
POSE: Practical Off-chain Smart Contract Execution

Tommaso Frassetto∗, Patrick Jauernig∗, David Koisser∗, David Kretzler†,
Benjamin Schlosser†, Sebastian Faust† and Ahmad-Reza Sadeghi∗

Technical University of Darmstadt, Germany
∗first.last@trust.tu-darmstadt.de
†first.last@tu-darmstadt.de

Abstract—Smart contracts enable users to execute payments
depending on complex program logic. Ethereum is the most
notable example of a blockchain that supports smart contracts
leveraged for countless applications including games, auctions
and financial products. Unfortunately, the traditional method of
running contract code on-chain is very expensive, for instance,
on the Ethereum platform, fees have dramatically increased,
rendering the system unsuitable for complex applications. A
prominent solution to address this problem is to execute code
off-chain and only use the blockchain as a trust anchor. While
there has been significant progress in developing off-chain systems
over the last years, current off-chain solutions suffer from various
drawbacks including costly blockchain interactions, lack of data
privacy, huge capital costs from locked collateral, or supporting
only a restricted set of applications.

In this paper, we present POSE—a practical off-chain pro-
tocol for smart contracts that addresses the aforementioned
shortcomings of existing solutions. POSE leverages a pool of
Trusted Execution Environments (TEEs) to execute the computa-
tion efficiently and to swiftly recover from accidental or malicious
failures. We show that POSE provides strong security guarantees
even if a large subset of parties is corrupted. We evaluate our
proof-of-concept implementation with respect to its efficiency and
effectiveness.

I. INTRODUCTION

More than a decade ago, Bitcoin [47] introduced the
idea of a decentralized cryptocurrency, marking the advent
of the blockchain era. Since then, blockchain technologies
have rapidly evolved and a plethora of innovations emerged
with the aim to replace centralized platform providers by
distributed systems. One particularly important application
of blockchains concerns so-called smart contracts, complex
transactions executing payments that depend on programs
deployed to the blockchain. The first and most popular
blockchain platform that supported complex smart contracts
is Ethereum [58]. However, Ethereum still falls short of the
decentralized “world computer” that was envisioned by the
community [51]. For example, contracts are replicated among
a large group of miners, thereby severely limiting scalability
and leading to high costs. As a result, most contracts used
in practice in the Ethereum ecosystem are very simple: 80%
of popular contracts consist of less than 211 instructions,
and almost half of the most active contracts are simple token

managers [49]. More recently proposed computing platforms
in permissionless decentralized settings (e.g., [1], [34]) suffer
from similar scalability limitations.

In recent years, numerous solutions have been proposed to
address these shortcomings of blockchains, one of the most
promising being so-called off-chain execution systems. These
protocols move the majority of transactions off-chain, thereby
minimizing the costly interactions with the blockchain. A
large body of work has explored various types of off-chain
solutions including most prominently state-channels [46], [26],
[22], Plasma [52], [37] and Rollups [48], [5], which are
actively investigated by the Ethereum research community.
Other schemes use execution agents that need to agree with
each other [60], [59], rely on incentive mechanisms [36],
[57], or leverage Trusted Execution Environments (TEEs) [20],
[25]. A core challenge that arises while designing off-chain
execution protocols is to handle the possibility of parties who
stop responding, either maliciously or accidentally. Without
countermeasures, this may cause the contract execution to
stop unexpectedly, which violates the liveness property. De-
spite major progress towards achieving liveness in a off-chain
setting, current solutions come with at least one of these
limitations: i participating parties need to lock large amounts
of collateral; ii costly blockchain interactions are required at
every step of the process or at regular intervals; and finally
iii the set of participants and the lifetime need to be known
beforehand, which limits the set of applications supported
by the system. Additionally, existing solutions often iv do
not support keeping the contract state confidential, which is
required, e.g., for eBay-style proxy auctions [9] and games
such as poker. We refer the reader to Table II for an overview
on related work and to Section X for a detailed discussion.

Addressing all of these limitations in one solution while
guaranteeing liveness is highly challenging. Currently, there
are two ways to address the risks of unresponsive parties. The
first approach is to require collateral, i.e., parties have to block
large amounts of money, which is used to disincentivize mali-
cious behavior and to compensate parties in case of premature
termination (cf. i). Since the amount of collateral depends
on the number of participants and the amount of money in
the contract, both must be fixed for the whole lifetime of the
contract. To ensure payout of the collateral, the lifetime of the
contract must be fixed as well (cf. iii). The second approach
is to store contract state on the blockchain to enable other
parties to resume execution. However, this is both expensive
and leads to long waiting times due to frequent synchronization
with the blockchain (cf. ii). Further, if the contract state
needs to be confidential, and hence, is not publicly verifiable,

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.23118
www.ndss-symposium.org

verifying the correctness of the contract execution is harder
(cf. iv). Realizing a system tackling all these challenges in a
holistic way could pave the way towards the envisioned “world
computer”. We will further elaborate on the specific challenges
in Section III.

Our goals and contributions: We present POSE , a novel
off-chain execution framework for smart contracts in permis-
sionless blockchains that overcomes these challenges, while
achieving correctness and strong liveness guarantees. In POSE ,
each smart contract runs on its own subset of TEEs randomly
selected from all TEEs registered to the network. One of the
selected TEEs is responsible for the execution of a smart
contract.

However, as the system hosting the executing TEE may be
malicious (e.g., the TEE could simply be powered off during
contract execution), our protocol faces the challenge of dealing
with malicious operator tampering, withholding and replaying
messages to/from the TEE. Hence, the TEE sends state updates
to the other selected TEEs, such that they can replace the
executing TEE if required. This makes POSE the first off-
chain execution protocol with strong liveness guarantees. In
particular, liveness is guaranteed as long as at least one TEE in
the execution pool is responsive. Due to this liveness guarantee,
there is no inherent need for a large collateral in POSE (cf. i).
The state remains confidential, which allows POSE to have
private state (cf. iv). Furthermore, POSE allows participants
to change their stake in the contract at any time. Thus,
POSE supports contracts without an a-priori fixed lifetime and
enables the set of participants to be dynamic (cf. iii). Above
all, POSE executes smart contracts quickly and efficiently
without any blockchain interactions in the optimistic case (cf.
ii).

This enables the execution of highly complex smart con-
tracts and supports emerging applications to be run on the
blockchain, such as federated machine learning. Thus, POSE
improves the state of the art significantly in terms of security
guarantees and smart contract features. To summarize, we list
our main contributions below:

• We introduce POSE , a fast and efficient off-chain smart
contract execution protocol. It provides strong guarantees
without relying on blockchain interactions during opti-
mistic execution, and does not require large collaterals.
Moreover, it supports contracts with an arbitrary contract
lifetime and a dynamic set of users. An additional unique
feature of POSE is that it allows for confidential state
execution.

• We provide a security analysis in a strong adversarial
model. We consider an adversary which may deviate
arbitrarily from the protocol description. We show that
POSE achieves correctness and state privacy as well as
strong liveness guarantees under static corruption, even in
a network with a large share of corrupted parties.

• To illustrate the feasibility of our scheme, we implement
a prototype of POSE using ARM TrustZone as the TEE
and evaluated it on practical smart contracts, including
one that can merge models for federated machine learning
in 238ms per aggregation.

II. ADVERSARY MODEL

The goal of POSE is to allow a set of users to run a
complex smart contract on a number of TEE-enabled systems.
Note, that POSE is TEE-agnostic and can be instantiated on
any TEE architecture adhering to our assumptions, similar to,
e.g., FastKitten [25]. In order to model the behavior and the
capabilities of every participant of the system, we make the
following assumptions:

A1: We assume the TEE to protect the enclave program, in
line with other TEE-assisted blockchain proposals [63], [25],
[20], [17], [64], [43]. Specifically:
A1.1: We assume the TEE to provide integrity and confiden-
tiality guarantees. This means that the TEE ensures that the
enclave program runs correctly, is not leaking any data, and is
not tampering with other enclaves. While our proof of concept
is based on TrustZone, our design does not depend on any
specific TEE. In practice, the security of a TEE is not always
flawless, especially regarding information leaks. However,
plenty of mitigations exist for the respective commercial TEEs;
hence, we consider the problem of information leakage from
any specific TEE, as well as TEE-specific vulnerabilities in
security services, orthogonal to the scope of this paper. We dis-
cuss some mitigations to side-channel attacks to TrustZone, as
well as the possible grave consequences of a compromised or
leaking TEE for the executed smart contract, in Section VII-B.
A1.2: We further assume the adversaries to be unable to exploit
memory corruption vulnerabilities in the enclave program. This
could be ensured using a number of different approaches, e.g.,
by using memory-safe languages, by deploying a run-time
defense like CFI [11], or by proving the correctness of the
enclave program using formal methods. The existence of these
defenses can be proven through remote attestation (cf. A3).
A2: We assume the TEE to provide a good source of random-
ness to all its enclaves and to have access to a relative clock
according to the GlobalPlatform TEE specification [32].
A3: We assume the TEE to support secure remote attestation,
i.e., to be able to provide unforgeable cryptographic proof that
a specific program is running inside of a genuine, authentic
enclave. Further, we assume the attestation primitive to allow
differentiation of two enclaves running the same code under the
same data. Note that today’s industrial TEEs support remote
attestation [3], [6], [8], [35], [56].
A4: We assume the TEE operators, i.e., the persons or or-
ganizations owning the TEE-enabled machines, to have full
control over those machines, including root access and control
over the network. The operators can, for instance, provide
wrong data to an enclave, delay the transmission of mes-
sages to it, or drop messages completely. The operators can
also completely disconnect an enclave from the network or
(equivalently) power off the machine containing it. However,
as stated in A1.1, the operators cannot leak data from any
enclave or influence its computation in any way besides by
sending (potentially malicious) messages to it through the
official software interfaces.
A5: We assume static corruption by the adversary. More
precisely, a fixed fraction of all operators is corrupted while an
arbitrary number of users can be malicious (including the case
where they all are). We model each of the malicious parties as
byzantine adversaries, i.e., they can behave in arbitrary ways.
A6: We assume the blockchain used by the parties to satisfy

2

the following standard security properties: common prefix (ig-
noring the last γ blocks, honest miners have an identical chain
prefix), chain quality (blockchain of honest miner contains
significant fraction of blocks created by honest miners), and
chain growth (new blocks are added continuously). These
properties imply that valid transactions are included in one
of the next α blocks and that no valid blockchain fork of
length at least γ can grow with the same block creation rate
as the main chain. We deem protection against network attacks
(e.g., network partition attacks), which violate these standard
properties, orthogonal to our work.

III. DESIGN

POSE is a novel off-chain protocol for highly efficient
smart contract execution, while providing strong correctness,
privacy, and liveness guarantees. To achieve this, POSE lever-
ages the integrity and confidentiality guarantees of TEEs to
speed up contract execution and make significantly more
complex contracts practical1. This is in contrast to execut-
ing contracts on-chain, where computation and verification
is distributed over many parties during the mining process.
POSE supports contracts with arbitrary lifetime and number
of users, which includes complex applications like the well-
known CryptoKitties [2]. We elaborate more on interaction
between contracts in Appendix B. Our protocol involves users,
operators and a single on-chain smart contract. Users aim to
interact with smart contracts by providing inputs and obtaining
outputs in return. Operators own and manage the TEE-enabled
systems and contribute computing power to the POSE network
by creating protected execution units, called enclaves, using
their TEEs. These enclaves perform the actual state transitions
triggered by users. A simple on-chain smart contract, which
we call manager, is used to manage the off-chain enclave
execution units. In the optimistic case, when all parties behave
honestly, POSE requires only on-chain transactions for the
creation of a POSE contract as well as the locking and
unlocking of user funds. The smart contract execution itself
is done without any on-chain transactions.

A. Architecture Overview

Figure 1 illustrates the high-level working of POSE . Before
contract creation, there is already a set of enclaves that are
registered with the on-chain manager contract. The registration
process is explained in detail in Section V-E1. To create a
POSE contract, a user will initialize a contract creation with
the manager (Step 1), which includes a chosen enclave—out of
the registered set—to execute the off-chain contract creation.
In Step 2, the chosen creator enclave will setup the execution
pool for the given smart contract. In Figure 1, the pool size
is set to three; thus, the creator enclave will randomly select
three enclaves from the set of all enclaves registered in the
system (Step 3). In Step 4, the creator enclave will submit the
finalized contract information to the manager. This includes
the composition of the execution pool, i.e., a selected executor
enclave, which is responsible for executing the POSE contract,
as well as the watchdogs, ensuring availability. We elaborate
on this in-depth in Section V-E2. In Step 5, another user can

1We design POSE without depending on any specific TEE implementation.
In Section VII-B, we discuss the implications of using ARM TrustZone to
realize our scheme.

1. Contract
creation

initialization

 Manager

6. Execute call
& sync Pool

3. Setup
Operator

Pool

4. Contract
creation

finalization

2. Contract
creation
request

5. Call on Contract

Contract
User

Creator
Enclave

Watchdog
Enclave

Watchdog
Enclave

Executor
Enclave

Contract

Blockchain

Fig. 1. Exemplary overview how POSE contracts are created (in blue) and
executed (in green).

now call the new contract by directly contacting the execu-
tor. Finally, for Step 6, the executor will execute the user’s
contract call and distribute the resulting state to the watchdog
enclaves, which confirm the state update. See Section V-E3
for a detailed specification of the execution protocol. If one
of the enclaves stops participating (e.g., due to a crash), the
dependent parties can challenge the enclave on the blockchain
(see Section V-E4). The dependent party can either be the user
awaiting response from the executor or the executor waiting
for the watchdogs’ confirmation. For example, if the executor
stops executing the contract, the executor is challenged by the
user. A timely response constitutes a successful state transition
as requested by the user. Otherwise, if the current executor
does not respond, one of the watchdogs will fill in as the new
executor. This makes POSE highly available, as long as at least
one watchdog enclave is dependable; thus, avoiding the need
for collateral to incentivize correct behavior. Further, POSE
supports private state, as the state is only securely shared with
other enclaves.

B. Design Challenges

We encountered a number of challenges while designing
POSE . We briefly discuss them below.

Protection Against Malicious Operators. POSE ’s creator,
executor, and watchdogs are protected in isolated enclaves
running within the system, which is itself still under control of
a potentially malicious operator. Hence, operators can provide
arbitrary inputs, modify honest users’ messages, execute replay
attacks, and withhold incoming messages. Moreover, the sys-
tem and its TEE (i.e., enclaves) can be turned off completely
by its operator. In order to protect honest users from malicious
operators, we incorporate several security mechanisms. While
malicious inputs and modification of honest users’ messages
can easily be prevented using standard measures like a se-
cure signature scheme, preventing withholding of messages is
more challenging. One particular reason is that for unreceived
messages, an enclave cannot differentiate between unsent and
stalled messages by the operator. Hence, we incorporate an on-
chain challenge-response procedure, which provides evidence
about the execution request and the existence of a response to
the enclave.

3

Achieving Strong Liveness Guarantees. We enable de-
pendent parties to challenge unresponsive operators via the
blockchain. The challenged operators either provide valid
responses over the blockchain that dependent parties can use
to finalize the state transition, or they are dropped from the
execution pool. In case an executor operator has been dropped,
we use the execution pool to resume the execution; this
requires state updates to be distributed to all watchdogs. With
at least one honest operator in the execution pool, the pool will
produce a valid state transition. Our protocol tolerates a fixed
fraction of malicious operators as stated in our adversary model
(cf. Section II). By selecting the pool members randomly, we
guarantee with high probability that at least one enclave—
controlled by an honest operator—is part of the execution pool.
We show in Section VII-A that our protocol achieves strong
liveness guarantees.

Synchronization with the Blockchain. Some of the actions
taken by an enclave depend on blockchain data, e.g., de-
posits made by clients. Hence, it is crucial to ensure that
the blockchain data available to an enclave is consistent and
synchronized with the main chain. As an enclave does not
necessarily have direct access to the (blockchain) network, it
has to rely on the blockchain data provided by the operator.
However, the operator can tamper with the blockchain data
and, e.g., withhold blocks for a certain time. Thus, a major
challenge is designing a synchronization mechanism that (i)
imposes an upper bound on the time an enclave may lag behind
the main chain, (ii) prevents an operator from isolating an
enclave onto a fake side-chain, and (iii) ensures correctness and
completeness of the blockchain data provided to the enclave,
without (iv) requiring the enclave to validate or store the
entire blockchain. We present our synchronization mechanism
addressing these challenges in Section V-D.

Reducing Blockchain Interactions. Our system aims to min-
imize the necessary blockchain interactions to avoid expensive
on-chain computations. In the optimistic scenario, the only
on-chain transactions necessary are the contract creation and
the transfer of coins. The transfer transactions can also be
bundled to further reduce blockchain interactions. Note that the
virtualization paradigm known from state channels [26] can be
applied to our system. This enables parties to install virtual
smart contracts within existing smart contracts, and hence,
without any on-chain interactions at all. In the pessimistic
scenario, i.e., if operators fail to provide valid responses, they
have to be challenged, which requires additional blockchain
interactions.

Support of Private State. To support private state of ran-
domized contracts, careful design is required to avoid leakage.
While the confidentiality guarantees of TEEs prevent any
data leakage during contract execution, our protocol needs
to ensure that an adversary cannot learn any information
except the output of a successful execution. In particular, in a
system where the contract state is distributed between several
parties, we need to prevent the adversary from performing an
execution on one enclave, learning the result, and exploiting
this knowledge when rolling back to an old state with another
enclave. This is due to the fact that a re-execution may use
different randomness or different inputs resulting in a different
output. We prevent these attacks by outputting state updates
to the users only if all pool members are aware of the new

state. Moreover, by solving the challenge of synchronization
between enclaves and the blockchain, we prevent an adversary
from providing a fake chain to the enclave, in which honest
operators are kicked from the execution pool. Such a fake
chain would allow an attacker to perform a parallel execution.
While results of the parallel (fake) execution cannot affect the
real execution, they can prematurely leak private data, e.g. the
winner in a private auction.

IV. DEFINITIONS & NOTATIONS

In the following, we introduce the cryptography primitives,
definition, and notations used in the POSE protocol.

Cryptographic Primitives. Our protocol utilizes a pub-
lic key encryption scheme (GenPK ,Enc,Dec), a signature
scheme (GenSig ,Sign,Verify), and a secure hash function
H(·). All messages sent within our protocol are signed by the
sending party. We denote a message m signed by party P as
(m;P). The verification algorithm Verify(m′) takes as input a
signed message m′ := (m;P) and outputs ok if the signature
of P on m is valid and bad otherwise. We identify parties by
their public keys and abuse notation by using P and P ’s public
key pkP interchangeably. This can be seen as a direct mapping
from the identity of a party to the corresponding public key.

TEE. We comprise the hardware and software compo-
nents required to create confidential and integrity-protected
execution environments under the term TEE. An operator can
instruct her TEE to create new enclaves, i.e., new execution
environments running a specified program. We follow the
approach of Pass et al. [50] to model the TEE functionality.
We briefly describe the operations provided by the ideal
functionality formally specified in [50, Fig. 1]. A TEE provides
a TEE .install(prog) operation which creates a new enclave
running the program prog . The operation returns an enclave
id eid . An enclave with id eid can be executed multiple times
using the TEE .resume(eid , inp) operation. It executes prog
of eid on input inp and updates the internal state. This means
in particular that the state is stored across invocations. The
resume operation returns the output out of the program. We
slightly deviate from Pass et al. [50] and include an attestation
mechanism provided by a TEE that generates an attestation
quote ρ over (eid , prog). ρ can be verified by using method
VerifyQuote(ρ). We consider only one instance E running the
POSE program per TEE. Therefore, we simplify the notation
and write E(inp) for TEE .resume(eid , inp).

Blockchain. We denote the blockchain by BC and the
average block time by τ . A block is considered final if it
has at least γ confirmation blocks. Throughout the protocol
description in Section V-E, enclaves consider only transactions
included in final blocks. Finally, we define that any smart
contact deployed to the blockchain is able to access the current
timestamp using the method BC.now and the hash of the most
recent 265 blocks [7] using the method BC.bh(i) where i is
the number of the accessed block. These features are available
on Ethereum.

V. THE POSE PROTOCOL

The POSE protocol considers four different roles: a man-
ager smart contract deployed to the blockchain, operators that
run TEEs, enclaves that are installed within TEEs, and users

4

that create and interact with POSE contracts. In the following,
we will shortly elaborate on the on-chain smart contract and
the program executed by the enclaves, explain the POSE
protocol, and finally explain further security mechanisms that
are omitted in the protocol description.

A. Manager

We utilize an on-chain smart contract in order to manage
the POSE system’s on-chain interactions. We call this smart
contract manager and denote it by M . On the one hand, M
keeps track of all registered POSE enclaves. This enables
the setup of an execution pool whenever an off-chain smart
contract instance is created. On the other hand, it serves as a
registry of all POSE contract instances. M stores parameters
about each contract to determine the instance’s status. We
denote the tuple describing a contract with identifier id as M id .
In particular, the manager stores the creator enclave (creator),
a hash of the program code (codeHash), the set of enclaves
forming the execution pool (pool), a total amount of locked
coins (balance), and a counter of withdrawals (payouts). We
set the field creator to ⊥ after the creation process has
been completed to identify that a contract is ready to be
executed. Moreover, for both executor and watchdog chal-
lenges, the contract allocates storage for a tuple containing the
challenge message (c1Msg resp. c2Msg), responses (c1Res
resp. c2Res), and the timestamp of the challenge submission
(c1Time resp. c2Time). A non-empty field c1Time resp.
c2Time signals that there is a running challenge.

Every POSE enclave maintains a local version of the man-
ager state extracted from the blockchain data it receives from
the operator when being executed. This enables all enclaves to
be aware of on-chain events, e.g., ongoing challenges.

B. POSE Program

All enclaves registered within the system run the POSE
program that enforces correct execution and creation of POSE
contracts. In practice, the POSE program’s source code will
be publicly available, e.g., in a public repository, so that
the community can audit it. Our protocol ensures that all
registered enclaves run this code using remote attestation
(cf. Section V-E1: Enclave registration). We present methods
required for the execution protocol in Program 1 and defer
methods for the contract creation to the full version of this
paper [31].

Whenever an enclave is invoked, it synchronizes itself with
the blockchain network and receives the relevant blockchain
data in a reliable way (cf. Section V-D). This way, the POSE
program has access to the current state of the manager. In order
to support arbitrary contracts, we define a common interface
in Section V-C that is used by the POSE program to invoke
contracts.

Enclaves running the POSE program only accept signed
messages as input. The public keys of pool members for signa-
ture verification are derived from the synchronized blockchain
data. According to our adversary model (cf. Section II),
the adversary cannot read or tamper messages originating
from honest users or the enclave itself. Further, the contracts
themselves keep track of already received execution requests
and do not perform state transitions for duplicated requests.

Program 1: POSE Program (execution) executed by
enclave T

Upon invocation with input blockchain data BC, store BC.
Upon receiving m := (execute, id , r,move;U), do:

1) If M id .pool [0] 6= T or T id
wait 6= ∅, return (bad).

2) Execute Cid .nextState(U,BC,move, H(m)).
3) Store T id

wait = M id .pool and hid = H(m), set
c = Enc(Cid .getState(all); key id) and return
(update, id , c, hid ;T).

Upon receiving m := (update, id , c, h;T ′), do:
1) If T ′ 6= M id .pool [0] or T /∈M id .pool , return (bad).
2) Define state = Dec(c; key id) and call

Cid .update(state, h).
3) Return (confirm, id , h;T).

Upon receiving {mi := (confirm, id , hi;Ti)}i, do:
1) If M id .pool [0] 6= T or T id

wait = ∅, return (bad).
2) Set T id

wait = T id
wait ∩M id .pool .

3) For each mi do:
• If hi 6= hid or Ti /∈ T id

wait , skip mi.
• Otherwise remove Ti from T id

wait .
4) If T id

wait 6= {T}, return (bad). Otherwise, set T id
wait = ∅,

state := Cid .getState(pub) and return
(ok, id , state, hid ;T).

(cf. Section V-C). This prevents replay attacks against both,
executive and watchdog enclaves.

C. POSE Contracts

Although our system supports the execution of arbitrary
smart contracts, the contracts need to implement a specific
interface (cf. Program 2). This allows any POSE enclave
to trigger the execution without knowing details about the
smart contract functionality. Upon an execution request from
some user, the POSE enclave provides the user’s identity
U , blockchain data BC, the description of the user’s request,
move , and the request hash, h, to the smart contract’s method
nextState . The smart contract first processes the relevant
blockchain data and marks the current length of the blockchain
as processed. This feature is mainly used to enable smart
contracts to deal with money, i.e., to detect on-chain deposits
and withdrawals. We elaborate on the processing of blockchain
data in Section V-D, and on the money mechanism of the
POSE system in Appendix E. Note that double spending
within a contract is prevented due to sequential processing
of any execution request, and double spending of on-chain
payouts is prevented by the mechanism explained in Ap-
pendix E. After the blockchain data is processed, nextState
executes the move requested by the user and updates the
state accordingly. Method update takes state new and hash
h (for preventing replay attacks) as input and sets new as the
contract state. This includes the length of the blockchain that
is marked as processed. Further, the smart contract provides
method getState . If called with flag = all , it returns the whole
smart contract state. Otherwise, if called with flag = pub,
it returns only the public state. In order to prevent replay
attacks, each smart contract maintains a list with the hashes of
already received execution requests, Rec. In case of duplicated
requests, i.e., h ∈ Rec, both the nextState method and the
update method, do not perform any state transition. Instead,
they interpret the request as a dummy move that has no effect
on the state. If executed successfully, the nextState method

5

Program 2: Interface of a contract C executed within
a POSE enclave

Function: nextState(U,BC,move, h)
Function: update(new, h)
Function: getState(flag)

adds the executed request to Rec, i.e., Rec = Rec ∪ {h}. As
Rec is part of the state, it is updated by the update method
as well. While it might seem counter intuitive to overwrite the
list of received requests, this feature is required to ensure that
all enclaves are aware of the same transition history; even if an
executor distributes a state update to just a subset of watchdogs
before getting kicked 2.

We consider the initial state of a smart contract to be
hard-coded into the smart contract description. If an enclave
creates a new smart contract instance, the initial state is
automatically initialized. A contract state additionally contains
a variable to store the highest block number of the already
processed blockchain data. This variable is used to detect
which transactions of received blockchain data have already
been handled.

D. Synchronization

As some of the actions taken by an enclave depend on
blockchain data, e.g., deposits to the contract, it is crucial
to ensure that the blockchain state available to a registered
enclave E is consistent and synchronized with the main chain.
In particular, blocks that are considered final by some party,
will eventually be considered final by all parties. We design a
synchronization mechanism that allows E to synchronize itself
without having to validate whole blocks. Note that E has access
to a relative time source according to our adversary model (see
Section II).

Upon initialization, E receives a chain of block headers
BCH of length γ + 1. Note that the first block p of BCH can
be considered final since it has γ confirmation blocks. First, E
checks that BCH is consistent in itself and sets its own clock
to be the one of the latest block’s timestamp. Second, E signs
block p as blockchain evidence that needs to be provided to
the manager. The registration mechanism (cf. Section V-E1)
uses this evidence to ensure that E has been initialized with
a valid sub-chain of the main-chain up to block p. Further,
the registration mechanism checks that p is at most τon

slack
blocks behind the current one; τon

slack needs to account for
the confirmation blocks and the fact that transactions are not
always mined immediately. Via this parameter, we can set an
upper bound to the time τoff

slack an enclave may lag behind;
τoff

slack additionally considers potential block variance and the
fact that miners have some margin to set timestamps. In the
following, we call τoff

slack slack 3. Clients that want a contract
execution to capture on-chain effects, e.g., deposits, wait until

2In practice, the state update removes at most the last element from the
request history; a fact that can be exploited to reduce the size of state updates.

3We can reduce the slack assuming an absolute source of time realized
via trusted NTP servers, cf. [20], by enabling the enclave to check if she
was invoked with the most recent block headers up to some variance of the
timestamps.

the enclave considers the corresponding block as final, even
when being at slack.

Once successfully initialized, E synchronizes itself with
the blockchain. Whenever a registered enclave is executed
throughout the protocol, it receives the sub-chain of block
headers BCH′ that have been mined since the last execution. E
checks that BCH′ is a valid successor of BCH where blocks in
BCH that have not been final may change. Further, E checks
that the latest block in BCH′ is at most τvariance behind
the own clock; τvariance captures the variance in the block
creation time and the fact that miners have some margin to
set timestamps. When receiving a block that is before the own
clock, the clock is adjusted.

Finally, we need to prevent an operator from isolating
its enclave by setting up a valid sidechain with manipulated
timestamps. To this end, we require the operators to period-
ically provide new blocks to E even if E does not need to
take any action. In particular, we require that the operator
provides at least L blocks within time τp where τp accounts for
potential block time variances. The system is secure as long
as the attacker cannot mine L blocks within time τp while the
honest miners can. Hence, the selection of τp and L has some
implications on the fraction of adversarial computing power
that can be tolerated by the system. Since 2018, an interval of
50 (100, 200, 300) blocks took at most 33 (28, 26, 25) seconds
per block [10], which might all be reasonable choices for L
and τp

L . As the average block time is around 13 seconds [4], the
adversary gets 2−3 times more time to mine the blocks of its
sidechain. This means that the system can tolerate adversarial
fractions from a third (when instantiated with L = 300 and
τp = 25 ·L) to a forth (when instantiated with 50 and 33 ·L).

While the above techniques allow an enclave to synchro-
nize itself, the enclave does not have access to the block data,
yet. Instead of requiring enclaves to validate whole blocks,
we require operators to filter the relevant transactions and
provide them to the enclave while enabling the enclaves to
check correctness and completeness of the received data itself.
For the latter, we introduce incrTxHash , a hash maintained
by the manager and all initialized enclaves that is based
on all relevant transactions. Whenever the manager receives
a relevant transaction tx, it updates incrTxHash , such that
incrTxHashi+1 is defined as

H(incrTxHashi || tx.data || tx.sender || tx.value)

where tx.data is the raw data of tx, tx.sender denotes the
creator of tx, and tx.value contains the amount of any deposits
or withdrawals. Whenever enclaves are invoked with new
blocks, operators additionally provide all relevant transactions.
This way, enclaves can re-compute the new incremental hash
and compare the result to the on-chain value of incrTxHash .
In order to verify that the on-chain incrTxHash is indeed part
of the main chain, operators additionally provide a Merkle
proof showing that incrTxHash is part of the state tree. The
proof can be validated using the state root, which is part of
the block headers provided to the enclaves. This way, enclaves
can ensure that operators have not omitted or manipulated any
relevant transactions.

6

E. Protocol Description

In this section, we dive into a detailed description of
our protocol. We present 1) enclave registration, 2) contract
creation, 3) contract execution, and 4) the challenge-response
parts of our protocol. The POSE program running inside the
operators’ enclaves is stated in Section V-B. For the sake of
exposition, we extracted the validation steps performed by the
manager on incoming messages into Program 3 in Appendix C.
Further, we elaborate in Appendix E on the coin flow within
the protocol.

1) Enclave Registration: Operator O controlling some TEE
unit can contribute to the POSE system by instructing his TEE
to create a new POSE enclave EO. The protected execution
environment EO needs to be initialized with the POSE program
presented in Section V-B. During the creation of EO, an
asymmetric key pair (pkO, skO) is generated. The secret key
skO is stored inside the enclave and hence is only accessible
by the POSE program running in EO. The public key pkO
is returned as output to the operator. Furthermore, operator O
uses the TEE to produce an attestation ρO stating that the
freshly generated enclave EO runs the POSE program and
controls the secret key corresponding to pkO.4

Finally, O sends the latest γ+1 block headers BCH together
with the relevant blockchain data to the enclave which validates
the consistency of the block headers and completeness of the
blockchain data (cf. Section V-D) and returns a blockchain
evidence ρBCO , i.e., a signed tuple containing the blockhash and
the number of the latest final block known to the enclave. After
operator O created a new POSE enclave EO, O can register EO
by sending m := (register, EO, ρO, ρBCO ;O) to manager M .
M verifies that ρO is a valid attestation and that ρBCO refers
to a block on the blockchain known to M that is not older
than τon

slack blocks. If the check holds and the signature of the
operator is valid, i.e., Verify(m) = ok, M adds EO (identified
by its public key pkO) to the set of registered enclaves, i.e.,
M.registered := M.registered∪{EO}. This procedure ensures
that all registered enclaves run the POSE program and that the
secret key skO remains private. Hence, re-attesting enclaves
during later protocol steps is not needed.

2) Contract Creation: The creation protocol is initiated by
a user U who wants to install a new smart contract, with
program code code, into the POSE system. We outline the
protocol in the following and provide a full explanation and
specification in the full version of this paper [31].

U picks an arbitrary registered enclave EC and sends
a creation initialization to M containing H(code) and EC .
The manager M allocates a new contract tuple with a fresh
identifier id . Next, U sends a creation request, containing code,
to EC which randomly selects n enclaves for the contract exe-
cution pool and samples a symmetric pool key. The generated
information is distributed in a confidential way to all pool
enclaves, which install a new smart contract with code code
and confirm the installation to EC . Finally, EC signs a creation

4An attestation mechanism can be designed based on a chain of trust, where
the TEEs manufacturer’s public key represents the root. This way a smart
contract knowing a list of public keys can verify an attestation quote without
further interaction. We omit further details about the practical implementation
and refer the reader to [50].

User: U Executer: E
(:= Mid .pool[0])

Watchdog: W
(∈ Mid .pool \ E)

On input (id,move)
r ∈R {0, 1}

κ

m = (execute, id,
r,move;U)

Finalize current and pending
executions or challenges corresponding to id .

pre := TE(BC,m).

(pre)

confW := TW (BC, pre)
If confW = (bad, ·), abort.

(confW)

After time δ2off , res = TE(BC, {confW }).
If res = (bad), res = WatchdogChallenge(pre).

res = (ok, id, state, h;TE)

In time δ1off after sending m:
If res has not been received, Verify(res) = bad or h 6= H(m),
execute res := ExecutiveChallenge(m).
If res = (bad) and Mid .pool 6= ∅, restart execution with same r.

Fig. 2. Detailed execution protocol.

confirmation, which is submitted to M that marks the contract
as created.

If the contract is not created within a certain time, U starts
a creation challenge. If any pool member does not respond to
EC timely, EC starts a pool challenge (cf. Section V-E4).

3) Contract Execution: The execution protocol is initiated
by a user U who wants to execute an existing smart contract,
identified by id , with input move . The protocol is specified in
Figure 2. Program 1 specifies the parts of the POSE program
that are relevant for the contract execution.

To trigger the execution, U sends an execution request
to operator E controlling the executor enclave EE , the first
enclave in the contract pool stored at M . EE executes the
request and securely propagates the new state to all other pool
members, called watchdogs. If any watchdog does not confirm
in time, it is challenged by E (cf. Challenge-Response).
Eventually, EE receives confirmations from all watchdogs or
the unresponsive watchdogs are kicked out of the pool. Either
way, EE outputs the new public state to U . We want to stress
that this way no party gets to know the result of an update
before all pool members agree on the update. If E does
not respond in time, it is challenged by U (cf. Challenge-
Response). If E does not respond to the challenge, it is kicked
from the pool by U . The next enclave in the pool, E ′E , takes
over as the new executor. At this point, the new executor might
be on a different state than the other pool members, since E ′E
might have received the previous state update but some other
pool members not, or vice versa.

Our system automatically ensures that all enclaves share
the same contract state after the next successful execution, in
which E ′E distributes its state to the other enclaves. Let us call
the previous incompletely distributed update update and the
new updated initiated by E ′E update ′. In case E ′E has received
update, update ′ is a successor of update, and hence, covers
both updates. This way, a watchdog that updates to update ′

7

essentially contains both executions, update and update ′. In
case E ′E has not received update but the other watchdogs
have, E ′E either propagates the update already known to the
watchdogs, i.e., update = update ′, or a concurrent one, i.e.,
update 6= update ′. For the former, the watchdogs interpret
the update as a dummy update without any effect as the
corresponding execution request is already within their list
of received request hashes (cf. Section V-C). For the latter,
the update of the watchdogs is overwritten by the one of the
executive enclave. As update has been incomplete, and hence,
produced no public output, it is safe to overwrite this update.
To produce a public output for update, all pool enclaves
including E ′E would have to confirm update .

Finally, U can just submit the previous execution request
with the same random nonce r to E ′E . In case the enclave has
already seen this request, it is interpreted as empty dummy
move which prevents a duplicated execution.

4) Challenge-Response: If any party does not receive a
timely response to its messages during the off-chain execution,
it challenges the receiver on-chain. Therefore, all operators
need to monitor the blockchain for any on-chain challenges.
We will elaborate on the timeouts (δ†?), where † ∈ {0, 1}
and ? ∈ {off , on}, which define the notion of timely in
Appendix D. In particular, we describe the relation between
δ1∗ and δ2∗ . The challenge-response procedure is executed in
all of the following cases.

(a) The creator enclave has not responded to the user within
time δ1off during the contract creation protocol.

(b) At least one pool enclave has not responded to the creator
enclave within time δ2off during the contract creation
protocol.

(c) The executor enclave has not responded to the user within
time δ1off during the contract execution protocol.

(d) At least one watchdog enclave has not responded to the
executor enclave within time δ2off during the contract
execution protocol.

Since (a) is conceptually identically to (c) and (b) to (d), we
present the executor challenge (c) and the watchdog challenge
(d) in Figure 3 and Figure 4. The specifications of (a) and (b)
are provided in the full version of this paper [31].

For the executor challenge as shown in Figure 3, suppose
user U has not received a result from the executor enclave EE
within time δ1off , then, U starts the challenge-response proto-
col. To this end, U sends the execution request to the manager
M who verifies the validity of the message (cf. Program 3).
If all checks hold, M stores the challenge message and then
starts timeout δ1on by storing the current timestamp. As soon
as the challenge message is recorded on-chain, the operator of
the executor enclave EE extracts the execution request from the
challenge and starts the execution. Performing the execution
request is identical to the standard execution as described in
Section V-E3. However, the operator prioritizes challenges
over off-chain execution requests to avoid getting kicked.
Additionally, if EE already performed the state update and
state propagation, the operator may use the already obtained
result as response. Either way, if the operator sends a response
message in time, the manager M checks the validity of the
message and whether or not it matches the stored challenge.
If all checks succeed, M stores the result and removes the

User: U Manager: M Executer: E
(:= Mid .pool[0])

m
m = (execute, id,
n,move;U)

If Validate(1,m;Mid) = bad, discard.
Set Mid .c1Msg = m, Mid .c1Time = BC.now and Mid .c1Res = ⊥.

(m)

Handle m like a message directly received by U
until receiving res = (ok, . . .) from TE ,

but priortize it above other pendinging executions.

res = (ok, id,
state, h;TE)

If Validate(2, res;Mid) = bad, discard.
Set Mid .c1Msg = ⊥, Mid .c1Time = ⊥ and Mid .c1Res = res .

(res)
(res)

If (res) has not been received
within time δ1on after sending m.

(finalize, 1, id)

If Validate(3;Mid) = bad, discard.
Remove Mid .pool[0] from Mid .pool and set Mid .c1Time := ⊥.

(bad)

Fig. 3. Detailed executor challenge protocol.

challenge message. This finalizes the challenge procedure. If
the operator does not send a valid response in time δ1on , user U
sends message finalize to M . This triggers the manager to
kick EE from the execution pool of this contract and assign the
next enclave in the list as the new executor enclave, if possible.
Then, if the pool is not empty, U restarts the execution. As M
only accepts a response if the operator executed the challenged
request correctly, the described procedure ensures that there
is either a consistent state transition or EE is kicked from
the execution pool, hence, ensuring liveness as long as there
remains one active operator.

Since the executor enclave EE is dependent on the confir-
mation message from all watchdog enclaves, it is necessary
to allow EE to challenge the watchdog enclaves as well (Fig-
ure 4). In this case, the executor enclave acts as the challenger
and all watchdog enclaves need to provide a confirmation
message as response. At the end of this challenge-response
protocol, all unresponsive watchdog enclaves are removed
from the execution pool. The executor enclave then contin-
ues performing the execution with all confirmations obtained
during this procedure. Again, M only accepts responses if the
watchdog executed the state update correctly, hence, ensuring
that a watchdog either performs the correct state update or is
kicked from the pool.

F. Security Remarks

To keep the protocol description compact, we omitted some
security features from the specification, which we explain in
this section.

Allowing unrestricted execution requests comes with the
problem that malicious users can send requests whose exe-
cution takes a disproportional amount of time, e.g., due to
infinite loops. If the execution time exceeded the boundaries
defined by the on-chain timeouts, malicious users could exploit

8

Executor: E Manager: M Watchdog: W
(∈ Mid .pool \ E)

(pre)
pre = (update,
id, c, h;TE)

If Validate(4, pre;Mid) = bad, discard.
Otherwise, set Mid .c2Msg := pre, Mid .c2Msg := BC.now , and Mid .c2Res := ⊥.

(pre)

confW := TW (BC, pre)
If confW = (bad, ·), abort.

confW := (confirm,
id, h;TW)

If Validate(5, confW ;Mid) = bad, discard.
Otherwise, add confW to Mid .c2Res .

At time δ2on after sending pre.

(finalize, 2, id)

If Validate(6;Mid) = bad, discard.
Let Tok := {T ∈ Mid .pool : (· · · ;T) ∈ Mid .c2Res}.

Set Mid .pool := Tok ∪Mid .pool[0], and Mid .c2Time := ⊥.

res = TE(BC,Mid .c2Res)

(res)

Fig. 4. Detailed watchdog challenge protocol.

this behavior to kick honest operators from an execution
pool. This operator denial of service attack harms the liveness
property of the system. In order to mitigate the vulnerability,
we introduce an upper bound to the computation complexity
of a single contract execution. Once the bound is reached, the
executor enclave stops executing and reverts the state but still
provides a valid output. The timeouts in the system are set such
that an honest operator cannot be kicked from an execution
pool even if an execution takes the maximum amount of
computation. The same applies to update and creation requests,
where failed creations return a fail confirmation that can be
submitted to the manager instead of the creation confirmation.
A fail confirmation triggers the manager to mark the contract
as crashed. Note that the POSE system still supports the
execution of arbitrary complex smart contracts as the timeouts
and hence the upper bounds can be set arbitrarily high (cf.
Appendix D). Additionally, all contracts of an operator are
executed and challenged independently, and thus, contracts do
not block each other.

While we have assumed that all operators run only one
POSE enclave, multiple enclaves can be created in practice.
This enables the opportunity of a sybil attack, where a mali-
cious operator generates multiple POSE enclaves to increase
its share in the system and hence harm the liveness property.
This attack can be mitigated by forcing an operator to deposit
funds at each enclave registration and which will be paid back
to the operator only if she behaves honestly. We note that
this deposit is independent of any contract and its parties.
Now, such an attack is directly linked to financial loss. See
Section VI for more discussions about incentives and fees.

In order to enhance privacy, neither users nor operators
send inputs or respectively execution results in clear. Instead,
users encrypt inputs using hybrid encryption based on the
public key of the executor enclave. Additionally, users specify

a symmetric key in their execution request, which is used to
encrypt the result of the execution when sent back to the
user. This way, inputs and results are private and cannot be
eavesdropped by a malicious operator.

The term griefing denotes attacks where an adversary
forces an honest party to interact with the blockchain in order
to generate financial damage to this party. Especially when
blockchain transactions require high fees, such attacks pose
serious vulnerabilities. In regards to challenges within the
POSE protocol, we mitigate the attack surface for griefing
attacks by incorporating a mechanism in the manager that
fairly splits the fees for challenge and response between the
challenger and the challenged party. The same mechanism can
be used for the contract creation process.

An adversary executing a clogging attack sends many
transactions to the system to prevent honest users from issuing
transactions. In the context of POSE , an off-chain clogging
attack results in honest clients making an on-chain challenge
to ensure that their requests will be processed. Hence, a
successful clogging attack has to be performed on-chain. For
the on-chain challenge, our system inherits the vulnerabilities
of the underlying blockchain.

VI. EXTENSIONS

We simplified some protocol steps in order to make the
protocol description more compact and easier to understand.
We discuss the most important extensions and their benefits in
this section.

Contract & Operator Lifecycle. A mechanism that releases
enclaves from their execution duty can be integrated. This
allows operators to voluntarily withdraw their enclaves from an
execution pool. On the one hand, terminated contracts can be
closed, which releases all pool enclaves from their execution
duty. On the other hand, it enables to withdraw a single enclave
and exchanging it by a randomly chosen replacement enclave.
Additionally, a replacement strategy is also applicable to the
scenarios in which enclaves are kicked. The latter extension
reduces the chance of a contract crash, the event in which no
more operator remains. We stress that these extensions can
easily be achieved by adding the functionality to our POSE
program and the manager. In case a contract is idle for a long
time, an extension may be implemented that allows operators
to hibernate their respective enclave. The enclave state can
be stored on disk by encrypting it with a key that is kept
alive in the hibernating enclave; thus, only requiring minimal
overhead in memory. The POSE program ensures freshness by
synchronizing with the blockchain; thus, preventing rollback
attacks.

Incentives. Although POSE provides security not only against
rational but also byzantine adversaries, it is beneficial to
introduce incentives for operators to join the system and act
honestly. Moreover, operators can be compensated for on-chain
transactions. Such incentives can be achieved by introducing
execution fees paid by the users to the operators. We expect
these fees to be significantly lower than Ethereum transaction
fees since replication of computation is only required among a
small pool. Additionally, registration fees for operators can be
used to mitigate the risk for sybil attacks. By mitigating these

9

attacks and due to the random assignment of enclaves to con-
tract pools, operators can only actively enforce centralization
at high cost.

Efficiency Improvements. Instead of propagating each con-
tract invocation, a more fine-grained distinction based on the
action can be added. In particular, a simple state retrieval must
not be propagated. In order to improve the efficiency of the
manager, messages and responses are not stored persistently.
Instead, only their hashes are stored and the actual data is
propagated via events. Moreover, the total on-chain transac-
tions can be reduced by letting the executor enclave challenge
only the unresponsive watchdog enclaves.

VII. SECURITY ANALYSIS

In this section, we present security considerations of POSE
based on the adversary model stated in Section II.

A. Protocol Security

For the sake of brevity, we present the full security
analysis of our POSE protocol including formal theorems in
Appendix A. Here, we provide an intuition of our security
guarantees.

The POSE protocol satisfies correctness, ε-liveness and
state privacy.

(1) Intuitively, correctness means that an adversary cannot
influence the smart contract execution within an enclave such
that the result is invalid according to the contract logic. Our
creation protocol ensures that all enclaves of a pool store the
correct contract code. The TEE security guarantees and the
POSE code ensure that each enclave executes the stored code
correctly. Finally, the synchronization mechanism guarantees
that each enclave is up-to-date with the blockchain up to
some slack, τoff

slack . This ensures that on-chain transactions are
considered by the smart contract execution, at least after time
τoff

slack .
(2) The ε−liveness property states that every contract execu-
tion will eventually be processed with probability ε, unless
the contract crashes and prevents any further execution. Let n
be the number of enclaves in the system, m be the number
of malicious enclaves and s be the pool size, then it holds
that ε = 1 − Πs−1

i=0 (m−in−i) > 1 − (mn)s. We achieve these
high liveness guarantees by enabling the contract execution to
proceed even if only one operator out of a randomly selected
pool is honest. Our protocol ensures that honest operators
cannot be forced out of the pool.
(3) State privacy ensures that an adversary cannot obtain
additional information about a contract state besides what
she learns from the results of contract executions alone. The
integrity guarantees of the TEE protect the state of the contract
against the TEE’s operator during computation and at rest.
During transit, the state is hidden via encryption. Additionally,
our protocol ensures that each contract execution producing
an observable result is final. This ensures that the execution
cannot be reverted to a state in which a previously published
output contains private data that should not have been leaked.

B. Architectural Security

We further examine the architectural security of enclaves.
The case of a user or TEE operator going offline by turning
off their machine is covered in the protocol security (cf.
Section VII-A); here we focus on parties that follow the
protocol, trying to gain an unfair advantage in various ways.

The adversary might try to perform a memory corruption
attack on the client used by users to interact with the executor
(e.g., to send inputs). To mitigate this risk, the software should
be implemented in a memory-safe language, like Python or
Rust, and be open source so that it can be easily inspected.

A malicious TEE operator can also try mounting a
memory-corruption or a side-channel attack on its TEE. As
mentioned in A1.1, we assume that the TEE protects the con-
fidentiality of the enclave and prevents leakage. However, in
practice, cache-based side-channel attacks have been success-
fully demonstrated also on ARM processors [44]. While we
want to stress that our ARM TrustZone-based implementation
is a research prototype and the design is TEE-agnostic, the risk
of these attacks can be mitigated by making the TEE opt-out of
shared caches and flush private caches upon context switch, as
proposed in [19]. Alternatively, a more advanced TEE design
can be used [24], [19], [16]. Moreover, if the enclave code has
an exploitable memory-corruption vulnerability, it is possible
to mount a memory-corruption attack against it. One way to
mitigate this risk, and hence, realize our assumption A1.2, is
to use a memory-safe language for our smart contracts (in our
case, Lua), or to deploy a run-time mitigation (like CFI [11]).
Yet, in practice, an adversary might still be able to compromise
an enclave. In this case, only the contracts of this enclave are
affected. The consequences depend on the role of the enclave:
for an executor enclave, the adversary gets full control over
the contract; for a watchdog enclave, the adversary can only
break state privacy.

Finally, an adversary might build a malicious smart contract
with the goal of compromising secrets owned by other con-
tracts or blocking an enclave by entering into an infinite loop.
We mitigate against the first scenario by ensuring that only one
smart contract is executing at any given time in an enclave, so
that no foreign plain text secrets are present in memory at any
point during contract execution. In case of multiple enclaves
running on the same system, the TEE is isolating enclaves
from each other such that no contract can tamper with another
(cf. assumption A1.1). To handle infinite loops, we leverage a
Lua sandbox [14], which interrupts the execution of the Lua
code after a predetermined number of instructions has been
issued and disables access to unsafe functions and modules.

VIII. IMPLEMENTATION

In order to evaluate POSE , we implemented a prototype for
the manager and the enclaves, which uses TrustZone for the
enclaves themselves and Lua as the smart contract program-
ming language. We open source our prototype implementation
to foster future research in this area5. We describe each of
them in the following.

Manager. For the manager we use an Ethereum smart contract
written in Solidity, which we will refer to as manager in the

5https://github.com/AppliedCryptoGroup/PoseCode

10

https://github.com/AppliedCryptoGroup/PoseCode

following. Even if this implementation is based on Ethereum,
we note that our design can be realized on any blockchain
supporting rich smart contracts. The manager keeps a list
of all registered enclaves in the network as well as a list
of all deployed contracts, including their public information,
e.g., the address of the current executor. As mentioned in
the protocol described in Section V-E, the manager provides
functions to register an enclave, create a new POSE contract,
deposit or withdraw money, and functions to challenge the
current executor or any of the watchdogs. To synchronize all
participants, every time a challenge related function was called
it will throw an appropriate Solidity event.

Enclaves. The contract creator, executor, and watchdogs are
enclaves running in a TEE. As our protocol is TEE-agnostic
and all commercial TEEs exceed smart contracts’ on-chain re-
quirements on memory/computational-power capabilities sig-
nificantly, we chose to use ARM TrustZone [15] for our
prototype. TrustZone features a traditional programming model
(OS, and user-space applications with standard library), and
the Open Portable Trusted Execution Environment (OP-TEE)
OS [42] already supports a large fraction of standard function-
ality, and hence, does not force us to reimplement this for the
contract execution environment. TrustZone supports two exe-
cution modes: secure world and normal world. The system’s
memory can be freely distributed among these worlds. The
secure world is an trusted OS which is completely independent
from the normal OS, which in our case is Linux. Code running
in the secure world is called a Trusted App (TA). A TA may
only communicate with the normal world via shared memory
regions, which are explicitly allocated as such. We implement
the POSE enclaves as TAs. Computations in the secure world
have native performance; yet, switching between worlds has a
constant but negligible overhead (in our tests around 449µs).
TrustZone does not impose memory limits for secure world.
While we leverage the traditional TrustZone concept, recent
versions add support for a S-EL2 hypervisor to allow multiple
strongly isolated enclaves that allows POSE to scale better
on these platforms. Most basic cryptographic functions are
provided by the OP-TEE TA library, such as AES and TLS.
Note that TrustZone itself does not standardize a remote
attestation implementation itself, but industry [3], [6], [8] and
OP-TEE implementations exist6. Remote attestation can also
be used to prove a certain set of software defenses is active in
the enclave. In our prototype, we leveraged OP-TEE’s remote
attestation functionality to attest the enclave after setting up the
runtime. To leverage this feature, the POSE enclave requests
a signed attestation report from the attestation PTA (Pseudo
Trusted App), essentially a kernel module of the OP-TEE OS
in secure world. The keys for signing the attestation report
are derived using hardware device information and stored
persistently after generation (using Secure Storage, or ”Trusted
Storage”, as defined by GlobalPlatform’s TEE Internal Core
API specification).

To properly interact with the Ethereum-based manager, we
also adapted and deployed an Ethereum wallet for embedded
devices [13], enabling the enclaves to create ECDSA signa-
tures, Keccak hashes, handle encoding, and create transactions
to call the manager. For POSE contracts, we use the scripting
language Lua [53]. It is a well-established, fast, powerful, yet

6https://github.com/OP-TEE/optee os/pull/5025

simple language written in C. Lua as well as the enclave itself
allow arbitrary computation. We ported the Lua interpreter to
run inside the TA, by stripping out operations unsupported
by the TA, such as file access. After each execution step,
the enclave returns to the normal world while keeping the
contract’s Lua session alive. When the normal world receives
an input from a user, it invokes the TA with these inputs to
continue the Lua execution. To update the enclave runtime,
different approaches are possible in practice, e.g., the manager
could announce an update and all outdated enclaves would
shut themselves down after a timeout. Honest operators then
would incrementally trigger an enclave replacement during the
timeout period.

IX. EVALUATION

This section examines POSE regarding complexity and
performance. In the following, we will report absolute perfor-
mance numbers and discuss these in relation to Ethereum itself,
but also compare to existing works based on TEEs, namely
FastKitten and Bitcontracts. FastKitten has a highly similar set
of tested smart contracts, so a comparison can put our numbers
in perspective. For Bitcontracts, we reimplemented Quicksort
with the same experiment setup. Note, that the smart contracts
can still be implemented differently, and the performance and
the TEE differ.

Complexity. Running a POSE contract in the benign case,
i.e., if all involved enclaves respond, requires exactly two
blockchain interactions for the setup. Each user of a contract
also needs one blockchain interaction each time the user
deposits or withdraws money regarding the contract. However,
as POSE does not require a fixed collateral for the setup, the
money transactions do not inherently prevent the contract from
execution—except the specific contract demands it. Otherwise,
when either the executor or any watchdog fails to respond,
each challenge requires two blockchain interactions. The delay
incurred by our challenge protocol is dominated by the on-
chain transactions. This holds also for other off-chain solu-
tions, e.g., state-channels [46], [26], [22], Plasma [52], [37],
Rollups [48], [5] and FastKitten [25]. For instance, the time
it takes for an honest executor to kick a watchdog is 325s
on average. We discuss timeout parameters and the challenge
delay more thoroughly in Appendix D. In the worst-case, a
malicious operator does not respond to the off-chain messages
but to the challenges in every execution step, which would
effectively reduce POSE ’s execution speed beneath that of
the blockchain. However, such an attack requires continuous
blockchain interactions from the malicious party and hence en-
tails costs for every execution step (cf. Section IX “Manager”).

Test Setup. We deployed a test setup with our prototype
implementation for performance measurements. The test setup
consists of five devices. For the enclaves we deployed three
Raspberry Pi 3B+ with four cores running at 1.4GHz. These
are widely available and cheap devices that support ARM
TrustZone. As state updates are small (just the delta to the
previous state) and watchdogs receive and process the state
updates in parallel, we do not expect an increase of the pool
size to significantly influence the evaluation. Further, we used
ganache-cli (6.10.2) to emulate a Ethereum blockchain
in our local network, which runs the Solidity contract that

11

https://github.com/OP-TEE/optee_os/pull/5025

TABLE I. COST OF EXECUTING THE POSE MANAGER. THE USD
COSTS WERE ESTIMATED BASED ON THE PRICES (GAS TO GWEI AND ETH

TO USD) ON MAY. 8, 2022 [27], [21]. *FOR COMPARISON, THESE ARE
THE COSTS OF POPULAR OPERATIONS ON ETHEREUM.

Method Cost
Gas USD

registerEnclave 175 910 13.23
initCreation 198 436 14.91
finalizeCreation 79 545 5.98
deposit 37 255 2.80
withdraw 36 997 2.78

challengeExecutor 54 654 4.11
executorResponse 51 478 3.87
executorTimeout 53 327 4.01
challangeWatchdogsCreation 231 286 17.38
challengeWatchdog 131 362 9.87
watchdogResponse 36 257 2.72
watchdogTimeout 52 142 3.92

simple Ether transfer* 21 000 1.58
create CryptoKitty* 250 000 18.78

implements the manager. Finally, a fifth device emulates mul-
tiple users by simply sending out network requests to both the
manager and enclave operators, which are all connected via
Ethernet LAN.

Manager. As the POSE manager is implemented as an
Ethereum smart contract, interactions with it incur some costs
in the form of Gas. The costs of all implemented methods
of the Solidity contract are listed in Table I. The first five
methods are used for benign POSE contract execution. The
second part of the table shows methods that are required for
challenges, including the response and timeout methods to
resolve them. In terms of storage, each additionally registered
enclave will require 64 bytes and each contract 288 bytes +
(pool size × 32 bytes) of on-chain storage.

Contract Execution. To measure and demonstrate the effi-
ciency of POSE contract execution, we implemented three ap-
plications as Lua code in our test setup. All time measurements
are averaged over 100 runs. Regardless of the used contract,
setting up an executor or watchdog enclave with a Lua contract
takes 189ms. Creating an attestation report for the enclave
takes another 367ms with OP-TEE’s built-in remote attestation
using a one-line dummy contract. For our biggest contract,
Poker, the attestation takes 377ms, resulting in a total setup
time of 566ms. In contrast, FastKitten needs 2s for enclave
setup. Note that FastKitten needs an additional blockchain
interaction. Multiple contracts run by a single operator are
executed in parallel, including network communication. Thus,
the number of enclaves, contracts and transactions a single
operator can process depends on the operator’s hardware. As
modern servers CPUs feature 128 cores [23], and servers often
feature multiple CPUs, we do not expect parallel execution to
affect performance significantly. However, to prevent overload,
the number of pools an operator participates in can be limited.

Rock paper scissors. This is an implementation of the popular
game with two players. Unlike traditional smart contracts, we
can leverage POSE ’s private state to simply store each player’s
input, instead of having to use much more complex multi-
round commitments. The resulting smart contract is 27 lines of
code (LoC). Disregarding the delay caused by human players,

the execution time of one round with two user inputs is 32ms.
In comparison, FastKitten only needs 12ms, but is also running
on a much more powerful machine. In contrast, executing this
game on Ethereum would take around 5 minutes for each round
(20 confirmation blocks, 15s block time each).

Poker. We have also implemented Poker as a multi-party
contract running over multiple rounds. Note that in POSE ,
the poker game can be implemented as an ongoing cash game
table, i.e., players may join or leave the table at any time, as
contracts in POSE do not have to be finite. Each round consists
of three phases each requiring an input from all users. The
resulting smart contract is 209 lines of code (LoC). We execute
the contract with five players who have their deposit ready at
the start, with a total execution time of 199ms (vs. 45ms in
FastKitten, but again, on a more powerful machine). Playing
this game on Ethereum would take 5 minutes per player input.

Federated Machine Learning. For this application, users can
submit locally trained models, which will be aggregated to
a single model by the contract. Any user can then request
the new model from the contract. For our measurements,
each user trained a convolutional neural network consisting
of 431 080 individual weights on the MNIST handwritten
digits dataset [62]. For aggregation, the contract averages every
existing weight with the corresponding weight sent by the
user. The smart contract itself is only 5 LoCs, as we load
the existing weights separately. Each aggregation took 238ms,
which demonstrates the efficiency of POSE . Trying to execute
the same function on Ethereum, for each aggregation, storage
of the weights alone would exceed 1 billion gas (assuming 4
bytes float per weight) and the calculation over 3.4 million gas
(8 gas per weight).

Quicksort. We have also implemented Quicksort to sort a
hardcoded input array of 2048 random integers, as done in
Bitcontracts [59]. The resulting smart contract is 29 lines of
code (LoC). The total execution time of the contract is 20ms.
Compared to the 6ms in Bitcontracts, we use a less powerful
machine (Bitcontracts uses an AWS T2.micro instance with a
recent Intel processor at 3.3Ghz), while our performance mea-
surement also includes additional steps like context switches
and the setup of the enclave runtime. Executing this Quicksort
contract on Ethereum would cost around 6.5 million gas.

Watchdog State Updates. When an executor operator has
been dropped, a watchdog takes over execution. For this to
work, state changes are distributed to the watchdogs. Storing
the current state and restoring it on a watchdog takes 17ms
for the poker contract (averaged over 100 runs, corrected for
network latency), which also has the biggest state among the
ones we implemented.

Enclave Teardown. After an executor enclave is not expecting
further inputs and finished the smart contract execution, the
execution environment has to be cleaned up for the next smart
contract, i.e., cryptographic secrets and the smart contract in
the shared memory need to be zeroed. This takes 25ms.

X. RELATED WORK

Ethereum [58] is the most prominent decentralized cryp-
tocurrency with support for smart contract execution. However,
it is suffering from very high transaction costs and data used
by smart contracts is inherently public.

12

TABLE II. OVERVIEW OF RELATED WORK, n IS #TRANSACTIONS.

N
o

co
lla

te
ra

l

Pr
iv

at
e

st
at

e

B
lo

ck
ch

ai
n

in
te

ra
ct

io
ns

(o
pt

im
is

tic
al

ly
)

N
on

-fi
xe

d
lif

et
im

e
&

gr
ou

p

Ethereum [58] 3 7 O(n) 3
MPC [40], [41], [39] 7 3 O(1) 7
State Channels [46], [26], [22] 7 7 O(1) 7
VM-based [36], [60], [59] 7 7 O(n) 3

Ekiden [20] 7 3 O(n) 7
FastKitten [25] 7 3 O(1) 7

POSE 3 3 O(1) 3

Hawk [38] aims for improving the privacy by automatically
creating a cryptographic protocol from a high-level program in
order to allow computation on private data without disclosing
it. However, this complex cryptographic layer further decreases
performance of the system and increases costs. Similarly, ap-
proaches based on Multiparty Computation (MPC) [40], [41],
[39] distribute the computation between multiple parties such
that no party can access the cleartext data. These approaches
have substantial overhead in performance, communication and
collateral required.

One approach to alleviate the complexity limitation are
state channels [46], [26], [22], which enable parties to lock
some funds on the blockchain, execute complex contracts off-
chain, and finally commit the results of the contract to the
blockchain. This is efficient if all parties agree on the results;
otherwise, the dispute can be solved on-chain, which takes
longer and is more expensive.

Arbitrum [36] represents a smart contract as a virtual
machine (VM), which is executed privately by a number of
“managers”. After execution, if all managers agree on the
result of the computation, this result can be simply signed and
committed to the blockchain, without the need to perform the
computation on chain. In case managers disagree, a bisection
algorithm is used to compare subsets of the execution on chain
and find which is the first instruction on which the managers
disagree, then punish the malicious manager(s). Hence, as
long as at least one manager is honest, the correct result
is computed. While computationally efficient, this on-chain
protocol is still relatively expensive, so Arbitrum also includes
financial incentives to encourage the managers to behave. The
managers have full access to the VM’s data, so confidentiality
is broken if even one manager is malicious. Unlike Arbitrum,
POSE does not require multiple parties to execute the smart
contract: the watchdog enclaves just need to acknowledge the
new states, unless the executor enclave fails.

ACE [60] and Bitcontracts [59] are similar to Arbitrum, but
they allow the results of contract executions to be approved by
a configurable quorum of service providers, not necessarily all
of them. Unlike POSE , ACE does not support private state
and requires on-chain communication per contract invocation.
Although the transaction is computed off-chain, the invocation
and the result are registered on-chain. Further, Arbitrum and
ACE require changes to the blockchain infrastructure, hence,
they are harder to deploy in practice.

Ekiden [20] is also an off-chain execution system that lever-
ages TEE-enabled compute nodes to perform computation and
regular consensus nodes that interact with a blockchain. The
major drawback of Ekiden is that it requires every computation
step to retrieve its initial status from the blockchain, and it
only supports input from one client at a time. Moreover, the
atomic delivery of the output of each step requires to wait
for publication of the updated state before the output is made
available to the client. Hence, any highly interactive protocol
with multiple participants (e.g., a card game) would incur
significant delays between turns just to wait for the blockchain.
The paper evaluates on a fast blockchain, Tendermint, but
does not quantify its latency for interactive protocols on
mainstream blockchains like Ethereum. The Oasis Network
uses an updated version of Ekiden [30]; yet, this version still
requires to store state on the blockchain after each call.

FastKitten [25] also leverages TEEs to perform off-chain
computation. It assumes a rational attacker model, with fi-
nancial incentives to convince all participants to follow the
protocols. If they all do, the communication happens directly
between the TEE and them, thus dispensing with the high
latency due to blockchain roundtrips. However, FastKitten only
supports contracts with a predefined list of participants and a
limited lifespan. It also requires the TEE operator to deposit
as much as every participant combined as collateral. POSE
lifts those restrictions: it enables long-lived smart contracts
with an unknown set of participants and requires no collateral
from the TEE owners. Further, POSE achieves strong liveness
guarantees in the presence of byzantine adversaries, while
FastKitten assumes a rational adversary.

ROTE [45] is an approach to detect rollback attacks on
TEEs by storing a counter on other TEEs. This approach
is similar to the watchdog enclaves used in POSE to en-
sure that execution of a smart contract continues. However,
unlike POSE , ROTE can only detect rollback attacks, but
cannot prevent malicious operators from withholding the state.
SlimChain [61] primarily aims at reducing on-chain storage,
while still requiring blockchain interactions to store state
commitments. Further, the paper does not address storage
nodes crashing, which would lead to a liveness violation.
Pointproofs [33] proposes a new vector commitment scheme
to reduce the storage requirements on blockchain validators.
Although validators do not need to store all values of a
smart contract, once a transaction provides these values, the
execution is still performed on-chain. In contrast, POSE works
entirely off-chain in the optimistic case and ensures liveness.

Chainspace [12] proposes an entirely new distributed
ledger platform focusing on sharding combined with a di-
rected acyclic graph structure, while POSE extends established
blockchains (e.g., Ethereum). ResilientDB [54] proposes a
consensus protocol that clusters validators’ geo-location to
minimize network overheads. In contrast, POSE is a off-chain
execution protocol for smart contracts. Hyperledger Fabric Pri-
vate Chaincode [29] requires trust in handling the encryption
key by the client or an admin; thus, we deem it not applicable
to permissionless blockchains, targeted by POSE . Hyperledger
Private Data Objects [18], an alternative to Private Chaincode,
requires periodic blockchain interactions to store the state on-
chain. This slows execution on contract calls to the speed of
the blockchain, unlike POSE , which executes contracts entirely

13

off-chain in the optimistic case. Hyperledger Avalon [28]
can outsource workloads to TEE enclaves. However, these
workloads have to be self-contained, and thus, interactions by
participants still require on-chain transactions, while POSE can
run interactive contracts completely off-chain (e.g., Poker).

XI. CONCLUSION

Smart contracts have become an indispensable tool in
the era of blockchains; yet, current approaches suffer from
various shortcomings. In this paper, we introduce POSE , a
novel off-chain execution protocol that addresses all of these
shortcomings to enable much more versatile smart contracts.
We showed POSE ’s security and demonstrated its feasibility
with a prototype implementation.

ACKNOWLEDGEMENTS

This work was supported by the European Space Op-
erations Centre with the Networking/Partnering Initiative,
the German Federal Ministry of Education and Research
within Sanctuary (16KIS1417) and within the iBlockchain
project (16KIS0902), by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) SFB 1119 –
236615297 (CROSSING Project S7), by the European Union’s
Horizon 2020 Research and Innovation program under Grant
Agreement No. 952697 (ASSURED), by the BMBF and the
Hessian Ministry of Higher Education, Research, Science and
the Arts within their joint support of the National Research
Center for Applied Cybersecurity ATHENE.

REFERENCES

[1] Cardano. https://cardano.org/. (Accessed on 05/20/2021).
[2] Cryptokitties - collect and bread furrever friends! https://www.

cryptokitties.co/. Accessed 14-08-2022.
[3] Enhanced attestation (v3). https://docs.samsungknox.com/dev/knox-

attestation/about-attestation.htm. Accessed 20-04-2022.
[4] Etherscan - ethereum average block time chart. https://etherscan.io/

chart/blocktime. Accessed 20-09-2021.
[5] Optimistic rollups - ethhub. https://docs.ethhub.io/ethereum-roadmap/

layer-2-scaling/optimistic rollups/. (Accessed on 05/20/2021).
[6] Qualcomm® trusted execution environment (tee) v5.8 on qualcomm®

snapdragon™ 865 security target lite. https://www.tuv-nederland.nl/
assets/files/cerfiticaten/2021/08/nscib-cc-0244671-stlite.pdf. Accessed
20-04-2022.

[7] Solidity documentation. https://docs.soliditylang.org/en/v0.8.7/. Ac-
cessed 20-09-2021.

[8] Upgrading android attestation: Remote provisioning. https:
//android-developers.googleblog.com/2022/03/upgrading-android-
attestation-remote.html. Accessed 20-04-2022.

[9] Proxy bid. https://en.wikipedia.org/w/index.php?title=Proxy
bid&oldid=968758683, July 2020.

[10] Google cloud bigquery: Block variance. https://console.cloud.
google.com/bigquery, 2021. Query: SELECT b.timestamp FROM
‘bigquery-public-data.ethereum blockchain.live blocks‘ AS b ORDER
BY b.timestamp; Accessed 20-09-2021.

[11] Martın Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. CFI:
Principles, implementations, and applications. In Proc. ACM Confer-
ence and Computer and Communications Security (CCS), 2005.

[12] Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave Hrycyszyn,
and George Danezis. Chainspace: A sharded smart contracts platform.
In 25th Annual Network and Distributed System Security Symposium,
(NDSS 2018), 2018.

[13] AnyLedger. Embedded Ethereum wallet library GitHub. https://github.
com/Anylsite/embedded-ethereum-wallet, 2020.

[14] APItools. sandbox.lua. https://github.com/APItools/sandbox.lua, 2017.
[15] ARM Limited. ARM Security Technology: Building a Secure System

using TrustZone Technology. http://infocenter.arm.com/help/topic/com.
arm.doc.prd29-genc-009492c/PRD29-GENC-009492C trustzone
security whitepaper.pdf, 2008.

[16] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig,
Matthias Klimmek, Ahmad-Reza Sadeghi, and Emmanuel Stapf.
CURE: A security architecture with CUstomizable and Resilient En-
claves. In 30th USENIX Security Symposium (USENIX Security 21),
2021.

[17] Iddo Bentov, Yan Ji, Fan Zhang, Lorenz Breidenbach, Philip Daian, and
Ari Juels. Tesseract: Real-time cryptocurrency exchange using trusted
hardware. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, pages 1521–1538, 2019.

[18] Mic Bowman, Andrea Miele, Michael Steiner, and Bruno Vavala.
Private data objects: an overview. CoRR, abs/1807.05686, 2018.

[19] Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi,
and Emmanuel Stapf. SANCTUARY: ARMing TrustZone with user-
space enclaves. In NDSS, 2019.

[20] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes,
Noah Johnson, Ari Juels, Andrew Miller, and Dawn Song. Ekiden:
A platform for confidentiality-preserving, trustworthy, and performant
smart contracts. In 2019 IEEE European Symposium on Security and
Privacy (EuroS&P), pages 185–200. IEEE, 2019.

[21] CoinMarketCap. Ethereum (ETH) price. https://coinmarketcap.com/
currencies/ethereum/, 2020.

[22] Jeff Coleman, Liam Horne, and Li Xuanji. Counterfactual: Generalized
state channels, Jun 2018. https://l4.ventures/papers/statechannels.pdf.

[23] Ampere Computing. Ampere Altra Max 64-Bit Multi-Core Processor
Features. https://amperecomputing.com/processors/ampere-altra/, 2022.

[24] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal
hardware extensions for strong software isolation. In 25th USENIX
Security Symposium (USENIX Security 16), 2016.

[25] Poulami Das, Lisa Eckey, Tommaso Frassetto, David Gens, Kristina
Hostáková, Patrick Jauernig, Sebastian Faust, and Ahmad-Reza
Sadeghi. Fastkitten: practical smart contracts on bitcoin. In 28th
USENIX Security Symposium (USENIX Security 19), 2019.

[26] Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková. General
state channel networks. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, October 15-19, 2018, 2018.

[27] Etherscan. Ethereum Average Gas Price Chart. https://etherscan.io/
chart/gasprice, 2020.

[28] Hyperledger Foundation. Hyperledger avalon. https://wiki.hyperledger.
org/display/avalon/Hyperledger+Avalon. Accessed 04-08-2022.

[29] Hyperledger Foundation. Hyperledger fabric private chaincode. https:
//github.com/hyperledger/fabric-private-chaincode. Accessed 04-08-
2022.

[30] Oasis Foundation. An implementation of ekiden on the oasis network.
https://oasisprotocol.org/papers. Accessed 04-08-2022.

[31] Tommaso Frassetto, Patrick Jauernig, David Koisser, David Kretzler,
Benjamin Schlosser, Sebastian Faust, and Ahmad-Reza Sadeghi. POSE:
Practical off-chain smart contract execution. CoRR, abs/2210.07110,
2022.

[32] GlobalPlatform. TEE Internal Core API Specification.
https://globalplatform.org/specs-library/tee-internal-core-api-
specification-v1-2/, 2019.

[33] Sergey Gorbunov, Leonid Reyzin, Hoeteck Wee, and Zhenfei Zhang.
Pointproofs: Aggregating proofs for multiple vector commitments. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, pages 2007–2023, 2020.

[34] Timo Hanke, Mahnush Movahedi, and Dominic Williams. DFINITY
technology overview series, consensus system. CoRR, abs/1805.04548,
2018.

[35] Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie Brickell, and
Frank Mckeen. Intel software guard extensions: Epid provisioning and
attestation services. White Paper, 1(1-10):119, 2016.

[36] Harry A. Kalodner, Steven Goldfeder, Xiaoqi Chen, S. Matthew
Weinberg, and Edward W. Felten. Arbitrum: Scalable, private smart

14

https://cardano.org/
https://www.cryptokitties.co/
https://www.cryptokitties.co/
https://docs.samsungknox.com/dev/knox-attestation/about-attestation.htm
https://docs.samsungknox.com/dev/knox-attestation/about-attestation.htm
https://etherscan.io/chart/blocktime
https://etherscan.io/chart/blocktime
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/optimistic_rollups/
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/optimistic_rollups/
https://www.tuv-nederland.nl/assets/files/cerfiticaten/2021/08/nscib-cc-0244671-stlite.pdf
https://www.tuv-nederland.nl/assets/files/cerfiticaten/2021/08/nscib-cc-0244671-stlite.pdf
https://docs.soliditylang.org/en/v0.8.7/
https://android-developers.googleblog.com/2022/03/upgrading-android-attestation-remote.html
https://android-developers.googleblog.com/2022/03/upgrading-android-attestation-remote.html
https://android-developers.googleblog.com/2022/03/upgrading-android-attestation-remote.html
https://en.wikipedia.org/w/index.php?title=Proxy_bid&oldid=968758683
https://en.wikipedia.org/w/index.php?title=Proxy_bid&oldid=968758683
https://console.cloud.google.com/bigquery
https://console.cloud.google.com/bigquery
https://github.com/Anylsite/embedded-ethereum-wallet
https://github.com/Anylsite/embedded-ethereum-wallet
https://github.com/APItools/sandbox.lua
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://coinmarketcap.com/currencies/ethereum/
https://coinmarketcap.com/currencies/ethereum/
https://l4.ventures/papers/statechannels.pdf
https://amperecomputing.com/processors/ampere-altra/
https://etherscan.io/chart/gasprice
https://etherscan.io/chart/gasprice
https://wiki.hyperledger.org/display/avalon/Hyperledger+Avalon
https://wiki.hyperledger.org/display/avalon/Hyperledger+Avalon
https://github.com/hyperledger/fabric-private-chaincode
https://github.com/hyperledger/fabric-private-chaincode
https://oasisprotocol.org/papers
https://globalplatform.org/specs-library/tee-internal-core-api-specification-v1-2/
https://globalplatform.org/specs-library/tee-internal-core-api-specification-v1-2/

contracts. In 27th USENIX Security Symposium (USENIX Security
2018). USENIX Association, 2018.

[37] Rami Khalil, Alexei Zamyatin, Guillaume Felley, Pedro Moreno-
Sanchez, and Arthur Gervais. Commit-chains: Secure, scalable off-chain
payments. Cryptology ePrint Archive, Report 2018/642, 2018.

[38] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos
Papamanthou. Hawk: The blockchain model of cryptography and
privacy-preserving smart contracts. In Security and Privacy (SP), 2016
IEEE Symposium on. IEEE, 2016.

[39] Ranjit Kumaresan and Iddo Bentov. Amortizing secure computation
with penalties. In Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security, 2016.

[40] Ranjit Kumaresan, Tal Moran, and Iddo Bentov. How to use bitcoin
to play decentralized poker. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2015.

[41] Ranjit Kumaresan, Vinod Vaikuntanathan, and Prashant Nalini Va-
sudevan. Improvements to secure computation with penalties. In
Proceedings of the ACM SIGSAC Conference on Computer and Com-
munications Security, 2016.

[42] Linaro, Inc. OP-TEE Documentation. https://readthedocs.org/projects/
optee/downloads/pdf/latest/, 2020.

[43] Joshua Lind, Oded Naor, Ittay Eyal, Florian Kelbert, Peter Pietzuch, and
Emin Gün Sirer. Teechain: Reducing storage costs on the blockchain
with offline payment channels. In Proceedings of the 11th ACM
International Systems and Storage Conference, pages 125–125, 2018.

[44] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and
Stefan Mangard. ARMageddon: Cache attacks on mobile devices. In
25th USENIX Security Symposium (USENIX Security 16), 2016.

[45] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David
Sommer, Arthur Gervais, Ari Juels, and Srdjan Capkun. ROTE:
Rollback protection for trusted execution. In 26th USENIX Security
Symposium (USENIX Security 17), 2017.

[46] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and Patrick McCorry.
Sprites: Payment channels that go faster than lightning. CoRR,
abs/1702.05812, 2017.

[47] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
Technical report, 2008.

[48] Offchain Labs, Inc. Arbitrum rollup: Off-chain contracts with on-chain
security. 2020.

[49] Gustavo A Oliva, Ahmed E Hassan, and Zhen Ming Jack Jiang.
An exploratory study of smart contracts in the Ethereum blockchain
platform. Empirical Software Engineering, 2020.

[50] Rafael Pass, Elaine Shi, and Florian Tramèr. Formal abstractions for
attested execution secure processors. In Jean-Sébastien Coron and
Jesper Buus Nielsen, editors, Advances in Cryptology - EUROCRYPT
2017 - 36th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, 2017.

[51] Travis Patron. What’s the big idea behind Ethereum’s world com-
puter. https://www.coindesk.com/whats-big-idea-behind-ethereums-
world-computer/, 2016.

[52] Joseph Poon and Vitalik Buterin. Plasma: Scalable autonomous smart
contracts. 2017.

[53] PUC-Rio. The programming language Lua. https://www.lua.org/, 2020.
[54] Sajjad Rahnama, Suyash Gupta, Thamir M Qadah, Jelle Hellings, and

Mohammad Sadoghi. Scalable, resilient, and configurable permissioned
blockchain fabric. Proceedings of the VLDB Endowment, 13(12), 2020.

[55] Andrey Sergeenkov. How to check your ethereum transac-
tion. https://www.coindesk.com/learn/how-to-check-your-ethereum-
transaction/. Accessed 24-08-2022.

[56] AMD SEV-SNP. Strengthening vm isolation with integrity protection
and more. White Paper, January, 2020.

[57] Jason Teutsch and Christian Reitwießner. A scalable verification
solution for blockchains. CoRR, abs/1908.04756, 2019.

[58] Gavin Wood et al. Ethereum: A secure decentralised generalised
transaction ledger. Ethereum project yellow paper, 2014.

[59] Karl Wüst, Loris Diana, Kari Kostiainen, Ghassan Karame, Sinisa
Matetic, and Srdjan Capkun. Bitcontracts: Adding expressive smart
contracts to legacy cryptocurrencies. 2019.

[60] Karl Wüst, Sinisa Matetic, Silvan Egli, Kari Kostiainen, and Srdjan
Capkun. ACE: asynchronous and concurrent execution of complex
smart contracts. In Jay Ligatti, Xinming Ou, Jonathan Katz, and
Giovanni Vigna, editors, CCS ’20: 2020 ACM SIGSAC Conference on
Computer and Communications Security, 2020.

[61] Cheng Xu, Ce Zhang, Jianliang Xu, and Jian Pei. Slimchain: scaling
blockchain transactions through off-chain storage and parallel process-
ing. Proceedings of the VLDB Endowment, 14(11):2314–2326, 2021.

[62] Yann LeCun and Corinna Cortes and Christopher J.C. Burges. THE
MNIST DATABASE. http://yann.lecun.com/exdb/mnist/, 2020.

[63] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine
Shi. Town crier: An authenticated data feed for smart contracts. In
Proceedings of the 2016 aCM sIGSAC conference on computer and
communications security, pages 270–282, 2016.

[64] Fan Zhang, Philip Daian, Iddo Bentov, and Ari Juels. Paralysis proofs:
Safe access-structure updates for cryptocurrencies and more. IACR
Cryptol. ePrint Arch., 2018:96, 2018.

APPENDIX

A. Protocol Security

We analyze the security of our protocol under the as-
sumption of an IND-CPA secure encryption scheme, an EU-
CMA secure signature scheme and a collision resistant hash
function in the following. We present definitions of correctness,
ε-liveness and state privacy.

1) Correctness: We define a state update as the evaluation
of a transition function f , which receives as inputs a user U ,
a user input move and a copy of the blockchain BC. The
correctness property states that each state update evaluates the
transition function as defined by the contract code with valid
inputs, i.e., U is the (potentially malicious) client triggering
the transition, move the input of U and BC a valid copy of
the blockchain that is at most τoff

slack behind the main chain.

Claim 1 (Correctness): POSE satisfies correctness.

We first note that according to our adversary model, a
corrupted operator may delete any message intended for her
enclave or generated from her enclave. However, the correct
execution of the POSE program inside the enclave cannot
be influenced. When an operator creates a POSE enclave,
the registration process ensures that the new enclave indeed
runs the POSE program. To this end, our protocol utilizes
the TEE attestation mechanism, which generates a verifiable
statement that the enclave is running a specific program. Upon
registration with the manager M , M checks the validity of
the attestation statement as well as the blockchain evidence,
the signed hash and number of the latest block known to
the enclave. M only registers the enclave in the system if
the new enclave is running the POSE program and is not
further behind than maximally τoff

slack . Finally, the TEE integrity
and confidentiality guarantees ensure that a malicious operator
cannot modify the enclave’s code, tamper with its state or
access its private data, in particular, its signature keys.

During the creation of a contract, the pool enclaves attest
the code of the installed contract to the creation enclave. The
creator checks that the code is consistent with the hash stored
in the manager before signing a creation confirmation. Hence,
it is not possible, without breaking the EU-CMA security of
the signature scheme or the collision resistance of the hash
function, to create a valid creation confirmation for a contract
with different code than specified by the creation request.

15

https://readthedocs.org/projects/optee/downloads/pdf/latest/
https://readthedocs.org/projects/optee/downloads/pdf/latest/
https://www.coindesk.com/whats-big-idea-behind-ethereums-world-computer/
https://www.coindesk.com/whats-big-idea-behind-ethereums-world-computer/
https://www.lua.org/
https://www.coindesk.com/learn/how-to-check-your-ethereum-transaction/
https://www.coindesk.com/learn/how-to-check-your-ethereum-transaction/
http://yann.lecun.com/exdb/mnist/

Next, contract state updates can only be triggered by
invoking the executor enclave with an execution request or
invoking a watchdog enclave with an update request. The
correctness of the latter is reduced to the correctness of the
former. To see this, we observe that any update request to
a watchdog enclave requires to be signed by the executor
enclave. Clearly, the executor enclave only signs updates
corresponding to its own executions. Therefore, an adversary
cannot forge incorrect update request without breaking the
unforgeability of the signature scheme. Also, the executor
enclave can only issue a new state update if all watchdogs
confirmed the previous one. Hence, it is not possible to tamper
with the order in which the update requests are provided
to a watchdog enclave. As stated before, the TEE integrity
guarantees ensure the correct execution of the program code
and hence the correct execution of the smart contract. It follows
that a state update can only be achieved by providing inputs to
the executor enclave. The executor enclave receives a signed
message containing the action move from user U and the
relevant blockchain data from its operator. In Section V-D,
we describe how our protocol achieves secure synchronization
between the executor enclave and the blockchain. In particular,
the synchronization mechanism ensures that the blockchain
data accepted by an enclave is correct and complete in regard
to a correct blockchain copy that is at most τoff

slack behind
the main chain. This guarantees that BC, represented by the
received blockchain data, is a synchronized copy of the current
blockchain. In order to protect inputs by honest users U , move
needs to be signed by U . This means an adversary cannot
tamper with the input without breaking the signature scheme.

Finally, we note that each POSE enclave maintains a list
of received messages. Since an honest user randomly selects a
fresh nonce for each execution request, replay attacks can be
detected and prevented by any executor enclave.

2) Liveness: The liveness property states that every con-
tract execution initiated by an honest user U will eventually be
processed with high probability. For a successful execution, a
valid execution response is given by the executor. Unsuccessful
execution can only happen in case of a contract crash. In
this event, the contract execution halts and neither honest nor
malicious users can perform successful contract executions
anymore. We emphasize that the pool size can be set such that
crashes happen only with negligible probability. In particular,
for ε-liveness, the probability of a crash is bounded by 1− ε.
Claim 2 (ε-Liveness): Let n be the total number of enclaves in
the system, m be the number of malicious operators’ enclaves
and s be the contract pool size. POSE satisfies ε-liveness for
ε = 1−Πs−1

i=0 (m−in−i) > 1− (mn)s.

Whenever user U sends an execution request to the execu-
tor enclave EE , U either directly receives a response or U chal-
lenges EE via the manager M . If EE does not respond within
some predefined timeout, it will be kicked out of the execution
pool and one of the watchdog enclaves takes over the executor
role. User U can now trigger the execution again by interacting
with the new executor enclave. During execution, the executor
enclave EE requires confirmations from all watchdog enclaves
in order to produce a valid result. However, watchdog enclaves
cannot stall the execution forever, as EE is able to challenge
them via the manager. All unresponsive watchdog enclaves will

be kicked out of the execution pool—the confirmations from
the remaining watchdogs suffice to create a result. We stress
that all timeouts are defined in Appendix D with great care to
ensure that honest operators have enough time to respond. For
example, the timeout for the executor challenge is sufficient to
allow the executor enclave to challenge the watchdog enclaves
twice; once for a currently running off-chain execution and
once for the challenged on-chain execution. Although POSE
guarantees that honest operators’ enclaves will never be kicked,
there is a small probability that an execution pool consists only
of malicious operators’ enclaves. If all enclaves are kicked
out of the execution pool, the contract execution crashes.
Let n be the number of total registered enclaves, m denote
the number of enclaves controlled by malicious operators,
and s the execution pool size. The probability of a crash
is equal to the probability that only malicious operators’
enclaves are within an execution pool. This is bounded by
ε = 1 − Πs−1

i=0 (m−in−i) > 1 − (mn)s. Hence, POSE achieves
ε-liveness.

Assuming a total of n = 100 registered enclaves and
m = 70 of them are controlled by malicious operators. Even
in this setting with a large share of malicious operators, POSE
achieves liveness with ε > 92% for a pool size of just 7. If
only half of the operators are malicious, i.e., m = 50, POSE
achieves liveness with ε > 99% for the same pool size of
7. For m = 10 malicious operators, a pool size of only 3
yields a liveness with ε > 99%. For the same scenario of
10% malicious operators and assuming 40 millions contracts
running in POSE , the pool size of 11 results in a probability of
more than 99% that there is no crash at all in the whole system.
See Fig. 5 for an illustration of the probability of no crashes
depending on the number of contracts for different pool sizes.

3) State Privacy: The state privacy property says that the
adversary cannot obtain additional information about a contract
state besides what she learns from the results of contract
executions alone.

Claim 3 (State Privacy): POSE satisfies state privacy.

The smart contract’s state is maintained by the enclaves
within the execution pool. According to our adversary model
(see Section II), the TEE provides confidentiality guarantees,
i.e., the execution of an enclave does not leak any data. Hence,
the smart contract’s state is hidden from the adversary, even
if the enclave’s operator is corrupted. The only point in time
when information about the contract’s state is revealed is at
the end of the execution protocol. However, the data provided
as a result contains only public state and hence does not reveal
anything about the private state. During the execution protocol,
the executor enclave propagates the new state to all watchdog
enclaves. However, the transferred data is encrypted using
an IND-CPA secure encryption scheme. The security of the
scheme guarantees that an adversary seeing the message cannot
extract information from it. While an enclave only publishes
outputs after successful executions, we need to show that each
produced output is final. In particular, a succeeding executor
must not be able to revert to a state in which a published output
should not have been produced. To this end, the state of the
executor enclave producing a particular output needs to be
replicated among all other enclaves before revealing the actual
output. This property is achieved by the state propagation

16

mechanism of POSE . An enclave only returns an output
if all enclaves in the pool confirm the corresponding state
update. The EU-CMA secure signature scheme guarantees
unforgeability of the confirmations. Hence, each confirmation
guarantees that the corresponding enclave has updated its state
correctly. Further, the correctness property of our protocol (cf.
Section A1) ensures an enclave is always executed with a
correct blockchain copy; thus, is always aware of the correct
pool composition. This means an output can only be returned
if the whole pool received the corresponding state update.

B. Supported Contracts

POSE supports contracts with a dynamic set of users of
arbitrary size and an unrestricted lifetime. The timeouts need to
be set reasonable with respect to the expected execution time of
the contracts to allow the execution of complex contracts and to
prevent denial of service attacks at the same time. Interaction
between POSE contracts can be realized by letting the TEE of
the calling contract instruct its operator to request an execution
of the second contract via the respective executive operator
and wait for the response. We deem the exact specification,
e.g., enforce an upper bound on (potentially recursive) external
calls to guarantee timely request termination, an engineering
effort. Calls from POSE contracts to on-chain contracts can be
supported similarly to our payout concept (Appendix E).

C. Further Protocol Blocks

To keep the specification of the POSE protocol in the main
body simple and compact, we have excluded the formal spec-
ification of the creation process and the validation algorithms.
In this section, we present the validation algorithms. For the
formal specification of the creation process, we refer the reader
to the full version of the paper [31].

All of the different messages sent to the manager through-
out the protocol need to be validated with several checks. In
order to keep the description compact, we did not include the
validation steps in the protocol figures but extracted them into
a validation algorithm specified in Program 3. The algorithm is
invoked with an counter specifying the checks that should be
performed, an optional message that should be checked and the
contract state tuple maintained by the manager. The validation
returns ok if all requirements are satisfied and M can continue
executing and bad if M should discard the received request.

D. Timeouts

Our protocol incorporates several timeouts δ∗off , which
define until when an honest user or operator expects a response
to a request, and δ∗on , which define until when the manager
expects a response to a challenge. These timeouts have to be
selected carefully s.t. each honest party has the chance to an-
swer each message and challenge before the respective timeout
expires. In this section, we elaborate on the requirements on
the timeouts. We neglect message transmission delays and also
assume that each challenge sent to the manager will directly
be received by all operators (already before it is included
into a final block)7. We recall the maximum blockchain delay
which is defined as δBC = α · τ (cf. II and IV). The off-chain

7We could also add twice the max. message delay to each off-chain timeout
and the blockchain confirmation time ∆ = τ · γ to each on-chain timeout.

Program 3: Algorithm Validate

The validation algorithm performs the following checks. If input
C = ⊥, the parsing of a message fails or any require is not
satisfied, the algorithm outputs bad. Otherwise, it outputs ok.
• On input (1,m;C), parse m to (execute, id , ·, ·;U). Require

that C.creator = ⊥, C.c1Time = ⊥ and Verify(m) = ok.
• On input (2, res;C), parse res to (ok, id , ·, h;T). Require that
C.creator = ⊥, H(C.c1Msg) = h,
C.c1Time + δ1on > BC.now , Verify(res) = ok and
C.pool [0] = T .

• On input (3;C), require that C 6= ⊥, C.creator = ⊥,
Cc1Msg 6= ⊥ and C.c1Time + δ1on ≤ BC.now .

• On input (4, pre;C), parse pre to (update, id , c, h;T).
Require that C.creator = ⊥, C.c2Time = ⊥, C.pool [0] = T
and Verify(pre) = ok.

• On input (5, conf ;C), parse conf to (confirm, id , h;Ti) and
C.c2Msg to (·, ·, ·, h′; ·). Require that C.creator = ⊥,
C.c2Time + δ2on > BC.now , Verify(conf) = ok, h = h′ and
T ∈ C.pool .

• On input (6;C), require that C.creator = ⊥, C.c2Time 6= ⊥
and C.c2Time + δ2on ≤ BC.now .

propagation timeout δ2off describes the time an execution or
creation operator maximally waits for a confirmation from the
(other) pool members. It needs to be larger than the maximal
update respectively installation time of a contract. Timeout
δ2on ≥ δ2off + δBC describes the maximal time after which M
expects a response to any watchdog challenge, either during
creation or execution. The off-chain execution timeout δ1off
describes the maximal time a user waits for a response to
an execution request. Note that there might be a running
execution and both running and new execution might require
a watchdog challenge. In case watchdogs are dropped in the
process of such a challenge, the executor needs to be able
to notify its enclave about the new pool constellation, and
hence, wait until the finalization of the challenge is within
a final block. This takes additional time ∆ = τ · γ (cf. IV).
Hence, δ1off needs to be high enough to enable the challenged
executor to perform two contract executions and run two
watchdog challenges each taking up to time δ2on + δBC + ∆.
We elaborate on maximal execution, update, and installation
times of contracts in Section V-F. Finally, δ1on ≥ δ1off + δBC
defines the maximal time after which M expects a response
to an execution challenge. As the creation is comparable to
the execution, we set the timeouts for off-chain creation and
creation-challenge accordingly. The timeouts are the upper
bound of the delay that can be enforced by malicious operators
by withholding messages. To decrease the delays in practice,
our implementation incorporates dynamic timeouts. Such a
timeout is initially set to match an optimistic scenario where
all operators answer directly. Only if the executor signals that
a watchdog is not responding, the timeout is increased. For
example, δ1on is initially set by the manager just high enough to
allow the executor to perform the execution offline and to send
one on-chain transaction. This on-chain transaction is either the
response or a watchdog challenge. In case the executor creates
a watchdog challenge, this triggers the manager to increase
the δ1on timeout for the executor. Similarly, the timeout δ1on is
increased by the manager if any watchdog is not responding
and the executor sends a transaction that kicks this watchdog.
The increased timeout allows the executor to provide the
kick transaction together with enough confirmation blocks to

17

its enclave to finalize the execution. This dynamic timeout
mechanism still allows the executor to respond in time even
if a watchdog is not responding, but at the same prevents
the executor to stall execution to the maximum although the
watchdogs have already responded. While the executor still
can create a watchdog challenge to increase the delay, this
attack is costly as the executor needs to pay for the on-
chain transaction. The value of the off-chain timeout δ1off
is handled similarly. The client only needs to account for
watchdog challenges in the previous execution if there is a
running on-chain challenge. If there are no running challenges,
a client can decrease δ1off to δBC plus two times the time for
the TEE to execute and update a contract. If the executor is
unresponsive, the client submits its executor challenge much
earlier. We give a concrete evaluation for the case of Ethereum,
as this is the platform on which our implementation works. Let
α = 20 be the number of blocks until a transaction is included
in the blockchain in the worst case, and αavg = 10 in the
average case. Further, we consider the block creation time to
be τ = 44s per block in the worst case and τavg = 15s in
the average case8. Finally, we assume that blocks are final,
when they are confirmed by γ = 15 successive blocks. Since
the network delay and the computation time of enclaves are at
most just a few seconds, which is insignificant compared to the
time it requires to post on-chain transactions, we neglect these
numbers for simplicity in the following example. In case the
executor (resp. a watchdog) is not responding, it is challenged
by the the client (resp. the executor). The creation of such a
challenge takes αavg ·τavg = 150s on average. In what follows,
due to the dynamic timeout mechanism, the on-chain timeout
for both, executor challenge (δ1on) and watchdog challenge
(δ2on), is initially set to α · τ = 880s. For on-chain timeouts,
we need to consider the worst-case parameters to allow honest
operators to respond timely in every situation. While a dis-
honest operator can delay up to the defined timeout, an honest
operator responds, and hence, finalizes the challenge in 150s
on average. In case the challenged operator gets kicked, the
(next) executor enclave needs to provide the kick transaction
together with enough confirmation blocks to its enclave to
finalize the execution. This takes (αavg + γ) · τavg = 375s
on average. For executor challenges, it can happen that the
executor submits a watchdog challenge during the timeout
period. In this case, which can happen at most twice, the
timeout is increased by 880s. If the challenged watchdog
does not reply, and consequently is kicked from the pool, the
timeout is increased by (α+ γ) · τ = 1 540s. Note, this worst
case is very costly to provoke, and in the general case, an
honest executor can finalize the kick of the watchdog in 375s.

E. Coin Flow

The POSE protocol supports the off-chain execution of
smart contracts that deal with coins, e.g., games with monetary
stakes. To this end, we provide means to send coins to and
receive coins from a contract. In this section, we explain the
mechanisms that enable the transfer of money and the intended
coin flow of POSE contracts. In order to deposit money to a

8For setting α and αavg , we consider a transaction to be included into the
blockchain after at most 20 resp. 10 blocks according to [55]. To determine
τ , we analyzed the Ethereum history via Google-BigQuery and identified that
since 2018 every interval of 20 blocks took at most 44s per block. For τavg , we
take the avg. parameter for Ethereum (cf. https://etherscan.io/chart/blocktime).

10K 100K 1M 10M 100M
number of contracts

90%

92%

94%

96%

98%

100%

pr
ob

ab
ilit

y
of

 n
o

cr
as

h

7 / 10%
8 / 10%
9 / 10%
20 / 50%
25 / 50%
30 / 50%
40 / 70%
50 / 70%
60 / 70%

Fig. 5. Cumulative probabilities of no contracts crashing w. large number of
POSE contracts for different pool sizes s and adversary shares m, “s/m”.

POSE contract, identified by id , a user U sends a message
(deposit, id , amount ;U) with amount coins to M . Upon
receiving a deposit message, M checks whether a contract
with identifier id exists and validates the signature, i.e.,
M id 6= ⊥ and Verify(deposit, id , amount ;U) = ok. If the
checks hold, M increases the contract balance M id .balance
by amount . As deposits are part of blockchain data that are
provided by the operator to an enclave (cf. V-D) and the
enclave forwards the data to the nextState function of the
contract Cid , U is ensure that Cid processes the deposit once
the corresponding block is final. However, it is upon to the ap-
plication logic to decide how deposits are processed. A contract
C can transfer coins to users by outputting withdrawals as part
of the public state. It is upon the application logic to decide
how and when coins are transferred to the users. For example,
a game can issue withdrawals once the winner has been
determined or leave the coins locked for another round unless a
user explicitly requests a withdrawal via a contract execution.
However, once a withdrawal has been issued, the coins are
irreversible transferred. Technically, contract C with identifier
id maintains a list of all unspent withdrawals {amount i, Ui}
and a counter payouts for the number of spent payouts. Each
public state returned by C contains a payout, a signed message
m := (withdraw, id , payouts, {amount i, Ui}; EE) where EE
is the executor enclave of the contract. This message can be
sent to M to spent all withdrawals within the payout. M
checks the validity of the payout, i.e., Verify(m) = ok, EE =
M id .pool [0], and payouts = M id .payouts . If the checks hold,
M transfers coins to the users according to the withdrawal list
{amount i, Ui}. Finally, M sets M id .payouts := payouts + 1
and M id .balance := M id .balance − sum , where sum is
the sum of all withdrawals. Once C processes a final block
with a payout transaction, it updates its list of unspent with-
drawals {amount i, Ui} accordingly and increments payouts
by 1.This mechanism ensures that a malicious user can neither
double spent withdrawals nor prevent an honest user from
withdrawing his coins—as long as the contract remains live.
Note that for each value of payouts , only one payout can be
submitted successfully, and a contract only issues a payout
for the next value of payouts once it has processed a final
block containing the current value of payouts . As the contract
removes already spent withdrawals from the list, double-
spending of any withdrawal is prevented. Although a payout
temporarily invalidates all other payouts for the same payouts ,
and hence, might invalidate same withdrawals, the unspent
withdrawals will be included in each payout of the incremented
payouts and spent with the next payout submission.

18

https://etherscan.io/chart/blocktime

	Introduction
	Adversary Model
	Design
	Architecture Overview
	Design Challenges

	Definitions & Notations
	The POSE Protocol
	Manager
	POSE Program
	POSE Contracts
	Synchronization
	Protocol Description
	Enclave Registration
	Contract Creation
	Contract Execution
	Challenge-Response

	Security Remarks

	Extensions
	Security Analysis
	Protocol Security
	Architectural Security

	Implementation
	Evaluation
	Related Work
	Conclusion
	References
	Appendix
	Protocol Security
	Correctness
	Liveness
	State Privacy

	Supported Contracts
	Further Protocol Blocks
	Timeouts
	Coin Flow

