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Abstract—Least-privilege separation decomposes applications
into compartments limited to accessing only what they need.
When compartmentalizing existing software, many approaches
neglect securing the new inter-compartment interfaces, although
what used to be a function call from/to a trusted component is
now potentially a targeted attack from a malicious compartment.
This results in an entire class of security bugs: Compartment
Interface Vulnerabilities (CIVs).

This paper provides an in-depth study of CIVs. We tax-
onomize these issues and show that they affect all known
compartmentalization approaches. We propose ConfFuzz, an in-
memory fuzzer specialized to detect CIVs at possible compart-
ment boundaries. We apply ConfFuzz to a set of 25 popular
applications and 36 possible compartment APIs, to uncover a
wide data-set of 629 vulnerabilities. We systematically study these
issues, and extract numerous insights on the prevalence of CIVs,
their causes, impact, and the complexity to address them. We
stress the critical importance of CIVs in compartmentalization
approaches, demonstrating an attack to extract isolated keys in
OpenSSL and uncovering a decade-old vulnerability in sudo. We
show, among others, that not all interfaces are affected in the same
way, that API size is uncorrelated with CIV prevalence, and that
addressing interface vulnerabilities goes beyond writing simple
checks. We conclude the paper with guidelines for CIV-aware
compartment interface design, and appeal for more research
towards systematic CIV detection and mitigation.

I. INTRODUCTION

The principle of least privilege has guided the design of
safe computer systems for over half a century by ensuring that
each unit of trust in a system can access only what it truly
needs to fulfill its duties: in this way, system designers can
proactively defend against unknown vulnerabilities [65]. Soft-
ware compartmentalization is a prime example where unsafe,
untrusted, or high-risk components are isolated to reduce the
damage they would cause should they be compromised [50].

Recent years have seen the appearance of an increasingly
large number of new isolation mechanisms [10], [4], [3], [65],
[53], [45] that enable fine-grained compartmentalization. This
resulted in compartmentalization works targeting finer and
finer granularities, such as libraries [67], [60], [19], [42], [53],
[35], [5], [51], [29], [2], modules [22], [2], [52], files [2],
and even functions/blocks of code [16], [64], [57], [1]. In that
context, major attention was dedicated to compartmentalizing
existing code, since rewriting software from scratch to work in
a compartmentalized manner is costly and complex [16]. With

recent developments on compiler-based compartmentalization,
frameworks offer to apply isolation at arbitrary interfaces for
a low to non-existent porting cost [67], [5], [35], [1].

Unfortunately, breaking down applications into compart-
ments means that control and data dependencies through
shared interfaces create new classes of vulnerabilities [61]:
in order to provide safe compartmentalization, it is not only
necessary to ensure spatial memory isolation but also to design
interfaces with distrust in mind. For example, objects passed
through APIs can be corrupted to launch confused deputy
attacks [39], [21], data structures can be manipulated to control
execution or leak data through Iago attacks [8], [11], called
components can modify return values or indirectly access
shared data structures to launch new forms of exploit, etc.

Even though interface-related vulnerabilities (denoted
Compartment-Interface Vulnerabilities / CIVs in this paper)
were previously identified to various extents in the litera-
ture [39], [8], [21], [61], almost all modern compartmental-
ization frameworks [67], [60], [19], [53], [35], [25], [45], [5],
[51], [57], [30], [29], [1] neglect the problem of securing
interfaces, and rather focus on transparent and lightweight
spatial separation. Since CIVs are already problematic for
interfaces hardened from the ground up (e.g., the system call
API [28], [8]) with well-defined trust-models (kernel/user),
their impact on safety is likely to be even greater when
considering arbitrary interfaces and trust models that materi-
alize when compartmentalizing existing software that was not
designed with the assumption of hostile internal threats. Worse
still, the complexity of safeguarding interfaces increases as
more fine-grain components are targeted.

Beyond this lack of consideration, CIVs remain mis-
understood; we ask the following research questions: how
widespread are CIVs when compartmentalizing unmodified
applications? What are the API design patterns leading to
them? What is the concrete impact of CIVs on the safety
guarantees brought by compartmentalization, and what is
the complexity of addressing them? In order to achieve CIV
mitigations that are generic and principled, we stress the need
to formalize and quantify the problem.

This paper provides an in-depth study of CIVs. We taxono-
mize CIVs into a coherent framework, and systematize existing
efforts to address them, highlighting categories that need
attention in future research. In order to study existing CIVs
in real-world scenarios, we propose ConfFuzz, an in-memory
fuzzer specialized to detect CIVs at possible compartment
boundaries. ConfFuzz automatically explores the complexity
of compartment interfaces by exposing data dependencies
leading to vulnerabilities. Contrary to existing fuzzers, that
inject malformed data in a single direction (e.g., a library),
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ConfFuzz can show the degree to which data flowing through
an interface can be manipulated to harm either direction of
a cross-compartment call. We apply ConfFuzz to a corpus of
39 compartmentalization scenarios, many of which previously
proposed as use-cases of 12 existing research and industry
frameworks. We uncover a wide data-set of 629 potential vul-
nerabilities1. We systematically study these issues, extracting
numerous insights on the prevalence of CIVs, their causes,
impact, and the complexity to address them.

At the highest level, our results confirm how important the
problem of CIVs should be to compartmentalization research:
in many cases, CIVs seriously reduce or even fully negate
all benefits of compartmentalization, and that even when the
interface is extremely simple: we demonstrate an attack to
extract isolated keys in OpenSSL, a common application of
compartmentalization, and a decade-old vulnerability in sudo’s
authentication API. Beyond this, we note the following high-
level insights: 1) CIVs are present in almost all existing
interfaces, but at significantly varying degrees: for instance
module APIs are much more vulnerable than library interfaces,
and some interfaces are entirely CIV-free; 2) the complexity
of objects crossing the interfaces imports more than the size of
the API itself, and most of an API’s CIVs can often be tracked
down to a handful of objects; 3) fixing CIVs goes further than
writing a few checks, and often requires reworking interfaces
and partially redesigning existing software. We conclude with
an appeal for more research towards systematic CIV detection
and mitigation, hoping that this study can encourage future
works to consider the issue of interfaces.

To sum up, this paper makes the following contributions:

• A systematization and taxonomy of CIVs and existing
efforts to address them (§III).

• ConfFuzz, an in-memory fuzzer that automatically detects
CIVs in existing software at arbitrary interfaces (§IV).

• A systematic study of the CIVs found by ConfFuzz
applied to 39 real-world application compartmentalization
scenarios, backing insights with concrete data (§V).

• A series of interface design guidelines intended to ease the
development/adaptation of new/existing interfaces with
compartmentalization in mind (§VI).

II. MOTIVATION

The problem of secure interface design is not new [18].
The Linux system call interface, for example, is the result
of years of organic evolution towards a strong boundary that
preserves the integrity of the kernel in the presence of untrusted
applications. Alas, designing strong interfaces in an adversarial
context is notably hard: interface-related vulnerabilities are
still regularly reported against the system call interface [28],
[26], [23], even after decades of hardening. The task is even
harder when assuming mutual distrust; the system call API,
to take the same example, is notably weak at protecting the
application from the kernel [8], [11], and requires extensive
shim interfaces [43], [7], [46], [14], [13] to sanitize untrusted
inputs and outputs.

Modern compartmentalization frameworks enable users to
easily enforce spatial and temporal separation between compo-
nents of existing software. Typically, code is either sandboxed,

1We open-sourced code and data-set: https://conffuzz.github.io

// ImageMagick callback exposed to libghostscript
static int MagickDLLCall GhostscriptDelegateMessage(

void *handle, const char *message, int length) {

/* CIV: unchecked dereference/usage of
* sandbox-provided pointer/bounds information */

(void) memcpy(*handle, message, (size_t) length);
(*handle)[length] ='\0';

} /* ... abbreviated / simplified ... */

Listing 1: ImageMagick callback lets libghostscript perform
arbitrary writes outside the sandbox.

where a software component prone to subversion is restricted
from accessing the rest of the system (e.g., image processing
libraries), safeboxed, where sensitive data is only accessible
to a component while maintaining high privilege (e.g., libssl),
or separated into mutually distrusting subsystems [27]. De-
pending on domain crossing frequencies, compartmentalization
promises good vulnerability containment at a modest cost [65].

Unfortunately, as shown by previous works [21], [61], [42]
and highlighted in this paper, simply isolating software compo-
nents is not enough: if cross-compartment interfaces have not
been designed as trust boundaries (e.g., when compartmentaliz-
ing existing software), a wide range of Compartment-Interface
Vulnerabilities (CIVs) arise. Reasoning about the safety of an
interface is complex due to data dependencies exposed through
the use of that interface by actors that previously belonged to
a single trust domain, but under compartmentalization distrust
each other. That complexity increases with that of interface-
crossing data flows. CIVs arise when developers would like to
avoid trust in a component, and encompass traditional confused
deputies [18], Iago vulnerabilities [8], or Dereferences Under
Influence (DUIs) [21]. We define CIVs more formally in §III.

Take the example of library sandboxing in ImageMagick
as done by the Compiler-Assisted Library Isolation (Cali) [5]
framework. Here, libghostscript is sandboxed because it is
notoriously prone to high-impact vulnerabilities. Cali auto-
matically sandboxes the library by applying compiler-based
techniques to detect data shared between the application and
the library, and place them in a shared memory region, before
running application and library in separate processes. When
the application needs to execute a function of the library,
Cali performs the function call in the library compartment.
Whenever the library needs to execute an application callback,
Cali executes the callback in the application compartment.

This approach might seem sufficient: it makes it harder for
attackers to escape the sandboxing of libghostscript. In prac-
tice, however, as shown in Listing 1, ImageMagick exposes a
callback to libghostscript that allows the untrusted library to
perform arbitrary writes in the application’s compartment as
often as it wants and at any time, negating spatial isolation
entirely. This vulnerability, identified by our tool ConfFuzz, is
caused by ImageMagick (victim compartment) dereferencing
sandbox-provided pointers (handle and message) and bounds
information (length) without sufficient checking.

Even though CIVs particularly affect new fine-grain com-
partmentalization frameworks such as Cali, they are not a
specificity of these frameworks; as we show in §V, CIVs also
affect long-standing, production-grade sandboxing approaches
such as the worker/master separation in Nginx.
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Clearly, while a strong compartmentalization framework
capable of reliably enforcing spatial and temporal isolation is
necessary, it is insufficient to offer tangible security benefits:
software must also be adapted to fit distrust scenarios by
vetting information that crosses compartment interfaces.

In the remainder of this paper, we propose the first system-
atization and taxonomy of CIVs and existing defenses, intro-
duce ConfFuzz, a tool to automatically detect CIVs at potential
compartmentalization boundaries, and use it to provide an in-
depth study of real-world CIVs found with ConfFuzz.

III. COMPARTMENT-INTERFACE VULNERABILITIES

In this section, we provide the first definition and taxonomy
of CIVs, along with a systematic review of existing defenses
and their shortcomings. We define three main classes of CIVs,
subdivided in a total of 8 subclasses. We relate each subclass
with existing mitigations and discuss their limits, summarized
in Table I. Here we use the term corrupted to refer to data
voluntarily malformed by a malicious compartment.

A Compartment-Interface Vulnerability (CIV) is an instance
of the general confused deputy [18] problem, where a
compartment is its own deputy, and fails to adequately vet
the use of the interface it exposes to other compartments, as
well as its usage of other compartments’ interfaces.

Malicious compartments can leverage a CIV to mount data
and control-based attacks, confusing a victim compartment into
leaking and altering its private data and addresses, executing
code, etc. Many CIVs arise due to incorrect or missing
checks and sanitization of data flowing through the interface;
our taxonomy provides a comprehensive list of causes. Type
confusion [17], DUIs [21], and Iago [8] are all part of the CIV
spectrum. For instance, Iago vulnerabilities are CIVs at the
system-call boundary, and DUIs match DC1 and DC2 (§III-B).

A. Cross-Compartment Data Leakage (DL)

a) DL1: Exposure of Addresses: A victim compartment
may leak compartment-internal memory addresses, allowing
an attacker, among others, to break ASLR in the victim and
locate critical objects. In Listing 1, address leaks may help
libghostscript to know where to point handle to. DL1 can
stem from interface-crossing uninitialized data structures/fields
and compiler-added padding [44], as well as data over-sharing
between compartments. RLBox [42] proposes to address DL1
with pointer swizzling [66], ensuring that interface-crossing
pointers can only address the sandbox. Generalized to arbitrary
compartmentalization scenarios (e.g., by forcing interface-
crossing pointers to address shared regions), this solves leaks
due to oversharing, but does not address leaks due to unini-
tialized memory or padding. A near-complete protection can
be achieved by combining RLBox with uninitialized memory
use detectors such as MSan [56]. RLBox is not generic, as it
requires strong types which are not available in all languages
(e.g., C), and non-trivial manual refactoring that forbids certain
C/C++ idioms. More generic but weaker protection can be
achieved with ASLR hardening techniques [36], [24].

b) DL2: Exposure of Compartment-Confidential Data:
A victim compartment may leak compartment-confidential
data to a malicious compartment. The impact depends on the
nature of the leakage; typical targets include cryptographic
secrets, or user data. Leaks stem from over-sharing, as well
as uninitialized shared objects containing data from previous
allocations. SOAAP [16] proposes to address DL2 with man-
ually annotated sensitive data, leveraging data-flow analysis to
guarantee that annotated objects never cross trust boundaries.
This approach does not prevent leakages due to uninitialized
memory/padding, and is notoriously prone to human error: past
attempts at compartmentalizing OpenSSL failed because of
misidentification of private data [49]. Similarly to DL1, more
complete protection can be achieved by combining SOAAP
with uninitialized memory use detectors.

B. Cross-Compartment Data Corruption (DC)

a) DC1: Dereference of Corrupted Pointer: A victim
compartment may dereference a pointer corrupted by a ma-
licious compartment. The impact spans that of all classical
spatial vulnerabilities: malicious actors may gain read, write,
or execute capabilities in the victim’s context, or cause Denial
of Service (DoS). In Listing 1, corrupted pointers handle and
message grant the untrusted compartment full write permis-
sions. DC1 vectors include shared objects, cross-compartment
function call arguments and return values. RLBox [42] pro-
poses to address DC1 with pointer swizzling [66], with the
same limitations as in DL1. Hardware memory capabilities
such as CHERI [65] address DC1 by making it impossible
to forge pointers. Although promising, this technology is
still at a research prototype stage [3]. Its protection is not
generic, requiring porting/annotations to fully address DC1,
leaving certain C/C++ idioms unsupported. Generally, pointer
authentication techniques like ARM PA [33] can also address
DC1, but may require porting in a compartmentalized context.

b) DC2: Usage of Corrupted Indexing Information: A
victim compartment may use indexing information (size, off-
set, index) corrupted by a malicious compartment. The impact
includes DoS, and that of buffer overflows, and underflows,
depending on the context. Typical vectors are, similarly to
DC1, shared data, cross-compartment function call arguments,
and return values. RLBox [42] proposes to employ compiler-
based techniques to force experts to write checks prior ac-
cessing interface-crossing data (and in particular indexing
information). This ensures that humans will sanitize the API,
but does not offer correctness guarantees. Hardware memory
capabilities [65] address DC2 by offering bounds safety for
C/C++, with the limitations mentioned in DC1. Generally,
bounds-checking techniques [59] can address DC2.

c) DC3: Usage of Corrupted Object: A victim com-
partment may use an object corrupted by a malicious com-
partment. Examples include corrupted strings lacking NULL
termination or including arbitrary format string parameters,
corrupted OS/libc constructs such as FILE*, corrupted integers
causing numeric errors [41], etc. Corrupted objects may be
control or non-control data [9]. DC3 impact includes, in
addition to DoS, information leaks, or exposing read, write,
or execute primitives. Vectors are the same as DC1 and DC2.
The fundamental difficulty to address DC3 is that the validity
of an interface-crossing object is entirely dictated by the
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TABLE I: Compartmentalization mechanisms and frameworks that consider certain CIV classes. A  indicates that a CIV class
is fully addressed; a G# indicates a partially addressed CIV class; a # means fully vulnerable. An asterisk * indicates that the
fix is not generic: the method makes assumptions about the source code being compartmentalized, or the use-case.

Mitigation Approach \ CIV Class DL1/Exp.Addr DL2/Exp.Dat DC1/Corr.Pt DC2/Corr.Ind DC3/Corr.Obj TV1/API.Ord TV2/Corr.Sync TV3/Race
TYPE-BASED CHECKS: RLBOX [42] G#* #  * G# G#* G#* # #
HARDWARE CAPABILITIES: CHERI [65] # #  *  * G#* # # #
UNDEFINED MEM. SANITIZERS [56] G# G# # # # # # #
BOUNDS-CHECKING TECHNIQUES [59] # # #  * G#* # # #
ASLR-GUARD [36], FG-ASLR [24] G# # # # # # # #
ANNOT. + DF-ANALYSIS: SOAAP [16] # G# # # # # # #
POINTER AUTHENTICATION [40], [33] # #  * # # # # #
API SEM. SANITIZATION: APISAN [68] # # # # # G# # #
TOCTTOU PROTECTION: MIDAS [6] # # # # # # #  *

semantics of the API and of its users. The difficulty to extract
this information systematically is a well-known problem [68].
RLBox [42] partially addresses DC3 with automatic validity
checking and copy, for the types that allow it (e.g., strings),
and forces manual sanitization for others, with the drawbacks
mentioned for DC1. Even for types that allow automatic saniti-
zation such as C-style strings, checks remains partial (checking
NULL-termination, but not format string parameters). Hardware
memory capabilities [65] address part of the symptoms of DC3
with full spatial memory safety, but cannot offer complete
protection: not all control and data attacks that could be
mounted on DC3 rely on spatial memory safety vulnerabilities.

C. Cross-Compartment Temporal Violations (TV)

a) TV1: Expectation of API Usage Ordering: A victim
compartment may expose functions (or callbacks) to other
compartments and assume call ordering, without enforcing
it. For example, a compartment may expose two functions
init() and work(), expecting init() → work(). Mali-
cious compartments may call work() first. The immediate
impact can be any form of undefined behavior in the victim,
spatial or temporal depending on the context, such as DoS,
uninitialized pointer dereferences, use-after-frees, synchroniza-
tion bugs, etc. RLBox [42] proposes tooling to enforce callback
ordering, but still requires manual detection and patching of
TV1. This poses further difficulties when a compartment can
be concurrently queried. This could be coupled with API
semantics inference techniques such as APISan [68] to lighten
the manual effort, but these techniques remain incomplete.
Generally, there is a need for more research in identifying
and enforcing compartment API usage ordering.

b) TV2: Usage of Corrupted Synchronization Primitive:
A victim compartment may use corrupted synchronization
primitives (e.g., mutexes, locks). The impact includes, beyond
DoS (deadlock), that of any race-condition which could be
leveraged to mount control-based attacks. TV2 vulnerabilities
are a special case of DC3 where the corrupted object is a
synchronization primitive. Existing frameworks do not offer
solutions to this class of vulnerabilities: addressing TV2 is
particularly challenging, as it requires redesigning the way
distrusting compartments cooperate in multithreaded contexts.

c) TV3: Shared-Memory Time-of-Check-to-Time-of-
Use: A victim compartment may check corrupted data in the
shared memory. This may allow a malicious compartment
to corrupt the value after the check and before the use,
making the check useless. TV3 may lead to any previously

mentioned CIV impact. TV3 vectors are shared objects with
double fetches. Existing mitigations include forcing the copy
of objects to a private region before checking, as done by
RLBox [42] (with the genericity limitations mentioned in
DL1), or forbidding concurrent modification altogether as
done by Midas [6] (that targets only kernel-space).

D. Summary: CIV Protections are in their Infancy

No existing compartmentalization framework tackles all
CIV classes. Techniques that can address a subset of CIVs
only offer partial and/or non-generic solutions. Even the most
comprehensive system, RLBox [42], relies extensively on
manual checking with no guarantees of check correctness. It
is likely that combining all the techniques required to achieve
state-of-the-art protection would result in an impractical perfor-
mance overhead that contradicts the initial motivation of using
lightweight isolation technologies for fine-grain compartmen-
talization. This observation motivates our study assessing the
safety and complexity impact of CIVs.

IV. CONFFUZZ: EXPLORING CIVS WITH FUZZING

A. Assumptions and Threat Model

We assume an application decomposed into compartments
that are mutually distrusting. Compartments are defined as pro-
tected subsystems (as proposed by Lampson [27]), with private
code, heap, and stack. Compartments communicate through
interfaces. If a pointer is passed through an interface, the
object it references is shared between the two compartments. A
protection mechanism enforces spatial isolation: code cannot
access private data or code from other compartments. The
compartmentalization framework enforces cross-compartment
control-flow integrity: one compartment can only call explicit
entry points exposed by other compartments. These assump-
tions fit the vast majority of modern frameworks [67], [60],
[19], [53], [35], [25], [45], [5], [51], [30], [29], [1].

We assume a completely compromised compartment which
we refer to as the malicious compartment: an attacker can
execute arbitrary code in its context. Compartments communi-
cate through interfaces that respect the semantics of function
calls, with variable degrees of sanitization. The malicious
compartment attempts to misuse these interfaces to attack
another compartment called the victim. The interface can be
abused in either direction, according to the caller/callee role
of the malicious/victim compartments:
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Fig. 1: ConfFuzz architecture diagram.

a) Safebox: As the caller, the malicious compartment
can abuse an interface exposed by the victim (callee). Vectors
of corruption are function call arguments, data in shared
memory, and return values of callbacks invoked by the victim
to be executed in the context of the malicious compartment.
This corresponds to a safebox scenario, in which a trusted
subsystem (e.g., libssl) is protected from the rest of the system.

b) Sandbox: As the callee, the malicious compartment
can abuse an interface invoked by the victim (caller). Here,
corruption vectors are return values, data in shared memory,
and parameters of callbacks invoked by the malicious compart-
ment to be executed in the victim’s context. This is a sandbox
scenario, in which an untrusted component (e.g., a 3rd-party
library) is prevented from accessing the rest of the system.

B. Overview

To assess the impact of neglecting interface safety, we
propose to fuzz monolithic (non-compartmentalized) software
at possible arbitrary compartment boundaries, and analyze the
set of CIVs we uncover. ConfFuzz is an in-memory fuzzer [58]:
it instruments software targets to hook into arbitrary interfaces,
such as libraries, modules, functions, etc.

Because of their systematic nature, approaches based on
static analysis may seem enticing to explore interface-related
issues. However, related works leveraging such techniques fail
to scale to more than simple programs [21]. Hence, we take
a pragmatic approach and rely on fuzzing. Our goal is fur-
ther different from existing in-memory/in-process/library/API
fuzzers [55], [58] because our tool needs to fuzz both ways
(safebox/sandbox). Hence, we develop ConfFuzz from scratch.

a) Two-Components Approach: Each run of ConfFuzz
considers two communicating software components: a mali-
cious, and a victim one. ConfFuzz simulates attacks towards
the victim by automatically altering data crossing the interface
between them; we call this interface data altering. For that,
ConfFuzz hooks into the interface and fuzzes in both directions
(sandbox/safebox), altering function call arguments, shared
data, and return values for direct interface calls and callbacks.

b) Architecture Overview: As shown in Figure 1, Conf-
Fuzz is composed of a self-contained fuzzing monitor ( A ), and
dynamic binary instrumentation (DBI, B ). This instrumen-
tation, which sits between the malicious component and the
victim in the application’s process, leverages the Intel Pin [37]
DBI framework. Using Pin lets us apply ConfFuzz to software
with a low engineering cost, and hook at arbitrary interfaces
unlike other approaches e.g., LD PRELOAD.

First, ConfFuzz automatically identifies the interface be-
tween application and compartment components by analyzing
debug information in the corresponding binaries ( 1 ). When
starting the application ( 2 ), the fuzzing monitor dynamically
injects instrumentation wrappers at the detected compartment
interface. Following this, it optionally starts a workload gener-
ator ( C ) to stimulate the application ( 3 ). At runtime, at each
API call, the fuzzing logic in the monitor determines a set of
alterations to perform, possibly through mutation of an existing
set, and performs the alterations via the instrumentation ( 4 ).

The application runs with Address Sanitizer [54] (ASan)
as bug detector. When ASan reports a crash in the victim,
ConfFuzz deduplicates it based on the stack trace. If the bug is
not known, ConfFuzz reproduces it, before minimizing the set
of alterations performed to obtain the nucleus of alterations that
trigger the bug ( 5 ). ConfFuzz is implemented in 4.5K LoC
of C++, Bash and Python. The following subsections present
ConfFuzz’s fuzzing process steps in greater details.

C. Interface Detection and Instrumentation

ConfFuzz automatically handles the detection of the sig-
nature of a given target API. The tool gathers a list of
API symbols: functions and callbacks used by the victim
and malicious components to communicate with each other,
along with, for each of these, the number of arguments,
the type and size of each argument, and the type and size
of the return values if appropriate. We compile the target
application with debug symbols, allowing ConfFuzz to use
DWARF metadata to retrieve interface and type information.
The tool can automatically infer the list of functions composing
the interface exposed by shared libraries, and the user can
provide that list manually when targeting arbitrary interfaces.
Most functions are instrumented when the application starts.
Concerning callbacks, ConfFuzz automatically detects them at
runtime by scanning API call parameters for function pointers,
and instrumenting the identified functions on the fly. ConfFuzz
automatically infers what data is shared between the malicious
and victim components, considering that all buffers referenced
by pointers crossing the API are shared data.

Each symbol, including API elements and callbacks, is
instrumented at entry and exit. At each of these events, the
instrumentation checks for reentrance to protect against API
calls performed by the compartmentalized component itself,
notifies the fuzzing monitor with information about the func-
tion being executed and arguments/return value information,
and allows the monitor to perform alterations: depending on
the type of symbol and the fuzzing direction (safe/sandbox),
altering argument values, return value, altering shared memory,
etc. The instrumentation is kept as simple as possible and
all the fuzzing logic runs in the monitor. Instrumentation and
monitor communicate via a well-defined protocol using pipes.

D. Workload Generation and Coverage

ConfFuzz passively sits at internal API boundaries in an
application, and users must determine an application-specific
configuration and input workload that exercise the API. Find-
ing a good set of inputs with high coverage is a problem shared
across most fuzzers [48], [69]. In the data set considered in
this paper, the time to understand the configuration system of
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TABLE II: ConfFuzz data altering strategies for each CIV
class. Each class of data alterations done by ConfFuzz is
targeted at a particular type of CIV, as shown in this table.

CIV Class Corresponding Data Alteration Strategy

DC1 Alteration of pointer types to invalid values (zero page,
arbitrary unmapped areas).

DC2

Alteration of integer types: increments/decrements to trig-
ger over/underflows, replacement to known limits such as
INT MAX (possibly at offsets) to trigger numeric errors,
replacement with random values.

DC3

Alteration of non-pointer types & of pointer targets:
decrements/increments at varying offsets in the object,
replacement of bytes at various offsets in the object.
Replacement of pointers to the same type (replay), and
Replacement of pointers to different types (type confu-
sion) to trigger more complex DC3 flaws.

TV1 Non execution of API functions for partial TV1 detection.

TV2 Alteration of mutex/lock types in shared memory (allows
partial detection of TV2).

TV3, DL1-2 Not targeted.

an application and find an appropriate workload went from
a few minutes to a few hours for a graduate student. We
also explored the use of OSS-Fuzz [47] to generate workloads
for the application, but found that hand-tuned workloads are
generally better at precisely targeting the internal APIs that we
intend to fuzz, which is critical for this study. Nevertheless,
OSS-Fuzz should be considered in cases where the manual
effort to create workloads should be minimized.

ConfFuzz is not coverage-guided. However, to provide an
indication of how comprehensive the fuzzing of an API is with
a given configuration and workload, ConfFuzz measures API
coverage: the number of target API functions reached. This
metric can be compared to the target API’s size to understand
the coverage of a given configuration and workload.

E. Interface Data Altering and Fuzzing Strategy

At each API crossing, the instrumentation notifies the
monitor, which may proceed to alter interface data over the
entire attack surface exposed to the malicious component.
When fuzzing in sandbox mode, the malicious component may
alter return values and callback arguments. In safebox mode,
function call arguments and callback return values may be
altered. In both cases, the malicious component may also alter
data shared between the malicious and victim components.

ConfFuzz probabilistically decides whether or not to alter
data at an API crossing. In order to avoid revealing only
shallow bugs that systematically crash in early fuzzing stages,
we use a dynamic probability adaptation threshold: at first, the
threshold is at 0, i.e., ConfFuzz alters data aggressively at all
crossings. When the number of new crashes becomes scarce,
ConfFuzz increments the threshold to find crashes further in
the API usage. Concretely, based on a counter incremented at
each API crossing, crossings that come before the threshold
is reached see their data altered with a lower probability. This
allows ConfFuzz to find stateful crashes as well.

ConfFuzz alters values in two ways: applying incre-
ments/decrements, and replacing the value altogether. Conf-
Fuzz uses type information to drive alterations. For pointer

values, ConfFuzz may perform replacements with other point-
ers of the same type, of different types, at varying offsets,
at the zero page, on the heap, stack, data, text sections, etc.
For integer values, ConfFuzz may perform replacements with
known limits (e.g., INT MAX). A detailed description of data
alterations performed by ConfFuzz is provided in Table II.
While fuzzing, the fuzzer enriches an alteration corpus with
values gathered during previous alterations. Values from the
corpus are reused, possibly mutated, with a given probability.

F. Crash Processing and Bug Analysis

a) Crash Sanitization: Upon a crash, ConfFuzz com-
pares the ASan stack trace with its database of known crashes.
If the crash is a duplicate, no further analysis is performed,
but information about the new occurrence is logged. ConfFuzz
then checks whether the new crash is a false positive. False
positives arise when altered objects are sent back to the ma-
licious component by the victim. In such cases the malicious
component corrupts itself, yielding an invalid bug.

In order to detect false positives, ConfFuzz walks down the
stack trace until it finds an entry referencing code belonging
to a component. If that component is the one considered as
malicious for this fuzzing run, the crash is considered a false
positive. Even though such false positives are not valid crashes,
ConfFuzz still attempts to minimize them, as this allows to
detect non-viable data alterations that can be avoided later in
order to minimize time wasted on false positives.

b) Reproduction and Minimization: After sanitization,
ConfFuzz systematically attempts to reproduce crashes. Un-
fortunately, not all crashes are reproducible, as some might be
due to particular non-deterministic factors such as scheduling
effects, reliance by the application on random values/changing
external inputs, etc. A non-reproducible crash cannot be fur-
ther processed automatically by ConfFuzz. Still, information
regarding such crashes are valuable for the analysis and are
logged for manual inspection. On the other hand, if the crash
can be reproduced, the monitor gradually minimizes it.

As part of the minimization step, ConfFuzz tries to un-
derstand the minimum set of alteration steps required to
trigger a given bug. ConfFuzz gradually goes through each
alteration performed in reverse order (since the last alterations
performed tend to be the most likely to trigger the crash),
and determines whether the alteration is sufficient to trigger
the crash, necessary to trigger the crash (without it the crash
cannot be reproduced, but it is not sufficient by itself), or
superfluous. This results in a minimal set of attack primitives
that the malicious component can perform to trigger the bug.

c) Impact Analysis of Crashes: After processing
crashes, ConfFuzz performs initial triage. It harvests ASan-
provided information: whether the crash is due to an ille-
gal read, write or execution, allocator corruption, or to a
NULL dereference, along with faulty addresses. Then, for
R/W/X crashes, ConfFuzz tries to determine whether the
vulnerability is arbitrary: for each alteration in the mini-
mized steps, ConfFuzz mutates the altered value with incre-
ments/decrements, trying to reproduce the crash. If the crash
is reproducible and the faulty address varies accordingly to the
increment/decrement, the vulnerability is considered arbitrary.

6



TABLE III: Bugs found for sandbox and safebox Trust Models (TM, fuzzing directions). Refs. links to studies that implemented
an equivalent scenario. Victims gives the number of individual software components (application code, libraries, modules) that the
malicious component managed to crash. API Coverage represents workload coverage: callers denotes the number of components
calling the API, and coverage denotes how many functions of the fuzzed API are hit at runtime. Impact describes the type of
bug: R/W/X fault, NULL dereference, or improper calls to the allocator (e.g. calling malloc with a negative value).

TM Application Compartment API References Crashes Victims API Coverage Impact (of which arbitrary)
Raw Dedup. Callers Coverage Read Write Exec Alloc Null

Sa
nd

bo
x

HTTPd libmarkdown [42] 192 13 3 1 100% (4/4) 10 (8) 7 (7) 0 (0) 1 4
mod markdown 381 71 5 1 100% (1/1) 62 (52) 17 (14) 2 (1) 0 30

aspell libaspell 278 8 1 1 34% (48/141) 7 (7) 7 (7) 2 (1) 0 3
bind9 libxml2 (write API) 0 0 0 1 86% (13/15) 0 (0) 0 (0) 0 (0) 0 0
bzip2 libbz2 [67], [5] 16 5 1 1 62% (5/8) 5 (2) 1 (0) 0 (0) 0 0
cURL libnghttp2 61 7 2 1 50% (18/36) 3 (3) 5 (5) 0 (0) 1 3
exif libexif 400 7 1 1 10% (13/129) 3 (3) 0 (0) 0 (0) 0 5

FFmpeg
libavcodec 316 20 3 4 31% (19/60) 13 (12) 12 (12) 0 (0) 3 7
libavfilter 51 1 1 2 12% (2/16) 1 (1) 0 (0) 0 (0) 0 1
libavformat 217 9 2 3 52% (10/19) 8 (7) 1 (1) 0 (0) 0 7

file libmagic 150 5 1 1 63% (7/11) 5 (2) 1 (1) 0 (0) 0 4

git libcurl [22] 13 4 2 1 90% (18/20) 2 (2) 2 (2) 0 (0) 1 1
libpcre 81 2 1 1 44% (8/18) 2 (2) 0 (0) 0 (0) 2 0

Inkscape libpng [67] 66 3 1 1 46% (14/30) 2 (1) 2 (2) 0 (0) 0 1
libpoppler [16] 81 4 2 1 100% (9/9) 4 (3) 4 (4) 0 (0) 0 2

libxml2-tests libxml2 (write API) 0 0 0 1 100% (47/47) 0 (0) 0 (0) 0 (0) 0 0
lighttpd mod deflate 117 26 2 1 100% (6/6) 16 (11) 5 (0) 1 (1) 2 9

Image
Magick

libghostscript [5] 67 14 2 1 100% (11/11) 4 (2) 1 (1) 0 (0) 3 9
libpng [67] 778 44 1 2 22% (17/77) 2 (2) 9 (9) 2 (0) 2 39
libtiff [67] 197 14 2 1 30% (13/43) 3 (3) 6 (6) 0 (0) 0 13

Nginx libpcre 144 10 1 1 93% (14/15) 8 (7) 3 (3) 0 (0) 6 2
mod geoip [52] 276 25 2 1 35% (5/14) 21 (17) 4 (1) 1 (1) 1 10

Okular libmarkdown [42] 64 5 3 1 100% (4/4) 3 (1) 0 (0) 0 (0) 1 2
libpoppler [16] 195 9 1 1 6% (24/379) 8 (6) 7 (7) 0 (0) 1 4

Redis mod redisbloom 389 23 1 1 42% (8/19) 18 (13) 6 (4) 0 (0) 0 13
mod redisearch 381 21 1 1 54% (18/33) 15 (14) 14 (11) 0 (0) 0 12

rsync libpopt 167 8 1 1 90% (9/10) 4 (3) 2 (0) 0 (0) 0 5
squid libxml2 226 12 1 1 70% (7/10) 9 (5) 3 (3) 4 (1) 0 4
su libaudit 0 0 0 1 66% (2/3) 0 (0) 0 (0) 0 (0) 0 0

Wireshark libpcap 162 8 2 1 50% (20/40) 8 (3) 5 (5) 0 (0) 0 4
libzlib 42 1 1 1 85% (6/7) 0 (0) 0 (0) 0 (0) 0 1

Total: 5508 379 47 38 N/A 246 (192) 124 (105) 12 (5) 24 195

Sa
fe

bo
x

cURL libssl [5] 198 27 1 1 25% (14/56) 18 (10) 5 (4) 1 (1) 0 17
GPA libgpgme 174 9 1 1 4% (3/72) 7 (2) 0 (0) 0 (0) 0 6
GPG libgcrypt [5] 4221 105 1 1 15% (15/95) 64 (60) 4 (0) 0 (0) 77 20
Memcached internal hashtable [45] 4037 16 1 1 50% (6/12) 10 (5) 2 (0) 0 (0) 1 6

Nginx internal libssl-keys [45], [60], [15], [34] 599 46 1 1 50% (2/4) 32 (1) 28 (0) 0 (0) 0 22
libssl [5], [1], [22], [51] 346 39 2 1 11% (11/96) 16 (13) 19 (13) 2 (1) 0 26

sudo internal auth-api 191 5 1 1 100% (5/5) 5 (4) 0 (0) 0 (0) 0 4
libapparmor 97 3 1 1 100% (2/2) 2 (2) 2 (0) 0 (0) 0 2

Total: 9863 250 9 8 N/A 154 (97) 60 (17) 3 (2) 78 103

V. A LARGE-SCALE STUDY OF REAL-WORLD CIVS

In this section, we use ConfFuzz to gather a large dataset
of real-world CIVs, from which we extract insights on a set
of research questions: (Q1) what is the number of CIVs at
legacy, unported APIs?, (Q2) what patterns lead to CIVs and
are all APIs similarly affected by CIVs?, (Q3) what is the
complexity to address these CIVs when compartmentalizing?,
and (Q4) what is the range of severity of the CIVs we uncover,
i.e. without a fix, what can attackers do? Table III shows our
results. §V-A and §V-B give an overview of the methodology
and results. The following sections provide in-depth analysis.

A. Methodology

a) Choice of Scenarios: Our corpus is composed of
25 applications and 36 library/module/function APIs, totaling
39 real-world sandbox and safebox scenarios. We choose
scenarios that are meaningful security-wise, e.g., sandboxing
image processing libraries because they are higher-risk, or
safeboxing functions manipulating SSL keys because they are
sensitive. Motivated by (Q2), we choose scenarios that encom-

pass a diversity of API types (libraries, pluggable modules,
internal APIs), and usages (image processing, text parsing,
logging, key management, etc). We focus on highly popular
applications. Several of these scenarios (16/39, see table) have
been presented as use cases in 12 different compartmental-
ization frameworks, only 2 of which [42], [16] providing
protection against certain CIV classes (discussed in §III). The
smaller number of safebox scenarios reflects that, in general,
libraries/modules tend to perform more untrusted operations
that one might want to sandbox (e.g., request processing,
complex data parsing) than trusted operations that one might
want to safebox (e.g., cryptographic operations).

b) Comparison with Related Works: As discussed in
§IV-B, existing fuzzers are unfit by design to the investigation
of CIVs, so we present no baseline. A relevant work in the
domain of static analysis is DUI Detector [21], which could
be used to detect classes DC1 and DC2 presented in §III-B.
Unfortunately, its authors were unable to provide us with its
source code. We therefore provide a textual comparison in
§VII. We evaluated the cost of DBI (Pin) in ConfFuzz on a
representative set of applications (Nginx, Redis, file, xmltest),

7



and found it to be ≤65%, thanks to Pin’s probe (JIT-less)
instrumentation mode. These numbers match official data [12].
The overhead could be further reduced with compiler-inserted
instrumentation, which we leave for future works.

B. Overview of the Data Set

Overall, ConfFuzz found 629 unique bugs deduplicated
from 15,371 crashes. ConfFuzz uncovered bugs of 4 different
classes as listed in §III: DC1-3, and TV2. In the sandbox
mode, where ConfFuzz fuzzes from the (untrusted) compo-
nent towards components calling it (e.g., application code,
other libraries/modules), we found 379 CIVs. For 3 scenarios,
ConfFuzz did not find any CIVs. We discuss these scenarios
in §V-D. In the safebox mode, the fuzzer found 250 unique
crashes. There are significant differences with the sandbox
results impact distribution, which we analyze in §V-D. For
both modes, the summed number of bugs of all impact types
is larger than the total bug count (999 versus 629) because 224
bugs (1/3rd of the bugs) have more than one type of impact.

a) API End-Point Coverage: We observe unequal in-
terface coverage across scenarios. Some scenarios such as
HTTPd with libmarkdown show full API coverage, while
others such as bzip2 with libbz2 feature poorer coverage.
Generally, low coverage is due to ConfFuzz fuzzing a single
software configuration or CLI option. In the case of bzip2
for example, ConfFuzz fuzzes decompression (-d), but not
compression or archive testing (-z/-t). These entry points
of libbz2 are left unexplored, and the user is notified. This
is a common problem across fuzzers, addressable by varying
configurations [48], [69], and fuzzing with more workloads,
which we consider out of scope. Nevertheless, despite its
simple exploration approach, ConfFuzz shows good ability to
find relevant bugs. For example, in HTTPd with libmarkdown,
a scenario from RLBox [42], ConfFuzz correctly discovered
all CIVs addressed by RLBox, asserted the criticality of the
bugs, and even one more due to library version differences.

C. Prevalence of CIVs

At the highest level, the results confirm our expectations:
CIVs are widespread among unmodified applications. Indeed,
all but 3 scenarios present CIVs. Looking into greater details,
however, disparities appear: libraries present widely varying
CIV numbers, ranging 0-105 for a single scenario. Disparities
become even clearer when looking at the ratio of vulnerable
over covered API elements, ranging 0%-100%, as shown in
Figure 2. This observation is not a consequence of coverage
disparities; we find that the number of functions covered and
the number of CIVs found are uncorrelated (|r| < 0.09).
Similarly, there is no correlation between the size of compart-
ment APIs and the number of CIVs found (|r| < 0.1). This
observation further materializes when considering APIs that
do comparable tasks, e.g., libbz2 and libzlib (compression),
or libpng and libtiff in ImageMagick (graphics). In both
cases, CIV counts vary by 3-5x for nearly identical coverage.
This is most startling in ImageMagick where the workload
(image format conversion) is identical in both cases, but the
number of CIVs jumps from 14 to 44. These observations
hint that the vulnerability of interfaces to CIVs is a factor of
individual patterns and structural properties rather than of size
or functionalities. We study these patterns in the next section.

TABLE IV: Low-level CIV patterns from API-crossing types.

Type Class Low-Level CIV Patterns Involving this Type Class

Integer Types sizes and bounds (DC2), error codes and return values (DC3,
Pattern 4), and generally control-flow manipulations (DC3)

Custom Structs state data (DC3, Pattern 1), mutexes (TV2, Pattern 1), non-control
data (DC3)

C-style Strings version/error strings (Pattern 4), serialized data (all DC1&3)

void* buffers exposed allocator arguments (DC1-3, Pattern 5), and generally
opaque data structures (DC1&3, rare in this dataset)

Insight: smaller APIs do not imply less CIVs in unmodified
applications: API size and number of CIVs are uncorrelated.

D. Patterns Leading to the Presence/Absence of CIVs

Zooming in, the types/data structures triggering crashes are
integer types, custom classes and structures, C-style strings,
and raw void* buffers flowing through compartment inter-
faces. As shown in Figure 3, integer types and custom objects
are the main culprits, being involved in 85% of CIVs, while
only 33% of CIVs are due to C-style strings and raw buffers.
Table IV summarizes the low-level CIV patterns observed
for each type. The following paragraphs give insights from
a selection of these patterns and higher-level observations.

a) Pattern 1 – Modularity & Exposure of Internal State:
Module APIs are some of the most vulnerable interfaces in the
study; HTTPd, Nginx, Redis, and lighttpd modules rank 2nd-
10th in CIV count, clearly above average. HTTPd, particularly,
ranks 2nd with 71 unique CIVs, even though its module API
has a single function and entry point. Impact-wise, modules
represent more than half of read CIVs, and 1/3rd of write and
execute CIVs, even though they only represent 5/39 of our
scenarios. In short, the most modular interfaces of the dataset
get more bugs and worse bugs on average.

We track down these observations to one common pattern
across module APIs: exposing the application’s internals to
maximize performance and flexibility. Unlike library APIs,
module APIs are designed to accommodate generic needs
with good performance. These needs stand at odds with the
requirements of compartmentalization: in order to achieve
this, the application must expose its internals to the module,
resulting in significantly less encapsulation than with tradi-
tional libraries. Take Apache modules as an example: HTTPd
modules can register hooks into core operations of the server
(e.g., configuration, name translation, request processing), and
are systematically passed a request structure request rec.
This structure is highly complex, with over 75 fields, of which
over 60% of pointers, many of them referencing other complex
structures: memory pools, connection data, server data, and
even synchronization structures (resulting in TV2 CIVs). These
shared structures are not only very hard to sanitize, they lead to
oversharing when compartmentalizing because most modules
do not need access to all of them. These observations become
even more clear comparing the results of the two Apache sce-
narios: mod markdown and libmarkdown. Here, the HTTPd
Markdown module uses libmarkdown under the hood, thus we
can isolate at the module boundary, or at the library boundary
to obtain comparable guarantees. As expected, isolating at
the library boundary yields fewer crashes than isolating at
the module boundary (5.5x less). Despite a larger number of
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Fig. 2: Proportion of covered vulnerable endpoints versus covered endpoints for each scenario (see Table III for coverage).
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Fig. 3: High-level type classes involved in CIVs for each scenario.

entry points, the attack surface exposed to the library is far
smaller than that of the module API due to encapsulation; the
library does not have knowledge or access to Redis’ internals.
We make similar observations for Nginx, Redis, and lighttpd.
These observations are not trivial: multiple studies propose
privilege separation of modules [22], [52] without considering
this problem, and other studies [31], [51], [29] build on
the assumption of modularity being fundamentally good for
compartmentalization. We stress that this is not always the
case, and that more research is need to achieve fast, generic,
and compartmentalizable modular APIs.

Insight: modularity ̸= low compartmentalization complex-
ity: boundaries exposing internal state are hard to protect.

b) Pattern 2 – CIV-Resilient Input-Only APIs: Several
scenarios are entirely CIV-free: libxml2 write API, and su
with libaudit. In the case of libxml2, even API tests with full
coverage of all 47 endpoints do not yield a single CIV. We
manually confirmed that no CIVs are possible at these APIs,
reducing these observations to one common pattern: designing
the API like a write/input-only endpoint. For instance, Bind9
uses libxml2 to store statistics onto the filesystem in XML
format; it strictly forwards data to libxml2, which formats
and stores it. The situation is similar in su with libaudit,
used as a logging facility. su passes logs to libaudit, which
processes them. There is no feedback loop and no data flow
from the library to the application, and thus no CIVs. Note
that this does not apply to squid, which uses a different API
of the libxml2 family. While this restrictive pattern cannot suit
generic sandboxed API needs, it shows that there are naturally
robust APIs for privilege separation, and remains applicable
to several other scenarios such as (de-)compression or image
processing. We expand more on CIV-resilient APIs in §VI.

Insight: “input-only” APIs are CIV-resilient by design, and
can be found is several scenarios.

c) Pattern 3 – Corrupted Data Forwarding: In sand-
box scenarios, the number of victim components (individ-

ssize_t send_callback(nghttp2_session *h2,
uint8_t *mem, size_t length, ...) {

/* (...), send_underlying = libssl callback */
written = ((Curl_send*)c->send_underlying)(data,

FIRSTSOCKET, mem, length, &result);
} /* (...) simplified */

Listing 2: Fall-through CIV in libssl, with curl and libnghttpd2
isolated: curl transparently forwards corrupted data to libssl.

ual application/libraries/modules that the untrusted component
managed to crash), as shown in Table III, is >1 for 1/3rd
of the cases. This is surprising, since only 4/39 scenarios
have more than one caller component — 3 of them being
FFmpeg. We tracked down these observations to one common
pattern, where a trusted component T1 receives corrupted input
from an untrusted component U1, and forwards it to another
trusted component T2. Component T2 thus receives corrupted
data from trusted component T1. Take the example of curl,
which features this CIV pattern in Listing 2. Here, curl’s
callback send callback (T1) receives corrupted input mem
and length from libnghttpd2 (U1), and transmits it to libssl
(T2) via send underlying, resulting in a libssl crash. The
untrusted HTTP parsing library thus manages to attack libssl
even though the two libraries do not directly communicate.
Intuitively, this pattern motivates to check as early as possible
to avoid unsanitized data spreading. Unfortunately it is not
always possible to perform checks at the untrusted boundary:
T1 is the recipient of the data and may not have knowledge
of the semantics of the corrupted object. Thus, checks must
be thought with the full system in mind: it is not because a
library only interfaces with safe or trusted components that
it won’t receive untrusted inputs. This poses the question of
“when to check, and when not to”, to ensure that no check is
missed, while limiting the amount of unnecessary vetting.

Insight: the attack surface of a component exceeds interac-
tions with directly reachable untrusted components; targeted
attacks to non-adjacent components are realistic and checks
must be thought with the full system in mind.
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static char * ngx_http_block(ngx_conf_t *cf, ...) {
/* (...) simplified */
if (module->postconfiguration(cf) != NGX_OK)

/* cf used in caller after return: */
return NGX_CONF_ERROR; 1

if (ngx_http_variables_init_vars(cf) != NGX_OK) 2
return NGX_CONF_ERROR;

} /* (...) many operations involving cf here */

Listing 3: Multi-alteration vulnerability with Nginx modules.

d) Pattern 4 – Error-Path CIVs: About 42% of the
dataset’s crashes require more than one alteration to manifest.
In these cases, part of the alterations aim at diverting the con-
trol flow to reach a vulnerable location. We manually studied
these multistep vulnerabilities and found that, in sandbox sce-
narios, many present a common pattern where the vulnerability
is located in an error-handling path. In this case, ConfFuzz
diverts the control flow to the error path (e.g., via a non-zero
return value), so that the application reaches a location that
makes use of another corrupted value. Take the example of
Nginx with the GeoIP module isolated, as depicted in Listing 3.
Nginx calls the module’s post-configuration callback, passing
it a pointer to its shared configuration object cf. Assume
GeoIP corrupts cf. If the call succeeds (default behavior in
GeoIP), Nginx proceeds with other operations making use
of the configuration object, particularly at 2 , triggering a
crash. Unfortunately, crashes at this stage hide potential for
corruption beyond 2 or in the caller. Exploiting error-path
CIVs, ConfFuzz found that by corrupting cf and returning an
error value from postconfiguration, further crashes could
be uncovered in ngx http block’s caller, after the return
statement 1 , avoiding 2 . Beyond showing that ConfFuzz
can easily uncover multistep crashes, this strengthens Pattern
3’s observations: checks should be done as early as possible,
ideally before any control flow operation. CIV checks should
preempt other functional checks like error code handling to
avoid attack surface multiplication.

e) Pattern 5 – Allocator Exposition: The dataset fea-
tures 102 allocator corruption bugs affecting a total of 14
scenarios, with 77 bugs coming from GPG with libgcrypt.
We investigated this CIV class and reduced it to two related
patterns, where (1) corrupted data flows reach parameters of
allocators calls, or (2) trusted components expose untrusted
components with a direct window to their allocator. In the
first case we observe numerous DC1-corrupted pointers reach-
ing free(), DC2-corrupted integers reaching malloc(), as
well as cases within the libc due to DC3-corrupted FILE*
pointers. The second case appears in GPG with libgcrypt, and
almost systematically in sandbox scenarios with module APIs
(HTTPd, Nginx). Here, the application presents the sandboxed
component with a malloc-like API that allows it to allocate
objects with the application’s memory allocator. This results in
numerous DC1-2 CIVs and explains the peak in void* related
bugs for GPG in Figure 3. Allocator exposition is achieved
with the intention to achieve higher performance (custom
memory allocator), for introspection reasons (statistics, or
record log information), or for correctness reasons (alloca-
tion/freeing is spread over both components). Vulnerabilities
arising from this pattern are high impact: they allow malicious
compartments to trigger arbitrary use-after-frees, heap Feng

Shui [63], and other allocator exploitation techniques. Since
this pattern also defeats compartment heap separation, it is
likely that DL2 CIVs will arise too. In all cases, allocator
exposition is very difficult to get right in compartmentalized
contexts, and should be avoided where possible. Removing
allocator exposition can be straightforward if performed for
performance reasons only, but may require significant redesign
of the API if done for introspection or correctness reasons.

Insight: cross-compartment memory management is hard
& leads to exploitable CIVs. Fixes may imply API redesign.

E. Security Impact of CIVs

At the highest level, our impact analysis confirms that CIVs
are particularly critical from a security standpoint. We find that
more than 75% of scenarios studied present at least one write
vulnerability, and all safebox scenarios present at least one
arbitrary read, which defeats attempts to protect secrets. We
present an overview of impact results from Table III, before
focusing in depth on a selection of bugs from the data set.

As visible in Table III, the distribution of impact is
clearly in favor of read vulnerabilities, NULL dereferences,
followed by write, allocator corruption, and code execution.
This follows the distribution of typical patterns in applications.
Most commonly, a victim component reads data referenced
by a pointer provided by a malicious component (resulting
in read vulnerabilities), or use a corrupted integer within a
check (e.g. a success code) before accessing internal data
(resulting in NULL dereferences if the application reads un-
allocated/uninitialized data with the call returning a success
code). Less commonly, a victim write to a pointer provided
by a malicious component (write impact). Memory allocator
corruption bugs most commonly happen via pattern 5 of §V-D,
or when size parameters flow from an interface to an allocation
site. The least common impact is execute, typically resulting
from the victim executing a callback passed by a malicious
component.

We find that more than 70% of read and 66% of write
vulnerabilities are arbitrary, as well as half of execute CIVs.
Thus, in the absence of countermeasures, if a subverted
component can perform illegal R/W/X operations outside its
compartment through APIs, it is likely to be able to do so
at any address. Further, even though the proportion of execute
impact is low (8/39 scenarios), it is probable that attackers will
be able to mount attacks with arbitrary R/W CIVs to reach
code execution. Next, we illustrate these observations with an
analysis of concrete bugs from the dataset.

1) Case Study: OpenSSL Key Extraction: OpenSSL is
a popular compartmentalization target, being both high-risk
(high-complexity, shipped in network-facing applications) and
sensitive (holding secrets). We count at least 8 studies safebox-
ing it [15], [51], [16], [5], [1], [22], [34], [60] with attempts
going beyond that of academic research [49]. Safeboxing
approaches typically either (I1) compartmentalize OpenSSL
in full and isolate at the libssl API, or (I2) compartmentalize
at the libcrypto internal API of key-interacting primitives. I2
is viewed as more robust because of the reduced TCB and the
ability to tackle intra-libssl bugs such as Heartbleed [34].
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// CIV 1: option setting API leads to arbitrary R/W
ulong SSL_CTX_set_options(SSL_CTX *ctx, ulong op) {

return ctx->options |= op;
}

// CIV 2: cross-API object SSL_CTX with function
// pointers leads to arbitrary execution
SSL *SSL_new(SSL_CTX *ctx) {

/* ... */
s->method = ctx->method;
/* ... */
if (!s->method->ssl_new(s)) // arbitrary execution

goto err;
} /* ... */

Listing 4: Two libssl CIVs leading to arbitrary read, write, and
execute impact. Both functions are exposed to the application.

void aesni_ecb_encrypt(const uchar *in, uchar *out,
size_t length, const AES_KEY *key, int enc);

Listing 5: Prototype of internal encryption API from (I2),
vulnerable to key extraction CIVs.

We applied ConfFuzz to both interfaces. In all cases, we
are able to extract keys out of the safebox leveraging a single
CIV uncovered by our fuzzer; we present three of them.

Listing 4 illustrates two CIVs found for I1, where libssl is
safeboxed as a whole. The first CIV affects libssl’s primitives
to set/get SSL options, part of the official libssl API. Here, an
untrusted caller compartment can control ctx and op, enabling
for arbitrary read/write via the bitmask. In the second CIV,
libssl executes callbacks provided by an untrusted object of
type SSL CTX, one of the three key vulnerable structures
highlighted by Figure 3. These callbacks are very common
across the libssl API and result in arbitrary code execution.
Both vulnerabilities can easily be leveraged to extract the key.

Listing 5 illustrates a CIV found for I2, where keys are
isolated at the internal interface. In this encryption primitive,
callers control the in and out pointers, along with the key
location key. By pointing in to the key and pointing key to
a known value, attackers can either cryptanalyze the key out
of out, or use the decryption function to extract the key.

There are systematic problems that make robust safeboxing
at the libssl API difficult. This large API makes heavy use
of state structs such as SSL* or SSL CTX*. Sanitizing such
structures is hard; it is likely that, even provided counter-
measures from §III, the result will approach that of a rewrite
of OpenSSL. Safeboxing at I2 is less complex but still requires
redesign: encryption and decryption primitives must be made
stateful to store the location of valid keys, checking that input
and output buffers do not overlap key locations. Key creation
and loading must also be carefully validated.

Insight: CIVs make it simple to extract SSL keys from
an unmodified API safebox. Robust SSL key safeboxing
requires redesign of the key API into a stateful entity.

2) Case Study: Sudo, Impact Beyond CIVs: Sudo is
a strong target for compartmentalization, being high-risk
(>100K LoC, many features) and sensitive (exploits lead to
system privilege escalation). We considered several scenarios,
one of them safeboxing the authentication API, which manages

int sudo_passwd_verify(struct passwd *pw, char *pass,
sudo_auth *auth, struct sudo_conv_callback *cb) {
/* ... abbreviated ... */
sav = pass[8]; // read CIV
pass[8] = '\0'; // write CIV

} /* ... abbreviated ... */

Listing 6: sudo CIV and CVE-2022-43995 manifesting when
passed password with length below 8 Bytes.

password verification. Here, ConfFuzz found 5 CIVs, with
read and NULL dereference impact. Investigating them, we
realized that one CIV, shown in Listing 6, actually features
R/W impact, and is reachable from user external input, i.e., it
is also a vulnerability in non-compartmentalized contexts. This
decade old issue manifests when users enter small passwords
and was assigned CVE-2022-43995 after we reported it.

3) Case Study: Nginx Master/Worker Interface CIV: We
studied the applicability of ConfFuzz to other compartmental-
ization models such as the Nginx master/worker manual sepa-
ration. Here we assume that a worker has been compromised
(e.g., from the network), and attempts to escalate to master
privilege level. In this model we found a decade-old CIV that
allows a worker to trigger memory corruption in the master2.
The vulnerability affects a reliability feature of Nginx: when
a worker crashes, the master forcibly unlocks shared memory
mutexes hold by the worker to prevent deadlock. A malicious
worker may corrupt the mutex before crashing itself to force
the master to dereference a crafted pointer. This particular CIV
is low impact due to control constraints in the mutex unlocking
routine – bytes will only be overwritten if they match the
worker’s PID. Nevertheless, CIVs at such interfaces present
a real risk: less constrained bugs are realistic and may pose a
real privilege escalation threat.

Insight: CIVs also affect production-grade software and
may be leveraged to mount privilege escalation attacks.

F. Conclusions

We stressed that CIVs widely affect unmodified software,
but in varying proportions (Q1). Factors are structural; we
elaborated on them with 5 central patterns and insights (Q2).
We illustrated that API redesign will be necessary in many
cases to achieve robust least-privilege enforcement (Q3). Fi-
nally, we showed that CIVs are impactful, exploitable, and
elaborated with case studies on popular compartmentalization
targets (Q4). Drawing from this, we discuss how to design
interfaces that are by conception more CIV-resilient in §VI.

VI. (RE-) DESIGNING INTERFACES FOR DISTRUST

We showed that interfaces are not equally affected by
CIVs because of interface design patterns. Next, based on
previous sections, we discuss interface patterns that reduce
compartmentalization complexity, and how to leverage them
to design strong compartment boundaries, or refactor existing
ones. These patterns do not eliminate the need for CIV
countermeasures as detailed in §III; in their absence, these
patterns reduce the number of CIVs, and in the presence of
countermeasures, these patterns help palliate their limitations.

2https://github.com/conffuzz/conffuzz-ndss-data/blob/main/docs/nginx.md
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When refactoring, many of the items listed below require major
software redesign. We believe it is a necessary price to pay to
obtain firm safety guarantees from compartmentalization.

1) Resources (memory, handles) must be clearly segre-
gated: Memory ownership must be clearly defined, with each
component responsible for allocating and freeing memory
in their region: components must not rely on an another
component’s memory allocator (see Pattern 5, §V-D). Simi-
larly, system resource handles (or handles to any third-party-
managed resources) must not be shared. Take the example
of FILE*: when shared, it is hard to determine who should
release the handle and when, requiring complex, ad-hoc, and
error-prone virtualization [5], [22], [42]. Instead, components
should acquire and release their own handle: e.g., for FILE*,
components should exchange file paths and call open() on
their own.

2) Copy API-crossing objects: Shared objects must be sys-
tematically copied to avoid TV3 CIVs: it is very hard to safely
use objects that can be concurrently modified by malicious
compartments. More generally, concurrent usage of objects
across compartment boundaries should be avoided as well, as
it introduces the need for cross-compartment synchronization,
which in turn opens for TV2 CIVs.

3) Simplify API-crossing objects: Compartment interfaces
must not expose data that cannot be safely checked. This in-
cludes state information, which is hard to protect in the general
case (Pattern 1, §V-D). In such cases, a layer of indirection can
be added so that the object is not accessed directly, but through
a set of primitives that can assert the safety of individual
operations. If this is not possible, the interface is probably
not a good compartmentalization boundary in the first place.

4) Trusted-components allocates: When a trusted compo-
nent is passed a pointer to a buffer allocated by another
component, it needs to either trust that component, or verify
the pointer (which only privileged monitors can perform as it
requires knowledge of the memory layout). Take the example
of C-style strings: if a sandboxed callee allocates and returns
through an API a string pointer, a trusted caller needs to
verify the pointer’s validity and the NULL-termination of the
string. This problem can be eliminated by applying a trusted-
component allocates policy, i.e., caller-allocates in sandbox
scenarios, and callee-allocates in safebox scenarios. If the
trusted component allocated the string buffer, it knows the
maximum size of the string and can safely check for NULL-
termination. In the case of mutual distrust, the involvement of
a privileged monitor is necessary.

5) Trusted interface functions must be thread-safe: When
a trusted compartment Ct exposes a function ft (API function
for safeboxes, callbacks for sandboxes) to an untrusted com-
partment Cu, Ct enables Cu to interfere with its control flow
at any time. For example, Cu may interleave multiple calls to
ft and other API functions to trigger TV1 CIVs in Ct. Even
when calls to Ct functions are serialized, these may perform
callbacks back to Cu that will allow it to interleave other calls
to Ct (a behavior that we observed with ImageMagick and
libpng). Thus, trusted compartment functions must be designed
thread-safe to support any concurrent calling. Alternatively,
trusted interface calls should be strictly serialized and run to
completion (no callbacks), a rather restrictive model.

6) Trusted interface functions must define & enforce or-
dering requirements: Similarly, if trusted interface elements
f1 · · · fn have ordering requirements, then these must be
clearly stated and enforced to further tackle TV1 CIVs. This
may require safeboxed libraries to become stateful, where they
previously relied on invoking undefined behavior if the caller
did not respect ordering. When asynchronous behavior is suit-
able, event-loop-based designs may allow interface designers
to shift as much control-flow leverage as possible out of the
hand of attacker by processing the core of the callback in the
main loop, in a way that is consistent with other external inputs
(similarly to signal processing).

7) No sharing of uninitialized data: API-crossing unini-
tialized data must be systematically zero-ed to avoid DL1-2
CIVs (§III-A). Even sharing of properly checked objects can
be unsafe if they have not been zero-ed at initialization, since
compiler-added padding might remain uninitialized. Where
applicable, zeroing should be compiler-enforced.

8) CIV checks first: As soon as one allows untrusted data to
propagate unchecked through a compartment, it becomes hard
to ensure that all checks are properly performed down the line
(Pattern 4, §V-D), and encourages duplication of non-trivial
checks, maximizing the likelihood of errors in present and
future versions of the software. Worse, untrusted data might not
even be used within but simply flow through a compartment
to be used in another one, which might have variable trust
assumptions on the compartment feeding it data (Pattern 3,
§V-D). Copy and checks should therefore be performed on the
data as soon as possible after crossing the API, and preempt
all other functional checks.

VII. RELATED WORKS

a) Finding API Vulnerabilities: DUI detector [21]
leverages static binary analysis, symbolic execution and dy-
namic taint analysis to detect pointer dereferences made by
a security domain under the influence of another through an
interface. Due to performance and scalability issues (emulation
and symbolic execution), such approaches are hard to scale to
large programs, large interfaces, large numbers of programs,
or, as is the case here, high bug counts. Further, compiler-based
static approaches are unsuited to scenarios like OpenSSL,
where safeboxed components are implemented in pure assem-
bly files. Other studies such as Van Bulck et al. [61], focusing
on Trusted Execution Environment (TEE) runtimes, take a
manual approach to identify interface vulnerabilities. Being
manual, such approaches are limited in scope. In-memory
fuzzing allows us to be faster and more scalable than static
and manual approaches, enabling for a larger-scale CIV study.
Fuzzing yields a subset of all CIVs present at an interface,
which is a suitable limitation in our case.

Classical system call fuzzing [62] searches for kernel
vulnerabilities at the system call API. This corresponds to
one specific safebox scenario where the compartment API
is the system call API. ConfFuzz is much more general,
targeting arbitrary sandbox/safebox scenarios at arbitrary APIs.
Similarly to system call fuzzing, Emilia [11] fuzzes for Iago [8]
vulnerabilities, hooking at system calls and altering their return
values to simulate a malicious kernel, corresponding to a
sandbox model. Here too, ConfFuzz is much more general as it
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1) can hook into arbitrary interfaces; 2) supports bidirectional
fuzzing (sandbox/safebox); and 3) fuzzes the full compartment
attack surface (callbacks, return values, shared data, function
arguments) – whereas Emilia only fuzzes return values.

b) Finding API Misuses: APISan [68] studies existing
software to infer semantic usage information for a given
API (e.g., semantic relation on arguments/functions). Using
that information, it searches for deviations to detect possible
API misuses at the source code level. Such an approach is
not suited to detect CIVs. First, CIVs can be present even
when the semantics of an API are respected in the code:
at runtime, a malicious compartment with code execution
abilities can manipulate the program’s execution in a way
that does not respect the API semantics. Second, even if API
semantics could be fully enforced at runtime, most CIVs would
remain undetected because the semantics of unmodified APIs
are generally unsuited to distrust, as we show in the paper.
Nevertheless, as we highlight in §III, APISan’s ability to infer
API semantics may be leveraged to determine enforcement
policies, provided a large enough set of API usage samples
(usually available for popular APIs).

c) In-Memory Fuzzing: Unlike conventional fuzzing
approaches that inject malformed data through a program’s
input channels (e.g., network), in-memory fuzzing [58] moves
the fuzzer within the target using process instrumentation tech-
niques. ConfFuzz is an in-memory fuzzer specialized for CIV
fuzzing. ConfFuzz mainly differs from existing in-memory
fuzzers [58], [55], [38] in that it 1) fuzzes in both ways (sand-
box and safebox) – whereas existing in-memory fuzzers mostly
correspond to safebox fuzzing, and 2) targets a different attack
surface, the compartment attack surface – which, unlike usual
in-memory fuzzers, also includes callbacks, return values, etc.
To our knowledge, we are the first to use in-memory fuzzing
with the goal of studying CIVs in unmodified software.

d) Interface-Aware Compartmentalization Frameworks:
Compartmentalization frameworks provide a variable degree
of support for protecting security domain interfaces. The vast
majority of modern compartmentalization frameworks [67],
[60], [19], [53], [35], [25], [45], [5], [51], [30], [29], [1] do
not achieve more than basic ABI-level interface sanitization
at security domain crossing, such as switching the stack and
clearing registers. Combined with the fact that most also rely
on relatively coarse-grain shared memory-based communica-
tion for performance reasons, this opens up a wide range of
CIVs and was one of our motivations to develop ConfFuzz.

RLBox is a sandboxing framework for untrusted C++
software components. RLBox sanitizes sandbox data flow in
a partially automated way: using static analysis and C++ type
information, the framework can add certain checks automat-
ically. When not possible, RLBox outputs compiler errors to
require human intervention. Similarly, SOAAP [16] relies on
code annotations and employs static analysis to flag possible
data leaks. Both approaches are prone to human error due to
manual effort. The CHERI [65] hardware memory capability
model promises strong and efficient compartmentalization by
extending RISC ISAs with capability instructions. Certain
CHERI features (e.g., unforgeable pointers/capabilities, byte-
level memory sharing) eliminate or mitigate some classes of
CIVs. Nevertheless, CHERI is still a prototype [3]. We discuss
the benefits and limitations of all three systems in §III.

Several TEE runtimes have been proposed [43], [7], [46],
[14], [13] to transparently shield enclaves from the outside
world by maintaining a secure interface. However, as demon-
strated by several studies [61], [11] this cannot eliminate all
CIVs, motivating fuzzers such as Emilia [11] and ConfFuzz.
Before TEEs, sandboxing frameworks protecting applications
from a malicious OS such as InkTag [20] and MiniBox [32]
attempted to prevent Iago attacks by vetting/managing the
memory mappings requests made by the protected program.

VIII. CONCLUSION

Breaking down monolithic software into compartments
without reasoning about newly created interfaces leads to
Compartment-Interface Vulnerabilities. This paper presented
an in-depth study of CIVs. We proposed ConfFuzz, an in-
memory fuzzing approach to investigate CIVs and their impact
in compartmentalized software. Applying it to 25 applications
and 36 libraries, we uncovered a large data-set of 629 CIVs
from which we extracted numerous insights on the prevalence
of CIVs, their causes, impact, and the complexity to address
them: we confirmed how important CIVs should be to com-
partmentalization research, and highlighted how API design
patterns influence their prevalence and severity. We concluded
by stressing that addressing these problems is more complex
than simply writing a few checks, proposed guidance on
compartmentalization-aware interface design and adaptation,
and motivated for more research towards systematic CIV
detection and mitigation. We open-sourced code and data:
https://conffuzz.github.io.
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