the device settings such as
automatic update of time and time zone, data roaming, “stay
on while plugged in”, screen brightness level, as well as sound-
related settings. One important feature in this category is the
device uptime with the expectation that most users rarely turn-
off/reboot their smartphones.

3) Device Hardware Artifacts: Unlike their desktop coun-
terparts which can be assembled by users from individual com-
ponents, mobile devices are inherently limited in the hardware
configurations provided to users. These unique configurations
of device components and settings can be used to supplement
the aforementioned usage artifacts. Additionally, discrepancies
in the configuration of a device compared to the reported
device model can serve as a tell-tale sign of a sandbox’s
presence.

Our agent collects information about the device model
itself such as phone manufacturer, model, and Android ver-
sion. Additionally, it records the presence of certain hardware
sensors, such as a heart rate monitor or a step counter.

B. Feature Collector Agent

To conduct data collection on mobile environments, we im-
plemented an Android application which utilizes the Android
SDK to gather the previously described artifacts, and transmit
them to our servers. Our compiled application consists of a
single APK file, allowing us to easily upload it to sandbox
services for scanning or distribution to users through appli-
cation marketplaces. Android applications are required to ask
for permission from users to query specific APIs (e.g. contacts)
and read certain configurations (e.g. saved WiFi access points).
In older versions of Android, prior to 6.0 (API 23), all of
the permissions would be acquired at installation time. In
more recent versions, users are prompted at runtime to grant
these permissions to the application. In total, our application
requests five permissions: three runtime permissions, and two

install-time permissions. The three runtime permissions request
access to read the user’s calendar, contacts, and documents
on storage devices; whereas the two install-time permissions
request access to read the WiFi state, and user dictionaries.

Data is transmitted from our application to our servers over
a single POST request sent over an HTTPS connection. There,
we store the information in our database to be used in training
and validating our machine learning model. Each APK that
we distribute on a marketplace or submit to a sandbox has a
unique ID which is transmitted with all data in each request to
our servers, and is used to distinguish data between different
sources (e.g. Google Play Store vs. VirusTotal AV).

C. Collection of Features

To systematically search for all active sandbox providers,
we conducted a literature review in the field of mobile sandbox
development. Additionally, we utilized search engine queries
for terms such as “Android Sandbox”, “mobile sandbox”, and
“malware sandbox”. This search resulted in a large collection
of mobile sandboxes, ranging from open-source academic
tools to commercial services. For each sandbox discovered,
we upload or scan our client application. Additionally, we
distribute our application on popular Android marketplaces
in order to capture data on sandboxes and malware scanners
used by these entities. We note that there are a number
of other sandbox services we discovered in this search that
were either broken, discontinued, or operated in such a way
that prevented us from evaluating them. For instance, we
identified 29 mobile antimalware software out of which, 17
either only performed static analysis or did not allow outbound
HTTP/DNS connections to our servers. Ultimately, we tested
our application on 12 working antimalware sandboxes.

To capture the state of new Android devices and build a
baseline model (i.e. the distributions of the aforementioned
artifacts in newly-purchased devices), we utilized Amazon
Device Farm [2] and Google Firebase Test Lab [7]. These
services allow developers to test their applications on a large
slate of real, physical devices and pay for the time they
use each device. We uploaded to each of these services an
augmented version of our Android client which automatically
initiates data collection without any user interaction.

a) IRB Approval and User Study: Collecting data from
real Android devices required the assistance of real users.
Thus, we obtained an Institutional Review Board (IRB) ap-
proval for our study. Upon providing thorough details on what
data we would collect from participants as well as how we
would protect participant privacy, we obtained an IRB approval
on October 7, 2020.

The data we collect from users does not contain any person-
ally identifiable information (PII). All artifacts we described
previously are statistical in nature. For instance, we collect the
total number of contacts on a user’s device, rather than the
contact information itself.

To recruit participants, we sent out emails to students of
our institution asking for them to participate in our study for
a chance to win a gift card. Recruitment emails were sent
from our institutional email accounts, to ensure participants
were confident they were not spear-phishing attempts. All

4

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Fr

eq
ue

nc
y

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Release Year

0

50

100

150

200

250

300

200 400 600 800 1000
Release Price

0

50

100

150

Fig. 2: Distribution of device release dates and prices in our dataset.

instructions were provided to participants within the recruit-
ment email. Users were asked to download and install our
application onto their Android mobile device from the Google
Play Store. After providing the required permissions, we asked
them to navigate to the “User Study” tab in the application and
click on the “Get Token” button. At this point, our application
transmits the collected artifacts to our servers, and participants
receive a token which proves their participation. The total time
required by participants was between 3-5 minutes.

To bolster our dataset of real user devices, we conducted
the same user study with hired workers on the Microwork-
ers [13] platform. Instructions for participants were listed on
the Microworkers job listing, and participation tokens where
shared using the job listing as well. Workers on this platform
were paid an average of $0.75 for their participation, rather
than an entry into the gift-card raffle. In total, we spent
approximately $850 to complete our user study.

D. Dataset Statistics

Using our Android agent, we collected data from 1,245
real user devices, 398 baseline devices, and 210 sandbox
devices. Baseline devices are real Android phones accessible
through Google Firebase Test Lab [7] and Amazon Device
Farm [2] services, which provide cloud-based application
testing. Of real user devices, 92 originated from students of
our institution, and 1,153 from the users of the Microworkers
platform. Figure 2 presents the distributions of device release
dates and release-time prices of devices (in US dollars) in
our dataset. Here, we see a diverse range of device ages and
prices. However, most devices in our dataset are on the cheaper
end, which can be explained by the demographic distribution
of workers on the Microworkers platform, favoring budget
devices [37]. Additionally, Table I shows the total number
of data points we collected from each sandbox service, as
well as the number of unique devices encountered. We observe

TABLE I: Number of samples collected from each sandbox in our
dataset, as well as the number of unique devices collected from each
source.

Sandbox # Samples # Devices
VirusTotal AV 73 17
Comodo Sandbox 27 12
GData AV 18 9
Google PlayStore Market 15 3
eScan (mwti.net) AV 12 1
Samsung Galaxy Store Market 10 1
GetJar Market 10 4
Tgsoft AV 9 8
Amazon AppStore Market 9 2
Kaspersky AV 8 5
DrWeb AV 5 2
SandDroid Sandbox 5 2
AMAass Sandbox 3 1
JoeSandbox 3 2
BitDefender AV 2 2
Nviso Sandbox 1 1

TABLE II: Distribution of Android device manufacturers in our real
devices compared to sandboxes.

Manufacturer Real Devices Sandboxes
Xiaomi 25.50% 1.16%
Samsung 23.89% 7.56%
Huawei 8.31% 5.23%
Oppo 5.97% 0.00%
Realme 5.17% 0.00%
Vivo 3.95% 2.33%
LG 3.79% 27.33%
Motorola 2.58% 0.00%
Oneplus 1.94% 0.00%
Hmd global 1.86% 0.00%
Asus 1.86% 8.14%

that the majority of sandbox services launch our application
multiple times after submission. However, we find most of
these repeated launches occur from one or a small group
of device models, using a varied group of reported Android
versions. We can infer that this differentiation is an attempt to
coerce malicious behavior out of malware that may be targeting
specific devices and Android versions.

We notice a large number of execution data points origi-
nating from our Android client submitted to VirusTotal as well
as popular application marketplaces. VirusTotal’s APK file
evaluation currently uses 28 underlying antimalware checks.
As a result, a single file will be analyzed and dynamically
executed multiple times. Not all of the antimalware engines in
VirusTotal perform dynamic analysis and one cannot choose
to analyze the submitted file on a subset of engines separately.
Unlike sandbox services, data points from marketplaces may
be varied with some coming from the vetting procedure of the
marketplace as well as real users downloading our application.
To differentiate between these two scenarios, we used the ASN
of the source IP address of each connection. If it belongs to the
organization of the marketplace or of an organization providing
computing resources (such as a public cloud), we consider that
a sandbox, otherwise we consider it a real device.

5

4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0
Android Release

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
eq

ue
nc

y
Real
Sandbox

Fig. 3: Distribution of Android versions among real user devices and
sandboxes that report an Android release version.

Table II shows the distribution of device manufacturers
among our datasets of real user devices and mobile sandboxes
as reported by the Android build API. Here, we observe that
the majority of real users own devices from popular smart-
phone manufacturers such as Samsung and Xiaomi. However,
there is a lack of representation of these popular devices
in mobile sandboxes. We find that 34.8% of sandboxes do
not report any device manufacturer when requested by our
application.

We also observe that this same group of sandboxes (34.8%
of our dataset), do not report an Android version when
requested. Figure 3 shows the distributions of reported Android
software versions in both real user devices and mobile sand-
boxes. Most sandboxes that report an Android version claim
to be running a very early release. This may be an attempt
to coerce malware into revealing malicious behavior when
encountering an outdated and vulnerable device. However, we
see that real user devices in our dataset are more likely to run
a recent release of Android.

These discrepancies are alarming as it is important for
mobile-sandbox providers to follow the usage trends of real
Android mobile devices in order to prevent trivial sandbox
detection. “Red Pill” information such as this is powerful
and non-invasive, meaning attackers can easily and stealthily
acquire this information to evade sandboxes. At the same
time, this type of manufacturer-based and Android-version-
based evasions can be straightforwardly patched by sandboxes
merely reporting the appropriate values. As such, we focus our
attention on more inconspicuous information that can betray
the nature of the sandbox while also requiring a greater amount
of effort for sandbox providers to properly counter.

Figure 5 shows the distributions of wear-and-tear artifacts
in our dataset. For increased clarity, we show 16 out of a
total of 41 wear-and-tear artifacts. We find that, in most cases,
real user devices produce wear-and-tear artifacts of a larger
magnitude (e.g. a large number of WiFi configurations) and a
larger variance than those in our sandbox and baseline datasets.
This observation shows how the usage of a mobile device
can be quantified from wear-and-tear artifacts, and that these
artifacts can be used to reliably differentiate a mobile sandbox

Se
ns

or
_n

um
Se

ns
or

s

Se
ns

or
_a

cc
el

er
om

et
er

Se
ns

or
_g

ra
vi

ty

Se
ns

or
_g

yr
os

co
pe

Se
ns

or
_h

ea
rtB

ea
t

Se
ns

or
_h

ea
rtR

at
e

Se
ns

or
_l

ig
ht

Se
ns

or
_m

ag
ne

tic

Se
ns

or
_m

ot
io

n

Se
ns

or
_p

re
ss

ur
e

Se
ns

or
_p

ro
xi

m
ity

Se
ns

or
_s

te
pC

ou
nt

er

Number of Sensors

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 V
al

ue

Real Baseline Sandbox

Fig. 4: Distribution of sensor hardware in our dataset groups. Box
and whiskers encompass 90% of data group values.

environment from a real user’s device. We do, however, en-
counter some features which unexpectedly provide less classi-
fication power than we originally expected. One such example
is the number of processes running on a device. Intuitively, one
would expect a real device to have more running processes due
to users launching many applications during typical use. Since
we do not collect the actual packages installed on a device,
we cannot conclusively explain this discrepancy. One possible
explanation is that sandbox services have extra logging and
analysis processes running in parallel with suspected malware,
thus leading to inflated process counts.

Next to wear-and-tear artifacts, the relative stability of
mobile device hardware compared to desktop computers allows
for the use of hardware configuration artifacts in sandbox
evasion. Figure 4 shows the distribution of sensors in de-
vices of each category in our dataset. We find that mobile
sandboxes are less likely to include emulated hardware such
as environment sensors, creating an additional differentiating
factor between artificial and genuine Android environments.
We further expand upon these artifacts in Section V, where
we create machine learning models for popular Android device
manufacturers.

IV. MOBILE SANDBOX DETECTION

In the previous section, we described the artifacts that can
be used to differentiate real Android devices from mobile
sandboxes operated by appstores and anti-malware companies.
Our initial analysis of data collected from real-user devices,
baseline devices, and sandboxes, demonstrated that real An-
droid devices and sandbox environments produce unique distri-
butions for many of these artifacts, pointing to an opportunity
for their differentiation. In this section, we use these artifacts
as features in a machine-learning classifier that can be used by
mobile malware to evade analysis by defenders.

6

Pac
ka

ge
Data

_n
um

Pac
ka

ge
s

W
ifi_

nu
mW

ifiC
on

fig
ura

tio
ns

Pho
tos

_n
um

Pics
Pho

tos
_n

um
Priv

ate
Pics

Pho
tos

_a
vg

PicO
rie

nta
tio

n
Con

tac
ts_

nu
mCon

tac
ts

Con
tac

ts_
nu

mVisi
ble

Con
tac

ts_
nu

mW
ith

Num
be

r

Con
tac

ts_
nu

mW
ith

Pho
to

Cale
nd

ar_
nu

mCale
nd

ars

Cale
nd

ar_
nu

mRea
dA

cc
es

s
Cale

nd
ar_

nu
mOwne

r
Fil

es
_n

um
Doc

um
en

ts
Fil

es
_n

um
Dow

nlo
ad

s
ARP_a

rpC
ac

he
Size

Proc
es

s_
nu

mProc
es

se
s

Wear and Tear Artifacts

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 V
al

ue
Real Baseline Sandbox

Fig. 5: Distribution of wear and tear artifacts in our dataset groups.

A. Classifier Setup

For an attacker implementing a classifier to detect mobile
sandbox environments, simplicity of implementation and ex-
plainability of results is of the utmost importance. It is for these
reasons that we chose to use a decision-tree-based, machine-
learning algorithm for our classifier. Decision trees are one
of the most straightforward machine-learning algorithms to
implement, requiring only a series of conditional statements.
This property is valuable for use in malware as this leads to a
negligible increase in file size and profile. Moreover, in order
to understand and react to changes made by mobile sandboxes,
attackers need to visualize the importance of particular features
in their classifier. By observing the splitting rules at each level
of a decision tree, attackers can easily determine the decision
boundaries, and make corrections as sandboxes evolve.

Before creating our classifier, we focus on the careful
construction of our training and testing datasets. As described
in Section III-B, we collect data from three sources: Android
sandbox services, real user devices, and test devices from the
services Amazon Device Farm and Google Firebase Test Lab.
For brevity, we will refer to these datasets as Dsand, Duser, and
Dbase, respectively. In order to create a classifier capable of
detecting various kinds of sandbox environments, from clean
physical devices to sophisticated commercial sandboxes, in this
section, we consider devices from Dbase to be sandboxes.

To create our training dataset, we randomly sample 200
data points from Duser, and include 100 samples from both
Dsand and Dbase. This produces a balanced training dataset
consisting of 400 total samples. We use the remaining samples
from all three datasets for testing, 408 positive samples and
1,045 negative samples.

Using our compiled datasets, we evaluated the perfor-
mance of a number of popular decision tree-based machine
learning algorithms including: Decision Trees, Random Forest,
Gradient Boosting, and Adaptive Boosting. We found that
Gradient Boosting provided us with the greatest performance,
while still keeping the beneficial properties of decision trees

we described earlier. Gradient boosting improves upon basic
decision trees by iteratively constructing trees that improve
upon the weaknesses of the previous tree. This increases the
overall performance without increasing the implementation
complexity. Using a grid search, we find that creating a forest
of 53 trees with a learning rate of 0.1 and maximum tree
depth of 13, leads to the most optimal performance. Finally, we
focus our attention on optimizing our classifier for a low false-
negative rate. Such misclassifications can be extremely costly
for malware, as displaying malicious behavior in a sandbox
environment will lead to detection by antimalware services
and subsequent removal from application marketplaces.

We examine the features used by each of the trees in our
classifier in Table III and find that, out of the top 20 most
commonly used, 13 belong to the Wear-and-Tear category. The
high representation of wear-and-tear features in our classifier
demonstrates the classification power of these often overlooked
aspects of the Android environment. Our classifier does not
rely on a small group of “red-pill” features to determine the
presence of an emulated or otherwise artificial device. This
adds to the robustness of our classifier compared to prior work
as patches to singular API values will not be enough to bypass
detection.

B. Evaluation

We evaluate our classifier on the testing set previously
described. Our classifier achieves an accuracy score of 98.54%,
false-positive rate of 1.58%, and false-negative rate of 0.57%.
In total, our classifier produces one false negative, originating
from Dsand. Further, our classifier produced a 10-fold cross
validation score of 99.27% using the same testing dataset.

Figure 6 shows the Receiver Operating Characteristic
curves for our classifier tested on both a balanced (1:1 real-
device to sandbox ratio) and un-balanced (99:1 real-device to
sandbox ratio). We note that in the real world, mobile malware
is likely to encounter a much greater number of real Android
devices than mobile sandboxes. We therefore report the per-

7

TABLE III: The 20 most important features to our classifier based on
the percentage of trees that rely on each. W&T, DH, and DC represent
Wear-and-Tear, Device Hardware, and Device Configuration artifacts,
respectively.

Category Feature % of Trees
W&T Process numProcesses 88.7%
W&T Photos numPics 83.0%
W&T Calendar numOwner 75.5%
W&T Calendar numCalendars 73.6%
W&T Contacts numContacts 71.7%
DH GyroscopeSensorReadings 64.2%
DC Device UpTime 64.2%
W&T Contacts numVisible 62.3%
DC StayOnWhilePluggedIn 52.8%
W&T numWifiConfigurations 45.3%
DH DeviceTemperatureSensorReadings 45.3%
W&T ArpCacheSize 45.3%
W&T Events avgEventLen 41.5%
W&T Contacts numWithNumber 41.5%
DH Sensor proximity 39.6%
W&T Events numTentative 37.7%
DH LightSensorReadings 35.9%
DC DeviceRooted 35.9%
W&T Photos avgPicOrientation 18.9%
W&T Contacts numWithPhoto 18.9%

0.000 0.005 0.010 0.015 0.020 0.025 0.030
False Positive Rate

0.85

0.90

0.95

1.00

Tr
ue

 P
os

iti
ve

 R
at

e

1:1 Ratio
99:1 Ratio

Fig. 6: Receiver-Operator Characteristic Curves of our mobile
sandbox classifier tested on datasets with a 1:1 and 99:1 real-device
to sandbox ratios

formance of our classifier on an un-balanced dataset to reduce
spatial bias in our experimental outcomes [50]. We find that in
both cases, our classifier is able to effectively differentiate real
Android environments from artificial environments created by
sandbox services, as it can achieve a true positive rate of over
99% with a false positive rate of below 3%.

An important property of mobile sandboxes is that they
can constantly evolve to prevent evasion. Thus, quirks which
currently betray the nature of the sandbox are not guaranteed
to exist in the future. To ensure our classifier does not overfit
on a small subset of powerful features, we study the decay
of model performance as we iteratively remove the most
important features. We determine the importance of each
feature to the performance of our classifier by iteratively
removing each feature, retraining, and evaluating the resulting
performance. We then rank the importance of each feature by
the performance dropoff of the classifier when that feature was
omitted. Figure 7 shows the decrease in accuracy as well as
increase in false positive and negative rates as features are

Features Dropped

0.9

1.0

0 20 40 60 80
Features Removed

0.0

0.1

0.2

Accuracy False Positive Rate False Negative Rate

Fig. 7: Drop-off in classifier performance when removing the most
important feature and re-training.

removed. We observe that even after removing the top 60
features, the accuracy of our classifier remains above 95%,
only severely dropping once over 70 features are removed.
This shows how our classifier does not rely on a small group
of powerful features, but rather the entire ensemble of features
as a whole.

We also record the performance of our classifier when
isolating each of the three identified feature groups. This allows
us to determine which specific areas sandbox services fail
in their emulation of real Android devices. Table IV shows
the performance of the feature groups: wear-and-tear, device-
hardware properties, and device-configuration properties, as
described in Section III-A.

We find that for the task of sandbox detection, device
configuration and wear-and-tear artifacts perform the greatest,
while a model using only device-hardware properties, though
still powerful, exhibits a 2×-6× more false positives, com-
pared to the other models. When isolating only wear-and-
tear artifacts, our classifier achieves an accuracy of 97.9%.
Similarly, when using only device configuration artifacts such
as the state of device settings like WiFi and Bluetooth, our
classifier achieves an accuracy score of 98.7%. As these two
groups account for 62 features, the lack of attention to detail
by sandbox services here means attackers can create powerful
and robust classifiers to effectively evade detection by these
services.

Finally, we measure the performance of our classifier
when tested on devices of different ages and price ranges. To
determine performance by device age, we divide our testing
dataset into three groups: devices released before 2015, devices
released between 2015 and 2018, and devices released after
2018. Additionally, to determine performance by device price,
we divide our testing dataset into three additional groups:
devices costing less than $250, devices costing between $250
and $750, and devices costing over $750. Note: we label
each device by the release MSRP in US Dollars. We observe
in Table V that the performance of our classifier does not
drastically change when encountering devices of these groups.
This demonstrates that while Android device hardware and
software changes over time and among different price ranges,
the magnitude of these changes is not large enough to affect
the environment differences between real devices and mobile
sandboxes.

8

TABLE IV: Classifier performance when trained on artifact groups
in isolation (FPR = False Positive Rate, FNR = False Negative Rate).

Artifact Type #Artifacts Accuracy FPR FNR
Device Hardware 19 91.8% 5.1% 3.06%
Device Config. 21 98.7% 0.58% 0.73%
Wear-and-Tear 41 97.9% 0.87% 1.17%

TABLE V: Classifier performance when tested on devices of different
ages and price ranges. We consider a device to be old if it was
released prior to 2015, intermediate if it was released between 2015
and 2018, and new if it was released any time after 2018.

Device Age Accuracy FPR FNR
Old 100.00% 0% 0%
Intermediate 94.8% 6.3% 0%
New 99.3% 0.8% 2.6%
Device Price Accuracy FPR FNR
$0-$249 99.58% 0.44% 0%
$250-$749 95.54% 4.25% 5.45%
$750-$1,000 100% 0% 0%

Minimizing the number of requested permissions

Android malware is limited in its stealthiness compared to
its desktop counterparts due to the fact that security-sensitive
operations such as accessing certain APIs is blocked by the
Android permission system. Any application that requires
access to such functionality needs to declare the necessary
permissions in the manifest file. This can lead to suspicion
by malware scanners if too many sensitive permissions are
requested. Moreover, Android permissions are divided into two
main categories: install-time and runtime permissions. Android
install-time permissions are listed in the manifest file, and are
granted at install-time. Runtime permissions are also listed in
the manifest, but prompt the user for further confirmation when
the sensitive action is invoked. Depending on the declared
nature of the app, these prompts could lead to the malicious
behavior of the application being discovered (e.g. a weather
application suddenly requesting access to the user’s contact
list). Therefore, it is in the best interest of the attacker to only
request the permissions required for the malicious activities.

Figure 8 lists the permissions that our Android agent
requests along with the number of features which rely on each
permission. The features we use in our classifier extend across
six different permission groups. We determine the dropoff in
classifier performance when removing requested permissions
by dropping features associated with each permission, retrain-
ing our classifier, and evaluating its new performance. We find
that when using only features that either do not need explicitly
stated permissions, or only require an install-time permission,
our classifier still achieves an accuracy score of 99.08%, a false
positive rate of 0.44%, and a false negative rate of 0.73%.
Restricting a classifier to these features would, at the time
of this writing, allow an attacker to reliably evade Android
malware analysis systems without the need to include any
additional permissions other than what is required for the de-
sired malicious actions. By not requiring runtime permissions,
malware can stealthily determine the current environment.
Moreover, as the false negative rate remains low, attackers can
be confident that a negative classification is correct and won’t
inadvertently give away the application’s malicious behavior.

0 5 10 15 20 25 30 35
Number of Features

None

READ_CALENDAR

ACCESS_WIFI_STATE

READ_CONTACTS

READ_EXT_STORAGE

READ_USER_DICTIONARY

Pe
rm

is
si

on

Install
Runtime

Fig. 8: Number of artifacts collected by our Android client broken
down by the permissions required to access each.

V. DEVICE MANUFACTURER CLASSIFICATION

In the previous section, we showed how various aspects of
Android mobile devices can be used to differentiate between
real and sandbox environments. We discovered that sandbox
providers do not effectively emulate all aspects of real Android
mobile devices and, therefore, attackers can create powerful
and robust classifiers to evade detection. In this section, we
explore discrepancies involving the reported manufacturer of
mobile devices to determine if characteristics of the environ-
ment do not align with what is reported by the device.

We focus on a subset of artifacts of those listed in Sec-
tion III-A that represent Android devices independent of the
actions of users, and can provide insight into the device’s
manufacturer. We then show how we can use these artifacts
to create machine-learning classifiers specific to each device
manufacturer. Lastly, we demonstrate how attackers can use
these classifiers as an additional side-channel in determining
the presence of a sandbox by examining discrepancies in
their output compared to the manufacturer reported by the
device. Effectively, we investigate whether a sandbox can be
discovered, not because it looks like other sandboxes (in terms
of its artifacts) but because it does not look like a device from
the manufacturer (e.g. Samsung, LG, etc.) that it claims to be.

A. Device Hardware Properties

Due to their form-factor and locked-down nature, mobile
devices are typically limited to the hardware chosen by the
manufacturer, with few options for user customizability. Thus,
a particular Android device model will always have the
same hardware configuration, regardless of the user. More-
over, hardware configurations amongst device models of the
same manufacturer will likely remain consistent. Therefore, if
sandbox services do not pay attention to details such as these,
attackers who are aware of typical hardware configurations of
a particular manufacturer can use these discrepancies to evade
the sandbox.

As we described in Section III-A, we define device hard-
ware configuration as the set of artifacts which correspond
to specialized hardware components. This hardware includes
environment sensors (e.g. light and gravity sensors), health
trackers (e.g. heart rate and step counters), and communication
modules (e.g. WiFi radios). In Section III-D, we explored
the unique hardware configuration distributions between Duser,

9

LGE Samsung Sony Asus Google Xiaomi Huawei Lenovo HTC
Device Manufacturer

50

100

150

200

250

300

350

Sy

st
em

 P
ac

ka
ge

s
Baseline Sandbox

Fig. 9: Distribution of system image packages in real Android devices
compared to mobile sandboxes.

Dbase, and Dsand and showed the divide between these groups
in Figure 4. Among others, we discovered that device statistics,
such as, the number of each kind of environment sensors and
configuration options of communication modules, can vary
drastically from manufacturer to manufacturer. Additionally,
this information from the hardware specifications can be
acquired by attackers stealthily as they require no runtime
permissions.

B. Quantifying Device Bloat

Operating system bloat is a trend common to many popular
Android mobile devices. Manufacturers pre-load their devices
with a tailored Android distribution containing extra, often
undesired, software packages. This software, referred to as
bloatware, is commonly bound to the device and cannot be
easily removed. Different manufacturers will include various
amounts of bloatware onto the system images of devices they
sell. By studying the bloatware included by each manufacturer,
we can determine the expected size, in number of included
packages, of each manufacturer’s system image.

We collect the number of packages on the image of each
Android device by counting the number of entries in their
/system/app and /system/priv-app directories. As
described in [35], packages in these directories are pre-installed
on the system image, whereas applications installed by users
are located in /data/app. It should be noted that not all
packages in these directories are stand-alone applications.
Rather, many execute as background processes related to the
operating system. We count all entries regardless of whether
they are stand-alone applications as even packages providing
background services can be linked to manufacturer bloatware.

Figure 9 shows the distributions of pre-installed packages
for each device manufacturer observed in both Dbase and Dsand.
We can see that in the case of all manufacturers, real devices
in our dataset have significantly more pre-installed packages
than sandbox devices supposedly of the same manufacturer. In
one specific scenario, a Google Pixel 3 XL running Android 9
in Dbase contained 141 pre-installed packages, while the same
purported device running the same version of Android in Dsand
only had 82 pre-installed packages. This can be explained by
sandbox providers stripping out unnecessary bloatware in an
attempt to increase the performance of their sandbox. However,
it is unlikely that a normal user will attempt to do the same
on their personal device. Therefore, attackers can use this
discrepancy to determine the presence of a sandbox.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

LG Samsung Google Sony

Fig. 10: Receiver Operating curves for manufacturer-specific machine
learning classifiers performing on data collected from real Android
devices (top), and mobile sandbox services (bottom).

C. Device Manufacturer Classifiers

So far, we demonstrated the differences in configurations
of device hardware and pre-installed software between real
Android devices and mobile sandboxes. We now describe how
attackers can use these artifacts to train manufacturer-specific
machine learning classifiers for the devices of top Android
manufacturers, and show how their outputs can be used to pick
up on discrepancies in sandbox environments for the purpose
of evasion.

When deciding upon how to classify device manufac-
turers, we chose to create an ensemble of classifiers, each
specialized in detecting a particular manufacturer, rather than
one multiclass classifier. As the number of potential device
manufacturers can be large, this can have a negative effect
on the performance of such a classifier. Further, multiple
individual classifiers can allow attackers to specifically target
one or a small set of devices with greater precision.

To create manufacturer-specific classifiers utilizing the fea-
tures previously described, we re-upload an augmented version
of our Android application to each of the identified sandbox
services, as well as Google Firebase and Amazon Test Lab.
We configure our application to collect the total number of
system packages as opposed to the number of user installed
packages, as we did for the datasets discussed in Section IV.
This allows us to observe the device bloat of Android device
manufacturers rather than wear-and-tear artifacts produced by
users.

We assemble training and testing datasets by assigning
data points from Dbase corresponding to each manufacturer as
the positive data points, and all other samples from Dbase as
negative. Training datasets are created by randomly sampling
75% of all given positive data points, and an equal number

10

TABLE VI: Percentage of samples from Android sandboxes in
which the reported device manufacturer matches the output of our
manufacturer classifier ensemble.

Sandbox Samples % Manufacturer Match
Sandbox 1 16 100.0%
Sandbox 2 4 100.0%
Sandbox 3 4 100.0%
Sandbox 4 36 25.0%
Sandbox 5 36 20.0%
Sandbox 6 64 14.3%
Sandbox 7 60 11.1%
Sandbox 8 8 0.0%

of negative data points. All remaining samples are considered
the testing set for that manufacturer. Note that we do not train
classifiers for device manufacturers for which we are lacking a
sufficient number of data points (at least ten total samples per
device manufacturer in the training dataset). In total, we create
four datasets for popular device manufacturers and use the data
from Dsand to determine how effective mobile sandboxes are
in emulating real Android devices.

Using our compiled datasets, we train four Gradient Boost
decision tree classifiers, each optimized independently using
Grid Search. Figure 10 shows the performance of our clas-
sifiers when testing on real Android device data and mobile
sandbox data. We find that our classifier achieves consistently
greater performance on data from real Android devices, while
suffering on sandbox data. This, along with the device-specific
feature distributions in Figure 4 and Figure 9, demonstrates that
the data originating from mobile sandbox services does not
match the distributions of real Android devices from the man-
ufacturers they claim to be. Intuitively, a lower performance by
our device-specific classifiers on mobile sandbox data indicates
that, due to the values of the features previously described in
relation to the expected distributions, the classifier determined
the device was not of the reported manufacturer (leading to
a “misclassification”). It is this discrepancy that attackers can
leverage to determine the presence of a sandbox.

Furthermore, Table VI shows the performance of our
manufacturer-specific classifiers on data from each of the sand-
boxes that report using a device from the same manufacturer
as one of the classifiers in our ensemble. We anonymize
the sandbox names to prevent direct comparisons between
commercial products. Here, a sandbox performs well if the
classifier for the manufacturer reported by the device outputs
a positive label. In these cases, malware utilizing such a
classifier would conclude that they are executing on a real
device and manifest their malicious behavior, allowing the
sandbox to create a signature. Conversely, sandboxes with a
low manufacturer-match percentage do not sufficiently emulate
the environments they claim to be. As such, using classifiers
from our ensemble, attackers can observe the reported device
manufacturer differing from that of the classifier output, and
evade the sandbox. In our dataset, only three sandboxes achieve
a 100% manufacturer match rate, while one sandbox produces
discrepancies in all samples.

To demonstrate how attackers can use both of our pro-
posed classification methods (Sandbox classifier and Device
manufacturer discrepancy) in tandem to evade mobile sandbox

TABLE VII: Verification of samples labeled as real devices (negative
label) by classifier in Section IV.

Sandbox Classifier Manufacturer Discrepancy?
Output Samples Yes No
True Negative 378 0 378
False Negative 1 1 0

environments, we verify all samples classified as real mobile
devices in Section IV. The idea is that the attacker will use
the device discrepancy model after the first classifier on non-
sandbox classifications to further reduce the false negatives and
ensure that malware does not execute inside of a sandbox. To
simulate this two-step evasion strategy, we pass the subset of
the samples which report a device manufacturer matching one
of our classifiers in our ensemble and determine the updated
output. We focus on the samples labeled as real devices by
our classifier in Section IV as these could be false negatives.
Additionally, we remove the system package count feature
from our manufacturer classifiers as the data from Section IV
contains the number of user-installed packages. Instead we
focus only on the device hardware properties as these features
are consistent between both datasets.

In total, we verify 379 negative samples from Section IV
whose reported manufacturer is one of the four popular manu-
facturers we created classifiers for, out of 1,019 total negatives.
Of these samples, 378 were true negatives and 1 was a false
negative from the first classifier. Table VII lists the results
of this verification. We find that none of the true negatives
had a discrepancy between the output of our manufacturer
classifiers and the manufacturer reported by the device, while
the single false negative was corrected. From the perspective
of an attacker, preventing false negatives is more important
than reducing false positives as mislabeling a sandbox as a
real device can lead to detection and prompt removal from
application marketplaces.

In summary, we conclude that it is not sufficient to patch
individual Android APIs to return believable values in isolation
when constructing a malware sandbox and the relationship be-
tween API values and device model is an important factor. This
detail has been overlooked by the majority of sandboxes in our
dataset. Our ensemble of manufacturer-specific classifiers is
able to effectively identify Android devices of particular man-
ufacturers using only their unique sensor configurations. The
decrease in performance observed when testing on data from
mobile sandboxes demonstrates that while sandboxes may
identify themselves as a device of a particular manufacturer,
their reported hardware configurations do not support those
claims. This discrepancy, along with any other environment
discrepancies, is enough for attackers to detect the sandbox
and evade analysis.

VI. DISCUSSION

In this section, we discuss our main findings, the
environment-related weaknesses of current Android sandboxes,
and suggest improvements to build sandbox environments that
are more resilient to evasion. Additionally, we discuss the
disclosure of our findings to sandbox services.

11

A. Weakness of Android Sandbox Services

Our work has shed light onto the shortcomings of mobile
sandboxes in emulating the full Android environment. We
stress that when creating a mobile sandbox, attention to small
details is of critical importance. More specifically, contrary to
desktop sandboxes, we demonstrate that it is not sufficient to
patch individual APIs and the whole environment should match
the details of the claimed device manufacturer and model.
While we find some sandboxes are successful in emulating
the hardware of real Android devices, usage-based artifacts
still allow for the effective differentiation between artificial
and real Android devices.

Due to this, we were able to train a machine learn-
ing classifier capable of differentiating real Android devices
from sandboxes with 98.54% accuracy. More importantly, our
classifier achieved a false negative rate of 0.57%, meaning
malware utilizing similar techniques could evade the existing
commercial and state-of-the-art sandboxes (including Virus-
Total and Google PlayStore) with a very low probability of
detection. Furthermore, we trained an additional ensemble of
machine learning classifiers, each specialized to detect Android
devices of a particular manufacturer. We demonstrated how we
could use these classifiers to verify the results of our main
classifier, effectively eliminating false negatives. Our findings
reinforce the fact that if mobile sandboxes do not pay the
required attention to every small detail of real Android devices,
attackers can bypass their analysis.

B. Mitigations

Effective emulation of any computer system is not a trivial
task. Attempting to do so for the purposes of malware analysis
will undoubtedly lead to mistakes which attackers can use to
evade detection. We therefore suggest mobile sandbox services
utilize real Android devices rather than emulators. This, along
with populating devices with usage-based artifacts to simulate
real use will significantly raise the bar for attackers. Services
such Google Firebase Test Lab and Amazon Device Farm have
shown that large-scale application testing on physical devices
can be achieved. However, cost may still be a limiting factor
for smaller sandbox services.

An alternative method for improving mobile sandboxes
while maintaining use of emulators, would be to constantly
monitor the artifacts that malware collect and dynamically
return realistic values to these queries. While this well-known
practice is already employed by antimalware engines, our
results show a gap between malware capabilities and existing
defensive mechanisms when it comes to sandbox evasion.
Nevertheless, the inherent limitations of this arms race ulti-
mately leads to evasion techniques as sandbox services would
constantly remain a step behind malware in determining which
artifacts are of the most interest to attackers.

Our results demonstrate the power of usage-based artifacts
in sandbox detection. Table III shows that 13 of the top
20 most important features to our classifier correspond to
artifacts of real device usage. Sandbox providers must ensure
they accurately model this aspect of the Android mobile
environment to match the distributions of real user devices.
In Section III-B, we show that crowd-sourcing can be used

to collect usage statistics on a wide variety of real Android
devices. Sandbox providers and application marketplaces can
use such techniques to constantly generate up-to-date usage
statistics to construct more realistic sandbox environments.

Prior work in the area of adversarial machine learning has
shown that small-magnitude perturbations added to the training
datasets of deep neural networks can result in significant
classification errors [32]. These malicious data points are
typically generated by attackers with Generative Adversarial
Neural Networks (GANNs) that learn based off of the behavior
of the targeted neural network. In the case of sandbox evasion
that we demonstrate in this paper, attackers create machine
learning classifiers using data generated from trusted sources
such as physical Android devices and online sandboxes. Thus,
sandbox providers who may utilize adversarial machine learn-
ing techniques to bypass sandbox evasion classifiers would
simply be generating data that matches the distribution of real
Android devices. We leave investigation into the use of such
techniques to generate realistic Android device usage data to
future work.

C. Limitations

Even though our work has uncovered valuable insights
into the current state of mobile sandboxes and the weaknesses
thereof, it is not without limitations. One limitation is due
to the size of our real device dataset, Duser. In total, we
collected data on 1,245 real Android devices from users from
our institution as well as crowd sourcing on the Microworkers
platform. While this dataset was sufficient in discovering
artifacts of use in mobile devices, an even larger dataset would
allow us to discover differences in artifact distributions across
various populations (e.g. explore country-specific trends).

However, crowd-sourcing large, representative datasets is
not a trivial process. We encountered issues performing our
study on certain large crowd-sourcing platforms, due to the
services’ policy restricting the installation of software on
workers’ devices.

In order to preserve the privacy of participants in our study,
we limit the artifacts we collect to only those that are statistical
in nature. Since attackers are not limited in such ways, we
expect malware utilizing evasion techniques such as those we
presented to be even more effective. For instance, the analysis
of package names and installation dates, or contact names and
phone numbers is likely to result in even stronger classifiers.
Although we did not include these types of features in our
study, they serve as examples of minute details that attackers
can and will use to evade analysis.

Lastly, this paper focuses on mobile-sandbox evasion on
the Android platform. Previous work has demonstrated that
environment-based artifacts can be used to track iOS users,
similar to how device fingerprinting can be used to track web
users [44]. Though we anticipate that the general concept of
differentiating between users and sandboxes via environment
artifacts will apply equally well to the iOS ecosystem, we leave
the actual evaluation to future work.

12

D. Ethical Considerations

When developing and testing our Android sandbox de-
tection techniques, we opted to create a machine learning
classifier completely external to the Android application used
to collect data. This approach, modeled after Miramirkhani et
al. [48], allows us to collect data once from sandbox providers,
and test various classifier hyperparameters without resubmit-
ting our application, reducing strain on sandbox resources.
Additionally, embedding the classifier into the application
would require us to also package real malware to gauge real
evasion success. As our application was submitted to popular
Android marketplaces, we opted to remove the possibility of
harm to real users who may download our application.

E. Responsible Disclosure

Our research has presented the weaknesses of mobile
sandboxes, allowing for malware to effectively bypass analysis.
We are in the process of reaching out to all sandbox services
that we collected artifacts from and disclosing our findings. We
hope that by doing so, sandbox services will begin to patch
the artifacts which we currently use in our machine learning
classifiers.

VII. RELATED WORK

Sandboxes are a common means of dynamic malware
analysis for both mobile and desktop. The described related
work includes the study of malware samples that detect and
evade sandboxes, as well as the design of resilient sandbox
environments.

Mobile malware detection and sandboxes Dynamic analysis
techniques and sandboxes are commonly used to study mobile
malware [23], [26], [36], [64]. The sandbox environments that
we studied in this paper include those from the academia [17],
[61], commercial antimalware software [3]–[6], [8], [11], [12],
[15], VirusTotal and popular Android application stores [1],
[9], [16]. Unfortunately, many of the academic sandboxes are
no longer maintained or available [30], [45], [57]. Neverthe-
less, there is no reason why our approach would not apply to
those environments, given their described setup.

Mobile sandbox detection The main body of the work in
this area has mostly focused on identifying “red pills” to
tell real devices from sandboxes apart, that is, discovering
specific API values and behaviors that can give away the
presence of an emulated environment [27], [34], [49], [51]–
[53], [58]. Spreitzenbarth et al. propose a mobile sandbox
architecture and evaluate it against a dataset of Android
malware samples [53]. Similarly, Gajrani et al. study the state
of the art in emulator detection, and provide a pragmatic
design of a sandbox environment based on emulators that
is resilient against identification based on common APIs and
emulator detection methods [34]. Because of their focus on
masking specific API values, sensor readings and emulation
detection, their system would not be resilient against our
detection scheme that focuses on artifacts of device usage.

Vidas et al. worked on the detection of mobile sand-
boxes [58]. They propose detection mechanisms through a
difference in the returned values of various Android APIs, sen-
sors, and the detection of the underlying emulator hypervisor

itself through performance measurements. Along the same line,
Petsas et al. incorporate the static properties, dynamic sensor
information and VM-related intricacies (QEMU specific) to
detect Android emulators [51]. The authors go as far as
repackaging a malware sample with their developed heuristics
and demonstrate their ability to bypass the 12 existing sandbox
environments.

The goal of Spreitzenbarth and Vidas et al. is similar to
ours, but they focus on features that are specific to emulated
environments such as the hardware performance metrics and
artificial or hardcoded values returned by Android APIs (e.g.,
battery level, build information, etc.). Conversely, we do not
focus on making a distinction between real and emulated
environments. Rather, our focus is on the artifacts of real
device usage compared to sandbox devices, regardless of
them being based on a real or emulated setup. Moreover, we
systematically analyze a large number of APIs against sandbox
and real user devices and build a model capable of detecting
the real usage of Android devices.

Costamagna et al. look at the returned value of certain
Android APIs and check for the presence of static vs random-
ized values [27]. Compared to our work, while a portion of the
APIs that we looked at is similar, we employ machine learning
to model the distribution of values from these APIs on user
(collected from real devices) versus sandbox devices.

Finally, Jing et al. proposed a framework to automatically
extract heuristics to detect emulator-based Android environ-
ments [39]. In their study, the authors compare emulator-based
Android sandboxes with real devices from online mobile test
farms, similar to our Dbase dataset. As a result, the focus of
their work is to identify emulators in contrast to baseline real
devices and produce heuristics in the form of “Red Pills”.
While their approach suffers from the use of real devices in
online sandboxes, in our study, we consider such devices as
sandboxes. Given the absence of wear-and-tear artifacts on
Dbase devices, our proposed classifiers mark them as sandboxes
with high accuracy.

Our approach focuses on the mobile environment as a
whole, including information about the device itself as well
as user-specific attributes. We demonstrated that our classifier
does not simply detect emulated devices, but is able to further
distinguish the minute differences between a device thoroughly
used by a real person, as opposed to an artificial sandbox
environment. This significantly raises the bar for sandbox
providers who must account for a much larger set of features
compared to the heuristics introduced in prior work.

Desktop sandboxes The area of desktop sandbox detection
and the study of evasive malware predates that of mobile
sandbox detection and therefore has received more attention.
Dynamic code analysis and use of sandbox environments [29],
[31], [38], [42], [59], [60], [62] as well as evasive malware has
been studied in [24], [41], [46]. Similarly, system configuration
of the target system and its usage in sandbox detection has been
the topic of significant study [19], [20], [28], [48], [63].

Most notably, Miramirkhani et al. have looked at device
usage artifacts on desktop environments and showed that
they can be used to identify desktop sandboxes with high
accuracy [48]. They incorporate information from different

13

parts of the system, network, disk, browser, and registry (which
they call wear-and-tear artifacts) to build a statistical model of
existing sandboxes. Our work is similar to theirs in that we
both incorporate usage-related artifacts to train ML models of
normal vs. sandboxed environments. The main distinction of
our work apart from our focus on a different platforms (i.e.
mobile instead of desktop), is our effort to train manufacturer-
specific ML models. Namely, we showed that attackers can
capitalize on the fact that mobile devices from the same
manufacturer share similar hardware and bloat, by training
manufacturer-specific models to increase the accuracy of their
classification and therefore their ability to evade sandboxes.

VIII. CONCLUSION

In this work, we explored the concept of “environment-
aware” sandbox evasion where attackers can leverage artifacts
present in mobile devices, to differentiate between executions
in real-user devices and those in sandboxes. By analyzing tens
of artifacts and their distributions, we were able to identify
exactly where and how sandboxes fail in their emulation of
real Android environments. We showed how attackers can
straightforwardly use these artifacts to train a classifier capable
of differentiating between artificial and real Android environ-
ments with 98.54% accuracy and a 0.57% false-negative rate.
These results demonstrate that such a model can be used by
malware to hide their activity in the presence of a sandbox,
leading to a longer lifetime and greater inflicted damage upon
users and systems.

To reinforce our mobile-sandbox classifier, we used device
hardware configuration artifacts to create an ensemble of
manufacturer-specific classifiers, each trained to detect devices
of a particular manufacturer (such as, Samsung and LG).
We showed that these classifiers can uncover discrepancies
between the stated environment vs. the actual environment
in sandboxes and can be combined with the mobile-sandbox
classifier to dramatically reduce false negatives.

Our results demonstrate that mobile sandboxes are not ef-
fectively emulating real mobile-device environments, allowing
mobile malware to bypass analysis. While some sandboxes
have glaring weaknesses leading to trivial evasions, the major-
ity simply overlook small details. However, these details are all
that is necessary for malware to detect artificial environments.
We hope that our work can provide valuable insights into
the weaknesses of mobile sandboxes and can help strengthen
these services against future generations of environment-aware,
mobile malware.

Availability In an effort to strengthen the security of the
Android ecosystem, we will release our dataset of real An-
droid device artifacts to sandbox services and security re-
searchers, along with our trained models. We expect that our
dataset will enable sandbox services to create more realistic
execution environments with manufacturer-specific, artifact
distributions. All supplementary materials can be found at
https://droid-in-the-details.github.io.

Acknowledgments: We thank the anonymous reviewers for
their helpful feedback. This work was supported by the Office
of Naval Research (ONR) under grants N00014-20-1-2720
and N00014-21-1-2159, as well as by the National Science
Foundation (NSF) under grants CMMI-1842020 and CNS-
2126654.

REFERENCES

[1] Amazon app store. https://developer.amazon.com/apps-and-games.

[2] Aws device farm. https://aws.amazon.com/device-farm.

[3] Bitdefender antivirus. https://www.bitdefender.com/consumer/support/
answer/40673/.

[4] Comodo antivirus. https://www.comodo.com/home/internet-security/
submit.php.

[5] Drweb antivirus. https://vms.drweb.com/sendvirus/.

[6] escan antivirus. http://support.mwti.net/support/index.php?/Tickets/
Submit.

[7] Firebase. https://firebase.google.com.

[8] Gdata - mobile security for android. https://su.gdatasoftware.com/us/
sample-submission/.

[9] Google play store. https://play.google.com/store.

[10] ios appstore. https://www.apple.com/app-store/.

[11] Joesandbox cloud. https://www.joesandbox.com/.

[12] Kaspersky - threat intelligence portal. https://opentip.kaspersky.com/.

[13] Microworkers. https://microworkers.com.

[14] Mobile operating systems’ market share worldwide from jan-
uary 2012 to june 2021. https://www.statista.com/statistics/272698/
global-market-share-held-by-mobile-operating-systems-since-2009/.

[15] nviso antivirus. https://apkscan.nviso.be.

[16] Samsung galaxy app store. https://www.samsung.com/us/apps/
galaxy-store/.

[17] Sanddroid - an automatic android application analysis system. http:
//sanddroid.xjtu.edu.cn/.

[18] scikit-learn. https://scikit-learn.org/stable/.

[19] A. singh, defeating darkhotel just-in-time decryption. https://labs.
lastline.com/defeating-
darkhotel-just-in-time-decryption, 2015.

[20] Proofpoint, ursnif banking trojan campaign ups the ante with new sand-
box evasion techniques. https://www.proofpoint.com/us/threatinsight/
post/ursnif-banking-trojan-campaign-sandbox-
evasiontechniques, 2016.

[21] Number of apps available in the google playstore and
ios app store. https://www.statista.com/statistics/276623/
number-of-apps-available-in-leading-app-
stores, 2020.

[22] Yousra Aafer, Wenliang Du, and Heng Yin. Droidapiminer: Mining api-
level features for robust malware detection in android. In International
conference on security and privacy in communication systems. Springer,
2013.

[23] Vitor Afonso, Anatoli Kalysch, Tilo Müller, Daniela Oliveira, André
Grégio, and Paulo De Geus. Lumus: Dynamically Uncovering Evasive
Android Applications: 21st International Conference, ISC. 2018.

[24] Mohsen Ahmadi, Kevin Leach, Ryan Dougherty, Stephanie Forrest, and
Westley Weimer. Mimosa: Reducing malware analysis overhead with
coverings, 2021.

[25] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon,
Konrad Rieck, and CERT Siemens. Drebin: Effective and explainable
detection of android malware in your pocket. In NDSS, 2014.

[26] Alexei Bulazel and Bülent Yener. A survey on automated dynamic
malware analysis evasion and counter-evasion: Pc, mobile, and web.
In Proceedings of the 1st Reversing and Offensive-Oriented Trends
Symposium, ROOTS, 2017.

[27] Valerio Costamagna, Cong Zheng, and Heqing Huang. Identifying and
evading android sandbox through usage-profile based fingerprints. In
Proceedings of the First Workshop on Radical and Experiential Security,
RESEC, 2018.

[28] D Desai. Malicious documents leveraging new anti-vm & anti-sandbox
techniques, 2016.

[29] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. Ether:
malware analysis via hardware virtualization extensions. In Proceedings
of the 15th ACM conference on Computer and communications security,
2008.

14

https://droid-in-the-details.github.io
https://developer.amazon.com/apps-and-games
https://aws.amazon.com/device-farm
https://www.bitdefender.com/consumer/support/answer/40673/
https://www.bitdefender.com/consumer/support/answer/40673/
https://www.comodo.com/home/internet-security/submit.php
https://www.comodo.com/home/internet-security/submit.php
https://vms.drweb.com/sendvirus/
http://support.mwti.net/support/index.php?/Tickets/Submit
http://support.mwti.net/support/index.php?/Tickets/Submit
https://firebase.google.com
https://su.gdatasoftware.com/us/sample-submission/
https://su.gdatasoftware.com/us/sample-submission/
https://play.google.com/store
https://www.apple.com/app-store/
https://www.joesandbox.com/
https://opentip.kaspersky.com/
https://microworkers.com
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://apkscan.nviso.be
https://www.samsung.com/us/apps/galaxy-store/
https://www.samsung.com/us/apps/galaxy-store/
http://sanddroid.xjtu.edu.cn/
http://sanddroid.xjtu.edu.cn/
https://scikit-learn.org/stable/
https://labs.lastline.com/defeating-darkhotel-just-in-time-decryption
https://labs.lastline.com/defeating-darkhotel-just-in-time-decryption
https://labs.lastline.com/defeating-darkhotel-just-in-time-decryption
https://www.proofpoint.com/us/threatinsight/post/ursnif-banking-trojan-campaign-sandbox-evasiontechniques
https://www.proofpoint.com/us/threatinsight/post/ursnif-banking-trojan-campaign-sandbox-evasiontechniques
https://www.proofpoint.com/us/threatinsight/post/ursnif-banking-trojan-campaign-sandbox-evasiontechniques
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/

[30] Thomas Eder, Michael Rodler, Dieter Vymazal, and Markus Zeilinger.
Ananas - a framework for analyzing android applications. International
Conference on Availability, Reliability and Security, 2013.

[31] Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher
Kruegel. A survey on automated dynamic malware-analysis techniques
and tools. ACM computing surveys (CSUR), 2008.

[32] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rah-
mati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song.
Robust physical-world attacks on deep learning visual classification. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1625–1634, 2018.

[33] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and
David Wagner. A survey of mobile malware in the wild. In Proceedings
of the 1st ACM Workshop on Security and Privacy in Smartphones and
Mobile Devices, SPSM, 2011.

[34] Jyoti Gajrani, Jitendra Sarswat, Meenakshi Tripathi, Vijay Laxmi, M. S.
Gaur, and Mauro Conti. A robust dynamic analysis system preventing
sandbox detection by android malware. In Proceedings of the 8th
International Conference on Security of Information and Networks, SIN,
2015.

[35] Julien Gamba, Mohammed Rashed, Abbas Razaghpanah, Juan Tapiador,
and Narseo Vallina-Rodriguez. An analysis of pre-installed android
software. arXiv preprint arXiv:1905.02713, 2019.

[36] Le Guan, Shijie Jia, Bo Chen, Fengwei Zhang, Bo Luo, Jingqiang Lin,
Peng Liu, Xinyu Xing, and Luning Xia. Supporting transparent snapshot
for bare-metal malware analysis on mobile devices. ACSAC, 2017.

[37] Matthias Hirth, Tobias Hossfeld, and Phuoc Tran-Gia. Anatomy of
a crowdsourcing platform - using the example of microworkers.com.
pages 322 – 329, 08 2011.

[38] Xuxian Jiang and Xinyuan Wang. “out-of-the-box” monitoring of vm-
based high-interaction honeypots. In International Workshop on Recent
Advances in Intrusion Detection. Springer, 2007.

[39] Yiming Jing, Ziming Zhao, Gail-Joon Ahn, and Hongxin Hu. Mor-
pheus: automatically generating heuristics to detect android emulators.
In Proceedings of the 30th Annual Computer Security Applications
Conference, pages 216–225, 2014.

[40] Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. Barebox:
efficient malware analysis on bare-metal. In Proceedings of the 27th
Annual Computer Security Applications Conference, 2011.

[41] Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. Barecloud:
bare-metal analysis-based evasive malware detection. In 23rd USENIX
Security Symposium, 2014.

[42] Alexander Küchler, Alessandro Mantovani, Yufei Han, Leyla Bilge, and
Davide Balzarotti. Does every second count? time-based evolution of
malware behavior in sandboxes. In NDSS, 2021.

[43] Alexander Küchler, Alessandro Mantovani, Yufei Han, Leyla Bilge, and
Davide Balzarotti. Does every second count? time-based evolution of
malware behavior in sandboxes. 2021.

[44] Andreas Kurtz, Hugo Gascon, Tobias Becker, Konrad Rieck, and Felix
Freiling. Fingerprinting mobile devices using personalized configura-
tions. Proceedings on Privacy Enhancing Technologies, 2016.

[45] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio,
V. v. d. Veen, and C. Platzer. Andrubis – 1,000,000 apps later: A view
on current android malware behaviors. In Third International Workshop
on Building Analysis Datasets and Gathering Experience Returns for
Security (BADGERS), 2014.

[46] Martina Lindorfer, Clemens Kolbitsch, and Paolo Milani Comparetti.
Detecting environment-sensitive malware. In International Workshop
on Recent Advances in Intrusion Detection. Springer, 2011.

[47] L. Liu, Y. Gu, Q. Li, and P. Su. Realdroid: Large-scale evasive
malware detection on ”real devices”. In 26th International Conference
on Computer Communication and Networks (ICCCN), 2017.

[48] N. Miramirkhani, M. P. Appini, N. Nikiforakis, and M. Polychronakis.
Spotless sandboxes: Evading malware analysis systems using wear-and-
tear artifacts. In IEEE Symposium on Security and Privacy (SP), 2017.

[49] Sebastian Neuner, Victor van der Veen, Martina Lindorfer, Markus
Huber, Georg Merzdovnik, Martin Mulazzani, and Edgar Weippl.
Enter sandbox: Android sandbox comparison. arXiv preprint
arXiv:1410.7749, 2014.

[50] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder,
and Lorenzo Cavallaro. {TESSERACT}: Eliminating experimental bias
in malware classification across space and time. In 28th {USENIX}
Security Symposium ({USENIX} Security 19), pages 729–746, 2019.

[51] Thanasis Petsas, Giannis Voyatzis, Elias Athanasopoulos, Michalis
Polychronakis, and Sotiris Ioannidis. Rage against the virtual machine:
Hindering dynamic analysis of android malware. In Proceedings of the
Seventh European Workshop on System Security, EuroSec, 2014.

[52] Onur Sahin, Ayse K Coskun, and Manuel Egele. Proteus: Detecting
android emulators from instruction-level profiles. In International
Symposium on Research in Attacks, Intrusions, and Defenses. Springer,
2018.

[53] Michael Spreitzenbarth, Felix Freiling, Florian Echtler, Thomas
Schreck, and Johannes Hoffmann. Mobile-sandbox: Having a deeper
look into android applications. In Proceedings of the 28th Annual ACM
Symposium on Applied Computing, SAC, 2013.

[54] Guillermo Suarez-Tangil, Santanu Kumar Dash, Mansour Ahmadi,
Johannes Kinder, Giorgio Giacinto, and Lorenzo Cavallaro. Droid-
sieve: Fast and accurate classification of obfuscated android malware.
CODASPY, 2017.

[55] Guillermo Suarez-Tangil and Gianluca Stringhini. Eight years of rider
measurement in the android malware ecosystem. IEEE Transactions on
Dependable and Secure Computing, 2020.

[56] Kimberly Tam, Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, and
Lorenzo Cavallaro. The evolution of android malware and android
analysis techniques. ACM Computing Surveys (CSUR), 2017.

[57] Kimberly Tam, Salahuddin Khan, Aristide Fattori, and Lorenzo Cav-
allaro. Copperdroid: Automatic reconstruction of android malware
behaviors. In NDSS, 2015.

[58] Timothy Vidas and Nicolas Christin. Evading android runtime analysis
via sandbox detection. In Proceedings of the 9th ACM Symposium
on Information, Computer and Communications Security, ASIA CCS,
2014.

[59] Carsten Willems, Thorsten Holz, and Felix Freiling. Toward automated
dynamic malware analysis using cwsandbox. IEEE Security & Privacy,
2007.

[60] Carsten Willems, Ralf Hund, Andreas Fobian, Dennis Felsch, Thorsten
Holz, and Amit Vasudevan. Down to the bare metal: Using processor
features for binary analysis. In Proceedings of the 28th Annual
Computer Security Applications Conference, 2012.

[61] Lok Kwong Yan and Heng Yin. Droidscope: Seamlessly reconstructing
the OS and dalvik semantic views for dynamic android malware
analysis. In 21st USENIX Security Symposium, 2012.

[62] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin
Kirda. Panorama: capturing system-wide information flow for malware
detection and analysis. In Proceedings of the 14th ACM conference on
Computer and communications security, 2007.

[63] Akira Yokoyama, Kou Ishii, Rui Tanabe, Yinmin Papa, Katsunari Yosh-
ioka, Tsutomu Matsumoto, Takahiro Kasama, Daisuke Inoue, Michael
Brengel, Michael Backes, et al. Sandprint: Fingerprinting malware
sandboxes to provide intelligence for sandbox evasion. In International
Symposium on Research in Attacks, Intrusions, and Defenses. Springer,
2016.

[64] Lun-Pin Yuan, Wenjun Hu, Ting Yu, Peng Liu, and Sencun Zhu.
Towards large-scale hunting for android negative-day malware. In
22nd International Symposium on Research in Attacks, Intrusions and
Defenses (RAID), 2019.

15

IX. APPENDIX

Table VIII lists all the artifacts that we extract from mobile
environments for the purpose of differentiating between user
devices and mobile sandboxes.

TABLE VIII: Full list of artifacts used in our mobile sandbox machine learning classifier.

Artifact Name Artifact Type Artifact Name Artifact Type
ARP Root

arpCacheSize Numeric deviceRooted Binary
Accessibility Sensor

hasAccessibility Binary gyroscopeSensorReadings Numeric
Calendar lightSensorReadings Numeric

numCalendars Numeric deviceTemperatureSensorReadings Numeric
numOwner Numeric numSensors Numeric
numReadAccess Numeric gravity Numeric

Contacts gyroscope Numeric
lastCallTime Numeric heartBeat Numeric
numContacts Numeric heartRate Numeric
numCustomRingtone Numeric light Numeric
numSentToVoicemail Numeric magnetic Numeric
numStarred Numeric motion Numeric
numTotalCalls Numeric accelerometer Numeric
numVisible Numeric pressure Numeric
numWithNumber Numeric proximity Numeric
numWithPhoto Numeric stepCounter Numeric

Dictionary Settings
dictionarySize Numeric autoTime Binary
dictionaryNumLocales Numeric autoTimeZone Binary
dictionaryAvgFrequency Numeric bluetoothEnabled Binary

Device brightness Numeric
upTime Numeric brightnessMode Numeric
sdkVersion Numeric dataRoamingEnabled Binary

Events deviceProvisioned Binary
avgEventLen Numeric soundEffectsEnabled Binary
numAllDay Numeric stayOnWhilePluggedIn Binary
numCancelled Numeric usbMassStorageEnabled Binary
numConfirmed Numeric vibrateWhenRinging Binary
numEvents Numeric wifiOn Binary
numRecurring Numeric Songs
numTentative Numeric avgNumberSongs Numeric
numWithAlarm Numeric avgYearLength Numeric
numWithData Numeric numAlbums Numeric

Files numUniqueArtists Numeric
numDocuments Numeric Wifi
numDownloads Numeric 5ghtzBandSupported Binary

PackageData deviceToApRTTSupported Binary
numPackages Numeric enhancedPowerRoutingSupported Binary

Photos networkOffloadSupported Binary
avgPicOrientation Numeric numWifiConfigurations Numeric
numPics Numeric p2pSupported Binary
numPrivatePics Numeric scanAvailable Binary

Processes tdlsSupported Binary
numProcesses Numeric wifiEnabled Binary

Reminders
avgMin Numeric
numAlert Numeric
numDefault Numeric
numEmail Numeric
numReminders Numeric

16

	Introduction
	Background
	Malware Sandboxes
	Sandbox Evasion

	Data Collection
	Artifact categories
	Wear-and-Tear Artifacts
	Device Configuration Artifacts
	Device Hardware Artifacts

	Feature Collector Agent
	Collection of Features
	Dataset Statistics

	Mobile Sandbox Detection
	Classifier Setup
	Evaluation

	Device Manufacturer Classification
	Device Hardware Properties
	Quantifying Device Bloat
	Device Manufacturer Classifiers

	Discussion
	Weakness of Android Sandbox Services
	Mitigations
	Limitations
	Ethical Considerations
	Responsible Disclosure

	Related Work
	Conclusion
	References
	Appendix

