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Abstract—Machine learning (ML) has established itself as
a cornerstone for various critical applications ranging from
autonomous driving to authentication systems. However, with this
increasing adoption rate of machine learning models, multiple
attacks have emerged. One class of such attacks is training time
attack, whereby an adversary executes their attack before or
during the machine learning model training. In this work, we
propose a new training time attack against computer vision based
machine learning models, namely model hijacking attack. The
adversary aims to hijack a target model to execute a different
task than its original one without the model owner noticing.
Model hijacking can cause accountability and security risks since
a hijacked model owner can be framed for having their model
offering illegal or unethical services. Model hijacking attacks are
launched in the same way as existing data poisoning attacks.
However, one requirement of the model hijacking attack is to be
stealthy, i.e., the data samples used to hijack the target model
should look similar to the model’s original training dataset.
To this end, we propose two different model hijacking attacks,
namely Chameleon and Adverse Chameleon, based on a novel
encoder-decoder style ML model, namely the Camouflager. Our
evaluation shows that both of our model hijacking attacks achieve
a high attack success rate, with a negligible drop in model utility.'

I. INTRODUCTION

Machine learning (ML) has established itself as a corner-
stone for various critical applications, such as autonomous
driving, financial/banking application, and authentication sys-
tems. Two of the most significant demands fueled by this
increasing rate of machine learning adoption are the need for
high computational power for training more complex machine
learning models, and the need for high-quality training dataset.
Such high demands for data and computational power hinder
individuals from training ML models on their own. Instead,
new training paradigms which involve multiple parties jointly
building machine learning models have been proposed. One
such training paradigm is federated learning [3].

However, this inclusion of new parties in the training
process of ML models raises new security and privacy risks. In
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other words, it creates an attack surface where an adversary can
manipulate the training of an ML model. This type of attacks
is called training time attack. Some examples in this domain
include backdoor attacks [10] and data poisoning attacks [1].

A. Our Contributions

Motivation: In this work, we propose a new training time
attack against computer vision based machine learning models,
namely the model hijacking attack. Concretely, the adversary
performs data poisoning to repurpose a target ML model
designed for a certain task (original task) to be able to perform
a hijacking task defined by the adversary. This repurposing of
the target model has to be done stealthily such that the target
model owner does not detect it. The model hijacking attack
is a training time attack, hence the adversary needs to apply
stealthiness with respect to two dimensions: the first is to not
jeopardize the target model’s utility with respect to its original
task; the second is to camouflage the poisoning data to look
similar to data from the same distribution of the target model’s
training dataset.

Using the model hijacking attack, the adversary can hijack
a target model to perform an unintended ML task, without
the model’s owner noticing. This can cause accountability
risks for the model owner, since now the model owner can
be framed of having their own model offering illegal or
unethical services. For example, an adversary can hijack a
benign image classifier into a facial recognition model for
pornography movies, or even classifying such movies into
different categories. A different fairness violating scenario is
to use the hijacked model to classify people’s sexuality using
for example their facial attributes. In short, using this attack,
the adversary can hijack a model designed to be publicly
available. This will result in a public model offering an illegal
or unethical service under the unintended responsibility of the
hijacked model’s owner.

Another risk that can be caused by the model hijacking
attack is parasitic computing. An adversary can hijack a model
with public free access to implement their application, instead
of hosting their own model. This can save the adversary the
cost of training their own model. However, more importantly,
it saves the adversary the cost of maintaining their own ML
model. For example, deploying and hosting a model — in
Europe — by google can cost from 0.11$ up to 2.44$ per hour.’

Methodology: To perform the model hijacking attack, the
adversary only needs the ability to poison the target model’s
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training dataset. This means model hijacking is applicable
for any setting that is vulnerable to data poisoning, such as
federated learning. An adversary can implement the model
hijacking attack by simply poisoning the target model’s train-
ing dataset (original dataset) with their own hijacking task’s
training dataset (hijacking dataset). However, such an attempt
can be easily detected as both the original and hijacking
datasets can be significantly different. Hence, we define the
following requirements for a successful model hijacking attack.
First, a hijacked model should achieve good performance
when predicting any sample from the original dataset (original
sample) with respect to the original task, and any sample from
the hijacking dataset (hijacking sample) with respect to the
hijacking task. Second, the execution of the attack should
be stealthy, i.e., samples in the hijacking dataset should be
camouflaged before being used to poison (query) the target
(hijacked) model.

To fulfill these requirements, we propose two model hi-
jacking attacks, namely the Chameleon attack and the Adverse
Chameleon attack. To implement both attacks, we first propose
the Camouflager, an encoder-decoder based model that cam-
ouflages samples in a hijacking dataset to be more stealthy.
Specifically, the Camouflager consists of two encoders. The
first one encodes samples from the hijacking dataset. The
second one encodes samples from a dataset that the adversary
wants the hijacking dataset to be visually similar, we refer to
this dataset as the hijackee dataset. 1deally, the hijackee dataset
should come from the same distribution as the target dataset.
The outputs of the two encoders are then fed to a decoder
which outputs the camouflaged samples. These camouflaged
samples should be visually similar to the hijackee samples, but
semantically similar to the hijacking samples. It is important
to note that since the Camouflager is independent of the target
model, it can be used when hijacking multiple target models
performing a similar task. In other words, the Camouflager is
linked with the original task, not the target model. In this way,
the adversary can achieve effective parasitic computing. We
now briefly introduce the Chameleon and Adverse Chameleon
attacks.

The Chameleon Attack: Our first model hijacking attack,
namely the Chameleon attack utilizes two different losses to
train the Camouflager. The first one is the Visual Loss, which is
responsible for making the Camouflager’s output, i.e., the cam-
ouflaged samples, visually similar to the hijackee samples. The
second one is the Semantic Loss which drives the camouflaged
samples to be semantically similar to the hijacking samples in
order to perform the hijacking task. In addition to training the
Camouflager, the Chameleon attack also needs to establish a
mapping between labels of the hijacking task and the original
task. To hijack a target model, the Chameleon attack poisons
the original dataset using the camouflaged dataset. Finally,
to execute the attack, the adversary camouflages a hijacking
sample using the Camouflager, queries the camouflaged sample
to the hijacked model, and maps the predicted label back to
the corresponding one of the hijacking task.

The Adverse Chameleon Attack: The Chameleon attack has
a strong performance when the distributions of both the hijack-
ing and hijackee datasets are significantly different. However,
when these two datasets are relatively similar, the Camouflager
cannot achieve its expected properties. To overcome this, we

propose an advanced version of the Chameleon attack, namely
the Adverse Chameleon attack. The Adverse Chameleon attack
adds an additional loss, namely the adverse Semantic Loss,
to the Visual and Semantic Losses used for the Chameleon
attack. This new loss explicitly adds the constraint to distance
the semantics/features of the output of the Camouflager from
the hijackee samples, to alleviate the training of the hijacking
task.

Evaluation: To demonstrate the efficacy of model hijacking,
we perform experiments in different settings using three bench-
mark computer vision datasets including MNIST,> CIFAR-
10,* and CelebA [18]. Our results show that the Chameleon
attack achieves almost a perfect performance when attacking
both CIFAR-10 and CelebA based models using MNIST as
the hijacking dataset. Specifically, it achieves above 99%
accuracy for MNIST classification (the hijacking task) with
no performance drop for CelebA classification and less than
1% drop for CIFAR-10 classification (the original tasks). For
the more complex case of using CIFAR-10 and CelebA as the
hijacking datasets, our Adverse Chameleon achieves 58.6%
and 73.7% accuracy with a negligible drop in performance for
their original tasks, respectively.

Abstractly, our contributions can be summarized as:

1)  We propose the first model hijacking attack against
machine learning models.

2) We propose the Camouflager model which cam-
ouflages the hijacking samples for stealthy model
hijacking attacks.

3)  Our two proposed model hijacking attacks, i.e., the
Chameleon and Adverse Chameleon attacks, achieve
strong performance in different settings.

B. Organization

The rest of the paper is organized as follows. Section II
presents some background knowledge and our threat model.
Next, we introduce the model hijacking attack and our two
attacks, i.e., the Chameleon and Adverse Chameleon attacks,
in Section III. We then evaluate the performance of our two
different attacks in Section IV and discuss the limitations of
them in Section VI. Finally, we present the related works,
discuss the limitations, and conclude the paper in Section V,
Section VI, and Section VII, respectively.

II. PRELIMINARIES

In this section, we start by introducing machine learning
classification. Then, we briefly present the data poisoning
attack, and finally, we introduce the problem statement and
threat model for the model hijacking attack.

A. Machine Learning Classification Setting

A machine learning classifier aims to classify a data sample
to a certain label/class. More concretely, on the input of a
data sample x, the classifier/model M predicts a vector of
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probabilities ). The size of ), i.e., | )|, equals to the number of
unique labels, and each entry y; in ) represents the confidence
of the model M assigning the sample z to the label ¢; € L.
For simplicity, we only consider the final predicted label as
the output of the model, which is the label with the maximum
probability, i.e., M(x) = argmax, ). To train the model
M, we need to define a loss function, such as cross-entropy
loss, and utilize an optimizer to minimize the empirical loss
calculated over a training dataset D.

B. Data Poisoning Attack

Data poisoning attack [1, 12, 31, 35] is a training time
attack against ML models. In this setting, the adversary first
needs to create a malicious dataset D,,,. One way of creating
such dataset (D,;,) is to mislabel a set of samples to wrong
classes. Next, the adversary inserts this malicious dataset to
a benign training dataset D to create a poisoned dataset D),
(D, = D,,||D). This poisoned dataset is then used to train the
target model as mentioned in Section II-A. The goal of data
poisoning is to jeopardize the accuracy (or utility) of the target
model.

C. Problem Statement

Model hijacking attack is a training time attack where
the adversary poisons a target model’s training dataset, such
that they can hijack the model for a different task defined by
themselves. We refer to the dataset related to the target model’s
original task as the original dataset, while the dataset related
to the hijacking task as the hijacking dataset. Intuitively, we
consider the model to be hijacked when an adversary can use
it — after being trained — to perform their own hijacking task.
This hijacking task should be different from the original one
of the hijacked model. Moreover, hijacking a model should
not jeopardize its performance on the original task and should
be inconspicuous to the hijacked model’s owner. We later
(Section III-A) formally define the requirements of the model
hijacking attack.

A successful model hijacking attack can save the adversary
the cost of maintaining their own model. Moreover, it can lead
to an accountability risk, since the hijacked model’s owner can
be accountable for the hijacking task which can be illegal or
unethical.

D. Threat Model

The model hijacking attack does not need any assumption
related to the target model. The only assumption needed is
the ability to poison the target model’s training dataset, which
is similar to data poisoning attacks [12, 31, 35]. Moreover,
we assume the adversary has a hijackee dataset which they
rely on to create the camouflaged dataset from the hijacking
dataset. In Section III-E, we will describe how to generate
this camouflaged dataset. Ideally, the hijackee dataset should
have a similar visual appearance as the target model’s dataset.
However, our model hijacking attack is independent of which
distribution the hijackee dataset is sampled from. It is the
adversary’s decision on which dataset to use to camouflage
the hijacking dataset.

The model hijacking attack can be broadly applied to any
real-world scenario where a model owner collects data from

different parties to train their model. One concrete example is
federated learning. More generally, the model hijacking attack
can be performed in any setting that is vulnerable to data
poisoning [1, 2, 12, 30, 35, 39, 49].

III. MODEL HIJACKING ATTACK

In this section, we present our different techniques for the
model hijacking attack. We start by presenting the general
pipeline of the model hijacking attack, then we clarify the dif-
ference between the model hijacking attack and other training
time attacks, i.e., data poisoning and backdoor attacks. Finally,
we present two concrete realization of the model hijacking at-
tack, namely the Chameleon and Adverse Chameleon attacks.

A. General Attack Pipeline

To perform the model hijacking attack, the adversary first
creates a hijacking dataset. Then, for each label in the hijacking
dataset, they define a mapping to associate it to a label of the
original dataset.

This mapped label will be used as the ground truth when
poisoning the target model as will be shown later.

Next, the adversary poisons the target model’s training
dataset with the hijacking dataset and waits for the target model
to be trained, i.e., hijacked. Once the model is hijacked, to
launch the attack, the adversary creates a hijacking sample
and queries it to the hijacked model. Finally, the adversary
maps (using the inverse of the same mapping performed at the
initialization of the attack) the predicted output back to the
corresponding label of the hijacking task.

A straightforward approach to perform the model hijacking
attack is to directly poison the training dataset of the target
model with the hijacking dataset. However, the main disadvan-
tage of this approach is that it is easily detectable since samples
in the original and the hijacking datasets can be significantly
different.

To overcome this limitation, we propose a more advanced
model hijacking attack, where the samples used to poison the
target model are visually similar to those in the original dataset.
To this end, we propose Camouflager, which is an encoder-
decoder based model that camouflages the hijacking dataset,
i.e., transforms samples in the hijacking dataset to be visually
similar to those in the original dataset, while maintaining each
sample’s original semantics. We refer to the hijacking dataset
after being camouflaged as the camouflaged dataset.

Camouflager is trained using both a hijacking dataset and
a hijackee dataset. As mentioned in Section II-D, samples
in the hijackee dataset are visually similar to samples in
the original dataset. Camouflager is based on two types of
losses, namely Visual Loss and Semantic Loss. Visual Loss
makes the Camouflager’s output, i.e., the camouflaged dataset,
visually similar to the hijackee dataset. Semantic Loss makes
the camouflaged dataset semantically similar to the hijacking
dataset, to be able to implement the hijacking task.

After training the Camouflager, the adversary can use
it to camouflage the hijacking dataset and use the output
camouflaged dataset to poison the target model. Finally, to
launch the attack, the adversary needs to first camouflage the



desired hijacking sample, then query the camouflaged sample
to the hijacked model. In the end, the adversary maps the
predicted label to the one related to the hijacking task.

A successful model hijacking attack should predict any
sample from the original dataset or the camouflaged dataset
correctly, but any sample from the hijacking dataset, i.e., with-
out first getting camouflaged by the Camouflager, randomly
(significantly lower than the performance of the camouflaged
samples). More formally, we define the following requirements
for a successful model hijacking attack:

Requirement 1. The hijacked model should have a similar or
better performance as the target model on its original task.

Requirement 2. The hijacking dataset should be camouflaged
— to the hijackee dataset — to make the attack more stealthy.

Requirement 3. The hijacked model should correctly classify
the camouflaged samples with respect to the hijacking task.

Requirement 4. To further increase the stealthiness of the
model hijacking attack, the hijacked model should classify any
non-camouflaged sample from the hijacking dataset randomly,
i.e., significantly lower than the performance of the camou-
flaged samples

For clarity, we summarise the different used datasets in
Table III.

B. Model Hijacking v.s. Backdooring v.s. Data Poisoning

We now compare our model hijacking attack with two
related training time attacks, namely the data poisoning and
backdoor attacks. The model hijacking attack follows the same
attacker assumption of the poisoning and backdoor attacks.
However, using the model hijacking attack, the adversary has
a different objective.

On the one hand, in the data poisoning attacks [12, 34], the
adversary tries to jeopardize the models’ utility, i.e., increasing
the misclassification rate, by manipulating the training of the
target model. Similarly, the backdoor attacks [10, 16] can also
have the same aim. Moreover, in the backdoor attack, the
adversary can link a trigger with specific model output. For
example, when the trigger is inserted in any input, the target
model predicts a predefined — by the adversary — label. This
trigger can, for example, be a white square at the corner of
the input for image classification models.

On the other hand, hijacking a model is to implement
different — unethical — tasks irrespective of the original one,
without being noticed by the model owner. For instance, the
adversary can hijack a model to implement a facial recognition
classifier for pornography movies or a sexuality classifier.
Hijacking a model saves the adversary the cost of maintaining
their own model. In other words, hijacking a model repurposes
it to perform the adversary’s task. The backdoor attack can
be considered a specific instance of the model hijacking one,
where the adversary’s task is to predict the triggered input to a
specific label. However, the adversary is free to determine the
hijacking task in the hijacking attack with the only restriction
of having similar or fewer labels compared to the target
model’s original task.

C. Building Blocks

We now introduce the building blocks for our model
hijacking attack. We start with the Camouflager, then the
different losses.

Camouflager (AE¢): The Camouflager is an encoder-decoder
based model which camouflages the hijacking dataset D, into
the hijackee dataset D,. We visualize the structure of the
Camouflager in Figure 1. As the figure shows, the Camouflager
consists of two encoders and one decoder. The first encoder
(&,) takes a sample (x,) from the hijackee dataset as its input,
while the other encoder (£;,) takes a sample (x;) from the
hijacking dataset. The outputs of the two encoders are then
concatenated to create the input for the decoder (£~1'). The
decoder then generates a camouflaged sample . which has
visual appearance of z, with the features/semantics of x,.
More formally,

Al (o, 2p) = 71 (So(xo)th(xh)) — z.,

where x, denotes a sample from the original dataset (x, € D,),
xp, a sample from the hijacking dataset (z;, € D), and . the
camouflaged sample.

Visual Loss (p,;): Next, we introduce the first loss of the
Camouflager, i.e., the Visual Loss. This loss drives the Camou-
flager to output data that has the visual appearance as samples
in the hijackee dataset. Intuitively, the Visual Loss calculates
the L1 distance between the output of the Camouflager and
the hijackee sample. More formally, we define the Visual Loss
as follows:
Y = min||z, — x|,

Semantic Loss: The Visual Loss associates the Camouflager’s
output with the hijackee sample on the visual perspective.
We now introduce the Semantic Loss which associates the
Camouflager’s output to the features of the hijacking sample.
Since the Semantic Loss operates on the feature level and not
the visual level, we first need a feature extractor F which
extracts the features of a given sample. This feature extractor F
can for example be a middle layer of any classification model.
Since we do not assume the adversary’s knowledge of any
information about the target model as previously mentioned
in Section II-D, we use a pretrained MobileNetV2 [29] as our
feature extractor. However, a stronger adversary that has access
to the target model can use the target model as the feature
extractor. The output of any layer of F can be picked as the
features. For our work, we use the output of the second to last
layer of MobileNetV2.

Intuitively, the Semantic Loss calculates the L1 distance
between the features of the output of the Camouflager and the
hijacking sample. More formally, we define the Semantic Loss
as follows:

pst = min||F(z.) — F(zn)],

where F is the feature extractor.

Adverse Semantic Loss: So far the Visual and Semantic
Losses already associate the Camouflager’s output with both
the visual appearance of the hijackee sample and the features
of the hijacking sample. However, in certain cases when the
hijacking and hijackee datasets are complex and similar, as
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Fig. 1: A schematic view of the Camouflager. The encoders first encode the original and the hijacking samples. Then the outputs
of the encoders are concatenated and inputted to the decoder. The decoder then generates the camouflaged sample which has
the visual appearance of the original sample but the features of the hijacking one.

shown later, the camouflaged sample’s features are not distinct
enough from the hijackee sample’s features, which degrades
the performance of the model hijacking attack. Hence, we
introduce another loss, i.e., the Adverse Semantic Loss. This
loss maximizes the difference between the features of the
hijackee and camouflaged samples using the L1 distance. We
define the adverse Semantic Loss as:

Pasl = max||.7-'(xc) - F(xU)HV

D. The Chameleon Attack

After presenting the general pipeline and the buildings
blocks, we now present our first concrete model hijacking
attack, namely the Chameleon attack.

Intuitively, the Chameleon attack uses a Camouflager to
camouflage the hijacking dataset and poison the target model.
The Chameleon attack can be divided into three stages, namely
preparatory, camouflaging, and executing. We now explain
each of them in detail.

Preparatory: In the first stage, the adversary setups their
hijacking and hijackee datasets. To recap, this hijackee dataset
is used for camouflaging the hijacking dataset.

Next, after creating the hijackee dataset, the adversary
creates a mapping between the original dataset’s labels and
the ones in the hijacking dataset. In this work, we assign the
labels in a non-semantic manner. More concretely, we assign
the i*" label from the original dataset to the i*" label of the
hijacking dataset, irrespective of what each label stands for.
However, our attack is independent of the mapping technique
and the adversary can freely create the mapping with the only
restriction of keeping it consistent throughout the attack.

Finally, the adversary picks their feature extractor F which
is used to calculate the features of samples needed to train
the Camouflager. As previously mentioned (Section III-C), the
feature extractor is an off-the-shelf model that the adversary
can freely choose.

Camouflaging: After deciding on the hijackee dataset, label
mapping, and the feature extractor, the adversary can now start

the main process of the Chameleon attack. We use both of the
Visual and Semantic Losses to build the Camouflager for this
attack.

As previously mentioned and demonstrated in Figure 1,
the Camouflager uses two encoders and a single decoder. All
three models, i.e., the two encoders and the decoder, are trained
jointly with both losses. More formally we define the loss as
the following.

Lam (@es Toren) = min (|lze — 2| +|F () = Fan)ll)
6]
As the loss demonstrates, the Camouflager is independent of
the target model. Hence, it can be used to hijack multiple target
models with a similar original task.

For the Chameleon attack, the adversary uses the hijackee
dataset and the hijacking dataset to train the Camouflager.
More concretely, the adversary trains their Camouflager as
follows:

1)  For each epoch, the adversary first randomly pairs
samples from the hijackee dataset to the samples in
the hijacking dataset. Since both datasets can be of
different sizes, the mapping between both datasets
can be many-to-many instead of one-to-one. We
change the mapping in each epoch to increase the
generalizability of the Camouflager.

2)  After mapping the samples, we feed each pair (a
hijackee sample and a hijacking sample) to the Cam-
ouflager. Finally, the Camouflager’s output and the
input samples are used to update the Camouflager
using Equation 1 as the loss function.

Executing: After training the Camouflager, the adversary can
now execute their attack. Figure 2 shows an overview of the
Chameleon attack after the training of Camouflager. As the
figure shows, first, the adversary maps the samples inside the
hijackee dataset to samples from the hijacking dataset and
creates the camouflaged dataset by querying the trained Cam-
ouflager. To recap, the labels used to create the camouflaged
dataset are the ones from the hijacking dataset. Next, they use
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Fig. 2: An overview of the model hijacking attack. First, the adversary inputs the hijackee and hijacking datasets to the
Camouflager. Next, they take the Camouflager’s output (the camouflaged dataset) and poison the training dataset of the target

model. Finally, the model is trained with the poisoned dataset.

the camouflaged dataset to poison the training of the target
model to hijack it. We refer to the target model after being
trained using the poisoned dataset as the hijacked model.

After hijacking the target model, the adversary can query
any sample from the hijacking dataset’s distribution by first
camouflaging it using the Camouflager. Then, they query the
camouflaged sample to the hijacked model, and map the
predicted label to its corresponding label in the hijacking
dataset.

E. The Adverse Chameleon Attack

As will be shown later in Section IV, the Chameleon attack
has good performance when the hijacking and hijackee datasets
are significantly different. However, when both datasets are
complex and not significantly different, the performance starts
degrading. Hence, we propose the more advanced attack,
namely the Adverse Chameleon attack.

The Adverse Chameleon attack tries to explicitly distance
the features of the output of the Camouflager from the hijackee
dataset. To accomplish this, in addition to the Visual and
Semantic Losses, we use the adverse Semantic Loss. More
formally instead of using Equation 1 as the loss for training
the Camouflager, we use the following loss.

Lnamaan(@er w0, on) = min ([lze = 2o+ F (we) — Flan)|

~|F (o) — Flao)ll)
2
Besides the different loss function, to execute the Adverse

Chameleon attack, the adversary follows the same steps as
the Chameleon attack (Section III-E).

IV. EVALUATION

In this section, we present our experimental results. We
start by introducing our datasets and evaluation settings. Next,
we evaluate our Chameleon and Adverse Chameleon attacks.
Finally, we study the impact of some of the hyperparameters
in our model hijacking attacks.

A. Datasets Description

To evaluate our different model hijacking attacks, we use
three well-established computer vision benchmark datasets,
namely MNIST, CIFAR-10, and CelebA. We now briefly
introduce them:

MNIST: MNIST is a grey-scale handwritten digits classifica-
tion dataset. It consists of 70,000 images, each of them is in
the size of 28 x 28 and contains a single digit at its center.
The MNIST dataset is equally split between 10 classes.

Since the state-of-the-art machine learning models we use
in our work, e.g., the MobileNetV2 [29] and Resnetl8 [11]
models, expects inputs with the size of 224 x 224, we rescale
the MNIST dataset to satisfy it. Moreover, we convert the grey-
scale images to three channels images, by repeating the same
values in all channels to be able to use the MNIST dataset on
the same models trained on colored — three channels — images.

CIFAR-10: CIFAR-10 is a 10 classes colored dataset. It
consists of 60,000 images with the size of 32 x 32. The
images are equally split between the following 10 classes:
Airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and
truck. Similar to the MNIST dataset, we rescale the CIFAR-10
images to 224 x 224.

CelebA: CelebA is a dataset of face attributes with more than
200,000 colored images. We use the aligned version of the
dataset, where each image contains the face of a celebrity
in the middle of it and is labeled with 40 different binary
attributes. We follow Salem et al. [27] to create an 8-class
classification task by concatenating the top three balanced
attributes, i.e., Heavy Makeup, Mouth Slightly Open, and
Smiling. We randomly sample 40,000 images for training and
5,000 for testing. Finally,it is important to note that unlike the
MNIST and CIFAR-10 datasets, the CelebA dataset is highly
imbalanced.

B. Evaluation Settings

We now introduce our evaluation settings. We start with
the model structures we use, then we present our evaluation
metrics.



1) Model Structures: As previously mentioned, for this
work, we focus on the machine learning classification setting.
To this end, we use a state-of-the-art classification model for
our target models (original task), namely Resnet18 [11].

Since we do not assume any knowledge about the target
model for our model hijacking attacks, we use a completely
different model as our feature extractor. More concretely, we
use MobileNetV2 [29].

For the Camouflager, we use the following architecture for
both of the encoders (£, and &):

(The Camouflager encoders (€, and &) architecture:

T;n — Conv2d(4,12)
Conv2d (4, 24)
Conv2d(4,48)
Conv2d (4, 96)

— Y

(
(
(
(

J

Here, z;, is the input sample, conv2d(k, f) is a two
dimensional convolution layer with kernel of size k and f
filters, and p is the encoder’s output latent vector. After each
convolution layer, we apply batch normalization and adopt
ReLU as the activation function.

Finally, for the Camouflager’s decoder we use the following
architecture:

The Camouflager decoder (£~1) architecture:

(tol|pn) —
ConvTranspose2d (4, 96)
ConvTranspose2d (4, 48)
ConvTranspose2d(4,24)

ConvTranspose2d (4, 3)

— Tout

Here, (uo||pr) is the concatenation of the latent vec-
tors for both the original and hijacking samples after be-
ing encoded with the &, and &, encoders, respectively.
ConvTranspose2d(k’,f’) is a two dimensional trans-
posed convolution layer with kernel of size k’ and £’ filters,
and z,,; is the output camouflaged sample. After each layer,
we apply batch normalization and adopt ReLU as the activation
function, except for the last layer where we only use the
Tanh activation function (to restrict the range for the decoded
camouflaged sample).

Finally, we use the Adam optimizer to train the Camou-
flager.

2) Evaluation Metrics: To evaluate the performance of our
model hijacking attack, we two metrics, namely Utility and
Attack Success Rate.

Utility: Utility measures how close the performance of the
hijacked model is to a clean, i.e., non-hijacked, model on the
original dataset. The closer the performance of the hijacked
and clean models, the better the model hijacking attack. More
concretely, to measure the utility, we compare the accuracy of
both the hijacked and clean models on a clean testing dataset,
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Fig. 3: The results of our Chameleon Attack. The original
datasets are noted on the x-axis. For both (CIFAR-10 and
CelebA) datasets, we use MNIST as the hijacking dataset.
Naive corresponds to applying the model hijacking attack with-
out camouflaging the hijacking dataset. Figure 3a compares
the Utility of both the Naive and Chameleon attacks with a
clean model (Clean) using the original testing dataset, and
Figure 3b compares the Attack Success Rate of both attacks
on the hijacking testing dataset.

i.e., a testing dataset from the same distribution as the original
dataset.

Attack Success Rate: The Attack Success Rate measures the
model hijacked attack performance on the hijacking dataset.
We calculate the Attack Success Rate by computing the
accuracy of the hijacked model on a hijacking testing dataset,
i.e., a testing dataset with the same distribution as the hijacking
dataset. For both of our Chameleon and Adverse Chameleon
attacks, we first camouflage the hijacking testing dataset before
querying it to the hijacked model and calculate the accuracy.

C. The Chameleon Attack

After introducing the datasets and our evaluations metrics,
we now evaluate the performance of our Chameleon attack.
We use MNIST as our hijacking dataset and both CIFAR-10
and CelebA as the original datasets for this attack.

Firstly, we map the labels of the hijacking dataset and
the original dataset as mentioned in Section III-D. Next, we
train the Camouflager by constructing two encoders and a
decoder with the architecture presented in Section IV-B1, and
a hijackee dataset by randomly sampling 1,000 sample for 8
random classes from the original dataset. Then we randomly
sample 10,000 samples from the hijacking dataset and follow
the methodology previously presented in Section III-C to train
the Camouflager.

After training the Camouflager, we use it together with
the same hijackee dataset to camouflage 40,000 randomly
sampled samples from the hijacking dataset. Finally, we use
the 40,000 camouflaged samples together with their mapped
labels to hijack the target model, i.e., we train the target model
with both the camouflaged and original samples.

After presenting the concrete setup of our evaluation,
we first evaluate the performance of the Chameleon attack
(Requirement 1 and Requirement 3), then its stealthiness
(Requirement 2 and Requirement 4).
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Fig. 4: Visualization of the difference in stealthiness between
the Chameleon and Naive attacks. We use t-SNE to reduce
the camouflaged, original, and hijacking samples to two di-
mensions. Then, we plot them in Figure 4a for the CIFAR-10
dataset, and Figure 4b for the CelebA dataset. Here MNIST is
the hijacking dataset, and CIFAR-10 (Figure 4a) and CelebA
(Figure 4b) are the original datasets.

Performance Evaluation: To evaluate the performance of our
Chameleon attack, we consider the following baselines:

1)  First, we train a clean model (Clean) using only the
original dataset to compute and compare the Utility
of the Chameleon hijacked models.

2)  Second, we perform the naive model hijacking attack
(Naive), where the adversary hijacks the target model
without camouflaging the hijacking dataset first. It is
important to note that this naive attack serves as the
upper bound of the Attack Success Rate performance,
since the hijacking samples are used as is without any
modifications to make them less stealthy, which is the
goal of our advanced model hijacking attacks.

We first compare the utility of our Chameleon attack
in Figure 3a. As the figure shows, our Chameleon attack
achieves almost the same Utility as both the Clean and Naive
models. To recap, for reconstructing the Naive model we
poison its training dataset with the hijacking datasets itself and
not the camouflaged version. More concretely, our Chameleon
attack achieves 89.2% accuracy on the original testing dataset,
which is exactly the same as the Naive attack and only 0.5%
lower than the Clean model for the CIFAR-10 dataset. For the
CelebA dataset, our Chameleon and Naive hijacked models
achieve 81.6% accuracy which is 1.2% better than the Clean
model. We believe this improved performance is due to the
regularization effect of the extra poison data. Similar improve-
ment of the CelebA classification models after data poisoning
has been previously observed in backdoor attacks [27].

Next, we compare the Attack Success Rate of our
Chameleon attack. As the hijacking task here is MNIST, the
Attack Success Rate measures the accuracy of the hijacking —
MNIST - testing dataset. As Figure 3b shows, our Chameleon
attack achieves almost the same performance as the Naive
hijacked models. The Chameleon hijacked model achieves
99% Attack Success Rate when the original task is CIFAR-
10 classification, which is only 0.5% lower than the Attack
Success Rate of the Naive hijacked model. For the CelebA
classification model, our attack achieves a 99.5% Attack
Success Rate, which is only 0.2% lower than the one of the
Naive model.

In general, hijacking models with the Chameleon attack can
achieve almost perfect Attack Success Rate (Requirement 3)
with a negligible drop in utility (Requirement 1), which shows
the efficacy of this attack when the original and hijacking
datasets are significantly different (as will be shown later in
Figure 6).

Stealthiness Evaluation: Since two of the main requirements
of our model hijacking attack focus on stealthiness (Require-
ment 2 and Requirement 4), we now compare the stealthiness
of the Chameleon attack with the one of the Naive attack. We
use the following two approaches to measure the stealthiness:

1)  First, we measure the Euclidean distance between
the hijacking and the original datasets, as well as
the camouflaged and original datasets. To measure
the Euclidean distance, we randomly sample 1,000
camouflaged, original, and hijacking samples. Then
for each camouflaged/hijacking sample, we find the
closest original sample to it, and calculate the Eu-
clidean distance between them. We operate in a batch
of 100 due to physical memory limitation. Finally, we
average the Euclidean distances of the camouflaged
and hijacking samples independently.

2) Second, we use the t-distributed stochastic neigh-
bor embedding (t-SNE) [42] for reducing 100 sam-
ples from the hijacking, original, and camouflaged
datasets to two dimensions. Then, we plot the reduced
features of the samples.

First for the Euclidean distance, our experiments show that
our Chameleon attack achieves 0.51 Euclidean distance when
hijacking a CIFAR-10 classification model using the MNIST
hijacking dataset, which is about 82% less than the one for
the Naive attack (0.93). Similarly, for the CelebA classifica-
tion model, our Chameleon attack achieves 0.77 Euclidean
distance, which is about 56% less than the one of the Naive
attack (1.2). A lower distance denotes a more stealthy attack,
since it shows that the two datasets are more similar.

Second, we visualize the t-SNE reduced samples for the
CIFAR-10 and CelebA hijacked models in Figure 4a and
Figure 4b, respectively. As Figure 4 clearly shows, the cam-
ouflaged (Chameleon) samples are closer and hidden inside
the original (Original) samples, unlike the hijacking (Naive)
samples. Note that in the Naive model hijacking attack, the
adversary poisons the training dataset of the target model using
the hijacking dataset itself.

As both the Euclidean distance and the visualization in
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Fig. 5: Visualization of the output of the Camouflager for the Chameleon Attack for both the CIFAR-10 (Figure 5d) and CelebA
(Figure 5e) datasets. Moreover, we show samples for both the Original(Figure 5a and Figure 5b) and hijacking (Figure 5c)

datasets.
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Fig. 6: Visualization of 100 random samples from the three
datasets MNIST, CIFAR-10, and CelebA after reducing their
dimension to two. As the figure shows, the CIFAR-10 and
CelebA datasets are clustered together, while MNIST can be
separated from them. This shows the hardness of using one of
the CelebA or CIFAR-10 datasets to hijack the other, unlike
using the MNIST dataset.

Figure 4 demonstrate, our Chameleon attack distinctly outper-
forms the Naive model hijacking attack in terms of stealthiness
(Requirement 2).

Recall that our model hijacking attack has one more
requirement with respect to the stealthiness of the attack
(Requirement 4), i.e., predicting samples from the hijacking
dataset randomly if they are not camouflaged. To this end,
we run one more experiment to evaluate our Chameleon
hijacked models using the hijacking testing dataset without
camouflaging. Our results show that indeed the accuracy on the
non-camouflaged testing dataset is around 10% for both cases,
i.e., when using CIFAR-10 or CelebA as original datasets,
which is the same as random guessing for the MNIST dataset

Finally, we visualize randomly sampled camouflaged sam-
ples together with ones from the original and hijacking datasets
in Figure 5. Comparing figures Figure 5d and Figure Se
with figure Figure 5a and Figure 5b, we observe that indeed
our camouflaged samples look like the original samples with
some added artifacts. Moreover, it is clear that the camouflaged
samples (Figure 5d and Figure 5e) are visually more similar
than the hijacking samples (Figure 5c), when compared to the
original samples (Figure 5a and Figure 5b).
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Fig. 7: The results of our Adverse Chameleon Attack. The
original datasets are denoted on the x-axis, the hijacking
dataset is CelebA when the original dataset is CIFAR-10
and vice versa. Naive corresponds to applying the model
hijacking attack without camouflaging the hijacking dataset
first. Figure 7a compares the utility of both the Naive and
Adverse Chameleon attacks with a clean model using the
original testing dataset, and Figure 7b compares the Attack
Success Rate of both attacks on the hijacking testing dataset.

D. The Adverse Chameleon Attack

As previously shown (Section IV-C), our Chameleon attack
achieves strong performance when the hijacking and original
datasets are significantly different. However, when performing
the Chameleon attack using CIFAR-10 as the original dataset,
and CelebA as the hijacking dataset, it only achieves an Attack
Success Rate of 65.7% which is 14.3% less than the Naive
attack. We believe this gap between the two attacks is due to
the following two reasons:

1)  The first one is related to the more complex nature
of the CelebA dataset compared to MNIST. This can
be seen in Figure 5, as the human faces have more
information than the grey-scale digits.

2)  Second, the CelebA and CIFAR-10 datasets are closer
to each other compared to the MNIST dataset and
either one of them. To visualize this, we randomly
sample 100 samples from each dataset and reduce
each of the samples using t-SNE to two dimensions.



Then, we plot the results in Figure 6. As the figure
shows, the CelebA and CIFAR-10 datasets are clus-
tered together and can be separated from the MNIST
dataset.

Hence, when considering either of the CelebA or the
CIFAR-10 datasets as the hijacking datasets, we execute
the Adverse Chameleon attack. To evaluate the Adverse
Chameleon attack, we follow the same evaluation settings
previously introduced in Section IV-C with the following
exception: Instead of using the Chameleon attack to train the
Camouflager, we use the Adverse Chameleon attack to train
it. To recap, the Adverse Chameleon attack uses the additional
Adverse Semantic Loss to train the Camouflager together with
both of the Visual and Semantic Losses.

After introducing the concrete setup of the Adverse
Chameleon attack we first evaluate its performance, then its
stealthiness, and finally, we briefly discuss both the Chameleon
and Adverse Chameleon attacks.

Performance Evaluation: We first compare the utility of our
Adverse Chameleon attack in Figure 7a. As the figure shows,
when using the Adverse Chameleon attack to camouflage the
CelebA dataset and hijack a CIFAR-10 classification model,
the utility is only slightly dropped. More concretely, the
hijacked models achieve 87.7% and 85.9% accuracy on the
CIFAR-10 testing dataset, when hijacking the models using
the Naive and Adverse Chameleon attacks, respectively. This
accuracy is only 2%, and 3.8% less than the one of a clean
CIFAR-10 classification model. For the opposite case, i.e.,
the hijacking dataset is CIFAR-10 and the original dataset
is CelebA, our Adverse Chameleon attack achieves 84.2%
accuracy which is 2.6% and 3.8% higher than the one of the
Naive attack and clean model, respectively. We believe this
increase in performance is due to the regularization effect of
our attack.

Next, we evaluate the Attack Success Rate of our Adverse
Chameleon attack in Figure 7b. Specifically, we calculate the
Attack Success Rate as the accuracy of the hijacking testing
dataset when evaluating the Naive attack, and the camou-
flaged hijacking testing dataset when evaluating the Adverse
Chameleon attack. As the figure shows, the Naive and Adverse
Chameleon attacks achieve 80.0% and 73.7% Attack Success
Rate when hijacking a CelebA classification model using the
CIFAR-10 classification as the hijacking task, respectively. For
the other case, when the adversary aims to hijack a CIFAR-10
classification model to perform CelebA classification task, our
Adverse Chameleon attack achieves 56.8%, which is less than
the one of Naive attack (86.8%) but still significantly higher
than random guessing. Note that for this case, our Adverse
Chameleon attack achieves 2.6% better utility than the Naive
attack.

As both Figure 7a and Figure 7b show, our Adverse
Chameleon attack satisfies both of our performance related
requirements, i.e., Requirement 1 and Requirement 3.

Stealthiness Evaluation: Similarly to the Chameleon attack,
we evaluate the Adverse Chameleon hijacked model against
the non-camouflaged hijacking testing dataset. As expected,
the Adverse Chameleon hijacked models achieve nearly ran-
dom performance for the non-camouflaged hijacking testing
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Fig. 8: Visualization of the difference in stealthiness between
Adverse Chameleon and Naive attacks. We use t-SNE to
reduce 100 camouflaged, original, and hijacking samples. Fig-
ure 8a shows the result when using CIFAR-10 as the hijacking
dataset and CelebA the original dataset, and Figure 8b shows
the opposite case.

(b) Camouflaged CIFAR-10

Fig. 9: Visualization of the output of the Camouflager for
the Adverse Chameleon Attack. We show the results when
using the CelebA as the hijacking dataset and CIFAR-10 as
the original dataset in Figure 8a, and vice versa inFigure 8b.

dataset (Requirement 4). For instance, when using the CelebA
dataset to hijack CIFAR-10, the non-camouflaged hijacking
testing dataset achieves less than 20% accuracy.

Next, we follow the same steps previously introduced
in Section I'V-C to visualize and compare the stealthiness (Re-
quirement 2) of the Adverse Chameleon using the Euclidean
distance and t-SNE.

First, we compare the Euclidean distance. Using our Ad-
verse Chameleon attack to hijack a CIFAR-10 classification
model with a CelebA classification — hijacking — task results
in 0.52 Euclidean distance. This is less than the Euclidean



distance of the Naive attack by a factor of 2.5. Similarly, when
using the CelebA classification task as the original task and
the CIFAR-10 classification as the hijacking task, our Adverse
Chameleon achieves 0.77 Euclidean distance, which is 1.6
times lower than the one with the Naive attack.

Second, we visualize the t-SNE reduced samples for all
the original, hijacking, and camouflaged samples in Figure 8.
In Figure 8, the Naive samples directly correspond to the
hijacking samples, since to perform the Naive attack, the
adversary uses the hijacking samples themselves to poison the
target model’s training dataset. We show the result of using
CelebA as the hijacking dataset and CIFAR-10 as the original
dataset in Figure 8b, and vice verse in Figure 8a. As both
figures show, the hijacked samples (Adverse Chameleon) are
more clustered with the original samples (Original) than the
non-camouflaged hijacking samples (Naive). Comparing the t-
SNE results from the Chameleon attack (Figure 4) and the
Adverse Chameleon attack (Figure 8) can further confirms
that using the CelebA or CIFAR-10 classification tasks as the
hijacking ones are indeed harder than using MNIST; as the
original samples in Figure 4 are more distant from the rest,
compared to the ones in Figure 8.

Finally, we visualize randomly sampled camouflaged sam-
ples for both cases of using the CelebA/CIFAR-10 dataset
to hijack a CIFAR-10/CelebA classification task in Fig-
ure 9a/Figure 9b. As the figures show, our camouflaged sam-
ples look visually similar to the original samples with some
added artifacts from the hijacking.

Discussion of Both Attacks: As demonstrated in this and the
previous section (Section IV-C), both of our model hijacking
attacks, i.e., the Chameleon and Adverse Chameleon attacks,
achieve strong performance, i.e., they achieve a comparable
Attack Success Rate when compared to the Naive attack, and
similar utility compared to the clean models. Moreover, when
the hijacking and original datasets are distinct, it is enough
to use the Chameleon attack. However, when both datasets are
more complex and similar, then the Adverse Chameleon attack
is needed to enhance the performance the model hijacking
attack.

E. Hyperparameters

We now explore some of the hyperparameters of our model
hijacking attacks. We start by exploring the generalizability
of our attack when using different target models and feature
extractors. Next, we evaluate using different loss functions and
the transferability of the Camouflager. Finally, we explore the
effects of varying the hijackee dataset size and the poisoning
rate on the model hijacking attack.

1) Different Target Models: We first evaluate the generaliz-
ability of our model hijacking attack on different target models.
We use the CIFAR-10 dataset as our original dataset and
evaluate the Chameleon and Adverse Chameleon attacks using
MNIST and CelebA as the hijacking datasets, respectively.

We follow the previously mentioned setup in Section IV-C
and Section IV-D to implement the Chameleon and Adverse
Chameleon attack, with the exception of using GoogLeNet [36]
and VGG16 [33] as the target models. To accelerate conver-
gence, we use pretrained versions of the target models.
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Fig. 10: The results of the Chameleon and Adverse Chameleon
attacks when targeting a GoogLeNet (Figure 10a and Fig-
ure 10b) and VGG (Figure 10c and Figure 10d) based models.
The hijacking datasets are denoted on the x-axis (MNIST for
the Chameleon attack and CelebA for the Adverse Chameleon
attack) and the original dataset is CIFAR-10. Moreover, we
show the performance of the clean model using a red dashed
line to compare the utility of both attacks.

Figure 10 shows the results for both target models. As
the figure shows, both of our model hijacking attacks, i.e.,
Chameleon and Adverse Chameleon, achieves strong perfor-
mance against the GoogleNet and VGG target models. For
instance, both attacks achieves a very similar accuracy similar
to a clean model, i.e., the difference is less than 0.5% and
1% for the Chameleon and Adverse Chameleon, respectively;
while achieving high ASR, i.e., above 99% for MNIST and
70% for CelebA.

Finally, compared to the Naive attack, our attack achieves
similar performance, except for the CelebA case on the VGG
target model. However, it is important to note that for this case,
our attack achieves an improved performance with respect to
utility.

These results show the generalizability of our model hi-
jacking attack across different target models.

2) Different Feature Extractor: Second, we explore using
different feature extractor to build the Camouflager and execute
the model hijacking attack. To this end, we use the same
evaluation setup similar to Section IV-E1 with the exception
of using the same target models as Section IV-C and using
the MnasNet [37] as the feature extractor. We select the
MnasNet as it is significantly faster than the MobileNetV?2
model. Finally, we present our results for using a pretrained
MnasNet as our feature extractor in Table I.

As Table I shows, using the MnasNet achieves good perfor-



mance for both attacks (Chameleon and Adverse Chameleon).
For instance, using the Chameleon attack, the hijacked model
achieves 95.2% accuracy on the original dataset (Utility) and
80.7% accuracy on the hijacking one (ASR).

This shows the ability of the model hijacking attack to use
different models as the feature extractor. As expected, using
different models as the feature extractor can have different
effects on the final performance of the model hijacking attack.
However, we believe the model hijacking attack will have
a strong attack performance as far as the feature extractor
used has acceptable performance. We plan — in future work
— to try using multiple feature extractors while training the
Camouflager to further increase the independence of the model
hijacking attack from the underlying feature extractor used.

TABLE I: The performance of the Chameleon and Adverse
Chameleon attacks using MNIST and CelebA as hijacking
datasets to attack a CIFAR-10 classification model, while using
MnasNet as the Feature Extractor.

Hijacking Dataset ~ Utility =~ Attack Success Rate
MNIST 952 80.7
CelebA 92.8 60.5

3) Different Loss Functions: Next, we evaluate using dif-
ferent loss functions to implement our model hijacking attack.
More concretely, we evaluate the effect of using the L2 instead
of the L1 distance to implement our attack. We follow the same
evaluation setup as Section [V-B1 with the exception of using
L2 instead of L1 distance.

Our experiments show that using L2 distance achieves a
strong performance as presented in Table II. For instance,
using the CelebA dataset as the hijacking one to attack a
CIFAR-10 classification model results in 86.1% accuracy and
63.2% ASR. This constitutes a drop in performance compared
to when using the L1 loss with approximately 10% for the
ASR, however, it improves the accuracy by 6.1%.

TABLE 1II: The performance of the Chameleon and Adverse
Chameleon attacks using MNIST and CelebA as hijacking
datasets to attack a CIFAR-10 classification model, while using
L2 instead of L1 distance as the loss function.

Hijacking Dataset ~ Utility ~ Attack Success Rate
MNIST 90.1 99.5
CelebA 86.1 63.2

4) Transferability of the Camouflager: We now evaluate
the transferability of the Camouflager. To this end, we use
the previously trained Camouflagers used in Section IV-C and
Section IV-D to hijack a CIFAR-100 classification model with
MNIST and CelebA as the hijacking datasets, respectively. We
use the pretrained Camouflagers to implement the Chameleon
and Adverse Chameleon attacks as previously introduced in
Section III-D and Section III-E, respectively.
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Our experiments show that the Chameleon attack achieves
81.8% accuracy with a 99.5% ASR for the MNIST hijacking
dataset. Similarly, the Adverse Chameleon attack achieves
78.6% accuracy with a 76.3% ASR for the CelebA hijacking
dataset.

These results further demonstrate the transferability of the
Camouflager after its training. In other words, the adversary
can train a Camouflager and use it to hijack different models
with different classification tasks.

5) Hijackee Dataset Size: We now evaluate the effect of
the size of the hijackee dataset. Here, we use our Adverse
Chameleon attack to hijack a CIFAR-10 classification model
with the CelebA dataset.

We evaluate a range of different sizes for the hijackee
dataset, namely we set the size to 10, 100, 1,000, and 10, 000
samples. For each setting, we hijack the CIFAR-10 model and
calculate both metrics,i.e., Utility and Attack Success rate.

Executing the Adverse Chameleon attack using hijackee
dataset with the size of 10, 100, 1,000 and 10,000 achieves
44.7%, 60.5%, 73.7 and 65.8% Attack Success Rate, with an
accuracy of 82.4%, 87.4%, 85.9% and 87.4%, respectively.
As the results show, using a hijackee dataset of 10 samples is
too small for executing the model hijacking attack. However,
setting the size to 100 samples or more is already enough
for the Adverse Chameleon hijacking attack. We select the
hijackee with a size 1,000 as it achieves the best overall
performance compared to the other two.

6) Poisoning Rate: Next, we evaluate the effect of varying
the poisoning rate on our model hijacking attack. In other
words, we use different sizes of the hijacking dataset. To
this end, we evaluate both of our Chameleon and Adverse
Chameleon attacks while setting the size of the hijacking
dataset (poisoning data) from 10, 000 to 40,000 with a step of
10, 000. For both attacks, we set the original task to CIFAR-10
classification. For the hijacking task, we use MNIST classifi-
cation for the Chameleon attack and CelebA classification for
the Adverse Chameleon attack.

Our results show that for the simple case of using MNIST
as the hijacking dataset, 10,000, i.e., a poisoning rate of
17%, hijacking samples are enough for our Chameleon attack
to hijack a CIFAR-10 classification model. More concretely,
hijacking the model with 10, 000 hijacking samples results in
the same Attack Success Rate (99%) as the hijacked model
with 40,000 samples, similarly, the difference between the
utility of both models is negligible.

However, for the more complex task of using CelebA as
the hijacking dataset to execute the Adverse Chameleon attack
and hijack a CIFAR-10 classification model; the size of the
hijacking dataset has a significant effect. For instance, the
Attack Success rate is reduced from 73.7% to only 63.2%
when using 20,000 samples, i.e., a poisoning rate of 28%,
instead of 40, 000. However, since there are fewer hijacking
samples, the Utility of the hijacked model increases from
85.9% to 86.7%.

V. RELATED WORKS

In this section, we review some of the related works. We
divide the related works into training and testing time attacks



against machine learning models. We start with the testing
times attacks, then the training time ones.

A. Testing Time Attacks

Testing time attacks are the attacks executed by the adver-
sary after the training of the model. We briefly review some of
the related test time attacks against machine learning models.

Adversarial Reprogramming: One similar attack to our
model hijacking attack is adversarial reprogramming [7].
Adversarial reprogramming is a test time attack, where the
adversary optimizes a program to let the target model perform
a different task. This program itself is an image with the target
image padded inside to create the final input to the target
model. The specially crafted input is then inputted to the target
model, which performs the different task of classifying the
padded image. The major difference between the adversarial
reprogramming attack and our model hijacking attack is the
different assumptions of the attacks, i.e., our model hijacking
attack does not make any assumption about the target model
and is a training time attack, but the adversarial reprogram-
ming is a test time attack in which the adversary assumes
knowledge of the target model similar to the assumptions
needed for adversarial examples. Moreover, in the adversarial
reprogramming attack, if the program is known, then the model
can be easily patched since all images use the same program.
However, for our model hijacking attack, the knowledge of
any hijacked sample does not transfer to any other hijacked
samples, i.e., there is no common feature/program for the
hijacked samples.

Adversarial Examples: Adversarial examples [5, 15, 22, 23,
40, 43, 46] are a testing time attack where the adversary
optimizes a noise such that when added to an image it
gets misclassified. There exist two variants of the adversarial
examples attack. The first is targeted adversarial examples,
where the noise is optimized to classify the input sample to a
specific label. The second is non-targeted ones, where the noise
is optimized just to misclassify the input sample. Another field
of work [13, 14, 20, 50] focus on using adversarial examples
to enhancing the users/models privacy.

Other Attacks Against Machine Learning Models: There
exist multiple other test time attacks such as: Membership
inference [28, 32, 48] where the adversary aims at finding if
a given sample was used into training the target model or not,
Dataset reconstruction [26] where the adversary tries to recon-
struct the updating dataset, Model stealing [19, 21, 41, 44]
where the adversary tries to steal the target model, i.e., build a
model with the same performance as the target model, and
Model inversion [4, 8, 9, 51] where the adversary tries to
reconstruct or complete some of the training samples of the
target model.

B. Training Time Attacks

Training time attacks are the ones where the adversary
executes their attack during or before the training of the target
model. We briefly introduce some of the related training time
attacks.

Data Poisoning Attack: Data poisoning attack [12, 34] is a
training time attack where the adversary poisons the training
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dataset of the target model to compromise the model’s utility.
This poisoning of the training dataset is mostly done by
flipping the ground truth of a subset of the dataset, such
that the training of the target model fails. There are multiple
works for poisoning different machine learning models/settings
such as: Federated Learning [39], Support Vector Machines
(SVM) [1], Regression Learning [12], Node Embeddings [2,
35], Next-Item Recommendation [49], and Neural Code Com-
pletion [30].

It is important to mention that our model hijacking attack
can be adapted to any setting vulnerable to the data poisoning
attack.

Backdoor Attack: The backdoor attack is another type of
training time attacks, where the adversary manipulates the tar-
get model’s training to backdoor it. The backdooring behavior
is usually assigned with a trigger, which is when inserted
in any input sample the target model predicts a specified
label. Gu et al. [10] introduced BadNets the first backdoor
attack against machine learning. BadNets uses a white square
at the coroner of the images as a trigger to misclassify the
backdoored inputs to a specific label. Salem et al. [27] later
proposed dynamic backdoor, where instead of using a fixed
trigger, they use a dynamic one. Another similar attack is the
Trojan attack [16]. This attack simplifies the assumptions of the
backdoor attack by not assuming the knowledge of any sample
from the distribution of the target model’s training dataset.
There also exist multiple backdoor attacks attacking against
Natural Language Processing (NLP) models [6], federated
learning [45], video recognition [52], transfer Learning [47],
and others [17, 24, 25, 38]

The backdoor attack can be considered a specific instance
of the model hijacking attack by considering the classification
of the backdoored samples as the hijacking dataset. However,
our model hijacking attack is more general, i.e., it poisons the
model to implement a completely different task.

VI. DISCUSSION

In this section, we first discuss the limitations of our
model hijacking attacks. Then, we review some of the possible
defenses against them.

Limitation: The first limitation of our model hijacking attack
is that the hijacking dataset cannot have more number of
classes than the original one. To address this limitation, we
propose to use a more complex hierarchical model hijacking
attack with multiple virtual layers of classification tasks.

Intuitively, the adversary would start by grouping the
hijacking dataset’s classes into x clusters, where x is less than
the number of classes of the original dataset. This constitutes
the first layer of the hierarchical attack. Next, the adversary
crafts a different backdoor-like trigger, i.e., a colored square at
the corner of the input, for each cluster. To hijack a model, the
adversary would need to poison its dataset with the following:

e  (Clean hijacking samples: Camouflaged samples with-
out the triggers, with their corresponding cluster label,
i.e., the first layer of the hierarchical attack.

e Triggered hijacking samples: Camouflaged samples
with an added trigger on them. This trigger is specific



to which cluster this sample is from. The labels of
these samples are set to their original ones modulo
the target model’s number of labels.

To execute the attack, the adversary uses the Camouflager
to camouflage the sample, before querying it to the model.
Then, depending on the output class, they add the corre-
sponding trigger and query it again to the target model. We
evaluate this hierarchical version using the Chameleon attack
with MNIST and CIFAR-10 used as the hijacking and original
datasets, respectively. Our experiments show that the utility
of the hijacked model is not significantly affected. However,
the ASR is significantly degraded to be lower than 30%.
This shows the trade-off between having more labels than
the original classification task and the attack performance. We
plan to further explore different techniques — in future work
— which would overcome this limitation with a better attack
performance.

The second limitation of our attack is the visual — unnat-
ural — artifacts on the camouflaged images. To address this
limitation we propose different approaches. The first approach
is to use a more powerful state-of-the-art autoencoder with
more layers. However, that will come with the expense of
increasing the cost of training the Camouflager. A different
cheaper approach can be to combine multiple norms, e.g., the
L? norm, when calculating the different losses. Moreover, we
propose to use a weighting parameter to give more weight to
the Visual Loss, hence making the output images more natural.
Finally, a third approach is to add a discriminative model which
penalizes the unnatural look of images. We plan to explore and
evaluate these approaches in future work.

Finally, the third limitation of our attack is the cost of
training the Camouflager. We recap that the Camouflager is
only trained once at the start of the model hijacking attack,
then is used during the training and after the deployment of
the hijacked model. Moreover, once the Camouflager is trained,
it can be used to hijack multiple target models performing a
similar task as shown in Section IV-E4. However, since the
training of the Camouflager can be computationally heavy. We
propose to use a pretrained autoencoder and fine-tune it, which
can reduce the training time. Moreover, we plan to explore — in
future work — adapting few-shot learning techniques to further
reduce the training cost of the Camouflager.

Possible Defenses: We now discuss some of the possible
defenses against the model hijacking attack. A naive defense is
adding noise to the images before inputting them to the model.
This defense can degrade the attack performance, however, it
will also degrade the performance of the original task. A more
complex defense is using an autoencoder or different denoising
techniques on the training and testing images. To evaluate this
defense, we train an autoencoder on clean CIFAR-10 data and
use it as a denoising step before querying the inputs to the
target models hijacked with both the Chameleon and Adverse
Chameleon attacks. Our results show that indeed using this step
can reduce the ASR to almost random guessing, i.e., 11.1%
for MNIST (Chameleon) and 18.4% for CelebA (Adverse
Chameleon). However, it also significantly reduces the utility
of the models. More concretely, the accuracy drops by 41.6%
and 37.2% for the CelebA and MNIST datasets, respectively.
We plan to further explore different defense techniques which
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can provide a better “defense utility” trade-off.

Another possible defense is to filter the outputs of the
target model based on their entropy. In other words, the
model owner first determines a threshold, and then calculate
the entropy of each queried sample. If the entropy of this
sample is above/below the threshold, then the model owner
can accept/reject it. To evaluate this defense, we plot the
distribution of the entropy for both clean and camouflaged
samples and report the results in the Appendix (Figure 11). The
distributions of both clean and camouflaged samples overlap,
which would result in a high false-positive rate. Another
challenge with this approach is determining an appropriate
threshold. As the model owner needs to have access to both
clean and camouflaged samples, which is a strong assumption
in practice.

Generalization to Other Domains: As previously mentioned,
we focus our model hijacking attack on computer-vision based
machine learning models. However, we believe our attack can
be extended to other domains. The most important requirement
for the model hijacking attack is the ability to build a Camou-
flager. Intuitively, this means the ability to build an encoder-
decoder model to transform the hijacking inputs to ones with
similar features as the hijackee inputs.

VII. CONCLUSION

The continuous evolution of machine learning models has
fueled the demand of including other parties in the training
of the models, to be able to train the more complex emerging
state-of-the-art models. An example of such machine learning
paradigms is federated learning. This inclusion of new parties
has opened new opportunities for adversaries to attack machine
learning models. More concretely, an adversary can now
participate in the training of a target model and manipulate
the training process to implement their attack. This paradigm
of machine learning attacks is referred to as the training time
attacks.

In this work, we propose a new training time attack against
computer vision based machine learning models namely, the
model hijacking attack. In this attack, the adversary poisons the
training dataset of a target model to hijack it into performing
a hijacking task. This new type of attacks can cause severe
security and accountability risks. Since the adversary can now
hijack a benign model to perform an illegal or unethical task.
Moreover, the hijacked model’s owner can now be framed for
the illegal or unethical task their model is capable of. Another
risk of the model hijacking attack is parasitic computing,
where the adversary can hijack a public accessible model to
implement their private task, for saving the costs of training
and maintaining their own model.

We propose two different model hijacking attacks, namely
the Chameleon attack and the Adverse Chameleon attack. The
Chameleon attack utilizes the Semantic and Visual Losses to
hijack the target model, while the Adverse Chameleon attack
in addition to these two losses, utilizes the Adverse Semantic
Loss.

Our results show that indeed both of our model hijacking
attacks (the Chameleon and Adverse Chameleon attacks) can
efficiently hijack machine learning models. For instance, the



Chameleon attack achieves 99% Attack Success Rate on the
hijacking task (MNIST classification) with only a utility drop
of 0.5% on the original task (CIFAR-10 classification). Simi-
larly, the Adverse Chameleon attack achieves 73.7% Attack
Success Rate when hijacking a CIFAR-10 model with a
CelebA classification — hijacking — task, with a utility drop
of only 3.8%.
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APPENDIX

TABLE III: The description of the different datasets used in
the model hijacking attack.

Dataset Description
Original/Target The dataset intended to be used by the target model’s owner to
Dataset train their model (the target model).
Hijackee The dataset used to camouflage the hijacking samples, i.e., trans-
Dataset form the visual appearance of the hijacking samples to ideally look
alike the original dataset or make them harder to detect in general.

Hijacking The dataset intended to be used by the adversary to hijack the target
Dataset model.
Camouflaged The hijacking dataset after being camouflaged by the Camouflager.
Dataset
Poisoned The dataset the model will train with, i.e., the concatenation of the
Dataset camouflaged and the original datasets.
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Fig. 11: The distribution of the entropy of the outputs of the tar-
get model on the clean (CIFAR-10) and camouflaged (MNIST
and CelebA) datasets. Figure 11a and Figure 11b show the
results when hijacking a CIFAR-10 model using MNIST
(Chameleon attack) and CelebA (Adverse Chameleon), respec-

tively.
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