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Abstract—Many large organizations operate dedicated wide
area networks (WANs) distinct from the Internet to connect
their data centers and remote sites through high-throughput
links. While encryption generally protects these WANs well
against content eavesdropping, they remain vulnerable to traffic
analysis attacks that infer visited websites, watched videos or
contents of VoIP calls from analysis of the traffic volume, packet
sizes or timing information. Existing techniques to obfuscate
Internet traffic are not well suited for WANs as they are either
highly inefficient or require modifications to the communication
protocols used by end hosts.

This paper presents ditto, a traffic obfuscation system
adapted to the requirements of WANs: achieving high-throughput
traffic obfuscation at line rate without modifications of end hosts.
ditto adds padding to packets and introduces chaff packets to
make the resulting obfuscated traffic independent of production
traffic with respect to packet sizes, timing and traffic volume.

We evaluate a full implementation of ditto running on
programmable switches in the network data plane. Our results
show that ditto runs at 100 Gbps line rate and performs with
negligible performance overhead up to a realistic traffic load of
70 Gbps per WAN link.

I. INTRODUCTION

Many large organizations operate dedicated wide area
networks (WANs) as a critical infrastructure distinct from
the Internet to connect their data centers and remote sites.
For example, cloud service providers such as Google [66],
Amazon [23], and Microsoft [30] operate WANs to achieve
low-latency, high-throughput inter data center communication.
Public safety and security organizations rely on WANs to
achieve secure and reliable communication between their sites
(e.g., [7], [17], [20], [28], [65]). For large organizations, these
WANs provide 100s of Gbps to Tbps of capacity over long
distances and can cost 100s of millions of dollars per year [63].

WANs are an attractive target for eavesdropping attacks
and mass surveillance because they are often used to transport
large amounts of sensitive data. And because WANs spread
over large geographical areas, it is impossible to secure the
cables physically from wiretapping. Past revelations show
that intercontinental fiber links were subject to tapping by
governmental agencies [27], [59] or other entities [77] and
many devices are available to tap on fiber links [11], [25], [47],
[68], [85]. Indeed, major operators such as Amazon, Microsoft,
and OVH acknowledge that WAN traffic is at risk and they use
MACsec [21] to encrypt their traffic not only at the application
layer, but also at the link layer [29], [35], [76], [82].
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Fig. 1: ditto adds padding and chaff packets such that the
outgoing traffic always follows a predefined pattern

However, it is well known that encryption alone is not
sufficient to protect against traffic analysis attacks [53], [64].
Even if the network traffic is end-to-end encrypted, metadata
such as the traffic volume, the packet sizes and the timing
information reveals a lot about ongoing activities. As a re-
sult, eavesdroppers intercepting the WAN communication can
still perform traffic analysis attacks. Such attacks are mostly
known from Internet traffic, where past work shows that it is
possible to infer the contents of VoIP calls [31], [46], streamed
movies [50], [88]; visited websites [37], [61], [81], [91], [101],
or the device identities [22], [24], [78], [83], [87], [93] without
having to break the encryption. However, the same attacks can
be applied to WAN traffic if the WAN carries the incoming
and outgoing Internet traffic (which is typically the case if a
company sends all Internet traffic via a central firewall). More
generally, it has been shown many times (e.g., in [44], [49],
[89]) that traffic classification also works for encrypted traffic.

Many techniques have been proposed to protect against
traffic analysis attacks in the Internet. However, these tech-
niques are not well adapted to the specific requirements of
WAN traffic protection. Techniques such as BuFLO [22],
CS-BuFLO [36], HORNET [42], or TARANET [43] add
padding to obfuscate the size of individual packets and flows
and require modifications on the software and protocols of
the end hosts. For many organizations operating a WAN, it
is impossible to adapt these protocols on all end hosts (e.g.,
because a cloud provider does not control the software that
is running on its customer’s instances). Other techniques such
as Loopix [84], PriFi [32], or Wang et al. [98] impose strict
transmission schedules and rates per flow, and thus severely
limit the achievable throughput. As WAN traffic is high-
throughput in nature, these solutions are not efficient enough
to deal with high link traffic rates up to 100 Gbps.

This paper presents ditto, an in-network and hardware-
based traffic obfuscation system specifically tailored to WANs.
As illustrated in Fig. 1, ditto shapes traffic according to
a predefined pattern (a periodic sequence of packet sizes
at a fixed rate) using three operations: (i) packet padding;
(ii) packet delaying; and (iii) chaff packet insertion. When
there are “real” packets to transmit, ditto pads and transmits
them. When there are no real packets, it transmits dummy
“chaff” packets. Therefore, ditto only adds overhead (padding
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or chaff packets) in a way that does not degrade the network
performance for the real traffic. It fills the gaps when there
is not enough real traffic to transmit and (slightly) delays
real packets in order to make the resulting network behavior
independent of the actual traffic being sent.

ditto runs on the gateway network devices (e.g., routers
or switches) of the WAN sites and does not require any mod-
ification to the end hosts or protocols. Being network-based,
it is further efficient and supports high-speed obfuscation even
when the traffic is bursty and unpredictable. ditto devices
can react locally to traffic changes in real time. This allows
them to quickly adapt to different network loads and to add or
remove chaff packets almost instantly depending on the actual
link load. In contrast, application-based approaches that run on
the end hosts lack the visibility of the network load and need
to send chaff traffic independent of other applications, which
creates a significant overhead that ditto does not have.

We implemented ditto using off-the-shelf programmable
network hardware of the same type as major operators have
already deployed [3], [4]. We show that ditto can obfuscate
packet size, timing and volume information at line-rate. In
the evaluation, we run interactive applications over ditto and
we show that a ditto-enabled device can obfuscate up to
70 Gbps of production traffic (on a 100 Gbps link) without
any significant impact on the network performance (in terms of
throughput, packet loss, latency and jitter). This performance is
enough for typical WANs since they usually run at (much) less
than 60 % utilization [17], [28], [66]. Even in highly optimized
WANs such as the ones of Google and Microsoft where the
utilization is close to 100 % [63], [66], ditto could protect all
the non-background traffic (which accounts to less than 50 %
[63]). We further show that the efficient patterns computed by
ditto result in a significant performance increase compared to
simpler approaches in previous work while not compromising
security properties against traffic analysis attacks.

Our main contributions are:

• a strategy to determine packet sizes that allow an efficient
mixing of real and chaff packets (§V);

• an architecture to obfuscate the traffic volume and timing
at line rate in network switches (§VI);

• a full implementation (available as open source1) on off-
the-shelf hardware (§VIII); and

• an evaluation on real Internet traffic and with interactive
applications (§IX).

The remainder of this paper is organized as follows. In
§II, we describe the network and attacker models as well as
the security goals. In §III we summarize the key concepts
of programmable network devices. In §IV, we provide an
overview over ditto before we describe its main components
in more detail (pattern computation in §V and traffic shaping
in §VI). In §VII, we discuss ditto’s security properties and
limitations. In §VIII we describe the hardware implementation
and in §IX we evaluate it. Finally, we review related work in
§X and conclude in §XI.

1https://github.com/nsg-ethz/ditto
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Fig. 2: Network model. ditto protects WAN links which
interconnect different sites of an organization.

II. MODEL

In this section, we describe the network model (§II-A), the
attacker model (§II-B), and ditto’s security goals (§II-C).

A. Network model

We consider a wide area network (WAN) which connects
multiple sites of one organization over dedicated, encrypted
tunnels as illustrated in Fig. 2. These tunnels can be created at
layer 2 (e.g., leased fibers and MACsec encryption) or at layer
3 (e.g., IPsec tunnels). Each tunnel has a guaranteed bandwidth
which the organization can fully utilize.

Each site is connected to the WAN with a programmable
switch. These switches act as gateways between the local area
network (LAN) in each site and the link(s) which interconnect
the sites. The operator has full control over these switches and
the LANs, but it does not control the WAN tunnels.

We note that such programmable switches are widely-
available already and being deployed in large-scale infrastruc-
ture including AT&T, Deutsche Telekom, and Alibaba [3], [4].

B. Attacker model

We assume that the attacker has access to all devices and
links in the WAN, but she does not have access to devices or
links inside the LANs of the operator (including the gateways
where ditto is running). The attacker can record timestamps
and packet sizes but she cannot access the contents of packets
since they are encrypted. We assume that the encryption
happens at the same layer as the tunnel (e.g., MACsec [21]
for a layer-2 tunnel, or IPsec [14] for a layer-3 tunnel). The
attacker can also inject, modify, delay, or drop packets.

Our attacker model is realistic for typical organizations. As
we elaborated in §I, several such wiretapping attacks happened
in the past [27], [77] and major operators deploy link-layer
encryption to mitigate them [29], [35], [76], [82].

C. Security goals

Similar to related work [43], [84], ditto shapes network
traffic such that it satisfies the following security goals:

• Volume anonymity: The attacker cannot determine the
real size of individual packets and flows which are sent
over the WAN. This prevents attacks such as the one
presented by Boshart and Rossow [34].
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• Timing anonymity: The attacker cannot determine the
timing between packets composing real traffic. This pre-
vents attacks such as the ones presented by Wang et al.
[99] and Feghhi and Leith [54].

• Path anonymity: The attacker cannot track packets across
WAN tunnels. This prevents attacks such as the one
presented by Wang et al. [99].

The key enabler for ditto to achieve these goals at line rate
is that ditto operates in the network (on routers or switches)
and not on end devices such as clients or servers. In the
following section, we describe this deployment scenario.

III. BACKGROUND ON PROGRAMMABLE SWITCHES

We base our design on programmable switches, as specified
by the Portable Switch Architecture (PSA) [10] because these
devices provide both high performance and the flexibility
which we need to implement ditto. Such switches allow
running custom programs (implemented in P4 [33]) in the
data plane and can process traffic at terabits per second [8].
Programmable switches have been used for many security
applications before [56], [69], including various types of
obfuscation techniques [72], [74], [75], [94].

The PSA specifies five building blocks which each packet
traverses: parser, ingress pipeline, traffic manager, egress
pipeline, and deparser. Below, we provide more details about
each of these building blocks.

The parser receives the incoming packet and extracts
headers. The format of these headers is programmable (i.e.,
the parser can extract custom header formats). Only the parsed
parts of the packet are accessible in the pipelines. The rest of
the packet is considered as payload and cannot be modified.

The ingress pipeline receives the packet’s headers together
with metadata (e.g., its ingress port), which is all stored in the
packet header vector (PHV). The pipeline consists of several
stages in which match & action tables can match on data in
the PHV and trigger actions to modify it.

The architecture and the focus on processing packets at line
rate imposes three main limitations concerning the ingress (and
egress) pipeline: (i) the number of pipeline stages limits the
number of sequential actions that can be performed on each
packet; (ii) the size of the PHV limits the size of the parsed
headers and metadata (which can be seen as local variables);
and (iii) operations which take a non-constant time per packet
are not possible (e.g., loops, splitting or merging packets).

The Traffic Manager (TM) switches packets from ingress-
to egress pipelines. If needed, the TM buffers packets in first-in
first-out (FIFO) queues. When the egress pipeline can process
the next packet, the TM selects a queue and sends its next
packet to the egress pipeline. To determine the queue, the
TM can use different strategies [90]: (i) the queue’s priorities;
(ii) weighted round-robin; (iii) a combination of both (round
robin among queues with equal priorities).

The egress pipeline is identical to the ingress pipeline
except that it is attached to an egress port. As a consequence,
it is for example no longer possible to change a packet’s egress
port once the packet has passed the TM. Similarly, the deparser
is the inverse of the parser: It takes the headers and the payload
and assembles the final packet.

IV. ditto OVERVIEW

In this section, we explain the high-level concepts behind
ditto using a running example and Fig. 3.

Design goals The high-level goals of ditto are (i) to make
the WAN traffic that an eavesdropper receives independent (in
terms of packet sizes, inter-packet time and traffic volume)
from the actual traffic that is exchanged over the network;
(ii) to support high-throughput networks without degrading
their performance; and (iii) to operate without requiring
changes to end-devices (e.g., clients or servers).

Workflow ditto reaches these goals by running on pro-
grammable network devices (no changes to end-devices) and
by shaping the incoming WAN traffic into a repeating sequence
of packets with pre-defined sizes and timing. With ditto, the
traffic actually flowing through the WAN is therefore perfectly
independent from the real traffic entering it. A ditto-enabled
switch shapes traffic by (possibly): (i) padding incoming pack-
ets, to regularize their sizes; (ii) buffering/delaying incoming
packets, to regularize their timings and their relative order;
and (iii) inserting chaff packets, to fill any possible gaps and
ensure the consistency of the packet rates. Of course, enlarging
packets and/or delaying them comes at a cost. ditto reduces
this overhead by optimizing the shaping pattern.

In the paragraphs below, we rely on a simple example and
Fig. 3 to explain how ditto determines the “shape” of the
packet stream (we refer to this as the obfuscation pattern) and
how ditto modifies traffic such that it follows this pattern.

Architecture ditto has two components: (i) a pattern com-
putation algorithm to compute a secure and efficient traffic
pattern based on the packet size distribution; and (ii) a data-
plane program to shape traffic according to this pattern at line
rate by padding packets and introducing chaff packets.

Simple example We consider a simplistic WAN composed
of two ditto switches connected by one link. In this WAN,
packets are of three sizes: 25 % of the packets are 500 B, 25 %
are 1000 B and 50 % are 1500 B. The ordering of the packets
follows an unknown distribution.

Pattern computation Given the packet size distribution as
an input, ditto first computes an efficient obfuscation pattern.
The obfuscation pattern specifies the order and sizes of packets
traversing a link protected by ditto. We define it as an ordered
list of packet sizes (the pattern states). ditto then repeats this
pattern infinitely. For example, if the pattern is [500,1000],
ditto shapes the incoming traffic such that the outgoing packet
sizes are [500,1000,500,1000,500,1000,...] at a fixed rate.

An efficient pattern minimizes the overhead in terms of
padding (bytes added to a packet to make it larger) and chaff
packets (dummy packets inserted to transmit at a constant
rate). To minimize the amount of required padding, ditto
computes the pattern such that it allows to distribute packets
uniformly over all pattern states (this leads to minimal padding
on average). To minimize chaff packets, ditto prefers short
patterns (this reduces gaps between real packets). In §IX, we
show that patterns of length 3 to 6 achieve good results.
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Fig. 3: ditto overview. The combination of priority queueing (real packets have higher priority and there is always a chaff
packet ready to send with lower priority) and round-robin scheduling (one queue per pattern state) ensures that the outgoing
traffic follows the predefined pattern regarding packet sizes and timing. The figure does not show the removal of padding on the
other end of a protected link.

In the example from above, possible patterns include the
ones listed below. For assigning packets to a pattern state, the
objective is to minimize the amount of padding. Therefore,
each packet is assigned to the next larger pattern state.

• [1500]: This would require to add 1000 B padding to
25 % of the packets (the ones of original size 500 B)
and 500 B to another 25 % of the packets (the ones of
1000 B). But it minimizes the number of chaff packets
since all packets can be padded to this size.

• [1000,1500]: Here, the 1500 B packets can be sent in the
1500 B state and the other packets in the 1000 B state.
Therefore, ditto only needs to add 500 B of padding
to 25 % of the packets. However, it needs to send chaff
packets if multiple 1500 B packets arrive subsequently.

• [500,1000,1500,1500]: Here, the pattern equals the in-
put distribution and ditto can send each packet without
padding. However, it might need to send chaff packets
depending on the order in which the real packets arrive.

For the continuation of the example, we use the pattern
[500,1000,1500,1500].

Traffic shaping The data-plane component of ditto merges
incoming real packets with chaff packets such that the mix
fits the pattern with minimal overhead. This is challenging
because it needs to be performed in hardware to achieve high
performance but typical networking hardware is not designed
for this. ditto solves this challenges by combining switch
queuing and scheduling to hierarchical queues with 2 levels:

When a packet arrives at a ditto switch, ditto first assigns
it to a pattern state. A pattern state is one entry in the pattern;
it defines the size which the packet has when it leaves the
switch. Since ditto cannot split packets, it assigns a packet
to the next-larger pattern state.2 For example, a packet of size
800 B is assigned to the pattern state 1000 (P1 in Fig. 3) such
that ditto sends it next time it needs to send a 1000 B packet.

Each pattern state Pi has two first-in-first-out (FIFO)
queues with priorities. A high-priority queue to which ditto
assigns real packets (qi,r) and a low-priority queue which
ditto fills with chaff packets (qi,c).

In the example, ditto assigns the 800 B packet to the
high-priority queue q1,r belonging to the pattern state P1.

Filling the low-priority queues with chaff packets requires
a way to generate these packets. ditto achieves this by con-
tinuously recirculating chaff packets and cloning them into the
low-priority queues. This does not require a dedicated traffic
generator and it does not affect the switch performance (except
that it requires one switch port to perform the recirculation).

ditto then feeds the output of each pair of priority queues
(qi,r, qi,c) to a round-robin queue qi and it configures their
rates such that the output is 1/L-th of the total rate (for
a pattern of length L). As a result, each pair of priority
queues will output packets at a constant rate and irrespective

2Fragmentation is often not available on switches or routers for performance
reasons. The largest pattern state needs to correspond to the maximum size
of any packet in the network (MTU). If multiple states have the same size,
ditto distributes packets uniformly among them.
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of whether there is a real packet or not (since there is always
at least one chaff packet in each low-priority queue).

In the next phase, ditto performs round-robin scheduling
among the round-robin queues (q0, q1, q2 and q3 in Fig. 3).
Because the order of the round-robin queues corresponds to
the obfuscation pattern, the scheduler then outputs packets
according to the pattern.

After the queuing and scheduling in the traffic manager,
ditto pads the packets in the egress pipeline. At this point,
the ordering of the packets is already following the pattern and
each packet is marked with its target size. ditto adds padding
headers to compensate for the difference between the actual
packet size and the target size. For example, it adds 200 B of
padding headers for the 800 B packet from above.

Now that the packet has the right size, ditto sends it to
the egress port. There, the packet needs to be encrypted (e.g.,
using MACsec, which can run at line rate [62]) before it leaves
the switch. The encryption ensures that an attacker cannot see
the padding and she cannot distinguish between real and chaff
packets from content analysis.

V. COMPUTING EFFICIENT TRAFFIC PATTERNS

A naive pattern would be to make all packets equal size.
However, this would be inefficient because network traffic
contains a variety of different packet sizes and ditto would
need to pad them all to the maximum size. For example,
Internet backbone traffic is bi-modal (most packets are of size
< 70 B or > 1400 B) [39].

In this section, we describe how ditto computes efficient
patterns by minimizing the overhead for the expected traffic.

Definition An obfuscation pattern P for ditto is an ordered
list of length L which specifies sizes of packets Pi:

P = [P0, P1, . . . , PL−1], Pi ∈ N (1)

Given such a pattern for a link protected by ditto, ditto
orders and pads packets such that their size follows P . That
is, the jth packet is of size Pj modL.

Every pattern is secure We first note that ditto achieves its
security goals with every pattern because the pattern is static
and therefore does not reveal information about the real traffic
traversing a protected link.

Efficient patterns Obfuscation patterns differ in their over-
head. Intuitively, a pattern is more efficient than another if it
requires less padding and buffers/reorders real packets less. In
the following paragraphs, we explain how we determine the
pattern length L and its states Pi to obtain efficient patterns.

Selecting the pattern length The pattern length impacts the
amount of: (i) padding required, longer patterns require less
padding as they can better fit the original traffic distribution;
(ii) chaff packets generated, shorter patterns generate less
chaff packets because incoming packets are spread over fewer
states; and (iii) packet reordering, longer patterns lead to more
reordered packets because they require more queues.

In §IX, we show empirically that patterns of length 3–6
achieve good results in all dimensions and for realistic traffic.

Selecting the pattern states Since ditto iterates over the
pattern and sends the same number of packets from each of
the states over time, we compute the pattern such that each
pattern state fits for 100

L % of the packets. This is the case if
the pattern state Pi is equal to the ((i+1)·100/L)-th percentile
of the expected traffic distribution D:

Pi = percentile(i+1)·100/LD i ∈ [0, 1, . . . , L− 1] (2)

When to compute and update the pattern D models the
distribution of real packet sizes expected on the protected link.
Ideally, the operator computes it based on the real traffic (e.g.,
recorded prior to using ditto). Since this distribution only
reveals information about the average traffic characteristics, it
is usually not confidential. Otherwise, the operator can use
publicly available data such as [38].

When D changes significantly, the operator can compute
a new pattern and reconfigure ditto to use the new pattern
without interruption. However, as we show in the evaluation
(§IX), the same pattern can be used for many months of real
Internet traffic with almost constant overhead.

VI. TRAFFIC SHAPING IN THE DATA PLANE

In this section, we explain how ditto shapes traffic such
that it follows the previously defined pattern.

Problem A switch running ditto receives packets with
unpredictable size and at unpredictable times and it needs
to ensure that the packets that leave the switch follow the
predefined pattern (w.r.t. to packet sizes and inter-packet time).
To achieve this, ditto needs to perform three operations using
the capabilities of programmable switches: (i) add padding to
real packets; (ii) buffer packets until they fit in the pattern; and
(iii) insert chaff packets.

Architecture The architecture of a ditto switch is as follows
(cf. illustration in Fig. 3). When a real packet arrives at the
ditto switch, the parser first extracts information such as the
IP header. Then, ditto determines the egress port depending
on the packet’s destination address and assigns it to one of
the queues which belong to this egress port. For a pattern of
length L, each egress port (these are the ports where obfuscated
traffic leaves a ditto switch) has L queues and each queue
corresponds to one state in the pattern (and therefore one
packet size). The traffic manager then performs round-robin
scheduling to send packets from the queues to the egress
pipeline. There, ditto adds padding such that the packet’s size
eventually matches the target size determined by the pattern.
Finally, the packet exits at the egress port.

Unfortunately, typical round-robin scheduling has a prop-
erty that is not optimal for ditto: It skips a queue if it does
not contain a packet. This is problematic for ditto because
it leads to skipped states in the pattern. To avoid this, ditto
makes sure that there is always at least one packet in each
queue. If there is no “real” packet available, the switch sends
a “chaff” packet.

Assigning packets to queues ditto selects the queue to which
it assigns a packet such that the amount of padding is minimal.
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Since ditto can only make packets larger, it selects the next-
largest queue i for a packet of size s and pattern states Pi:

i = argmin
i
(Pi − s | s ≤ Pi) (3)

If the packet fits into more than one state with the same amount
of padding, ditto randomly selects one of them.

Round-robin scheduling to implement the pattern ditto
configures all queues of an egress port with the same priority
such that the traffic manager (TM) performs round-robin
scheduling. The TM therefore iterates over all queues and
sends one packet from each non-empty queue.

The main challenge to ensure that the sent packets always
follow the pattern is therefore to make sure that a queue is
never empty when the TM tries to send a packet from it.
Ideally, the hardware would allow to inject a “chaff” packet
when the TM attempts to send a packet from an empty queue.
While this would be a small extension in hardware, there was
no need for such a feature so far and thus it does not exist.
Below, we describe how we combine priority queueing and
round-robin scheduling to overcome this limitation.

Priority queuing to mix real and chaff packets To ensure
that round-robin queues are never empty, we implement hierar-
chical queueing with 2 levels. The idea is to combine priority
queues with round-robin scheduling. For each pattern state,
there is a pair of priority queues: A high-priority queue (qi,r)
which receives the real packets belonging to this state, and a
low-priority queue (qi,c) which is flooded with chaff packets
for this state. Each pair of priority queues produces a constant
stream of packets while prioritizing real packets. These outputs
are then fed into the round-robin scheduling which produces
the pattern. We detail the implementation in §VIII.

Custom headers to add padding to packets After the TM
ensured that packets reach the egress pipeline in the right order,
ditto adds padding such that they have the right size. ditto
pads packets by adding additional headers after the Ethernet
header (adding and removing custom headers is something
that programmable switches are designed to do at line rate).
Because the structure of headers needs to be defined at compile
time, ditto uses a combination of multiple headers of different
sizes (32, 16, 8, 4, 2 and 1 Byte) to add the right amount
of padding to every packet. To allow the receiver to identify
padded packets and to remove the padding, ditto marks
padded packets in the Ethernet header using the EtherType
field. Since a device running ditto encrypts the traffic over
the WAN links, ditto can add padding with arbitrary contents
and include information about the packet’s original size such
that the endpoint knows how much padding to remove.

Removing padding from packets The receiving switch rec-
ognizes padded packets based on their value in the EtherType
field and can thus remove the padding without additional
information or overhead. To remove the padding from packets
before they are sent over a link which is not protected (e.g.,
to an end host), ditto removes all the padding headers and
restores the original EtherType.

VII. SECURITY ANALYSIS AND LIMITATIONS

In this section, we explain why ditto achieves the security
goals from §II-C and we discuss ditto’s limitations.

A. Security goals

Volume anonymity The obfuscation pattern together with the
link bandwidth defines the traffic volume (in terms of bytes
and packets) that is transmitted over every protected link. Since
this volume is static and independent from the real traffic, an
attacker cannot learn anything from it other than the maximum
number of bytes and packets sent over the link if the link was
fully utilized. Naturally, an attacker with access to multiple
links and additional background information can derive an
upper bound for the total traffic volume (cf. §VII-B).

Timing anonymity Because ditto always sends traffic ac-
cording to the same pattern and at the same rate, it does not
leak timing information. Since packets are encrypted such that
the ciphertext changes for each WAN link, attackers cannot
distinguish real and chaff packets and they cannot determine
which packets belong to the same host, application or flow.

Path anonymity Even if an attacker can eavesdrop on all
links connected to a ditto switch, she cannot link incoming
and outgoing packets because (i) the pattern of incoming
and outgoing packets is always the same and ditto would
rather drop packet than violate the pattern; (ii) she does not
know which packets contain real traffic; and (iii) packets are
encrypted such that the ciphertext changes for every WAN link.

Summary ditto ensures that the traffic seen on each pro-
tected link is independent of the real traffic crossing this link.
From an attacker’s perspective, the traffic always looks the
same: packets whose size follows a repeating pattern, with
constant inter-packet time and random contents (because of the
encryption). Assuming a bug-free implementation and properly
working hardware, there is therefore no difference between the
observed traffic when there is real traffic and when there is only
chaff traffic. Thus, traffic analysis attacks would produce the
same result in both situations and do therefore not work. This
also extends to other properties than timing and size, such as
packet directions and to multiple colluding attackers.

B. Limitations

While ditto achieves its security goals and prevents traffic
analysis attacks, there are some limitations and potential attack
vectors outside of our threat model. We discuss them below.

Malicious insider An attacker who has compromised multiple
hosts (e.g., servers in two datacenters connected through a
ditto-protected link) can (i) try to estimate the real traffic
volume by measuring the performance of her own traffic; and
(ii) exploit ditto for a DoS attack.

To estimate the real traffic volume, the malicious insider
can leverage the fact that ditto enforces a predefined traffic
pattern and that it does not split packets. We illustrate this
with a simple example: Assuming the pattern is [500,1500],
the protected link runs at 100 packets per second (pps), the
attacker knows that the link can carry at most 50 packets of size
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between 501 B and 1500 B per second. If the attacker can send
and receive 50 packets of size 1500 B per second herself, she
can use the observed delays or losses to roughly estimate the
amount of other real traffic of this size because otherwise there
would have been congestion or losses. Since the traffic created
by this attacker is likely untypical for the compromised servers,
it could be detected using anomaly detection techniques.

To exploit ditto for a DoS attack, the malicious insider
can follow a similar strategy as above and she can create her
traffic such that it requires a maximum amount of padding. For
example, if the pattern is [500,1500], she can repeatedly send
packets of size 64 B (the smallest IP packet size) and 501 B.
ditto would pad these packets to 500 B and 1500 B respec-
tively and thereby help the attacker to amplify her volume.
Since the attacker’s packets compete with benign traffic for
"transmission slots", the attacker can partially prevent benign
traffic from being sent if her rate is high enough. We see two
possible approaches for mitigating this attack: (i) Within each
pattern state, packets could be prioritized based on the amount
of padding which is required (lower priority for packets which
require more padding). Then, packets from such an attacker
would be dropped first but this would also impact benign traffic
that requires a lot of padding. (ii) The rate at which each user
can send packets of a certain size could be limited (e.g., 10
packets with 101 B per second). Packets exceeding this limit
could be handled with lower priority such that the measure
only has an impact when the network is congested.

Attacker with insider knowledge If the attacker has additional
knowledge of the network topology, she can potentially also
use this to estimate the real traffic volume. The best case (for
the attacker) is a linear topology where the traffic crosses
multiple links and each link uses a different pattern. An
extreme example is a linear topology with two links where the
first one used a pattern that sends only MTU-sized packets (i.e.,
1500 B) and the second one uses a pattern that sends minimal-
sized packets of 64 B. If both of these links run at 100 Gbps,
the first one transmits around 8 Mpps (million packets per
second) and the second one 195 Mpps. If the attacker knows
that all traffic crosses both links, she can derive an upper
bound of 8 Mpps (because ditto does not concatenate or split
packets) and 8 Mpps × 64 B ≈ 4 Gbps throughput (because
ditto only makes packets larger). However, this weakness is
not harmful in practice because (i) both links would use the
same pattern if the pattern was computed as described in §V;
and (ii) it does not break the volume anonymity property.

Compromised or faulty hardware ditto runs on network
switches and requires them to be trusted and to function
properly. If this is not the case, it allows various attacks.

If an attacker has administrative access to a ditto switch,
she can easily break ditto’s security properties (e.g., by
simply disabling ditto). While this is not in our threat model,
there are existing techniques to mitigate such attacks [45].

If the used hardware leaks information (e.g., because the
scheduling is not working properly or the encryption scheme
is weak), this can naturally also weaken ditto’s security.

VIII. IMPLEMENTATION

We fully implemented ditto in P4 (traffic shaping) and
Python (pattern computation). Since implementing the pattern
computation is relatively straightforward, we focus on the P4
implementation, which is technically challenging (cf. §VI).

The source code of our implementation is available GitHub:
https://github.com/nsg-ethz/ditto.

Hardware target Our data-plane implementation runs on
Intel’s Tofino chipset [8], which powers several off-the-shelf
switches [2], [79], [80] and is used by large operators (e.g.,
AT&T, Deutsche Telekom, and Alibaba [3], [4]).

Architecture The architecture of our implementation follows
the description in §VI. In the ingress pipeline, we (i) determine
the egress port for the incoming packet; (ii) we check if the
egress port is one that we want to obfuscate and whether it is a
real packet (as opposed to a chaff packet); if so, we (iv) assign
the packet to the right queue; and (v) check if the switch can
add enough padding in one pipeline pass or if the packet needs
to be sent through the pipeline multiple times.

Approximating hierarchical queueing As explained in §VI,
one challenge behind ditto is that the switch needs to send
a packet from each round-robin queue even if the queue is
empty. This is not possible in existing switches. For ditto, we
implemented an approximation of hierarchical queueing, where
a packet traverses two queueing stages instead of just one. We
achieve this by sending each packet through the switch data
plane twice. As illustrated in Fig. 4, the first queueing stage
consists of one pair of priority queues for each pattern state.
The queue with the higher priority receives all real packets
belonging to the respective pattern state, while the queue with
the lower priority is flooded with chaff packets.

We set the output rate of each priority-queue pair such that
the sum of all pairs equals the total sending rate of the switch.
For example, if the switch sends 10 Mpps and L = 4, each
queue pair needs to transmit 2.5 Mpps. The outputs from the
priority queues are fed back to the switch via loopback ports.

When the packets arrive at the switch for the second pass,
ditto sends them to the round-robin scheduler attached to the
actual egress port. Its output then follows the pattern.

The main cost of sending each packet through the switch
twice is that the loopback modules occupy ports which cannot
be used for interconnections with other switches. Since each
physical 100 Gbps QSFP port can be split into 2 or 4 sub-
ports (with 50 Gbps or 25 Gbps throughput each, respectively),
one loopback port can be used for up to 4 pattern states. The
bandwidth of one sub-port needs to be at least 100/L Gbps
where L is the length of the pattern. Since the bandwidth can
only be 100, 50, or 25 Gbps, ditto configures it as follows:

bw =

{
100, L = 1
50, L = 2 or L = 3
25, L ≥ 4

(4)

And the number of required loopback ports n computes to

n =

⌈
L · bw
100

⌉
(5)
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Fig. 4: ditto implements hierarchical queueing by sending
each packet through the switch twice.

For example, patterns of length 3 and 6 require 2 loopback
ports for each obfuscated port. In the typical use-case where an
organization uses a ditto switch as its gateway to the WAN,
switch ports are not scarce (e.g., a typical switch has 64 ports
[8] and could therefore support around 20 WAN links).

Adding padding In the egress pipeline, ditto adds padding to
the packet until it has the required size. ditto adds padding in
the form of additional headers of different sizes (between 32 B
and 1 B). ditto adds the padding headers in decreasing order
in separate stages to reduce the number of match & action
table entries: First, it adds as many 32 B padding headers as
possible (and needed). Then, it tries to fill the remaining space
with 16 B headers and so on until there is no more padding
needed. For example, ditto adds 2×32 B, 1×4 B and 1×2 B
padding headers to increase a packet’s size by 70 B.

Recirculate packets if needed If the required amount of
padding is larger than what can be added in one pipeline
pass, ditto recirculates the packet. Then, the packet traverses
the switch multiple times (i.e., from the end of the egress
pipeline, it is sent to the beginning of the ingress pipeline).
With each pass, ditto can add additional 254 B of padding. By
default, ditto uses two 100 Gbps port for the recirculations.
Depending on the pattern and the traffic distribution, this
can result in a bottleneck especially if ditto protects traffic
on multiple ports. In this case, ditto can load-balance the
recirculations over more ports (thereby reducing the number
of available switch ports for other interconnections).

Removing padding Removing padding is straightforward:
ditto removes all the padding headers and restores the
original EtherType. Again, the limited size of the PHV
(Packet Header Vector, cf. §III) can require recirculating the
packet in order to remove all padding.

Results from hardware measurements
Performance and efficiency §IX-B
• Longer patterns reduce the padding and chaff overhead.
• ditto’s padding strategy leads to less overhead compared to related

work.
• Non-interactive traffic (replayed traces): no performance loss for link

loads between 60 and 70 Gbps (depending on the dataset).
• Interactive traffic (iPerf, VoIP and web browsing): no performance loss

for link loads between 70 and 80 Gbps (depending on the dataset).
Security §IX-C
• Packet sizes and timing do not allow conclusions about real traffic.

Results from simulations
Performance and efficiency §IX-D
• Longer patterns reduce the padding and chaff overhead.
• 1 MB of buffer space is enough to obfuscate a traffic volume of up

to 99 % of the link bandwidth.
• The same pattern can be used for months without sacrificing efficiency.
• 92 % of the packets remain in the correct order for highest load and

the longest pattern.
Security
• The pattern produced by ditto is secure by design.

TABLE I: Evaluation summary

Resource usage The main bottleneck regarding resource
usage of ditto is the amount of padding that can be added
in one pipeline pass. Because ditto adds padding in the form
of additional headers, the amount is limited by the size of the
PHV and the deparser. In our current implementation, ditto
can add up to 254 B of padding in one pipeline pass. Regarding
other types of resources (e.g., SRAM and TCAM memory),
our implementation uses only a small fraction of the switch’s
resources (less than 10 % on average over all stages).

IX. EVALUATION

We first describe our methodology in §IX-A. Then, we
evaluate our implementation with respect to performance
(§IX-B) and security (§IX-C). In addition, we outline the
potential of future hardware optimized for ditto through
simulations (§IX-D). Table I summarizes our main results.

A. Datasets and methodology

The distribution of traffic processed by ditto depends on
the type of WAN in which it is deployed. As a typical use-case,
we envision an organization with several sites which uses its
WAN to connect them and use one site as a gateway through
which it sends all outgoing and incoming traffic. In this case,
WAN traffic has similar characteristics as Internet traffic. In
addition, we consider two extreme cases: (i) the best case for
ditto where all packets have the same size (e.g., if there was
heavy traffic shaping); and (ii) the worst case for ditto where
the packet sizes are uniformly distributed.

Datasets We use real Internet traffic and synthetic traffic
where the packet sizes follow given distributions. For the
real Internet traces, we use the publicly available CAIDA
anonymized Internet traces dataset [38] (CAIDA). Even
though this dataset was collected on Internet links, we believe
it is representative for a WAN where one site is used as
a gateway for all incoming and outgoing traffic (e.g., for
central compliance monitoring). We use the most recent dataset
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Fig. 5: Evaluation setup. We use two ditto switches, two
switches which act as proxies to perform measurements (e.g.,
timestamps), and two servers to send and receive traffic.

(captured in January 2019) and we preprocess it in two steps:
(i) we remove all non-IPv4 packets because the current imple-
mentation of ditto can only handle IPv4 traffic;3 and (ii) we
extract the first 100 M packets to speed up our simulations.

In addition, we generate two synthetic traffic traces us-
ing Scapy [16]: one where all packets have size 1480 B
(CONSTANT) and one with uniformly distributed packet sizes
between 60 B and 1480 B (UNIFORM). While these traffic
distributions are unlikely to occur in practice, we use them
to represent two extreme cases: CONSTANT is the best case
for ditto because it already follows a constant pattern while
UNIFORM represents the worst case because fitting a pattern
to a uniform distribution creates the highest overhead.

Many WANs will have different traffic distributions than
the traces that we use in the evaluation, but we argue that our
datasets are useful to show ditto’s performance on a wide
range of different traffic characteristics. It is also important to
note that the traffic distribution does not have an impact on
ditto’s security properties.

All datasets mentioned above represent non-interactive
traffic. That is, the traffic does not change depending on the
network behavior. While this allows us to test ditto with high
traffic volumes (up to 100 Gbps), it is not fully representative
for real-world behavior (e.g., a dropped TCP packet would be
retransmitted). To address this, we run interactive applications
on top of the replayed traffic and we measure the performance
achieved by these applications. We describe this in §IX-B.

Methodology We evaluate ditto on off-the-shelf devices and
we simulate how it would perform on ideal future hardware.

The hardware prototype is our implementation as de-
scribed in §VIII. It runs on two Intel Tofino switches with
32× 100 Gbps ports. Between the switches, ditto obfuscates
traffic on one link at 100 Gbps. We use a traffic generator
(Moongen [52]) to inject traffic from one server, and to record
traffic on another server (cf. Fig. 5).

We also implemented a simulator for optimal hardware in
Python. It receives a packet sequence as input (the real traffic)
and produces a packet sequence as output (the obfuscated
traffic). The simulator operates in discrete time steps: in each
iteration, it receives and sends one packet. To shape traffic
according to the pattern, it uses round-robin scheduling and
when there is no real packet to send it sends a chaff packet.

3This is only an implementation detail. The same approach would also work
for IPv6 packets.

B. Performance and efficiency in today’s hardware

In the following paragraphs, we show the performance of
ditto with respect to these three aspects:

• Throughput: The ratio between the incoming and the
outgoing real traffic

• Recirculations: The number of recirculations of each
packet

• Application performance: The performance of interactive
applications

Throughput Fig. 6 shows the ratio between incoming real
traffic and outgoing real traffic. To obtain these results, we send
traffic from a server to a first switch where we add additional
information to packets that we need for our measurements
(e.g., we add a number to each packet). Then we send it to the
switch which runs ditto. Afterwards, we record the obfuscated
traffic on another server (see Fig. 5).

The total outgoing traffic is always 100 Gbps (not shown
in the plot). If there was no performance loss, the amount
of incoming traffic would equal the amount of outgoing
traffic. But since ditto makes packets larger and fits them
into a predefined pattern, it creates overhead and therefore
reduced the usable throughput. However, as Fig. 6 shows, the
hardware prototype operates almost without loss until 90 %
(CONSTANT), 70 % (UNIFORM) or 60 % (CAIDA) load.

The reasons for this sub-optimal performance include:

• ditto relies on precisely controlled output rates of pri-
ority queues such that the output does not fluctuate.
However, today’s switches are typically not designed for
that (they offer traffic shaping, but the rate is only correct
“on average”). In our case, bursts of too much traffic lead
to dropped packets.

• ditto adds padding in the form of additional headers.
Treating padding like packet headers is expensive with
respect to the required resources in the pipeline and the
deparsing time, and a switch that could add padding
without using these resources could perform better.

• ditto uses a maximum bandwidth of 100 Gbps for
recirculation. Therefore, if packets need to be recirculated
multiple times, this bandwidth is not enough and packets
get lost.

Comparison with related work In Fig. 6 we also show an
upper bound for the performance of three systems that rely
on end-host protocols to obfuscate traffic: HORNET [42],
TARANET [43] and BuFLO [22]. To compute the performance
of these systems, we only simulate their padding strategy
(i.e., we neglect computational overhead and overhead due
to mixing with chaff packets), hence the real results of these
systems would be strictly worse than the plotted upper bound.

Our results show that ditto outperforms all of these
approaches even if their computational overhead is ignored (the
results for ditto are measurements on actual hardware and
therefore include all forms of overhead). ditto outperforms
these approaches because (i) ditto adds padding according to
an efficient pattern, which produces less overhead than padding
all packets to the same size; and (ii) operates on a per-link basis
as opposed to obfuscating each flow separately.
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Fig. 6: Input vs. output rate of real traffic. Longer patterns and
constant size traffic lead to higher goodput. ditto outperforms
related work even their computational overhead is ignored.

Below, we provide more details about the simulated pa-
rameters.

HORNET pads all packets to the same size s. We set s to
the size of the largest packet in the respective dataset, which
minimizes the padding. Further, HORNET adds headers to the
original packets. The size of these headers depends on the AS
path length and a sample length. We set the AS path length to
1 and the sample length to 16 (as in the paper [42]).

TARANET shapes flow(lets) such that they transmit at a
fixed rate (constant size and inter-packet time) and it adds
chaff packets to obfuscate the real length of a flow(let). In
contrast to ditto, TARANET can also split packets to make
them smaller. For our simulations, we do not consider chaff
packets (which makes the results only better) and we set the
packet size to the average packet size of the respective dataset.

BuFLO’s padding strategy is to pad all packets to the MTU
(1500 B in our case) without modifying the timing. Again, we
only simulate the padding overhead without considering chaff
packets. Ideally, this approach can work without additional
headers which is why we assume there is no such overhead.

Recirculations Since our hardware prototype can only add
254 B of padding per pipeline pass, some packets need to
traverse the switch multiple times. For this, we use a technique
called recirculation which sends a packet from the end of the
egress pipeline back to the beginning of the ingress pipeline.

Recirculating packets increases reordering and packet delay
and (because the bandwidth for recirculation is limited) can
lead to packet loss. Therefore, it is better to keep the number of
recirculations small. The best strategy to reduce recirculations
is to make patterns long enough such that the difference
between each pattern state and the next smaller or larger one
is less than the number of padding bytes per pipeline pass.

CONSTANT does not require recirculations. For CAIDA
and UNIFORM, the number of recirculations decreases with an
increasing pattern length. A pattern of length 1 requires 1.59

(CAIDA) or 0.99 (UNIFORM) recirculations on average. This
numbers decrease to 0.23 and 0.40 for a pattern of length 3
and 0.18 and 0.03 for length 6.

Application performance In addition to the raw throughput
measurements above, where we replayed static traffic traces,
we now measure the performance of interactive applications.

We measure the real-world performance of three typical
types of applications: (i) high-bandwidth TCP and UDP traffic
(using iPerf [9]); (ii) web browsing traffic (using WprGo [40]);
and (iii) VoIP traffic (using pjsip [12]). Fig. 5 illustrates the
setup of this experiment. We run Docker containers with clients
and servers for the respective application and we measure the
performance of these applications when the traffic is sent via
a ditto-enabled link versus the performance when the traffic
is forwarded directly (we use this as the baseline).

Fig. 7 shows the results of these measurements. We obtain
the results by running 50 measurements for each input rate
(0–100 Gbps) and we perform each measurement with and
without ditto. We highlight that we perform the measurements
in addition to the replayed traffic. Therefore, a TCP throughput
of 7 Gbps at an input rate of 80 Gbps means that ditto is
handling 87 Gbps in total. The measurements without ditto
represent a baseline where traffic is directly forwarded.

We measure the following metrics:

• TCP throughput: Important for applications which de-
mand high bandwidth and reliable throughput (e.g., file
transfer). We measure TCP throughput by creating 30 s
TCP flows with maximum throughput using iPerf.

• Packet loss: Important for applications using unreliable
transport (e.g., video streaming over UDP) and reliable
transport (e.g., TCP). We measure packet loss by creating
30 s UDP flows with 1 Gbps throughput using iPerf.

• Jitter: Important for real-time applications and streaming
(e.g., video calls). We measure jitter by creating 30 s UDP
flows with 1 Gbps throughput using iPerf.

• Round-trip time (RTT): Important for real-time applica-
tions (e.g., VoIP). We measure the RTT by creating 8 ×
30 s VoIP calls using PJSIP.

• Website load time: Important QoE metric. We measure
the load time for the 9 most popular websites according
to Alexa [1].4

The results in Fig. 7 show that – as expected – ditto does
not degrade the network performance up to a certain point.
Depending on the distribution of the traffic and the length
of the pattern, ditto does not have significant impact on the
network performance with an input rate of up to 80 Gbps (TCP
throughput, UNIFORM, pattern of length 6). The main causes
for the degraded performance are dropped packets (due to the
same reasons as discussed above). If packets are not dropped,
we highlight that ditto has no significant effect on timing-
related metrics such as jitter and Round-Trip Time (RTT).

In general, longer patterns are more efficient because
they produce less overhead. Most of our results confirm this
hypothesis. However, there are two exceptions in the CAIDA
dataset: TCP throughput and packet loss. The reason for this

4amazon.com, facebook.com, netflix.com, reddit.com, youtube.com,
zoom.us, bing.com, google.com, and wikipedia.org
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Fig. 7: ditto compared to the baseline. Lines show mean
values and colored areas indicate the 95 % confidence interval.
ditto affects the application performance after a certain link
load, depending on the dataset, pattern length and metric.

is that we do not take the interactive application traffic into
account when we computed the pattern. Then, it can happen
that the measurements modified the traffic distribution to an
extent where the pattern does not fit well anymore. Especially
for longer patterns (because each state of the pattern has a
small share of the total amount of transmitted packets, e.g.,
1/6th L = 6) and for flows with many equal-sized packets
(because then all packets are assigned to the same pattern
state). Both the TCP and the UDP measurements consist of
constant-size packets because iPerf maximizes the throughput.

C. Security in today’s hardware

We now show that the hardware prototype obfuscates traffic
such that the observed inter-packet times and packet sizes are
independent from the real traffic and we show that the accuracy
of a state-of-the-art attack is on par with random guessing.

Packet timings are independent from the real traffic Fig. 8
shows the Inter-Packet Gap distribution (IPG, the time between
the end (last byte) of the previous packet and the start (first
byte) of the current packet) for each dataset, pattern length
and network load. Visually, it is clear that the distributions
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Fig. 8: IPG distributions. The IPG does not depend on the
input rate (the 11 lines in each plot are overlapping).

do not depend on the network load (the lines largely overlap).
Analyzing the measurements further shows that a large fraction
is within a typical error margin around the median value.
For example, an attacker who can measure timestamps with a
precision of ± 3.2 ns (as in a state-of-the-art capturing device
[55]), could not distinguish between 92 % and 97 % (depending
on dataset and pattern length) of the measurements.

The numbers in Fig. 8 are subject to imprecisions for two
reasons: (i) we measure the timestamps in the ingress pipeline
of the evaluation proxy switch (cf. Fig. 5), i.e., not on the
link directly and not on a calibrated measurement device; and
(ii) we measure the timestamp at the beginning of a packet,
while the IPG refers to the time between the last byte of the
previous packet and the first byte of the current packet. We
therefore adjust the timestamp computationally as follows. For
two packets of sizes s0 and s1 bytes arriving at timestamps t0
and t1 (t0 < t1) and a line rate of 100 Gbps, the IPG is

IPG = t1 − t0 +
s0 · 8

100 · 109
(6)

Packet sizes are independent from the real traffic We now
evaluate whether the hardware prototype obfuscates traffic such
that it follows the defined pattern. Round-robin scheduling in
today’s switches is designed to follow round-robin behavior
on average, not necessarily in microscopic detail. This means
that the switch performing round-robin scheduling could
send [P1, P1, P2, P2, P3, P3] instead of [P1, P2, P3, P1, P2, P3]
(where Pi represents a packet from queue i). However, since
this behavior originates in the hardware implementation of the
switch and not in the behavior of ditto, it does not affect
ditto’s security.
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Fig. 9: ditto performs round-robin scheduling up to an error
which does not depend on the input rate.

In Fig. 9 we show that the hardware prototype indeed
performs round-robin scheduling on average and it produces
a distribution which is close to uniform. In the plot, we show
the Root Mean Square Error (RMSE) between the observed
distribution and a uniform distribution. The error does not
leak information about real traffic. Instead, it originates from
the approximation of the 2-level hierarchical queueing and the
required precise rate-control, which is more error-prone for
small packets.

State-of-the-art attack does not work with ditto After
showing that packet sizes and timings are independent from
the real traffic and do not leak information in general, we now
run a state-of-the-art attack to showcase that ditto is robust
against this particular attack.

We run the Deep Fingerprinting (DF) attack developed by
Sirinam et al. in [92]. This attack uses convolutional neural
networks to identify visited websites. The inputs for training,
validation and testing are sequences of packet directions (e.g.,
[1,-1,-1] when loading a website required one outgoing
packet and two incoming ones).

To run the attack, we used the code published by the
authors and the same parameters and input dimensions (1000
samples per website, at most 5000 packet directions per
sample). To load the websites, we used the same setup as for
the application performance experiment above and we added
5 ms latency between the two containers to make it realistic
for real Internet traffic. We loaded the Alexa top 9 websites
and recorded the traffic on the link protected by ditto using
tcpdump [18]. In order to be able to record the traffic, we run
ditto at only 500 Mbps per direction.5 From the recorded
traffic, we extracted the packet directions for 5000 packets
starting with the first packet sent from the client to request a
website. This makes it easier for the attack as it would be in
practice because a real attacker could not distinguish between
real and chaff packets and thus she could not determine the
first packet of a request. We run the attack in the closed world
setting as in [92], where there is no other real traffic besides the
loaded website (which makes it easier for the attack) and we
run the attack for traffic recordings containing between 2 and
9 websites (identify fewer websites is easier for the attack).

We depict the accuracy of the attack in Fig. 10 with and
without ditto (each point in the plot is the average accuracy
over 20 attack runs). We also depict the accuracy of an attacker
randomly guessing (for reference). We see that the attack is

5The attack would not perform better for a higher bandwidth.
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Fig. 10: DF attack accuracy. For ditto-protected traffic, the
accuracy is on par with random guessing.

unsuccessful on ditto-protected traffic: the accuracy is on-par
with random guessing. Note that the results hold independently
of the pattern length (here, 1 or 3). We also see that the attack
is successful without ditto, as expected.6

D. Performance and efficiency in future hardware

We now simulate how ditto would run on future hardware
with two extensions compared to our hardware: (i) the round-
robin scheduler can directly send a chaff packet if a queue is
empty; and (ii) the number of padding bytes is not limited.

In the following paragraphs, we show the simulated per-
formance of ditto with respect to these two aspects:

• Overhead: Amount of padding and chaff packets depend-
ing on the input load and the pattern length

• Reordering: Out-of-order packets in TCP flows depending
on the input load and the pattern length

Overhead We simulate ditto with different input loads (10–
100 %) and pattern lengths (1–32) to evaluate the overhead
added to real traffic. To measure overhead, we use 4 metrics:

• Chaff overhead: The number of chaff bytes that ditto
sends to always transmit at line rate

• Padding overhead: The padding that ditto adds to pack-
ets in order to fit into the pattern

• Buffer space usage: The required buffer space to store
packets until they fit in the pattern

• Switching delay: The number of packets that ditto trans-
mits between two packets that arrive subsequently

Overhead depending on the network load Fig. 11 shows how
the network load impacts the overhead created by ditto.

We show the results for all three datasets. For CAIDA and
UNIFORM, we show the results for different pattern lengths
(1, 3 and 6). For CONSTANT, we only show a pattern of
length 1 because this is already the most efficient pattern. As
expected, longer patterns fit the actual traffic distribution better
and therefore create lower padding- and chaff overhead.

The chaff overhead decreases with increasing input load
because the more real traffic there is to send, the fewer chaff
packets need to be added to fill the link.

6We observed that the model is overfitting in some cases for the unprotected
datasets. To limit this, we added an early stopping mechanism that stops the
training when there was no significant improvement in the last 3 epochs [5].
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Fig. 11: Overhead depending
on the input load. ditto’s
overhead in terms of buffer
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Fig. 12: Overhead depend-
ing on the pattern length.
Long patterns result in small
padding and chaff overhead
but require more buffer space
and introduce more delay.

We observe that the chaff overhead is larger for short
patterns. This is because short patterns need to consist of larger
packets (e.g., a pattern of length 1 results in sending MTU-
sized packets constantly) and therefore, even if the number of
chaff packets is smaller, the number of chaff bytes is larger.

ditto needs to buffer packets when the sequence of the
pattern does not match the sequence of the incoming packets.
For small loads, this is less critical because there is more time
between two subsequent incoming packets (e.g., if the time
between two incoming packets is larger than the time it takes
to iterate over the pattern once, the buffer is always empty
when the new one arrives). For high input loads, discrepancies
between the sizes of the incoming packets and the outgoing
pattern have a higher impact.

However, as Fig. 11 shows, 1 MB of buffer space is
sufficient for up to 90 % (CAIDA) or 99 % (UNIFORM) load.
Patterns of length 1 do not require buffering because ditto
pads and sends each packet immediately.
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Fig. 13: Overhead for using the same pattern (length l) over 10
subsequent months. The padding overhead does not increase
because the traffic distribution roughly stays the same.

The switching delay measures the number of packets sent
between two incoming packets. Therefore, it evolves similarly
to the buffer overhead. Again we observe a slow increase until
the switch starts to get congested around 90 % network load.

Overhead depending on the pattern length Fig. 12 shows
how the pattern length impacts the overhead. The results are
for a high network load of 80 %, which means that there
are usually real packets ready to be sent in each pattern state.
In this case, longer patterns result in less chaff overhead and
padding overhead. This is because longer patterns fit the actual
traffic distribution better and therefore require sending less
additional traffic. At the same time, longer patterns lead to
increased buffer usage and switching delay because it is more
difficult to fit the incoming packets to the right pattern state.

Overhead for long-term use of a pattern ditto computes the
pattern based on the packet size distribution and then applies
it for future traffic. This is always secure, but not necessarily
efficient. If the distribution of the real traffic changes, it
is worth computing a new pattern (which can be deployed
without interrupting the switch [60]). We confirm with the
results in Fig. 13 that ditto can apply the same pattern over
a long period (10 months) with a nearly constant overhead.

Packet reordering We now evaluate the impact of ditto
on the ordering of packets. We again simulate ditto with
different input loads (between 10 and 100 %) and different
pattern lengths (1–32).

We focus on CAIDA in this experiment because the other
datasets do not contain TCP flows. We randomly select 100k
TCP flows with at least 2 packets from CAIDA and count the
number of reordered packets for each of them (the sampled
flows are the same across all experiments).

To measure reordering, we use the following metrics:

• Reordered packets: Packets that were out of order (i.e.,
packet i arrived before packet i− 1)

• Flows with reordered packets: Flows with at least one
reordered packet

Reordering depending on the network load Fig. 14 shows
how the network load impacts the reordering. As expected,
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Longer patterns lead to more
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higher input load leads to more reordering. But even in fully
loaded networks, less than 8 % of the packets are reordered.
8 % of reordered packets impact at most 47 % of flows because
many short flows are reordered.

We point out that these results show a worst case because
of the way how our simulator works and how the dataset was
collected. The throughput of the CAIDA dataset as it was
captured is around 4 Gbps [39], which corresponds to an input
load of 4 % in our simulation. To simulate higher input loads,
we replay CAIDA at higher speed (up to 25× the original
speed), which creates unrealistically high-bandwidth flows. For
example, a user downloading a file with 1 Gbps is simulated
as a user with a 25 Gbps connection.

Reordering depending on the pattern length Fig. 15 shows
how the pattern length impacts the reordering. As expected,
longer patterns lead to more reordering because the sequence
of outgoing packets is more constrained.

X. RELATED WORK

Preventing traffic-analysis attacks has been an active re-
search area for many years. However, existing work focuses
on preventing traffic analysis attacks for Internet users. As
we elaborated earlier, these systems are largely orthogonal
to ditto because protecting WAN traffic presents both new
challenges (e.g., high throughput) and opportunities (e.g.,
control over network devices). Even though existing systems
could be applied in WANs too, they would not perform well
enough (cf. simulations in §IX) since they are not optimized
for this setting or they require modifications of the end hosts.

Most existing work is application-specific (e.g., to prevent
website fingerprinting [6], [71], [95]–[97], ensure anonymous
communication [32], [70] or protect IoT devices [26]) and/or

requires additional servers to relay traffic [19], [84], [98]. In
contrast to these approaches, ditto operates at the network
layer, protects all traffic and does not need additional servers
or modifications at the clients. Below and in Table II, we
summarize the most relevant work related to ditto.

Widely used protocols and libraries already allow adding
random number of bytes to the plaintext before encrypting
it. Examples include GnuTLS [6], SSH [13], and IPSec [15].
However, this only adds a small amount of anonymity (the
volume increases by a random amount within some bounds)
and it does not provide timing- or path anonymity.

Onion routing and mix networks TOR [19], [48], the most
widely used anonymity network today, and similar systems
(e.g., [42], [73], [86] use onion routing [57] to hide the source
and the destination of traffic. However, they do not prevent
timing attacks and they do not hide the traffic volume.

HORNET [42] is similar to TOR in the sense that it uses
onion routing but it operates on the network layer. To obfuscate
the traffic volume, HORNET adds padding to packets such that
all packets have the same size.

PriFi [32] is based on Dining Cryptographers networks
(DC-nets) [41] where each participating node is assigned a
time slot in which it can (and must) send a message. This
provides volume-, timing- and path anonymity because the
observed traffic is always the same, but it reduces the total
throughput linearly with the participating nodes.

Loopix [84] mixes real and chaff traffic in dedicated mix
nodes and achieves low-latency communication with up to 300
messages per second while hiding the sender and receiver of
messages as well as whether they are currently active.

Padding and traffic shaping Like ditto, several works aim
at hiding the traffic volume by adding padding, chaff packets
and/or by sending packets according to a predefined schedule.
Examples of such systems include the works of Guan et al.
[58], Wang et al. [98] and Wright et al. [100].

In [51], Dyer et al. show that existing padding approaches
do not provide enough security and they suggest BuFLO as
a solution with high security. BuFLO [51] pads all packets to
the same size; delays them such that the time between two
packets is constant; and sends chaff packets such that each
flow has a certain minimal length. However, as the authors
state in the paper, this approach is inefficient because of the
constant packet size and inter-packet time. The key difference
to ditto is the deployment scenario: BuFLO runs on end hosts
and obfuscates each flow individually. This leads to the large
overhead mentioned in the paper. ditto runs in the network
and obfuscates traffic on a per-link basis according to an
efficient pattern (instead of making all packets constant-size),
which leads to less overhead. Furthermore, ditto does not leak
information about flow durations or sizes.

In [37] and [36], Cai et al. present CS-BuFLO, an improved
congestion-sensitive version of BuFLO. CS-BuFLO adapts the
transmission rate depending on how much traffic the client
tries to send. This makes it more efficient but also less secure
because it leaks information about the sender’s volume. While
CS-BuFLO has less overhead than BuFLO, it suffers from
similar limitations: Since the padding happens per flow or per
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Deploy- Tech- Volume Timing Path
System Year ment1 niques2 anonymity anon. anon. Throughput3 Main overhead / bottleneck

TOR/Onion R. [19], [57] 1999 C/S P, (C, D,) R 7 ~ 3 100 Mbps Latency (send via relays)
NetCamo [58] 2001 C/S/N P, C, R ~ ~ 7 N/A4 Per-flow padding
Wang et al. [98] 2008 S P, C, D ~ ~ 3 10 Gbps Per-flow padding, latency (via server)
BuFLO [51] 2012 C/S P, C, D ~ 3 7 320 Mbps All packets have the same size
CS-BuFLO [36], [37] 2012 C/S P, C, D ~ ~ 7 400 Mbps All packets have the same size
HORNET [42] 2015 C/N P, R ~ 7 3 8 Gbps Onion routing and constant-size packets
WTF-PAD [67] 2016 C/S P, C ~ ~ 7 N/A4 Per-flow padding
PriFi [32] 2017 C/S P, C, D 3 3 3 100 Mbps Throughput (1 client can send per slot)
Loopix [84] 2017 C/S P, C, D, R 3 ~ 3 4 Mbps Per-device obfuscation, computation
TARANET [43] 2018 C/S/N P, C, D 7 ~ 3 4 Gbps Per-flow(let) obfuscation
ditto 2021 N P, C, D 3 3 3 100 Gbps Switch resources, pattern efficiency

1 C: Client; S: Server, N: Network 2 P: padding, C: chaff packets, D: delay, R: routing 3 Results from the respective paper. When applicable,
we use the following assumptions: throughput for 1 device port or link, 100 Gbps line rate, 1500 B packet or message size, 1000 users or devices,
1 server with a 10 Gbps connection, clients with 1 Gbps connections 4 No throughput measurements in the paper. But the per-flow obfuscation

makes the throughput is significantly worse compared to ditto.

TABLE II: Comparison of ditto’s key properties with related work. Related work focuses on preventing traffic-analysis attacks
on shared links, which adds other constraints compared to ditto and generally results in worse performance.

device, the overhead created by many flows or devices sums
up in the network. Further, CS-BuFLO leaks information about
the total volume of a flow or device and the sending rate while
ditto does not because it runs in the network.

TARANET [43] shapes traffic into constant-rate flowlets
at the hosts. The system then makes sure that these flowlets
achieve the constant rate despite dynamic network events such
as packet loss. Similarly to ditto, TARANET mixes real and
chaff packets, but in contrast to ditto, TARANET requires
support from the end host.

XI. CONCLUSION

This paper shows that it is possible to obfuscate volume-
and timing properties of wide area network (WAN) traffic
directly in the network data plane, using existing hardware,
and with a small performance overhead.

ditto mixes real and chaff traffic and it adds padding to
packets such that they follow a predefined pattern with respect
to packet size and timing.

Two insights allow ditto to achieve high performance (up
to 70 Gbps per 100 Gbps switch port for real Internet back-
bone traffic and interactive applications) and perfect security
(observed traffic is independent from real traffic): (i) the traffic
pattern is efficient because it fits the actual traffic distribution in
the protected network; and (ii) existing network devices offer
the features which are needed to perform packet padding and
mixing with chaff traffic at line rate.
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