
RAI2: Responsible Identity Audit Governing the
Artificial Intelligence

Tian Dong∗, Shaofeng Li†, Guoxing Chen∗, Minhui Xue‡, Haojin Zhu∗ and Zhen Liu∗
∗Shanghai Jiao Tong University, China

†Pengcheng Laboratory, China
‡CSIRO’s Data61, Australia

Training

Profit

Deploying

Threat ❶: Dataset copyright violation

Threat ❷: Model copyright violation

Threat ❸:
Untrusted cloud

Evade
audit

Potential attacks

Pipeline direction

Compress

model extraction, model stealing

OS vulnerability, side channel, insider attack

membership
inference

Finetune
Compress
Finetune

D
at

as
et

M
od

el
C

lo
ud

inversion
model

OS vulnerability, side channel, insider attack

Fig. 1: Bottom-up IP threats existing in the DL pipeline. The
threats for DL property originate from dataset-level (Threat ❶),
model-level (Threat ❷) and untrustworthy platforms (Threat
❸). This work takes the first step of securing both dataset and
model IPs via similarity estimation-based identity audit by a
trusted third party.

dataset and model from unauthorized duplication or inappro-
priate use [6] in responsible AI.

Unfortunately, there is an increasing risk of copyright
violation against datasets and models in the DL pipeline as
shown in Fig. 1. During the training phase, valuable datasets
are vulnerable to various operating system (OS) vulnerabilities
and side-channel attacks [7]. Further, insider attack (e.g., data
theft by departing employees) is regarded as a bigger threat
than hacking. According to the survey by Biscom in 2021 [8],
more than one in four respondents said they took data when
leaving a company and 95% of respondents said that data theft
was possible due to a lack of policies or technologies to prevent
data stealing by leaving employees. This was confirmed by
another independent survey by Tessian [9], which shows that
40% of US employees did take their generated data (or trained
models) with them when leaving their job. In the deployment
phase, extensive works are demonstrating the feasibility of
unauthorized reproduction of DL models by leveraging the
model stealing or extraction techniques [10, 11, 12]. These
attacks pose severe threats to the DL intellectual property,
calling for effective governance solutions in the sense of

Abstract—Identity plays an important role in responsible
artificial i ntelligence (AI): i t a cts a s a u nique m arker f or deep
learning (DL) models and can be used to trace those accountable
for irresponsible use of models. Consequently, effective DL
identity audit is fundamental for building responsible AI. Besides
models, training datasets determine what features a model can
learn, and thus should be paid equal attention in identity audit.
In this work, we propose the first practical scheme, named RAI2,
for responsible identity audit for both datasets and models. We
develop our dataset and model similarity estimation methods
that can work with black-box access to suspect models. The
proposed methods can quantitatively determine the identity of
datasets and models by estimating the similarity between the
owner’s and suspect’s. Finally, we realize our responsible audit
scheme based on the commitment scheme, enabling the owner
to register datasets and models to a trusted third party (TTP)
which is in charge of dataset and model regulation and forensics
of copyright infringement. Extensive evaluation on 14 model
architectures and 6 visual and textual datasets shows that our
scheme can accurately identify the dataset and model with the
proposed similarity estimation methods. We hope that our audit
methodology will not only fill t he g ap i n a chieving identity
arbitration but also ride on the wave of AI governance in this
chaotic world.

I. INTRODUCTION

Deep learning (DL) is reshaping our daily lives by perform-
ing complex real-world tasks such as image recognition [1],
natural language processing (NLP) [2] and autonomous driv-
ing [3] thanks to large-scale datasets and models. Since the
dataset collection (crawling and annotation) and large-scale
deep neural networks (DNNs) model training requires huge
labor and skill investment, DL properties (i.e., datasets and
DNN models), especially high-quality ones with domain expert
knowledge, are key intellectual properties (IPs) and are in-
creasingly becoming the competitive advantages of tech giants.
In knowledge-driven DL tasks (e.g., drug discovery [4, 5]),
DL properties are even more important as they additionally
relate to other IP (e.g., molecular obtained through costly
biological experiments). Legislation like GDPR also prohibits
and punishes unauthorized usage of DL properties containing
personal data. Therefore, it is more than critical to protect the

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.241012
www.ndss-symposium.org

monitoring those possessions by identity audit.

Recently, a line of defense techniques has been proposed
for DNN copyright protection, which mainly falls into two
categories. The first one includes watermarking [13, 14, 15,
16, 17] that embeds a secret watermark (e.g., logo) into the
protected model and fingerprinting [18, 19, 20, 21, 22] as a
non-invasive alternative that extracts a unique fingerprint from
the protected model. Both methods can proceed with black-
box access to the suspect model. In particular, for the water-
marking, the owner can query the suspect model by inputs
containing a trigger to verify whether the suspect model has
the specific watermark. For fingerprinting, the owner can verify
the fingerprinting by querying the suspect model. Another line
of work [22, 23, 24] compares the decision boundary similarity
to protect model IP with black-box or white-box access to the
suspect model. However, previous works are limited in various
aspects: they fail to consider the training dataset and the judge
practicability in IP disputes due to possibility of fraudulent
ownership (see Sec. VI for more details).

Distinguished from the previous approaches, we propose a
novel DL copyright protection framework by learning from
the real-world software copyright protection methodology.
According to the existing software copyright protection law,
software copyright protection procedures can be simplified as
follows: In the registration phase, the owner registered the
software to a Trusted Third Party (TTP) (e.g., US Copyright
Office) by submitting an electronic deposit. In the evaluation
phase, a TTP evaluates its novelty by checking its originality.
In the copyright infringement and remedies phase, an copyright
infringer is liable for either the copyright owner’s actual
damages or any additional profits of the infringer.

However, several differences between the natures of DL
property and software make it unsuitable to apply current
software copyright protection for datasets and models. First,
unlike software whose source code can be directly uploaded to
a TTP and compared for similarity checking, enforcing dataset
similarity and model similarity is not straightforward. For
example, a slightly finetuned model contains totally different
weights with the original one. Data augmentation techniques
can render a dataset seemingly dissimilar. Second, the dataset
and model are generally of larger size. A sample-by-sample
or parameter-by-parameter comparison to estimate similarity
is inefficient. Third, the infringer is reluctant to upload the
dataset or model for privacy reasons, or can even cheat with
an irrelevant dataset or model, thus requiring the TTP to
undertake copyright infringement forensics with black-box
similarity estimation methods.

These differences form several research challenges that
should be addressed before constructing an AI copyright
protection system, as we summarize as follows: i) Different
from software copyright protection which can detect copyright
infringement via source code scanning, how to determine AI
copyright infringement represents the first challenge, especially
when both dataset and model copyrights are jointly considered,
given the potentially large size of the DL property. ii) How
to achieve efficient and effective AI copyright registration to
the TTP, and enable a TTP to discover copyright infringement
through digital forensics without alerting the infringer, espe-
cially with only query access to the suspect model (a black-box
manner) represents the second challenge.

We address the aforementioned challenges by proposing a
novel responsible AI dataset and model audit scheme, RAI2,
which is comprised of two components: Similarity Estimation
Module, and Third-Party Audit Module. The similarity esti-
mation module (see Sec. III) is designed to detect copyright
infringement on both AI dataset and model levels under black-
box access to the suspect model. Note that the black-box
access is necessary for practicability of secret audit by TTP.
For the dataset, our intuition is that the confidence scores
on trained data are significantly higher than those of unseen
data due to DNN benign overfitting [25, 26, 27]. Therefore,
we observe that dataset similarity is negatively correlated
with the output difference between models trained on similar
datasets: the more the overlap between the owner’s and the
suspect’s datasets, the less the output difference between the
two models trained on them. The proposed approach leverages
this correlation to estimate the similarity between the protected
and the suspect datasets, which can work accurately on a very
small-size estimation set (< 1% of the protected dataset) rather
than scanning the whole dataset. To measure two models’
similarity with black-box model access, we introduce a novel
metric of model similarity based on the distance between
low-dimensional model projections obtained through querying
models with uniformly distributed random inputs. The model
level similarity checking is based on our observation that the
model projection follows a distribution dependent on model
weights, as validated by empirical evaluation with various
mainstream DNN architectures, which can thus be exploited
to measure weight similarity by comparing model projection
distribution and to further detect model IP infringements.

To realize black-box IP infringement detection by forensics
from a TTP, with similarity estimation methods, we propose
a responsible audit scheme RAI2 built upon a commitment
scheme [28] and provide security proof of RAI2. Our scheme
allows a TTP to record registration of dataset or model identity
and to determine both dataset and model identity of the
audited part (suspect) in a black-box manner for real IP owner
judgement. Taking both modules (similarity estimation and an
audit scheme) together, we have a bedrock for IP regulation
towards responsible AI. The main contributions of this work
are summarized as follows:

• Inspired by the conventional software copyright protec-
tion, we devise the first DL identity audit scheme, termed
RAI2, which determines AI copyright infringement by
jointly auditing dataset and model identity under black-
box access to the suspect model.

• To accurately audit dataset and model identity, as a core
component of RAI2, we propose two novel metrics to esti-
mate dataset and model similarities with black-box access
to suspect models. Aided by the commitment scheme, our
scheme enables the TTP to ascertain the actual owner
with provable security guarantees by checking the IP
registration order.

• We extensively evaluate two metrics on 6 visual and
textual datasets and 14 DNN architectures. Our results
validate the estimation accuracy of RAI2. For example,
on Tiny-ImageNet, our dataset similarity estimation has
an error lower than 20% with 90% probability, and with
the model similarity estimation, we can accurately classify
finetuned models with 99.75% accuracy.

2

II. RESPONSIBLE DL IDENTITY AUDIT

In this section, we present our motivation, the threat model
and an overview of our identity audit scheme RAI2.

A. Motivation

Similar as software, DL property (dataset and model) can
be maliciously duplicated for illegal purpose. For example,
suppose two competing companies work on object classi-
fication for autonomous driving service, or spam or toxic
comment classification for cybersecurity service. One of them
(called victim) invests huge resources to obtain high-quality
dataset and model that brings competitive advantage. The other
disadvantaged company (called adversary) aims to set up a
service of equal quality using the same DL property, but legal
copyright authorization is highly expensive and even unlikely
to be feasible. Hence, the adversary seeks for unlicensed use
or fraudulent ownership of the victim company’s DL property.
Moreover, the adversary can stealthily damage the deployed
model to undermine the victim’s competitiveness. Both cases
violate the victim’s IP. The threats come from any component
of DL pipeline as summarized in the threat model (Sec. II-B).

To counter this, one solution is to check whether the
suspect’s property is similar enough to that of the victim:
if the answer is affirmative, then it is a copyright violation,
otherwise the suspect is innocent as she has independently
created her DL property. Similarity checking requires the
knowledge of what dataset or model is compared, thus we
need to identify them first. As the ownership changes over time
(e.g., by authorization), identifying them by the owner can be
complex and confusing. We use the notion identity to represent
the dataset samples (resp., model weights) for dataset (resp.,
model), and judge whether two datasets (or models) have the
same identity by checking whether they are similar enough.
The above similarity checking for DL dataset and model forms
the basis of identity audit.

A naı̈ve approach is to directly acquire and compare
two datasets or models. However, such white-box access is
not realistic as the large size makes it inefficient and the
victim can also be concerned about potential leakage. On the
other hand, the suspect may not hand out them or even can
cheat the audit with a fake dataset and model. Therefore, it
is indispensable to extract minimum but sufficient identity
information (for efficiency) to enable similarity-based audit
without being noticed by the adversary. In Sec. III, we describe
how our similarity estimations extract the dataset and model
identity information.

To ensure practicability, similarity alone is not enough:
IP thief can also prove high similarity to victim’s IPs using
the proposed similarity estimation methods and accuse the
victim of infringement, causing copyright dispute. Hence, our
dataset and model similarity estimation methods need to be
incorporated within current cryptographic tools to allow private
or public verification. We show that, by incorporating with the
cryptographic commitment scheme (e.g., [28]), it is possible
to achieve TTP-based verification with our estimation methods,
and propose our responsible identity audit scheme RAI2. The
TTP can be copyright administration or judicial authority,
which allows the owner to register their IP to protect copyrights
and is in charge of official ownership judgement by identity

Model
Id: M01

Dataset
Id: D01

1. register

Owner 1

Authorize (D01, M01)

Distribute (D01, M01)

Licence

Ownership changements

2. request audit:
id is same?

3. audit identity
Judge by identity audit

same identity

Suspect

Fig. 2: Responsible use of AI requires dataset and DNN model
IPs to be regulated. The ownership of DL property (dataset
and model) can change (e.g., by legally trading or illegally
stealing), but the identity remains unchanged. RAI2 audits DL
property identity to judge the infringement: the owner (indexed
by 1) firstly registers properties (of identity M01 and D01) in
advance to TTP that can later judge the ownership by black-
box identity audit of the suspect’s DL property.

audit. Fig. 2 illustrates the process with RAI2: the real owner
first registers the property to a TPP, then it requests the TTP
to audit the identity of suspect’s property, and finally the TTP
concludes whether the suspect has infringed the owner’s IP or
not. Next, we systematically categorize the IP threats in DL
pipeline in the threat model.

B. Threat Model

The victim and the adversary (or suspect) are noted as
V and A, respectively. The dataset and model of V (or A)
are noted as XV (or XA) and fV (or fA). We assume both
victim and adversary are interested in the common supervised
classification task for competitiveness reason. The adversary
targets for building a DL model of similar utility as that of
the victim but does not know exact underlying distribution of
victim data. The threats against victim’s DL property (XV , fV)
in the DL pipeline (Fig. 1) are categorized as below:

Threat ❶: dataset copyright violation. As the model perfor-
mance highly depends on training data quality, the adversary
aims to build XA by stealing XV to train high-quality model.
The adversary can exploit OS vulnerabilities or side-channel
attacks [7] to steal XV . Also, the adversary can be an insider
attacker that directly obtains the dataset. For example, a former
employee of lower rank in company V took away VX when
leaving the job. Further, besides the dataset XV itself, we
assume the adversary has no knowledge about the evidences
(e.g., watermarks) generated for copyright protection for the
dataset XV by V . After stealing dataset XV , the adversary’s
goal is to build her dataset XA composed by subset of XV and
adversary’s unrelated data of the similar distribution as XV to
maintain data utility. Also, the adversary does not modify the
samples of XV to preserve data utility. With XA, the adversary
trains a model fA to achieve test accuracy close to fV .

Threat ❷: model copyright violation. In this category, the
adversary aims to steal the model fV directly. Particularly,
the adversary can leverage OS vulnerabilities or side-channel
attacks to steal the model fV , and she could also be an insider
attacker (e.g., a former employee). Model weight extraction
attacks to steal the model weights [12] also fall in this category.
To evade potential copyright protection, the adversary tries to
build fA by deliberate modifications of model fV with the cost

3

Victim Third Party Adversary

Registration
Send vk

Audit
Process

Send mk
Query

Collect outputs

Judge IP owner by

Fig. 3: Illustration of identity registration to TTP and audit
process in RAI2.

that is significantly lower than training from scratch: model
quantization, pruning or finetuning. Note that the finetuning
is conducted on the adversary’s own data of the similar
distribution as XV .

Threat ❸: untrusted server. Beside direct infringement, in
this category, the adversary stealthily compresses the deployed
model fV to reduce the energy expenses at the cost of fV ’s
accuracy degradation, or to incriminates the victim in cases
where, for example, the adversary (i.e., cloud provider) tries
to harm the victim’s reputation by causing bias or privacy
issue in fV . The server stealthily modifies the victim’s model
by malicious finetuning (e.g., inducing unfairness or injecting
trojans [29, 30]) with poisoned data of similar distribution,
and accuses the victim when the modified model triggered
lawsuits. Different from Threat ❷, the adversary does not target
for model ownership but changes the model design without
authorization.

Defense assumptions. The defender (i.e., TTP and victim) has
i) no access to XA, ii) black-box access to fA by querying for
confidence scores (in line with [31, 32]). Appendix D also
provides evaluations with only top confidence scores.

Defense goals. The defender aims to i) detect dataset copyright
violation by similarity estimation between XV and XA, ii)
detect the model copyright violation by similarity estimation
between fV and fA and iii) limit the querying count (e.g.,
∼ 103) for efficiency.

C. Overview

We provide an overview of RAI2. As conventional IP
administration, we assume there exists a TTP in charge of DL
property management who 1) records the DL property registra-
tion by identity and 2) arbitrates the real owner under request
(in form of DL property identity audit). RAI2 is designed
for these objectives using three probabilistic polynomial-time
(PPT) algorithms (KeyGen, Estim, Verify) that work
between two parties indexed by 0 and 1:

• KeyGen(X0, f0) on input of dataset and model pair
X , fX of party 0, generates key pair (mk0, vk0).

• Estim(mk0, vk0, f1) on input of key pair mk, vk and
query access to f1 of party 1, outputs ŝd, ŝm as estimated
dataset and model similarities between parties 0 and 1.

• Verify(mk0, vk0,mk1, vk1) on input of key pairs from
parties 0 and 1, outputs b ∈ {0, 1} of the real owner index.

The victim can register dataset and model in advance to
the TTP. For example, a company can register dataset to claim
the ownership during patent application. The arbitrator can
then utilize the committed values to audit the identity of the
suspect’s model and dataset via similarity estimation algorithm
Estim. As the adversary can also register in the same way
to imitate owner, the TTP needs Verify to judge the real
owner. Fig. 3 illustrates the registration and audit phases:

Registration: The victim calls KeyGen(XV , fV) to extract key
pair (mk, vk) and register by verification key vk.

Identity Audit:

1. The third party estimates dataset and model similarity
ŝd, ŝm ← Estim(mk, vk, fA) by querying fA under request
by victim with marking key mk provided by the victim.

2. The third party determines the real owner in copyright
dispute between two parties (indexed by 0 and 1) by calling
Verify(mk0, vk0,mk1, vk1) to obtain output b ∈ {0, 1} as
judged owner party index.

We will present the construction of RAI2 with security
requirements and proof in Sec. IV. The audit is based upon
the (estimated) dataset similarity ŝd and model similarity ŝm

between the victim and the suspect to assess IP infringement.
Therefore, it is necessary to build accurate similarity estimation
methods, which is one of main contributions of this work.
Before introducing the estimation, we first define the similarity.

D. Defining Similarity

Dataset similarity checking. The adversary steals victim’s
data for unauthorized use, so we define the dataset similarity
of X2 relative to the base dataset X1 is

sdX1
(X2) = |X1 ∩ X2| / |X1| ∈ [0, 1], (1)

where higher similarity indicates more data are stolen. Note
that dataset similarity is not symmetric as it particularly
quantifies the violation to the protected dataset instead of the
suspect’s dataset. Our experiments (Sec. V-C) show that our
(estimated) similarity can accurately reflect the proportion of
stealing data to victim for different size of XA. To simply
notation, we use the abbreviation sd for sdXV

(XA).

Model similarity checking. Direct weight comparison (e.g.,
by p-norm (p ≥ 1) [23]) is only limited to continuous weight
updates such as finetuning and does not cover other modi-
fications. We propose to compare weight projections whose
distribution is dependent on weight values. The projected
distance between model f1 and model f2 is Dw(hf1 ,hf2)
where hf1 ,hf2 are weight projections, Dw is a projection
space metric, and the model similarity between two f1 and
f2 is defined as

smf1(f2) = max(bDw
−Dw(hf1 ,hf2), 0)/bDw

∈ [0, 1], (2)

where bDw is a lower bound for distance between indepen-
dently trained models that will be discussed in Sec. III-B. We
use the abbreviation sm for smfV (fA) in the rest of the paper.

4

0.1 0.3 0.5 0.7 0.9
s

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

M
ax

im
um

 C
on

fid
en

ce

Architecture
ResNet152
VGG19

Fig. 4: Confidence distribution on X2 of model trained on X1

for different s = sdX1
(X2). Data are sampled from CIFAR-10.

III. PROPOSED SIMILARITY ESTIMATION

In this section, we show how to estimate the dataset and
model similarity between the victim and the suspect.

A. Dataset Similarity Estimation

As for insights, in Fig. 4, the confidence distributions
evaluated on X2 of models trained on X1 vary for different
s = sX1(X2). We observe on different architectures that the
distribution becomes more skewed to the maximum confidence
as sd increases. This one-to-one connection between dataset
similarity and confidence (or output) distribution motivates us
to estimate dataset similarity by model outputs. To estimate
similarity, we propose to discretize the continuous range into
several target similarity values (e.g., {0.0, 0.1, · · · , 1.0}) and
connect each target similarity to corresponding output distri-
bution. The first step is to uniformly sample a small-sized
estimation subset SV ⊂ XV . Then, we prepare a look-up
table Tl which records the bijective correspondence between
outputs on SV calibrated by fV for different target similarity
values. To estimate, it suffices to inquire the look-up table
for ŝd whose corresponding output is the closest to fA(SV)
by statistical hypothesis testing. We quantify the closeness by
output distance between two models f1 and f2 on dataset X :

dX (f1, f2) = Ex∼X ∥f1(x)− f2(x)∥22 . (3)

Unless otherwise specified, the output distance refers to that
between fV and fA on the estimation set SV used for query
(i.e., dSV (fV , fA)). Note that (3) can be generalized to p-
norm because of norm equivalence in finite-dimensional vector
space [33]. Proposition 1 enables us to estimate sd based on
output distance (proof in Appendix B).

Proposition 1. Suppose that the output distance on sample x ∈
XV is a random variable denoted by X(x), and the conditional
expectation of X on XV is strictly lower than that on other
data, i.e., E[X(x)|x ∈ XV] < E[X(x)|x /∈ XV], then there is
a linear correlation between output distance dSV (fV , fA) and
the ground truth similarity sd.

Our evaluation in Fig. 7 verifies that the correlation is
approximately linear. Proposition 1 indicates that our look-
up table-based method captures global model behavior on SV
thus it can achieve more accurate estimation than sample-
level estimation (e.g., by membership inference) as validated
in Table II. Alg. 1 summarizes dataset similarity estimation in
two parts: look-up table preparation (lines 1-5) and similarity
estimation (lines 6-8), where the determination of ŝd is based

Algorithm 1: Estimating dataset similarity.
Input: fV , fA, target similarities Ls, estimation

subset SV .
Output: Estimator ŝd.

1 Tl ← {}, Latt ← ∅;
/* Prepare the look-up table. */

2 for s ∈ Ls do
3 Train surrogate fsur

s on Xs s.t. sXV (Xs) = s;
4 Tl[s]← {∥fsur

s (x)− fV(x)∥22 |x ∈ SV};
5 end
/* Compute ŝd. */

6 Latt ← {∥fA(x)− fV(x)∥22 |x ∈ SV};
7 Determine ŝd whose Tl[s] is closest to Latt;
8 return ŝd

on the average difference between two distributions measured
by t-test statistics.

Improve efficiency. Training surrogate models fsur
s is costly

(Alg. 1 line 3). We propose an efficient heuristic that only
needs two models fsur

0.0 and fsur
1.0 . Specifically, outputs of fsur

s
on SV can be approximated by

fsur
0.0 (SV ∩ X ∁

V) ∪ fsur
1.0 (SV ∩ XV), (4)

where fsur
0.0 is trained on disjoint dataset X ∁

V (e.g., public
pretrained model). The heuristic reduces the complexity of
surrogate model preparation from O(|Ls|) to O(1). Sec. V-C
validates the effectiveness.

B. Model Similarity Estimation

Our method is inspired by random projection [34] which
states that data projected by random matrix preserve distance
in probability. We propose to project the weights with random
inputs into low-dimensional data (called model projection)
whose distribution depends on weight values and use the pro-
jections to measure model similarity. Fig. 5 compares random
projection (left) and our approach (right).

Proposition 2. For random vector X ∼ N (0, Id) and linear
layer of weight W ∈ R1×d with bias b ∈ R, the projection
Y = WX+ b verifies Y ∼ N (b, ∥W∥22).

As an example, Proposition 2 (proof in Appendix B) shows
how linear model weights determine the model projection
distribution. For linear model, we obtain the analytic solution
of model projection distribution and resort to Monte Carlo
(MC) method for empirical computation (Fig. 6 (a)). As indi-
cated by Fig. 6 (b), independent training results in less similar
model projection distribution due to training randomness while
finetuning leads to closer projections. Hence, in this case, we
take X ∼ N (0, Id) as the input and estimate (b, ∥W∥22) from
the outputs. Then we use Euclidean distance between tuples
(b, ∥W∥22) to measure model similarity.

The complexity of DNN architecture precludes the analytic
solution of output distribution, thus we choose the autoencoder
to learn the latent distribution and use the reconstruction error
as the model distance (i.e., Dw in Sec. II-D), with which
we can compute ŝm with reconstruction error bound bAE for

5

Data

ModelRandom Tranformation

Random Projection

Random Input

Ours

Fig. 5: Comparison between random projection and our model
similarity estimation. The random projection exploits random
transformations to project fixed data. Our method uses random
inputs to project the fixed models weights.

0 500 1000

20

0

20

Es
tim

at
io

n
er

ro
r

(a) Error of MC methods.
Mean
Std

b

||W
||2 2

(b) Distribution of tuples (b, ||W||22).
Independent
Finetuning

Fig. 6: (a) Verification of Proposition 2 with linear models
trained on diabetes dataset of scikit-learn [35] and optimized
by SGD. (b) The distribution of tuples (b, ∥W∥22) estimated
through MC methods for 50 finetuned models (blue) and 50
independently trained models (red). Finetuned models share
closely distributed (b, ∥W∥22) while that of independently
trained models are scattered.

independent models. Alg. 2 shows how to estimate the model
similarity. Specifically, the victim collects in advance model
projection y0 of his own model, trains an autoencoder for
capturing latent distribution of y0 and determines the error
bound bAE of independent models by, for instance, finetuning
several epochs (lines 1-3). To estimate similarity, it suffices to
query suspect model with nsamp random inputs and compute
ŝm with the reconstruction error of the autoencoder (lines 4-
7). The estimated similarity is then used for resolving potential
model modification. Typically, except the independent model
(ŝm ≈ 0), we are interested in the following two modifications:

• Static modification (ŝm ≈ 1): the suspect model shares
the same weights as fV . In addition, model compression
techniques (i.e., quantization or pruning) can be applied to
speed up the inference.

• Finetuning (0 < ŝm < 1): the suspect model is finetuned
from fV with data of similar distribution as XV .

IV. REALIZATION OF RAI2

Inspired by [13], we realize our proposed DL identity audit
scheme. More detailed modeling and complete security proof
can be found in Appendix C.

A. Realization

We first briefly overview the commitment scheme as our
scheme is based upon it. Next, we realize our scheme based
on dataset and model similarity estimations and commitment
scheme. In the last, we provide security requirements.

Commitment scheme. We leverage the commitment
scheme [28] to realize identity registration to the third party,

Algorithm 2: Estimating model similarity.
Input: fV , fA.
Output: Estimator ŝm.
/* Prepare autoencoder. */

1 y0 ← fV(rand(nsamp)) ;
2 hAE ← TrainAutoecnoder(y0);
3 Determine bound bAE of hAE (e.g., by finetuning);
/* Compute ŝm. */

4 Sh,A ← fA(rand(nsamp));
5 eA ← ReconstructError(hAE ,Sh,A);
6 ŝm ← max(bAE − eA, 0)/bAE ;
7 return ŝm.

because of its hiding and biding properties. The commitment
scheme is a cryptographic primitive that allows the user
to send some secret (i.e., committed value) to the receiver
while keeping it confidential, and to unlock the secret to the
receiver afterwards [28]. Formally, a commitment scheme is
composed of the following two probabilistic polynomial time
(PPT) algorithms:

• Com(x, h): the commitment algorithm that encrypts the
secret x and a random bit string h into cx.

• Open(cx, x, h): the opening algorithm that returns 1 if
cx = Com(x, h) and otherwise 0.

A commitment scheme should also verify that the com-
mitted value x in cx cannot be changed after the com-
mitment (binding) and that the receiver cannot distinguish
cx ← Com(x, r) and cy ← Com(y, r) with any PPT algorithm
for x ̸= y (hiding). If distributions of cx and cy are statistically
close, the commitment scheme is statistically hiding.

Next, we realize our scheme based on dataset and model
similarity estimations and commitment scheme, and provide
security requirements.

KeyGen(fV , XV):

1. Compute V = (SV ,OV ,Tl, hAE , bAE), where OV = fV (SV)
and t is the timestamp.
2. Sample random strings rV to generate commitment cV ←
Com(V, rV).
3. Set mk ← (V, rV) and vk ← cV . Return (mk, vk).

Estim(mk, vk, fA):

1. Parse mk = (V, rV) and vk = (cV). Check that
Open(cV , V, rV) = 1. If not, return −1.
2. Obtain OA by querying fA with SV . Estimate ŝd with Tl,OV
and OA (Alg. 1) and ŝm with hAE , bAE (Alg. 2). Return (ŝd, ŝm).

Verify(mk0, vk0,mk1, vk1):

1. Call Estim for (mk0, vk0, f1) and (mk1, vk1, f0) to get outputs
x, x′.
2. Check x ̸= −1 and x′ ̸= −1 and positive estimated similarities;
otherwise, return -1.
3. Get timestamps t and t′ from mk and mk′, respectively. If t < t′,
return 0; otherwise, return 1.

Realization. Specifically, with the statistically hiding com-
mitment scheme (Com, Open), the victim calls KeyGen to
commit the necessary components for estimation (V), where

6

the timestamp of commitment t is also included. The output
includes a secret marking key mk and corresponding verifi-
cation key vk for identity registration (Fig. 3). When auditing
the identity of a suspicious model for verifying potential IP
infringement, the third party calls Estim to estimate dataset
similarity and model similarity (used for classify model modi-
fications). Finally, to recognize malicious registration of stolen
dataset or model, Verify distinguishes the earlier registrant
as the DL property owner. With binding and hiding properties
of commitment, our scheme can be proved secure in terms of
security requirements as defined below:

Security requirements. We suppose the audit scheme should
verify the following requirements mentioned in [13]:

Non-trivial identity. The adversary cannot produce in advance
key pair (ṽk, m̃k) that pretend to be arbitrary registered dataset
or model even if she knows the estimation algorithm.

Unremovability. The adversary cannot change the dataset or
model identity within time t much lower than that required
for independent creation while preserving the utility, even if
she knows the estimation algorithm. Here the utility means test
accuracy for model, and for dataset it means test accuracy of
models trained on it.

Unforgeability. Even if the adversary knows the key vk, she
cannot convince the third party of owning a highly similar
dataset or model.

Order-preserving Registration. In case where the adversary
steals DL property (e.g., by insider attack), we require that
the adversary cannot exploit the scheme to maliciously claim
ownership of DL property registered by the real owner.

B. Security Analysis

Now we prove that our scheme verifies the above re-
quirements based on the assumption of independently created
datasets and models as stated below.

Independent creation assumption. We assume that if two
datasets (resp., models) are independently created (resp.,
trained from scratch), then the similarity between the datasets
(resp., models) is 0, otherwise the similarity is strictly positive.
That is, two independently created datasets share no common
sample and two models independently trained from scratch
have projected distance higher than bDw

.

As for dataset, the assumption holds for tasks where the
dataset creation process is unlikely to be reproduced. For
example, driving data generated by user are different every
time of collection, the internal emails used for spam or toxic
comment detection are different across enterprises, and the
medical data (e.g., X-ray images) are different for each patient.

On the model side, it is observed that post-training modifi-
cations result in weight changes of small magnitude in order to
preserve model performance [23], thus the assumption is valid
as long as the adversary investigates small cost (e.g., several
finetuning epochs) for modifying model. In addition, finetuning
for many epochs can change the domain learned by the model.
For example, a ResNet-18 originally trained on CIFAR-10 can

achieve 95.47% test accuracy but after finetuning 20 epochs on
STL-10 (dataset similar to CIFAR-10) the test accuracy drops
to 68.04%, which damages the utility of model and is not in
the interest of adversary.

Based on the independence creation assumption, we obtain
the following theorem about the security property of our
scheme.

Theorem IV.1. Under the assumption of existence of commit-
ment scheme and independence creation, RAI2, constructed
by aforementioned algorithms (KeyGen, Estim, Verify),
verifies the non-trivial identity, unremovability, unforgeability
and order-preserving registration.

We briefly present the proof sketch here. The complete
proof is deferred to Appendix C. To prove non-trivial identity,
it suffices to notice that the adversary has a negligible prob-
ability of guessing an approximately exact estimation set and
an exact model as those of the victim, because of independent
creation assumptions. To prove unremovability, as we assume
above that no algorithm can obtain DL property with time
significantly smaller than the time necessary for independent
creation. If the adversary can win the unremovability security
game by some algorithm A, the algorithm must not depend
on the verification key because of statistically hiding property
of commitment scheme, then she can obtain an independently
created DL property with time t of A, which contradicts the
assumption. The unforgablity can be proved by reducing the
problem of winning the game to breaking the commitment
scheme, and the order-preserving registration clearly holds by
algorithm Verify.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate our similarity estimation meth-
ods. In Sec. V-B, we evaluate the dataset similarity estima-
tion and show that the factors (architecture, training epochs,
learning rates, etc.) have little influence on performance. In
Sec. V-C, we perform a case study on facial attribute dataset
and further evaluate the heuristic and impact of dataset size
as well as adaptive attacks (i.e., malicious modifying sam-
ple). In Sec. V-D, we show derivatives of model by different
modifications can be accurately classified and evaluate our
method against adversarial finetuning as an adaptive attack.
Code for reproducing our results is available at https://github.
com/chichidd/RAI2.

A. Experimental Setup

Datasets & models. We use image classification datasets
CIFAR-10/100 [36] and Tiny-ImageNet [37], text classification
dataset AG-News [38]. Two non-overlapped facial attribute
classification datasets FairFace [39] and UTKFace [40] are
used for cross-dataset evaluation. Appendix A contains more
detailed dataset description. We consider the following seven
state-of-the-art image classification architectures: ResNet [41],
VGG [42], DenseNet [43], MobileNet-V2 [44], WideRes-
net [45], ResNext [46], RegNet [1]. For the text classification,
we finetune pretrained models as the common practice in NLP
community, and we evaluate on BERT [2] variants [47]: Tiny-
BERT, Mini-BERT and Small-BERT.

Model training. We consider the similarities sd ∈
{0.0, 0.1, · · · , 0.9, 1.0} in dataset estimation experiment, and

7

https://github.com/chichidd/RAI2
https://github.com/chichidd/RAI2

TABLE I: Test accuracy (%) for different architectures. Note that the test accuracy is slightly lower than benchmark because
models are trained on half of training dataset and fewer training data degrades performance.

CIFAR-10 CIFAR-100 Tiny-ImageNet
Architecture Top 1 Architecture Top 1 Top 5 Architecture Top 1 Top 5

ResNet18 91.88 ± 0.15 ResNet34 69.14 ± 0.34 89.33 ± 0.22 ResNet152 42.83 ± 0.48 66.64 ± 0.38
ResNet34 92.23 ± 0.13 ResNet101 70.90 ± 0.56 90.86 ± 0.41 VGG19 51.12 ± 0.27 72.50 ± 0.36
ResNet50 91.36 ± 0.21 VGG16 64.31 ± 0.24 85.17 ± 0.20 DenseNet121 49.78 ± 0.35 72.88 ± 0.22
VGG13 90.41 ± 0.14 ResNext101 72.15 ± 0.29 91.44 ± 0.11 WideResNet101 40.33 ± 0.74 63.99 ± 0.87

0.0 0.2 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

CIFAR-10
Architecture

ResNet18
ResNet34
ResNet50
VGG13

0.0 0.2 0.6 0.8 1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6

CIFAR-100
Architecture

ResNet34
ResNet101
VGG16
Resnext101

0.0 0.2 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Tiny-ImageNet

Architecture
ResNet152
DenseNet121
VGG19
WideResNet101Model

O
ut

pu
t d

is
ta

nc
e

0.4
sd

0.4
sd

0.4
sd

Fig. 7: Output distance across different values of dataset similarity sd.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
True Similarity (VGG13)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Te
st

 S
im

ila
rit

y

0.39 0.52 0.58 1.4 1.8 2.2 2.2 2.5 2.6 3 3.4
0.27 0.33 0.36 1.1 1.5 1.9 1.9 2.2 2.3 2.8 3.2
0.23 0.23 0.25 0.94 1.3 1.7 1.7 2 2.1 2.6 3
0.66 0.56 0.5 0.56 0.91 1.3 1.4 1.7 1.8 2.3 2.8
0.96 0.8 0.69 0.34 0.54 0.95 1 1.3 1.5 2 2.5
1.8 1.7 1.6 0.71 0.45 0.28 0.28 0.51 0.69 1.3 1.9
1.9 1.8 1.7 0.82 0.53 0.4 0.38 0.48 0.59 1.2 1.9
2.1 2 1.9 1.1 0.77 0.37 0.29 0.24 0.35 0.91 1.6
2.3 2.3 2.1 1.3 1 0.6 0.49 0.3 0.25 0.68 1.4
2.8 2.8 2.6 1.9 1.7 1.3 1.1 0.82 0.6 0.42 1.1
3.4 3.4 3.2 2.6 2.5 2.2 1.9 1.7 1.4 0.85 0.76

CIFAR-10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
True Similarity (ResNet101)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.41 0.35 0.65 1.4 2.1 2.7 3.4 4 4.3 4.8 5.8
0.49 0.54 0.68 1.3 1.9 2.6 3.2 3.7 4.1 4.6 5.6

1 0.67 0.38 0.58 1.3 1.9 2.6 3.1 3.5 4 5
1.7 1.2 0.82 0.38 0.67 1.2 1.9 2.4 2.8 3.3 4.4
2.5 2.1 1.7 0.84 0.35 0.49 1.2 1.7 2.2 2.7 3.9
3.4 2.9 2.4 1.6 0.92 0.43 0.51 1 1.5 2.1 3.4
4.3 3.8 3.3 2.5 1.8 1.3 0.54 0.37 0.7 1.3 2.9
4.2 3.7 3.3 2.4 1.8 1.2 0.47 0.42 0.7 1.3 2.8
4.4 3.9 3.4 2.6 1.9 1.4 0.66 0.27 0.49 1.1 2.5
5.9 5.3 4.8 4 3.4 3 2.3 1.6 1.2 0.36 1.4
6.8 6.2 5.7 4.9 4.4 4.1 3.5 2.9 2.5 1.6 1

CIFAR-100

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
True Similarity (VGG19)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.53 1.6 2.4 3.3 4.2 4.2 5.5 6.2 6.8 8.1 10
0.58 0.61 1.5 2.3 3.2 3.2 4.6 5.2 5.8 7.1 8.9
2.1 0.92 0.46 0.97 1.8 1.9 3.2 3.9 4.5 5.8 7.7
2.9 1.7 0.68 0.33 1.1 1.1 2.5 3.2 3.7 5 6.9
3.9 2.6 1.6 0.65 0.37 0.39 1.7 2.4 3 4.3 6.3
3.6 2.4 1.4 0.48 0.46 0.48 1.8 2.5 3.1 4.4 6.2
5.3 3.9 2.9 1.9 0.95 0.92 0.52 1.2 1.8 3.2 5.2
5.8 4.4 3.3 2.3 1.4 1.3 0.33 0.87 1.5 2.9 4.9
7.9 6.3 5.1 4 3 3 1.4 0.63 0.27 1.4 3.6
12 9.4 7.8 6.5 5.5 5.5 3.7 2.8 2.2 0.56 2.2
15 13 11 9 7.9 8 6.1 5.1 4.5 3 0.45

Tiny-ImageNet

Fig. 8: Heatmap of statistics for dataset similarity estimation based on output distance.

repeat each training 10 times to reduce randomness and
evaluate estimation accuracy. In total, we have trained more
than 3,000 model copies for our experiments, which takes more
than 15,000 GPU hours. Note that our experimental efforts do
not imply impracticability of our approach. We adopt common
techniques (dropout, weight decaying and data augmentations)
to avoid overfitting (details in Appendix A1). Table I shows
the averaged test accuracy scores for fV , which are slightly
lower than training on whole datasets because of fewer training
samples (e.g., only 25,000 samples for CIFAR-10). Small
standard deviations indicate that our models have achieve
stable performance. The test accuracy scores for finetuned NLP
models are 91.78±0.25 for Tiny-BERT, 92.11±0.31 for Mini-
BERT, and 92.37± 0.28 for Small-BERT.

B. Estimating Dataset Similarity

Dataset preparation. We first assume A and V have access
to data of same distribution (stronger assumption than threat
model), and use CIFAR-10/100, Tiny-ImageNet and AG-News
for evaluation. To construct XV and XA, we randomly split
each dataset into two parts of equal size as the victim’s dataset
XV and independent dataset X ∁

V , and pick sd (0 ≤ sd ≤ 1)
samples from XV and 1− sd samples from X ∁

V to form XA.

Metric. In practice, we can only obtain an estimate ŝ of the
ground truth similarity. To quantify estimation error, we say
an algorithm that produces ŝ is (µ, ε)-accurate if

Pr(|ŝ− s| ≥ µ) ≤ ε (5)

for ground truth s. We adopt (µ, ε)-accuracy to evaluate our

dataset similarity estimation. In our experiments, µ and ε are
computed by repeating the estimation 10 times.

Victim models & Query subset. Since the architecture of
fV can be different from fA, without loss of generality, we
set the victim’s model architecture to ResNet18 for CIFAR-
10, ResNet34 for CIFAR-100, ResNet152 for Tiny-ImageNet,
and Tiny-BERT for AG-News (text classification task). We
randomly select 100 samples as the query subset SV for image
classification, and 600 samples for text classification, as in
practice we found text models are less sensitive to individual
input. Nevertheless, the proportion of query subset in the
victim’s training dataset is less than 0.5% in both tasks.

1) Linear relation between output distance and dataset
similarity: Fig. 7 shows the output distances across different
model architectures for each dataset similarity sd. The bold
line and the shaded band represent the average and the 95%
confidence interval over 10 model copies, respectively. We
observe that the output distance is approximately linearly de-
pendent on the dataset similarity sd, and the model architecture
has little impact on the slope, because the curves locate closely
to each other. This enables us to estimate dataset similarity
sd through the output distance. However, as shown in Fig. 9,
the minor output distance differences caused by architecture
can slightly affect the estimation accuracy, especially when
the similarity is low. One solution is to use surrogate models
of different architectures to improve the estimation accuracy.

Notice that the output distance of CIFAR-10 is lower than
that of the other two datasets. We suppose this is because
the number of classes of CIFAR-10 is much smaller. In
other words, as the number of classes increases, the highest

8

confidence score on non-training data samples should decrease,
because the model is less confident when there are more
choices. This renders the difference between model outputs
on training and non-training data larger, and thus increases
the output distance. We also observe that the largest output
distance (i.e., case of sd = 0) increases with the number
of classes. Therefore, we suspect that, on large dataset (e.g.,
ImageNet), the slope should be larger, and as analyzed below,
our output distance-based dataset similarity estimation will be
more accurate.

2) Similarity Estimation: We illustrate how to evaluate ŝd

in details. Following Alg. 1, the victim first prepares a look-up
table Tl recording output distributions for different values of
sd, then compare them to the true output distribution of fA to
determine the similarity estimate ŝd. The estimator ŝd is the
sd with smallest absolute value of t-test statistics.

In Fig. 8, we show the estimation results in the form of
a heatmap and explain how to estimate. The horizontal axis
is the ground truth dataset similarity sd, and the vertical axis
represents different similarity possibilities that the defender has
tested. We also mark the architecture of the adversary’s model
fA (unknown to the defender) in the label of the horizontal
axis. Each column is computed as follows: for each ground
truth sd, we follow line 6 of Alg. 1 to generate Latt and follow
line 7 of Alg. 1 to find the ŝd of closest distribution in look-
up table Tl. We use t-test statistics as it measures the mean
difference between two distributions. The value in each grid of
the heatmap is the averaged absolute value of t-test statistics
over 10 copies of fA. The minimal value of each column is
highlighted with a red rectangle, whose test similarity becomes
the estimated dataset similarity ŝd. In this way, when testing
dataset similarity on an unknown model, the defender collects
the model outputs on SV , applies line 6-7 of Alg. 1 to generate
a column of statistics (like the heatmap column), and determine
the estimator ŝd of minimal statistics.

For the most accurate estimation, the red rectangles should
lie on the diagonal of the heatmap, because in this case, each
ground truth dataset similarity (on the horizontal axis) is cor-
rectly estimated. However, in our experiment, we can observe
that there is small deviation of one or two grids between
the diagonal and the red rectangles’ position, indicating the
estimation error exists and can be quantitatively measured.
Moreover, we can find that such deviation on the dataset
CIFAR-10 is larger than that on the other two datasets. We
suspect the cause is the variance of output distance: when the
average output distance is close to the width of 95% confidence
interval, e.g., the case of CIFAR-10 in Fig. 7, the estimation
is less accurate, since t-test can be greatly influenced. On the
other hand, when the average output distance is larger than
the variance (e.g., the case of Tiny-ImageNet in Fig. 7), the
estimation becomes more accurate. For CIFAR-100 and Tiny-
ImageNet, only three red rectangles deviate one grid from the
diagonal, indicating more accurate estimation.

3) Estimation Accuracy: We aim to quantify how accurate
our estimation method is based on output distance. We propose
to compute a probability bound ε for a given estimation error
µ. The empirical results are shown in Fig. 9. In each figure,
the bold line and the shaded area are the averaged ε and the
95% confidence interval computed over 10 model copies of fV

and fA. Since we have only evaluated sd ∈ {0.0, · · · , 1.0}, the
error we evaluate here must be the multiple of 0.1. From Fig. 9,
we can observe that the probability of an error larger than 0.1
is much higher than the probability of an error larger than 0.2.
This is because the estimation error

∣∣∣ŝd − sd
∣∣∣ is 0.1 in most

cases, i.e., Pr(
∣∣∣ŝd − sd

∣∣∣ = 0.1) ≫ Pr(
∣∣∣ŝd − sd

∣∣∣ > 0.1). It is
also worth noting that the errors are all smaller than 0.4, which
means that our estimation can distinguish three possibilities
sd = 0, sd = 0.5 and sd = 1 under the worst case. On larger
dataset Tiny-ImageNet, this upper bound of the worst case
decreases to 0.3. Therefore, we can claim that our estimation
can achieve an accuracy of 0.1 with high confidence, and can
distinguish at least one sd (0 < sd < 1) under the worst case.

Another observation is that the architecture has slight
impact on the estimation accuracy. Take CIFAR-100 as an
example, if the adversary trains a model fA of architecture
VGG16 on her own dataset XA, the estimation error will be
much larger than that of other similar architectures. However,
as reported in Table I, VGG16 achieves the lowest accuracy
score among all the architectures we evaluated (i.e., the
adversary will sacrifice the model utility in this case), and
thus VGG16 does not meet the adversary’s expectation. In
addition, we find that similar architectures result in more
accurate estimation. This can be justified by the observation
that the lowest curves occurring in the three figures in Fig. 9
all correspond to the victim’s architecture.

We can also observe that our method achieves the best
estimation accuracy on Tiny-ImageNet among the three tested
datasets, i.e., the ε is lower given a certain µ. As mentioned
above, it is due to Tiny-ImageNet has more classes. Thus,
it becomes easier for our method to distinguish between
cases of two adjacent sd, e.g., case sd = 0.0 and case
sd = 0.1. We leave the exploration on large datasets, e.g.,
ImageNet, as future work, due to the requirement of much
more computational power.

Finally, it is important to point out that the (µ, ε)-estimation
accuracy only describes the average accuracy across possible
values of sd and does not evaluate the estimation for a specific
ground truth sd. In Fig. 8, we can see that for sd close to 1
(e.g., sd ≥ 0.8), the minimal statistics of the true similarity has
larger difference wtih the rest test similarities, which indicates
that the defender can be more confident of estimation if the
estimate ŝd is close to 1. This also justifies the feasibility of
further detecting model modifications if ŝd = 1.

4) Sensitivity to the initial learning rate: We explore the
impact of the initial learning rate used for the adversary’s
model training on the estimation accuracy. To simplify the
presentation, we assume that fV and fA share the same
architecture, and that the training epoch remains the same as
the default setting, i.e., 100 for CIFAR-10 and 200 for the
remainder. The learning rate decay also remains unchanged.
In Fig. 10, we show the estimation accuracy for different
initial learning rates across {0.01, 0.05, 0.1}, where 0.1 is
the default learning rate. As expected, small learning rate
increases the estimation error, because the model is not as well-
trained as with large learning rate. Moreover, the influence
of a small learning rate is amplified on larger datasets (i.e.,
CIFAR-100 and Tiny-ImageNet) because the hyperparameter

9

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
0.0

0.2

0.4

0.6

CIFAR-10
Architecture

VGG13
ResNet18
ResNet34
ResNet50

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
0.00

0.25

0.50

0.75

CIFAR-100
Architecture

VGG16
ResNext101
ResNet101
ResNet34

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
0.0

0.2

0.4

0.6

Tiny-ImageNet
Architecture

DenseNet121
WideResNet101
VGG19
ResNet152

Fig. 9: (µ, ε)-estimation accuracy across different architectures.

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
0.00

0.25

0.50

0.75
CIFAR-10

Learning Rate
0.01
0.05
0.1

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
0.0

0.2

0.4

CIFAR-100
Learning Rate

0.01
0.05
0.1

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
0.0

0.2

0.4

0.6

Tiny-ImageNet
Learning Rate

0.01
0.05
0.1

Fig. 10: Impact of learning rate of the adversary’s model on estimation accuracy.

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
0.00

0.25

0.50

0.75
CIFAR-10

Epoch Scale
0.7
1.0
1.5

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
0.0

0.2

0.4

CIFAR-100

Epoch Scale
0.7
1.0
1.5

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
0.0

0.1

0.2

0.3

Tiny-ImageNet
Epoch Scale

0.7
1.0
1.5

Fig. 11: Impact of training epochs of the adversary’s model on estimation accuracy. The “epoch scale” is the ratio of the training
epochs to the original one (i.e., 200 epochs).

0.0 0.2 0.4 0.6 0.8 1.0
sd

0.00

0.05

0.10

0.15

O
ut

pu
t D

ist
an

ce

(a) Model distance.
Architecture

Tiny-BERT
Mini-BERT
Small-BERT

0.0 0.2 0.4 0.6 0.8 1.0
True Similarity (Mini-BERT)

0.0
0.2
0.4
0.6
0.8
1.0

Te
st

 S
im

ila
rit

y

0.54 0.84 2.4 4.3 4.8 7.7
2.1 0.75 0.92 2.9 3.5 7
3.3 2 0.37 1.7 2.3 6.4
4.3 3.1 1.5 0.54 1.1 5.5
4.9 3.7 2.2 0.18 0.41 4.7
7.1 6.2 4.9 3.2 2.6 3

(b) Heatmap of similarity.

0.10 0.15 0.20 0.25 0.30 0.35 0.40
0.0

0.2

0.4

0.6
(c) Estimation accuracy.

Architecture
Tiny-BERT
Mini-BERT
Small-BERT

2

4

6

Fig. 12: Results of dataset similarity estimation on text classification dataset AG-News.

tuning is more important for training models on large datasets.
Nevertheless, the models trained with the initial learning rate
0.01 on Tiny-ImageNet achieve the lowest test accuracy score
(dropped nearly 25%), so it is unlikely for the attacker to
choose small learning rates.

5) Sensitivity of training epochs: We also investigate the
impact of training epochs of fA, with the default initial
learning rate (i.e., 0.1). Suppose that the adversary trains fA for
n′, and the default training epoch is n (n = 100 for CIFAR-10
and n = 200 for the remainder). Denote the epoch scale as the
proportion n′

n . We explore the different scales {0.7, 1.0, 1.5}
and show the results in Fig. 11. Fewer training epochs increase
the error for a larger dataset (Tiny-ImageNet), but the test
accuracy is also lower than in the default case (i.e., the epoch
scale is 1). As we can see, more training epochs will neither
reduce or augment the estimation error.

Not that longer training with advanced mix-up techniques
can enhance the model generalization and lead to larger estima-
tion error. For example, using MixMo [48] and PreActResNet-
18-2, it requires 1,000 training epochs to augment the test
accuracy to 59.97± 0.99 while causing ε = 0.63 for µ = 0.2.
The reason is that well generalized adversary models are more

confident (and accurate) on test data, making the estimator ŝ
higher than true s for small s. However, the adversary must
acquire advanced training techniques and pay much more cost
(25× more GPU hours to train one model with MixMo), which
is not in the adversary’s interest.

Textual dataset similarity. Similarly, we evaluate our method
remains in NLP domain and show the main results in Fig. 12.
In Fig. 12(a), we can see that the relationship between out-
put distance and sd is also linear with minor noises. We
suspect this is because of repetition phrases in the news
texts. Fig. 12(b) is the similarity heatmap between the vic-
tim’s model (of architecture Tiny-BERT) and the adversary’s
model (of architecture Mini-BERT). The only deviated grid
corresponds to sd = 0.6. This is expected as the curve of
0.6 ≤ sd ≤ 0.8 in Fig. 12(a) is less steep, indicating that it
is more difficult to distinguish a case for 0.6 ≤ sd ≤ 0.8. In
Fig. 12(c), we observe that the language model’s architecture
also has influence on the estimation accuracy, especially when
µ is small (e.g., µ = 0.1). Nevertheless, we can observe
that ε decreases sharply as µ increases, and becomes zero for
µ = 0.3, indicating that sd ∈ [ŝd − 0.3, ŝd + 0.3] for sure.

10

0.0 0.2 0.4 0.6 0.8 1.0
sd

0.00

0.25

0.50

0.75

1.00

Ou
tp

ut
 D

ist
an

ce
(a) Validating heuristic.

Lookup Table
Heuristic
Adversary

0.0 0.2 0.4 0.6 0.8 1.0
sd

(b) Impact of fewer epochs.
Victim
Heuristic
Fewer Epoch

0.0 0.2 0.4 0.6 0.8 1.0
sd

(c) Impact of adaptive attacks.
Gauss
Color
Gauss-Color

Fig. 13: Output distance for different sd. (a) The heuristic
can well approximate the ground-truth distance. Other factors
including (b) training fA with fewer epochs and (c) adaptively
modifying samples have little impact on distance.

TABLE II: Comparison of estimation accuracy with member-
ship inference attack (MIA). The best results are in bold.

µ
N.A. Fewer Epoch Gauss Color Gauss-Color

MIA Heuristic Ours MIA Ours MIA Ours MIA Ours MIA Ours

0.2 0.4 0.2 0.1 0.67 0.2 0.63 0.17 0.37 0.1 0.43 0.2
0.4 0.1 0 0 0.23 0 0.03 0 0 0 0.03 0

C. Case-study: Identify Facial Attribute Dataset

We have shown the estimation procedure and validated
the effectiveness of our dataset similarity estimation. Next,
we leverage the case-study on facial attribute classification to
1) verify the effectiveness for datasets of similar but different
distributions (FairFace and UTKFace), 2) validate the heuristic
(4) for reducing overhead, 3) evaluate against adaptive attacks
and 4) investigate the impact of adversarial dataset size and
anti-overfitting techniques. We regard FairFace as real-world,
up-to-date dataset created by the victim and UTKFace as
out-dated, less valuable dataset hold by adversary. Models
trained on UTKFace have lower accuracy than those trained on
FairFace on the test data from FairFace because of distribution
shift, which motivates the adversary to steal data from the
victim to improve the model quality.

Preparation. The datasets and models are prepared as follows:
XV and X ′

V ⊂ X ∁
V are two non-overlapped subsets randomly

sampled from FairFace which are of same size as UTKFace,
and XA is composed by mixing sd data of XV and 1− sd of
UTKFace for s ∈ {0.0, 0.2, · · · , 0.8, 1.0}. The victim trains
one ResNet101 fV on XV and prepares the look-up table Tl

using XV and X ′
V . Note that the look-up table can be built

for any sampled X ′
V . The adversary trains more advanced

RegNetY-8.0GF [1] on XA of sd ≥ 0 with XV .

Fig. 13(a) presents output distance calculated from victim’s
look-up table, by heuristic and the ground-truth distance of ad-
versary’s RegNet trained on mixed dataset. Here, the surrogate
model training is repeated on different sampled X ∁

V to build the
look-up table. The heuristic curve (dashed) lies closely with the
ground truth ones (solid and dotted), indicating our heuristic is
effective for reducing overhead (5 times here) while retaining
the utility. Fig. 13(b) shows that, even though the adversary
sacrifices test accuracy (reducing from 49.05% to 44.95%) by
training fA with fewer epochs, the output distance remains
close to the original one, which signifies that the similarity
can still be accurately estimated.

Fig. 13 (c) shows the impact of three possible adaptive
attacks (i.e., modifying training samples) on output distance:
“Gauss” means blurring images with random Gaussian blur,
“Color” means randomly changing the image’s brightness, con-

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8
(a) Estimation accuracy.

0.0 0.2 0.4 0.6 0.8 1.0
s

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

(b) Performance on test data.
early stopping
False
True
weight decay
5e-05
5e-04
5e-03

Fig. 14: Impact of early stopping and weight decaying on
model performance and dataset similarity estimation accuracy.

TABLE III: Impact of adversary dataset size on estimation
accuracy and comparison with baseline.

µ
|XA| / |XV |

0.1 0.5 2 10
MIA Ours MIA Ours MIA Ours MIA Ours

0.2 0 0.05 0.42 0.37 0.27 0.05 0.52 0.58
0.4 0 0 0 0.02 0.03 0 0.13 0.02

trast, etc., and “Gauss-Color” means combination of “Gauss”
and “Color”. We consider these modifications as adaptive at-
tacks against dataset similarity estimation because they directly
change the image visual features (e.g., resolution, color). More
details are in Appendix A2. With presence of adaptive attacks,
the impact is little because curves in Fig. 13 (c) are close
to the case without adaptive modifications (dotted curve in
Fig. 13 (a)). This indicates our method is robust to sample-
level modifications.

Table II compares the estimation accuracy (i.e., µ and ε) of
our approach and Bayes optimal MIA [49]. The membership
is inferred if the loss is lower than an optimal threshold.
Specifically, we use the proportion of membership predicted
by in SV as estimated similarity ŝd, and round ŝd to the
nearest true similarity value. We observe that for different µ
and adaptive modifications, our approach obtains lower ε, thus
is more accurate than MIA. Therefore, our approach system-
atically outperforms baseline MIA with or without adaptive
modifications (i.e., attacks) to dataset.

Well-generalized adversary models. To further investigate
how our approach performs if the adversary trains well-
generalized model, we apply early stopping and study different
weight decays in Fig. 14. Not surprisingly, applying early
stopping and large weight decay increases dataset similarity
estimation error but also reduces the model performance. No-
tably, early stopping causes larger estimation errors at expense
of at least 11.1% accuracy drop comparing to the highest
test accuracy achieved in our experiments with weight decay
5× 10−4 and without early stopping. The results indicate that
with existing techniques that prevent overfitting, the adversary
cannot create larger estimation error to evade detection without
sacrificing model performance.

Adversary dataset size. The adversary can adopt different
dataset size. We increase the ratio |XA| / |XV | by reducing the
size of XV and decrease the ratio by reducing the size of XA.
Table III shows the estimation accuracy for different dataset
size ratios and the comparison with MIA. We observe that
when the if the adversary uses larger dataset, our approach can
still achieve low estimation error and outperform the baseline.

11

0 2 4 6 8 10
Finetuned Epoch

10 6

10 4

10 2

100

Er
ro

r

CIFAR-10

Finetuned
Independent

0 2 4 6 8 10
Finetuned Epoch

10 8

10 6

10 4

10 2

100

Er
ro

r

CIFAR-100

Finetuned
Independent

0 2 4 6 8 10
Finetuned Epoch

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

Tiny-ImageNet
Finetuned
Independent

Fig. 15: Distribution of autoencoder’s reconstruction error on finetuned models and sampled independently trained models.

Note that this case is in favor of adversary as more data
improves model generalization, and the stolen data can only
part of the whole adversary dataset. On the other hand, if the
ratio is below than 1, the dataset similarity is bounded by
the ratio as sd = min(|XA| / |XV | , 1) by definition. In this
case, our method generates larger error because fewer data
degrades model generalization on non-training data, resulting
in inaccurate output distribution matching. The poor model
generalization does not affect the MIA, which is better than our
method here. However, the smaller XA also greatly reduces the
test accuracy from 49.05% to 40.02% for |XA| / |XV | = 0.5
and to 19.88% for |XA| / |XV | = 0.1. The damage to model
utility prohibits the adversary to use smaller dataset.

D. Estimating Model Similarity

As a representative task of discrete inputs, NLP adopts
pretrain-finetune paradigm, where the pretrained models are
generally open-sourced and the dataset used for less costly
finetuning [50] is more critical in NLP [51]. Therefore, in this
work, we consider model of continuous inputs (e.g., image
classification) as most DL tasks require continuous inputs, and
leave the model of discrete inputs for future work.

Pre-processing. We train models of following architectures
on SV : ResNet18 for CIFAR-10, VGG16 for CIFAR-100 and
MobileNet-V2 for Tiny-ImageNet. We set nsamp = 1000 to
balance the trade-off between the performance and query costs.
The inputs are sampled from the uniform distribution U(0, 1)
and will be standardized into normalized inputs before being
fed into network. For each model, we compute the model
projection of length nsamp. Fig. 17 in Appendix A3 visualizes
the model projection distribution via t-SNE.

Evaluation metrics. We evaluate the estimation as classifica-
tion on critical similarity intervals as described in Sec. III-B:
static modification (ŝm ≈ 1), finetuning (0 < ŝm < 1)
and independent model (ŝm ≈ 0). Thus, we use accuracy
to globally measure the classification performance, and use
False Positive rate and False Negative Rate as fine-grained
metrics, where the negative represents independent model and
the positive represents the other two modifications.

1) Static modifications: In this case, the reconstruction
error is close to 0 so ŝm ≈ 1. Note that the null hypothesis of
Kolmogorov–Smirnov (KS) test is “two samples are from the
same distribution”. As the static modification does not change
weight values and is supposed to generate same distribution of
model projection, we apply KS test on reconstruction errors for
more accurate verification of ŝm ≈ 1. We provide the accuracy
score (Top 1), KS test statistics and p-values for different

statistic model transformations in Table IV. For quantization,
we adopt static quantization to transform the model parameter
into 8-bit. For pruning, we investigate the pruning rates equal
to 20% and 40% to preserve the test accuracy. When p-value
is low enough (e.g., lower than 0.01), the null hypothesis
can be safely rejected. From Table IV, we can see that when
the adversary applies no modification (i.e., fV = fA), model
quantization, or model pruning, the p-values are higher than
0.01, and the defender can conclude that the adversary applied
static modifications. Therefore, we can detect whether the
adversary has applied static modification.

2) Finetuning & Adversarial Training: Beside vanilla fine-
tuning, adversary can adopt adversarial training (AT) [52] as an
adaptive countermeasure during finetuning to reduce similarity
by larger weight updates during AT (as validated in Fig. 16).
Hence, we consider both vanilla finetuning and finetuning with
AT (called adversarial finetuning). We use the same finetuning
setting for adversarial finetuning (i.e., applying adversarial
training during finetuning): 20 epochs with a learning rate
1 × 10−4 for both normal and adversarial finetuning. As for
the independent models, for each dataset, we train another 200
independent models using the same training hyperparameters
but different initialization and random seeds. The independent
models share different identities and are used for testing false
positive rate.

Fig. 15 shows the reconstruction error distributions for the
models finetuned less than 10 epochs, along with equal number
of randomly selected independent models. We can see that
there is a large gap between the distributions of independent
models (orange) and finetuned models (blue). Moreover, the
distributions of the finetuned model are generally stable and
have little variation. Remark that the average of errors does
not necessarily increase with the number of finetuned epochs.
For example, in the middle of Fig. 15, the error average
decreases at first and then increases. We suppose that this is
because of the oscillations generated during model parameter
optimization. Another possibility is that the autoencoder is not
well trained (i.e., unable to well capture the distribution). As
future work, we will explore other statistical testing methods
for model projections (vectors).

According to Alg. 2, the finetuned and independent models
are classified by a reconstruction error bound bAE . We set bAE

as the maximum of averaged reconstruction error among 100
finetuned model copies. Specifically, the model is finetuned
for 10 epochs, and we repeat the finetuning (both normal and
adversarial) 5 times with different random seeds. As a result,
we obtain 10 × 5 × 2 = 100 model copies. Then, we use
the threshold to classify 200 newly finetuned model copies

12

TABLE IV: Results of KS test for detecting static modifications (original, quantized, and pruned model). The p-values are all
higher than 0.05, showing that the static transformation can be accurately detected.

Transformation CIFAR-10 CIFAR-100 Tiny-ImageNet
Accuracy (%) Statistic p-value Accuracy (%) Statistic p-value Accuracy (%) Statistic p-value

Original 91.47 0.037 0.501 63.87 0.036 0.536 41.94 0.034 0.610
Quantized 91.55 0.035 0.573 63.87 0.021 0.981 41.28 0.062 0.042

Pruned (20%) 91.51 0.031 0.723 63.95 0.053 0.121 41.94 0.038 0.466
Pruned (40%) 91.40 0.042 0.341 63.95 0.030 0.759 41.94 0.037 0.501

TABLE V: Classification results of finetuned models and
independent models.

Metric CIFAR-10 CIFAR-100 Tiny-ImageNet

Accuracy (%) 96 94.25 99.75
False Positive Rate (%) 5 7 0
False Negative Rate (%) 3 4.5 0.5

1 5 10 15 20
Finetuned Epoch

10 4

10 3

10 2

||W
0

W
t||

2

CIFAR-10
Type

Normal
AT

1 5 10 15 20
Finetuned Epoch

10 4

10 3

10 2

10 1

CIFAR-100
Type

Normal
AT

1 5 10 15 20
Finetuned Epoch

10 4

10 3

10 2

10 1

Tiny-ImageNet

Type
Normal
AT

Fig. 16: Weight difference (L2 norm) between normal and
finetuned models. The dash-dotted horizontal line represents
the minimum difference among 200 independently trained
models. Wt is the weight of model finetuned t epochs.

that come from 5 times 20-epoch finetuning (both normal
and adversarial), along with aforementioned 200 independent
model copies.

Table V shows the classification results. Here, we use
“False Positive” to denote the independent model copies mis-
classified as a finetuned model, and “False Negative” to rep-
resent finetuned model copies misclassified as an independent
model. Their rates are the proportions among the number of
ground truth (i.e., 200 for both classes). The results show that
the threshold-based classification is able to achieve at least
94% accuracy score, and has at most 5% false negative (i.e., at
most 5% finetuned model copies are classified as independent
model copies). Note that, even though there are false positives,
the independent model copies cannot be misclassified as the
type “static transformations”, as the maximum of p-values
given by KS-test for independent model copies is less than
10−7, demonstrating that our audit methodology can at least
distinguish the static modification and independent models.

Ground truth weight difference. To better understand how
finetuning affects ground truth weight difference, Fig. 16
shows that more finetuned epochs increases the L2 norm of
weight difference, and that independently trained models are
of at least an order of magnitude higher difference than fine-
tuned models, which validates our assumption in Sec. IV-B.
Moreover, finetuning with AT is also shown to generate larger
weight difference.

VI. RELATED WORK

In this section, we review related work on DL identity
(summarized in Table VI).

A. Model Identity

Existing works on identifying DL model fall into the
following two categories: 1) watermarking and fingerprinting
that hinge on unique model decision boundary feature as
model marker; 2) similarity checking that identifies model
by comparing whether the protected and suspect models are
similar.

Watermarking & Fingerprinting. Model watermarking [13,
14, 15, 16, 17] protects model copyright through injecting into
the model watermarks that are only known to the owner. Zhang
et al. propose to embed watermarks similarly as the backdoor
attacks [54] to protect model copyright. Adi et al. provide
an effective cryptographic modeling for both watermarking
and backdooring, allowing public ownership verifiability. Li
et al. propose blind watermarks that are indistinguishable with
normal samples to human eyes [15]. The entangled water-
marking embedding [14] aims to preventing watermarking
removal techniques such as model extraction [10]. Fingerprint-
ing, as a non-invasive alternative, relies solely on the model’s
unique features (i.e., fingerprints) to identify models. Cao
et al. propose the first model fingerprinting based on profiling
the model decision boundary with test samples optimized to
approach the boundary [18]. Lukas et al. and Wang et al. craft
fingerprints that only lead the owner’s and surrogate models
(i.e., post-processed owner’s model) to predefined outputs to
examine [19, 20]. Recently, Peng et al. propose a fingerprinting
method that could cope with model decision boundary modi-
fication [21] based on universal adversarial perturbation.

Similarity checking. Another line of research depends on
model similarity to resolve identity: higher similarity between
two models indicates that they are more likely to share the
same identity. Chen et al. propose a testing framework for
model copyright protection with white-box and black-box
access to suspect models. The main approach is to measure the
similarity between models using property-level metrics (black-
box setting) or neuron-level metrics (white-box setting). Jia
et al. quantify model similarity (in level of prediction) by
approximating the decision boundary to linear models through
LIME and computing Cosine distance between the linear mod-
els on reference points as similarity. However, these methods
as well as fingerprinting are based on decision boundary, which
is not dependable because the implicit decision boundary can
be reproduced by independent training with specific DNN
architectures [55]. On the other hand, Jia et al. propose Proof-
of-Learning (PoL) [23] as a model weights verification mech-
anism based on proof-of-work, enabling the model ownership
proof by repeating the model training process, but PoL requires
white-box access to weights and cannot be applied to trained
models. Our method compares weights under black-box access
for similarity checking, because the weights are explicit and

13

TABLE VI: Related work on DL identity audit. Unlike existing approaches that hinge on model decision boundary and overlook
dataset identity and fraudulent ownership claim, our method is the first black-box similarity checking for both model and dataset,
implemented along with a commitment-based practical third-party audit scheme.

Approaches Model Identity Dataset Identity Practicability

Method Identification
Basis

Evaluated
Quantization

Evaluated
Pruning

Evaluated
Finetuning Method Access Third-Party Audit

[18], [19],[20] Fingerprinting Decision Boundary # N.A. Black-box #
Peng et al. [21] Fingerprinting Decision Boundary N.A. Black-box #
Maini et al. [53] Inference Training Data # Inference Black-box #
Jia et al. [23] Proof-of-work Model Weights N.A. N.A. N.A. N.A. White-box #
Chen et al. [22] Similarity Decision Boundary # N.A. Black-box #
Chen et al. [22] Similarity Neuron-level Behavior # N.A. White-box #
Jia et al. [24] Similarity Decision Boundary N.A. Black-box #
RAI2 (Ours) Similarity Model Weights Similarity Black-box

fixed, making it reliable for comparison. Moreover, the weights
resemble to source code of computer programs which is
copyrightable by laws [56], thus it is plausible to use model
weights for model identification.

B. Dataset Identity

Similar as model watermarking, dataset watermarking [57,
58] has been proposed to protect the dataset copyright. To
the best of our knowledge, no prior work has been proposed
for identifying dataset in a non-intrusive way (i.e., without
watermark). The most related work is on dataset and mem-
bership inference. Dataset inference [53] examines whether
the suspect model is trained on owner’s private dataset, thus
can be used for dataset identity resolution. However, it cannot
be applied if the private dataset is maliciously modified.
For instance, the adversary can replace 10% dataset by data
of similar distribution to prevent the dataset inference, yet
most of samples remain same and the dataset identity should
be judged unchanged. Membership inference attack (MIA)
[31, 49] can also estimate dataset similarity, but it has been
shown inaccurate by prior work [53] and our results.

VII. CONCLUSION AND DISCUSSION

In this work, we have proposed the first DL identity
audit scheme, RAI2. Our audit framework can effectively
identify models and datasets based on similarity estimation. We
have also realized our third-party audit framework through a
provably secure commitment scheme, allowing IP registration
to TTPs and infringement forensics. We hope that our method-
ology developed in this paper could facilitate responsible AI
in this chaotic world. In the end, we discuss limitations and
future research directions.

Technical aspects. We begin with the dataset. Estimating
dataset similarity requires training surrogate models, which is
remarkably expensive for large models and datasets. Neverthe-
less, in practice, AI developers are inclined to train multiple
model copies (i.e., checkpoints) for model selections. These
copies are thus available for dataset similarity estimation. Also,
as we see in experiments, if the adversary trains a model of
better generalization, the estimation error increases. Imagine
an adversary trains a model that always predicts correctly with
highest confidence, and it is impossible to infer s because there
is no discrepancy between outputs on training and test data.
In the future, we aim to improve our method’s robustness to
different level of generalization.

Further, we consider unauthorized dataset mixing as the
primary dataset IP infringement, while there are more ad-
vanced dataset modification techniques such as InstaHide [59]
and dataset condensation [60, 61, 62] applicable by adversary
for regulatory compliance (e.g., privacy [59, 63]). Besides,
some dataset can contain generated data (e.g., generated texts
or images posted online) by web crawling [64] How to
determine the IP rights and apply identity audit in these
cases remains an open problem. Another direction is to make
dataset unlearnable without permission key [65] or to develop
the proof-of-creation (similar as PoL) that proves dataset
ownership.

On the model part, our work only considers model weight
as model IP, but exclude the model architecture. The adver-
sary can only steal shallow layers that captures the visual
details and retrain the rest, which also refers to a partial
model IP infringement. To achieve covert audit, a more fine-
grained black-box (thus practical) audit method for model
identity is necessary. Also, privacy-enhancing techniques (e.g.,
differential privacy [66]) hides individual privacy but makes
models indistinguishable between each other. Identity audit for
privacy-preserving models (and their training data) is thus in
urgent need. Last but not least, it is also important to explore
a universal identity audit solution for different ML tasks.

Legal aspects. As model and dataset are electronic creation,
the most related laws are those about software and database
copyrights. To better solve disputes over ownership or transfer
of rights, most countries provide a system allowing for the
owners to register their copyrights [67]. When judging IP
infringement, proving substantially similar play a central role
even though there are multiple factors to be considered (e.g.,
access to the plaintiff’s property) [56, 68]. RAI2 offers a
systematic approach to audit the identity registered in system
based on our proposed similarity metrics to check substantial
similarity for both model and dataset. What’s more, RAI2 is
flexible, can be incorporated within existing software copyright
registration systems to identify AI modules in protected pro-
grams. Other cryptographic tools (e.g., blockchains) are also
helpful for building decentralized AI identity audit system.
On the other hand, different from conventional programs and
databases, the criteria of substantial similarity is still not clear
and needs to be determined by actual law cases.

ACKNOWLEDGMENTS

We thank anonymous reviewers for their fruitful comments.
We further thank Hu Wang for discussion about random pro-

14

jection and Fangning Li for help from legal aspects. This work
was supported by the National Key R&D Program of China
(2022YFB3103500), National Natural Science Foundation of
China under Grants, No. 62132013 and 61972453. Haojin Zhu
and Minhui Xue are the corresponding authors of this paper.

REFERENCES

[1] Ilija Radosavovic, Raj Prateek Kosaraju, Ross B. Girshick,
Kaiming He, and Piotr Dollár. Designing network design spaces.
In Proc. of IEEE/CVF CVPR, 2020.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: pre-training of deep bidirectional transform-
ers for language understanding. In Proc. of NAACL-HLT, 2019.

[3] Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel
Macesanu. A survey of deep learning techniques for autonomous
driving. Journal of Field Robotics, 37(3):362–386, 2020.

[4] Tapping into the drug discovery potential of ai. https://www.
nature.com/articles/d43747-021-00045-7, 2021.

[5] Wengong Jin, Jonathan M. Stokes, Richard T. Eastman, Zina
Itkin, Alexey V. Zakharov, James J. Collins, Tommi S. Jaakkola,
and Regina Barzilay. Deep learning identifies synergistic drug
combinations for treating COVID-19. Proc. Natl. Acad. Sci.
USA, 118(39):e2105070118, 2021.

[6] Danish Contractor, Daniel McDuff, Julia Katherine Haines,
Jenny Lee, Christopher Hines, Brent Hecht, Nicholas Vincent,
and Hanlin Li. Behavioral use licensing for responsible AI. In
Proc. of ACM FAccT, 2022.

[7] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang,
Zhiqiang Lin, and Ten H. Lai. SgxPectre: Stealing intel secrets
from sgx enclaves via speculative execution. In Proc. of IEEE
EuroS&P, 2019.

[8] Biscom report. https://www.biscom.com/
employee-departure-creates-gaping-security-hole-says-new-data/,
2021.

[9] Tessian report. https://www.tessian.com/blog/
how-the-great-resignation-is-creating-more-security-challenges/,
2022.

[10] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and
Thomas Ristenpart. Stealing machine learning models via
prediction apis. In Proc. of USENIX Security, 2016.

[11] Jean-Baptiste Truong, Pratyush Maini, Robert J. Walls, and
Nicolas Papernot. Data-free model extraction. In Proc. of IEEE
CVPR, 2021.

[12] Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex
Kurakin, and Nicolas Papernot. High accuracy and high fidelity
extraction of neural networks. In Proc. of USENIX Security,
2020.

[13] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas,
and Joseph Keshet. Turning your weakness into a strength:
Watermarking deep neural networks by backdooring. In Proc.
of USENIX Security, 2018.

[14] Hengrui Jia, Christopher A. Choquette-Choo, Varun Chan-
drasekaran, and Nicolas Papernot. Entangled watermarks as a
defense against model extraction. In Proc. of USENIX Security,
2021.

[15] Zheng Li, Chengyu Hu, Yang Zhang, and Shanqing Guo. How
to prove your model belongs to you: a blind-watermark based
framework to protect intellectual property of DNN. In Proc. of
ACSAC, 2019.

[16] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph.
Stoecklin, Heqing Huang, and Ian M. Molloy. Protecting
intellectual property of deep neural networks with watermarking.
In Proc. of ACM AsiaCCS, 2018.

[17] Tianshuo Cong, Xinlei He, and Yang Zhang. Sslguard: A
watermarking scheme for self-supervised learning pre-trained
encoders. arXiv preprint arXiv:2201.11692, 2022.

[18] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. IPGuard:

Protecting intellectual property of deep neural networks via
fingerprinting the classification boundary. In Proc. of ACM
AsiaCCS, 2021.

[19] Nils Lukas, Yuxuan Zhang, and Florian Kerschbaum. Deep neu-
ral network fingerprinting by conferrable adversarial examples.
In ICLR, 2021.

[20] Siyue Wang, Xiao Wang, Pin-Yu Chen, Pu Zhao, and Xue Lin.
Characteristic examples: High-robustness, low-transferability
fingerprinting of neural networks. In Proc. of IJCAI, 2021.

[21] Zirui Peng, Shaofeng Li, Guoxing Chen, Cheng Zhang, Haojin
Zhu, and Minhui Xue. Fingerprinting deep neural networks
globally via universal adversarial perturbations. In Proc. of IEEE
CVPR, 2022.

[22] J. Chen, J. Wang, T. Peng, Y. Sun, P. Cheng, S. Ji, X. Ma, B. Li,
and D. Song. Copy, right? a testing framework for copyright
protection of deep learning models. In Proc. of IEEE S&P,
2022.

[23] Hengrui Jia, Mohammad Yaghini, Christopher A. Choquette-
Choo, Natalie Dullerud, Anvith Thudi, Varun Chandrasekaran,
and Nicolas Papernot. Proof-of-learning: Definitions and prac-
tice. In Proc. of IEEE S&P, 2021.

[24] Hengrui Jia, Hongyu Chen, Jonas Guan, Ali Shahin Shamsabadi,
and Nicolas Papernot. A zest of LIME: Towards architecture-
independent model distances. In ICLR, 2022.

[25] Amartya Sanyal, Puneet K. Dokania, Varun Kanade, and Philip
Torr. How benign is benign overfitting ? In ICLR, 2021.

[26] Niladri S. Chatterji and Philip M. Long. Finite-sample anal-
ysis of interpolating linear classifiers in the overparameterized
regime. Journal of Machine Learning Research, 22(129):1–30,
2021.

[27] Peter L. Bartlett, Philip M. Long, Gábor Lugosi, and Alexander
Tsigler. Benign overfitting in linear regression. Proceedings of
the National Academy of Sciences, 117(48):30063–30070, 2020.
doi: 10.1073/pnas.1907378117.

[28] Ari Juels and Martin Wattenberg. A fuzzy commitment scheme.
In Proc. of ACM CCS, 1999.

[29] Shaofeng Li, Minhui Xue, Benjamin Zhao, Haojin Zhu, and
Xinpeng Zhang. Invisible backdoor attacks on deep neural net-
works via steganography and regularization. IEEE Transactions
on Dependable and Secure Computing, 2020.

[30] Shaofeng Li, Hui Liu, Tian Dong, Benjamin Zi Hao Zhao,
Minhui Xue, Haojin Zhu, and Jialiang Lu. Hidden backdoors
in human-centric language models. In ACM CCS, 2021.

[31] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly
Shmatikov. Membership inference attacks against machine
learning models. In Proc. of IEEE S&P, 2017.

[32] Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang,
Mario Fritz, and Michael Backes. ML-Leaks: Model and
data independent membership inference attacks and defenses on
machine learning models. In Proc. of NDSS, 2019.

[33] norms on vector space. https://web.stanford.edu/class/
math63cm/norms.pdf, 2019.

[34] Ella Bingham and Heikki Mannila. Random projection in
dimensionality reduction: applications to image and text data.
In Proc. of ACM SIGKDD, 2001.

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[36] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers
of features from tiny images. Technical report, Citeseer, 2009.

[37] Ya Le and Xuan Yang. Tiny imagenet visual recognition
challenge. CS 231N, 2015.

[38] Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-
level convolutional networks for text classification. In Proc. of
NeurIPS, 2015.

[39] Kimmo Kärkkäinen and Jungseock Joo. Fairface: Face attribute

15

https://www.nature.com/articles/d43747-021-00045-7
https://www.nature.com/articles/d43747-021-00045-7
https://www.biscom.com/employee-departure-creates-gaping-security-hole-says-new-data/
https://www.biscom.com/employee-departure-creates-gaping-security-hole-says-new-data/
https://www.tessian.com/blog/how-the-great-resignation-is-creating-more-security-challenges/
https://www.tessian.com/blog/how-the-great-resignation-is-creating-more-security-challenges/
https://web.stanford.edu/class/math63cm/norms.pdf
https://web.stanford.edu/class/math63cm/norms.pdf

dataset for balanced race, gender, and age for bias measurement
and mitigation. In IEEE WACV, 2021.

[40] Zhifei Zhang, Yang Song, and Hairong Qi. Age progression/re-
gression by conditional adversarial autoencoder. In Proc. of
IEEE CVPR, 2017.

[41] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proc. of IEEE CVPR,
2016.

[42] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[43] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q.
Weinberger. Densely connected convolutional networks. In
Proc. of IEEE CVPR, 2017.

[44] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto,
and Hartwig Adam. Mobilenets: Efficient convolutional neu-
ral networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[45] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. arXiv preprint arXiv:1605.07146, 2016.

[46] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In Proc. of IEEE CVPR, 2017.

[47] Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Well-read students learn better: The impact of
student initialization on knowledge distillation. arXiv preprint
arXiv:1908.08962, 13, 2019.

[48] Alexandre Ramé, Rémy Sun, and Matthieu Cord. Mixmo: Mix-
ing multiple inputs for multiple outputs via deep subnetworks.
In Proc. of IEEE/CVF ICCV, 2021.

[49] Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, Yann
Ollivier, and Hervé Jégou. White-box vs black-box: Bayes
optimal strategies for membership inference. In Proc. of ICML,
2019.

[50] Rongzhou Bao, Zhuosheng Zhang, and Hai Zhao. Span fine-
tuning for pre-trained language models. In Findings of EMNLP,
2021.

[51] Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan
Zhang, Douglas Eck, Chris Callison-Burch, and Nicholas Car-
lini. Deduplicating training data makes language models better.
In Proc. of ACL, 2022.

[52] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dim-
itris Tsipras, and Adrian Vladu. Towards deep learning models
resistant to adversarial attacks. In ICLR, 2018.

[53] Pratyush Maini, Mohammad Yaghini, and Nicolas Papernot.
Dataset inference: Ownership resolution in machine learning.
In ICLR, 2021.

[54] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets:
Identifying vulnerabilities in the machine learning model supply
chain. NIPS Workshop on Machine Learning and Computer
Security, 2017.

[55] Gowthami Somepalli, Liam Fowl, Arpit Bansal, Ping Yeh-
Chiang, Yehuda Dar, Richard Baraniuk, Micah Goldblum, and
Tom Goldstein. Can neural nets learn the same model twice? in-
vestigating reproducibility and double descent from the decision
boundary perspective. In Proc. of IEEE/CVF CVPR, 2022.

[56] Bruce Perelman. Proving copyright infringement of computer
software: An analytical framework. Loy. LAL Rev., 18:919,
1985.

[57] Yiming Li, Ziqi Zhang, Jiawang Bai, Baoyuan Wu, Yong Jiang,
and Shu-Tao Xia. Open-sourced dataset protection via backdoor
watermarking. In NeurIPS Workshop, 2020.

[58] Yiming Li, Yang Bai, Yong Jiang, Yong Yang, Shu-Tao Xia,
and Bo Li. Untargeted backdoor watermark: Towards harmless
and stealthy dataset copyright protection. In NeurIPS, 2022.

[59] Yangsibo Huang, Zhao Song, Kai Li, and Sanjeev Arora. In-
staHide: Instance-hiding schemes for private distributed learn-
ing. In Proc. of ICML, 2020.

[60] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset
condensation with gradient matching. In ICLR, 2021.

[61] Bo Zhao and Hakan Bilen. Dataset condensation with differen-
tiable siamese augmentation. In Proc. of ICML, 2021.

[62] Bo Zhao and Hakan Bilen. Dataset condensation with distribu-
tion matching. CoRR, abs/2110.04181, 2021.

[63] Tian Dong, Bo Zhao, and Lingjuan Lyu. Privacy for free: How
does dataset condensation help privacy? In Proc. of ICML, 2022.

[64] Shaofeng Li, Tian Dong, Benjamin Zi Hao Zhao, Minhui Xue,
Suguo Du, and Haojin Zhu. Backdoors against natural language
processing: A review. IEEE Security & Privacy, 20(05):50–59,
2022.

[65] Mingfu Xue, Yinghao Wu, Yushu Zhang, Jian Wang, and
Weiqiang Liu. Protect the intellectual property of dataset against
unauthorized use. arXiv preprint arXiv:2109.07921, 2021.

[66] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMa-
han, Ilya Mironov, Kunal Talwar, and Li Zhang. Deep learning
with differential privacy. In Proc. of ACM CCS, 2016.

[67] Wipo copyright. https://www.wipo.int/copyright/en/, 2022.
[68] Mark A Lemley. Our bizarre system for proving copyright

infringement. J. Copyright Soc’y USA, 57:719, 2009.

APPENDIX

A. Experimental Details

• CIFAR-10/100 [36]: The CIFAR-10 dataset is composed of
60,000 colored images of size 32 × 32 separated into 10 classes,
where 50,000 samples are for training the rest 10,000 samples are
for test. CIFAR-100 is similar as CIFAR-10, except that it has 100
classes and has disjoint images.

• Tiny-ImageNet: Tiny-ImageNet [37] is a subset of ImageNet
containing 110,000 colored images of size 64× 64 coming from 200
classes, among which 100,000 images are used for training and the
remaining 10,000 for test.

• AG-News [38]: This dataset of text classification contains
120,000 news texts for training and 7,600 for test. The texts are
grouped into 4 classes.

• FairFace [39] & UTKFace [40]: FairFace and UTKFace
contain facial images of attribute classification. In particular, FairFace
contains 7 race labels and 9 age groups. On the other hand, UTKFace
only contains 5 race labels and the age values labeled from 0 to
116. We unify the labels and obtain 20 different attribute classes.
The images are center cropped and resized to 128× 128. Moreover,
UTKFace only contains 23,705 images which is fewer than FairFace,
so we use a randomly sampled FairFace training subset to simulate
s = 1. We adopt the official test dataset (10,954 images) of FairFace
for model performance evaluation.

1) Model training: For image data, we train each model for
100 epochs for CIFAR-10, FairFace and UTKFace, and 200 epochs
for CIFAR-100 and Tiny-ImageNet. We set batch size to 128, and
use SGD optimizer with momentum 0.9 and weight decay 5× 10−4.
We The initial learning rate is 0.1, and is decayed by 0.2 on each
decaying epoch. For CIFAR-10, the decaying epochs are 40 and 70.
For the other two datasets, the decaying epochs are 60, 120 and
160. Additionally, we adopt various input diversifying techniques to
alleviate overfitting, including random cropping, random rotation and
random horizontal flipping. For text classification task, we finetune
pretrained BERT models with batch size 64 and learning rate 5×10−4

for three epochs to achieve the highest accuracy on validation data.

2) Adaptive attack details for dataset similarity estimation:
We tested two adaptive attacks against our dataset similarity estima-
tion method. The first is blurring image with randomly chosen Gaus-
sian blur of kernel size is 15. The minimal and maximal σ for blurring
is 0.1 and 2.0 respectively. We implement with GaussianBlur of

16

https://www.wipo.int/copyright/en/

torchvision. The second is randomly changing the brightness, contrast,
saturation and hue of image. We realize this with ColorJitter of
torchvision and set 0.2 for all parameters.

3) Visualization of model projection: To be more illustrative,
we provide t-SNE visualization of model projection (i.e., y0 in line
1 of Alg. 2) in Fig. 17. We consider the following modifications that
can be applied by the adversary: finetuning, pruning, quantization.
Furthermore, we also take into account the other checkpoint files
during the same training process (noted as “Checkpoint”), because
they share similar model parameters with the original model (noted as
“Origin”). The independent models are noted as “Independent”. Seen
from Fig. 17, we observe that the model projection of independent
models are separated from that of associated models (i.e., models of
type other than “Independent”), indicating that they are separable in
high-dimensional space. In addition, the associated models’ outputs
are closely grouped, signifying that they share similar distribution in
high-dimensional space. This also explains why we adopt autoencoder
to capture the latent output distribution and use the reconstruction
error to estimate the model similarity (i.e., small error means high
similarity and vice versa).

B. Proofs

Proofs of Proposition 1. Let Btr(x) = 1x∈XA denote a random
variable indicating whether a sample x belongs to the adversary’s
training dataset, where the 1A is the indicator of event A. Since the
probability that a sample of SV belongs to XA is s, we have Btr ∼
Bernoulli(s) on SV and dSV (fV , fA) = Ex∼SV [Btr(x)Xtr(x)] =
sEx∼SV [X(x)|x ∈ XA] + (1 − s)Ex∼SV [X(x)|x /∈ XA]. Hence,
higher s leads to a smaller model distance on SV , and the slope
depends on E[X(x)|x ∈ XA] and E[X(x)|x /∈ XA].

Proof of Proposition 2. Since X = [X1, · · · , Xd] ∼ N (0, Id),
where Id is the identity matrix, then for linear layer weight W ∈
R1×d, we have WX ∼ N (0,W⊤W), where W⊤W = ∥W∥22.
Moreover, for Y = WX+b, the expectation of Y verifies E[Y] = b.
Hence, we obtain Y ∼ N (b, ∥W∥22).

C. Security Requirements and Analysis

1) Defining Identity: Now we provide basic modeling algo-
rithms for dataset and model creation, and then define the identity
for dataset and model.

Dataset creation. We assume private datasets of same domains are
subsets a sufficiently large data pool D ⊂ {0, 1}∗ s.t. |D| = Θ(2ns) ,
where |D| denotes the set D size and the ns ∈ N is security parameter
as implicit input for all algorithms. Note here {0, 1}∗ can be seen
as space of float-point numbers for instance. The dataset creation
is modeled as X ← GenDataset(Od), where GenDataset is a
PPT algorithm. We also assume that sampled dataset is equipped with
ground-truth labels.

Model creation. Similarly, because of training randomness (e.g., by
hardware), we regard training on dataset X as fX ← Train(X),
where Train is PPT algorithm, fX is the trained model of
weight w(fX) ⊂ {0, 1}poly(ns). Let Predict be the deterministic
polynomial-time algorithm that returns model f ’s confidence scores
(within [0, 1]) on dataset S in form of the vector set: Cf,S ←
Predict(f,S). DNNs are reported to overfit training data to lower
generalization risk [25, 26, 27], we say (Train, Predict) is α-
fitted on training dataset S if minv∈CfS ,S max v ≥ α (i.e., α as lower
bound of confidence on training data), and define the confidence mar-
gin between training and test data as β = α−maxv∈CfS ,D\S max v,
which verifies β ≫ 1− α due to overfitting.

To simplify notation, we define the DL property (i.e., dataset and
model) creation as algorithm: DLProperty():

1. Generate X ← GenDataset(Od, zX), fX ← Train(X , zfX).
2. Return X , fX .

To check whether two datasets (or models) have same identity,
we can only compare whether they are similar enough based on
independent creation assumption. Next, we formalize for dataset and
model separately.

Independent creation assumption. Original datasets are supposed
to be significantly different between each other comparing to those
obtained through copyright violation. Specifically, two independently
created private datasets X1,X2 are expected to have no overlap
with other dataset (e.g., driving data from two autonomous vehicle
companies), so we assume the probability of existence of common
sample is negligible in ns. As for models, comparing to stolen
and modified models (e.g., by finetuning), models trained from
scratch (i.e., independently trained) should contain totally different
weights because of training randomness (e.g., from SGD), resulting
in lower similarity. Hence, we assume there exists an upper distance
bound bDw s.t. for any two independently trained models f1, f2, the
probability of their distance lower than bDw is negligible in ns.

Requirements. Formally, the security requirements of RAI2 can be
formalized into games as follows:

Non-trivial identity. The adversary cannot produce in advance key
pair (ṽk, m̃k) that pretend to be arbitrary registered dataset or model
even if she knows the estimation algorithm. That is, the adversary
has negligible chance of winning the following game with her PPT
algorithm A():

1. Produce key pair (mkA, vkA)← A().
2. Generate XV , fV ← DLProperty().
3. (mkV , vkV)← KeyGen(XV , fV).
4. Estimate ŝd, ŝm ← Estim(vkA,mkA, fV).
5. A wins if max(ŝd, ŝm) ≈ 1.

Unremovability. The adversary cannot change the dataset or model
identity within time t much lower than that required for independent
creation while preserving the utility, even if she knows the estimation
algorithm. Here the utility means test accuracy for model, and for
dataset it means test accuracy of models trained on it. Namely, the
chance of winning the following game by adversary PPT algorithm
A(vkV , fV ,XV) is negligible.

1. Generate XV , fV ← DLProperty().
2. (mkV , vkV)← KeyGen(XV , fV).
3. Run fA ← A(vkV , fV ,XV).
4. Estimate ŝd, ŝm ← Estim(vkV ,mkV , fA).
5. A wins if min(ŝd, ŝm) ≈ 0 while preserving test accuracy, i.e.,

Pr
(X,y)∼D

[fV(X) = y] ≈ Pr
(X,y)∼D

[fA(X) = y]. (6)

Unforgability. Even if the adversary knows the key vk, she cannot
convince the third party of owning a highly similar dataset or model.
Formally, A can only win the following game using PPT algorithm
A() with negligible probability:

1. Generate XV , fV ← DLProperty().
2. (mkV , vkV)← KeyGen(fV ,XV).
3. Run fA,XA,mkA ← A(vkV , fV ,XV).
4. Estimate ŝd, ŝm ← Estim(vkV ,mkA, fA).
5. A wins if max(ŝd, ŝm) ≈ 1 while verifying (6).

Proof of Theorem IV.1 Now we show the proof of Theorem IV.1.
Non-trivial identity. To win the game, the adversary needs to achieve

17

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
CIFAR-10

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
CIFAR-100

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Tiny-ImageNet

Origin
Finetuning
Checkpoint
Pruning
Quantization
Independent

Fig. 17: t-SNE visualization of model outputs for different transformations.

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
0.0

0.2

0.4

0.6

CIFAR-10
Architecture

VGG13
ResNet18
ResNet34
ResNet50

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
0.0

0.2

0.4

0.6

0.8

CIFAR-100
Architecture

VGG16
ResNext101
ResNet101
ResNet34

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
0.0

0.2

0.4

0.6

Tiny-ImageNet
Architecture

DenseNet121
WideResNet101
VGG19
ResNet152

Fig. 18: (µ, ε)-estimation accuracy with only 5 largest confidence scores available.

TABLE VII: Results of KS test for detecting static modifi-
cations (original, quantized, and pruned model) with topest
confidence scores.

Transformation CIFAR-100 Tiny-ImageNet
Statistic p-value Statistic p-value

Original 0.031 0.723 0.052 0.133
Quantized 0.034 0.610 0.033 0.648

Pruned (20%) 0.038 0.401 0.031 0.723
Pruned (40%) 0.040 0.466 0.029 0.795

TABLE VIII: Classification results of finetuned models and
independent models with topest confidence scores.

Metric CIFAR-100 Tiny-ImageNet
Accuracy (%) 94.25 100

False Positive Rate (%) 7 0
False Negative Rate (%) 4.5 0

ŝd ≈ 1 or ŝm ≈ 1 with constructed key pair (ṽk, m̃k). To achieve
ŝd ≈ 1, the adversary needs to construct SA by sampling from
D such that only few elements differ between SA and SV , under
assumption benefiting adversary that fA is obtained by same α-
fitted algorithms (Train, Predict). Denote |D| = n and the
size of datasets |SV | = |SA| = n1. The probability of εn1

different elements is Pr[|SA \ SV | = εn1] <
(

n1
n1−εn1

)(
n

εn1

)
/
(

n
n1

)
=

(n1!
(εn1)!

)2 (n−n1)!
(n1−εn1)!(n−εn1)!

, which is bounded by n
2n1
1

(n−n1)
n1−εn1

that
is around 0 for small εn1 and increases with εn1. As wining game
with ŝd ≈ 1 is equivalent to minimum confidence error (1 − α)n1

between OA ← Predict(fA,SA) and OV ← Predict(fV ,SA),
εn1 different elements increase the error to (1−α)(n1−εn1)+βεn1,
where β ≫ 1−α is the confidence margin between training and test
data. According to Alg. 1, ŝd < 1 as the output distribution does not
match on εn1 elements sampled by adversary. On the other hand,
it is of negligible probability that two independently trained models
(i.e., fA and fV) achieve ŝm ̸= 0 because of the assumption on
independent creation. Therefore, the adversary cannot win the game
with non-negligible probability.

Unremovability. Assume that there exists no algorithm that can
produce dataset or model of same utility (i.e., test accuracy) as that

of V in time t significantly smaller than the time necessary for
independent creation. Suppose the adversary can win the game with
fA (possibly along with fA’s training dataset XA to achieve ŝd ≈ 0)
obtained by running algorithm A on vkV , fV ,XV that takes time t.
Here, we can see that the output of A is independent of vkV because
the distributions of verification key are statistically close. In other
words, vk’s distribution is statistically close to vk′ whose marking
key mk′ ̸= mk, thus A cannot distinguish different vk and exploit it
for generation. Hence, for arbitrary vk returned by running KeyGen,
the adversary obtains fA (or XA) that preserves accuracy on test
data (i.e., low generalization error) by running algorithm A within
time t, which opposes the assumption that no such algorithm exists.
Therefore, the adversary cannot break the unremovablity.

Unforgeability. We reduce the problem of breaking the requirement to
the problem of breaking the commitment. Assume that the adversary
can break the unforgeability via algorithm Forge that can generate
a marking key mk′ given vk′. Then, given an arbitrary value c′V , the
adversary can obtain non-negative output (i.e., Open(c′V , V ′, r′V) =
1, where (V ′, r′V) = Forge(c′V)).

Order-preserving Registration. Assume that the adversary has regis-
tered the key vk′ to the third party, and aims to convince the third
party of the ownership, instead of the victim who has registered vk to
the third party earlier. The third party can call Verify to determine
the earlier registration by comparing the registration time. ■

D. Results with Top Confidence Scores

1) Estimation of Dataset Similarity: we assume the victim
has access to the top 5 confidence scores. We show the estimation
accuracy in Fig. 18. Comparing with the results with full confidence
vector, we observe that there is little difference on the estimation
accuracy curve, i.e., the constraint of “top 5 confidence score” does
not affect our dataset fingerprinting.

2) Estimating Model Similarity: We omit the dataset CIFAR-
10 since it only contains 10 classes. For CIFAR-100 and Tiny-
ImageNet, we take top 5 and top 10 confidence scores respectively.
The results for detecting static modification and classifying finetuned
and independent models are shown in Table VII and Table VIII,
respectively.

18

	Introduction
	Responsible DL Identity audit
	Motivation
	Threat Model
	Overview
	Defining Similarity

	Proposed Similarity Estimation
	Dataset Similarity Estimation
	Model Similarity Estimation

	Realization of RAI2
	Realization
	Security Analysis

	Experimental Evaluation
	Experimental Setup
	Estimating Dataset Similarity
	Linear relation between output distance and dataset similarity
	Similarity Estimation
	Estimation Accuracy
	Sensitivity to the initial learning rate
	Sensitivity of training epochs

	Case-study: Identify Facial Attribute Dataset
	Estimating Model Similarity
	Static modifications
	Finetuning & Adversarial Training

	Related Work
	Model Identity
	Dataset Identity

	Conclusion and Discussion
	Appendix
	Experimental Details
	Model training
	Adaptive attack details for dataset similarity estimation
	Visualization of model projection

	Proofs
	Security Requirements and Analysis
	Defining Identity

	Results with Top Confidence Scores
	Estimation of Dataset Similarity
	Estimating Model Similarity

