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Abstract—We present BinaryInferno, a fully automatic tool for
reverse engineering binary message formats. Given a set of mes-
sages with the same format, the tool uses an ensemble of detectors
to infer a collection of partial descriptions and then automatically
integrates the partial descriptions into a semantically-meaningful
description that can be used to parse future packets with the
same format. As its ensemble, BinaryInferno uses a modular
and extensible set of targeted detectors, including detectors for
identifying atomic data types such as IEEE floats, timestamps,
and integer length fields; for finding boundaries between adjacent
fields using Shannon entropy; and for discovering variable-
length sequences by searching for common serialization idioms.
We evaluate BinaryInferno’s performance on sets of packets
drawn from 10 binary protocols. Our semantic-driven approach
significantly decreases false positive rates and increases precision
when compared to the previous state of the art. For top-level
protocols we identify field boundaries with an average precision
of 0.69, an average recall of 0.73, and an average false positive
rate of 0.04, significantly outperforming five other state-of-the-art
protocol reverse engineering tools on the same data sets: Awre
(0.18, 0.03, 0.04), FieldHunter (0.68, 0.37, 0.01), Nemesys (0.31,
0.44, 0.11), Netplier (0.29, 0.75, 0.22), and Netzob (0.57, 0.42,
0.03). We believe our improvements in precision and false positive
rates represent what our target user most wants: semantically
meaningful descriptions with fewer false positives.

I. Introduction

Reverse engineering message formats from static network
traces is a difficult and time consuming security task [31],
[39], [50], critical for a variety of purposes: bug-finding via
fuzz testing, automatic exploit generation, understanding the
communications of hostile systems, and recovering specifica-
tions that are proprietary or have been lost. In prior work,
researchers have used message reverse engineering techniques
to gain insight into the behavior of malware [15], [25], [28]
and manipulate botnets during mitigation efforts [23].

Protocol reverse engineering is characterized by a pipeline
with multiple steps. These steps include collecting data, clus-
tering messages by format, inferring a state machine describing
how messages are exchanged, and most critically: inferring se-
mantics for each format. The ambiguous nature of binary data

makes such reverse engineering difficult. The same sequence
of four bytes could be interpreted as an integer, a float, a
string, a timestamp, etc., or even several smaller fields. The
field inference problem involves inferring field boundaries and
the corresponding semantics. Without methods to precisely and
automatically solve the field inference problem, the task falls to
human experts. The working assumption underlying this work
is that a tool that accurately identifies even some field bound-
aries and infers meaningful semantics for the corresponding
data would make the job of these human experts easier as long
as the tool was almost always right, i.e., it could be trusted
not to lead the experts down false-positive rabbit holes.

Our work addresses the experts’ need for a security tool
focusing on inferring semantics for each format. BinaryIn-
ferno is designed to work automatically and produce output
descriptions that can be used to parse both existing and future
messages directly. BinaryInferno tackles the field inference
problem by leveraging an ensemble of detectors tuned to
common protocol engineering tasks. In this paper, we limit
our attention to common portions of a data format, i.e. data
in which some portion of every message contains the same
fields in the same order, including variable-length fields (such
as variable-length strings or a repeating pattern of structured
data). We exclude formats that include union types, although
even in such formats, we will be able to infer the shared
portions of the message. We believe that solving this problem
is useful in its own right, e.g., for identifying the structure of
the shared header of variable payloads, and it is an important
building block in solving the more general problem.

The key insight of our approach is that an ensemble
of specialized detectors can provide more information, with
fewer false positives, than a single, complex inference engine.
Each detector in our extensible ensemble is responsible for
analyzing the input sample of messages and returning a partial
description in a data description language, identifying if and
where its kind of data is likely to appear in the sample.
We have built a number of such detectors, including atomic
detectors for identifying basic semantic datatypes such as
IEEE 754 floats [14], timestamps, and length fields; a field-
boundary detector that uses changes in entropy to identify
where one field ends and another begins; and a pattern-
based detector that uses iterative deepening search guided by
common serialization patterns to find variable-length fields.

Once the individual detectors have returned their results,
we then automatically integrate the partial descriptions into
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a single description that accurately describes as much of
the sample as possible. The key challenge in integrating the
results is resolving conflicts in which different detectors make
conflicting claims about particular bytes in the format. We
resolve such conflicts by maximizing the amount of data
described. The resulting description can be used to parse the
sample data and – to the extent that the inference was correct
– any future data from the same source. We have implemented
our approach in a tool that we will release with an open-source
license called BinaryInferno.

Our approach offers four main advantages. Flexibility: Each
detector can use whatever method makes the most sense for
identifying its kind of data. Many of the methods require
only small samples and little or no training data. Separation
of concerns: Each detector can focus on its own task in
isolation. This separation means detectors for identifying fixed-
width fields can work independently from detectors focused on
identifying variable-length fields typically found in payloads,
rather than trying to do both at once. Parallelizability: The
task of running all the detectors is embarrassingly parallel,
so the system automatically runs them in parallel. Generality:
Because the system returns a data description suitable for
guiding a parser rather than simply a set of field boundaries,
it can be used for parsing future instances of similar data, not
simply understanding the current sample.

After providing a short primer on relevant background
material (Section II) and introducing our running example
(Section III), we present our work on BinaryInferno, which
makes the following contributions:

• We introduce the idea of using a semantics-driven
ensemble to solve the field inference problem (Section
IV). Our approach is characterized by using small spe-
cialized programs to independently identify parts of
messages with specific semantic types. This approach
has the twin benefits of automatically producing a
semantically meaningful description for the analyst
and strongly avoiding false positives.

• We present a field-boundary detector that relies on
Shannon entropy (Section VI). The advantage of this
detector is that it can often differentiate fields with-
out knowing their semantic content, identifying field
boundaries for otherwise unknown field types.

• We describe a search-based approach to inferring
common serialization patterns for variable-length data
(Section VII). Inferring the format of variable-length
fields is one of the most challenging aspects of pro-
tocol reverse engineering. Our approach fits combina-
tions of serialization patterns to the data, producing
precise, semantically-meaningful descriptions.

• We introduce an integration algorithm for reconciling
a collection of partial descriptions to find the best
overall description (Section VIII).

• We evaluate BinaryInferno on 36 problem instances
drawn from 10 extant binary protocols (Section IX).
and compare BinaryInferno with five state-of-the-
art protocol reverse engineering tools: Awre [53],
FieldHunter [17], Nemesys [38], Netplier [64], and
Netzob [20]. BinaryInferno identifies field boundaries

in top-level protocols with an average precision of
0.69, an average recall of 0.73, and a false positive rate
(FPR) of 0.04; our results mark significant improve-
ments in precision and false positive rate compared
to Awre (0.18, 0.03, 0.04), FieldHunter (0.68, 0.37,
0.01), Nemesys (0.31, 0.44, 0.11), Netplier (0.29,
0.75, 0.22), and Netzob (0.57, 0.42, 0.03) on the
same data sets. These results reflect our general goal
of finding true positives with high confidence while
strongly avoiding false positives.

• We evaluate false positive rates for BinaryInferno, and
related tools on uniform random data, which has no
field boundaries; our results show that BinaryInferno
rejects random data perfectly, as opposed to other tools
which infer spurious boundaries at rates of up to 0.45.

II. Background and Assumptions

There are three common approaches to field inference from
network traces: heuristic approaches, sequence alignment tech-
niques, and semantic approaches. Heuristic approaches, such
as used in Nemesys [38], identify fields using characteristics of
the data, but often require an analyst to infer field semantics
manually. Sequence alignment techniques including ones used
in Netzob [20] and Netplier [64], identify field boundaries by
aligning common byte values across a collection of messages,
but similarly burden analysts. Semantic approaches, such as
those used by Awre [53] and FieldHunter [17], look for
regions of messages which match a property, such as message
length or hostname, to identify field boundaries and their types.
While the descriptions from semantic methods can be used by
the analyst directly, they do not generalize well to previously
unseen data types. Security tools for reverse engineering
protocols generally use only one of these approaches. Binary-
Inferno is instead built around a novel integration algorithm,
which allows it to combine semantic inference, principled
heuristics, and a semantically meaningful serialization search.
This architecture benefits the analyst by providing semantically
meaningful results, generalizability for unseen data types, and
accurate inference of semantics for variable-length payloads.

Our approach to field inference assumes an error-free
collection of messages, such as is provided by data trans-
mitted with modern link and transportation protocols. We
assume that fixed-width fields and variable-length payloads–
composed of one or more fields–start at fixed offsets from
the start of a message. This representation choice facilitates
efficient and unambiguous deserialization, a desirable feature
for exchanging binary data that is widely used, for example
in IP [22], UDP [54], and BGP [55] protocols and ASN.1
BER serializations [37], [30]. To handle cases where this
assumption does not hold, such as protocols with union types,
BinaryInferno is tuned to not lead analysts astray by avoiding
false positives. In Figure 1 we illustrate an example of a
top-level protocol format with common header fields and two
encapsulated payload formats.
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Fig. 1: Example of top-level message format with common
header fields and two encapsulated payload formats.

BinaryInferno tackles the fields which are common across
messages. In this manner, our approach infers those fields
it can recognize and lets analysts focus on the remaining
unrecognized regions; the analysts may have some insights
into the data that help them partition unrecognized regions
into groups before rerunning BinaryInferno to get more infor-
mation. We hypothesize that developing an effective inference
technique for fields common across formats will be a useful
tool in its own right and will also enable us to bootstrap a
recursive inference process to perform inference over formats
with unions in future work. Finally, as in the related work, we
assume fields are byte-aligned, with a minimum width of one
byte, and that the data is not compressed or encrypted.

III. Illustrative Example

Imagine you are an analyst reverse engineering a message
format from a static network trace. A priori, you know the
approximate times the messages were captured, but nothing
else. Given the following three messages, which we use as a
running example, your job is to recover the underlying format.

01000D60A67AED054150504C45
01000E60A67AF9064F52414E4745
01001160A67B0504504C554D0450454152

The unknown format has the following structure: first a
1-byte message type, then the 16-bit message length, next a
32-bit Unix timestamp, and finally a payload of one or more
length-value pairs (Format 1 in Figure 1). BinaryInferno au-
tomatically infers exactly this description from these messages
in about the time it takes to read this sentence. Figure 2 shows
BinaryInferno’s output on these messages.

Fig. 2: BinaryInferno output for our running example.

IV. Overall Approach

Our key insight in tackling the field inference problem
is that while there may be an infinite number of ways data
can be encoded in binary, in practice engineers reuse standard
encodings over and over again. That observation is true at
both the level of atomic types, such as integers, IEEE 754
floats [14], and timestamps, and in the ways variable-length
values are serialized. These common idioms leave behind
fingerprints we can use to identify them. Typical idioms for
representing variable-length sequences in binary include type-
length-value (TLV) and length-value (LV) encodings, both of
which include an explicit representation of the length of the
sequence before the sequence itself appears. We can use this
fingerprint to find a length field by correlating candidates with
the length of the sequence.

As we consider a message sample looking for fingerprints,
we collect two kinds of evidence. The first is within a single
message: does the data at a particular offset look like an
integer or float, could it plausibly encode a length field, etc.
The second looks across messages to correlate the evidence
collected in each message. If every message supports a given
offset being a length, then we have strong evidence that the
value at that offset is, in fact, a length.

The specific evidence that needs to be collected depends
upon the hypothesized field type at a particular offset, and
so we created an ensemble of detectors, each specialized
to a particular kind of data. Each detector is responsible
for analyzing the sample messages and returning a partial
description in a data description language, identifying if and
at what offsets its kind of data is likely to appear.

We have built a number of such detectors, including
atomic detectors for identifying base fields such as IEEE
754 floats and timestamps; a field-boundary detector that
uses changes in entropy to identify where one field ends and
another begins; and a pattern-based detector that use iterative
deepening search guided by common serialization patterns
to infer variable-length fields. This collection of detectors is
easily extended with new detectors.

Once the individual detectors have returned their findings,
we automatically integrate the results into a single description
that accurately describes as much of the sample as possi-
ble. The key challenge in integrating the results is resolving
conflicts in which different detectors make conflicting claims
about particular bytes in the message. We resolve such conflicts
using an integration algorithm which maximizes the amount of
sample data described as discussed in Section VIII. This ap-
proach means that the system is resilient to individual detectors
making mistakes, and conversely, detectors can return partial
descriptions corresponding even to weak signals, confident
they will be overruled if another detector finds a stronger
signal. We designed this integration strategy to maximize our
ability to make progress on an unknown format by returning a
partial description in the case where some fields in the format
cannot be inferred because of limitations of the sample, or in
situations where some field types are completely new to the
tool. The resulting description can be used to parse the sample
data and – to the extent that the inference was correct – any
future data from the same source.
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TABLE I: Binary arrangement of IEEE 754 32-bit Float. S
labels the sign bit. E labels bits of the exponent. M labels bits
of the significand.

Byte 0 Byte 1 Byte 2 Byte 3

S E E E E E E E E M M M M M M M M M M M M M M M M M M M M M M M

V. Atomic Detectors

Each atomic detector is responsible for identifying a par-
ticular type of data. Each such detector takes the collection of
sample messages as input and returns a partial description for
any fields it recognizes. Internally, such a detector works by
iteratively passing different byte slices to an inference function.
We define a slice as a selection of bytes with a common offset
and a common width from each message in a collection. The
inference function returns a binary decision as to whether a
field of the detector’s type can be inferred at the supplied slice.
By running a detector’s inference function at each offset from
the message start, we collect the set of all locations that may
contain the data type in question. To provide a flavor for a
range of atomic detectors, we describe the inference functions
of three detectors in our ensemble.

A. Float Detector

Our float detector uses a heuristic-based approach that
exploits distribution characteristics of the IEEE 754 floating
point representation (floats) [14]. The key insight is that float
values within a message set tend to be clustered in a relatively
small range; we use this intuition along with observations on
the structure of IEEE floats to detect likely candidates.

IEEE 754 Floats are composed of three regions: a single
sign bit, an 8-bit binary encoded exponent, and a 23-bit binary
encoded mantissa or significand. We illustrate the format in
Table I. A real number value is represented approximately by
a float in the following form: sign × 2exponent × significand.

We observed that floats in real-world data sets [11] are
often concentrated in small ranges relative to the entire range
of values an IEEE 754 float can represent. When encoded as
IEEE 754 floats, this concentration causes adjacent real values
to use the same exponent value, but with distinct significand
values. Through exploratory visualization, we observed that
reuse of exponent values caused the frequency of 1 bits
used in the 8 exponent bit positions to be greater than the
average frequency of 1 bits used in the 23 bit positions of the
significand for many of the real-valued dimensions encoded
as binary floats. This frequency variation means that plotting
a histogram of set bits in the exponent and significand forms
a distinctive L-Shape, with the long part of the L lying down,
as illustrated in Appendix A Figure 8. This shape is notably
missing when plotted for other types of data, such as unsigned
32-bit integers.

We calculate a numeric measure of the L-Shape by taking
the average frequency of the 1 bits in the significand and divid-
ing it by the maximum frequency of 1 bits in the exponent. We
call this measure the L-Ratio. The intuition behind measuring
the maximum frequency for the exponent is that if a collection
of floats all use the same non-zero exponent, then some bit
position in the exponent will have a frequency of 1 bits equal

to the number of floats in the collection. Further no bit position
can have a frequency of 1 bits greater than the number of floats
in the collection as each float can only contribute at most a
single 1 bit in each position. The intuition behind measuring
the average frequency of 1 bits in the significand is that
significand values vary greatly compared to the corresponding
exponents values. We use an average to smooth the significand
1 bit frequencies. Taken together, these two measures capture
the balance between variety of significand values and reuse
of exponent values over a collection of floats. We discuss
selecting cut-off points for the L-Ratio and the datasets used
in Appendix A.

As a 32-bit float is expressed across 4 bytes, with the
significand entirely in the last 3 bytes, it is highly unusual
to have a constant value across nibble-width slices in any of
the last 3 bytes. We informally call such a feature a constant
stripe. We reject as possible floats any slices that with constant
stripes in the bytes of the significand.

For our running example, the float detector identifies bytes
4, 5, 6, and 7 across all three messages (0xA67AED05,
0xA67AF906, 0xA67B0504) as a potential float field; they
are all three valid, normalized floating point values clustered
around −8.7x10−16. The integration algorithm will ultimately
overrule the float detector, as other explanations allow more
data in total to be described across the entire set of messages.

B. Timestamp Detector

Our approach to timestamp inference assumes knowledge
of when a static network trace was captured. Tools like
Wireshark [12] and tcpdump [9] capture this information
automatically. Alternatively, an analyst’s rough idea of when
a sample was captured can be utilized.

Given a start and end date-time for the capture, the time-
stamp detector interprets the slice values according to one of
the timestamp formats it supports. If all slice values interpreted
according to the specific timestamp format are within the
specified range, we infer a timestamp field1. If any values fall
outside of the range, we move on. We summarize this detector
in Equation 1 in which X is the slice under consideration, and
the function f interprets slice value x according to a specific
timestamp format.

isT imestamp(X) =
∨
x∈X

start ≤ f (x) ≤ end (1)

Our timestamp detector implementation is modular, requiring
only a format epoch value and a function to extract the format
offset in seconds. Our abstraction makes it easy to add detec-
tors for new timestamp formats. By default, our timestamp
detector has inference functions for NTP and Unix epoch
timestamp formats. For NTP timestamp formats, our detector
differentiates between NTP timestamps with null values and
pure NTP timestamps where every value is within the range.

For our running example, the analyst knows the approx-
imate time the network trace was captured and provides it
to BinaryInferno which parameterizes the timestamp detector.
The detector’s Unix epoch inference function identifies the

1To account for systems with an unknown timezone offset, the timestamp
detector automatically expands the start and end date-time by 24 hours.
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slice comprised of bytes 3, 4, 5, and 6 as a valid Unix epoch
timestamp with all values within the provided span and infers
a Unix timestamp field for this slice. This inference is correct;
we discuss why this result “wins” during the merge with other
possible descriptions of these bytes in Section VIII.

C. Length Detector

A common idiom in binary packet data is to encode
variable-length data by first encoding the unsigned integer
length of the data followed by the data itself. Our length
detector searches for slices which exactly explain the lengths
of a collection of messages. We call these strict length fields.
We consider a slice X to exactly explain the lengths if the
unsigned integer interpretation of each slice value xi plus some
non-negative constant k equals the corresponding the message
length (Li). The intuition is that the values in X correspond
with message lengths, while k describes a fixed header size.
We summarize this boolean function in Equation 2.

isS trictLength(X,L) =
∨
xi∈X

((xi + k) = Li) (2)

We can calculate this value by taking the intersection over
the differences between the slice values and message lengths:⋂

xi∈X(xi − Li). If the resulting set has only a single non-
negative value k, then we infer a length field with the value
k as our constant. We discuss the probability of random data
being mistaken for a length field in Appendix B and fuzzy
lengths –fields which do not directly encode the length of the
message– in Appendix C. For our running example (Figure 2),
our algorithm infers two possible length fields. bytes 1 and
2 taken together (0x000D,0x000E,0x0011) and byte 2 in
isolation are consistent with the overall message lengths of
13, 14, and 17.

VI. Field-Boundary Detector

We derive field boundaries in three ways. First, through
the direct recognition of the field, either by an atomic detector
(Section V) or by a pattern-based detector (Section VII). Sec-
ond, through the recognition of adjacent fields using the same
mechanisms. Finally, by using a stand-alone field-boundary de-
tector, which identifies boundaries without recognizing fields
directly using an information theoretic approach.

The inspiration for the field-boundary detector was the ob-
servation that multi-byte fields often contain different amounts
of information, as defined by Shannon entropy [57], in the
various bytes of a slice. For example, we have observed that
the least significant byte of an integer field will often have
more information than the most significant byte: the least
significant bits vary frequently, while the most significant bits
vary only when values differ by an order of magnitude or
more. Similarly, the least significant byte of an IEEE Float
containing a portion of the significand varies more than the
most significant byte of a IEEE Float containing the exponent.

Leveraging this intuition, our field-boundary detector looks
for adjacent 1-byte slices that exhibit a significant difference
in their Shannon entropy, calculated using the formula

H(Mk) = −Σv∈Mk P(v) log P(v) (3)

where Mk is the bag formed by the kth byte of each message
in the sample M, and P(v) is the probability of value v in Mk
calculated as the number of times v appears in Mk divided by
the size of Mk. We choose 1-byte slices as larger slices risk
mistakenly interpreted the entropy of multiple adjacent fields
is as belonging to a single field.

As with our other detectors, the field-boundary detector
assumes a fixed endianness for the entire collection of mes-
sages. Unlike most other detectors, it takes the endianness into
consideration when deciding whether a boundary is likely to
occur between adjacent slices. When considering data assumed
big-endian, for any pair of adjacent 1-byte slices A and B,
we infer a field boundary if H(A) − H(B) ≥ 1.0, reflecting
the intuition we expect more information in the earlier slice
under a big-endian encoding. For data assumed little-endian,
the situation is reversed, and so we infer a boundary if
H(B)−H(A) ≥ 1.0. In both cases, we chose a threshold of 1.0
as this value requires the more informative slice to have twice
as much information regardless of the number of messages.

In our running example, the field-boundary detector in-
fers a field boundary between bytes 2 and 3 as shown
in Figure 2. For byte 2, the Shannon entropy, calculated
as H([0x0D,0x0E,0x11]), is 1.584, and for byte 3, it is
H([0x60,0x60,0x60]), which is 0.0. Their difference is 1.584,
well above the threshold.

VII. Pattern-based Detector

Not all data fits into fixed-width fields: strings, lists, etc.
With fixed-width fields, only an offset is necessary to decide
how to interpret a value. In contrast, data in variable-length
fields needs to be encoded in a way that allows the reader
to understand where the field ends; we call these encoding
conventions patterns. For example, one common serialization
pattern is the length-value (LV) pattern, which describes a data
value by prepending it with information about its size. Another
common pattern is the type-length-value (TLV) pattern, which
prepends the length-value pattern with information about the
protocol-specific semantic type of the value.

We can combine a detector based on these two patterns –
LV and TLV – with our other detectors to infer comprehensive
message format descriptions on the basis of limited sample
data. These patterns also allow us to recover “hidden” fixed-
width fields by treating the variable component of a message
as a discrete section and re-aligning our sample appropriately.
The resultant portions are then amenable to inference using
our atomic and field-boundary detectors.

To build a detector for variable-length data, we describe
these patterns in a grammar and then perform an iterative
deepening, depth-first search [40] over strings in our gram-
mar, searching for patterns that explain the sample messages.
Iterative deepening operates by performing a bounded depth-
first search over strings in the grammar up to a certain size.
If no consistent format string is found within that depth, the
search is rerun to an increased depth. As a result, we discover
simpler format strings sooner, and we can guarantee we will
explore all formats up to a specified complexity.

Representing Patterns. We represent message formats in
EBNF as shown in Grammar 1. The grammar contains a single
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terminal BYTE that denotes an 8-bit binary string. We enclose
non-terminals in angle brackets. We use integer superscripts to
indicate a number of repetitions, with parentheses denoting the
scope of the superscript as necessary. If the superscript is an
earlier field, we surround the superscript with square brackets
to indicate the number of repetitions is dependent upon the
value of the earlier field. When square brackets are omitted
in the superscript, the number of repetitions is assumed to be
constant for all messages.

Each string in the grammar characterizes a specific message
format employing a common binary serialization pattern; each
token in such a format string represents a specific field. A
collection of messages is consistent with a format string if
the format accounts for every byte in every message, precisely
explaining all variation in message lengths.

⟨PATTERN⟩ ::= L(V)[L]

| T L(V)[L]

⟨T,L,Q⟩ ::= BYTEN (1 ≤ N ≤ 4)

⟨V⟩ ::= BYTE

⟨FIELD⟩ ::= ⟨VLFIELD⟩
| BYTEP (P ≥ 1)

⟨VLFIELD⟩ ::= ⟨PATTERN⟩
| Q(⟨PATTERN⟩)[Q]

| Q(VV)[Q] | . . . | Q(VVVVVVVV)[Q]

⟨FORMAT⟩ ::= ⟨FIELD⟩
| ⟨FIELD⟩ ⟨FORMAT⟩

Grammar 1: Serialization Pattern Description Grammar

The key to the grammar is the ⟨PATTERN⟩ non-terminal
that represents the two serialization patterns described earlier:
length-value (LV) and type-length-value (TLV). Non-terminals
⟨T⟩, ⟨L⟩ and ⟨Q⟩ describe the type, length and quantity aspects
of serialization patterns. We restrict these meta-variables to be
BYTE fields from 1 to 4 bytes long as is consistent with real-
world use. We use meta-variable ⟨V⟩ to describe the payload.

As an example, we write the 1-byte length-value pattern
as L(V)[L]. This pattern interprets the byte-string 0x03AABBCC
by assigning L the value 3 and the grammar component
(V)3 the sequence of bytes 0xAABBCC. In contrast, byte
strings 0x03AABB and 0x03AABBCCFF are inconsistent with the
pattern L(V)[L]. The first fails to provide enough data while the
second provides too much data.

Non-terminal ⟨FIELD⟩ indicates a field can be varying
in length (⟨VLFIELD⟩) or fixed-width (BYTEP). Non-terminal
⟨VLFIELD⟩ can be a pattern, a repetition of a pattern with a
quantity given by preceding value ⟨Q⟩, or a repetition of 2 (VV)
to 8 byte (VVVVVVVV) words whose quantity is given by the
preceding value ⟨Q⟩. Non-terminal ⟨FORMAT⟩ concatenates
fields, allowing us to describe message formats where the
variation in message length comes from more than one pattern,
as well as formats with fixed-width prefixes and suffixes.

Pattern Inference. Our depth-first search proceeds in the
following manner. Given a set of messages, we attempt to

interpret each message according to a format string F drawn
from the ⟨FORMAT⟩ branch of the grammar. We first deseri-
alize the message according to F from the starting offset and
produce a new offset end. We consider a message interpreted
if F does not attempt to read beyond the available bytes in the
message, that is to say if the resulting offset end is less than
the length of the message in bytes. We consider a collection
of messages interpreted by F if each message is interpreted.
In the case that end is strictly less than the message length for
some subset of messages in the collection, we infer that we are
in the second branch of ⟨FORMAT⟩ (i.e., ⟨FIELD⟩ ::= ⟨FIELD⟩
⟨FORMAT⟩) and our detection recurs on the remaining bytes in
the message. If the collection of messages is not interpretable,
because a pattern requires more bytes than some message has,
we try the next format string drawn from ⟨FORMAT⟩.

When we have exactly interpreted all bytes across the
collection of messages by locating a format consistent with the
data, we report that format as an inferred description for the
entire collection. If we have exhausted all format strings in the
grammar up to the byte-length of the shortest sample message,
but we have not found an acceptable interpretation, we report
no consistent pattern could be found. The search algorithm
continues until we find a configurable minimum number of
descriptions, or we have considered all format strings.

Implementation Optimizations. Our search uses three
optimizations. First, while performing the search, we want
to avoid repeatedly interpreting the same message according
to the same pattern at the same offset. To prevent this, we
memoize the possible interpretations of ⟨VLFIELD⟩ at every
offset from message start prior to performing the search. For
each pattern, message, and starting offset, we store the ending
offset generated by interpreting the message or a nil value if the
pattern attempts to read beyond the available bytes. We refer
to this pre-evaluated set as MEMOS[pattern,message, offset].

Second, constant-valued slices in a collection of messages
occur with some regularity. To avoid spuriously inferring
patterns where none exist, we use a heuristic to restrict their
influence. Consider an example where a 1-byte slice has the
value 0 for every message. While this slice is consistent with
a length-value pattern – it represents a length value of 0,
followed by no data – we choose to ignore it as it offers
no evidence that would support the inference of this pattern.
As another example, consider an example where a slice has
the value 4 for every message. If this slice were part of a
length-value field, the values would all have the same length
(4) and would be better explained as a fixed-width 5-byte field.
Accordingly, if the portion of a format string that controls the
number of repetitions (⟨L⟩ or ⟨Q⟩ in the grammar) is a constant,
we skip interpretation and instead allow the search algorithm
to consider the next format string in the grammar.

Third, the problem is embarrassingly parallel. By parti-
tioning how we draw format strings from the grammar we can
conduct the search in parallel over multiple processors.

Star Patterns. A common variation on serialization
patterns is for the quantity of pattern repetitions (Q in
Q(⟨PATTERN⟩)[Q]) to be omitted. This pattern form is present
in bgp open messages and dhcp options, among others. We
call such cases star patterns based on their relationship to the
Kleene star operator. We define star patterns, ⟨STAR-PAT⟩ in
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Grammar 2, as a ⟨PATTERN⟩ repeated zero or more times with
three restrictions. First, the pattern must occur at least once
in one of the sample messages. This restriction prevents the
consideration of zero repetitions of patterns across a collection
of messages, that is to say, inferring a star pattern at every
offset. Second, the number of repetitions of a pattern must vary
in at least one of the messages. This restriction prevents the star
pattern from being inferred when the data could more simply
be explained by a fixed sequence of patterns. For example,
without this restriction a collection of messages consistent with
format L(V)[L]L(V)[L] would also be consistent with L(V)[L]∗.
We choose to infer a star pattern only when the data cannot be
described otherwise. Finally, we infer star patterns only when
they are the final variable-length portion of a message format.
This requirement is consistent with the common usage of star
patterns in the real-world message formats we have examined.
We allow for a constant fixed-width field following the star
pattern, such as a checksum, with the term BYTES .

⟨STAR-PAT⟩ ::= ⟨PATTERN⟩* BYTES (S ≥ 0)

⟨STAR-FMT⟩ ::= ⟨FORMAT⟩
| ⟨FORMAT⟩ ⟨STAR-PAT⟩
| ⟨STAR-PAT⟩

Grammar 2: Star Pattern Description Grammar

Inferring star patterns. Intuitively we define a star pattern
as being inferred for a collection of messages if the repeated
interpretation of the pattern ⟨PATTERN⟩ across each message
can derive a single offset relative to message end across the
entire collection. More precisely, starting from some offset, we
want to calculate all the offsets we can reach by repeatedly
using the pattern. If we explain all remaining bytes in each
message, or all but a constant number of bytes (S), we infer a
star pattern. We discuss the details of identifying star patterns
in Appendix D.

Our pattern search method proceeds unchanged, drawing
format strings starting with ⟨STAR-FMT⟩ in Grammar 2 and
performing lookups in MEMOS. While not shown here, this
approach can be easily extended to allow some messages in
the collection to have zero instances of a pattern.

VIII. Integration Algorithm

At this point, our ensemble of detectors has inferred
independent partial descriptions of the sample under study,
where a partial description is any set of inferred fields and
stand-alone field boundaries. The detectors in our ensemble
are independent and can be run in any order as they exchange
no information. The next step is to combine these partial
descriptions into a single description that accurately describes
as much of the sample as possible, resolving any conflicts.
Conflicts arise when two or more inferred fields make differing
claims about the same bytes; for example, when one inferred
field claims that bytes 0 through 3 are an integer, while another
claims that bytes 2 through 5 are a float. These fields conflict
because they make incompatible claims about bytes 2 and 3.
To handle these cases, we devised a graph-based algorithm to
heuristically find the highest confidence, most comprehensive,
conflict-free description that is compatible with the inferred

set of partial descriptions. Specifically, we construct a directed
acyclic graph (DAG) whose nodes (V) are the inferred fields
(plus special Source and Sink nodes) and whose edges (E)
capture a “strictly precedes” relationship between the corre-
sponding fields. The special Source node strictly precedes all
others, while all other nodes strictly precede the special Sink
node. We treat a partial description inferred from a pattern-
based detector as a single field.

Fig. 3: Conflict resolution process for our running example.
Each inferred field in (A) becomes a node in the Integration
Algorithm Graph (B) where topological sort is used to intro-
duce edges between conflict free pairs of nodes. The optimal
description (C) is found by calculating the maximum path
(shown in red) from source to sink.

In Figure 3 we show an example of constructing a DAG
from a collection of all partial descriptions inferred from the
three messages in our running example. The inferred float field
has a weight of 12 bytes (4 bytes in each of three messages).
The 2-byte length field by contrast has a weight of 6 bytes.
We would assign any stand-alone field boundaries, which have
a zero-byte width, a weight of 1.0. We assign the Source node
a weight of 0. (Edges take their weights from their sources,
so the weight of the Sink is irrelevant.) In Figure 3, conflicts
between the two length fields, between the timestamp and float
field, and between the float field and the serialization pattern
are shown. These conflicts are resolved to maximize the weight
(number of bytes) described overall.

Given this encoding, each path through the DAG from
Source to Sink represents a conflict-free sequence of inferred
fields. To give preference to paths that correspond to better
descriptions, we assign a weight to each edge, computed as
how many bytes in each message that the sample field es
covers in each of the messages. In other words, we calculate
the weight of a field as the total number of bytes it describes
across all messages in the sample. With these weights, finding
the best conflict-free description reduces to returning the path
through the DAG with the maximum weight. This search can
be done in O(|V| + |E|) time by first topologically sorting the
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nodes by the strictly precedes order. In the rest of this section,
we describe this algorithm in more detail.

Encoding conflicts. We use the strictly precedes relation
to judge whether two inferred fields are conflict-free. For
each field inferred from a collection of messages, there is
a corresponding interval in each message, spanning from the
start to the end offsets for that field in that message. We say
that field A strictly precedes field B, written A < B, if each
A interval ends before the corresponding B interval begins.
Effectively we require that in every message in the collection,
all bytes in field A end before all bytes in field B begin.

More precisely, we use interval ordering semantics with
a closed start interval and an open end interval. We consider
an interval [astart, aend) well-formed if astart ≤ aend. For all
pairs a and b of well-formed intervals from fields A and B,
respectively, a < b iff [astart, aend) < [bstart, bend), which is
to say that if for all such pairs, aend ≤ bstart, then A < B.
Intuitively, fields which are strictly disjoint are orderable in
the strictly precedes relation, while fields which share bytes are
not. (By our assumption that all messages in our sample have
a consistent format, field order will be consistent across all
messages for any pair of fields in the strictly precedes relation.)

Our notation for field intervals includes stand-alone field
boundaries as zero-width intervals. Consider the example field
A such that each interval is [astart, aend), and stand-alone
field boundary B [bstart, bend) where bstart = bend = aend. By
our definition of strictly precedes, A < B. This flexibility
allows our graph algorithm to consider both full fields as
well as stand-alone field boundaries. In this way, stand-alone
field boundaries that fall between two full fields act as a
reinforcement when considered by our algorithm.

Calculating the maximum path. Finally, we find the
heuristically best description by computing the maximum path
through the weighted DAG by recursively relaxing the graph,
node by node, in topological order sorted by the strictly
precedes relation starting at the Source node. Intuitively, the
maximum path is the sequence of fields related by the strictly
precedes relation that maximally describes the information in
the sample when evaluated by our ensemble. Our definition of
strictly precedes and our construction of the DAG ensures that
all the fields are disjoint. To extract the fields on the maximum
path, we start at Sink and repeatedly follow the maximum in-
ward pointing edge until we arrive at Source. Reversing that list
gives the final inferred description. Alternatively, if we desired
multiple descriptions, we could use Yen’s algorithm [65].

IX. Evaluation

We evaluate BinaryInferno’s ability to provide useful
information to an analyst and compare its performance to
that of related state-of-the-art tools. Recall that the goal is
a system that saves the analyst time by producing precise,
semantically meaningful descriptions with low false positive
rates for inferred field boundaries.

What we compare against. Our security use case is
that of an analyst attempting to reverse engineer an unknown
protocol to identify vulnerabilities such as in a proprietary
system. We compare BinaryInferno to five state-of-the-art
protocol reverse engineering tools capable of field inference:

Awre [53], FieldHunter [17], Nemesys [38], Netplier[64], and
Netzob [20]. Awre identifies fields according to semantic types
drawn from wireless radio message formats and produces a
semantic description. FieldHunter similarly identifies fields
using semantic types common to network protocols. Nemesys
uses a heuristic approach to identify field boundaries based on
bit-level differences between adjacent bytes, while Netplier
employs a string alignment heuristic. Netzob is a Python
based interactive environment designed to support an analyst
performing manual reverse engineering. For our evaluation we
use Netzob’s implementation of the Needleman & Wunsch
sequence alignment technique [51] to identify field boundaries.
We use a public re-implementation of FieldHunter2. We
compare how well these tools identify field boundaries in
unknown protocols as this is an essential step [39] in reverse
engineering the format.

Benchmark suite. Our sample data was drawn from a
broad collection of data representing different types of top-
level binary protocols including those explored in related work.
We selected well-known network protocols from networking,
industrial control, UAV systems, and malware as these are all
areas in which protocol reverse engineering is performed for
security purposes. Our goal is to characterize BinaryInferno’s
performance on binary protocols generally, rather than on a
specific type. Thus, our benchmark suite is comprised of five
common binary protocols (bgp [55], dhcp [29], ntp [46],
smb [47], and smb2 [48]), two industrial control protocols
(dnp3 [13] and modbus [49]), two specialized binary proto-
cols (mavlink [16] , the mirai botnet’s command & control
traffic [15]), and one protocol created as part of a reverse
engineering tutorial [7].

For each top-level protocol in our evaluation, we collected
one or more representative sample traces to build a collection
with at least 1000 messages. For protocols bgp, dhcp, ntp,
smb, and smb2, we use traces collected from network security
competitions [8], public reference traces [1], [4], [6], [10]
and the NetPlier test suite [5]. For dnp3 and modbus we
use captures from security researchers and network security
competitions [1], [36]. For mavlink, we use a trace from a
software-in-the-loop (SITL) drone simulator [3]. For mirai we
use a trace captured from a virtualized instance of a mirai
botnet used for security research [23].

For the tutorial example, we directly transcribed sample
messages from a network protocol reverse engineering tutorial
website [7] and generated additional messages by encoding
common dictionary words in accordance with the specifica-
tion. This sample is notable for representing a baseline for
evaluating different protocol reverse engineering tools against a
human expert. Specifically, it is simple enough by construction
that a human expert can readily reverse engineer the format.
Tools which have difficulty with this ”Hello World” format
may be of limited use when presented with more complicated
real-world formats.

For each protocol trace, we extracted all packets of the spe-
cific protocol, and then randomly drew 1000 messages (without
replacement) to create our initial sets of 1000 messages per
protocol. We used the first 500 and 100 messages for our
smaller subsets.

2https://github.com/vs-uulm/fieldhunter
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To create additional test sets for evaluating field inference
in payloads, we selected the two top-level protocols containing
union types over encapsulated payload formats (bgp, mavlink),
and binned the messages into subsets by payload format. These
payload samples permit us to evaluate the feasibility of using
BinaryInferno to differentiate payload formats once a message
type field is identified. To create these subsets, we binned the
original sample messages by the message type field according
to the ground-truth formal specification and randomly drew up
to 1000 messages from each bin.

Establishing ground-truth. For each protocol we de-
termined the ground-truth field boundaries from reference
literature. We then created a formal specification, which we
used to parse and segment message bytes into discrete fields.
Consistent with Netplier’s evaluation, when adjacent fields in
a sample had constant values across all messages, we updated
our ground-truth to merge these fields.

Processing and extraction. As input BinaryInferno takes
an ASCII file with the hexadecimal value of each binary mes-
sage on a separate line. We chose this input format to facilitate
ease of use and portability independent of the message source.
To extract messages from static network traces (pcaps) into
our input format, we use the Wireshark’s [12] tshark utility.
We constructed harnesses for Awre, FieldHunter, Nemesys,
Netplier and Netzob to use the same input format and to return
messages segmented into fields as output.

The dhcp message format allows the end of messages to
be padded with an arbitrary quantity of zero-valued bytes. The
use and quantity of this padding is unspecified. We use an
automatic method to detect padding and remove it prior to
inference as described in Appendix E.

BinaryInferno can leverage two pieces of analyst-supplied
prior knowledge to refine its inference: the assumed endianess
of the sample and the approximate date range when the sample
was collected. We include the results of inference using the
endianness and the date range of the sample capture as BI+
in our evaluation. We label the result without the use of these
priors as BI. While the standard [56] for data transmitted over
the internet is big-endian (network byte order), there is no strict
requirement that protocols adhere to it.

Execution environment. We ran all experiments on a
Linux server equipped with 40 CPU cores (Intel® Xeon® Gold
6140 CPU @ 2.30GHz) and 128GB memory. We allowed each
tool up to 60 minutes of execution time per sample. We make
all samples used in our evaluation available to the public [2].

A. Evaluating Results

For each sample in our evaluation we calculated the pre-
cision, recall, false positive rate, and F1 score for each tool’s
result relative to the ground-truth format. These measures rep-
resent standard evaluation metrics for tools like BinaryInferno,
and they match the metrics reported by similar systems.

We define positives to be field boundaries in the ground-
truth format. We define inferred true field boundaries, or true
positives (TP), to be those boundaries inferred by a tool which
match the ground-truth specification, as illustrated in Figure 4.
We define negatives to be adjacent bytes belonging to the same

Fig. 4: Illustration of true positives (TP), false positives (FP)
and false negatives (FN) between inferred field boundaries and
ground-truth.

field according to ground-truth, such as between byte offsets
0 and 1 in the Figure.

Precision =
Inferred True Field Boundaries (TP)
Inferred Field Boundaries (TP + FP)

(4)

Recall =
Inferred True Field Boundaries (TP)

True Field Boundaries (positives)
(5)

FPR =
Inferred False Field Boundaries (FP)

Adjacent Field Bytes (negatives)
(6)

We calculate precision as the number of true field bound-
aries (TP) inferred, divided by the total number of field
boundaries inferred (TP + FP) as shown in Equation 4.
Intuitively, precision measures how likely something inferred
as a field boundary is actually a field boundary. A precision
of 1.0 (best) means that every inferred field boundary is a
true field boundary, while a precision of 0 means no true
field boundaries were inferred. We calculate recall as the
number of true field boundaries inferred (TP), divided by the
number of true field boundaries overall (positives) as shown in
Equation 5. Intuitively recall measures the proportion of true
field boundaries discovered. A recall of 1.0 (best) means the
tool infers all true field boundaries while a recall of 0 means
the tool infers none. We calculate false positive rate (FPR)
as the number of incorrectly inferred field boundaries (FP)
divided by the number of contiguous field bytes (negatives) as
shown in Equation 6. A FPR of 1.0 means every inferred field
boundary is incorrect, while a FPR of 0 (best) means every
inferred field boundary is correct. For formats consisting of
a single field, or formats where all fields are constant valued
for a sample, we report precision of 1.0, recall of 1.0, and
a FPR of 0.0 if no field boundaries are inferred by a tool.
In the unusual case when a tool reports no fields inferred for
formats with ground-truth field boundaries–returning the input
unchanged–the precision of the result is undefined. We exclude
such results from our averages in the interest of treating each
tool fairly. We use the standard calculation of F1 score as the
harmonic mean between precision and recall. F1 score balances
precision and recall into a single metric for comparing overall
accuracy between tools.

B. Testing on top-level protocol samples.

To evaluate BinaryInferno’s ability to produce useful de-
scriptions with low false positive rates, we ran the tool on
our top-level protocol samples. For each sample we performed
inference with the previously described data sets of size 1000,
500, and 100 messages to characterize the impact of sample
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size on our results. Summary results of our top-level protocol
evaluation for 1000, 500, and 100 messages are shown in
Table II and plotted for 1000 messages in Figure 6. We report
detailed results by sample size in Table V.

BinaryInferno significantly outperformed Awre, Nemesys,
Netplier, and Netzob on average precision and F1 score
across all sample sizes. For example, BinaryInferno’s average
average-precision across the three sample sizes was 0.66 com-
pared to 0.15 for Awre, 0.31 for Nemesys, 0.27 for Netplier,
and 0.56 for Netzob. BinaryInferno’s average average-F1
score was 0.66 compared to 0.04 for Awre, 0.34 for Nemesys,
0.37 for Netplier, and 0.47 for Netzob. BinaryInferno with
priors (BI+) did even better. BI+ had the highest (best) pre-
cision rates (0.82 to 0.93) and the lowest (best) false positive
rates (0.005 to 0.02), but even without priors, BinaryInferno’s
false positive rates (0.04 to 0.05) outperformed both Nemesys
(0.10 to 0.11) and Netplier (0.22 to 0.26) and tied Awre.

Netplier exhibited the highest average recall (0.73 to 0.83)
because of its tendency to divide messages into 1-byte fields,
unsurprisingly finding the majority of field boundaries with
that approach (but leading to a high false positive rate).
BinaryInferno’s performance improved on larger data sets,
reaching 0.73 on the 1000 sample size.

FieldHunter did not identify field boundaries in 69% of
the samples given (40% of the top-level samples, 80% of the
payload samples). FieldHunter uses semantic types to perform
identification, and accordingly has a low false positive rate
for those types, but at the expense of generality. For top-level
protocol samples where FieldHunter made an attempt, it had
precision of 0.68, recall of .37, and a FPR of 0.01. As field
inference is an essential part of protocol reverse engineering,
the utility of FieldHunter to assist an analyst would appear
limited as they would still have to reverse engineer the majority
of the samples by hand.

To illustrate how these results compare from an analyst’s
perspective, we visualize the inferred field boundaries pro-
duced by each tool for the tutorial sample in Figure 5.

C. Testing on encapsulated payloads.

We hypothesize that BinaryInferno can be used to differ-
entiate formats with unions by performing inference on each
branch. To test this hypothesis, we evaluated BinaryInferno’s
performance on encapsulated payload types for two top-level
protocols. For this evaluation we use previously described
samples drawn from bgp and mavlink messages binned by
message type . We summarize our encapsulated payload results
in Table III, with detailed results in Table V.

Tools using semantic methods including Awre, BinaryIn-
ferno, and FieldHunter may not always infer a field format
either due to limited data, or the lack of a semantic type in
their ensemble, claiming each message is a single field. This
behavior is one reason why these methods have markedly low
false positive rates. For our 26 encapsulated payload samples,
we excluded the empty results returned by these tools (1,
3, and 21 instances respectively) when calculating average
performance.

For encapsulated payload samples, BinaryInferno (BI) had
an average precision of 0.54, average recall of 0.65, an average

Fig. 5: Illustrated comparison of correct and incorrect inferred
field boundaries using 1000 messages from the tutorial
sample. Field data is color coded, with solid bars indicating
correct (black) and incorrect (red) inferred field boundaries.

False Positive Rate (FPR) of 0.08, and an average F1 score of
0.55. However, when supplied the underlying endianess as a
prior and the approximate time of packet capture, BinaryIn-
ferno (BI+) had an average precision of 0.94, an average recall
of 0.80, an average FPR of 0.01 and an average F1 score of
0.84. BinaryInferno (with and without priors) outperformed
Awre, Nemesys, Netplier, and Netzob on all metrics with the
lone exception of Netplier’s average recall of 0.78, which
results from Netplier’s tendency to divide messages into 1-
byte fields. FieldHunter does almost as well as BI+ but on
a much smaller set of inputs: 5 out of 26 (versus 23 out of
26 for BI+). FieldHunter had an average precision of 0.85,
average recall of 0.78, an average FPR of 0.01, and an average
F1 score of 0.80.
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Fig. 6: Plot of average precision vs. recall on top-level samples
of 1000 messages for Awre, FieldHunter, Nemesys, Netplier,
Netzob, BinaryInferno (BI), and BinaryInferno with priors
(BI+). Tools closer to ground-truth (GOAL) are better. Seg-
menting at each message byte is shown as EVERY. Segmenting
nowhere in the message is shown as NONE. FieldHunter
(FH*) is plotted using only the 6 samples for which it identified
fields.

TABLE II: Average precision, recall, FPR and F1 scores on
top-level protocol samples by tool. Bold indicates best result.

Tool # Msgs. Prec. Rec. FPR F1

BI+ 1000 0.93 0.70 0.005 0.78
500 0.91 0.69 0.005 0.77
100 0.82 0.63 0.02 0.70

BI 1000 0.69 0.73 0.04 0.70
500 0.69 0.72 0.04 0.69
100 0.60 0.62 0.05 0.59

AWRE 1000 0.18 0.03 0.04 0.05
500 0.18 0.03 0.04 0.05
100 0.08 0.01 0.05 0.02

FIELDHUNTER* 1000 0.68 0.37 0.01 0.45
500 0.68 0.37 0.01 0.45
100 0.48 0.29 0.01 0.34

NEMESYS 1000 0.31 0.44 0.11 0.34
500 0.31 0.45 0.11 0.34
100 0.30 0.44 0.10 0.33

NETPLIER 1000 0.29 0.75 0.22 0.38
500 0.27 0.73 0.22 0.37
100 0.25 0.83 0.26 0.37

NETZOB 1000 0.57 0.42 0.03 0.47
500 0.57 0.42 0.03 0.48
100 0.53 0.45 0.04 0.45

* Results where FieldHunter found no fields are excluded from averages.

D. Testing on Serialization Patterns

Compared to existing tools, BinaryInferno’s pattern-based
detector (Section VII) is uniquely able to infer exact serializa-
tion specifications from collections of messages by searching
over combinations of common serialization patterns. Netzob
requires an analyst to manually infer and annotate segmented

TABLE III: Average performance on payload samples. Bold
indicates best result.

Tool Precision Recall FPR F1

BI+ 0.94 0.80 0.01 0.84
BI 0.54 0.65 0.08 0.55
AWRE 0.14 0.11 0.11 0.11
FIELDHUNTER 0.85 0.78 0.01 0.80
NEMESYS 0.24 0.52 0.17 0.31
NETPLIER 0.30 0.78 0.24 0.40
NETZOB 0.47 0.53 0.07 0.47

TABLE IV: BinaryInferno Pattern-based detector results for
top-level sample sizes of 100, 500, and 1000 messages. Y
means that the ground-truth serialization pattern was inferred
as the most likely pattern by BinaryInferno; N means that it
was not; P indicates the pattern was partially identified.

Sample Pattern 100 500 1000

dhcp (TL(V)[L])* N Y Y
mirai Q(V5)[Q] · Q(TL(V)[L])[Q] Y Y Y
smb Q(VV)[Q] · LL(V)[LL] Y Y Y
tutorial (L(V)[L])* P Y Y

fields with semantics. Nemesys and Netplier only produce
segmented messages with no semantic description, while Awre
and FieldHunter do not attempt this type of inference at all.

We evaluated our serialization pattern inference approach
for top-level samples (dhcp, mirai, smb, tutorial) with a
ground-truth serialization pattern (dhcp, tutorial) or com-
bination of patterns (mirai, smb) covered by our grammar.
We summarize these results in Table IV. For samples of 1000
and 500 messages, BinaryInferno correctly inferred the exact
serialization pattern used in each instance. For samples of 100
messages, BinaryInferno was unable to identify the pattern for
dhcp and excluded the first 3 pattern bytes in tutorial, which
we attribute to limited diversity in the sample data. The other
six protocol samples did not have patterns in our grammar.
BinaryInferno appropriately inferred a contiguous unknown
region for the payloads in each case.

E. Testing on random data with no boundaries.

An analyst’s time is important, and every false positive
adds to their workload. We wanted to evaluate each tool’s false
positive rate on data which has no structure, and for which
no boundaries should be inferred. To that end, we created 20
samples: 10 with variable-length messages and 10 with fixed-
width messages, each containing 100 messages of uniformly
distributed random byte values. We progressively increased the
Shannon entropy across samples starting from 1 up to 8 bits.
When given random data, BinaryInferno correctly inferred no
field boundaries, resulting in an average FPR of 0.0, when
run in big, little, and endian-agnostic modes. This result is
critical, as it provides us (and our analyst users) confidence
that BinaryInferno will not see false patterns in random data.
Similarly, FieldHunter had an FPR of 0.0, Netzob a FPR of
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TABLE V: Top-level protocol and encapsulated payload results; Bold indicates best result.

Top-level Protocol Samples
BI+ BI AWRE FIELDHUNTER NEMESYSR NETPLIER NETZOB

Sample # Msgs Pre. Rec. FPR Pre. Rec. FPR Pre. Rec. FPR Pre. Rec. FPR Pre. Rec. FPR Pre. Rec. FPR Pre. Rec. FPR

bgp 1000 1.00 0.94 0.00 1.00 0.94 0.00 0.51 0.06 0.005 1.00 0.94 0.00 0.06 0.50 0.36 0.22 0.53 0.09 0.00 0.00 0.02
dhcp 1000 0.67 0.75 0.02 0.66 0.82 0.03 0.07 0.01 0.01 * * * 0.49 0.36 0.02 0.18 0.31 0.08 - - -
dnp3 1000 0.61 0.31 0.02 0.61 0.31 0.02 0.00 0.00 0.07 * * * 0.34 0.54 0.13 0.23 1.00 0.42 0.64 0.40 0.03
mavlink 1000 1.00 0.67 0.00 0.72 0.84 0.03 0.50 0.17 0.03 1.00 0.33 0.00 0.39 0.78 0.11 0.17 0.99 0.43 1.00 0.50 0.00
mirai 1000 1.00 1.00 0.00 1.00 1.00 0.00 0.00 0.00 0.05 0.33 0.10 0.03 0.35 0.24 0.07 0.63 0.55 0.05 0.86 0.60 0.02
modbus 1000 1.00 0.40 0.00 0.60 0.60 0.05 0.00 0.00 0.09 0.76 0.60 0.02 0.54 0.59 0.06 0.23 0.80 0.34 0.60 0.60 0.05
ntp48 1000 1.00 0.70 0.00 0.26 0.50 0.16 0.00 0.00 0.04 * * * 0.39 0.61 0.11 0.22 1.00 0.42 0.38 0.31 0.06
smb 1000 1.00 0.59 0.00 0.73 0.73 0.02 0.01 0.002 0.04 * * * 0.17 0.25 0.07 0.39 0.87 0.08 0.41 0.45 0.04
smb2 1000 1.00 0.59 0.00 0.50 0.59 0.03 0.67 0.08 0.004 0.00 0.00 0.01 0.21 0.44 0.08 0.18 0.99 0.22 - - -
tutorial 1000 1.00 1.00 0.00 0.80 1.00 0.03 0.00 0.00 0.08 1.00 0.25 0.00 0.16 0.09 0.06 0.45 0.50 0.08 0.67 0.50 0.03

Average Performance 0.93 0.70 0.005 0.69 0.73 0.04 0.18 0.03 0.04 0.68 0.37 0.01 0.31 0.44 0.11 0.29 0.75 0.22 0.57 0.42 0.03

bgp 500 1.00 0.94 0.00 1.00 0.94 0.00 0.52 0.06 0.005 1.00 0.94 0.00 0.06 0.50 0.36 0.19 0.53 0.11 0.00 0.00 0.02
dhcp 500 0.71 0.67 0.02 0.70 0.76 0.02 0.07 0.005 0.01 * * * 0.49 0.37 0.02 0.18 0.24 0.07 - - -
dnp3 500 0.61 0.31 0.02 0.61 0.31 0.02 0.00 0.00 0.07 * * * 0.34 0.54 0.13 0.24 1.00 0.40 0.64 0.39 0.03
mavlink 500 1.00 0.67 0.00 0.72 0.84 0.03 0.50 0.17 0.03 1.00 0.33 0.00 0.39 0.78 0.11 0.16 0.88 0.41 1.00 0.50 0.00
mirai 500 1.00 1.00 0.00 1.00 1.00 0.00 0.00 0.00 0.05 0.33 0.10 0.03 0.35 0.24 0.07 0.51 0.60 0.09 0.86 0.60 0.02
modbus 500 1.00 0.40 0.00 0.60 0.60 0.05 0.00 0.00 0.09 0.76 0.60 0.02 0.55 0.59 0.07 0.26 0.80 0.30 0.60 0.60 0.05
ntp48 500 1.00 0.70 0.00 0.26 0.50 0.16 0.00 0.00 0.04 * * * 0.39 0.62 0.11 0.22 1.00 0.42 0.43 0.30 0.05
smb 500 1.00 0.59 0.00 0.70 0.66 0.02 0.01 0.002 0.04 * * * 0.20 0.28 0.07 0.31 0.79 0.10 0.38 0.46 0.05
smb2 500 0.80 0.59 0.01 0.47 0.59 0.03 0.68 0.08 0.004 0.00 0.00 0.01 0.22 0.45 0.08 0.18 0.99 0.23 - - -
tutorial 500 1.00 1.00 0.00 0.80 1.00 0.03 0.00 0.00 0.08 1.00 0.25 0.00 0.16 0.09 0.06 0.44 0.50 0.08 0.67 0.50 0.03

Average Performance 0.91 0.69 0.005 0.69 0.72 0.04 0.18 0.03 0.04 0.68 0.37 0.01 0.31 0.45 0.11 0.27 0.73 0.22 0.57 0.42 0.03

bgp 100 1.00 0.89 0.00 1.00 0.89 0.00 0.00 0.00 0.04 1.00 0.89 0.00 0.06 0.51 0.32 0.12 0.55 0.17 0.00 0.00 0.02
dhcp 100 0.05 0.14 0.15 0.05 0.14 0.15 0.07 0.01 0.01 0.00 0.00 0.01 0.44 0.34 0.02 0.37 0.53 0.05 - - -
dnp3 100 0.61 0.29 0.02 0.61 0.29 0.02 0.00 0.00 0.06 0.14 0.03 0.02 0.29 0.46 0.14 0.23 1.00 0.40 0.64 0.37 0.02
mavlink 100 1.00 0.67 0.00 0.51 0.51 0.04 0.00 0.00 0.05 * * * 0.40 0.80 0.11 0.15 0.85 0.42 1.00 0.50 0.00
mirai 100 1.00 1.00 0.00 1.00 1.00 0.00 0.00 0.00 0.05 0.00 0.00 0.01 0.34 0.24 0.07 0.44 1.00 0.19 0.86 0.60 0.01
modbus 100 1.00 0.40 0.00 0.60 0.60 0.05 0.00 0.00 0.09 0.77 0.60 0.02 0.54 0.58 0.07 0.25 0.80 0.32 0.60 0.60 0.05
ntp48 100 0.75 0.60 0.02 0.17 0.30 0.18 0.00 0.00 0.04 * * * 0.37 0.56 0.11 0.22 1.00 0.42 0.43 0.31 0.05
smb 100 1.00 0.59 0.00 0.78 0.73 0.01 0.004 0.002 0.05 * * * 0.19 0.30 0.08 0.22 1.00 0.21 0.33 0.42 0.05
smb2 100 0.82 0.71 0.01 0.45 0.71 0.05 0.69 0.08 0.004 * * * 0.24 0.48 0.08 0.18 0.99 0.24 0.20 0.76 0.15
tutorial 100 1.00 1.00 0.00 0.81 1.00 0.03 0.08 0.04 0.08 1.00 0.24 0.00 0.17 0.09 0.06 0.34 0.61 0.15 0.67 0.48 0.03

Average Performance 0.82 0.63 0.02 0.60 0.62 0.05 0.08 0.01 0.05 0.48 0.29 0.01 0.30 0.44 0.10 0.25 0.83 0.26 0.53 0.45 0.04

Encapsulated Payload Samples
BI+ BI AWRE FIELDHUNTER NEMESYS NETPLIER NETZOB

Sample # Msgs Pre. Rec. FPR Pre. Rec. FPR Pre. Rec. FPR Pre. Rec. FPR Pre. Rec. FPR Pre. Rec. FPR Pre. Rec. FPR

bgp01 22 0.93 0.77 0.01 0.93 0.77 0.01 0.00 0.00 0.02 0.51 0.23 0.04 0.29 0.51 0.24 0.48 0.90 0.18 0.46 0.53 0.12
bgp02 104 1.00 0.46 0.00 0.67 0.46 0.01 0.00 0.00 0.02 0.74 0.67 0.01 0.09 0.67 0.25 0.06 0.54 0.31 0.21 0.23 0.03
bgp04 1000 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 0.00 0.00 0.43 1.00 1.00 0.00 1.00 1.00 0.00
mavlink001 206 1.00 0.67 0.00 1.00 0.67 0.00 1.00 0.33 0.00 * * * 0.22 0.66 0.12 0.75 1.00 0.02 1.00 1.00 0.00
mavlink002 51 1.00 1.00 0.00 0.25 1.00 0.14 0.00 0.00 0.15 * * * 0.18 1.00 0.21 0.12 1.00 0.32 0.33 1.00 0.09
mavlink004 33 1.00 0.50 0.00 0.25 0.50 0.12 0.00 0.00 0.18 * * * 0.15 0.33 0.15 0.14 0.50 0.24 0.33 0.50 0.08
mavlink024 400 1.00 0.62 0.00 0.40 0.50 0.12 0.00 0.00 0.10 * * * 0.37 0.47 0.13 0.33 0.88 0.27 0.45 0.62 0.12
mavlink026 1000 * * * 0.00 0.00 0.05 0.00 0.00 0.09 * * * - - - 0.00 0.00 0.07 0.50 1.00 0.02
mavlink030 1000 1.00 1.00 0.00 0.60 1.00 0.08 0.00 0.00 0.07 * * * 0.22 0.38 0.16 0.22 1.00 0.43 0.50 0.17 0.02
mavlink031 1000 1.00 1.00 0.00 0.78 1.00 0.04 0.00 0.00 0.06 * * * 0.23 0.38 0.15 0.23 1.00 0.43 0.50 0.14 0.02
mavlink032 1000 1.00 1.00 0.00 0.38 0.83 0.16 0.00 0.00 0.07 * * * 0.22 0.37 0.16 0.22 1.00 0.43 0.50 0.17 0.02
mavlink033 1000 0.75 0.75 0.04 0.46 0.75 0.15 0.25 0.12 0.10 * * * 0.45 0.63 0.13 0.31 1.00 0.38 0.51 0.63 0.10
mavlink042 371 1.00 1.00 0.00 0.00 0.00 0.33 0.00 0.00 0.55 1.00 1.00 0.00 - - - 0.00 0.00 0.33 0.00 0.00 0.33
mavlink046 5 1.00 1.00 0.00 0.00 0.00 0.33 0.00 0.00 0.56 1.00 1.00 0.00 - - - 0.00 0.00 0.33 0.00 0.00 0.33
mavlink076 93 * * * * * * 0.00 0.00 0.06 * * * 0.06 0.58 0.26 0.33 0.50 0.03 0.33 0.50 0.03
mavlink083 385 0.89 0.89 0.02 0.58 0.78 0.08 0.00 0.00 0.08 * * * 0.26 0.35 0.14 0.25 1.00 0.42 0.60 0.33 0.03
mavlink085 377 0.80 0.73 0.02 0.37 0.64 0.13 0.00 0.00 0.13 * * * 0.30 0.43 0.12 0.25 1.00 0.37 0.25 0.18 0.07
mavlink087 247 1.00 0.75 0.00 0.50 0.75 0.03 0.00 0.00 0.04 * * * 0.37 0.66 0.05 0.15 0.50 0.11 0.29 0.50 0.05
mavlink111 410 0.50 1.00 0.03 0.33 1.00 0.07 0.00 0.00 0.11 * * * 0.10 1.00 0.30 0.17 1.00 0.17 0.33 1.00 0.07
mavlink140 383 1.00 0.57 0.00 0.50 0.57 0.05 0.00 0.00 0.05 * * * 0.27 0.39 0.10 0.26 0.86 0.23 0.33 0.43 0.08
mavlink141 388 0.67 0.80 0.03 0.33 0.60 0.10 0.00 0.00 0.06 * * * 0.28 0.61 0.13 0.24 1.00 0.28 0.33 0.40 0.07
mavlink147 207 1.00 0.40 0.00 1.00 0.40 0.00 0.00 0.00 0.05 * * * 0.18 0.36 0.12 0.62 1.00 0.05 1.00 0.60 0.00
mavlink230 39 1.00 1.00 0.00 0.89 1.00 0.01 0.00 0.00 0.05 * * * 0.29 0.42 0.11 0.26 1.00 0.31 0.45 0.62 0.08
mavlink241 30 1.00 1.00 0.00 0.80 1.00 0.02 0.14 0.25 0.16 * * * 0.29 0.54 0.09 0.19 0.75 0.22 0.50 0.50 0.03
mavlink242 14 1.00 0.44 0.00 1.00 0.44 0.00 * * * * * * 0.53 0.77 0.06 0.31 0.89 0.19 0.55 0.67 0.05
mavlink245 191 * * * * * * 1.00 1.00 0.00 * * * - - - 1.00 1.00 0.00 1.00 1.00 0.00

Average Performance 0.94 0.80 0.01 0.54 0.65 0.08 0.14 0.11 0.11 0.85 0.78 0.01 0.24 0.52 0.17 0.30 0.78 0.24 0.47 0.53 0.07

Results with timeouts (-) or where a tool found no fields (*) are excluded from averages.
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0.01, and Awre a FPR of 0.02, while FieldHunter inferred
no field boundaries for any random sample. Netzob’s false
positives increased proportionally with the number of repeated
byte values in a sample. Nemesys had an average FPR of 0.40,
and Netplier an average FPR of 0.45.

F. Testing the Entropy Field-Boundary Detector

We wanted to evaluate BinaryInferno’s field boundary
detector to understand how it would perform if semantic
detectors are unable to recognize sample data, or simply do
not exist for a specific field type. The motivation here is to
understand how much confidence an analyst should have in
BinaryInferno when using only the heuristic method described
in Section VI for identifying field boundaries.

We evaluated BinaryInferno’s entropy boundary detector
in isolation on our top-level samples of 1000 messages and our
encapsulated payload samples. For each sample we inferred
field boundaries giving BinaryInferno first the correct ground-
truth endianess for the sample, and then inferring again using
opposite endianness. When given the correct endianess as a
prior, BinaryInferno had an average precision of 0.88 and an
average recall of 0.35 for top-level samples of 1000 messages,
and an average precision of 0.96 and average recall of 0.63
for encapsulated payloads as shown in Appendix F Table VII.
When given the correct endianess, BinaryInferno produced
strong results using only this detector. We attribute the differ-
ence in recall between top-level and payloads to the larger
proportion of fixed-length formats in the payload samples,
and consequently more fields which are byte-aligned across
messages.

G. Measuring execution times.

To characterize how long it takes BinaryInferno and
related tools to perform field inference, we recorded exe-
cution times for our top-level evaluation as summarized in
Figure 7. Awre, FieldHunter, and Nemesys completed each
of 30 samples (10 formats at 3 different sample sizes) in
less than 60 seconds, while BinaryInferno completed 22 out
of 30 in 60 seconds, and Netplier completed 21. Netzob’s
multiple-sequence alignment approach timed out after 60 min-
utes on two samples: dhcp, and smb. Unsurprisingly, samples
with longer messages required more time for BinaryInferno,
Netplier, and Netzob. Longer messages typically have more
valid offsets from which BinaryInferno can initiate pattern-
search, increasing execution time. We note that BinaryIn-
ferno’s execution time on dhcp was notably long at almost
1500 seconds. This sample contained large zero-valued slices
in the header fields. These slices caused our pattern-based
detector to consider numerous spurious serialization patterns
with zeroes supplying lengths or quantities. As a result, on
dhcp, our pattern search algorithm explored many consistent
patterns caused by the many zero slices. A possible solution
to this issue would be heuristics limiting the number of zero-
valued patterns allowed when performing inference. Finally,
we note that all of these times are short compared to the time
an analyst takes to reverse-engineer a format by hand.

H. Discussion

BinaryInferno’s performance inferring serialization pat-
terns is notable, as it was able to correctly infer the exact

Fig. 7: Log scale plot of average execution times in seconds
on top-level samples of 100, 500, and 1000 messages for
BinaryInferno (BI), BinaryInferno with priors (BI+), Awre,
FieldHunter (FH) Nemesys, Netplier, and Netzob (NZ).
Shorter execution times are better.

serialization format for four of the top-level samples. By
exactly inferring the serialization format, it can produce a
parser for future messages. BinaryInferno’s approach means
that not only are field boundaries correctly identified, but the
semantic relationship describing each portion of a variable-
length message is also uncovered. This approach contrasts
with tools such as Nemesys, Netplier, and Netzob, which only
identify field boundaries and require further manual inspection
by an analyst to uncover the semantic relationship in the data.
Awre and FieldHunter offer no support for such patterns.

A key advantage of BinaryInferno’s approach is that when
it cannot explain a portion of the format, such as when
given random-valued data or a pattern outside its serialization
grammar, it leaves it untouched. This result allows analysts
to focus their attention on things which cannot be explained
automatically, while letting BinaryInferno identify those fields
which can. For example, the bgp02, smb2, and dnp3 ground-
truth formats all serialize variable-length data according to
patterns outside our serialization pattern grammar and as
a result were left as unexplained variable-length fields by
BinaryInferno. The bgp02 format uses a type-length-value
(TLV) format where the width of the length field is determined
by the specific bits in the value of each type field, and the smb2
format encodes the length of some portions of each message
using only 15 of the 16 bits in a 2-byte length field. The dnp3
format interleaves a 2-byte CRC for every 16 bytes of payload,
which is also outside our grammar. Presently, BinaryInferno
is only capable of inferring byte-aligned fields and variable-
length regions covered by our grammar. The dnp3 sample was
further challenging for BinaryInferno due to portions of the
interleaved CRC codes appeared as spurious floats.

In some cases, tools were unable to identify any field
boundaries for a sample: FieldHunter (21 payloads, 4 top-
level), BinaryInferno (3 payloads), and Awre (1 payload).
For instances where BinaryInferno was unable to identify
field boundaries, the consistent cause was a lack of diversity
in the samples, with some samples taking on only 2 or 4
distinct message values. FieldHunter failed to identify any
fields for the majority of the evaluation samples. Finally,
while more data is generally helpful, in the case of dhcp, we
observed 2 spurious float fields which were inferred from the
1000 message sample, but not from the 500 message sample,
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resulting in lower precision. Similarly, with smb2 additional
data allowed spurious fields to be inferred. We discuss related
problems and possible solutions in Section XI.

X. RelatedWork

Protocol reverse engineering is a widely studied problem
well summarized in recent survey papers by Narayan et
al. [50], Duchen̂e et al. [31], and Kleber et al. [39]. Reverse
engineering approaches can be characterized by which aspect
of the problem they attempt to automate: message clustering,
format inference, and/or state machine inference. We focus on
methods that take a static network trace as input and produce
an inferred format as output because such work is the most
closely related to ours. Alternative approaches, including static
analysis [58], [59], binary instrumentation [20], [21], [24],
[27], [44], [45], [52], [63] and fuzzing [18], [35], [66], all
rely on artifacts that are out of scope for our work.

Bossert et al.’s Netzob [19] is a collection of Python
libraries that help an analyst interactively reverse engineer an
unknown protocol in a Python interpreter. Netzob implements
common algorithms used as part of general protocol reverse
engineering, including sequence alignment and state machine
inference, but relies on an analyst to decide what operations
to apply to a sample and how to interpret the results. Netzob
is one of several tools [42], [60] that use the Needleman-
Wunsch algorithm [51], or similar multiple sequence alignment
(MSA) [32], [33] techniques to infer field boundaries. These
techniques depend on data commonalities across messages as
the basis for inferring field boundaries, and do not infer seman-
tics. BinaryInferno instead uses serialization pattern search to
look for semantically meaningful explanations without relying
on data commonalities. Ye et al.’s Netplier [64] performs
message clustering and format inference by pairing MSA with
probabilistic field inference. Netplier uses MSA to infer field
boundaries; except for fields that are keywords (message type
fields), the resulting alignments require further analysis to
discover field semantics. In contrast, BinaryInferno performs
field inference using an ensemble of detectors, producing se-
mantic descriptions directly. Kleber et al.’s Nemesys [38] uses
a measure of the relative changes between the bits in adjacent
message bytes, termed bit congruence, to infer field boundaries
in individual binary messages. BinaryInferno instead uses
Shannon entropy to solve this problem by comparing bytes
across multiple messages at a specific offset. Pohl et al.’s
Automatic Wireless Protocol Reverse Engineering (Awre) [53]
is designed to assist an analyst with reverse engineering the
format of wireless radio protocols and is a sub-component
of the Universal Radio Hacker security tool 3. Awre runs
each ensemble member over a collection of messages and
chooses the first instance of each field type it detects. In con-
trast, BinaryInferno uses its integration algorithm to choose
inferred fields for inclusion so as to maximize the amount of
data described. Awre cannot identify complicated serialization
patterns as BinaryInferno does. Bermudez et al.’s Field-
Hunter [17] performs field inference using a combination of
semantic types and analyst supplied clear-text values expected
to be in the network traffic, such as values captured from an
execution trace. FieldHunter looks for correlations between
regions of bytes and known clear-text values or facts such as

3https://github.com/jopohl/urh

message length to identify fields. Cui et al.’s Discoverer [26] is
a protocol classification tool which uses tokenization, recursive
clustering, and merging to perform both message clustering
and format inference simultaneously. Discoverer assumes the
analyst supplies knowledge of field delimiters, unlike other
approaches. For binary protocols, Discoverer produces no se-
mantics, describing fields only as constant or variable-valued.

Similarly to BinaryInferno, Awre, and FieldHunter are
semantic approaches by Ládi et al. [41] and Fisher et al. [34].

XI. Limitations and FutureWork

Our approach has four major limitations. First, our ap-
proach only performs inference for offset-aligned fields and
payload regions common across all messages in the sample,
leaving union-types or optional fields untouched. In future
work, we plan to expand our approach to automatically identify
message type (keyword) fields to handle these latter cases. We
hypothesize that we can use our general technique of partition-
ing a mixed collection of messages into groups with distinct
formats, similar to Discoverer’s recursive clustering [26] and
Netplier’s keyword identification approach [64]. Our evalua-
tion on mavlink and bgp suggests this direction has promise.
We believe this approach will also allow us to better handle
field-level union types exhibiting rich heterogeneity where tag
fields function as inline keywords. Second, our pattern detector
is limited to patterns described in Grammar 2. An example of
a serialization pattern not currently covered is DNS, where a
length or quantity is some number D bytes from the value it
describes. We plan to address such patterns in by automatically
identifying long-distance dependencies through an extension
of our star pattern inference technique. Third, our approach
operates at the byte level, but some data formats describe
data at the bit level. We plan to adapt our field-boundary
and length-field techniques to handle this case by adjusting
our minimum field size. Fourth, our approach is not presently
tolerant to noise or corruption in the sample. We believe that
our mechanism for computing weights can handle noise, given
extensions to our implementation, but more research is needed.

As our ensemble of detectors increases, so does the poten-
tial for overlap: two detectors inferring competing descriptions
for the same bytes. We believe that our integration algorithm
can resolve such cases by scaling the weights used in our graph
using the selectiveness of each detector, with more selective
detectors awarded a higher weight. A related question occurs
when multiple serialization patterns are inferred to describe
the same region of data. We believe by deserializing and
recursively performing inference we will be able to better
rank serialization patterns. Similarly, we believe this approach
can improve our iterative-deepening depth first search by
prioritizing patterns in the same manner.

XII. Conclusion

In this paper we presented BinaryInferno, our automatic
approach to reverse engineering binary message formats. Bi-
naryInferno identified field boundaries in top-level protocols
with an average precision of 0.69, average recall of 0.73, and
a false positive rate of 0.04, significantly outperforming five
state-of-the-art tools for field inference.

14



Acknowledgments

This material is based upon work partly supported by the
Defense Advanced Research Projects Agency (DARPA) under
Contract No. HR0011-19-C-0073. The views, opinions, and/or
findings expressed are those of the author(s) and should not
be interpreted as representing the official views or policies of
the Department of Defense or the U.S. Government. Approved
for Public Release, Distribution Unlimited.

Availability

We will release BinaryInferno open source accompanied
by all datasets used in our evaluation.

References

[1] 4SICS. https://www.netresec.com/?page=PCAP4SICS.
[2] BinaryInferno. https://binaryinferno.net.
[3] jMAVSim. https://github.com/PX4/jMAVSim.
[4] mp-bgp-capture. https://weberblog.net/mp-bgp-capture.
[5] NetPlier. https://github.com/netplier-tool/NetPlier.
[6] PXE.PCAP. https://www.cloudshark.org/captures/1fd97aede26b.
[7] Reverse Engineering Network Protocols. https://jhalon.github.io/

reverse-engineering-protocols.
[8] SMIA2011. http://download.netresec.com/pcap/smia-2011.
[9] tcpdump. https://www.tcpdump.org.

[10] The Ultimate PCAP. https://weberblog.net/the-ultimate-pcap.
[11] UCI Machine Learning Repository. https://archive.ics.uci.edu.
[12] Wireshark. https://wireshark.org.
[13] IEEE Standard for Electric Power Systems Communications-Distributed

Network Protocol (DNP3). IEEE Std 1815-2012 (Revision of IEEE Std
1815-2010), pages 1–821, 2012.

[14] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019
(Revision of IEEE 754-2008), pages 1–84, 2019.

[15] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie
Bursztein, Jaime Cochran, Zakir Durumeric, J Alex Halderman, Luca
Invernizzi, Michalis Kallitsis, et al. Understanding the Mirai botnet. In
26th USENIX Security Symposium (USENIX Security 17), pages 1093–
1110, 2017.

[16] Sukhrob Atoev, Ki-Ryong Kwon, Suk-Hwan Lee, and Kwang-Seok
Moon. Data analysis of the mavlink communication protocol. In 2017
International Conference on Information Science and Communications
Technologies (ICISCT), pages 1–3. IEEE, 2017.

[17] Ignacio Bermudez, Alok Tongaonkar, Marios Iliofotou, Marco Mellia,
and Maurizio M Munafo. Automatic protocol field inference for deeper
protocol understanding. In 2015 IFIP Networking Conference (IFIP
Networking), pages 1–9. IEEE, 2015.

[18] Bernhards Blumbergs and Risto Vaarandi. Bbuzz: A bit-aware fuzzing
framework for network protocol systematic reverse engineering and
analysis. In MILCOM 2017-2017 IEEE Military Communications
Conference (MILCOM), pages 707–712. IEEE, 2017.

[19] Georges Bossert and Frederic Guihery. Security evaluation of commu-
nication protocols in common criteria. In Proc of IEEE International
Conference on Communications, 2012.

[20] Georges Bossert, Frédéric Guihéry, and Guillaume Hiet. Towards
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[41] Gergő Ládi, Levente Buttyán, and Tamás Holczer. Message format
and field semantics inference for binary protocols using recorded
network traffic. In 2018 26th International Conference on Software,
Telecommunications and Computer Networks (SoftCOM), pages 1–6.
IEEE, 2018.

[42] Corrado Leita, Ken Mermoud, and Marc Dacier. Scriptgen: An
automated script generation tool for honeyd. In 21st Annual Computer
Security Applications Conference (ACSAC’05), pages 12–pp. IEEE,
2005.

[43] Wentian Li. Mutual information functions versus correlation functions.
Journal of Statistical Physics, 60(5-6):823–837, 1990.

15

https://www.netresec.com/?page=PCAP4SICS
https://binaryinferno.net
https://github.com/PX4/jMAVSim
https://weberblog.net/mp-bgp-capture
https://github.com/netplier-tool/NetPlier
https://www.cloudshark.org/captures/1fd97aede26b
https://jhalon.github.io/reverse-engineering-protocols
https://jhalon.github.io/reverse-engineering-protocols
http://download.netresec.com/pcap/smia-2011
https://www.tcpdump.org
https://weberblog.net/the-ultimate-pcap
https://archive.ics.uci.edu
https://wireshark.org


[44] Junghee Lim, Thomas Reps, and Ben Liblit. Extracting output formats
from executables. In 2006 13th Working Conference on Reverse
Engineering, pages 167–178. IEEE, 2006.

[45] Zhiqiang Lin, Xuxian Jiang, Dongyan Xu, and Xiangyu Zhang. Au-
tomatic protocol format reverse engineering through context-aware
monitored execution. In NDSS, volume 8, pages 1–15. Citeseer, 2008.

[46] Jim Martin, Jack Burbank, William Kasch, and Professor David L.
Mills. Network Time Protocol Version 4: Protocol and Algorithms
Specification. RFC 5905, June 2010.

[47] Microsoft Corporation. Server message block (smb) protocol, 2022.
[Online; accessed 20-March-2022].

[48] Microsoft Corporation. Server message block (smb) protocol versions
2 and 3, 2022. [Online; accessed 20-March-2022].

[49] Modbus Organization, Inc. Modbus application protocol specification
v1.1b3, 2022. [Online; accessed 20-March-2022].

[50] John Narayan, Sandeep K Shukla, and T Charles Clancy. A survey of
automatic protocol reverse engineering tools. ACM Computing Surveys
(CSUR), 48(3):1–26, 2015.

[51] Saul B Needleman and Christian D Wunsch. A general method
applicable to the search for similarities in the amino acid sequence
of two proteins. Journal of Molecular Biology, 48(3):443–453, 1970.

[52] James Newsome, David Brumley, Jason Franklin, and Dawn Song.
Replayer: Automatic protocol replay by binary analysis. In Proceedings
of the 13th ACM conference on Computer and communications security,
pages 311–321, 2006.

[53] Johannes Pohl and Andreas Noack. Automatic wireless protocol reverse
engineering. In 13th USENIX Workshop on Offensive Technologies
(WOOT 19), 2019.

[54] Jon Postel. User datagram protocol. Technical report, 1980.

[55] Yakov Rekhter, Susan Hares, and Tony Li. A Border Gateway Protocol
4 (BGP-4). RFC 4271, January 2006.

[56] Joyce K. Reynolds and Dr. Jon Postel. Assigned Numbers. RFC 1700,
October 1994.

[57] C. E. Shannon. A mathematical theory of communication. The Bell
System Technical Journal, 27(3):379–423, July 1948.

[58] Octavian Udrea, Cristian Lumezanu, and Jeffrey S Foster. Rule-based
static analysis of network protocol implementations. Information and
Computation, 206(2-4):130–157, 2008.

[59] Sharath K Udupa, Saumya K Debray, and Matias Madou. Deobfusca-
tion: Reverse engineering obfuscated code. In 12th Working Conference
on Reverse Engineering (WCRE’05), pages 10–pp. IEEE, 2005.

[60] Yipeng Wang, Xiaochun Yun, M Zubair Shafiq, Liyan Wang, Alex X
Liu, Zhibin Zhang, Danfeng Yao, Yongzheng Zhang, and Li Guo. A
semantics aware approach to automated reverse engineering unknown
protocols. In 2012 20th IEEE International Conference on Network
Protocols (ICNP), pages 1–10. IEEE, 2012.

[61] Wikipedia contributors. Mutual information — Wikipedia, the free
encyclopedia, 2021. [Online; accessed 20-July-2021].

[62] David H Wolpert and David R Wolf. Estimating functions of prob-
ability distributions from a finite set of samples. Physical Review E,
52(6):6841, 1995.

[63] Gilbert Wondracek, Paolo Milani Comparetti, Christopher Kruegel,
Engin Kirda, and Scuola Superiore S Anna. Automatic network protocol
analysis. In NDSS, volume 8, pages 1–14. Citeseer, 2008.

[64] Yapeng Ye, Zhuo Zhang, Fei Wang, Xiangyu Zhang, and Dongyan
Xu. NetPlier: probabilistic network protocol reverse engineering from
message traces. In Proceedings of the Symposium on Network and
Distributed System Security (NDSS’21), 2021.

[65] Jin Y Yen. Finding the k shortest loopless paths in a network.
Management Science, 17(11):712–716, 1971.

[66] Hui Zhao, Zhihui Li, Hansheng Wei, Jianqi Shi, and Yanhong Huang.
Seqfuzzer: An industrial protocol fuzzing framework from a deep
learning perspective. In 2019 12th IEEE Conference on Software
Testing, Validation and Verification (ICST), pages 59–67. IEEE, 2019.

Appendix A
L-Ratio cut-off points for Float Detector

Fig. 8: Example histogram of set bits by position across a
sample of floats illustrating the L-Shape feature vs a sample
of unsigned integers illustrating no L-Shape feature.

To determine appropriate cut-off points for the L-Ratio, we
calculated the L-Ratio for 4-byte float data slices drawn from
values in five machine learning data example datasets [11] 4 5 6

7 8 , 4-byte random data slices, and 4-byte integer data slices.
We also calculated the ratio for 4-byte slices constructed as
a sliding window across combinations of the previous three
slice types. We observed that the majority of non-float slices
had L-Ratios less than .42 or greater than .55 as illustrated in
Figure 9. As a result, we selected those cutoff points for use
in our float detector. We believe this approach will generalize
to double-precision floats as the relationship between exponent
and significand is unchanged.
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Fig. 9: Visualization of L-Ratio feature for samples drawn from
Floats (blue) and Non-Floats (orange). The X-axis represents
L-Ratio. The Y-axis represents the frequency of floats and non-
floats that exhibit a particular L-Ratio value.

4https://archive.ics.uci.edu/ml/machine-learning-databases/housing
5https://archive.ics.uci.edu/ml/machine-learning-databases/ionosphere
6https://archive.ics.uci.edu/ml/datasets/QSAR+aquatic+toxicity
7https://archive.ics.uci.edu/ml/machine-learning-databases/00514
8https://archive.ics.uci.edu/ml/machine-learning-databases/

breast-cancer-wisconsin
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Appendix B
Could random data be mistaken for a length field?

TABLE VI: Probability of random length field in collection
with n possible 1-byte slices over m messages.

n = 1 n = 10 n = 100 n = 1000

1 message 0.39% 3.84% 32.39% 98.00%
2 messages ≃0.00% 0.02% 0.15% 1.51%
3 messages ≃0.00% ≃0.00% ≃0.00% 0.01%
4 messages ≃0.00% ≃0.00% ≃0.00% ≃0.00%

Our approach leverages multiple messages from the same
format to perform two functions. First: to provide evidence
for field types, and second: to restrict the possible inferred
fields through contradiction. One concern, then, is when there
is enough for the first function, but not enough for the second.
For length fields, for example: how often is it that a random
slice of the data happens to be equal to the lengths of the
messages purely by coincidence? In Equation 7, we calculate
the probability that a 1-byte slice is randomly consistent with
the message lengths.

P(n,m, d) =
n∑

k=1

(
n
k

)(
1
d

)mk(dm − 1
dm

)n−k

(7)

This probability function is parameterized by the number
of slices (n) we can take over a collection, the number of
messages (m) in the the collection, and the number of values
(d) each byte can take on; in the case of a 1-byte length
field: 256. We sum the probabilities that (k) slices equal the
lengths of the messages from 1 to n, where all slices encode
the lengths. For each choice of k we calculate the number of
combinations of slices as

(
n
k

)
. We calculate the probability of

each slice taking on the values of the lengths as ( 1
d )mk. This

term states that each of the m bytes in the k slices has to take
on a specific value. We account for the remaining n − k slices
varying by at least one byte in the term ( dm−1

dm )n−k. Intuitively,
as we add more messages to our collection, we lower our risk
of inferring a length field where none exists.

Appendix C
Fuzzy Lengths

Not all formats directly encode the length of messages,
however. Some formats encode message lengths in terms of
multi-byte units, or add error correcting codes at regular
intervals and omit the error correcting bytes from the length
value (this is the case with the dnp3 protocol, for example,
which is used in SCADA systems). Stated mathematically,
the length fields in these formats do not directly encode the
overall message length, but maintain a bijective relationship
between the field value and overall message length. We call
such fields fuzzy lengths. To address these cases, our second
approach for identifying message lengths leverages normalized
mutual information [43], [61], [62] (NMI) to identify slices
that have high explanatory power with respect to the variation
in message lengths. NMI describes the mutual dependence
between two variables, and thus the amount of information

that may be obtained about one such variable by observing
the other. For our task, NMI measures how much a slice of
bytes explains the lengths of the corresponding messages.

We infer a fuzzy length field when the slice values have
a NMI value of 1.0 with message lengths, when slice values
show a correlation of ≥ .95 with message lengths, and when
each slice value is less than or equal to the corresponding
message length. The NMI condition ensures that the relation-
ship between the slice values and message lengths is bijective.
The correlation condition ensures an approximately linear
relationship between the field values and message lengths.
The final condition ensures each field value cannot describe a
message length in excess of the actual message data. A strict
length field will also satisfy our conditions for inferring a fuzzy
length field. In such cases, the detector chooses to infer only
the strict length field because it is more informative.

Appendix D
Star Patterns

To enable this calculation, we extend the memoization al-
gorithm described earlier. Specifically, we calculate the reach-
able offsets (reachable) by creating a second set of memos:
STARMEMO. Later, we will use the entries in STARMEMO
to update MEMO so that we can treat star patterns just like
the other serialization patterns in our search. We populate each
entry STARMEMO[pattern,message, offset] with two values:
the new offset (newoffset) we reach by interpreting the pattern
from our current position and the set of all subsequent offsets
(subsequent) we could reach from newoffset. We combine these
two and update STARMEMO in the following manner:

newoffset←MEMOS[pattern,message, offset]

subsequent← STARMEMO[pattern,message, newoffset]

reachable← {newoffset}
⋃

subsequent

STARMEMO[pattern,message, offset]← reachable

To construct STARMEMO efficiently, we work backwards
from the last offset in each message to the first. By ordering
our construction in this way, we ensure that the entries we
need to populate subsequent will be memoized prior to their
use. In cases where a pattern is uninterpretable at an offset and
MEMOS returns a nil value, we set reachable to ∅.

To determine whether a pattern can derive a single con-
sistent offset across all messages, we convert the reachable
offsets (relative to the start of the message) into offsets
relative to the end of the message. This computation is
straightforward as we know the length of each message. We
indicate these end-relative offsets as offsetEND, reachableEND
and STARMEMO[pattern,messagei, offset]END.

Given the memos STARMEMOEND, we infer a star
pattern over a collection of messages at an offset when⋂|messages|

i=0 STARMEMO[pattern,messagei, offset]END is a non-
empty set. Intuitively this set contains offsetEND values reach-
able for every message in the collection. Out of this set, we
choose the smallest element (minoffsetEND) as the parameter S
in ⟨PATTERN⟩ ∗ BYTES for our star pattern on the principle of
explaining as much of the sample data as possible.

Finally, we update MEMOS so that our search can treat
star patterns identically to the patterns already stored. We do
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this by creating appropriate entries for the new star pattern
(pattern*) in MEMOS for each message as follows.

MEMOS[pattern*,message, offset]← minoffset

In the example below we show the calculation of entries in
STARMEMOEND for the length-value pattern L(V)[L] starting
at byte 7 in each message of our running example.

Msg1 0x054150504c45
Msg2 0x064f52414e4745
Msg3 0x04504c554d0450454152

Msg1 [5, 65, 80, 80, 76, 69]
Msg2 [6, 79, 82, 65, 78, 71, 69]
Msg3 [4, 80, 76, 85, 77, 4, 80, 69, 65, 82]

STARMEMO1 [ {0} ,∅, ∅, ∅, ∅, ∅]
STARMEMO2 [ {0} ,∅, ∅, ∅, ∅, ∅, ∅]
STARMEMO3 [{5,0},∅, ∅, ∅, ∅, {0}, ∅, ∅, ∅, ∅]

Calculating
⋂|messages|

i=0 STARMEMO[L(V)[L],messagei, 7]END
yields {0}

⋂
{0}

⋂
{5, 0} = {0} indicating that the pat-

tern application is valid at offset 7. Alternatively, consider⋂|messages|
i=0 STARMEMO[L(V)[L],messagei, 12]END. This gives
∅

⋂
∅

⋂
{0} = ∅ indicating that the pattern cannot be applied

at offset 12. Similar calculations at offsets 8 through 11 will
also yield ∅.

Consider an alternative set of messages with two bytes
added to end of each message.

Msg1 0x054150504c450145
Msg2 0x064f52414e47454f45
Msg3 0x04504c554d04504541525045

Msg1 [5, 65, 80, 80, 76, 69, 1, 69]
Msg2 [6, 79, 82, 65, 78, 71, 69, 79, 69]
Msg3 [4, 80, 76, 85, 77, 4, 80, 69, 65, 82, 80, 69]

STARMEMO1 [{2,0},∅, ∅, ∅, {0}, ∅]
STARMEMO2 [ {2} ,∅, ∅, ∅, ∅, ∅, ∅]
STARMEMO3 [{7,2},∅, ∅, ∅, ∅, {2}, ∅, ∅, ∅, ∅]

Our calculation at offset 7 now becomes {2, 0}
⋂
{2}

⋂
{7, 2} =

{2} indicating that the pattern application is valid at offset 7 and
that there are 2 bytes remaining after the pattern application in
every message. Note how our approach ignores the spurious
pattern instance at the end of the first message to infer a
description consistent across all messages.

Appendix E
Removing Padding

To automatically identify and remove padding, we search
over candidate padding byte-values. For each candidate value,
we remove all trailing instances of that value. When all
messages are left with a single consistent stop byte ( 0xFF in
the case of dhcp, we infer the candidate padding byte-value is
correct, and return the messages with this padding removed.
As part of our evaluation, we used this method of automatic
padding detection and removal on all samples. Padding was
detected and removed on for the dhcp sample. While dhcp is
not strict in how padding is applied to the end of messages,
other formats can be. For cases where padding is not explicitly

accounted for by a length field or serialization pattern, another
approach to identifying padding it is to observe that every
message should end on a word boundary. By subtracting the
minimum message length from the length of each message
in a sample and factoring the resulting differences, candidate
word sizes can be estimated and padding stripped to word
boundaries.

Appendix F
Additional Tables

TABLE VII: Performance of BinaryInferno’s field-boundary
detector in isolation. Correct Endianess shows the performance
of BinaryInferno when given format endianess as a prior. In-
correct Endianess show performance when given the opposite.

Sample Endianess Precision Recall FPR F1

Top-level Correct 0.88 0.35 0.00 0.47
Payload Correct 0.96 0.63 0.00 0.68
Top-level Incorrect 0.38 0.14 0.04 0.18
Payload Incorrect 0.26 0.15 0.11 0.06

TABLE VIII: Descriptive statistics of samples.

Top-level Protocol Samples
Sample Endian # Msgs. Entropy Length Min. Avg. Max.

bgp Big 1000 2.25 Variable 19 23 112
dhcp Big 1000 2.25 Variable 241 289 408
dnp3 Little 1000 4.09 Variable 15 44 292
mavlink Little 1000 6.67 Variable 10 36 59
mirai Big 1000 5.96 Variable 22 38 52
modbus Big 1000 3.68 Variable 10 22 239
ntp48 Big 1000 6.39 Fixed 48 48 48
smb Little 1000 4.23 Variable 35 132 1408
smb2 Little 1000 3.07 Variable 68 142 800
tutorial Big 1000 5.09 Variable 14 35 72
bgp01 Big 22 3.28 Variable 53 55 61

Encapsulated Payload Samples
Sample Endian # Msgs. Entropy Length Min. Avg. Max.

bgp02 Big 104 3.74 Variable 23 61 112
bgp04 Big 1000 1.12 Fixed 19 19 19
mavlink001 Little 206 2.25 Fixed 31 31 31
mavlink002 Little 51 5.82 Fixed 12 12 12
mavlink004 Little 33 3.68 Fixed 14 14 14
mavlink024 Little 400 5.30 Fixed 30 30 30
mavlink026 Little 1000 1.70 Fixed 22 22 22
mavlink030 Little 1000 7.47 Fixed 28 28 28
mavlink031 Little 1000 7.48 Fixed 32 32 32
mavlink032 Little 1000 7.49 Fixed 28 28 28
mavlink033 Little 1000 5.97 Fixed 28 28 28
mavlink042 Little 371 2.10 Fixed 2 2 2
mavlink046 Little 5 2.23 Fixed 2 2 2
mavlink076 Little 93 0.71 Fixed 33 33 33
mavlink083 Little 385 6.91 Fixed 37 37 37
mavlink085 Little 377 6.55 Fixed 51 51 51
mavlink087 Little 247 2.30 Fixed 51 51 51
mavlink111 Little 410 3.41 Fixed 16 16 16
mavlink140 Little 383 4.85 Fixed 41 41 41
mavlink141 Little 388 5.80 Fixed 32 32 32
mavlink147 Little 207 2.37 Fixed 36 36 36
mavlink230 Little 39 5.89 Fixed 42 42 42
mavlink241 Little 30 4.59 Fixed 32 32 32
mavlink242 Little 14 3.95 Fixed 52 52 52
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