
A Robust Counting Sketch
for Data Plane Intrusion Detection

Sian Kim†, Changhun Jung†, Rhongho Jang∗, David Mohaisen‡ and DaeHun Nyang†
†Ewha Womans University, ∗Wayne State University, ‡University of Central Florida

†{ksy60a, mizno, nyang}@ewha.ac.kr, ∗r.jang@wayne.edu, ‡David.Mohaisen@ucf.edu

Abstract— Demands are increasing to measure per-flow statis-
tics in the data plane of high-speed switches. However, the
resource constraint of the data plane is the biggest challenge.
Although existing in-data plane solutions improve memory effi-
ciency by accommodating Zipfian distribution of network traffic,
they cannot adapt to various flow size distributions due to their
static data structure. In other words, they cannot provide robust
flow measurement under complex traffic patterns (e.g., under
attacks). Recent works suggest dynamic data structure manage-
ment schemes, but the high complexity is the major obstruction
for the data plane deployment. In this paper, we present Count-
Less (CL) sketch that enables robust and accurate network
measurement under a wide variety of traffic distributions without
dynamic data structure updates. Count-Less adopts a novel
sketch update strategy, called minimum update (CL-MU), which
approximates the conservative update strategy of Count-Min for
fitting into in-network switches. Not only theoretical proof on
CL-MU’s estimation but also comprehensive experimental results
are presented in terms of estimation accuracy and throughput of
CL-MU, compared to Count-Min (baseline), Elastic sketch, and
FCM sketch. More specifically, experiment results on security
applications including estimation errors under various skewness
parameters are provided. CL-MU is much more accurate in
all measurement tasks than Count-Min and outperforms FCM
sketch and Elastic sketch, state-of-the-art algorithms without the
help of any special hardware like TCAM. To prove its feasibility
in the data plane of a high-speed switch, CL-MU prototype on an
ASIC-based programmable switch (Tofino) is implemented in P4
language and evaluated. In terms of data plane latency, CL-MU
is faster than FCM, while consuming fewer resources such as
hash bits, SRAM, and ALU of a programmable switch.

I. INTRODUCTION

To detect malicious flows in networks, per-flow measure-
ment is essential. The network flow measurement can be done
either at a gateway or in the network. The gateway approach,
like network function virtualization, gives more flexibility
and scalability. However, the operational cost is high [39].
Recently, the networking community has been moving towards
in-network intrusion detection with programmable switches
to distribute the overhead and reduce the cost. Nevertheless,
the in-network approach also faces several challenges, such
as the constraints of hardware resources in switches, packet
processing speed, and the distribution of the traffic to be
measured. Especially, the traffic distribution is commonly
accepted to follow Zipfian distribution, but in reality, it varies

†The first two authors contributed equally to this work.

so widely across time and application type to show a variety
of Zipf parameters.

Current in-network measurement solutions for anomaly
detection fall into three categories: hardware-based, sampling-
based, and sketch-based approaches. Hardware-based ap-
proaches take advantage of the advanced ternary content-
addressable memory (TCAM) to perform non-delayed mea-
surement [46], thanks to its parallel searching capability, but
they have suffered from scalability issues owing to the scarcity
of TCAM (i.e., tens of megabytes). Thus, sampling-based
approaches become a viable option due to their simplicity and
scalability. However, the traffic sampling approach is often
criticized for the poor measurement accuracy or communi-
cation overhead with remote sample collectors [54]. Sketch-
based approaches are yet another promising option for per-
flow measurement [10], [11], [13], [15], [16], [27], [33], [34],
[37], [40], [47], [59], [61], [63], [64], [66], [58]. In general,
a sketch, as an approximate measurement solution, provides
a good estimation accuracy under computation and memory
constraints. Particularly, their lightweight encoding/decoding
functions guarantee low-latency packet processing in a switch’s
data plane.

Among many interesting sketches, Count-Min sketch [10]
is a simple yet powerful sketch that approximately counts a
large volume of data stream using a small amount of memory.
The simplicity of its operations (i.e., encoding and decoding)
and data structure have led to its use for multiple security
applications, such as DDoS, superspreader, heavy hitter, and
heavy changer detections [19], [21], [25], [60], [62], [64],
[65]. Moreover, several efforts have been made to improve
its accuracy by applying different encoding strategies [12],
[20], [51], [52]. On the other hand, the network community
had a long-term observation on the Zipfian (Zipf) flow size
distribution (FSD) of network traffic, thus motivated a series of
works to tune the Count-Min’s data structure for adapting the
distribution [58], [62], [63], [66]. Intuitively, these sketches use
a multi-layer filtering approach to break down and cascade flow
measurement based on the flow size and in a certain order (e.g.,
mouse→elephant or elephant→mouse), as shown in Fig. 1. To
adapt to the network FSD (i.e., Zipf), these approaches define
more smaller-sized counters (e.g., 8-bit) to the mouse layer
and assign fewer larger counters to the medium and elephant
layers (i.e., pyramid-shaped data structure). The above data
structure has to be tuned to a certain FSD by adjusting the
number of counters in each layer. Our observation is that
although this approach can improve the accuracy by assigning
more counters to mouse flows (i.e., hash collision reduction
and memory efficiency improvement), it cannot adapt to a
sudden change of the FSD (caused by attack flows) since the
data structure is fixed to be installed in the data plane before
performing a measurement task. In general, the data structure

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.23102
www.ndss-symposium.org

is configured based on the historical record of the on-site FSD
(i.e., usually benign network traffic). Unfortunately, given the
broad spectrum of attack patterns, the approach cannot provide
a robust flow measurement performance, in turn, a robust
performance of intrusion detection. While a sketch can be
configured to target a certain attack, it degrades the accuracy of
the benign flow measurement and may result in false negative
alarms (i.e., report benign flow as malicious). Therefore, it
is crucial for a sketch to provide consistent accuracy across
different FSDs.

In this paper, we answer an important question of how to
design a robust sketch to embrace various Zipf distributions,
including attack traffic, without dynamic adjustment of data
structure. Especially, we aim to design a sketch that can
robustly perform both benign and attack flow measurements,
with all the implementation constraints of in-network devices
(i.e., switches). Our sketch, called Count-Less, takes advantage
of the pyramid-shaped data structure but proposes a novel
update strategy, called the cross-layer counting with minimum
update, or minimum update in short. With minimum update,
Count-Less can flexibly utilize idle counters across all layers to
guarantee a better flow survival rate, under various FSDs (see
section V-C). Moreover, minimum update is a pipeline design
approximation of the famous conservative update strategy
of Count-Min, which improves the accuracy by minimizing
redundant counter updates in our sketch. Last but not least,
with the approximation, Count-Less is feasible in a switch’s
data plane for robust in-network flow measurement (see sec-
tion VI for details). Through comprehensive experiments,
Count-Less’s approach is shown to be superior in terms of
accuracy at a constant memory footprint and to be better in
terms of data plane latency and packet processing throughput
(see section V and VI). Our contributions are as follows:

1) We present Count-Less sketch that enables robust and
accurate network flow measurement under both attack
and normal traffic scenarios without dynamic adjust-
ment of data structure. Count-Less applies a novel
sketch update strategy, called minimum update (CL-
MU), which approximates the conservative update
strategy for fitting into in-network switches.

2) Comprehensive analyses, including theoretical proof
on the error bound of CL-MU and experimental anal-
ysis, are presented. Extensive experiments confirm
that CL-MU is superior to state-of-the-art schemes
such as Elastic sketch [62] and FCM [62] in flow
measurement and various security applications.

3) We verify CL-MU’s feasibility by implementing a
prototype in a programmable switch. The hardware
version’s performance is comparatively analyzed in
terms of resource consumption and latency. We fur-
ther reproduce the security applications in the data
plane to verify their correctness.

Organization: The rest of the paper is organized as follows:
we introduce our motivation, including arguments for and
against existing approaches, and the design choice of Count-
Less sketch in section II. In section III, we introduce our
Count-Less sketch with the analysis in section IV. We evaluate
Count-Less sketch in section V. We demonstrate our data
plane implementation of Count-Less sketch and evaluate it in

(a) Cold Filter (b) Elastic Sketch (c) Pyramid (FCM)

Fig. 1: Cascaded multi-sketch approaches with flow filters

section VI. Lastly, we review the literature in section VII, and
conclude in section VIII.

II. MOTIVATING COUNT-LESS

Network traffic’s Flow Size Distribution (FSD) is often
skewed, following the Zipf’s law. To date, there have been
several efforts to address inefficient data structures designed
for the skewed data streams [58], [62], [63], [66], as shown in
Fig. 1. These approaches all fall in the same category, namely
multi-stage filtering, a concept that was first introduced by
Estan et al. [15]. Recent works cascade a number of sketches
(i.e., shared counter/bit arrays) for a sequential flow filtering
according to their size, thus we call them the cascaded multi-
sketch approaches. To adapt to the Zipf FSD, these works
preferentially assign more small counters to mouse flow filter
and fewer large counters to medium and elephant filters.

As shown in Fig. 1(a), Cold Filter [66] concatenates two
counting bloom filters with small counters (e.g., 8-bit) for
filtering out mouse and medium flows sequentially, and finally
stores elephants in an additional full-size (i.e., 32-bit per
counter) data structure such as CM-CU, Space-Saving [41],
FlowRadar [36]. On the contrary, Elastic sketch [62] counts
and filters out elephant flows first using TCAM, then records
mouse flows using the Count-Min sketch with 8-bit coun-
ters, as shown Fig. 1(b). For systematic filtering, Pyramid
Sketch [63] presented a tree-based data structure that enlarges
the size of each layer’s counters as the decrements of the tree
depth, as shown in Fig. 1(c). Recently, FCM sketch [58] ex-
tended a similar idea with a multi-tree design and implemented
it in a programmable switch (state-of-the-art).

Intuitively, these approaches achieve better accuracy than
Count-Min mainly because of their data structure design
reflecting a skewness. Moreover, they can adapt to various
FSDs by reconfiguring parameters like adjusting the number of
counters or the number of layers, etc. For example, we might
be able to reconfigure the data structure actively based on
either historical records or attack detection results. However,
the sketch configured with the historical records cannot deal
with a sudden change of FSDs (e.g., attack traffic), and one
with the attack detection suffers from a high latency caused
by information gathering on the FSD of the ongoing attack
traffic for proper parameter selection. Also, a large number of
packets are missed while reconfiguring and installing sketches
in the data plane. Due to those issues, a data structure for a
sketch cannot be easily reconfigured on-the-fly without those

2

downsides. In the following, we explain our observations of
FSD’s change and our approach to embracing these changes.

A. FSD Changes Over Time and Under Attacks

Although the aforementioned cascaded multi-sketch ap-
proaches can work well with certain FSDs, they cannot per-
form the robust network flow measurement for three reasons.

1 FSD is unpredictable and varies over time, even for the
same stream. Fig. 2 shows FSDs of 49 one-minute traces for
each of UNSW [32] and CIC 2019 [1] datasets. Each grey
line stands for the FSD of one-minute trace in the figure. As
shown, FSDs can change a lot even for the same dataset over
time.

2 FSDs of attack and benign traffic are different. To explore
that, we analyze the FSDs of two benign datasets (CAIDA [2])
and nine malicious datasets (MACCDC [1], UNSW [32], and
CIC [55], [56]) by comparing them with datasets generated
by varying the Zipf skewness parameter from 0 to 5 [3].
Particularly, we use the Kolmogorov–Smirnov (KS) test to
calculate the similarity of realistic and self-generated datasets
and show the p-values in Fig. 3. A higher p-value means the
dataset is closer to a certain skewness. As shown, the CAIDA
(benign) traffic skewness is stably maintained between 1.5 and
2.5, whereas the skewness of attack traffic varies from 0.8 to
3.2. Therefore, the flow measurement accuracy of the cascaded
multi-sketch approaches may not be robust upon a sudden
change in the traffic patterns (i.e., under attack).

3 We observe that FSDs of attack traffic can be completely
different depending on how we define a flow (e.g., 1-, 2-, or 5-
tuple), as shown in Fig. 3. For example, MACCDC’s skewness
varies from 1 to 2.3, and CIC 2019’s skewness varies from 1.5
to 3 with different flow definitions.

Based on the above observations, we argue that even if a
sketch is tailored to the skewness of a Zipf distribution (usually
to the skewness of benign traffic), it is vulnerable to attack
traffic with various distributions (Zipf with different param-
eters). One may actively configure the sketch to adapt to a
certain attack FSD. However, the traffic distribution, especially
attack traffic, is extremely unpredictable. More importantly,
the sketch reconfiguration is extremely challenging for the in-
network switch’s data plane even with programmability.

B. In-network Switch and Data Plane Challenges

In-network programmable switches have emerged as a
promising direction in defending against large-scale network
attacks [4], [5], [31], [35], [39], [65]. Modern programmable
switches fulfill Internet Service Providers’ expectations for
high-speed packet processing capacities (e.g., 25.6 Tbps [6]),
high flexibility (e.g., customized function in the data plane),
and low cost in comparison to the legacy switches [39]. The
architectural design of the switch ASIC follows the Protocol
Independent Switch Architecture (PISA) [9], which consists of
a programmable parser and customizable match-action tables
(i.e., network function table). Besides, SRAM register memory
access (e.g., read/write) is supported via arithmetic logic units
(ALUs) laid on the different stages of the ASIC hardware
pipeline, allowing them to meet the functional requirements
of a simple sketch data structure (e.g., Count-Min).

(a) UNSW DDoS HTTP trace (b) CIC 2019 trace

Fig. 2: FSD changes over time for the same stream. 49 FSDs
of attack traces with one-minute window.

Fig. 3: FSDs of benign (CAIDA) and attack traces (MACCDC,
UNSW, and CIC) compared with Zipf skewness from 0 to
5. The similarity (p-value) of Kolmogorov–Smirnov test is
shown. A higher p-value means similar skewness. The traces
are varied by flow definitions (1-, 2-, and 5-tuple).

To adapt to the potential change of FSDs, a sketch can
reconfigure its data structure either online (based on a real-time
measured FSD) or offline (based on the FSD of a measurement
time window, i.e., epoch), both of which are challenging for in-
network programmable switches. To date, several efforts have
been made to dynamically reconfigure sketch data structure
online (e.g., real-time merge of counters) [7], [18], [24]. Never-
theless, these solutions’ algorithms were designed to work with
general-purpose processors (i.e., CPU environments). Unlike
in the general-purpose processors, however, a double-access
to the same register, which is often required by the dynamic
solutions, is not possible due to the pipeline design of the
switch data plane [8], [31], [65]. Moreover, the high com-
plexity of the online data structure configuration unavoidably
adds overhead to the packet processing pipeline, which is
unacceptable for high-speed switches. The offline approach
reconfigures a sketch’s data structure based on the FSD from
the previous epoch. For instance, FCM can update the shape
of its pyramid data structure to adapt to different FSDs. We
note that such operations must be followed by memory re-
allocations of the data structure in the data plane, requiring
the entire data plane program to be recompiled and reloaded
(i.e., a time-consuming process, say a few seconds). Therefore,
the offline approach cannot adapt to FSDs changes in a timely
manner.

C. Our Approach in a Nutshell

The eventual goal of Count-Less is to be robust to a broad
range of traffic FSDs without reconfiguring the data structure
in a switch’s data plane. To adapt to various FSDs with the
fixed data structure, a novel encoding/decoding algorithm is

3

proposed for Count-Less based on an advanced data struc-
ture, called the pyramid-shape multi-layer counter. A similar
data structure has been used in the past to reflect the Zipf
distribution of traffic [58], [62], [63], [66]. Previous solutions
constrained flows in a single layer and cascaded the counter
value to the next layer when the current layer’s counter is
overflowed. Unlike these algorithms, our unique contribution,
called the cross-layer update with minimum update algorithm,
allows flows to utilize all the available counters across all
layers for better survivability. Therefore, whatever an FSD
looks like, the survival rate of each flow increases substantially
(see section IV). Moreover, the minimum update strategy guar-
antees counters in each layer are not to be updated redundantly
by a single packet. We stress that a different combination of
data structures and encoding algorithms results in much more
favorable behaviors of a sketch. To overcome the data plane
constraints, we propose an ASIC-friendly approximation (i.e.,
pipeline design) for our optimal solution to fit Count-Less into
the switch’s data plane (see sections III and VI) for details.

III. THE COUNT-LESS SKETCH: DESIGN SPACE

In the following, we introduce Count-Less with our
observations and design choices.

A. Data Structure

Count-Less’s data structure is similar to Pyramid [63] and
FCM [58]. A key idea in our data structure is splitting counters
into smaller pieces to reduce the mouse flows’ collision rate.

As shown in Fig. 4(a), Count-Less’s consists of d layers of
counter arrays, where each layer differentiates both the counter
and the array size. For the counter size, the highest layer
of Count-Less uses 32-bit counters for a sufficient counting
range. The counter size is halved for each layer while going
down to the lowest layer (left in the figure). With a large
number of small counters at the lowest layer, the hash collision
probability of flows at each layer is reduced significantly. Other
works [58], [63] used a factor r to let a lower layer array
possess r times more counters than its upper layer. In this
work, we use r = 4 and d = 3 to fix the data structure and
apply a novel flow encoding strategy to embrace a variety of
FSDs.

B. Update Strategy and Encoding Algorithm

To explore the design space, we first consider our data
structure choice (i.e., pyramid-shape) with the Count-Min’s
update strategy. The strategy updates a flow’s counters at all
layers regardless of the counter values (hereafter CL-CM), as
shown in Fig. 4(a) (see CL-CM analysis in Section V-D).

CL-CM is expected to be more accurate than the standard
Count-Min for mouse flow (e.g., ≤255) estimations but has
higher relative errors for elephant flows (e.g., >255). In terms
of the data structure, the mouse flow collision rate can be
reduced significantly since more counters are assigned at layer-
1. Algorithm-wise, the all-layer update strategy allows mouse
flows to be hosted by idle counters at all layers for having more
chances to survive. Nevertheless, CL-CM will have poorer
accuracy for elephant flows because the massive amount of
mouse flows will flood counters in all layers regardless of the
counter value, increasing the noise level of larger flows. Thus,

Algorithm 1: Encoding and Decoding
1 Inputs: Layer d, width of each layer wl.
2 valmin =INT_MAX;
3 for l=1 to d do
4 idxl = hashl(pkt) mod wl;
5 if Cl[idxl] ̸= overflow then
6 if Cl[idxl] < valmin then
7 valmin = ++ Cl[idxl];
8 end
9 end

10 end
11 Return valmin; /* Decoding on the fly*/

the first challenge is how to prevent mouse flows from flooding
other flows in the cross-layer update mechanism?

Minimum Update: Inspired by the conservative update strat-
egy of Count-Min [15], which updates only the smallest
among three counters in three layers for a flow, we apply the
conservative update with the pyramid-shaped data structure
(CL-CU hereafter, see the analysis in Section V-D). While
we consider CL-CU to be optimal in terms of accuracy, it
is infeasible for a switch’s data plane because of its pipeline
design. Particularly, the conservative update algorithm first
locates the smallest counter by reading d counters of a flow
from all layers (i.e., different memory region) and has to revisit
one of the counters for the update operation. However, the
data plane works as a pipeline, which means double-access to
a memory region is not allowed after the memory processing
stage [8], [31], [65]. Therefore, the next challenge becomes
how to update the minimal counter value across all layers
without memory double-access for data plane feasibility?

Algorithm 1 and Fig. 4 show the encoding and decoding
processes of Count-Less and examples of the minimum update.
As shown in Algorithm 1, CL-MU’s encoding and decoding
are one combined operation, thus an estimation of a flow can
be obtained while encoding, which enables the switch to detect
anomalies on-the-fly (line 11). For each packet of a flow, CL-
MU updates one counter at each layer following the lowest-to-
highest order (line 3). Moreover, instead of updating counters
at all layers as in Count-Min, CL-MU maintains a variable
for storing the minimal value (valmin) upon the iterated layer
(lines 2 and 7). Then, the minimum update is performed, which
updates the layer only if the counter (Cl[idxl]) is smaller than
valmin (lines 6–7). The counter update event at a layer will be
skipped when the layer counter exceeds its counting capacity
(line 5).

Fig. 4 depicts CL-MU’s four encoding scenarios (update):
cross-layer, overflow, minimum, and worst-case update.

(a) Cross-layer: This scenario is shown in Fig. 4(a). For each
packet, CL-MU updates its counters sequentially from layer-
1 to layer-3 (1⃝→ 2⃝→ 3⃝). As shown, once the first layer
is increased by “1”, the temporal minimal value (valmin)
becomes 16, according to Algorithm 1. Since the second
layer counter is smaller than valmin, the counter is increased
and valmin remains unchanged. This process repeats until
the last layer. As such, CL-MU’s encoding is different from
the cascading approach that stops the layer updates upon a
successful counter update.

(b) Counter overflow: This scenario is shown in Fig. 4(b).
The figure on the left shows a scenario where the first layer

4

counter is overflowed (i.e., =28-1). In this case, layer-1 counter
is skipped and the counter updates continue for the rest of
layers with CL-MU’s cross-layer update logic. We note that a
counter is not decodable if it is overflowed, which means all
flows that use the counter have to be decoded from the next
layers. The right figure shows a case that layer-1 and layer-
2 are overflowed and the packet updates layer-3 counter only.
This scenario infers that the current flow may share the layer-2
counter with a larger flow that uses a different layer-3 counter.
To sum up, both cases illustrate that CL-MU allows a smaller
flow to use counters in the upper layers for better survivability
(i.e., to be counted with a lower noise).

(c) Minimum update: This scenario is shown in Fig. 4(c).
Intuitively, minimum update is an approximate version of
the conservative update. The conservative update, however,
cannot be implemented in an ASIC-based switch because the
register cannot be read twice. To address the issue and get
a similar result as the conservative update, minimum update
maintains the current minimal value, not the global minimal
value, while sequentially updating counters starting from layer-
1. The update proceeds from the lower layer to the upper layer,
because the lower layer has a smaller size but a larger number
of counters. This means that a lower layer is likely to have a
minimal value, and that the sequential update of the minimal
value is likely to give us a value close to the global minimal.

As shown in Fig. 4(c)’s first part, per 1⃝, layer-1 is not
saturated, so it is updated, and the sequential minimal value
becomes 201. In 2⃝, the value of layer-2 is greater than the
minimal value, so it is not updated. Upon that, layer-3 is
checked, where the value is smaller than 201, thus incremented
by 1. In the second figure, and upon updating layer-1 and layer-
2, per 3⃝, layer-3 has a larger value than the minimal value,
and so it is not updated. This shows that unlike CM sketch
(indefinite update) or FCM sketch (cascade update), minimum
update prevents elephants from being contaminated by mice.

(d) Worst-case This scenario occurs when the counter of the
upper layer has the smallest value, which is shown in Fig. 4(d).
Per 1⃝, the minimal value after layer-1 update is 106. Per 2⃝,
we update layer-2 and the minimal value will be 101, and
layer-3 is updated as well, per 3⃝. With the conservative update
that updates with the global minimal value, only the value of
layer-3 is increased. With minimum update, the values at layer-
1 and layer-2 perform undesirable updates. However, due to
the nature of Count-Less, there are fewer collisions and less
error in the lower layer, since it has more counters and smaller
counter size. Due to that, there is a high probability for having
a smaller value in the lower layer, and the probability of such
a worst-case update is small.

C. Advantages and Costs

Unlike the multi-sketch cascaded approaches, which en-
code each flow at a single layer and cascade the overflowed
counter value to the next layer, our cross-layer update strategy
improves the flow survival rate by allowing all layers to be
utilized for flows of any size. Meanwhile, by minimizing re-
dundant counter updates across layers (i.e., minimum update),
our approach achieves a tighter error bound compared to the
Count-Min, which updates counters at all layers regardless of
counter values. The flexible counter use in all layers allows
CL-MU to accommodate a variety of FSDs.

15+1

15+1

15+1

d1 d2 d3

𝒇

16w 4w w

①

③

…

.
.

.
.

②MIN = 16

(a) Cross-layer update

255

812+1

698+1

d1 d2 d3

𝒇

①
③

…

. .
 .

.

②

255

65536

702+1

d1 d2 d3

𝒇

①
③

…

. .
 .

.

②

MIN = 813

MIN = 699 MIN = 703

(b) Overflow update

200+1

240

190+1

𝒇

d1 d2 d3

①

②

③

…

. .
 .

.

150+1

150+1

681

𝒇

d1 d2 d3

①

②

③

…

. .
 .

.MIN = 201
MIN = 191

MIN = 151

(c) Minimum update

105+1
100+1

80+1

𝒇

d1 d2 d3

① ③

…

Undesired

Update

. .
 .

.

②

MIN = 106

MIN = 101

(d) Worst case update

Fig. 4: Examples of update operations (1⃝→ 2⃝→ 3⃝). (a)
shows Count-Less (CL-MU) allows mouse flows (≤255) to
survive at multiple layers with idle counters. (b) illustrates
that saturated layers are not updated in the overflow case.
(c) depicts that minimum update protects larger flows from
mouse flow flooding. (d) demonstrates the worst case update
scenario of minimum update due to the unawareness of the
global minimal value.

The conservative update algorithm requires awareness of
the global minimal value across all layers, which triggers
the unacceptable double-access of the smallest counter for
the pipeline-based switches. To address this issue, CL-MU
approximates the global minimal value with the temporal
minimal value upon the iterated layers. As shown in Fig. 4(d),
this approximation sometimes results in undesired update at
the initial layer (i.e., unawareness of the global minimum).
However, we note that the approximation-caused error is neg-
ligible (see section V), whereas making the minimum update
feasible in the data plane.

IV. THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis of Count-
Less (CL-MU). In particular, the effects of the combination of
pyramid data structure and minimum update are presented in
terms of theoretical error bounds and probability. Since Count-
Less follows the same update principle of the cross-layer
update, we take advantage of Count-Min’s theory to calculate
the error and the probability. Table I shows the notations. From
[10], Count-Min with an array of counters of width w = e/ϵ
and depth d = ln 1/δ has an error bound for a query f for
each row as follows [10]; given parameters (ϵ, δ), where e is
Euler’s number.

Configuration of Count-Less sketch: Given the parameters
(ϵd, δ), and unlike Count-Min sketch, Count-Less with mini-

5

TABLE I: Parameters used in Count-Less (CL-MU) sketch
Params Description

n the total number of flows
i a flow ID
j a layer of Count-Less
d the number of layers
wj the width (i.e., number of counters) of a layer-j

cnt[d][wj] the counter array for Count-Less
δ the probability of the ϵd-bounded error
ϵj the error bound factor of the j-th layer
r the ratio of width btw adjacent layers (r = 4)
Tj the counter’s limit of a layer-j (Tj = 2j+1 − 1)
ai the actual size of a flow i
âi the estimated size of a flow i
a⃗ the vector of ai’s
aji the actual size of a flow i in the j-th layer
a⃗j the vector of ai’s in the j-th layer
âji the estimated size of i recorded in the j-th layer

mum update has a variable number of counters for each layer;
that is, wj = rd−jwd counters for layer j = 1, 2, . . . , d, and
d = ln 1/δ layers for recording flow sizes. Here, wd = e/ϵd is
the number of counters in the last (d-th) layer, and r is Count-
Less’s expansion factor, for which four is recommended in
this paper. Each counter in the j-th layer is 2j+1-bit long.
Because the counters in Count-Less’s j-th layer has 2j+1 bits,
the counting limit in each layer is 2j+1 − 1. We denote the
limits as T1, T2, . . . , Td−1 for the d − 1 layers, respectively
(T0 = 1 for notational convenience). Because of the limits,
the total number of the packets inserted (or encoded) varies
by layer, and is denoted by:

∥a⃗j∥1′
def
=

n∑
k=1,1≤aj

k≤Tj

ajk, (1)

We note that every L1 norm of a in d layers are all the same
for Count-Min. For cascaded sketches, such as Cold Filter and
Pyramid sketch, only those flows with size that ranges from
Tj−1 to Tj are encoded, unlike Count-Less, which encodes
flows from 1 to Tj by adopting cross-layer update. Because
not every ajk is encoded additively and a mouse flow is always
overwritten by an elephant flow by the minimum update, the
actual value of ∥a⃗j∥1′ is smaller than in the above definition.

In the following theoretical analysis, we focus on the
probability to guarantee an estimation error bound. More
specifically, targeting the estimation error bound of Count-Min
sketch with the same number of layers and the same error
bound factor, we prove what the probability is to guarantee
the error bound in Count-Less, which is ϵd∥a⃗d∥1′ . Also, a
discussion on how much probability gain can be obtained by
Count-Less compared to Count-Min is followed.

Lemma 1. Let Xi,j be Count-Less’s additive error of a flow
i in the j-th layer, and ϵd is the error factor of the d-th layer.
Then, the probability of the estimation to be bounded by ϵd
fraction of the total packets encoded in the d-th layer is

Pr[Xi,j > ϵd∥a⃗d∥1′] <
ϵj
eϵd

Proof: Let aji be the actual flow size of the flow i at layer
j. Count-Less’s estimation of ai is âi = minj(cnt[j, hj(i)]),
where hj(i) ∈ [1, wj = e/ϵj], j ∈ [1, d = ln 1/δ]. Because of
the additive errors by other flows, cnt[j, hj(i)] = aji + Xi,j ,
where Xi,j is a random variable representing the added error
to aji in the j-th layer.

To analyze the error term, we introduce an indicator
variable Ii,k,j to indicate if there is a hash collision in the
index for two flows i and k (k ̸= i) with the hash function hj :

Ii,k,j = 1 ↔ hj(i) = hj(k) for i ̸= k and Ii,k,j
= 0 otherwise

(2)

The indicator Ii,k,j being a binary random variable, the expec-
tation of Ii,k,j is the probability that Ii,k,j = 1:

E(Ii,k,j) = Pr [hj(i)=hj(k)] =
1

range(hj)
=

1

wj
=

ϵj
e
, (3)

assuming that hj() is chosen from a family of universal hash
functions. Using Ii,k,j , we can express the error term Xi,j as:

Xi,j =

n∑
k=1

Ii,k,j ∗ ajk =

n∑
k=1|hj(i)=hj(k),1≤aj

k≤Tj

ajk. (4)

Because Ii,k,j and ak are independent, the expectation of
the error is calculated as follows:

E(Xi,j) = E(

n∑
k=1,1≤aj

k≤Tj

Ii,k,j ∗ ajk)

=

n∑
k=1,1≤aj

k≤Tj

ajk ∗ E(Ii,k,j),

(5)

Owing to equation (3), we can write the expectation as:

E(Xi,j) =

n∑
k=1,1≤aj

k≤Tj

ajk ∗ E(Ii,k,j) = ∥a⃗j∥1′ ∗ ϵj/e (6)

By the Markov inequality and equation (6), the probability
that the estimation error at a layer j is greater than ϵj∥a⃗j∥1′
is then given as follows:

Pr[Xi,j > ϵd∥a⃗d∥1′] ≤ Pr[Xi,j ≥ ϵd∥a⃗d∥1′]

≤ ϵj∥a⃗j∥1′
eϵd∥a⃗d∥1′

<
ϵj∥a⃗d∥1′
eϵd∥a⃗d∥1′

=
ϵj
eϵd

(7)

■
Lemma 1 considers only the noise from a single layer

independently, but Count-Less consists of d layers, which
requires analysis of the probability considering all the layers
for decoding error. Other than that, the probabilities are all
different from each layer. Following theorems show the whole
probability of the target error bound. To do so, we separate
cases into two such as flow groups of less than or equal to
Td−1 and of greater than Td−1, and show their probability
respectively.

Theorem 1 (Effect of Limited Cross Layer Update for Small
flows). For a flow i of which the size ranges from Tj−1 to Tj

for 1 ≤ j ≤ d − 1, Count-Less estimates ai by the following
error bound with at least the following probability:

Pr[∃j,Xi,j < ϵd∥a⃗d∥1′] > 1− γδ

e1−jrdc

where c is a constant of 1 ≤ c ≤ 2, and γ(≤ 1) is the fraction
of packets of the flows whose size range from Tj−1 to Tj among
the entire packets.

6

Proof: In Count-Less, the number of layers used by a flow
varies depending on its size according to the cross-layer update
strategy. Among d layers, a flow of which the size ranges from
1 to T1 uses all the d layers, while one from T1 to T2 uses d−1
layers because the lowest layer is saturated quickly and does
not update it anymore. Similarly, a flow of Td−1 or above
uses only the highest layer of Count-Less. The probability
that the error term is bounded is thus all different according
to a flow size. We can divide the probability and the error
size estimation into d cases with the corresponding thresholds
(T1, T2, . . . , Td−1). However, we will show only two cases:
the first case (i.e., the smallest flow group (< T1), the j-th
smallest flow group (between Tj−1 and Tj), and the mid-sized
flow group (≥ Td−1), without any loss of generality.

Case 1) We consider a flow i in the smallest group that is
less than T1. In this case, a flow i does not saturate even the
lowest layer and has d layers to record its size. By the pairwise
independent hash assumption and Lemma 1, the probability
that for all layers the error is greater than ϵd∥a⃗d∥1′ is:

Pr[∀j,Xi,j > ϵd∥a⃗d∥1′] <
d∏

j=1

E(Xi,j)

ϵd∥a⃗d∥1′
=

1

ed

d∏
j=1

ϵj∥a⃗j∥1′
ϵd∥a⃗d∥1′

.

(8)
Since ϵj = e/wj , Count-Less’s pyramid shaped data structure
ensure ϵj = ϵd/r

d−j . Moreover, ∥a⃗j∥1′ << ∥a⃗d∥1′ , because
the elephant flows cannot reside in the j-th layer and the mouse
flows only can if not collided with larger flows. Therefore,

Pr[∀j,Xi,j > ϵd∥a⃗d∥1′] <
1

ed

d∏
j=1

1

rd−j

∥a⃗j∥1′
∥a⃗d∥1′

<
δ

rd2 . (9)

The overestimation probability is then bounded by γδ/rd
2

with the skewed data structure of Count-Less and the cross-
layer update. Considering that Count-Less estimates ai by the
minimum among the counters as Count-Min does, the error of
the j-th layer is bounded as follows:

âi < ai + ϵd∥a⃗d∥1′ (10)

with probability at least:

Pr[∃j,Xi,j < ϵd∥a⃗d∥1′] > 1− δ

rd2 , (11)

Case 2) For size ranging from Tj−1 to Tj , a flow i in this group
already saturates the lower j−1 layers, and it is allowed to use
d− j+1 layers. Due to Count-Less’s minimum update policy,
the flow group overrides any flow in the smaller flow groups,
while larger flows saturate and do not use this layer anymore.
From the view of a flow in this group, this case is equivalent to
having the layer for its exclusive use, while sharing counters
with smaller flows that are not collided. Thus, for a flow i, the
number of packets of interest in this layer is ∥a⃗j∥1′ .

The j-th and j + 1, . . . , d-th layers are used for recording
the flow size of this group, thus the probability that the error
in all d− j+1 layers goes beyond the bound of Lemma 1 is:

Pr[∀s ∈ [j, . . . , d], Xi,s > ϵd∥a⃗d∥1′s] <
d∏

s=j

E(Xi,s)

ϵd∥a⃗d∥1′
. (12)

Similarly,

Pr[∀j,Xi,j > ϵd∥a⃗d∥1′] <
1

ed−j+1

d∏
s=j

1

rd−j

∥a⃗j∥1′
∥a⃗d∥1′

<
γδ

e1−jrdc ,

(13)
where c is a constant of 1 < c < 2, and γ is the fraction
of packets of the flows of which size range from Tj−1 to Tj

among the entire packets. Count-Less, therefore, estimates ai
as follows:

âi < ai + ϵd∥a⃗d∥1′ , (14)

with probability of at least

Pr[∃j,Xi,j < ϵd∥a⃗d∥1′] > 1− γδ

e1−jrdc . (15)

■
The recommended parameters for Count-Less are r = 4

and d = 3, which makes the probability much higher than
Count-Min’s 1− δ.

Theorem 2 (Effect of Minimum Update for Large flows). For
a flow i of which the size ranges from Td−1 to Td, Count-Less
estimates ai by the following error bound with at least the
following probability:

Pr[∃j,Xi,d < ϵd∥a⃗d∥1′] > 1− γ

e

where c is a constant of 1 ≤ c ≤ 2, and γ(≤ 1) is the
fraction of packets of the flows whose size range from Td−1 to
Td among the entire packets.

Proof: For a flow of size ranging from Td−1 to Td, a flow
i is in the largest group, which saturates every layer except
the last, leaving one layer to record its size. Due to Count-
Less’s minimum update policy, the flow group overrides any
flow in smaller flow groups. From the viewpoint of a flow
in this group, this case is equivalent to having this layer for
its exclusive use. However, unlike the multi-stage sketches,
smaller flows without hash collision with the large flows still
can record their sizes in this layer.

As such, to calculate the probability of the estimation
error, we do not need to consider all the flows that reside
in the highest layer (thanks to the minimum update strategy).
It is, however, sufficient to consider only the elephant flows of
which size is greater than Td−1, resulting in:

Pr[Xi,d > ϵd∥a⃗d∥1′] <
E(Xi,d)

ϵd∥a⃗d∥1′
=

ϵdγ

eϵd
=

γ

e
, (16)

where γ is the fraction of packets of the elephant flows among
the entire packets, which is small. Thus, Count-Less estimates
ai as:

âi < ai + ϵd∥a⃗d∥1′ , (17)

with a probability of at least:

Pr[∃j,Xi,d < ϵd∥a⃗d∥1′] > 1− γ

e
(18)

■

Considering that wd is set as large as Count-Min’s w, and
the highest layer’s counter size is 32-bits, γ/e is smaller than
δ and the number of counters that can be exclusively taken
is large. Consequently, flows in this group have hardly any
collision in the layer, as will be shown in section V-D.

7

V. EVALUATING COUNT-LESS

In this section, we first analyze Count-Less’s (CL’s) ro-
bustness under various FSDs without adjusting data structure
dynamically. Then, we provide a deep analysis of our novel
encoding algorithm “minimum update” (CL-MU). Finally, we
provide the evaluation of CL-MU with six security appli-
cations. All analyses are presented in contrast with various
solutions, including (1) standard (Count-Min or CM), (2) naı̈ve
(CL-CM having the pyramid-shaped data structure with Count-
Min update), (3) optimal (CL-CU having the pyramid shaped
data structure with conservative update), and (4) state-of-the-
art sketches (FCM [58] or Elastic [62]).

A. Parameters and Dataset

To show the memory impact, we vary the memory from
0.2 MB to 1 MB for all schemes. For CL-MU, we use a fixed
parameter set (i.e., d = 3 and r = 4. Refer to Appendix E for
the evaluation results with various parameters.) For fairness,
we set the same number of layers (d = 3) for all multi-layer-
based schemes, including all CM-based schemes, CL-MU, and
FCM. When comparing CL-MU with FCM, we use the same
layer expansion factor (r = 4 in CL-MU and k = 4 in FCM)
for data structure (memory) configurations. Also, FCM uses
two trees following the original work’s setting [58]. For Elastic,
we assign 150 KB of memory for its heavy part (i.e., hash table
or TCAM) and the remaining memory is assigned for the light
part (i.e., CM sketch with d = 1 in SRAM), as suggested in
the original work [62]. We note that CL-MU and FCM do not
require the support of TCAM and can work with SRAM only
in a switch setting. In our experiments, we use three different
datasets, which are as follows:

1 To explore the robustness of CL-MU, we create network
traces by varying the Zipf skewness from 1.0 to 3.4 [3]. Each
trace contains 30 M packets. The traces are used to measure
flow estimation accuracy of CL-MU under various skewnesses
without data structure reconfiguration (see section V-C).

2 To show the characteristics of CL-MU, we conduct in-
depth analysis of CL-MU with one-minute real-world trace
(i.e., CAIDA [2]) including 31.27M packets with 1.88M flows
(see section V-D). In this work, we define the mouse flows
as a flow with ≤ 255 packets and the elephant flows as those
with >255 packets. As a result, the one-minute trace contains
99.2% of the mouse flows and 0.8% of the elephant flows.

3 Finally, we use CL-MU to perform security mea-
surement tasks with three datasets, the CAIDA dataset
and two combined datasets that mixes the benign CAIDA
trace (skewness≈2.0) with mouse-heavy (skewness≈3.0) and
elephant-heavy (skewness≈1.0) attack traces [32], [56], re-
spectively. For the benign trace, we use 32 continuous five-
second CAIDA sub-traces by considering each sub-trace to be
an epoch. Each sub-trace contains 2.5M to 2.7M packets with
226K to 244K distinct 5-tuple flows. On average, 99.15% of
the flows are mice and 0.85% of them are elephants. To add a
major impact to the benign trace, the attack traces match the
total number of packets with the benign trace (see section V-E).

B. Evaluation Metrics

We use six metrics to evaluate CL-MU: Average Rela-
tive Error (ARE), Flow Survival Rate (FSR), Relative Error

(RE), Weighted Mean Relative Error (WMRE), F1 Score, and
Throughput, which we define in the following.

ARE: this is the averaged relative error, 1
n

∑n
i=1 |fi − f̂i|/fi,

where n is the number of flows and fi and f̂i are the actual
and estimated flow sizes, respectively. ARE is used to evaluate
the accuracy of the flow size estimation.

FSR: this metric is defined as the fraction of flows that are
below a certain relative error after decoding. Considering the
different noise impacts for different sized flows, we break
the flow sizes into two ranges, mouse (1∼254) and elephant
(255∼), and consider a flow as survived if the estimated
relative error is below 0.1 and 0.01, respectively.

RE: this metric is defined as
∣∣1− estimated

actual

∣∣, with the actual
and estimated values, respectively. We use RE to evaluate the
accuracy of the flow size, cardinality, and entropy estimations.

WMRE: this metric is defined as
∑z

i=1|ni−n̂i|∑z
i=1(

ni+n̂i
2)

, where z is the
maximum flow size, ni and n̂i are the actual and estimated
numbers of flow size i, respectively [33]. We use WMRE to
evaluate the accuracy of the flow size distribution.

F1 Score: this metric is defined as 2× precision×recall
precision+recall , where

the precision is the ratio of the true instances among those
reported and the recall is the ratio of the reported true
instances. F1 score is used to evaluate the accuracy of the
heavy hitter and heavy changer.

Throughput: this metric indicates the packet processing capac-
ity in million packets per second (Mpps) (see appendix B).

C. Robustness of Count-Less

We start evaluation with flow measurement robustness.
Robust in-network measurement functions must have stable
performance under various FSDs even in extreme cases (i.e.,
volumetric attacks). Therefore, we create dataset varying Zipf
skewness (see section V-A 1)) to examine the accuracy (i.e.,
ARE) of CL-MU sketch with a small memory space (i.e., 0.2
MB). For comparison, we use two state-of-the-art schemes,
FCM [58] and Elastic [62] sketches, where the former varies
its data structure parameter from k = 4 to k = 32 and the
latter assigns 150 KB memory space for its (TCAM-assisted)
Top-K filter.

Recall that CL-MU expects to use cross-layer update
strategy to enable flexible resource usage and minimum update
algorithm to reduce all counters’ noise level, and eventually
provides better accuracy under various FSDs without data
structure reconfiguration. Table II shows the accuracy of three
schemes varying Zipf skewness. As shown, CL-MU shows the
best accuracy for most cases except for the skewness 1.0 and
1.2. We note that the smaller skewness means more elephant
flows exist in the network trace, thus the TCAM-based (i.e.,
exact counting) elephant filter of Elastic sketch unsurprisingly
shows the best accuracy among three sketches. However, as the
skewness increases, CL-MU outperforms all other schemes and
consistently provides the best accuracy for skewness 1.4∼3.4.
For FCM, a larger parameter k means more friendly its
data structure to mouse flows (i.e., higher Zipf skewness).
However, FCM’s accuracy decreases significantly for higher
k and skewness (i.e., 2.6∼3.4), as shown in Table II. This is

8

TABLE II: ARE according to the trace’s Zipf skewness. Boldface represents CL-MU, and the shaded ones are the best.
Skewness 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4
CL-MU 0.01 1.48 3.52 15.14 47.97 102.38 151.41 184.69 203.40 216.39 223.00 230.40 231.07
FCM (k = 4) 0.04 1.08 7.38 25.45 83.56 232.92 605.06 851.19 968.37 1041.11 1077.61 1116.88 1121.75
FCM (k = 8) 0.38 0.46 4.10 16.94 58.49 155.10 355.62 743.13 927.85 1017.87 1056.52 1102.57 1100.71
FCM (k = 16) 3.32 2.82 4.76 16.21 55.49 142.29 289.47 623.66 956.71 1145.30 1204.69 1275.16 1260.22
FCM (k = 32) 2.25 1.05 6.60 21.67 66.30 163.90 315.45 653.32 1080.33 1421.29 1552.29 1693.87 1661.38
Elastic 0.00 0.13 4.27 19.89 78.17 163.80 198.40 208.86 216.99 223.38 228.52 232.69 236.11

(a) Counter distribution (b) Per-counter bit waste

Fig. 5: (a) and (b) compares CM, CL (CL-CM and CL-MU),
and FCM in terms of the counter distribution and bit waste
per counter, respectively. For fairness, CL and FCM have the
same expansion factor (r = 4 in CL and k = 4 in FCM).

because its cascaded-sketch approach leads to a quick overflow
of lower layer counters and all flows will be encoded/decoded
at its last layer with a high collision rate. Therefore, FCM
with k=4, which has relatively more counters at the last layer
compared to FCM with larger k’s, shows better accuracy. To
these ends, Count-Less with cross-layer update and minimum
update (i.e., CL-MU) shows the best robustness in terms of
flow measurement accuracy, thus CL-MU is able to embrace
dynamic traffic changes.

D. Analysis of Count-Less

We conduct an in-depth analysis to explain the robustness
of Count-Less (CL-MU). The results are compared with the
standard Count-Min (CM), our naı̈ve approach (CL-CM), our
optimal (CL-CU), and the state-of-the-art works (FCM [58]
and Elastic [62]). In our analytical experiments of cross-layer
and minimum updates, we fix the memory space to 0.6 MB
(the median for 0.2∼1.0 MB with 0.2 increments) for each
sketch to count a one-minute CAIDA trace (see §V-A 2) for
demonstrating CL-MU’s characteristics. In our synergy effect
experiment, we vary the memory space from 0.2 MB to 1.0 MB
to show the memory impact. When comparing CL-MU with
FCM, we conduct a layer-wise analysis to show the behaviors
of their update strategies. Since Elastic uses one layer for its
sketch (i.e., d = 1), we compare only its overall performance
(i.e., ARE and FSR) with CL-MU and FCM sketches.

Fig. 5(a) shows the comparison of CM, CL (CL-CM
and CL-MU), and FCM sketches in terms of the counter
distribution with 0.2 MB memory (the distribution ratio for
different memory sizes (0.4∼1.0 MB) is the same). As shown
in Fig. 5(a), CM’s data structure uniformly distributes the full-
size (i.e., 32-bit) counters into three layers, whereas FCM
and CL maintain counters in a pyramid-shape with smaller
counters at lower layers (i.e., 16-bit counters at layer-2 and
8-bit counters at layer-1). The difference in the data structure
results in FCM and CL having more counters than CM given
the same memory space. Moreover, the decreased counter size
at the lower layers can avoid the memory waste compared with
CM, where most memory is reserved as the most significant

(a) CL-MU sketch (b) FCM sketch

Fig. 6: Layer-wise comparison of CL-MU and FCM in terms
of the bit-wise counter utilization.

bits (MSBs) of its full-size counters but never used. As can
be seen in Fig. 5(b), about 89% of CM’s counters are wasting
more than 24 MSBs, which is equivalent to more than 75%
of the entire memory. The pyramid-shaped data structure
shows a much better memory utilization rate even though
we still can observe the difference in memory usage among
these approaches. We note that the difference in memory
utilization is caused by their different flow encoding strategies.
Compared with FCM, CL-MU and CL-CM achieve better
memory efficiency due to the cross-layer update strategy.
While CL-CM’s memory usage is slightly higher than CL-MU,
it is because CL-CM updates all layers’ counters regardless of
counter values leading to a high noise level. Unlike CL-CM,
CL-MU applies a unique minimum update strategy to reduce
the noise while performing the cross-layer update.

(1) Cross-layer update for collision relaxation: Fig. 6
compares the bit-wise counter usage in three layers of FCM
and CL-MU. We collected the counter values in each layer
and derived the bit-wise usage of counters (e.g., counter value
7 (0bx111) uses 3 bits of the counter). The high bit use rate
can be employed to infer a hash collision rate, where a higher
bit usage of counters indicates more collisions, since the flows
share the counters. We note that due to the Zipf skewness of
the CAIDA trace (i.e., skewness of ≈2.0), a small number of
elephant flows and a large number of mouse flows exist in the
dataset. As shown in Fig. 6(a), CL-MU consumes less than 8
bits in 83.9% of the counters at layer-2 and 49.9% of counters
at layer-3. The result infers that CL-MU encodes mouse flows
(i.e., < 28−1) not only at layer-1 but also at layer-2 and layer-
3, thanks to the cross-layer update, which allows mouse flows
to use idle counters at the upper layers to survive. In other
words, the cross-layer update relaxes the hash collisions as a
flow can be decoded from multiple layers. Therefore, CL-MU
is robust even in an extreme case of mouse flow explosion
(i.e., Zipf skewness>4.0). In contrast, the cascaded sketch-
based FCM wastes 66.5% of counters at layer-2 and 99.9% of
counters at layer-3, since it strictly partitions flow estimation
in each layer based on the flow size. Therefore, FCM’s flow
collision rate becomes higher leading to a poor average relative
error compared to CL-MU (see Fig. 7).

9

(a) Mouse flows (size ≤ 255) (b) Elephant flows (size > 255)

Fig. 7: CDF of AREs of mouse and elephant flows.

We note that the expected flow collision rate (or the
expected number of collisions) can be given as C ≈ nf (nf−1)

2M ,
where nf is the number of distinct flows and M is the number
of the possible encoding locations (i.e., counters) in the data
structure. Since FCM encodes flows at a single layer at a time,
the MFCM is the number of counters in layer-1 in any case.
On the contrary, CL-MU uses the cross-layer update strategy to
encode flows using counters in all layers, which means MCL-MU
is the total number of counters in all layers. Therefore, given
the same amount of memory, MCL-MU is larger than MFCM,
thus FCM is expected to have more flow collisions compared
to CL-MU (i.e., CFCM > CCL-MU). FCM has a higher bit-
wise usage, since FCM uses two identical trees with different
hash functions to encode all flows independently. Halved
memory in each tree increases the hash collision probability,
even with the same number of counters and hash function.
The higher collision rate in the lower layer in spite of the
plenty of counters, as shown in Fig. 6(b), comes from the
Zipf distribution, where the number of elephant flows is much
smaller than that of mouse flows.

For operational complexity (update time), CL-MU requires
one hash calculation and three memory accesses per packet,
whereas FCM needs two hash calculations and 2-6 memory
accesses. As a result, FCM has one less memory access in the
best case but one more hash calculation constantly.

(2) Minimum update for noise reduction: Subsequently,
we explain the advantage of minimum update by comparing
elephant flow noise level (i.e., ARE) among our CL-MU,
CM, CL-CM, CL-CU, FCM, and Elastic sketch, as shown in
Fig. 7(b). Per results, CL-CM and CM show the worst accuracy
among the five schemes, since they both update all layers
regardless of the counter values, which leads to the elephant
flows’ counters being flooded by all other flows that share the
same counter at the same layer. As a result, the noise level of
elephant counters is increased significantly. Next, FCM shows
a better performance since it counts mouse flows only at the
lowest layer and prevents them from flooding the upper layers
(i.e., elephant flow counters). However, due to the cascading
design, once a counter at the lower layer is overflowed, all the
flows that share the counter will encode their packets at the
upper layers. Due to the high bit-wise usage of counters at the
lowest layer, as shown in Fig. 6(b), the counter overflow occurs
frequently and leads to the mouse flows flooding the elephant
counters. Then, Elastic performs best in mouse flow estimation
since it uses a dedicated one-layer sketch with 8-bit counters to
encode mouse flows. However, as shown in Fig. 7(b), Elastic’s
elephant flow estimation is the worst among the three advanced
sketches due to the heavy load to be added to the memory
scarce TCAM-based flow table. Finally, the proposed CL-MU

(a) Mouse flow (size ≤ 255) (b) Elephant flows (size > 255)

Fig. 8: Flow survival rate comparison. A mouse flow is
considered as survived if the estimated relative error is <0.1
and elephant flow is <0.01.

achieves the same performance as the optimal CL-CU that is
infeasible for pipeline-based switches. The result confirms that
the minimum update strategy can significantly reduce the noise
level for elephant flows by approximately updating the minimal
counter of a flow among all layers. We note that such noise
reduction effects are not only for the last layer only but also
the lower layers by avoiding mouse flow flooding, as shown
in our minimum update example in Fig. 4(c). In an extreme
case of elephant flow explosion (i.e., Zipf skewness <1.0), the
minimum update mechanism gives a higher priory to elephant
flows at the last layer and prevents the mouse flooding as well.
More importantly, mouse flows recorded in the last layer may
be decoded from lower layers due to the cross-layer update.

Synergy effect (robust flow measurement): To show the
synergy effect of cross-layer and minimum update strategies,
we introduce a new metric called flow survival rate (FSR). A
flow is defined as “survived” if the flow estimation is lower
than a certain RE. Also, we apply different error thresholds for
different-sized flows (i.e., RE < 0.1 for mouse flows (≤255)
and RE < 0.01 for elephant flows (>255)). Eventually, FSR is
defined as the number of survived flows over the total number
of flows. More survived flows mean better measurement accu-
racy. We note that our definition of FSR is only theoretical to
investigate CL-MU’s properties, and is not meant for assessing
security application. For instance, a 10-packet flow fails if the
estimation is >11 (i.e., too harsh to be practical for security
assessment). Fig. 8 shows the layer-wise FSR of CL-MU,
FCM, and Elastic sketches. Since Elastic does not have three
layers but two memory regions (i.e., SRAM for mouse flows
and TCAM for elephant flows), we regarded SRAM (light part)
as layer-1 and TCAM (heavy part) as layer-2.

It is worth noting that a flow in CL-MU can be decoded
and survive at multiple layers, whereas a cascaded approach-
based FCM sketch can decode flows only at one layer. Such
multi-layer decoding option gives more chances to flows to
survive, which is the key aspect to embrace for various
FSDs (i.e., benign and attack traffic) without data structure
reconfiguration. As shown in Fig. 8(a), CL-MU allows mouse
flows to survive at all three layers using idle counters (i.e., FSR
0.03%∼6.85%), whereas FCM can decode mouse flows with a
low survival rate (FSR 0.00%∼0.58%). Fig. 8(b) shows FSRs
of elephant flows, and we observe that 17.15%∼87.24% of the
elephant flows can survive in CL-MU at both layer-2 and layer-
3, and only 0.38%∼14.21% survive in FCM at layer-2 and
layer-3. Compared to CL-MU, as shown in Fig. 8(a), Elastic
has roughly two times more mouse flows survived in layer-1,

10

(a) Flow Size Estimation (b) Cardinality (c) Flow Size Distribution (d) Entropy (e) Heavy Hitter (f) Heavy Changer

Fig. 9: Security applications with benign (CAIDA) trace (Zipf skewness≈2.0) and compared among Count-Less (CL-MU),
Count-Min (CM), Elastic, and FCM sketches. Memory usage from 0.2 MB to 1 MB.

(a) Flow Size Estimation (b) Cardinality (c) Flow Size Distribution (d) Entropy (e) Heavy Hitter (f) Heavy Changer

Fig. 10: Security applications with benign (CAIDA) and attack (UNSW) mixed trace (Zipf skewness≈1.0).

(a) Flow Size Estimation (b) Cardinality (c) Flow Size Distribution (d) Entropy (e) Heavy Hitter (f) Heavy Changer

Fig. 11: Security applications with benign (CAIDA) and attack (CIC) mixed trace (Zipf skewness≈3.0).

since it assigns a very small portion of memory for layer-2 (i.e.,
TCAM or elephant flow table) and most memory is allocated
with 8-bit counters as a sketch (i.e., SRAM or mouse flow
sketch). As a cost, Elastic sketch’s FSR for elephant flows
is much lower than CL-MU, as shown in Fig. 8(b). With the
results, we can conclude that CL-MU benefits from both Cross-
layer and Minimum update, allowing CL-MU to flexibly utilize
the limited resources to count flows while providing a well-
balanced accuracy between mouse and elephant estimation.

E. Security Applications

We show Count-Less’s (CL-MU’s) performance with
network security measurement tasks, including flow size es-
timation, cardinality, flow size distribution, entropy, heavy
hitter, and heavy changer. To show the robustness of CL-MU,
we use three datasets in the experiments, namely (i) benign
trace, (ii) benign trace with mouse-heavy attack, and (iii)
benign trace with elephant-heavy attack (see section V-A 3).
Fig. 9∼Fig. 11 shows comparisons of CL-MU, Count-Min
(CM), FCM [58], and Elastic sketch [62] with different metrics
varying memory space from 0.2 MB to 1 MB.

Flow size estimation: Flow size estimation entails a per-
flow packet counting of all individual flows in an epoch. As
shown in Fig. 9(a), 10(a), and 11(a), CL-MU outperforms CM
and FCM in all traces and memory settings. Also, it is more
accurate than Elastic sketch in most settings, except for the
elephant-heavy trace with 0.2 MB memory. The results are in
line with our results in section V-C and V-D, and confirm
stable performance of CL-MU with different scenarios.

Cardinality: In cardinality estimation, we count the number
of distinct flows in a network trace. CL-MU uses linear

counting [61] for the cardinality measurement (see appendix A
for detail). As shown in Fig. 9(b), 10(b), and 11(b), CL-MU
provides the most stable (i.e., more accurate or similar) car-
dinality estimation among four schemes with varying memory
spaces and traces. As shown in Fig. 10(b), under the elephant-
heavy attack, CL-MU’s accuracy is slightly higher than FCM
(i.e., 1.01∼2.19 times) and much more accurate than Elastic
sketch (i.e., 3.26∼8.99 times). Also, CL-MU outperforms all
other schemes in all memory settings in the mouse-heavy trace,
as shown in Fig. 9(b). Lastly, FCM’s RE with 0.4 MB memory
is much poorer than CL-MU and Elastic sketches.

Flow size distribution: For the flow size distribution, CL-
MU takes advantage of Model Reference Adaptive Control
(MRAC) [33] algorithm (see appendix A for detail). As shown
in Fig. 9(c), 10(c), and 11(c), CL-MU outperforms CM and
FCM sketches always, achieving WMRE of 0.01∼0.73 for be-
nign trace, 0.01∼0.49 for elephant-heavy trace, and 0.48∼1.94
for the mouse-heavy trace. Also, CL-MU and Elastic sketches’
performance are comparable in the benign and elephant-heavy
scenarios. Although Elastic sketch’s WMRE is lower than CL-
MU for the mouse-heavy trace, the result is precise enough
to support further analysis (i.e., entropy, see appendix A).
It is worth mentioning that Elastic and CL-MU sketches’
WMREs drop significantly in the mouse-heavy scenario when
increasing memory usage. This is because both sketches use
small-size counter (i.e., 8-bit) for hosting mouse flows, thus the
larger memory increases the number of counters significantly.
This is favorable for Elastic sketch since it assigns more
counters for mouse flows compared with CL-MU. Although
FCM also uses small counters, its redundant tree structure
suppresses the counter increment effects. Lastly, CM’s counter
increment effect is insignificant since it uses full-size counters
(i.e., 32-bit) for its data structure.

11

Entropy: CL-MU uses MRAC also for the entropy estimation
(see appendix A for detail). As shown in Fig. 9(d), 10(d),
and 11(d), CL-MU shows better accuracy than all other
schemes in benign and mouse-heavy scenarios. Particularly,
CL-MU outperforms FCM by 2.05 times on average for the
benign trace and 2.34 times for the mouse-heavy trace. We
note that CL-MU can also utilize FSD as an input for the
entropy estimation, which is faster than CL-MU with MRAC.
One interesting observation is that even with FSD CL-MU is
1.33 times more accurate than FCM using MRAC. Also, CL-
MU’s performance is better than or similar to FCM and Elastic
sketches.

Heavy hitter: For heavy hitter and changer detection, we
assigned 0.1 MB of memory for a label table, which is
responsible for storing large flows. In our experiments, a
flow that contributes more than 0.01% (250∼270) of the total
number of packets in each epoch is defined as a heavy hitter
and stored in our label table. As shown in Fig. 9(e), 10(e),
and 11(e), Elastic sketch shows the best accuracy among four
sketches, followed by CL-MU, FCM, and CM, respectively.
We note that Elastic’s high performance is supported by its
exact counting-based elephant flow filter. However, since the
elephant filter reserves a fixed amount of memory (150 KB),
the amount of memory for mouse counters becomes too small
given a memory space 0.2 MB, which degrades the accuracy
of mouse flows, as shown in Table II.

Heavy changer: The heavy changers are flows whose size
change (increases or decreases) is greater than a certain
threshold over two adjacent epochs. Here, we use 0.01% of the
total changes as a threshold. In the elephant-heavy scenario, all
schemes show similar F1 scores since less mouse flows exist
in the network trace, as shown in Fig. 10(f). In the benign
and elephant-heavy traces, Elastic sketch achieves the best
performance with 0.2 MB due to the same reason discussed in
the heavy hitter evaluation. However, we observe that CL-MU
achieves decent performance with more memory space (i.e.,
0.4 MB∼1.0 MB), as shown in Fig. 9(f) and 11(f).

Analysis: In the security applications, CL-MU has the most
robust performance for flow size estimation, cardinality, flow
size distribution, and entropy. FCM and Elastic sketches fail
in either cardinality or entropy estimations for mouse-heavy
or elephant-heavy attack scenario, with a single parameter
setting, which convicts that they lack the robustness as network
security function. In the heavy hitter and heavy changer
detections, Elastic sketch provides the best accuracy since it
pays more attention to the elephant flows rather than mouse
flows (i.e., scarce TCAM-based exact counting). However, CL-
MU’s performance is comparable with Elastic sketch with
more memory space. In FSR analysis as a theoretical and
strict metric, we observe that CL-MU achieves a well-balanced
flow estimation accuracy for both mouse and elephant flows,
which is a key for robust security applications, each of which
is sensitive to either mouse or elephant flow accuracy.

Part of the attack surface of sketches is the non-
cryptographic hash function (i.e., CRC32) used in the random-
ization process during encoding. That is, an adversary may in-
tentionally trigger hash collisions of flows in sketches. We note
that while the pseudo hash function (CRC32) supported by
switches is not as secure as the cryptographic hash function, its

randomness is sufficient to support general network functions,
including sketches. Moreover, the benefits from an intentional
collision are limited from the perspective of detecting attacks
by flow size [39], [65]. The intentional collision, possibly with
a normal flow, makes the attack flow larger, which makes the
attack flow (combined with a normal flow) easily detectable
by the sketch-based traffic volume detectors.

VI. DATA PLANE IMPLEMENTATION AND EVALUATION

In this section, we present the implementation details and
evaluations of our ASIC-friendly Count-Less (CL-MU). Par-
ticularly, we first describe the hardware implementation of CL-
MU sketch in a programmable switch. Moreover, we compare
CL-MU with the standard and state-of-the-art sketches in terms
of resource usage, used stage, and packet processing latency.
Lastly, we verify CL-MU’s performance by reproducing the
security application experiments using our prototype.

A. Implementations

We implemented CL-MU sketch in a Tofino Wedge-100
switch [14] in P4 language. For the data plane implementation,
we added 115 lines of P4 code on a standard data plane
program [48]. Meanwhile, the network traffic measurement ap-
plications are implemented in the switch’s control plane using
Bfrt Python [23]. Communication between data and control
planes is realized through PCIe-based P4Runtime API [49].
The details of the data plane implementation are demonstrated
and explained in appendix C.

B. Hardware Evaluation

In the following, we compare CL-MU with data plane-
deployable solutions in terms of resource usage, stage, latency,
and accuracy. We note that CL-MU P4 implementation was
successfully compiled and executed in our switch, allowing
CL-MU to process packets at line-rate [29], [42], [62].

Settings: In the hardware evaluation, we use 0.6 MB of
memory for sketches. Our testbed consists of a Tofino pro-
grammable switch with 32x100 Gbps ports, and a network
traffic generator that equips AMD Ryzen 5 2400 G 8-core
CPU, 16 GB DRAM, and Intel 40 Gbps network adapter.
libtins [17] library is used to replay CAIDA traces. Four
security applications are executed in the control plane for
analyzing sketch-collected data.

Resource usage: We discuss the resource usage of Count-
Less (CL-MU), Count-Min (CM), CL-CM (Count-Less’s data
structure with CM’s encoding algorithm) and FCM [58].
Elastic sketch’s result is not included since it requires the
scarce TCAM resource, and their P4 code is not publicly
available. As shown in Table III, CM sketch consumes least
resources among four schemes due to its simplicity. CL-MU
requires slightly higher hash bits and SRAM compared to
CM. CL-CM requires less ALU resources than CL-MU due to
the simpler update algorithm. Lastly, FCM sketch’s resource
consumption is the highest. The high cost of FCM sketch is
caused by its multi-tree design, which repeats the same process
multiple times for independent sketches with different hash
functions. Therefore, FCM’s high ALU utilization indicates
its complexity, which hurts the packet encoding latency of the

12

TABLE III: Comparison: data plane resource consumption,
latency, and security application accuracy. Boldface represents
Count-Less (CL-MU), and the shaded ones are the best.

Resource Usage CM CL-CM CL-MU FCM
Hash Bit (%) 2.88 3.06 3.06 4.97
SRAM (%) 5.72 6.14 6.14 7.29
ALU (%) 4.16 5.80 6.25 16.67
Used stages 2 4 5 4
Latency (Normalized) CM CL-CM CL-MU FCM
Total 0.09 0.75 1.00 1.75
Layer-1 0.02 0.09 0.12 0.09
Layer-2 0.02 0.42 0.64 0.75
Layer-3 0.05 0.24 0.24 0.91
Security Application CM CL-CM CL-MU FCM
Flow Size Estimation (ARE) 7.181 1.641 1.171 1.591
Cardinality (RE) 0.007 0.003 0.002 0.002
Flow Size Dist. (WMRE) 1.159 0.399 0.041 0.291
Entropy (RE) 0.018 0.009 0.005 0.006

data plane (see Table III). We note the SRAM usage difference
is caused by the compiler, all schemes have the same memory
size for their data structures.

Stage and packet processing latency: As shown in Table III,
our advanced update algorithm sacrifices several stages for
payment of our minimum update algorithm. CL-CM has the
same stage numbers as FCM, but its latency is only 42.9%
of FCM’s, as shown in Table III. This result infers that the
number of stages used in the data plane is irrelevant to the
packet processing latency, such that CL-MU’s latency is only
57.1% of FCM’s with one more stage usage. As shown in
Table III, CL-MU sketch’s middle layer contributes the most
to the total latency (63.41% on average) followed by the top
layer’s 24.39% and the bottom layer’s 12.19%. However, the
overall latency is much lower than that of FCM sketch, which
contributes 52.37%, 42.05%, and 5.58% by layer-3, layer-2,
and layer-1, respectively. This result suggests that appropriate
separation of logic operations into more stages can reduce
the processing latency, which is a better design than packing
complex operations into fewer stages. Moreover, due to the
resource management function of the data plane compiler, the
idle resources at each stage can be optimized and assigned for
other data plane functions to maximize the resource utilization.

Security applications in data plane: Table III shows accuracy
comparisons among CM, CL-CM, CL-MU, and FCM sketches
by varying security applications, namely flow size estimation
(ARE), cardinality (RE), flow size distribution (WMRE), and
entropy (RE). As shown, the standard CM performs the worst
among the compared sketches. On the other hand, CL-MU
provides the best overall performance. CL-CM outperforms
CM and achieves similar accuracy with FCM, which supports
our argument that the pyramid-shaped data structure is the
major contribution factor of the accuracy improvement of
cascaded multi-sketch approaches. Remarkably, with minimum
update, CL-MU can improve the accuracy further based on the
pyramid-shaped data structure.

VII. RELATED WORK

To date, a large body of measurement systems are pro-
posed, including OpenSketch [64], Dream [43], Pingmesh [22],
UnivMon [38], Trumpet [44], FlowRadar [36], SketchVi-
sor [25], Marple [45], Elastic sketch [62], and FCM [58].
Opensketch, FlowRadar, UnivMon, Elastic sketch, and FCM
are generic and feasible for a programmable switch. Since

introduced, Count-Min (CM) sketch and its variations [10],
[20] play an important role in network traffic measurement.
Especially thanks to its simplicity, CM can easily fit the con-
strained switch environment. Therefore, measurement systems
such as Opensketch [64] and Elastic sketch [62] use CM as
an essential component for security applications. However,
one of the critiques about CM is the ignorance of the Zipf
skewness in modern network traffic, which motivated a series
of works [15], [28], [58], [62], [63], [66] that falls in a category
of multi-stage filtering. Although these approaches achieve
better accuracy than CM, the biggest contributing factor to
their higher accuracy is their data structure design, which
allocates smaller counters for mouse flows and fewer larger
counters for elephant flows. While working for a certain flow
size distribution, these solutions cannot work well under a
variety of FDSs or sudden changes in traffic patterns (attacks)
due to their fixed data structure. The other direction for the
skewed stream is to manage data structure dynamically [7],
[18], [24]. Unfortunately, these approaches are infeasible for
a switch’s ASIC due to their complexity and the switch’s
limited programmability. Mainly, Salsa [7] performs a left- or
right-merge when a counter overflows. This merge operation
requires revisiting the same register array when merging from
16-bit to 32-bit counter, violating the memory double-access
constraint of pipeline-based switches.

Several directions have been explored to address the con-
cern about the continuous use of sketches. One direction has
been to recycle the sketches by periodically resetting them
considering the transient counting values [27], [47], [53].
Another direction is to monitor flows over a short period of
time using a sketch and fast memory (SRAM), and then to
offload the counts into a large external memory (DRAM).
For instance, LOFT [53] is a recent measurement framework
that was designed specifically for programmable NICs (FPGA)
working with CPU. The direct memory access (DMA) support
in this environment allows the CM sketch to offload into
external memory without delay. Since DMA is not supported
by switches, the feasibility of FPGA-based solutions, such as
LOFT, remains uncertain for switches. However, Count-Less
and similar approaches can take advantage of the LOFT-like
approaches to periodically offload measured flows into external
memory for long-term and continuous measurement.

VIII. CONCLUSION

In-switch flow measurement still has a large room for
improvement since the fixed data structure cannot adapt to
sudden changes in traffic patterns (e.g., attacks). Moreover,
the limited programmability of network switches obstructs
dynamic approaches from bing deployed. To overcome these
challenges, we propose a novel flow measurement scheme,
namely Count-Less (CL-MU), to perform robust flow measure-
ments in both benign and attack scenarios. Through extensive
experiments and analyses, we show Count-Less can adapt to
various FSDs and provides consistent performance for network
security applications without re-configuring the data structure,
thanks to our novel strategy (i.e., minimum update). Moreover,
Count-Less is shown to be feasible for the switch’s data plane
with low computational and memory overheads.

13

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their feedback. This work was supported by the Global
Research Laboratory (GRL) Program through the National
Research Foundation of Korea (NRF) funded by the Ministry
of Science and ICT (NRF-2016K1A1A2912757), by the Na-
tional Research Foundation of Korea (NRF) grant funded by
the Korea government (MSIT) (NRF-2020R1A2C2009372),
and by Institute of Information and communications Tech-
nology Planning and Evaluation (IITP) grant funded by the
Korea government(MSIT) (No.RS-2022-00155966, Artificial
Intelligence Convergence Innovation Human Resources De-
velopment (Ewha Womans University)). DaeHun Nyang and
Rhongho Jang are the corresponding authors.

REFERENCES

[1] “Capture files from national cyberwatch mid-atlantic collegiate
cyber defense competition (maccdc),” 2012. [Online]. Available:
https://www.netresec.com/?page=MACCDC

[2] “The cooperative association for internet data analysis, equinix chicago
data center,” 2018, [13:00-14:00, Apr 19 2018., from Sao Paulo to
New York]. [Online]. Available: https://www.caida.org

[3] “Fsd generation code with zipf distribution in stackoverflow,” 2022.
[Online]. Available: https://bit.ly/3vteXR1

[4] Y. Afek, A. Bremler-Barr, and L. Shafir, “Network anti-spoofing with
SDN data plane,” in 2017 IEEE Conference on Computer Communi-
cations, INFOCOM 2017, Atlanta, GA, USA, May 1-4, 2017. IEEE,
2017, pp. 1–9.

[5] J. Bai, J. Bi, M. Zhang, and G. Li, “Filtering spoofed IP traffic using
switching asics,” in Proceedings of the ACM SIGCOMM 2018 Con-
ference on Posters and Demos, SIGCOMM 2018, Budapest, Hungary,
August 20-25, 2018. ACM, 2018, pp. 51–53.

[6] I. Barefoot, Intel® Tofino™ 3 Intelligent Fabric Pro-
cessor, Accessed August 8, 2022. [Online]. Avail-
able: https://www.intel.com/content/dam/www/central-libraries/us/en/
documents/product-brief-final-version-pdf.pdf

[7] R. B. Basat, G. Einziger, M. Mitzenmacher, and S. Vargaftik, “Salsa:
Self-adjusting lean streaming analytics,” in 2021 IEEE 37th Interna-
tional Conference on Data Engineering (ICDE). IEEE, 2021, pp.
864–875.

[8] R. Ben-Basat, X. Chen, G. Einziger, and O. Rottenstreich, “Efficient
measurement on programmable switches using probabilistic recircu-
lation,” in 2018 IEEE 26th International Conference on Network
Protocols, ICNP 2018, Cambridge, UK, September 25-27, 2018. IEEE
Computer Society, 2018, pp. 313–323.

[9] P. Bosshart, G. Gibb, H. Kim, G. Varghese, N. McKeown, M. Izzard,
F. A. Mujica, and M. Horowitz, “Forwarding metamorphosis: fast
programmable match-action processing in hardware for SDN,” in ACM
SIGCOMM 2013 Conference, SIGCOMM 2013, Hong Kong, August
12-16, 2013, D. M. Chiu, J. Wang, P. Barford, and S. Seshan, Eds.
ACM, 2013, pp. 99–110.

[10] G. Cormode and S. Muthukrishnan, “An improved data stream sum-
mary: the count-min sketch and its applications,” Journal of Algorithms,
vol. 55, no. 1, pp. 58–75, 2005.

[11] D. Dao, R. Jang, C. Jung, D. Mohaisen, and D. Nyang, “Minimizing
noise in hyperloglog-based spread estimation of multiple flows,” in 52nd
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, DSN 2022, Baltimore, MD, USA, June 27-30, 2022.
IEEE, 2022, pp. 331–342.

[12] F. Deng and D. Rafiei, “New estimation algorithms for streaming data:
Count-min can do more,” Webdocs. Cs. Ualberta. Ca, 2007.

[13] Y. Du, H. Huang, Y.-E. Sun, S. Chen, and G. Gao, “Self-adaptive
sampling for network traffic measurement,” in IEEE INFOCOM 2021,
2021.

[14] “Wedge 100bf-32x,” Edgecore Networks, 2020. [Online]. Available:
https://bit.ly/2YDeyv2

[15] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting,” in ACM SIGCOMM 2002, 2002, pp. 323–336.

[16] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for data
base applications,” Journal of computer and system sciences, vol. 31,
no. 2, pp. 182–209, 1985.

[17] M. Fontanini, “libtins: Packet crafting and sniffing library,”
http://libtins.github.io/, 2020.

[18] J. Gong, T. Yang, Y. Zhou, D. Yang, S. Chen, B. Cui, and X. Li, “Abc: a
practicable sketch framework for non-uniform multisets,” in 2017 IEEE
International Conference on Big Data (Big Data). IEEE, 2017, pp.
2380–2389.

[19] M. Goswami, D. Medjedovic, E. Mekic, and P. Pandey, “Buffered count-
min sketch on SSD: theory and experiments,” vol. 112, pp. 41:1–41:15,
2018.

[20] A. Goyal, H. Daumé III, and G. Cormode, “Sketch algorithms for esti-
mating point queries in nlp,” in In Joint Conference on EMNLP/CoNLL
2012, 2012, pp. 1093–1103.

[21] A. Goyal and H. D. III, “Approximate scalable bounded space sketch
for large data NLP,” in EMNLP 2011. ACL, 2011, pp. 250–261.

[22] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. A. Maltz, Z. Liu,
V. Wang, B. Pang, H. Chen, Z. Lin, and V. Kurien, “Pingmesh: A
large-scale system for data center network latency measurement and
analysis,” in ACM SIGCOMM 2015. ACM, 2015, pp. 139–152.

[23] F. Hauser, M. Häberle, D. Merling, S. Lindner, V. Gurevich, F. Zeiger,
R. Frank, and M. Menth, “A survey on data plane programming with
p4: Fundamentals, advances, and applied research,” arXiv preprint
arXiv:2101.10632, 2021.

[24] N. Hua, B. Lin, J. Xu, and H. Zhao, “Brick: A novel exact active
statistics counter architecture,” in Proceedings of the 4th ACM/IEEE
Symposium on Architectures for Networking and Communications Sys-
tems, 2008, pp. 89–98.

[25] Q. Huang, X. Jin, P. P. C. Lee, R. Li, L. Tang, Y. Chen, and
G. Zhang, “Sketchvisor: Robust network measurement for software
packet processing,” in ACM SIGCOMM 2017. ACM, 2017, pp. 113–
126.

[26] “Intel streaming simd extensions (sse) technologies,” Intel,
2020. [Online]. Available: https://software.intel.com/sites/landingpage/
IntrinsicsGuide/

[27] R. Jang, D. Min, S. Moon, D. Mohaisen, and D. Nyang, “Sketchflow:
Per-flow systematic sampling using sketch saturation event,” in IEEE
INFOCOM 2020. IEEE, 2020, pp. 1339–1348.

[28] R. Jang, S. Moon, Y. Noh, A. Mohaisen, and D. Nyang, “Instameasure:
Instant per-flow detection using large in-dram working set of active
flows,” in 39th IEEE International Conference on Distributed Comput-
ing Systems, ICDCS 2019, Dallas, TX, USA, July 7-10, 2019. IEEE,
2019, pp. 2047–2056.

[29] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, and
I. Stoica, “Netchain: Scale-free sub-rtt coordination,” in NSDI 2018,
2018, pp. 35–49.

[30] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and
I. Stoica, “Netcache: Balancing key-value stores with fast in-network
caching,” in SOSP 2017, 2017, pp. 121–136.

[31] C. Jung, S. Kim, R. Jang, D. Mohaisen, and D. Nyang, “A scalable and
dynamic acl system for in-network defense,” in CCS ’22: 2022 ACM
SIGSAC Conference on Computer and Communications Security, Los
Angeles, U.S.A., November 7-11, 2022. ACM, 2022, pp. 1–13.

[32] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards
the development of realistic botnet dataset in the internet of things
for network forensic analytics: Bot-iot dataset,” Future Generation
Computer Systems, vol. 100, pp. 779–796, 2019.

[33] A. Kumar, M. Sung, J. Xu, and J. Wang, “Data streaming algorithms
for efficient and accurate estimation of flow size distribution,” ACM
SIGMETRICS PER, vol. 32, no. 1, pp. 177–188, 2004.

[34] A. Kumar and J. J. Xu, “Sketch guided sampling - using on-line
estimates of flow size for adaptive data collection,” in INFOCOM 2006.
IEEE, 2006.

[35] Â. C. Lapolli, J. A. Marques, and L. P. Gaspary, “Offloading real-
time ddos attack detection to programmable data planes,” in IFIP/IEEE
International Symposium on Integrated Network Management, IM 2019,

14

https://www.netresec.com/?page=MACCDC
https://www.caida.org
https://bit.ly/3vteXR1
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/product-brief-final-version-pdf.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/product-brief-final-version-pdf.pdf
https://bit.ly/2YDeyv2
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Washington, DC, USA, April 09-11, 2019, J. Betser, C. J. Fung,
A. Clemm, J. François, and S. Ata, Eds. IFIP, 2019, pp. 19–27.

[36] Y. Li, R. Miao, C. Kim, and M. Yu, “Flowradar: A better netflow for
data centers,” in NSDI 2016. USENIX Association, 2016, pp. 311–324.

[37] Z. Liu, R. Ben-Basat, G. Einziger, Y. Kassner, V. Braverman, R. Fried-
man, and V. Sekar, “Nitrosketch: Robust and general sketch-based
monitoring in software switches,” in ACM SIGCOMM 2019, 2019, pp.
334–350.

[38] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
univmon,” in ACM SIGCOMM 2016, 2016, pp. 101–114.

[39] Z. Liu, H. Namkung, G. Nikolaidis, J. Lee, C. Kim, X. Jin, V. Braver-
man, M. Yu, and V. Sekar, “Jaqen: A high-performance switch-native
approach for detecting and mitigating volumetric ddos attacks with
programmable switches,” in USENIX Security 2021, M. Bailey and
R. Greenstadt, Eds., 2021, pp. 3829–3846.

[40] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani,
“Counter braids: a novel counter architecture for per-flow measure-
ment,” in Proc. ACM SIGMETRICS 2008, Z. Liu, V. Misra, and P. J.
Shenoy, Eds.

[41] A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computation
of frequent and top-k elements in data streams,” in International
conference on database theory. Springer, 2005, pp. 398–412.

[42] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making
stateful layer-4 load balancing fast and cheap using switching asics,” in
ACM SIGCOMM 2017, 2017, pp. 15–28.

[43] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “DREAM: dynamic
resource allocation for software-defined measurement,” in ACm SIG-
COMM 2014. ACM, 2014, pp. 419–430.

[44] ——, “Trumpet: Timely and precise triggers in data centers,” in ACM
SIGCOMM 2016. ACM, 2016, pp. 129–143.

[45] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh,
V. Jeyakumar, and C. Kim, “Language-directed hardware design for
network performance monitoring,” in ACM SIGCOMM 2017. ACM,
2017, pp. 85–98.

[46] “NetFlow,” http://www.cisco.com/c/en/us/products/ios-nx-os-
software/ios-netflow/index.html.

[47] D. Nyang and D. Shin, “Recyclable counter with confinement for real-
time per-flow measurement,” IEEE/ACM Trans. Netw., vol. 24, no. 5,
pp. 3191–3203, 2016.

[48] “A standard p4 switch program,” The P4 Language Consortium, 2020.
[Online]. Available: https://github.com/p4lang/switch

[49] “The p4runtime api,” P4 Language Consortium, 2021. [Online].
Available: https://p4.org/p4-runtime/

[50] W. W. Peterson, W. Peterson, E. Weldon, and E. Weldon, Error-
correcting codes. MIT press, 1972.

[51] G. Pitel and G. Fouquier, “Count-min-log sketch: Approximately
counting with approximate counters,” International Symposium on Web
Algorithms, 2015.

[52] G. Pitel, G. Fouquier, E. Marchand, and A. Mouhamadsultane, “Count-
min tree sketch: Approximate counting for nlp,” 2016. [Online].
Available: https://arxiv.org/abs/1604.05492

[53] S. Scherrer, C. Wu, Y. Chiang, B. Rothenberger, D. E. Asoni,
A. Sateesan, J. Vliegen, N. Mentens, H. Hsiao, and A. Perrig, “Low-
rate overuse flow tracer (LOFT): an efficient and scalable algorithm for
detecting overuse flows,” in 40th International Symposium on Reliable
Distributed Systems, SRDS 2021, Chicago, IL, USA, September 20-23,
2021. IEEE, 2021, pp. 265–276.

[54] “sFlow,” http://www.sflow.org/.
[55] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating

a new intrusion detection dataset and intrusion traffic characterization.”
in ICISSp, 2018, pp. 108–116.

[56] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani, “De-
veloping realistic distributed denial of service (ddos) attack dataset and
taxonomy,” in 2019 International Carnahan Conference on Security
Technology (ICCST). IEEE, 2019, pp. 1–8.

[57] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in SOSR
2017, 2017, pp. 164–176.

[58] C. H. Song, P. G. Kannan, B. K. H. Low, and M. C. Chan, “Fcm-
sketch: Generic network measurements with data plane support,” in
CoNext 2020. ACM, 2020, pp. 78–92.

[59] R. H. M. Sr., “Counting large numbers of events in small registers,”
Commun. ACM, vol. 21, no. 10, pp. 840–842, 1978.

[60] M. Tirmazi, R. B. Basat, J. Gao, and M. Yu, “Cheetah: Accelerat-
ing database queries with switch pruning,” in ACM SIGMOD 2020,
D. Maier, R. Pottinger, A. Doan, W. Tan, A. Alawini, and H. Q. Ngo,
Eds. ACM, 2020, pp. 2407–2422.

[61] K. Whang, B. T. V. Zanden, and H. M. Taylor, “A linear-time probabilis-
tic counting algorithm for database applications,” ACM Trans. Database
Syst., vol. 15, no. 2, pp. 208–229, 1990.

[62] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic sketch: Adaptive and fast network-wide
measurements,” in ACM SIGCOMM 2018, 2018, pp. 561–575.

[63] T. Yang, Y. Zhou, H. Jin, S. Chen, and X. Li, “Pyramid sketch: a
sketch framework for frequency estimation of data streams,” Proc.
VLDB Endow., vol. 10, no. 11, pp. 1442–1453, 2017.

[64] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with opensketch,” in NSDI 2013, N. Feamster and J. C. Mogul, Eds.
USENIX Association, 2013, pp. 29–42.

[65] M. Zhang, G. Li, S. Wang, C. Liu, A. Chen, H. Hu, G. Gu, Q. Li,
M. Xu, and J. Wu, “Poseidon: Mitigating volumetric ddos attacks with
programmable switches,” in NDSS 2020. The Internet Society, 2020.

[66] Y. Zhou, T. Yang, J. Jiang, B. Cui, M. Yu, X. Li, and S. Uhlig,
“Cold filter: A meta-framework for faster and more accurate stream
processing,” in SIGMOD/PODS 2018, 2018, pp. 741–756.

APPENDIX

A. Count-Less’s Functions for Security Applications

We describe details of Count-Less (CL-MU) in estimating
cardinality, flow size distribution, and entropy for security
applications.

Cardinality: CL-MU uses its own data structure and the linear
counting (LC) theory to estimate the cardinality [61]. To do
so, we assume the lowest layer of CL-MU to be the LC’s bit
array. Then, the cardinality is calculated following the LC’s
equation, n̂ = −s · ln(V), where s is the number of counters
and V is the fraction of the empty (zero) counters in the array.
Since CL-MU’s number of counters at the lowest layer is 2x-
16x larger than CM, CL-MU is saturated relatively slower.
Given LC’s performance is guaranteed only until the number
of empty counters is less than 30%, CL-MU can estimate the
cardinality with smaller memory.

Flow size distribution: To estimate flow size distribution, we
measure the distribution of mouse flows and elephant flows
separately. For mouse flows, we use the MRAC algorithm [33]
with our layer-1 counters after setting the overflowed counters
to “0”. Subsequently, elephant flows will be involved by
querying our sketch with the flow labels in the heavy hitter
table.

Entropy: The entropy estimation can be done using one of two
ways (1) using flow size distribution (Elastic sketch [62]) or (2)
counter values (MRAC [33]). In section V-E, we showed the
entropy estimation results of CL-MU with MRAC. With the
flow size distribution, the entropy is calculated by leveraging
the distribution array by −

∑
i ∗ ni

N ∗ log ni

N , where N is the
total number of flows and ni is the number of flows with i
packets [62]. In section V-E, we observed that Elastic’s flow
size distribution is more accurate than CL-MU’s. Here, we

15

https://github.com/p4lang/switch
https://p4.org/p4-runtime/
https://arxiv.org/abs/1604.05492

Fig. 12: Comparison: entropy estimation of CL-MU and Elastic
with the flow size distribution.

show that CL-MU’s entropy estimation based on the flow size
distribution is comparable with Elastic, as shown in Fig. 12.

B. Throughput in CPU Environment

We measure sketch’s throughput in a CPU environment
to demonstrate the relative encoding complexity of different
schemes. As shown in Fig. 13, CL-MU’s throughput is roughly
twice higher than the other sketches. CL-MU achieves the
highest throughput of 18.13 Mpps. FCM sketch shows better
throughput (16.42 Mpps) than CM and Elastic sketches. CL-
MU and FCM are faster than CM since both require only
one hashing by taking advantage of the pyramid-shaped data
structure. The reason CL-MU is a bit faster than FCM is that
FCM uses two trees and the counter updates occur twice at
each layer. Elastic sketch posted the lowest throughput of 5.68
Mpps. However, we note that Elastic sketch was designed
to estimate the source IP-based flows (i.e., 32-bit label).
Therefore, the discrepancy between Elastic’s throughput and
the results posted in the original work is due to operating with
the 5-tuple label (i.e., 104 bits), which cannot be accelerated by
Intel’s Streaming SIMD Extensions (SSE) technologies [26].

C. Implementation

In the following, we demonstrate the data plane imple-
mentation of CL-MU in detail. Our optimal CL-CU’s update
algorithm is composed of a two-step operation, namely (S1)
reading counters of a flow in all layers and (S2) updating the
smallest counter among them. In a switch’s ASIC, the step
(S2) requires revisiting the register array (i.e., layer) that hosts
the smallest counter for updating. Unfortunately, such double-
access of the same memory register is not allowed after the
processing stage jumping to the next memory region (layer)
during the step (S1) due to the pipeline design [8], [31], [65].
One can resolve the issue by leveraging packet re-circulation
design, but it will hurt the bandwidth of the switch, which may
not be acceptable for use in a high-speed environment [29],
[30], [57].

Data plane: To overcome the challenge, we design the ASIC-
friendly CL-MU, which is an approximate version of CL-
CU, to fit the switch’s pipeline. For data structure, each
layer’s counter array is implemented by register arrays and
hosted by a single stage of the ASIC’s packet processing
pipeline. Moreover, the interaction operations between layers
are integrated into the register action logic. Simply put, each
layer was deployed sequentially in different match+action units
(MAUs) over the pipeline. Fig. 14 illustrates the data plane
logic of CL-MU. Three CRC32-based hash functions [50] are
used to locate the counters for lookup and update of counter

Fig. 13: Throughput: packet encoding capacity in a CPU
environment. Mpps: million packets per second.

values (CVs) of a flow f in each layer. During the first stage
of layer update, it checks if the current flow’s counter reaches
its counting capacity. If the counter is overflowed, we skip
the counter update of the current stage (layer) and go to the
next stage for the next layer’s counter update. Otherwise, we
increase the CV by “1”. In the meantime, we read the pre-
initialized minimal value (min) from the user metadata bus
through the gateway and update min with CV . We note that
all these actions are performed with the arithmetic logical units
(ALUs) that are associated with the current stage’s MAU. Next,
the updated min will be stored back in the user metadata and
passed to a subsequent stage (MAU). Similar operations are
repeated at the next stage (i.e., layer-2) with an additional min
update compared with the flow’s layer-2 counter CV . At the
last stage, we assume the counter cannot be overflowed due to
a sufficiently large register (i.e., 32-bit). Therefore, we repeat
the rest of the processes of layer-2. The P4 code snippet of
CL-MU is shown in appendix D.

Control plane: The application’s estimation functions reside
in the switch’s control plane. To retrieve statistics from the data
plane, the control plane application fetches register values of
each layer and heavy hitter table through P4Runtime API [49]
for post-hoc analysis.

D. P4 Code Snippet

Our P4 code snippet of the essential logic of CL-MU
includes the encoding/decoding functions of three layers, as
shown in Fig. 15. Since our code is successfully compiled
in to the switch’s data plane, it guarantees line-rate packet
processing [29], [42], [62].

E. Count-Less (CL-MU) with various parameters

In the following, we explain the rationale of our choice
of our fixed parameters: the number of layers (d = 3) and
the layer-wise expansion factor (r = 4). The former defines
the number of layers (i.e., memory partitions) given a fixed
memory space and the latter determines how many counters
(memory) will be allocated in each layer (see section III for
details of the parameters). To find out the best parameters, we
vary d from 2 to 5 and r from 2 to 16, and analyze the accuracy
of the mouse (≤255) and elephant (>255) flows separately.
Fig. 16 illustrates the average relative error (ARE) of the mouse
and elephant flows by varying memory space (i.e., 0.1 MB, 0.5
MB, and 1.0 MB) and two parameters (i.e., d and r).

Selection of r: As shown in Fig. 16(a), (c), and (e), regardless
of the number of layers (d) and memory space, the layer-
wise expansion factor r = 4 (red bars) shows the best overall
performance for the mouse flows. Interestingly, although it is
expected that a larger r (r = 8 depicted in blue bars and

16

User Metadata Bus

Action
hash1

Overflow ?

++CV

MIN(min, CV)

No

Reg

CV

8-bit

…

Layer-1 (MAU)

Action

Overflow ?

CV < min ?

No

Reg

No

Layer-2 (MAU)

ActionReg

Layer-3 (MAU)

min: Temporal-minimal value

CV: Counter value Programmable Match+Action Pipeline

hash2

16-bit

…

++CV
Yes

MIN(min, CV)

CV

32-bit

CV

…
…

hash3

CV < min ?

++CV

MIN(min, CV)

Yes

No

Fig. 14: Pipeline design of Count-Less: encoding/decoding logic of CL-MU in switch’s data plane.

RegisterAction<8b, 32b, 8b>(cl1_register) cl1_action = {

void apply (inout 8b value, out 8b result) {

if (value>8w14) {value=8w15; result=meta.min}

else {

value = value + 8w1;

result = min(meta.min[7:0], value);

} } };

RegisterAction<16b, 32b, 16b>(cl2_register) cl2_action = {

void apply (inout 16b value, out 16b result) {

if (value>8w65534) {value=8w65535; result=meta.min}

else {

if (meta.min > value) {value = value + 16w1;}

result = min(meta.min[15:0], value);

} } };

RegisterAction<32b, 32b, 32b>(cl3_register) cl3_action = {

void apply (inout 32b value, out 32b result) {

if (meta.min > value) {value = value + 32w1;}

result = min(meta.min, value);

} };

apply {

meta.min = (bit<32>)cl1_action.execute((bit<32>)hash1[17:0]);

meta.min = (bit<32>)cl2_action.execute((bit<32>)hash2[25:10]);

meta.min = (bit<32>)cl2_action.execute((bit<32>)hash3[31:17]);

}

Fig. 15: Data plane implementation of CL-MU in P4.

r = 16 with green bars) favors the mouse flows by allocating
more small counters to the lower layers, the larger r helps
relax the horizontal hash collisions only (among the same
layer). Less counters (memory) allocated to the upper layer
disallow the mouse flows to take advantage of Count-Less (CL-
MU’s) cross-layer update strategy that relaxes the collisions in
a vertical manner (i.e., across layers), as shown in Fig. 16(a),
(c), and (e). For the elephant flow estimation, a smaller r (i.e.,
r = 2 with gray bars) is a more preferable selection since it
allocates more space to the upper layers with bigger counters.
However, as a trade-off, the smaller r hurts the mouse flow
accuracy, as can be seen in Fig. 16(a), (c), and (e). To this end,
we select the expansion factor r = 4 as the fixed parameter to
balance the accuracy between the mouse and elephant flows.

Selection of d: With r = 4 (see the red bars in Fig. 16),
we explore CL-MU’s accuracy by varying the number of
layers (d). As shown, CL-MU with d = 3 and d = 4
shows the best performance in the mouse flow estimation.
Moreover, the accuracy of the mouse flows increases as more
layers are defined, as shown in Fig. 16(a), (c), and (e). This
trend reconfirms the effectiveness of our cross-layer update
strategy. For the elephant flow estimation, CL-MU with d = 3

(a) mouse 0.1MB (b) elephant 0.1MB

(c) mouse 0.5MB (d) elephant 0.5MB

(e) mouse 1.0MB (f) elephant 1.0MB

Fig. 16: AREs of mouse and elephant flows varying CL-MU’s
parameters: the number of layers (d from 2 to 5) and the
expansion factor (r from 2 to 16). The results are based on a
5-second CAIDA trace (see section V-A) with three memory
settings (i.e., 0.1 MB, 0.5 MB, and 1 MB).

outperforms d = 4 since more counters will be allocated
to the higher layers with a smaller d. As such, d = 3 and
d = 4 are both viable selections for CL-MU with a trade-
off between the mouse and elephant flows’ accuracy. In this
work, we fixed the number of layers as d = 3 for the following
reasons. First, for a switch’s data plane, sketches need to be
lightweight considering the constrained computation resources
in the data plane. Therefore, CL-MU with d = 3 that saves one
layer operations (i.e., memory access and compare operations)
compared to d = 4 fits better. Second, current efforts of
in-network detection pay more attention to the volumetric
attacks (i.e., elephant flows) [4], [5], [35], [39], [65]. Thus,
an elephant-friendly setting (d = 3) is more preferable in such
scenarios.

17

	Introduction
	Motivating Count-Less
	FSD Changes Over Time and Under Attacks
	In-network Switch and Data Plane Challenges
	Our Approach in a Nutshell

	The Count-Less Sketch: Design Space
	Data Structure
	Update Strategy and Encoding Algorithm
	Advantages and Costs

	Theoretical Analysis
	Evaluating Count-Less
	Parameters and Dataset
	Evaluation Metrics
	Robustness of Count-Less
	Analysis of Count-Less
	Security Applications

	Data Plane Implementation and Evaluation
	Implementations
	Hardware Evaluation

	Related Work
	Conclusion
	References
	Appendix
	Count-Less's Functions for Security Applications
	Throughput in CPU Environment
	Implementation
	P4 Code Snippet
	Count-Less (CL-MU) with various parameters

