
Cross-Language Attacks

Samuel Mergendahl
MIT Lincoln Laboratory

samuel.mergendahl@ll.mit.edu

Nathan Burow
MIT Lincoln Laboratory
nathan.burow@ll.mit.edu

Hamed Okhravi
MIT Lincoln Laboratory

hamed.okhravi@ll.mit.edu

Abstract—Memory corruption attacks against unsafe pro-
gramming languages like C/C++ have been a major threat to
computer systems for multiple decades. Various sanitizers and
runtime exploit mitigation techniques have been shown to only
provide partial protection at best. Recently developed ‘safe’
programming languages such as Rust and Go hold the promise
to change this paradigm by preventing memory corruption bugs
using a strong type system and proper compile-time and runtime
checks. Gradual deployment of these languages has been touted
as a way of improving the security of existing applications before
entire applications can be developed in safe languages. This is
notable in popular applications such as Firefox and Tor. In this
paper, we systematically analyze the security of multi-language
applications. We show that because language safety checks in safe
languages and exploit mitigation techniques applied to unsafe
languages (e.g., Control-Flow Integrity) break different stages of
an exploit to prevent control hijacking attacks, an attacker can
carefully maneuver between the languages to mount a successful
attack. In essence, we illustrate that the incompatible set of
assumptions made in various languages enables attacks that are
not possible in each language alone. We study different variants
of these attacks and analyze Firefox to illustrate the feasibility
and extent of this problem. Our findings show that gradual
deployment of safe programming languages, if not done with
extreme care, can indeed be detrimental to security.

I. INTRODUCTION

A new generation of modern, safe programming lan-
guages have been developed that perform security checks
natively [63], motivated partly by the limitations of defenses
applied to unsafe languages (like C/C++) [27], [41], [46], [52],
[54], [114]. Rust [71] and Go [72] are two such languages
that prevent the introduction of memory corruption bugs by
virtue of having a strong type system and by performing
proper compile-time and runtime checks. For example, Rust’s
type system prevents arbitrary casting, performs compile-time
ownership checks to prevent temporal memory safety bugs, and
enforces compile-time bounds checks on static data combined
with runtime bounds checks on dynamic data to prevent spatial
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memory corruption bugs [71]. As another example, Go has
a garbage collector to provide temporal memory safety [72].
While these languages provide keywords to ignore the safety
checks of the language when necessary (e.g., the unsafe
keyword in Rust is used to interact with low-level hardware
devices), within the confines of the safe code, the applications
written in these languages are considered generally safe. In
fact, these languages have been touted as the ‘best chance’
to develop safe systems [57] and their gradual deployment
is underway in multiple popular applications and code bases.
These include, but are not limited to: Firefox [47], Tor [14],
Microsoft Windows operating system [117], Google Fuchsia
OS [48], and multiple flavors of Linux [8], [11] developed in
part in Rust, as well as, Docker [5], Kubernetes [7], Cock-
roachDB [2], and BoltDB [3] developed in part in Go. This
has resulted in the deployment of multi-language applications,
in which two or more languages are used in development.

In this paper, we analyze the security of multi-language
applications. Since unsafe languages without additional pro-
tections are trivially vulnerable to memory corruption attacks,
we specifically focus on the case where some protection is
applied to the unsafe side (e.g., CFI for C/C++) and the
safe side does not contain unsafe code. In these cases, the
incremental development of parts of the application in the safe
programming language is performed to ‘enhance’ its security.
For example, the Servo CSS style calculation in Firefox [12],
Dogear (a bookmark merger for Sync in Firefox) [6], the
MP4 metadata parser in Firefox [9], and the neqo QUIC
implementation in Firefox [10] are all implemented in Rust,
while many other parts of Firefox are in C and C++, among
other languages. We build a model of how various runtime
exploit mitigation checks and language safety checks attempt
to break different stages of an exploit. We further illustrate that
these checks create an incompatible set of assumptions on each
side. Leveraging these incompatibilities in the safety checks
performed, we show that an attacker can maneuver between the
languages in a way that allows the exploit to succeed without
violating the safety checks on either side. In other words, the
introduction of a safe language creates a conflicting set of
assumptions that indeed weakens the security of both sides. We
illustrate that a new vector of attack, Cross-Language Attacks
(CLA), becomes possible in such settings which results in
control-flow hijacks that are otherwise prevented on each
language individually.

We study different variants of CLA with concrete code
samples based on the stages of an exploit that are broken by
the security checks. Our examples focus on Rust for simplicity
of exposition, but generalize to Go and other language combi-
nations (see discussion in Section VII-A and Section VII-B
and our Go code samples in Appendix A). Moreover, to
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illustrate the extent of this problem, we perform automated
analysis on Firefox, which we believe is representative of
large, commonly-used code bases and quantitatively assess the
conditions that make CLA possible. Additionally, we make our
analysis and concrete code examples available online1.

Our findings illustrate that, incremental deployment of safe
languages, if not done with extreme care, can indeed be
detrimental to security. An attacker can leverage the incom-
patible set of assumptions made by various languages to craft
CLA where typical control-flow hijacking is prevented by each
language individually.

The contributions of this paper are as follows:

• We study the security of multi-language applications.
We develop a model to reason about the stages of an
exploit broken by each type of security check and we
illustrate that different languages have incompatible
assumptions about these stages.

• We illustrate that by leveraging these conflicting as-
sumptions, an attacker can maneuver between lan-
guages in a way that allows control-flow hijacking
where none is possible in individual languages alone.

• We demonstrate different variants of CLA that use dis-
crepancies in different exploitation stages. We demon-
strate these attacks on Rust, and for both intended and
unintended interactions. We further show that not only
the overall CLA is made possible by multiple lan-
guages, but also some of the underlying vulnerabilities
arise from the multi-language setting.

• We automatically analyze Firefox, a large, popular,
and open source code base to highlight the prevalence
of opportunities for CLA. Our findings illustrate that
incremental deployment of safe languages, if not done
with proper care, can indeed be detrimental to security.

II. BACKGROUND

The literature in the area of memory corruption attacks
and defenses is vast. A solid treatment of this area is beyond
the scope of this paper. In this section, we provide a quick
background and focus on areas that are needed to understand
the rest of the paper. We refer interested readers to surveys and
systematization of knowledge papers in this area for a more
complete treatment of the subject [26], [66], [108], [114].

Memory corruption attacks have posed a major threat to
computer systems for decades [84], [114]. The complexity of
these attacks have increased over the years from simple stack-
based code injection attacks [84] to various forms of code
reuse attacks [101]. The underlying root cause of memory
corruption attacks is the unsafety of programming languages
like C/C++ that delegate security checks to the developer. De-
veloper mistakes thus result in the introduction of spatial (e.g.,
buffer overflows) and temporal (e.g., use-after-free) memory
corruption bugs that can be exploited by an attacker.

In response, various offline analysis tools (i.e., sanitiz-
ers) [108] and runtime exploit mitigation techniques [26],
[66], [114] have been developed to find these bugs prior to

1https://github.com/mit-ll/Cross-Language-Attacks

deployment and prevent their exploitation while deployed,
respectively. Runtime exploit mitigation techniques can be fur-
ther categorized into enforcement-based techniques [114] and
randomization-based ones [66], [80]. Control-flow integrity
(CFI) [25] is an example of the former, while memory random-
ization [86] is an example of the latter. However, these tech-
niques have been shown to only provide partial protection at
best. Sanitizers suffer from coverage limitations, often result-
ing in many missed bugs [108]. In addition, enforcement-based
exploit mitigation techniques are shown to provide relaxed-
enough policies that allow an attacker to mount a successful
attack without violating their policies [27], [41], [52], while
randomization-based techniques are shown to be vulnerable to
various forms of information-leakage attacks [40], [99], [110].
Perhaps the ultimate indicator of the limitations of securing
unsafe languages is the prevalence of memory corruption bugs
in modern systems, despite attempts to catch or mitigate them
during development and while deployed. According to multiple
studies, memory corruption bugs account for a large fraction
of vulnerabilities (up to 70%) today [73].

The limitations of protections applied to unsafe program-
ming languages have motivated a new generation of program-
ming languages that provide safety properties natively [81],
[82]. Rust and Go are two such languages. We briefly describe
how Rust and Go provide memory safety below.

A. Rust

Rust [71] is a multi-paradigm programming language that
provides strong performance and safety properties. Rust has
a C-like syntax, but a strong type system combined with
compile-time and runtime checks to prevent large classes
of bugs, such as memory corruption and concurrency bugs.
Rust’s small language runtime makes it appropriate for systems
programming, which has resulted in multiple operating systems
and low-level code being developed using it [8], [11], [14],
[47], [48], [117].

Rust has a strong type system and enforces both spatial
and temporal memory safety [63]. For spatial safety, Rust has a
two pronged approach. For statically-sized objects, it performs
a compile-time size check to avoid out-of-bound accesses. For
dynamically-sized objects or for static objects with unknown
indices (e.g., an array with a variable index), Rust inserts
proper instructions in the binary to perform bounds checking
at runtime. Rust also has a strong type system that prevents
raw pointers and unsafe casting.

For temporal memory safety, Rust’s solution is more in-
novative and at the same time restrictive. Rust has a notion
of ownership. Each value in Rust has a variable that is its
owner. Only one owner of a value can exist at a time and
when the owner goes out of scope, the value is destroyed.
To allow values to be passed between different parts of a
code, Rust uses borrowing, which is a temporary transfer
of ownership. As a generalization of this principle, Rust
only allows one ‘mutable reference’ (i.e., ‘pointer’ in other
languages) or multiple immutable references to exist to an
object, but not both. The advantage of this design is that when
a value is destroyed, Rust can easily nullify any reference
to it without the need for heavy-weight garbage collection.
This, in addition to other factors, make Rust appropriate for
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Fig. 1: Cross-Language Attacks (CLA) transfer back and forth between languages to circumvent deployed defenses.

system programming. By the same token, this rule is also too
restrictive at times. For example, in a doubly-linked list, there
needs to be two mutable references to each value at a time.

Rust’s mechanism for breaking out of these rules is the
unsafe keyword. Code enclosed in an unsafe block
(herein simply referred to as ‘unsafe Rust’) can dereference
raw pointers and avoid ownership rules. Unsafe Rust is nec-
essary when interacting with low-level devices (e.g., writing
to a memory-mapped I/O device). It can also be used to
develop data structures that are internally unsafe (e.g., doubly-
linked lists), but only expose safe interfaces in what is known
as interior mutability [71]. Many such data structures are
formally shown to be indeed safe [58]. The dangers of unsafe
Rust have been acknowledged in the literature [65], [69],
and independently investigated [18]. Here, we primarily focus
on novel vulnerabilities from mixing safe Rust with unsafe
languages.

Rust allows interactions with other languages through its
foreign function interface (FFI). FFI is inherently unsafe in
Rust, and allows the exchange of arbitrary data, including
pointers, across the language boundary. FFI allows the ex-
change of arbitrary data (including raw pointers) between Rust
and other languages, most notably C. Rust has additional rules
to make FFI less dangerous, for example, dynamically-sized
types cannot be used for FFI. Having said that, the boundary
between Rust and a language like C is, by its very nature,
unsafe. Indeed, a call through Rust FFI requires the unsafe
keyword.

We refer to transfers of control flow between languages in
a multi-language application through FFI as intended interac-
tions. Unintended interactions are also possible as applications
within the multi-language application share an address space.
While intended interactions have been the subject of some
prior work [77], and similarly, some previous work encourages
sandboxing safe language memory from unsafe languages [91],
we believe the relationship between intended/unintended in-
teractions and the preservation of language threat models in
multi-language application have to date been under investi-
gated by the community.

B. Go

Go [72] is a multi-paradigm programming language that
is statically-typed. It provides spatial safety primarily through
runtime bounds checks. It also performs various optimizations
at compile-time to eliminate unnecessary bounds checks such
as redundant checks inside a loop.

In order to provide temporal safety, Go deploys garbage
collection (GC). Go does not have any limitation on the
number or usage of pointers, which allows the development

of complex data structures. On the other hand, the down side
of GC is latency and CPU utilization, which can be substantial
(∼25% CPU utilization) depending on the code [90]. This also
makes Go’s language runtime significantly more complex than
that of Rust. By the same token, Go binaries are generally
larger than those of Rust.

Similar to Rust, Go can also interact with other languages.
For example, CGo [4] allows calling C code from Go. This
includes passing Go pointers to C, which can indeed become
dangling [94]. Dangerously, Go also hides the inclusion of C
code during compilation without warning.

III. CLA MODEL

We build on existing work [114] presenting high-level
threat models for software security, and extend these models
to hardened and multi-language applications. In particular, we
show that the threat model for a multi-language application is
the union of the threat models of the constituent languages. In
graphical terms, creating a multi-language application threat
model involves adding edges from each node in the threat
model to a new “language transfer” node. This can lead
to multi-language applications being weaker than their con-
stituent parts due to CLA, a concerning negative synergy.

At a high-level, a CLA is illustrated in Figure 1. The
CLA starts its execution in one language (in this example,
Rust). Because of the memory safety checks in the safe
language, corruption is not possible, so the CLA proceeds
by transferring to the unsafe language (in this exam-
ple, C) for the actual memory corruption. However, because
of the protections applied to the unsafe language (in this
example, CFI), control-flow hijacking is not possible there,
so the CLA transfers back to the safe language to execute
the weird machine [103]. The unsafe language assumes that
the hardening (e.g., CFI) prevents the hijacking of control
and the safe language assumes that the initial corruption is
not possible, so it does not check the transfer of control
to a weird machine. Consequently, by carefully maneuvering
between the languages, the CLA can succeed in a multi-
language application even when it is not possible in individual
languages separately. We describe the details of such attack
further in the upcoming sections.

In this section, we first discuss the threat models for preva-
lent programming languages, focusing on compiled languages.
We then present a novel graph-based analysis of the threat
models that demonstrates that multi-language application have
the pair-wise weaknesses of their constituent languages. The
composition of language threat models is illustrated in Fig-
ure 2.
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Fig. 2: Language Threat Models

A. Single-Language Application Threat Models

Figure 2a illustrates the basic chain of events in a memory
corruption based software attack, and is modeled off C with
only DEP [15], Stack Canaries [119], and ASLR [86] protec-
tions (i.e., standard C with no added security). An attacker
steers execution towards a memory corruption, which is used
to modify the application’s memory layout per an attacker’s
specifications (i.e., inject gadgets). These gadgets are then used
by the attacker to assume control over the application, either
directly by overwriting a code pointer in a control-flow hijack
or more subtly and indirectly in DOP [52] attacks. Once the
attacker assumes control, they execute the weird machine [103]
that their memory corruption set up, and achieve their goals.
Attacks thus have four essential phases: i) memory corruption,
ii) gadget injection, iii) control-flow assumption, and iv) weird
machine execution. To stop an attack, it is sufficient for a
defender to disrupt any of these steps, though in practice
defenses have focused on steps i and iii [114].

Figure 2b shows the updated threat model for C with (ideal)
CFI [25] hardening. Note that the “Control-Flow Hijack” node
has been deleted, which is the result of a perfect pointer
protection defense (in practice, however, CFI falls short of this
standard [27], [41], [42]). Removing this node forces attackers
to rely on DOP [52] attacks to execute their weird machines,
significantly raising the bar for attackers.

Memory safety, as provided by modern languages such as
Rust and Go, offers a strong defense by removing the “memory
corruption” node, see Figure 2c. Removing the root cause of an
attack removes all of the downstream variants, but experience
has shown it must be designed into the language; decades of
attempts to retrofit memory safety into C [46], [108], [114]
have essentially resulted in only partial protection at best.

B. Multi-Language Application Threat Models

Given the single-language application threat models in
Figure 2a, Figure 2b, and Figure 2c, it is important to correctly
compose these underlying threat models for CLA. Multi-
language applications introduce a new primitive to the threat
model: Language Transfer nodes. Language transfers occur
when an application deliberately interacts with a component
in another language (e.g., through FFI).

Conservatively, each node in the constituent language threat
models must connect to the Language Transfer node, as there
is no way of knowing when language transfers occur in an
application. We cannot say, for example, that all language
transfers happen before any possible memory corruption. Con-
sequently, the threat models for multi-language application
are fully connected and attacks eliminated by hardening one
language may become possible when composing languages.

Figure 2d illustrates how single-language application threat
models compose for a Rust, c.f., Figure 2c, and CFI hardened
C, c.f., Figure 2b, multi-language application enabling an
attack that is not possible in either component. CFI hardened C
applications prevent control-flow hijacking by validating code
pointers before they are used. Rust applications prevent the
same attack by enforcing memory safety. Note, however, that
CFI hardened C is not memory safe, and Rust does validate
code pointers before they are used, as it assumes memory
safety. Consequently, an attacker can use a memory corruption
in C and a non-validated indirect call site in Rust to create
a control-flow hijacking attack in a Rust-C multi-language
application.

The fundamental problem here is a mismatch of assump-
tions in the individual language constituents of a multi-
language application. Multi-language applications have the
security of their weakest constituent language. While we have
illustrated the issue here with a classic control-flow hijacking
attack, the problem is much deeper than that. The weakest
link principle holds for any element of an application’s threat
model that varies across languages. For instance, if Rust were
to introduce code signing and validation to mitigate supply-
chain attacks and C libraries did not, then a multi-language
application composed of those two languages would remain
completely vulnerable to supply chain attacks.

The most insidious case of the multi-language application
threat model composition is when both constituent languages
have eliminated a threat, but have done so using different
assumptions. The multi-language application then undermines
both sets of assumptions, resulting in the combination of two
“safe” languages itself being unsafe. Even for the common
scenario of hardening a legacy codebase, such as a C code-
base, with a new component written in a safe programming
language, such as Rust, this “hardening” can actually end up
weakening the application’s security.
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C. CLA Attack Construction

Given the CLA threat model, we next discuss more con-
cretely the construction of an end-to-end CLA attack. Then,
in the next section, we focus on components of such attacks
that are unique to the CLA scenario, and introduce new
attack primitives. To this end, we next present a more detailed
graphical description of CLA in Figure 3. Each node in the
graph represents a potential step in the attack, with arrows as
indication of possible sequences of steps. A successful attack is
a traversal from Execution Start to Weird Machine
Execution. Any such traversal that contains the Language
Transfer node is a CLA.

As in Figure 2d, we encode the defensive guarantees of
Rust and CFI hardened C in Figure 3. Rust’s type system,
and in particular its borrow checker, lifetimes, and dynamic
bounds checks, provide memory safety which defends the
Memory Corruption node (shaded blue). The expansion
of the Memory Corruption node for Rust shows that the
initial steps of memory corruption, the temporal or spatial vul-
nerabilities, are removed by Rust. Similarly for CFI hardened
C, the Weird Machine Execution node is defended
(shaded green). As the expansion shows, CFI prevents an
indirect call / jump from using an arbitrary attacker controlled
code-pointer2. Combined with a shadow stack [26] to protect
returns, hardened C on its own is also largely immune to
control hijacking attacks, though data-only attacks [53] remain
a threat.

The red nodes in Figure 3 are a concrete instantiation of
a CLA attack for illustration, following the concrete attack
presented by Papaevripides et al. [85]. The attacker first steers
execution towards a known memory safety bug, À. This leads
to the attacker obtaining a “write what where” vulnerability,
Á, and using it to inject gadgets, Â. The attacker then steers
execution towards a language transition, Ã–Ç, and finally, the
attacker uses the corrupted code pointer to launch their code
reuse attack, È. The only complication here from a classic code
reuse attack is the need to find a language transfer point. At
the binary level where attacks are constructed, however, this
problem is simplified to finding an unprotected indirect call
for the attack to target. With such a point and a vulnerability,
existing techniques such as Block Oriented Programming [54]
can successfully construct attacks.

The simplicity of constructing such attacks at the binary
level makes CLA significantly more dangerous. Namely, such
attacks can be constructed unknowingly by adversaries look-
ing for classic attack patterns, as opposed to COOP [97]
or DOP [52] attacks that require new primitives. We next
discuss numerous CLA variants, including first, using old
vulnerabilities brought back to life by CLA (that we denote
as CLA using Revenant Vulnerabilities found in Section IV),
and second, using new vulnerabilities that only exist in multi-
language applications (that we denote as CLA using Multi-
Language-Specific Vulnerabilities found in Section V).

IV. CLA USING REVENANT VULNERABILITIES

We present a series of attack variants demonstrating that
vulnerabilities typically mitigated by safety check/hardening

2An attacker can still redirect within the set of allowed targets, which has
been shown to be sufficient for attacks [27].

techniques re-emerge as revenant vulnerabilities using CLA in
multi-language applications. We focus our exposition on Rust-
C/C++ applications, and show that key defensive primitives
either built into or commonly applied to Rust and C/C++
respectively are completely bypassed by CLA. An overview of
the attacks we present in this section is contained in Table I.
We show that the spatial and temporal memory safety defenses
of Rust are bypassed by CLA, as are Shadow Stacks [26] and
CFI [25] for C/C++. We facilitate our discussion with a series
code examples—found in Figures 6 to 10—for exposition.
While our examples focus on Rust for simplicity of exposition,
we point the reader to Appendix A for an illustration of
similar examples in Go. Moreover, we typically use C and
C++ interchangeably throughout the following sections.

A. Overview

A key feature of Rust is memory safety, which rests on
two pillars: Rust’s expressive type system and its automatically
inserted, dynamic checks. The type system can prove many
accesses to be spatially safe at compile time, but some accesses
require simple checks at runtime against a constant size bound
(e.g., random access into a fixed size array). However, for
objects whose size is not known at compile time, such as
vectors, Rust stores the bounds information in memory, and
performs bounds checks against it. All indexes into objects
are unsigned, meaning Rust only has to perform upper bounds
checks and not lower.3 All of this machinery is for nought
in multi-language applications, however, as arbitrary write
vulnerabilities in C/C++ can effect any memory in the shared
application’s address space. Such attacks are simplified with
a pointer to Rust memory, such as a Rust heap object that
contains a function pointer or the Rust stack, but by no means
require such a pointer. An example of such an attack is in
Figure 4.

Rust’s temporal memory safety relies on the ownership
model of its type system, which is used for automatic memory
management. While programmers can force heap allocations,
they are usually oblivious to whether a variable is stack or
heap allocated, and deallocation is handled automatically when
the variable goes out of scope. However, there is nothing
preventing double frees as a result of FFI—as we illustrate
below—or preventing programmer error from causing a Use-
after-Free (UaF) as a result of FFI. Given that FFI requires
unsafe code, responsibility for memory management returns
to the programmer, reintroducing such errors.

CFI is entering widespread usage in C/C++ applications,
and is designed to provided partial memory safety by pro-
tecting the integrity of code pointers. In combination with
Shadow Stacks, CFI offers the best combination of strength
and performance among runtime defenses to date. As discussed
previously, c.f., Figure 2, Rust does not use CFI as it provides
full memory safety, rendering partial memory safety redundant.
Consequently, an arbitrary write vulnerability in C/C++ can
corrupt a code pointer used in Rust, bypassing CFI verification
or shadow stack protection. See Figure 5 for an example.

3It is interesting to note that these three categories of checks map nicely to
the CCured [79] type system that is now 16 years old, highlighting how long
and winding the road to practical memory safety has been.
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Fig. 3: Our baseline attack variant on a program with Rust (protected by its lifetimes, borrow checker, and dynamic bounds
checks) and C (protected by stack canaries and CFI) colored over a graphical description of all Cross-Language Attacks (CLA).

TABLE I: CLA Variants using Revenant Vulnerabilities

Targeted Language Bypassed Defense Memory Corruption Used Weird Machine Execution Origin
Spatial Temporal Forward Edge Corruption Backward Edge Corruption

Rust Bounds Checks " " "

Lifetimes " "

C++ Shadow Stack " "

CFI " " "

Stack

fp2
ret2

cb_fptr

incrementer()

Heap

fp1
ret1

array_ptr_addr
a

attack()

Data.vals[2]
Data.vals[1]
Data.vals[0]

Data.cb

C/C++ & CFI

Safe Rust

St
ac

k 
G

ro
w

th

Fig. 4: C/C++ is not subject to the Rust type system, so it can
dereference a pointer out-of-bound to a Rust function pointer
and make it point to an attacker chosen gadget.

Note that all the examples contained below are simplified
for discussion here. One can find the full working versions
online4.

4https://github.com/mit-ll/Cross-Language-Attacks
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Fig. 5: Since Rust does not deploy a Shadow Stack due to its
memory safety, C/C++ can corrupt returns of previously called
Rust functions that will never be checked.

B. Rust Bounds Check Bypass

We first demonstrate a variant of CLA that can bypass
the simple bounds checks that Rust inserts on certain memory
accesses. As mentioned previously, for statically-sized objects
in memory, such as arrays, Rust will perform bounds checks
on associated memory accesses. In Figure 6a, the Data struct
contains a field vals that is a statically sized array. If Rust
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1 fn rust_fn(cb_fptr: fn(&mut i64)) {
2 // Initialize some data
3 let mut x = Data {
4 vals: [1,2,3],
5 cb: cb_fptr,
6 };
7

8 unsafe{ vuln_fn(/*Ptr to x.vals*/) }
9

10 // Uses corrupted function pointer
11 (x.cb)(&mut x.vals[0]);
12 }

(a) Rust code that calls C/C++ to modify a Rust struct.

1 // This function modifies a given array
2 // Can cause an OOB vulnerability
3 void vuln_fn(int64_t array_ptr_addr) {
4 // These values are set by a corruptible
5 // source, e.g., user input
6 int64_t array_index = 3;
7 int64_t array_value = get_attack();
8

9 int64_t* a = (void *)array_ptr_addr;
10 a[array_index] = array_value;
11 }

(b) C/C++ code that performs an Out-of-Bounds (OOB) error.

Fig. 6: Sample code to illustrate how CLA can circumvent the Rust type system to cause a OOB error.

1 fn rust_fn(cb_fptr: fn(&mut i64)) {
2 let heap_obj: /* Rust heap allocation */
3

4 unsafe{ vuln_fn(/*Ptr to heap_obj*/) }
5

6 heap_obj[0] += 5; // UaF
7 }

(a) Rust code that uses a pointer wrongfully freed by C/C++.

1 // Frees object it does not own
2 void vuln_fn(int64_t obj_ptr_addr) {
3 int64_t* a = (void *)obj_ptr_addr;
4

5 //C/C++ frees Rust allocated object!
6 free(a);
7 }

(b) C/C++ code that leads to a Use-after-Free (UaF) error in Rust.

Fig. 7: Sample code to illustrate how CLA can coerce Rust into causing a UaF error.

1 fn rust_fn(cb_fptr: fn(&mut i64)) {
2 let fptr: /* Function pointer */
3

4 //C++ code overwrites fptr
5 unsafe{ vuln_fn() }
6

7 // No CFI checks!
8 fptr();
9 }

(a) Rust code that uses a function pointer.

1 void vuln_fn() {
2 int64_t a[1] = {0}; // C/C++ array
3 // These values are set by a corruptible
4 // source, e.g., user input
5 int64_t array_index = 47;
6 int64_t array_value = get_attack();
7

8 // Arbitrary Write to Rust fptr
9 a[array_index] = array_value;

10 }

(b) C/C++ that overwrites a Rust function pointer.

Fig. 8: Sample code to show how CLA can corrupt a Rust function pointer to execute a weird machine and circumvent CFI.

were to attempt to access the fourth element of x.vals, say
on line 13, the program would either completely fail to compile
or panic at runtime depending on the optimizations of the Rust
compiler. However, when Rust calls vuln_fn on line 8, the
unsafe C/C++ function is free to access (and modify) the fourth
element of x.vals. Because the “fourth” element of x.vals
is actually the function pointer, x.cb, in memory, C/C++ is
able modify the Rust function pointer, achieving a control-flow
hijack and executing a weird machine when Rust later uses the
function pointer at line 11. Therefore, when Rust interfaces
with FFI, the typical spatial memory safety guarantees of Rust
may silently fail.

C. Rust Lifetime Bypass

We next demonstrate how CLA can bypass Rusts temporal
memory safety guarantees in Figure 7. Rather than relying
on the programmer to properly allocate and free memory,
the Rust type system attaches a lifetime to each object and
frees the object when it goes out of scope. By default, Rust
uses the libc malloc() implementation, meaning that Rust-
C/C++ applications in practice share a heap managed by the
same allocator. Thus, C/C++ may deallocate memory without
Rust’s knowledge. On line 2 in Figure 7a, Rust allocates a
heap object.5 When C/C++ frees this object on line 6 in
Figure 7b, Rust still believes this object is alive, and valid for

5This can happen automatically, or be forced via the Box<> data structure.
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TABLE II: CLA Variants using Multi-Language-Specific Vulnerabilities

New Attack Memory Corruption Used Weird Machine Execution Origin
Spatial Temporal Forward Edge Corruption Backward Edge Corruption

Corrupt Dynamic Bound " " "

Double Free " "

Intended FFI Interactions " " " "

Concurrency Safety " " " "

use. Consequently, Rust has no problem with the object being
used at line 6 of Figure 7a, leading to a UaF vulnerability
despite Rust’s temporal memory safety guarantees. CLA can
thus cause Rust to silently perform a UaF.

D. C/C++ Hardening Bypasses

While we have demonstrated that CLA can bypass the
memory safety of Rust, we now show that CLA can also
circumvent hardening techniques applied to C/C++ code. In
particular, in Figure 8, we illustrate how C/C++ can corrupt
a Rust function pointer on the stack which will lead to an
opportunity for C/C++ to bypass CFI checks, which are not
present in Rust code. On line 9 in Figure 8b, C/C++ performs
a typical OOB error and corrupts the fptr on the Rust
stack to point to an attacker chose location. When Rust uses
this function pointer on line 8 of Figure 8a, the attacker
has successfully hijacked the application’s control flow to an
arbitrary location to execute a weird machine. If the corrupted
pointer had instead been used in C/C++, a CFI check would
have detected the deviation from the application’s CFG. The
memory effects of this bypass are illustrated in more detail in
Figure 4, and we can note that Figure 5 demonstrates a similar
attack, but one that bypasses the Shadow Stack instead of CFI
by overwriting a Rust return value.

While previous work has introduced similar C/C++ harden-
ing bypasses [85], we note that this is only one variant of our
presented Cross-Language Attacks (CLA). Most importantly,
our work demonstrates that not only can we bypass C/C++
hardening with CLA, but we illustrate how CLA causes Rust
memory safety guarantees to be violated. In fact, our goal is
to demonstrate that the philosophy of incrementally hardening
memory unsafe code with memory safe code can have serious
flaws—beyond C/C++ hardening bypasses—if not handled
properly.

V. CLA USING MULTI-LANGUAGE-SPECIFIC
VULNERABILITIES

Beyond reviving the threat of memory safety vulnerabilities
in “safe” languages, and bypassing existing partial memory
safety defenses in unsafe languages, multi-language applica-
tions are vulnerable to variants of CLA that only arise in
the context of multi-language applications. In particular, we
highlight four such new vulnerabilities. First, Rust’s spatial
memory safety can rely on bounds stored in memory which
is only safe if the entire application is memory safe. Second,
Rust’s automatic memory management relies on it being the
only entity controlling the allocation status of memory. How-
ever, Rust commonly uses the libc malloc() implementation
under the hood, giving rise to vulnerabilities in multi-language
applications. Third, we highlight two additional ways intended
interactions via FFI over the language barrier can go wrong:

passing bad values and more complex serialization/deserializa-
tion errors. Finally, we describe how multi-threaded programs
heighten vulnerabilities. An overview of the attacks we present
in this section is contained in Table II. Moreover, we again
point the reader to Appendix A for an illustration of similar
examples in Go.

A. Corrupting Rust Dynamic Bounds

For objects whose size is determined at runtime and may
change, such as vectors, Rust stores the current size of the
object in memory. That value is then loaded and used in any
required bounds checks. By corrupting the recorded size of
the object, an attacker can enable a buffer-overflow of arbitrary
length in Rust. While this attack is indirect, we note that Rust is
seeing adoption in input processing libraries precisely because
of its safety features. Consequently, corrupting the bound of
a user facing object may be an efficient way to achieve an
arbitrary write in practice. Regardless, this attack primitive is
useful for attackers and undercuts Rust’s security guarantees
in multi-language applications.

Concretely, we demonstrate this attack in Figure 9. Rust
allocates a vector on line 3 of Figure 9a. This vector is
then passed by reference to the vulnerable C/C++ function,
vuln_fn in Figure 9b. Because a vector in Rust allocates
a pointer to the heap for the data in the vector, a capacity
field that denotes the total possible length of the vector, and
a len field that denotes the current length of the vector all
on the stack at initialization, C/C++ can set the current length
of the vector arbitrarily high on line 8 in Figure 9b. Thus, when
Rust accesses the 55th element of the vector on line 8 of
Figure 9a—an obvious OOB access—Rust will not panic as
it normally should. Therefore, Rust now operates in the same
level of spatial memory safety as C/C++. Namely, the Rust
program—solely written in Safe Rust outside its call to
C/C++—can no longer claim spatial memory safety if it
successfully compiles.

B. Double Frees

In Section IV-C we showed how UaF can arise in multi-
language application. Here we generalize that to other temporal
errors. In particular, if C/C++ frees a Rust object, Rust will
still try to free that object at the end of its lifetime, giving
rise to a double free vulnerability. Prior work has shown that
double frees can lead to exploits in practice [37].

Looking back to our example in Figure 7, even if Rust
did not directly use the heap_obj on line 6 after calling
the vuln_fn C/C++ function, when the scope of rust_fn
finishes, Rust will cleanup any memory associated with
heap_obj. While Rust lifetimes can become more complex
than default with explicit lifetimes and custom Drop traits that

8



1 fn rust_fn(cb_fptr: fn(&mut i64)) {
2 //Rust vectors have dynamic bounds
3 let mut vecs: vec![4];
4

5 unsafe{ vuln_fn(/*Ptr to vecs*/) }
6

7 // C++ changed vecs size to 128!
8 let vec_fp_addr: i64 = x.vecs[55];
9 }

(a) Rust code that passes a vector to C/C++.

1 void vuln_fn(int64_t vec_ptr_addr) {
2 // These values are set by a corruptible
3 // source, e.g., user input
4 int64_t array_index = 2;
5 int64_t array_value = 128;
6

7 int64_t* a = (void *)vec_ptr_addr;
8 a[array_index] = array_value;
9 }

(b) C/C++ code with an arbitrary write vulnerability.

Fig. 9: Example of C/C++ using an arbitrary write to corrupt the size of Rust vector.

1 // Uses a function pointer provided by C/C++
2 fn rust_fn(cb_fptr: fn(&mut i64)) {
3 unsafe { let mut fptr = vuln_cb_fptr(); }
4 fptr();
5 }

(a) Rust code that calls C/C++ to receive a callback pointer.

1 // Returns a call back function to register
2 int64_t vuln_cb_fptr() {
3 int64_t fptr = get_attack();
4 return fptr;
5 }

(b) C/C++ code that corrupts a return value to Rust.

Fig. 10: Sample code to illustrate how CLA can corrupt even data intended to cross the FFI boundary.

define the cleanup behavior, it will inevitably lead to memory
being freed twice. Thus, Rust could then overwrite the memory
it just freed, leading to a series of propagating UaF errors, and
inevitably, undefined behavior. Therefore, Rust now operates in
the same level of temporal memory safety as C/C++. Namely,
the Rust program—solely written in Safe Rust outside
its call to C/C++—can no longer claim temporal memory
safety if it successfully compiles.

C. Intended Interactions over FFI

Interactions over FFI, where Rust-C/C++ intend to share
data can also give rise to CLA. While we saw that the attacks
in Section IV are simplified when Rust shares a pointer with
C/C++, we observe more complex attacks that can occur when
C/C++ shares data with Rust. One version of this is where
C/C++ hands Rust a pointer to a buffer to populate (e.g., for
user input sanitized by Rust). Another scenario is when Rust
receives a function pointer from C/C++ (e.g., for a callback
function triggered on some event). In either case, Rust has no
way of verifying that the shared pointer—or its contents—is
valid, and must trust C/C++. This trust can be abused, leading
to CLA.

For example, in Figure 10a, Rust calls vuln_cb_fptr
to ask C/C++ to return a function pointer for its new callback
function. If C/C++ returns malicious information, as we see
on line 3 in Figure 10b, then when Rust uses that function
pointer at line 4 of Figure 10a, the attacker successfully hijacks
the application’s control and can execute their weird machine.
Note that any unsafe function could potentially be used to
corrupt the return value from vuln_cb_fptr, perhaps on a
different thread, or a callee of that function. Rather than pass
corrupted data Rust as a return value, another variant of this
attack is to have C/C++ directly pass corrupted data to Rust
as a function parameter when it invokes a Rust function.

However, the Rust compiler does emit warnings about
function pointers crossing the FFI boundary. In particular,
Figure 10a is simplified; the programmer must explicitly trans-
mute the function pointer received from C/C++ to a function
pointer type within an unsafe block (this requirement is unique
to function pointers, as other data can often be coerced with
the as keyword in Safe Rust). While this helps identify which
regions the programmer should likely sanitize, the function
pointer conversion can reside within the same unsafe block
used to call the C/C++ function, which may lead to bugs being
overlooked.

More complex intended interaction errors are of course
possible over the FFI interface. For instance, C/C++ strings and
Rust strings have different representations, forcing conversion
through null terminated C/C++ strings for compatibility over
FFI. This illustrates the need for serialization over the FFI
interface. Serialization is a well known source of errors [87],
but it has primarily been considered in inter-application scenar-
ios (e.g., I/O to networks, Files, or IPC), not intra-application
scenarios where it arises as a type of CLA.

D. Concurrency and CLA

The preceding examples are all single threaded. This im-
poses constraints on CLA attacks; typically Rust must call into
C/C++. However, in real applications such constraints are less
relevant. All threads have access to the entire memory space,
meaning that a C/C++ function executing on one thread that
contains an arbitrary write can attack a Rust function oper-
ating on a separate thread. This effectively removes ordering
constraints. CLA is thus more general than just FFI issues
when the multi-language application is multi-threaded.
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Fig. 11: Stacked bar plots to breakdown different types of statistics found in Table III. Y-axis is logarithmic.

TABLE III: The prevalence of CLA building blocks. The
number is bold is the total number of each item in the binary.
(X,Y ) represents the breakdown of the counts where X is
the fraction of the total items the specific item accounts for,
and Y is the fraction of those that come from the specific
language. For example, there are 12,118 transfer points in Rust
that constitute 3.70% of all call sites in Rust, and 5.32% of
the transfer points in the entire binary come from Rust.

(a) Total function metrics.

Rust C/C++ Entire Binary

Total
Functions

487,763
(100%, 26.68%)

1,340,347
(100%, 73.32%)

1,828,110
(100%, 100%)

(b) Call site metrics

Rust C/C++ Entire Binary

Call
Sites

327,653
(100%, 9.23%)

3,220,415
(100%, 90.77%)

3,548,068
(100%, 100%)

Transfer
Points

12,118
(3.70%, 5.32%)

215,778
(6.70%, 94.68%)

227,896
(6.42%, 100%)

Indirect
Calls

179,598
(54.81%, 64.04%)

100,843
(3.13%, 35.96%)

280,441
(7.90%, 100%)

Dynamic
Calls

126,710
(38.67%, 22.15%)

445,418
(13.83%, 77.85%)

572,128
(16.13%, 100%)

(c) Invocation metrics

Rust C/C++ Entire Binary

Invocations 346,469
(100%, 10.25%)

3,032,583
(100%, 89.75%)

3,379,052
(100%, 100%)

Visitor
Points

184,799
(53.34%, 81.09%)

43,097
(1.42%, 18.91%)

227,896
(6.74%, 100%)

VI. EVALUATION

In order to demonstrate the applicability of CLA, we collect
a series of metrics that demonstrate the prevalence of CLA
building blocks in real-world open source code bases. We
focus on Mozilla Firefox [47], a large, open source project
that has been consistently ported piece-by-piece from C/C++
to Rust. As Mozilla contributes to the creation of both Firefox
and Rust itself, we believe characteristics of Firefox will act
as a representative showcase for features of Rust and C/C++.
We perform static analysis determine the order of magnitude
prevalence of CLA building blocks to assess the scope of the

problem; our goal is not to build proof-of-concept exploits.
Thus, our two research questions for the evaluation are:

RQ1 How prevalent are language transitions?
RQ2 What is the distribution of language transitions across

functions (i.e., are language transitions widespread
among all functions or centralized in a few)?

A. Methodology

We analyze Firefox version 92.0a1 using a debug build
with optimizations disabled and the Rust v0 name mangling
scheme, which allows us to distinguish Rust and C++ mangled
function names. Our analysis utilizes pyelftools [21] to parse
debug information, and objdump [109] to find callsites. We
opt to analyze the compiled file as we can extract all needed
information for our evaluation at the binary level and it is
simpler than source level analysis. Additionally, we make our
analysis openly available online6.

a) Source Language: We use a novel set of fingerprint-
ing techniques to determine the source language of each func-
tion. Our fingerprinting technique is based on the differences
in name mangling between languages during the compilation
process. Name mangling is used by Rust and C++ to support
function overloading, while still presenting unique function
names to the linker. Name mangling encodes metadata about
the function (e.g., return value and argument types into the
function name). For Rust v0 mangling, included with the
nightly compiler, the function type (i.e., normal, closure, or
monomorphized) and the types of the function signature are
encoded in the function name. The standard Rust mangling
scheme is the same as C++, so we use the v0 scheme to
differentiate the source languages. Note that FFI between Rust
and C++ uses C style unmangled function names as the call
target. Consequently, we assume that unmangled calls in a
known Rust or C++ function represent language transitions
(which will include a transition from C++ to C as a language
transition). We do not assess the accuracy of this technique; we
aim only to obtain a rough order of magnitude understanding
of the prevalence of CLA building blocks.

b) Metrics: As discussed in Section III, CLA leverages
control flow transitions between source languages which moti-
vates RQ1, and thus, the metrics we collect must quantify the
behavior and interactions of functions with other languages.
Namely, we want to observe how frequently, to which degree,
and in what manner Rust and C/C++ invoke each other.

6https://github.com/mit-ll/Cross-Language-Attacks
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Fig. 12: The Cumulative Distribution Function (CDF) of each CLA building block metric.

We collect a total of seven metrics to quantify language
transitions in Firefox. First, we observe the total number of
functions in each language to get a sense of how significant
the role of new languages such as Rust are in development.
Second, we collect the set of functions that each function calls,
which we denote as call targets, as well as the set of call
sites (i.e., where control flow changes) within the function. An
important subset of call sites are the transfer points in which
one language is calling a function in a different language.
Transfer points are key building blocks of CLA. For each call
site, we determine the type of call used. Calls can be: indirect
(i.e., the call target is in a register), dynamic (i.e., indirect
through the program lookup table (PLT) used for functions
in dynamically linked libraries), or direct (i.e., to a constant
address). Note that metrics on direct calls are not reported.
Indirect calls are frequently targeted by code reuse attacks in
the Weird Machine Execution phase, c.f., Figure 3. The PLT
can similarly be corrupted, leading to the same effect [124].
For each function, we also collect its invocation points, or the
set of functions that call it. We are particularly interested in
invocation points that come from a different language, which
we denote as visitor points.

B. Results

First, we obverse the raw totals of our metrics collected in
Firefox, including constituent libraries built from the Mozilla
repo, in Table III. Table III is made of three subtables that

each breakdown related classes of statistics. In each cell of
Table III, we show the total number of each metric collected in
bold, the percentage of its class of metrics (i.e., transfer points
are a subclass of call sites) on the left, and the percentage
of the metric that comes from each language with respect to
the entire binary on the right. For example, we found 12,118
transfer points in Rust functions with which we can conclude
that 3.70% of call sites in Rust are transfer points, but only
5.32% of transfer points come from Rust. These results make
sense when paired with the fact that only 9.23% of call sites
in Firefox are written in Rust, but have powerful implications
for CLA in that nearly one in 25 of all Rust function calls
will call back to an unsafe language. In fact, these results
demonstrate significant opportunity for CLA. While a function
call within a Rust function is typically the target of the memory
corruption found in C/C++ for a CLA, in order for the unsafe
language to corrupt Rust data, the Rust data must remain “live”
while the unsafe language operates. Namely, when Rust calls
C/C++, C/C++ has an opportunity to corrupt Rust data and
create exploit points. These results indicate this “liveliness”
requirement will often be met. Multi-threaded programs, such
as Firefox, also relax this requirement as a C/C++ function
can corrupt a Rust function on another thread. Moreover, we
present a visualization of these statistics in a series of stacked
bar plots found in Figure 11. Note that the y-axis in these
figures is logarithmic.

We highlight more results from Table III notable to CLA
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TABLE IV: Heavy hitter functions in Firefox.

Rust C/C++

Top Functions
with Call Sites

1. assert initial values match@libxul (588)
2. get longhand property value<alloc>@libxul (464)
3. get longhand property value<nsstring>@libxul (459)

1. CreateInstance@libxul (1,631)
2. generateBodyEv@libxul (1,160)
3. run@libxul (846)

Top Functions
with Transfer Points

1. main@crashreporter (55)
2. main@modutil (25)
3. main@logalloc-replay (24)

1. Unified cpp protocol http3@libxul (84)
2. UIShowCrashUI@crashreporter (54)
3. nsWindow@libxul (49)

Top Functions
with Invocations

1. as bytes@libxul.so (930)
2. state@libxul (554)
3. Unwind Resume@plt (520)

1. AnnotateMozCrashReason@libxul (134,254)
2. ReportAssertionFailure@libxul (131,545)
3. Array RelocateUsingMemutil@libxul (17,475)

Top Functions
with Visitor Points

1. Unwind Resume@std (488)
2. as str unchecked@libxul (25)
3. qcms transform data@libxul (24)

1. assert fail@GLIBC (4388)
2. ostream@GLIBC (3326)
3. strlen@GLIBC (1294)

as follows. We observe that 54.81% of call sites in Rust are
indirect calls which indicate a use of a function pointer to make
the call. This is important because these function pointers are
the target of corruption in the forward-edge version of the
CLA. Similarly, 38.67% of call sites in Rust are dynamic,
which unsafe languages can corrupt for more serious loss
of memory safety in Rust, similar to the attack presented in
Figure 3. On the other hand, we see that an overwhelming
number of invocations of Rust functions come from memory
unsafe languages. Specifically, 53.34% of invocations of Rust
functions are visitor points, which indicates that C/C++ func-
tions call Rust functions just as often as other Rust functions.
Lastly, we point out that while the percent of these calls
are convincing, the magnitude of transfer points (12,118) and
visitor points (184,799) in Rust are also significant.

Next, we investigate Figure 12 to illuminate the trends of
our metrics over the entire set of functions to compliment
the aggregate values of our metrics found in Table III. For
example, from Figure 12a and Figure 12d, we see that the
degree of unique functions called by Rust and towards Rust
respectively overall tends to be less than C/C++ functions,
while in Figure 12b and Figure 12c, we see that the subclass
of functions we care about (i.e., transfer and visitor points),
tends to be similar between Rust and C/C++. Moreover, in
Figure 12c, less than 1% of C/C++ functions contain a visitor
point. Thus, we can conclude that while frequent, the number
of unique functions that Rust calls that cross the language
boundary is limited. However, it is important to remember that
there is a large number of unique C/C++ functions (1,340,347),
so even 1% of these functions being relevant to CLA is still
significant.

Because we observe a small number of influential func-
tions, which we denote as heavy hitters, with respect to CLA,
we next present the top heavy hitters for call sites, transfer
points, invocation points, and visitor points in Table IV. In this
table, we present the top three heavy hitters for each language
with its respective count. The function name is followed by an
‘@’ symbol to indicate in which binary the function resides. Of
note, we can see that the top visitor points in C/C++ functions
come from GLIBC, and have a large magnitude (e.g., 4,388
for assert fail). This large magnitude indicates a long tail
on the corresponding CDF in Figure 12c and suggests many
other functions in C/C++ will have only one or two visitor
points. Further, the library libxul tends to dominate the heavy
hitters list which indicates an ample opportunity for CLA.

Our findings indicate that the building blocks for CLA are
abundantly available and an attacker has a very large catalog
of options when building such attacks. These results highlight
the prevalence of opportunities for CLA and the fact that
existing countermeasures are not sufficient to prevent them.
New countermeasures are necessary when applications are
written in multiple languages with mismatching threat models,
which we further discuss in the next section.

VII. DISCUSSION

We have focused our discussion of CLA primarily on Rust
and Go in combination with C/C++. However, the issue of
threat model mismatches extends beyond these languages, and
beyond issues of memory safety in multi-language applica-
tions. In this section, we discuss future research directions
and the broader implications of CLA. We also provide some
thoughts on securing multi-language applications.

A. CLA in Go

In contrast to Rust, which was designed as a systems
programming language that would have to integrate with
C/C++ to be adopted, Go is intended to largely be a stand alone
programming language. While Go supports multi-language
applications via CGo, and there are certainly projects that
leverage CGo (e.g., Docker, Kubernetes, and CockroachDB),
several Go language developers discourage use of CGo have
written publicly about issues created by CGo [29] for Go
applications. In fact, some projects that initially leveraged
CGo, later chose to remove it (e.g., the Go implementation
of git [1]). What direction Go will go in the future remains to
be seen.

Regardless, the vulnerabilities in Section IV and Section V
nearly all directly translate to Go from Rust (c.f., Appendix A).
The exception are the temporal safety vulnerabilities. Go
leverages garbage collection (GC) to provide temporal safety,
in contrast to Rust’s lifetimes. This opens the door to use-after-
gc errors and more complicated double free scenarios when Go
interacts with C memory management.

B. CLA In Other Languages

CLA arises anytime two or more languages are used in
an application and have different threat models. This extends
beyond just Rust-C/C++ or Go-C/C++. For instance, the C++
language standards since C++11 have introduced a growing
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eco-system for safe(r) programming practices, such as smart
pointers. However, applications written in C++11 and newer
are still backwards compatible with older C++ standards
and C applications, and often feature code with older code
standards (e.g., in included libraries). Such older, and unsafer,
components of the application can subvert the additional safety
guarantees offered by newer C++ features. Another instance of
this in language dichotomy is applications in Rust that contain
unsafe Rust, which has seen recent research interest [18], [69].

Note that while the FFI interface requires the unsafe
keyword in Rust, CLA is fundamentally much more dangerous
than normal uses of unsafe. CLA opens the door to the entire
gamut of vulnerabilities present in unsafe languages, whereas
unsafe is usually used for relatively simple operations that can’t
be statically proven safe by Rust’s type system, and so are
excluded. As Rustbelt [58] has shown, such uses of unsafe
are simple enough to be amenable to formal verification, as
opposed to the exponentially larger amount of code exposed
via FFI than can be leveraged in CLA attacks.

a) Interpreted Languages: Interpreted languages add
another dimension to possible threat model mis-matches. The
Java Virtual Machine (JVM) has been implemented in both
C and C++, and the original Python interpreter is written in
C, though others exist today. Indeed – attacks against Java
have targeted the JVM [49]. All browsers have JavaScript
interpreters, though attempts are made to sandbox them [13],
[35]. We leave a deep inspection of appropriate threat models
for mixed interpreted/compiled applications, particularly when
the interpreted language has safety guarantees that do not align
with its interpreter, as future work.

b) Multiple Safe Languages: CLA is possible in multi-
language application even if all component languages are
themselves safe. For instance, Rust and Go both provide
memory safety, but because their strategy to provide memory
safety differs, an attacker could launch a CLA on such a multi-
language program. In particular, Rust and Go prevent temporal
memory corruption with lifetimes and garbage collection re-
spectively. Should these different systems disagree on the state
of memory, double frees or UaFs are possible. We believe other
subtle vulnerabilities are likely, but do not explore them here.

c) CLA and Verified Code: Formal methods increasing
maturity is evidenced by the seL4 [64] microkernel and
recent verification of KVM [67]. Formal verification offers
mathematical proof of certain properties, as long as the as-
sumptions used in the analysis hold and the underlying model
is accurate. The current approach is to formally verify a critical
subset of code, such as the OS/hypervisor or cryptographic
libraries [134]. Such verified code is then used as part of
a larger, unverified application, enabling CLA. Note that the
mixture of verified and unverified code opens up new attack
possibilities not explored here, and the unverified code can
be used to undermine any of the assumptions/modeling used
during formal verification.

C. CLA Beyond Memory Safety

CLA results from the mixed assumptions of the different
threat models in a multi-language application, and this ex-
tends beyond memory safety. Different assumptions and threat
models around type safety enable type confusion [50], [113]

attacks in multi-language applications. This endangers schemes
for other purposes, including language-based isolation [23],
[70], [78], general verification [62], and information-flow
control [75]. Correctness violations are also possible—Rust’s
type system notably provides significant concurrency safety
guarantees. Indeed, a selling point of Rust is “fearless concur-
rency” [63] in which the type system removes many hard-to-
debug concurrency errors. In multi-language applications, CLA
can reintroduce data races as Rust’s guarantees no longer hold.
While more benign than memory safety violations, such errors
can still lead to denial-of-service attacks.

Our insight that differing assumptions leads to adverse
effects holds generally—multi-language applications must be
explicit about the assumptions each component is making, and
care must be taken to ensure that the application as a whole
is not weaker than its constituent parts.

D. Defense Strategies for CLA

Next, we offer some thoughts on general approaches for
defending against CLA, and break the problem into two
components: preventing unintended interactions and securing
intended interactions. We end with a discussion on alternative
approaches.

a) Preventing Unintended Interactions: Preventing un-
intended interactions requires isolating—to the greatest extent
possible—the memory of the different language components.
One such approach could place each language component
in its own process and rely on virtualization and explicit
shared memory to control interactions. In fact, this has been
proposed by Sandcrust [65]. Doing so is likely impractical,
however, particularly if more than two languages are involved.
Consequently, intra-process isolation techniques will need to
be refined for this use case. For example, recent work shows
that isolating the heap between languages is a significant step
in the right direction [91]. However, doing so will not be
free, as there will be performance costs both for the isolation
technique and to allow data-flow across the language boundary.
Isolating the stack may require separate stacks per language,
which will increase the overhead of language transitions and
requiring more intrusive changes. Finally, while code isolation
already exists outside of JIT systems courtesy of DEP [15],
preventing the corruption of generated code has also been
studied for JIT [127], and is largely a separate problem.

b) Securing Intended Interactions: Securing intended
interactions requires verifying that interactions across the
FFI interface cannot violate the security properties of either
language. To date, there has been work on using formal
methods [58], [89], [122] to do so in a variety of contexts.
In particular, Rust FFI has been studied, building on existing
literature (e.g., the java native interface (JNI) [115]). Beyond
formal methods, new sanitizers that target interactions across
FFI should be developed by the community, as well as runtime
defenses. For example, in order to sanitize data meant to
be shared between Rust and C/C++, Rivera et al. propose
a new pointer construct called pseudo-pointers [91]. More-
over, tagged architectures [43], [92], [107], [129] that enable
metadata to be added to data provide a promising hardware
based approach for mitigating CLA as well. Indeed, the Cheri
project [130] has proposed such an extension [126].
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c) Alternative Defenses: Some recent work attempts
to solve specific subsets of CLA. For example, there is an
ongoing effort to add CFI checks to Rust code (e.g., Control
Flow Guard (CFG) [16]). Such a defense will help mitigate
specific variants of CLA, such as the attack outlined in
Section IV-D, since defense assumptions between the two
languages will now match for this particular variant. How-
ever, as we have mentioned, CLA proposes a problem much
deeper than control-flow hijacking (e.g., loss of Rust memory
safety guarantees) that such a defense cannot solve. Similarly,
incremental deployment of randomization techniques, such
as Address Space Layout Randomization (ASLR) [22], [86],
offers another alternative approach, but previous work has
shown randomization can be bypassed [95], [102]. Moreover,
it is unclear if ASLR can address each variant of CLA detailed
in Section IV and Section V. Thus, we believe that while these
defenses have merit, they address a symptom of CLA rather
than the cause.

VIII. RELATED WORK

In this section, we survey a broad range of related work
that touches on issues related to either CLA attacks or potential
mitigations thereof.

a) Formal Methods and Rust: Work on using formal
methods to secure Rust can be broken into two threads: work
on securing unsafe Rust [32], [58]–[60], and work on securing
FFI interfaces to Rust in secure enclaves [121]–[123]. Rust-
belt [58] provided the first formal model of Rust, and verified a
simplified version of the language, showing that Rust’s claimed
security properties hold. Further, Rustbelt has verified many
data structures provided by the Rust standard library, showing
that the provided abstractions are indeed safe, even though
the underlying implementation uses unsafe Rust. In contrast
to such work, CLA considers the security of unverified code,
which will remain the norm for large applications. Work on
verifying FFI interfaces is limited to the enclave context, where
the interfaces are simpler, and intended interactions through
FFI. CLA shows the perils of unintended interactions.

b) Isolation Solutions: There is a large body of work
on providing intra-process isolation, either in software [39],
[44], [45], [65], [76], [100], [132] or in hardware [33], [34],
[36], [93], [111], [125], [126], [130]. On the software side,
Sandcrust [65] separates C and Rust into separate processes
and relies on RPC for communication. As described in Sec-
tion VII this is a heavy weight and impractical solution. Prior
work on hardware security provides variously flexible security
policies, ranging from bounds checks [34] to unlimited tags
with arbitrary policies [36]. The Cheri project [130] is the
most successful of these, and has demonstrated that Cheri can
isolate Rust [126] in multi-language applications.

c) Enclaves: Enclaves have seen significant recent in-
terest as a way to remove the OS from the TCB. Intel’s
SGX [17], [38], [61], [68], [74], [83], [98], [104], [105], [118]
and ARM’s TrustZone [19], [24], [28], [55], [88], [96], [112],
[116], [120], [133] have both seen considerable research on
both their defensive applications, and flaws in their security
guarantees, and grew out of prior academic work [31], [107].
Enclaves have also been adopted for embedded contexts [128].
The enclaving programming model is too restrictive for large

applications such as browsers, though it could in theory help
address CLA if developers are willing to enclave the safe
language component.

d) Language Safety: Programming language safety has
seen extensive study, including areas such as the Java Native
Interface [30], [51], [106], [115], safe subsets of C [56], [79],
and security solutions building on Rusts guarantees [18], [20],
[78], [131]. All of these works look at security guarantees
of programming languages, including systems that can be
built on top of them [78], or properties that underlie those
guarantees [131]. Many focus on the security of individual
languages [18], [56], [79], or attacks thereon [51]. Papaevripi-
des et al. [85] build an end-to-end CLA exploit on Firefox,
an instance of the attack in Section IV-D. In contrast, we are
the first work that broadly considers the security implications
of multi-language applications and improperly mixed language
threat models.

IX. CONCLUSION

In this paper, we present the first security model for
applications developed in multiple programming languages.
We specifically focus on cases where the application is written
well (limited or no usage of unsafe code in the parts written
in the safe language) and where advanced protections are
applied to the parts written in the unsafe language. We illustrate
that because of mismatching threat models, an attacker can ma-
neuver between various stages of an exploit in such a way that
avoids triggering safety/hardening checks, while succeeding
in hijacking control. Dubbed Cross-Language Attacks (CLA),
these attacks can non-intuitively result in weakening of the
overall application security when parts of the application are
ported to a safe programming language. We illustrate different
variants of CLA and performed automated analysis on large
code bases to measure the prevalence of CLA building blocks.
Our findings illustrate that CLA building blocks are abundantly
found in Firefox, and that a new class of countermeasures must
be developed to secure multi-language applications, and sketch
their design goals for such future defenses.
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APPENDIX

In this section, we provide code examples of CLA in
Go-C/C++ applications that correlate to the code examples
presented in Section IV and Section V. In particular, Figure 13,
Figure 14, and Figure 15 correspond to the attacks presented
in Section IV-B, Section IV-C, Section IV-D respectively while
Figure 16, and Figure 17 correspond to the attacks presented
in Section V-A and Section V-C respectively.
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1 func go_fn(cb_fptr *func(*int64)) {
2 // Initialize some data
3 x := Data {
4 vals: [3]int64{1,2,3},
5 cb: cb_fptr,
6 }
7

8 C.vuln_fn(/*Ptr to x.vals*/)
9

10 // Uses corrupted function pointer
11 (*x.cb)(&x.vals[0])
12 }

(a) Go code that calls C/C++ to modify a Go struct.

1 // This function modifies a given array
2 // Can cause an OOB vulnerability
3 void vuln_fn(int64_t array_ptr_addr) {
4 // These values are set by a corruptible
5 // source, e.g., user input
6 int64_t array_index = 3;
7 int64_t array_value = get_attack();
8

9 int64_t* a = (void *)array_ptr_addr;
10 a[array_index] = array_value;
11 }

(b) C/C++ code that performs an Out-of-Bounds (OOB) error.

Fig. 13: Sample code to illustrate how CLA can circumvent Go to cause a OOB error.

1 func go_fn(cb_fptr *func(*int64)) {
2 heap_obj := new(/* Go heap allocation */)
3

4 C.vuln_fn(/*Ptr to heap_obj*/)
5

6 heap_obj[0] += 5 // UaF
7 }

(a) Go code that uses a pointer wrongfully freed by C/C++.

1 // Frees object it does not own
2 void vuln_fn(int64_t obj_ptr_addr) {
3 int64_t* a = (void *)obj_ptr_addr;
4

5 //C/C++ frees Go allocated object!
6 free(a);
7 }

(b) C/C++ code that leads to a Use-after-Free (UaF) error in Go.

Fig. 14: Sample code to illustrate how CLA can coerce Go into causing a UaF error.

1 func go_fn(cb_fptr *func(*int64)) {
2 fptr := /* Function pointer */
3

4 //C++ code overwrites fptr
5 C.vuln_fn()
6

7 // No CFI checks!
8 (*fptr)()
9 }

(a) Go code that uses a function pointer.

1 void vuln_fn() {
2 int64_t a[1] = {0}; // C/C++ array
3 // These values are set by a corruptible
4 // source, e.g., user input
5 int64_t array_index = 47;
6 int64_t array_value = get_attack();
7

8 // Arbitrary Write to Rust fptr
9 a[array_index] = array_value;

10 }

(b) C/C++ that overwrites a Go function pointer.

Fig. 15: Sample code to show how CLA can corrupt a Go function pointer to execute a weird machine and circumvent CFI.

1 func go_fn(cb_fptr *func(*int64)) {
2 //Go slices have dynamic bounds
3 slice := []int64{4, 5}
4

5 C.vuln_fn(/*Ptr to slice*/)
6

7 // C++ changed the slice size to 128!
8 slice_fp_addr := slice[55]
9 }

(a) Go code that passes a slice to C/C++.

1 void vuln_fn(int64_t slice_ptr_addr) {
2 // These values are set by a corruptible
3 // source, e.g., user input
4 int64_t array_index = 2;
5 int64_t array_value = 128;
6

7 int64_t* a = (void *)slice_ptr_addr;
8 a[array_index] = array_value;
9 }

(b) C/C++ code with an arbitrary write vulnerability.

Fig. 16: Example of C/C++ using an arbitrary write to corrupt size of a Go slice.

1 // Uses a function pointer provided by C/C++
2 func go_fn(cb_fptr *func(*int64)) {
3 fptr := C.vuln_cb_fptr()
4 (*fptr)()
5 }

(a) Go code that calls C/C++ to receive a callback pointer.

1 // Returns a call back function to register
2 int64_t vuln_cb_fptr() {
3 int64_t fptr = get_attack();
4 return fptr;
5 }

(b) C/C++ code that corrupts a return value to Go.

Fig. 17: Sample code to illustrate how CLA can corrupt even data intended to cross the FFI boundary.
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