
ProbFlow : Using Probabilistic Programming in
Anonymous Communication Networks

Hussein Darir
University of Illinois
Urbana-Champaign
hdarir2@illinois.edu

Geir Dullerud
University of Illinois
Urbana-Champaign

dullerud@illinois.edu

Nikita Borisov
University of Illinois
Urbana-Champaign
nikita@illinois.edu

Abstract—We present ProbFlow , a probabilistic programming
approach for estimating relay capacities in the Tor network. We
refine previously derived probabilistic model of the network to
take into account more of the complexity of the real-world Tor
network. We use this model to perform inference in a probabilistic
programming language called NumPyro which allows us to
overcome the analytical barrier present in purely analytical
approach. We integrate the implementation of ProbFlow to the
current implementation of capacity estimation algorithms in the
Tor network. We demonstrate the practical benefits of ProbFlow
by simulating it in flow-based Python simulator and packet-
based Shadow simulations, the highest fidelity simulator available
for the Tor network. In both simulators, ProbFlow provides
significantly more accurate estimates that results in improved
user performance, with average download speeds increasing by
25% in the Shadow simulations.

I. INTRODUCTION

Tor [9] is a system that helps protect online privacy and
circumvent any censorship that may be present on the Internet.
It has millions of daily active users [25]. Tor uses a network
of volunteer relays to help encrypt users’ traffic and obscure
its source and destination. These relays have a wide range of
capacities; hence, it’s important to balance the load on them
so that all users receive consistent service.

Although load balancing is a well-researched subject, it
faces unique challenges because of Tor’s security and privacy
constraints. First, in order to protect their anonymity, Tor
clients use source routing, which forgoes the use of a con-
ventional feedback-based load-balancer and allows each client
to choose which relays to use. Clients use a set of weights
corresponding to the relays network capacity to stochastically
choose relays. Second, by relying on relays to disclose their
own capacities, as was the case with earlier versions of Tor,
adversaries are given the opportunity to violate anonymity
by inflating their nodes capacities in order to increase their
traffic [4].

This was the main motivation behind the development
of TorFlow [20] and sbws [18], two bandwidth scanning
systems. Both systems use external probes to evaluate the

performance of relays and use the bandwidth of those probes
to adjust the value reported by the relay itself. However, the
capacity estimates generated by both algorithms vary consid-
erably over time and between different algorithm instances.

A new estimation mechanism, MLEFlow [6], that per-
forms maximum likelihood estimation using multiple mea-
surements was recently proposed. This mechanism uses a
simplified probabilistic model of the Tor network and finds
the capacity value that maximizes the probability of observing
the full history of measurements obtained for each relay.

While MLEFlow was shown to achieve higher accuracy
than the existing Tor capacity estimation, its probabilistic
model simplifies away a number of important Tor features,
and the computation of maximum likelihood required complex
mathematical analysis. Our goal is to investigate whether
an alternative method probabilistic estimation—probabilistic
programming—can offer a superior approach for this con-
text. Probabilistic programming allows the specification of
probabilistic models using a programming language. It then
performs inference to learn unknown parameters of the models
based on a set of observations. In this paper, we first show how
we can recast the MLEFlow model as a probabilistic program,
and then extend it to better capture the actual dynamics of Tor.

Expressing MLEFlow flow as a probabilistic program is
straightforward and requires only 10 lines of code. Moreover,
our simulations show that the inference performed by proba-
bilistic programming produces results that are at least as accu-
rate as MLEFlow , demonstrating that the automated inference
performed by probabilistic programming does not result in
any accuracy tradeoffs. We next extend the MLEFlow model,
removing some of the simplifications that it introduced into
the model of Tor. In particular, we model interaction between
relays by modeling three-relay paths that share bandwidth, and
we also model underloaded networks wherein clients do not
fully utilize all of the relays’ capacities. This model much
better captures the dynamics of the actual Tor network, while
using only 25 lines of code. We call the extended model
ProbFlow .

We then perform extensive simulations comparing the
existing Tor estimation algorithms—TorFlow and sbws ,
MLEFlow and ProbFlow to show that the proposed algorithm
results in significantly more accurate relay capacity estimates.
We use a custom-built flow-based simulator, written in Python,
to simulate the behavior of the Tor network under the different
algorithms. We also simulate the different estimation mecha-

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.24140
www.ndss-symposium.org



nisms in Shadow-2 [15], a high-fidelity simulation framework
that runs the actual Tor C code and simulates network events at
a packet level. The Shadow-2 simulation were performed in a
cloud based parallel implementation of a scaled-down network.
More details about the simulation baselines are presented in
Section II-D.

Both types of simulations shows the increased accuracy of
ProbFlow . In fact, the overall estimation error of ProbFlow
reaches below 10% for all classes of relays in the network,
while the error is well above 50% for the other algorithms. This
increased accuracy leads to better load balancing between users
in the network. More than 80% of users witnessed improved
download speeds when using the estimates of ProbFlow
compared to the currently deployed algorithms.

II. BACKGROUND

In this section, we present the path allocation technique
currently in use in the Tor network to select user path and
demonstrate the importance of having accurate relay capacity
estimates. We then explain how capacity estimation is done in
Tor and the different proposed capacity estimation algorithms.

A. Path Allocation in Tor

Currently, the Tor network contains around 7000 re-
lays [24] used for user traffic forwarding. In order to create
a connection, a user chooses a path of three distinct relays to
construct a circuit that forwards traffic in both directions. The
entire path is only known by the user, while each relay knows
only its predecessor and successor. Additionally, to obscure
the correspondence between incoming and outgoing traffic, the
traffic is encrypted / decrypted at each node.

Relays in Tor have heterogeneous capacities1 that can differ
by orders of magnitude (Figure 2). Relays are also divided
into different classes with different capabilities: exits that can
be used in the second or last position of a path, guards that
can be used in the first or second position, exit-guards that can
be used in any position, and middles that can be used in the
second position [23]. We denote the corresponding classes of
relays by e, g, d and m, respectively.

Each class of relays can be chosen to be in any of the
three positions in a path according to a probability W : with
a first subscript referring to the position in the user path and
a second subscript referring to the class considered. As an
example, the exits class e will have the triplet of probabilities
(Wge,Wme,Wee) where Wge refers to the probability that
an exit flagged relay is used in the first position of the
user path. The sum of the three probabilities of a given
class will be equal to 1. Similarly, for class g we will have
(Wgg,Wmg,Weg); for class d, (Wgd,Wmd,Wed); and for
class m, (Wgm,Wmm,Wem).

Since middle relays are selected in the second position
only, then Wgm = Wem = 0 and Wmm = 1. On the
other hand, exits relays can’t be chosen in the first position,
thus Wge = 0, and guard relays can’t be chosen in the

1By “capacity” we refer to the smaller of upload and download bandwidth
limit on the relay. In some cases, other bottlenecks may exist on the path
between two relays but a per-node bandwidth limit is a common and useful
model of network capacity constraints.

last position i.e. Weg = 0. The remaining seven probabil-
ities (Wme,Wee,Wgg,Wmg,Wgd,Wmd,Wed) are computed
according to Section 3.8.3 of the Tor directory protocol [23]
in order to balance bandwidth among classes. Because the exit
relays are the most scarce relays in the Tor network and have
the smallest total capacity of all the classes, the probabilities
are computed as follows (Case 3, subcase b):

Wed = Wee = 1,
Wmd = Wgd = Wme = 0,

Wmg =

∑
k∈g

C[k]−
∑

j∈m
C[j]

2
∑

k∈g
C[k]

,

Wgg = 1−Wmg ,

where we define C[j] to be the estimated capacity of relay j.
As can be noted, exits and exit-guards relays are only used for
the last position of a path.

To create a path, the relays are sampled from the classes
with a probability proportional to their estimated capacity. In
the general case, the probability of choosing a relay j ∈ N
where N can be any of the 4 classes {e, g, d,m} as the first
node in a path is

wg[j] =
WgNC[j]∑

k∈e
WgeC[k]+

∑
k∈g

WggC[k]+
∑

k∈d
WgdC[k]+

∑
k∈m

WgmC[k]
. (1)

Notice that we only used the probabilities of each of the classes
being in the first position of a path. Similarly for wm[j] and
we[j] in which we use the probability that a class is in the
second and third position of a user’s path respectively.

The intuition behind this path allocation approach is the
fact that if the estimated capacities are equal to the true
capacities, that we call C∗[j], the expected number of paths
using each relay will be proportional to its bandwidth. In this
paper, we use X[j] to denote the number of paths using relay
j.

B. Security Considerations

Since capacity estimation is used as input for Tor’s path
selection process, it is important to consider its security and
privacy properties. If the path chosen by the user consists of
relays controlled by an adversary, then the attacker will have
full knowledge of the path and render Tor’s anonymity pro-
tection completely ineffective. In fact, using timing analysis,
it is enough to watch the incoming and outgoing traffic of the
first and last Tor relays [30] to link a user with a destination.
Therefore, if the capacity estimate gives a higher weight to
the adversary’s selected relays, this increase the likelihood of
anonymity being compromised.

A relay itself has the most visibility into its own network
capacity, but a compromised relay can simply lie and claim to
have more capacity than it actually does without deploying
high-bandwidth relays [4]. Another way to determine the
network’s capacity is to use probes. This is the approach we
take in this paper, but it does not preclude the possibility
of an attack. A relay may recognize probe circuits and treat
them preferentially which will result in the overestimation of
its estimate [26]. Alternatively, an attacker can predict when

2



a particular relay will be probed and perform a denial of
service on the relay or the prober to artificially reduce that
estimate [16]. The later attack can be addressed by using
randomization, while the former is harder to address but we are
optimistic that censorship circumvention research that aims to
prevents identification of undesirable types of traffic can find
a solution to this problem.

C. Relays Capacities Estimation in Tor

The currently deployed capacity estimation algorithm in the
Tor network is called TorFlow . It has been in use since 2012.
TorFlow uses two types of measurements: the self-reported
bandwidth and the measured bandwidth. To determine the
self-reported bandwidth, each relay computes the maximum
sustained download and upload bandwidth over a 5-second
period over the last 5 days. This value is then reported to Tor
directory authorities and we will use bt[j] to refer to the self-
reported bandwidth of relay j reported at time t.

The self-reported bandwidth is then adjusted based on the
results of the measured bandwidth that we denote mt[j] for
a relay j at time t. The directory authorities create a probe
through each relay and download a file measuring the realized
bandwidth of the probe. The adjustment is computed by first
calculating the average measured bandwidth across all relays,
µt, and then multiplying the self-reported bandwidth by the
ratio of the measured bandwidth and the average: CA

t+1[j] =
bt[j]mt[j]/µt. The authorities compute the estimates of all the
relays in the network and distribute the information to the
clients in a consensus document, published every hour.

However, this version of capacity estimation has a number
of disadvantages [6]. An under-loaded relay will underestimate
its self-reported bandwidth, which leads to a small estimated
capacity, which in turn leads to low-load, and hence, low
self-reported bandwidth. This problem leads to the well-
documented ramp-up period of new relays [7]. Another prob-
lem is the use of self-reported bandwidth which creates the
opportunity for a low-resource attack on the Tor network [4].
In particular, a relay can publish a high self-reported band-
width for itself, which is likely to result in high consensus
weight [17] and hence will cause more clients to choose the
relay and create more chances for it to break users anonymity.

Another version of TorFlow used the previous estimated
capacity instead of the self-reported bandwidth: CTF

t+1[j] =
CTF

t [j]mt[j]/µt[C]. We denote this version as TorFlow -P .
The intuition behind this algorithm is similar to the original
TorFlow : if the current estimated capacity of a relay is too
high it will have a below average performance. This is depicted
by its measured bandwidth being less than the average across
all relays, and thus its estimated capacity will be adjusted
down. Tor switched away from this approach because, when
deployed, the feedback mechanism allowed the weights to
significantly deviate from network capacities.

Another currently deployed capacity estimation algorithm
is called sbws . It is the result of recent effort to upgrade and re-
emgineer TorFlow . As reported in [6], sbws uses the minimum
of the self-reported bandwidth and the previous estimated
capacity: CS

t+1[j] = min(CS
t [j], bt[j])mt[j]/µt. While this

version is still susceptible to under-weighting relays with

low self-reported bandwidth, it is more resilient to high self-
reported bandwidth.

As of this writing, several Tor bandwidth authorities use
TorFlow and sbws to compute the capacity estimates of relays
in the Tor network. The consensus bandwidth published will
be the median of the estimates of all the authorities.

A new estimation algorithm was developed in
MLEFlow [6] that takes into account the whole history
of measured bandwidth instead of the last value. MLEFlow
showed that TorFlow -P is actually equivalent to a maximum
likelihood estimation of the capacity of a relay using the last
value of the measured bandwidth of the relay. MLEFlow
maximized the probability of observing the full history of
measured bandwidth given the weights that were used when
generating those measurements using a simplified model of
the Tor network. We will go into more details of the model
used in Section III-A. The paper [6] also proposed a closed
form approximation to compute the capacity estimate of a
relay j:

CMF
t+1 [j] ≈ exp

(∑t
i=0

1
mi[j]

log(mi[j]λswi[j])∑t
i=0

1
mi[j]

)
.

While MLEFlow showed promise in estimating capacity with
higher accuracy than the currently deployed algorithms, its
simplified model of the Tor network works best for exit-flagged
relays and had relatively higher errors for other classes of
relays. Another shortcoming of the model is that it failed to
depict other bandwidth constraints that can be present in the
network.

D. Simulation Baselines

The Shadow simulation framework [13] is a state-of-the-
art discrete event simulator that is commonly used to study
the Tor network. Shadow runs the actual implementation of
Tor, which simulates a number of relays running on a single
host, communicating over a custom-built simulated network.
Shadow has been used to analyze various properties of Tor, as
well as potential improvements.

The new version of Shadow [15] is able to run Python
which is used to implement TorFlow and sbws . Since the
sbws implementation [22] supports a configurable weight
computation algorithm, termed scaling in its implementation;
we added MLEFlow and ProbFlow as new scaling algorithms.
To better model TorFlow and sbws , we have used an idealized
self-reported bandwidth that is equal to the actual (ground
truth) capacity of the relay. In the real-world, the value of
the self-reported bandwidth takes several days to stabilize [7]
which is impractical to simulate in Shadow. In fact, the self-
reported bandwidth is intended to capture the true capacity of
a relay but at times fall short due to periods of low load. Thus
taking its value to be the actual capacity of the relay captures
a ”best-case” scenario for TorFlow and sbws . We will denote
algorithms using this value by adding a ∗ to the algorithm
name.

Shadow provides highly realistic simulation as has been
validated in previous studies [12]. However, this technique is
resource-intensive and can only simulate a fraction of the Tor
network. As an example, the simulations of Section VI are

3



scaled to 3% of the actual number of relays in the Tor network
and run approximately 24 times slower than real-time, despite
using a 48-core Azure virtual machine with 384 GiB of RAM.

To simulate a 100% network, we implement a simpler
version of the Tor network in which each client stream is
modeled as a flow and we use max-min fairness to divide
bandwidth between the flows (described in more details in
Section IV). Since the flow-based simulator does not capture
the complexity of a real-world network, it can simulate an
entire Tor network with millions of clients in Python on
a desktop computer. However, this simulator still captures
essential behavior of Tor.

The changes in load and ramp-up effects that cause the
self-reported bandwidth to change over time are not captured
in the flow-based model and hence we use the idealized self-
reported bandwidth to simulate TorFlow and sbws .

III. MLEFlow AS A PROBABILISTIC PROGRAM

In this section, we introduce the notion of probabilistic
programming by presenting the implementation of the proba-
bilistic model of MLEFlow [6] as a probabilistic program.

A. MLEFlow Probabilistic Model for Capacity Estimation

Many modern applications (e.g., in machine learning,
robotics, autonomous driving, medical diagnostics, and finan-
cial forecasting) need to make decisions under uncertainty.
Probabilistic programming is a software-driven method for
creating probabilistic models and then using them to make
inferences.

In order to demonstrate the application of probabilistic
programming to the problem of relay capacity estimation, we
will explain the implementation of a probabilistic program for
the simplified model derived in MLEFlow [6]. We will later
refine the model to add more of the complexity encountered
in the actual Tor network.

The MLEFlow model related the unknown capacity of
a relay j, which we will denote as C∗[j], to the observed
bandwidth of a measurement probe through the relay j at
time t, mt[j]. The key assumption behind MLEFlow is that
the capacity of the relay is evenly split among all the flows
that are using the relay j at time t. This includes the one
measurement flow and a number of user flows, which we will
denote by the random variable Xt[j]. MLEFlow models user
flows as arriving with a Poisson process with rate λs. Since Tor
clients choose relays using weights published by the directory
authorities, we can say that Xt ∼ Pois(λswt[j]) where wt[j]
is the weight assigned to relay j at time t. We can therefore
express the relationship between the unknown capacity and the
observations:

Definition 1 (MLEFlow model): The measurement of any
relay j ∈ [n] at any time t ∈ N, can be written as:

MMF
t [j] =

C∗[j]

Xt[j] + 1
, (2)

where we use the superscript MF to identify MLEFlow .

In MLEFlow [6], the actual capacity C∗[j] was considered
an unknown scalar that needed to be estimated. The estimation

was done manually by maximizing the log likelihood of the
probability of observing a certain measurement over a defined
bounded capacity set κ ⊂ Rn

≥0. We next show how to estimate
C∗[j] using probabilistic programming.

To do this, we consider C∗[j] as a latent variable that
follows some unknown parametric distribution. We then use
a probabilistic programming language (PPL) to specify the
model, relating the latent variable to observed samples. Then
the probabilistic programming framework uses Stochastic Vari-
ational Inference (SVI) to estimate the distribution parameters.

In our example, we model C∗[j] as a Weibull distribution.
Weibull has the requisite property that it has support among
non-negative real numbers. Additionally, as the shape parame-
ter in the Weibull distribution goes to infinity, the distribution
converges to the Dirac delta function centered at the scale
parameter. We thus expect that as the model makes use of more
measurements, the shape parameter will increase producing a
more confident estimate of the capacity. This is captured in a
guide function of the probabilistic programming language, as
shown in Algorithm 1.

Algorithm 1 Guide

1: input: λs, w[t][j],m[t][j], γ0.
2: parameter 1: scale
3: parameter 2: shape
4: C

sampled←−−−− Weibull(scale, shape)

We also must define a prior distribution for the random
variable C∗[j]. We choose an exponential distribution, as it
matches the empirical data gathered about Tor relays by past
measurements. Then we specify the model that relates the
observed measurements to the latent variable. Our model is
simply programmatic expression of (2), as shown in Algo-
rithm 2. In general, the model can be any Python program
that relates the sample of the latent variable from the prior
distribution to the samples corresponding to the observations.
Note, particularly, that our model in 2 uses a for loop
to be able to capture multiple observations from multiple
time points, which was a key innovation of MLEFlow . Each
measurement is treated as a sample from a distribution that is
conditioned on the observed value C.

Algorithm 2 MLEFlow model

1: input: λs, w[t][j],m[t][j], γ0.

2: C
sampled←−−−− exp(γ0)

3: for i ∈ [0, .., t] do
4: o

sampled←−−−− C
Pois(λswi[j])+1 given the observed value

mi[j].

The probabilistic programming language that we are going
to use in this paper is NumPyro. NumPyro is a probabilistic
programming language built on Python, PyTorch and Jax.
NumPyro programs are just Python programs that support a
number of inference algorithms, such as SVI. The Python code
for our models is shown in Appendix A. The output of the
SVI applied on the model will be estimates of the shape and
scale parameters of the Weibull distribution. We then use those

4



estimates to sample the estimated capacity of relay j from the
Weibull distribution.

What makes the model simple—only 10 lines of Python
for both the model and the guide—is that we only specify
the “forward” direction: how the measurement samples are
distributed given the latent variable values. SVI then performs
the “backward” direction of inferring the latent variable given
the measurements. This replaces the complex mathematical
derivation of maximum likelihood estimator for a transformed
Poisson distribution that was used by Darir et al. in MLEFlow.
And, as we will show in Section V, we are able to obtain
estimates that are no less accurate than using the derivations
by Darir et al.

Moreover, the use of probabilistic programming allows us
to add more complexity to the model to better capture the
behavior of Tor. To make their analysis tractable, Darir et al.
used a greatly simplified Tor model, in particular assuming that
bandwidth is divided equally among all flows on a relay. We
next show how to extend our probabilistic programming model
for MLEFlow to model interactions across relays, which are a
key component of the Tor network.

IV. ProbFlow REFINED PROBABILISTIC MODEL

In this section, we will work on deriving a new probabilistic
model relating the measurement at each epoch to the actual
capacity of a relay. We will do that by relaxing and refining
some of the assumptions considered in [6]. We will then
discuss the implementation of the new probabilistic model that
we derived in NumPyro.

A. Full three relays probabilistic model: ProbFlow

The new probabilistic model derived in this paper will keep
assumptions 2 and 3 of MLEFlow presented in Section III-A.
Notably, we still consider a synchronous model where user
arrival follows a Poisson distribution with rate λs. However
assumption 1 will be relaxed. We consider a model where
relays fall into 4 classes, (e, g, d,m), and each user path will
go through three relays.

As discussed in Section II-A, we consider the case where
the relays of a given class can be selected to be in any position
in a path according to a probability. Class e will have the
triplet of probabilities (Wge,Wme,Wee), class g will have
(Wgg,Wmg,Weg), class d will have (Wgd,Wmd,Wed), and
class m will have (Wgm,Wmm,Wem).

The total number of paths passing through the jth relay at
the tth epoch, is still a random variable, Xt[j], with distribution
Pois(λswt[j]) where wt[j] = wg

t [j] + wm
t [j] + we

t [j] with

wg
t [j] =

WgNCt[j]∑
k∈e

WgeCt[k]+
∑

k∈g
WggCt[k]+

∑
k∈d

WgdCt[k]+
∑

k∈m
WgmCt[k]

, (3)

representing the probability that j is chosen in the first position
of a user’s path where N ∈ e, g, d,m is the class of relay
j. Similarly wm

t [j] and we
t [j] are computed using the proba-

bilities of each class being in the second and third position,
respectively.

In this section, in order to derive the model we consider a
target relay, r1, that belongs to class N1 ∈ {e, g, d,m}.

We first examine the case where r1 is selected in the first
position of a user’s path. For all relays in [n] \ {r1}, the
weight that a relay r2 is chosen in the second position is
equal to the product of the probability that the relay’s class,
N2 ∈ {e, g, d,m}, is used in the second position, i.e WmN2 ;
and the estimated capacity of relay r2 at epoch t, Ct[r2].
Similarly, the weight that a relay r3 ∈ [n] \ {r1, r2} is chosen
in the third position is WeN3

Ct[r3], where N3 is the class of
relay r3.

Using the same logic, if the target relay r1 is selected in
the second position of a user’s path, the weight that a relay
r2 ∈ [n] \ {r1} is chosen in the first position of the path is
WgN2Ct[r2] and r3 in the third position of the path will be
WeN3Ct[r3]. Finally, if r1 is selected in the third position, the
weight of r2 in the first position will be WgN2Ct[r2] while r3
in the second position will have a weight of WmN3

Ct[r3].

Thus, given the total number of paths using the target
relay r1, we can find the conditional probability that a pair
(r2, r3) is chosen as the two other relays in the paths,
Pr((r2, r3)|Xt[r1]), by multiplying the weights of both relays
and normalizing it by the sum of weights of all possible
combinations of pairs for all possible positions of r1.

Now that we have a probability distribution over the pair of
relays that can be chosen alongside r1 in a user’s path, we can
express the measurement of r1 in terms of those probabilities
by adding a further assumption to the model.

B. Integrating Max-Min Fairness Bandwidth Allocation in
ProbFlow Model

We assume that the bottleneck capacity of a relay j at a
given epoch t is equal to the measurement of the relay during
this epoch, mt[j]. Hence, the bottleneck of a pair (r2, r3) will
be the minimum of the observations of the two relays.

We use the max-min fairness bandwidth allocation algo-
rithm presented in [5]. Notably, the observation of each relay
will be equal to the ratio of its residual capacity, Cres, over
the norm of its residual paths, Rres. Where residual capacity
is equal to the actual capacity of the relay from which we
subtract the bandwidths of all paths passing through it that
are already bottlenecked at other relays. And residual paths is
the set formed by the observation probe and the paths passing
through the relay after removing those paths whose bandwidths
are already allocated. Thus for the target relay r1,

MPP
t [r1] =

Cres[r1]

|Rres[r1]|
, (4)

where we use the supersctipt PP to identify Probabilistic
programming.

A path going through r1 and the pair (r2, r3) will be
bottlenecked at r2 or r3 if the bottleneck of the pair is less
than the measurement of r1. Let Br1 be the set of pairs (r2, r3)
such that mt[r1] > min(mt[r2],mt[r3]).

For each pair in Br1 , we know the probability of the
pair given the total number of paths using the target re-
lay r1. Thus for a pair (r2, r3), the expected number of
paths going through the pair and r1 will be equal to
Xt[r1]Pr((r2, r3)|Xt[r1]). Thus, the total number of paths
using r1 but are bottlenecked at other relays is equal to

5



∑
(r2,r3)∈Br1

Xt[r1]Pr((r2, r3)|Xt[r1]). Moreover, the num-
ber of paths passing through r1 after removing the paths
bottlenecked at other relays is

|Rres[r1]| = Xt[r1]H
1
t [r1] + 1 (5)

where H1
t [r1] =

(
1−
∑

(r2,r3)∈Br1
Pr
(
(r2, r3)|Xt[r1]

))
and

the additional one represents the observation probe.

We also know the bottleneck of each of the pairs in
Br1 , and we can find the total bandwidth of paths using
r1 but that are bottlenecked at the other relays to be∑

(r2,r3)∈Br1
Xt[r1]Pr((r2, r3)|xt[r1])min(mt[r2],mt[r3]).

Thus,

|Cres[r1]| = C∗[r1]−Xt[r1]H
2
t [r1] (6)

where H2
t [r1] =

∑
(r2,r3)∈Br1

Pr
(
(r2, r3)|Xt[r1]

)
min(mt[r2],mt[r3]).

H1
t [r1] and H2

t [r1] are two parameters that can be com-
puted using the measurements of the relays in the network, the
estimated capacities of the relays at each epoch and the triplet
of probabilities of each class of relays.

Accordingly, we can write the measurement of a relay
j ∈ [n] at epoch t, as a function of the two parameters afore-
mentioned, the actual capacity of the relay and the random
variable Xt[j].

Theorem 1 (ProbFlow Model): For any j ∈ [n] and t ∈
N, the measurement is

MPP
t [j] =

C∗[j]−Xt[j]H
2
t [j]

Xt[j]H1
t [j] + 1

, (7)

where we use the supersctipt PP to identify Probabilistic
programming.

Now that we derived the new probabilistic model we are
going to use, we will present the implementation of ProbFlow
in NumPyro.

C. ProbFlow Implementation Using NumPyro

Since we will still be using a Weibull distribution as an
approximation of the posterior distribution, the guide part of
our implementation will remain unchanged.

The model will take H1
[t][j] and H2

[t][j] as additional inputs
and will implement Equation 7 for the observed random
variable. Algorithm 3 presents the model implementation. The
higher level implementation is shown in Figure 1.

Algorithm 3 ProbFlow model

1: input: λs, w[t][j],m[t][j], γ0, H
1
[t][j], H

2
[t][j].

2: C
sampled←−−−− exp(γ0)

3: for i ∈ [0, .., t] do
4: o

sampled←−−−− C−Pois(λswi[j])H
2
t [j]

Pois(λswi[j])H1
t [j]+1

given the observed
value mi[j].

The Python code for this version of the model is presented
in Appendix A. Note that this model is only slightly more
complex than the MLEFlow model, with 25 lines of Python
code. At the same time, direct mathematical analysis of this

Tor Network
𝐶0 Compute 𝐻𝑡

𝑤𝑡 , 𝑚𝑡

Probabilistic 

program

𝐻𝑡
1, 𝐻𝑡

2

𝜆𝑠

𝐶𝑡+1

Algorithm

Fig. 1: Algorithm implementation.

model would be highly complicated by the fact that the
observations are based on a ratio involving two different
Poisson distributions.

D. Taking Underloaded Networks Into Consideration in
ProbFlow Model

An additional layer of complexity that we can add to
our model is client side bandwidth constraints. We assumed
in our previous derivation that clients can utilize arbitrary
amounts of bandwidth and are only bottlenecked by Tor relays.
In general, client demand on Tor is lower than the overall
available bandwidth. MLEFlow algorithm did not model these
types of constraints in its model which affected the accuracy
of its estimates in underloaded networks.

We assume that the average client demand, Clientavg in
KB/s is known. The only change to the model derivation of
section IV-B is the fact that the bottleneck of a pair (r2, r3)
will now be the minimum of the observations of the two relays
and Clientavg . This change will only affect the computation
of H2

t [r1] which will now be

H2
t [r1] =

∑
(r2,r3)∈Br1

Pr
(
(r2, r3)|Xt[r1]

)
min(mt[r2],mt[r3], Clientavg).

(8)

The rest of the implementation will remain unchanged. We
compare the performance of the different algorithms for the
case of underloaded network in Section V. To implement
user side constraints in flow-based simulations, we model the
constraint as a fourth relay added to each user’s path. The
capacity of the fourth relay will be picked uniformly from an
interval [Clientmin, Clientmax] with mean equal to Clientavg .

V. FLOW-BASED SIMULATION

To compare the performance of the different Tor capacity
estimation algorithms and the proposed method, we evaluate
them using flow-based simulation of the Tor network. Those
simulations leave out features like circuit construction, flow
control and congestion and are implemented in Python. We
evaluate the new ProbFlow algorithm as well as MLEFlow ,
TorFlow -P and sbws . For the purpose of this paper, we

6



use an idealized version of the self-reported bandwidth when
simulating sbws , and we call this version sbws∗.

We use two metrics to evaluate the performance of the
different algorithms:

1) Accuracy of the relay capacity estimates,
2) Bandwidth allocation distribution over users paths when

using the capacity estimates generated.

The simulation algorithm used is similar to [6]. The inputs
of the algorithm will be: the Poisson arrival rate λs, the total
number of epochs T to be simulated, the method used for
capacities estimation from TorFlow -P , sbws∗, MLEFlow and
ProbFlow . We also add an indicator underloaded ∈ {0, 1} for
underloaded network, and lower and upper bounds on clients
side constraints as described in section IV-D. The algorithm
will then output the bandwidth allocated to each user path
as well as the estimated capacities and the weight vectors
published over all the epochs simulated. The algorithm is
presented in Algorithm 4.

At each epoch, i ∈ [0, ..., T ], the simulation algorithm
samples the total number of users paths Ni joining the network
from a Poisson distribution with rate λs (line 3). In line 4,
Ni three relays paths are constructed using the weight vector
wi computed using the previous epoch estimated capacities.
If underloaded is true (i.e. 1), a fourth relay is added to
each user path with a capacity sampled uniformly from the
interval [Clientmin, Clientmax] in line 5. To generate the
observation vector mi, the algorithm uses max-min fairness
bandwidth allocation algorithm [5] in line 6. After computing
the estimated capacities using method, it deletes all the paths
in the network and starts a new epoch.

Algorithm 4 Low fidelity simulation

1: input: λs, T, method ∈ {TorFlow -P ,MLEFlow ,
sbws∗,ProbFlow}, underloaded ∈ {0 , 1},
Clientmin, Clientmax, w0.

2: for i ∈ [0, ..., T ] do
3: Pick the number of users Ni ∼ Poi(λs).
4: Construct users paths of three relays using wi.
5: If underloaded , add a 4th relay to each path with a

capacity uniformly picked from [Clientmin, Clientmax].
6: Compute mi using max-min bandwidth alloc.
7: Compute wi+1 based on mi and wi using method .
8: Delete all paths in the network.
9: return: m0:T , w0:T

We consider a network similar to the current Tor network
as of May 2022. The network has 7054 relays in total, with
360 exit flagged relays, 2910 guard flagged relays, 1190 exit
and guard flagged relays and 2594 middle relays. As done
by Traudt at al. [27], we use the highest reported observed
bandwidth over a period of a month to be the ground truth
capacity of the relays in our simulations. The distributions of
the relays’ capacities are shown in Figure 2.

We simulate each of the algorithms for T = 10 and λs =
106. For the case of underloaded network, we consider the
clients interval [Clientmin, Clientmax] = [50, 80] KB/s. Since
the average clients’ bandwidth for the full utilization case was

0 500 1000 1500 2000 2500 3000
Relays

102

103

104

105

106

Ca
pa

cit
ie

s K
B/

s

Exit-Guard relays
Exit relays
Guard relays
Middle relays

Fig. 2: Relays capacity distribution.

ExitGuard Exit Guard Middle
0

20

40

60

80

100

Er
ro

r (
%

)

MLEFlow as Probabilistic program
MLEFlow

Fig. 3: Relays capacity estimation using the MLEFlow and the
probabilistic program of MLEFlow in a fully utilized network
scenario after 20 epochs of a 100% network.

around 100 KB/s, the cap means that a flow can utilize at most
about 65% of the network capacity.

The probabilistic program version of MLEFlow results
in identical error distribution as the original MLEFlow
algorithm. We tested MLEFlow and its probabilistic program-
ming implementation on the 100% network of Figure 2 in a
fully utilized scenario (i.e. underloaded = 0). We plot the error
distribution between the estimated capacities of the two algo-
rithms and the actual capacities in Figure 3. Both algorithms
resulted in approximately identical error distributions where
the average error for exit relays stayed below 5% while the
average error for the guard and middle classes of relays was
around 20%. As discussed in [6], exit relays are expected to be
the bottlenecks of the paths since they have the smallest total
capacity of all the classes and that is why the model derived
in MLEFlow works better for exit relays.

ProbFlow results in more accurate relays’ capacity
estimates for all classes of relays. Figure 4 as well as Table I
show the error distribution in the same 100% network for a full
utilization scenario (underloaded = 0). ProbFlow preserved
an average error of less than 3% for all classes of relays. As

7



ExitGuard Exit Guard Middle
0

25

50

75

100

125

150

175

200
Er

ro
r (

%
)

ProbFlow
MLEFlow
TorFlow-P
sbws*

Fig. 4: Relays capacity estimation error distribution using the
4 different algorithms in fully utilized network scenario after
20 epochs of a 100% network.

discussed before, MLEFlow had an average error of less than
5% for exit relays while the average error for the guard and
middle classes was around 20%. TorFlow -P estimates had an
average error of 53% for exit relays, 71% for guard relays
and 60% for middle relays. For sbws∗, the average error was
around 50% for exit and guard relays and 60% for middle
relays. It is clear that ProbFlow outperforms all the other
algorithms in estimating the capacity of all relays’ classes.

Using ProbFlow estimates results in higher and fairer
bandwidth allocation between users. The distribution of the
bandwidth allocated to 1 million users using the estimates
of each algorithm is presented in Table I. The means of the
bandwidths allocated for paths using the actual capacities and
ProbFlow estimates are around 100 KB/s. The bandwidth
allocated to paths when using MLEFlow estimates is lower
at 81 KB/s. While for sbws∗, the mean is much lower at 66
KB/s and for TorFlow -P is significantly lower at 47 KB/s.
Another advantage to the method developed is the fact that
the bandwidth allocated are more fairly distributed around the
mean as can be depicted by the smaller standard deviation of
the bandwidth in Table I.

ProbFlow handles joining relays better than the other
algorithms. We present the results of estimating the capacity
of a relay that joins the network after 10 epochs of capac-
ities estimation using the different algorithms in Figure 5.
ProbFlow estimate converged to the actual capacity in one
epoch, while MLEFlow estimate took around 5 epochs to
converge. TorFlow -P and sbws∗ estimates oscillated around
the true capacity with large error even after 20 epochs.

ProbFlow performs better than other algorithms in
the underloaded network case. We also simulated the 100%
network of Figure 2 for the case of underloaded network (i.e.
underloaded = 1) with a client constraint interval [50, 80]
KB/s. The results are shown in Figure 6. The average error
of MLEFlow estimates for all classes of relays increases
significantly: it increased to 10% for exit relays and jumped to
above 40% for the other three classes. The estimates error also
increased significantly for TorFlow -P and sbws∗. However
the average error of ProbFlow estimates remained below 5%
for all classes of relays.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

150

175

200

225

250

275

300

325

Ca
pa

cit
y 

M
B/

s

Actual capacity
Prob_prog
MLEFlow
Torflow-P
sbws

Fig. 5: The estimated capacity of an exit relay joining the
network after 10 measurement epochs and staying for 20
epochs in MB/s.

ExitGuard Exit Guard Middle
0

25

50

75

100

125

150

175

200

Er
ro

r (
%

)

ProbFlow
MLEFlow
TorFlow-P
sbws*

Fig. 6: Relays capacity estimation using the 4 different algo-
rithms in an underloaded network scenario after 20 epochs of
a 100% network.

VI. HIGH-FIDELITY PACKET-BASED SIMULATIONS

We use Shadow-2 [15], the most popular and validated
platform for Tor experimentation, to compare the performance
of the different capacity estimation algorithms. Shadow is a
conservative-time discrete-event network simulator: it simu-
lates hosts, processes, threads, TCP, and other kernel opera-
tions. Particularly, it runs the actual C implementation of Tor
relays in a simulated network.

We configured 5 different 3% networks using the TorNet-
Tools [15] and the Tor network data files (i.e., hourly network
consensus and daily relay server descriptor files) of the month
of May 2022. Each network contained around 195 Tor relays:
12 exit flagged, 61 guard flagged, 14 exit-guard flagged and
108 middle relays. On average, the total bandwidth of the
relays is 1.4 GB/s, split into 79 MB/s for the exits, 730 MB/s
for the guards, 288 MB/s for exits-guards and 297 MB/s for
middle relays. We simulate 2000 clients, 3 directory authorities
and a bandwidth authority.

Each of the simulated clients maintains a single file down-
load for the duration of the epoch. At the end of the epoch,
all streams are dropped and then restarted in order for the

8



TABLE I: Low-fidelity simulation results done in Python3. The
results presented are for fully-utilized networks. Est. method is
the method we use to update the weight vector in each epoch.
stats are the statistics that we report for each simulation run.
relays cap. est. error are the estimation errors for each class
of relays. It is computed as : error = |wt−w∗|

w∗ ×100. paths bw
are the bandwidths allocated for users when the weight vectors
are updated using different methods. The reported results are
for the 20th epoch.

relays cap. est. err. (%) paths bw
Est. method stats exitguard exit guard middle (KB/s)

mean - - - - 99.72
std. - - - - 607.79

Actual max - - - - 291610
min - - - - 0.06

mean 62.09 53.39 71.26 60.62 46.82
std. 38.25 87.69 27.06 34.60 1526.3

TorFlow -P max 234.91 273.75 257.44 254.62 201840
min 0 0 0 0 0.059

mean 58.61 50.80 50.95 57.90 66.24
std. 42.13 77.85 36.20 38.58 1286.18

sbws∗ max 245.44 882.40 639.23 243.35 201840
min 0 0 0 0 0.055

mean 12.36 2.52 24.28 21.84 80.59
std. 7.96 1.85 19.03 12.14 804.16

MLEFlow max 39..80 13.60 85.21 64.77 256583
min 0 0 0 0 0.054

mean 1.80 2.29 2.15 2.44 100.54
std. 2.04 1.90 2.55 2.67 652.01

ProbFlow max 17.09 16.04 20.08 19.66 276534
min 0 0 0 0 0.059

circuits generated to use the latest consensus file. We also set
the duration of each epoch to be 10 minutes.

To run sbws∗ and TorFlow -P , we use the Python code
provided in [22]. As discussed in Section II-D, we have
adapted the Python implementation of those algorithms [22]
to simulate MLEFlow and ProbFlow . For ProbFlow , at each
epoch, the authority reads the measurement of each relay;
computes the two parameters, H1

t and H2
t for each relay;

and execute the NumPyro code to generate the published
bandwidth values for all relays. The directories also maintain
the full history of the two parameters computed.

As discussed previously, Shadow does not run long enough
to produce useful self-reported bandwidth. Hence, we use the
actual bandwidth in place of the the self-reported bandwidth
in our simulations as we did for the flow-based Python
simulations.

ProbFlow achieves a lower average estimation errors
than all the algorithms proposed. We simulate the 5 different
Tor network sampled using each estimation algorithm and
starting with zero initial information. All relays are assumed
to have equal bandwidth at the start of all the simulations.
We calculate the average estimation error of all relays in the
5 simulated network. The results are presented Figure 7a.
ProbFlow outperforms the rest of the algorithms and maintain
a low average estimation error for all relays of less than 20%
after only 5 epochs. MLEFlow maintain an overall average
error between 40% and 50%. Meanwhile, TorFlow -P and
sbws∗ are only able to maintain an error between 60% and
80%. As expected, MLEFlow performs best for exit-flagged
relays. We plot the average error for exit relays only in
Figure 7b. MLEFlow was able to maintain an exit relays

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epoch

10

20

30

40

50

60

70

80

Er
ro

r (
%

)

ProbFlow error MLEFlow error Torflow-P error sbws* error
(a) All relays error.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epoch

10

20

30

40

50

60

70

80

Ex
it 

Er
ro

r (
%

)

ProbFlow error MLEFlow error Torflow-P error sbws* error
(b) Exit relays error.

Fig. 7: Comparison of the average estimation errors of relays
in the 5 network samples after 20 epochs.

estimation error of around 20% after 10 epochs. ProbFlow still
outperforms the other algorithms by reaching an exit error of
around 10% after 10 epochs. On the other hand, TorFlow -P
and sbws∗ still have an exit relays estimation error higher than
60%.

ProbFlow results in considerably narrower error range
than other algorithms. We aggregated the estimation error
distribution for all classes of relays, shown in Figure 8. For
all classes of relays, ProbFlow results in lower average error
with a narrow range of error.

Using ProbFlow estimates results in a fairer bandwidth
allocation to users on the Tor network. Finally, compare
the impact of using each algorithm estimates on the band-
width allocated to users in one of the simulated networks.
Figure 9 plots the distribution of download speed across the
2000 clients in the 3% network simulated using consensus
capacities generated by ProbFlow , MLEFlow , TorFlow -P
and sbws∗ after 20 epochs of simulation. ProbFlow resulted
in a more fairly distributed bandwidth between users with a
higher average bandwidth of around 146 KB/s. MLEFlow
estimates resulted in a similar average of users bandwidth
at around 143 KB/s. While TorFlow -P and sbws∗ estimates

9



ExitGuard Exit Guard Middle
0

25

50

75

100

125

150

175

200

Er
ro

r (
%

)
ProbFlow
MLEFlow
TorFlow-P
sbws*

Fig. 8: Relays capacity estimation error distribution using the
4 different algorithms in fully utilized network scenario after
20 epochs computed for the 5 sample of a 3% network.

resulted in an average of around 120 KB/s. Additionally, we
can see that the worst performing clients in the network when
using ProbFlow estimates had a much better performance than
when using any other algorithm estimates. In fact, the worst
performing 25% of clients had an average performance of 115
KB/s when using ProbFlow estimates, while this value was
around 80 KB/s for MLEFlow and 20 KB/s for TorFlow -P
and sbws∗. The standard deviation of the bandwidth allocated
when using ProbFlow is much smaller than when using the
other estimated which implies a fairer bandwidth allocation.
This can also be depicted in the narrower distribution of
bandwidth of ProbFlow in Figure 9.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

0

100

200

300

400

500

Ba
nd

wi
dt

h 
KB

/s

average ProbFlow
average MLEFlow
average Torflow
average sbws*

lower 25% ProbFlow
lower 25% MLEFlow
lower 25% Torflow
lower 25% sbws*

Upper 25% ProbFlow
Upper 25% MLEFlow
Upper 25% Torflow
Upper 25% sbws*

Fig. 9: Aggregate mean progression of client download band-
width distribution in each consensus epoch in one sample
network.

ProbFlow handles joining relays and relays that change
capacity better than other algorithms. We simulate each al-
gorithm when a new relay joins an already converged network
and then changes capacity after some epochs of joining. We
consider the case where an exit relay with actual capacity of
15851 KB/s joins the network after 10 epochs of estimation
and then changes its actual capacity to 2898 KB/s after another
10 epochs. The results are shown in Figure 10. As can be seen,

when the relay first joins, ProbFlow estimate converges to the
actual capacity in only one epoch with an estimate of 15780
KB/s; while MLEFlow takes around 5 epochs to converge to
a value of 15700 KB/s; meanwhile, TorFlow -P and sbws∗

estimates have larger errors throughout the simulation and
shows significant fluctuations compared to ProbFlow and
MLEFlow .

When the relay changes its actual capacity after ten epochs
to 2898 KB/s, since both ProbFlow and MLEFlow take into
consideration the full history of measurements, their estimates
needed some epochs to adjust to the new value. However,
ProbFlow was able to converge to the new capacity in 5
epochs with a value of 2900 KB/s while MLEFlow needed
around 15 epochs to converge to 3200 KB/s. The estimates of
TorFlow -P and sbws still showed significant fluctuations.

0 5 10 15 20 25 30
Epoch

0

5000

10000

15000

20000

Ca
pa

cit
y 

KB
/s

Actual capacity
ProbFlow
MLEFlow
Torflow-P
sbws

Fig. 10: Exit relay joining after 10 epochs having an actual
capacity of 15851 KB/s then changing capacity after 10 epochs
to 2898 KB/s.

VII. SECURITY AND PRIVACY CONSIDERATIONS

ProbFlow takes the same inputs as MLEFlow and pro-
duces the same type of output, except with considerably more
accuracy. It therefore inherits most of the security properties
of MLEFlow , including, importantly, not relying on self-
reported bandwidth measurements as are used in the current
Tor network. The higher accuracy of ProbFlow will result
in more uniform throughput for users, enhancing the user
experience, which in itself may improve anonymity [8], and
potentially reducing Tor’s vulnerability to certain throughput-
based attacks [19]. One additional consideration that is intro-
duced by ProbFlow is the faster convergence of estimates
due to bandwidth change. Presently a new relay receives
little load for the first few days or weeks of operation as
its capacity estimates converge [7], whereas with ProbFlow
a relay would be able to receive its proper share of traffic
nearly immediately. While this improves performance it also
makes it easier to quickly introduce rogue relays into the Tor
network; as such, mechanisms for detecting such Sybil attacks
should be revised [29].

Probabilistic programming also offers interesting oppor-
tunities for future security and privacy improvements. For
example, while bandwidth measurement data are currently
shared publicly (see https://collector.torproject.org/archive/

10

https://collector.torproject.org/archive/relay-descriptors/bandwidths/


relay-descriptors/bandwidths/), there is some concern that
measurements may be useful in traffic analysis [17]. Using
probabilistic programming it would be straightforward to add
potential noise to these measurements to improve user privacy
and correspondingly adjust the model to account for the noisy
data. Alternatively, the model could take into account potential
adversarial manipulation of probes by considering that some
fraction of measurements could come from a different distri-
bution.

Finally, the programmatic nature of the model enables the
estimation algorithm to adapt to change in Tor. AlSabbah
and Goldberg survey a large body of work on improving
Tor performance and security [1], including changes in path
selection, congestion management, etc.; as some of these
improvements are deployed, the model can be adjusted to
reflect the new functionality of the network much more readily
than a manually derived mathematical approximation used in
MLEFlow .

VIII. RELATED WORK

Many research work focused on improving the performance
of the Tor network; an overview can be found in the survey
by AlSabah et al. [2]. In this section we summarize the work
mainly related to the problem of relay capacity estimation.

Snader and Borisov developed Eigenspeed [21] using op-
portunistic measurements. In order to get those measurements,
each relay in the network will measure the bandwidth of
each other relay it communicates with. Those values are then
combined using principal component analysis to compute the
estimate of a relay capacity. This algorithm was designed
to tackle certain types of misreporting attacks but Johnson
et al. [17] showed that it is still vulnerable to other attacks
which allow colluding adversaries to inflate their estimated
capacity. Johnson et al. [17] thus propose a new mechanism,
PeerFlow, to combine the opportunistic measurements from
relays that is more robust to inflation attacks. They also derive
provable limits on those attacks; however those bounds depend
on having a fraction of bandwidth being on trusted nodes.
PeerFlow also has slow convergence properties due to the
limitations it imposes on changing capacity values.

A new proposal to replace TorFlow uses several probers
to measure a relay simultaneously, called FlashFlow [27].
The use of several probers simultaneously aims to generate
a large network load to max out the capacity of a relay. The
mechanism however assumes that a relay capacity is based on a
hard limit that can’t be exceeded and as the currently deployed
algorithms uses traffic that is labeled for bandwidth probing.
It should be noted that it is usually easier and cheaper to
obtain high peak bandwidth capability than to sustain the same
bandwidth for an extended time. In fact, a 10 Gbps servers
with traffic restrictions can cost $200 or less while servers
with unmetered 10 Gbps traffic cost over $1000 per month.
Another requirement of FlashFlow is the fact that it relies on
the coordination between several moderate-bandwidth probe
servers, while ProbFlow can be deployed with considerably
lower capacity probes.

The accuracy of current Tor capacity estimation algorithms
was evaluated by Jansen and Johnson [14]. Their simulations
showed that there are significant estimation errors as was the

case with our simulation results. Their analysis demonstrates
that a low self reported bandwidth is a big source of error and
will lead to the underestimation of higher capacity nodes. This
confirms our claim that that our simulation of sbws∗ captures
a best case scenario for the algorithm. The results of the paper
also motivate the development of capacity estimation methods
that don’t rely on self-reported bandwidth.

Other approaches aiming to increase load-balancing try
to detect and avoid bottlenecks in real time [5], [28], [3],
[10]. Other approaches aim to decentralize the bandwidth
measurement and operation [11]. Those methods however still
rely on relay capacity estimation from the currently deployed
algorithms and their contribution could be improved by using
ProbFlow .

IX. CONCLUSION

We developed a new relay capacity estimation method,
ProbFlow , based on a Probabilistic Programming approach.
While previous probabilistic model of the network considers
one-relay path network, our model takes into account the actual
three relays path allocation of the Tor network and is based
on the results of bandwidth measurement probes taken over
time. The proposed method showed higher estimation accuracy
than all proposed algorithms in flow-based and packet-based
simulations. This higher accuracy in turn leads to a much better
load balancing of user traffic across the network.

ACKNOWLEDGMENT

This material is based upon work supported by C3.ai
Digital Transformation Institute for the research award of
Securing Critical Cyber-Physical Infrastructure.

REFERENCES

[1] M. AlSabah and I. Goldberg, “Performance and security improvements
for tor: A survey,” ACM Computing Surveys (CSUR), vol. 49, no. 2, pp.
1–36, 2016.

[2] ——, “Performance and security improvements for Tor: A survey,”
ACM Computing Surveys (CSUR), vol. 49, no. 2, p. 32, 2016.

[3] R. Annessi and M. Schmiedecker, “Navigator: Finding faster paths
to anonymity,” in 2016 IEEE European Symposium on Security and
Privacy (EuroS P), 2016, pp. 214–226.

[4] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D. Sicker,
“Low-resource routing attacks against tor,” in Proceedings of the 2007
ACM Workshop on Privacy in Electronic Society, ser. WPES ’07.
New York, NY, USA: Association for Computing Machinery, 2007, p.
11–20. [Online]. Available: https://doi.org/10.1145/1314333.1314336

[5] H. Darir, H. Sibai, N. Borisov, G. Dullerud, and S. Mitra,
“Tightrope: Towards optimal load-balancing of paths in anonymous
networks,” in Proceedings of the 2018 Workshop on Privacy in the
Electronic Society, ser. WPES’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 76–85. [Online]. Available:
https://doi.org/10.1145/3267323.3268953

[6] H. Darir, H. Sibai, C.-Y. Cheng, N. Borisov, G. Dullerud,
and S. Mitra, “Mleflow: Learning from history to improve load
balancing in tor,” Proceedings on Privacy Enhancing Technologies,
vol. 2022, no. 1, pp. 75–104, 2022. [Online]. Available: https:
//doi.org/10.2478/popets-2022-0005

[7] R. Dingledine, “The lifecycle of a new relay,” The Tor Project Blog,
https://blog.torproject.org/lifecycle-new-relay, Sep. 2013.

[8] R. Dingledine and N. Mathewson, “Anonymity loves company: Usabil-
ity and the network effect.” in WEIS, 2006.

11

https://collector.torproject.org/archive/relay-descriptors/bandwidths/
https://doi.org/10.1145/1314333.1314336
https://doi.org/10.1145/3267323.3268953
https://doi.org/10.2478/popets-2022-0005
https://doi.org/10.2478/popets-2022-0005
https://blog.torproject.org/lifecycle-new-relay


[9] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The Second-
Generation onion router,” in 13th USENIX Security Symposium
(USENIX Security 04). San Diego, CA: USENIX Association,
Aug. 2004. [Online]. Available: https://www.usenix.org/conference/
13th-usenix-security-symposium/tor-second-generation-onion-router

[10] D. Goulet and M. Perry, “Make relays report when they are overloaded,”
Tor Proposal 328, https://gitlab.torproject.org/tpo/core/torspec/-/blob/
master/proposals/328-relay-overload-report.md, Nov. 2020.

[11] A. Greubel, A. Dmitrienko, and S. Kounev, “Smartor: Smarter tor
with smart contracts: Improving resilience of topology distribution
in the tor network,” in Proceedings of the 34th Annual Computer
Security Applications Conference, ACSAC 2018, San Juan, PR, USA,
December 03-07, 2018. ACM, 2018, pp. 677–691. [Online]. Available:
https://doi.org/10.1145/3274694.3274722

[12] R. Jansen, K. Bauer, N. Hopper, and R. Dingledine, “Methodically
modeling the tor network,” in 5th Workshop on Cyber Security
Experimentation and Test (CSET’12). Bellevue, WA: USENIX
Association, Aug. 2012. [Online]. Available: https://www.usenix.org/
conference/cset12/workshop-program/presentation/Jansen

[13] R. Jansen and N. Hopper, “Shadow: Running Tor in a box for accurate
and efficient experimentation,” in Proceedings of the 19th Symposium
on Network and Distributed System Security (NDSS), 2012.

[14] R. Jansen and A. Johnson, “On the accuracy of Tor bandwidth estima-
tion,” in Passive and Active Measurement Conference (PAM), 2021.

[15] R. Jansen, J. Tracey, and I. Goldberg, “Once is never
enough: Foundations for sound statistical inference in tor
network experimentation,” in 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, Aug. 2021, pp.
3415–3432. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity21/presentation/jansen

[16] R. Jansen, T. Vaidya, and M. Sherr, “Point break: a study of band-
width denial-of-service attacks against Tor,” in 28th USENIX Security
Symposium, 2019, pp. 1823–1840.

[17] A. Johnson, R. Jansen, N. Hopper, A. Segal, and P. Syverson, “Peer-
Flow: Secure load balancing in Tor,” Proceedings on Privacy Enhancing
Technologies, vol. 2017, no. 2, pp. 74–94, 2017.

[18] juga, “How bandwidth scanners monitor the Tor network,” Tor
Project Blog, https://blog.torproject.org/aggregation-feed-types/sbws,
Apr. 2019.

[19] P. Mittal, A. Khurshid, J. Juen, M. Caesar, and N. Borisov,
“Stealthy traffic analysis of low-latency anonymous communication
using throughput fingerprinting,” in Proceedings of the 18th ACM
conference on Computer and Communications Security, 2011, pp. 215–
226.

[20] M. Perry, “TorFlow: Tor network analysis,” in Proceedings of the 2nd
Workshop on Hot Topics in Privacy Enhancing Technologies (HotPETs),
2009, pp. 1–14.

[21] R. Snader and N. Borisov, “EigenSpeed: Secure peer-to-peer bandwidth
evaluation,” in 8th International Workshop on Peer-To-Peer Systems,
R. Rodrigues and K. Ross, Eds. Berkeley, CA, USA: USENIX
Association, Apr. 2009.

[22] The Tor Project, “Deploying the simple bandwidth scanner,” https://
sbws.readthedocs.io/en/latest/DEPLOY.html, 2018.

[23] ——, “Tor directory protocol, version 3,” https://gitweb.torproject.org/
torspec.git/tree/dir-spec.txt, 2020.

[24] ——, “Tor metrics: Servers,” https://metrics.torproject.org/networksize.
html, 2020.

[25] ——, “Tor metrics: Users,” https://metrics.torproject.org/
userstats-relay-country.html, 2020.

[26] F. Thill, “Hidden service tracking detection and bandwidth cheating in
Tor anonymity network,” Ph.D. dissertation, University of Luxembourg,
2014.

[27] M. Traudt, R. Jansen, and A. Johnson, “Flashflow: A secure speed test
for tor,” 2020.

[28] T. Wang, K. Bauer, C. Forero, and I. Goldberg, “Congestion-aware
path selection for Tor,” in International Conference on Financial
Cryptography and Data Security, 2012, pp. 98–113.

[29] P. Winter, R. Ensafi, K. Loesing, and N. Feamster, “Identifying and
characterizing sybils in the tor network,” in 25th USENIX Security
Symposium (USENIX Security 16), 2016, pp. 1169–1185.

[30] M. K. Wright, M. Adler, B. N. Levine, and C. Shields, “The predecessor
attack: An analysis of a threat to anonymous communications systems,”
ACM Transactions on Information and System Security (TISSEC),
vol. 7, no. 4, pp. 489–522, 2004.

APPENDIX

In this appendix, we present the code used to implement
the probabilistic programs presented in this paper. The code
used to implement the model of MLEFlow , i.e. Algorithm 2
is presented in Figure 11. We start the code by specifying the
prior distribution through scale0 and shape0. As can be seen
shape0 was set to 1 since a Weibull distribution with a shape
parameter of 1 is equivalent to an exponential distribution. The
capacities are then sampled using the exponential distribution.
The next step is implementing the probabilistic model of
MLEFlow for all the measurements using the numpyro.plate
command. We use the DoubleAffineTransform to implement
the probabilistic model C∗

X+1 . The guide, presented in Algo-
rithm 1, is implemented using the code of Figure 12. The guide
parametrize the shape and scale of the Weibull distribution and
samples the estimated capacities.

To be able to run the model and guide for a specific relay,
the commands in Figure 13 are run in Pyro.

The implementation of ProbFlow model, Algorithm 3 is
presented in Figure 14. It should be noted that the inputs sum
bottleneck refers to parameter H2

t , while the input sum weight
refers to 1 − H1

t . The parameters H1
t and H2

t are computed
using the weights of the classes, the measurements of each
relay and the weight of the relay. The implementation of
the computation of those parameters is the major difference
between the models of Algorithm 2 and Algorithm 3. The
other difference is the arguments of the DoubleAffineTransform
transformation. Similarly, we start the code of Figure 14,
by specifying the prior as an exponential distribution. We
then use the numpyro.plate and the DoubleAffineTransform to
implement the probabilistic model derived for ProbFlow , i.e.
C∗−XH2

XH1+1 for each measurement of the relay.

We should also note the transformation that we are using in
both the models, DoubleAffineTransform. This transformation
maps a random variable X to loc1+scale1X

loc2+scale2X
. This transformation

is not yet supported in numpyro, hence we wrote the code of
this transformation manually.

12

https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router
https://gitlab.torproject.org/tpo/core/torspec/-/blob/master/proposals/328-relay-overload-report.md
https://gitlab.torproject.org/tpo/core/torspec/-/blob/master/proposals/328-relay-overload-report.md
https://doi.org/10.1145/3274694.3274722
https://www.usenix.org/conference/cset12/workshop-program/presentation/Jansen
https://www.usenix.org/conference/cset12/workshop-program/presentation/Jansen
https://www.usenix.org/conference/usenixsecurity21/presentation/jansen
https://www.usenix.org/conference/usenixsecurity21/presentation/jansen
https://blog.torproject.org/aggregation-feed-types/sbws
https://sbws.readthedocs.io/en/latest/DEPLOY.html
https://sbws.readthedocs.io/en/latest/DEPLOY.html
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://metrics.torproject.org/networksize.html
https://metrics.torproject.org/networksize.html
https://metrics.torproject.org/userstats-relay-country.html
https://metrics.torproject.org/userstats-relay-country.html


Fig. 11: Algorithm 2 implementation in numpyro.

Fig. 12: Algorithm 1 implementation in numpyro.

Fig. 13: Running the Probabilistic program in numpyro.

Fig. 14: Algorithm 3 implementation in numpyro.

13


	Introduction
	Background
	Path Allocation in Tor
	Security Considerations
	Relays Capacities Estimation in Tor
	Simulation Baselines

	MLEFlow as a Probabilistic Program
	MLEFlow Probabilistic Model for Capacity Estimation

	ProbFlow Refined Probabilistic Model
	Full three relays probabilistic model: ProbFlow
	Integrating Max-Min Fairness Bandwidth Allocation in ProbFlow Model
	ProbFlow Implementation Using NumPyro
	Taking Underloaded Networks Into Consideration in ProbFlow Model

	Flow-Based Simulation
	High-Fidelity Packet-Based Simulations
	Security and Privacy Considerations
	Related Work
	Conclusion
	References
	Appendix

