
DARWIN: Survival of the Fittest Fuzzing Mutators

Patrick Jauernig∗, Domagoj Jakobovic‡, Stjepan Picek§, Emmanuel Stapf∗ and Ahmad-Reza Sadeghi†
∗Technical University of Darmstadt, Germany, {patrick.jauernig, emmanuel.stapf}@sanctuary.dev

†Technical University of Darmstadt, Germany, ahmad.sadeghi@trust.tu-darmstadt.de
‡University of Zagreb, Croatia, domagoj.jakobovic@fer.hr

§Radboud University and TU Delft, The Netherlands, picek.stjepan@gmail.com

Abstract—Fuzzing is an automated software testing technique
broadly adopted by the industry. A popular variant is mutation-
based fuzzing, which discovers a large number of bugs in
practice. While the research community has studied mutation-
based fuzzing for years now, the algorithms’ interactions within
the fuzzer are highly complex and can, together with the
randomness in every instance of a fuzzer, lead to unpredictable
effects. Most efforts to improve this fragile interaction focused
on optimizing seed scheduling. However, real-world results like
Google’s FuzzBench highlight that these approaches do not
consistently show improvements in practice. Another approach
to improve the fuzzing process algorithmically is optimizing
mutation scheduling. Unfortunately, existing mutation scheduling
approaches also failed to convince because of missing real-world
improvements or too many user-controlled parameters whose
configuration requires expert knowledge about the target pro-
gram. This leaves the challenging problem of cleverly processing
test cases and achieving a measurable improvement unsolved.
We present DARWIN, a novel mutation scheduler and the first
to show fuzzing improvements in a realistic scenario without the
need to introduce additional user-configurable parameters, open-
ing this approach to the broad fuzzing community. DARWIN
uses an Evolution Strategy to systematically optimize and adapt
the probability distribution of the mutation operators during
fuzzing. We implemented a prototype based on the popular
general-purpose fuzzer AFL. DARWIN significantly outperforms
the state-of-the-art mutation scheduler and the AFL baseline in
our own coverage experiment, in FuzzBench, and by finding 15
out of 21 bugs the fastest in the MAGMA benchmark. Finally,
DARWIN found 20 unique bugs (including one novel bug), 66%
more than AFL, in widely-used real-world applications.

I. INTRODUCTION

Vulnerabilities caused by programming errors are still a
major threat to today’s programs [47]. An important class
of programming errors is memory corruption vulnerabilities,
where unexpected, malformed inputs can lead to uncontrolled
behavior in the program, which can often be abused by
attackers. A modern, cost-efficient strategy to uncover these
programming errors is automated software testing using fuzz
testing (commonly known as fuzzing). Fuzzing automatically
generates inputs from testcases and feeds them to the program
under test while monitoring the program. If a programming er-
ror has been reached, the fuzzer notices that the program hangs
or crashes. Optionally, the observed control-flow changes can

serve as feedback for the next iteration, i.e., whether a new
path in the control flow (known as coverage) has been taken
due to the generated input. In recent years, fuzzers emerged as
an important topic in academic as well as industrial research
and are nowadays widely used for finding bugs in commercial
software [41], [28]. Projects like Google OSSFuzz [28] helped
to significantly increase the adoption rate by offering free com-
putation for fuzzing while still allowing security researchers,
who provide the fuzzers, to keep the bug bounty for discovered
vulnerabilities.

While fuzzers are responsible for discovering tremendous
amounts of bugs, even in operating system kernels [62], they
are still extensively researched, e.g., in the areas of making
targets available to fuzz testing [69], [20], improving fuzzers
using new algorithms [7], [11], [38], [39], [37], [51], and
leveraging new hardware features for performance or coverage
improvements [56], [13].

This paper focuses on the subject of algorithmic improve-
ments for mutational fuzzers, which leverage an existing set
of testcases (referred to as corpus) to constantly generate new
variants of these testcases by applying mutation operators
inspired by genetic mutations. Most notably, a significant
number of works focused on the effects of algorithmically
sampling a subset of optimal seeds from the corpus. The goals
of these works range from removing redundancy to creating
a minimal coverage-preserving corpus with small files [67],
[48], efficiently reaching specific locations in the control-flow
graph [7], [11], [70], or improving coverage in general [44].
While these approaches are designed to select from a large
number of possible testcases, in reality, testcases suitable for
fuzzing are often rare [29].

Aside from seed-selection algorithms, other approaches
have been proposed [37], [38], [51] that approximate which
byte positions in the testcase give the best results when being
mutated, but not which mutation operators to apply. Yet, this
problem is highly challenging, as it is required to be shown
whether 1) mutation selection is actually target-dependent, 2)
the selection distribution is static or dynamic, 3) introducing an
optimization algorithm reduces execution speed s.t. its better
mutation selection is outweighed.

The first approach to optimize the actual selection of muta-
tions (mutation scheduling) has been MOPT [39]. MOPT pro-
poses a variant of the Particle Swarm Optimization algorithm
(PSO) to learn a globally optimal mutation probability distri-
bution. However, MOPT’s PSO algorithm has both local and
global best probability distributions, making finding the best
solution, and therefore the algorithm itself, complex and more
expensive to use during fuzzing. Similar to other algorithmic

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.23159
www.ndss-symposium.org

improvements to fuzzing, finding a practical trade-off between
complexity and algorithmic improvements is challenging. All
additional algorithms have direct implications on execution
speed, and hence, reduce coverage over time. Further, MOPT
introduces various user-configurable parameters that steer the
optimization process directly, so the user needs to solve another
complex problem instead to avoid non-optimal scheduling.
For a reasonable choice of parameters, the user either needs
expert knowledge of the target application or a preliminary
fuzzing campaign. Finally, MOPT fails to outperform AFL,
which is built on, in the popular FuzzBench fuzzer benchmark
by Google [27]. This makes designing and building a practical
mutation scheduler a challenging open problem.

This work. This paper focuses on one aspect of
the fuzzing process: finding (approx.) optimal mutation
scheduling strategies to improve fuzzing algorithmically.
Here, the challenging goal is to infer which mutation operator
is the optimal choice for the next fuzzing iteration. We address
this problem with DARWIN, a novel mutation-scheduling
algorithm to improve the general performance of mutational
fuzzers. DARWIN leverages an Evolution Strategy (ES), in a
setting similar to reinforcement learning, to approximate ideal
probability distribution for the mutation operator selection
to avoid wasting fuzzing iterations on suboptimal mutators.
The resulting probability distribution is not statically set
but learned during the fuzzing process and dynamically
adapted to the target program. DARWIN outperforms related
work significantly, not only in coverage but also in the
time to find bugs, without the user having to adjust any
target-specific parameters, which allows non-expert users to
leverage mutation scheduling.

Challenges. Although we focus only on a specific phase
of the fuzzing process, namely the mutation selection in the
havoc phase, the problem of finding an optimal probability
distribution for mutation selection is highly challenging:
numerous mutation operators can be used, and their efficiency
varies depending on the target program, the current input, and
the state inherently implied by the current input. Furthermore,
the efficiency can vary depending on the non-deterministic
nature of each fuzzing run and the interplay between fuzzing
stages. Therefore, it is impossible to examine all possible
options exhaustively in the general case.

Contributions. Our DARWIN mutation scheduler and its
implementation based on AFL tackle all these challenges. To
summarize, our main contributions include:

• We present a novel mutation scheduling approach, DAR-
WIN; the first mutation scheduler that leverages a variant
of Evolution Strategy to optimize the probability distri-
bution of mutation operators. DARWIN dramatically im-
proves the efficiency of mutation selection while keeping
the execution speed constant. DARWIN can be applied
to any feedback-guided mutation-based fuzzer.

• We implemented a prototype of DARWIN by extend-
ing AFL with our mutation scheduling algorithm. By
modifying only three code lines in AFL to integrate
our DARWIN mutation scheduler, we show that DAR-
WIN’s design is easily adoptable by existing fuzzers. We
further highlight this by also integrating DARWIN in

EcoFuzz[67]. What is more, we do not introduce any
additional user-configurable parameters to avoid creating
adoption barriers.

• We thoroughly evaluate DARWIN against AFL as a base-
line and the most recent related work in this area, MOPT.
Our prototype significantly outperforms both fuzzers,
MOPT and AFL, in terms of code coverage reached in
the well-fuzzed GNU binutils suite. Next, DARWIN is
the first mutation scheduler to outperform its base fuzzer
in Google’s Fuzzbench. Further, we evaluate DARWIN
on MAGMA, where we show that DARWIN triggers 15
out of the 21 bugs found the fastest. Finally, DARWIN
finds 20 unique bugs (including one previously unreported
bug), 66% more than AFL, across various real-world
targets.

• We thoroughly analyze the root causes for DARWIN’s
efficiency by first comparing DARWIN to a static pre-
optimized mutation probability distribution, and further,
studying the mutation probability distribution over time,
and introducing a metric to measure a fuzzer’s effective-
ness in scheduling mutations. We show that DARWIN
needs fewer mutations than AFL to reach a coverage point
while achieving a higher execution speed than the state-
of-the-art MOPT fuzzer.

To foster future research in this area, we open-source our
fuzzer at https://github.com/TUDA-SSL/DARWIN.

II. BACKGROUND

This section presents the necessary background information
to understand the general concept of fuzzers, the workflow of
mutation-based fuzzers, and metaheuristic optimization.

A. Fuzzing

On a high level, fuzzers can be divided into mutational, i.e.,
mutating testcases, and generational, i.e., deriving structured
inputs, fuzzers. Mutational fuzzing requires a set (corpus) of
program inputs (seeds), which can, e.g., be obtained from
testcases or real inputs. These seeds are then mutated using
operations known from genetics, like inserting random errors
(bit flips), changing values to corner cases, or combining two
inputs to create a new input. As this way of input generation
does not follow any constraints on the input, the generated
inputs are more unlikely to pass, e.g., initial parser checks or
checksums [63]. The process of mutation can be influenced in
two ways: 1) the location in the input that gets mutated and 2)
the mutation that is applied, whereby the selection can either
be made randomly or guided by a heuristic. Such a heuristic
can be, e.g., success measured in an increase of coverage or a
certain state that should be reached (where the target has been
tainted to find a clear path to that state). For example, the
popular AFL fuzzer uses the coverage metric of basic-block
transitions as a heuristic [29].

B. Fuzzing Loop of Mutational Fuzzers

For mutational fuzzers, the so-called fuzzing loop, which
is the place in the code where the loaded seeds are mutated
before being used as inputs for the program under test, usually
can be divided into three stages, the deterministic, havoc, and
splicing stage [56], [7], [11], [39], [4]. While some aspects are

2

https://github.com/TUDA-SSL/DARWIN

AFL-specific, most concepts presented are implemented in a
similar way for other fuzzers.

Deterministic stage. In the first stage, the deterministic
stage, a small set of mutations is applied to seeds in a prede-
fined order to create inputs for the target program, whereby the
seeds are drawn from a queue of initial seeds provided by the
user. AFL uses code coverage as a heuristic to decide whether
a mutated seed has been successful. If a seed increases the
code coverage, it is stored in the fuzzing queue. By reusing
successful seeds in the later iterations, the overall fuzzing
performance is improved. Measuring the code coverage is
achieved by instrumenting the binary of the program under
test such that the program is intercepted on every branch hit.
When an input leads to a crash of the program under test, the
user is notified since this indicates a bug in the program. The
first stage of the fuzzing loop with its deterministic mutation
scheme is slow and tends to contribute less to the overall
coverage [39]. Thus, AFL allows disabling the deterministic
stage entirely, which is especially beneficial for short fuzzing
runs [39] or to reduce noise in performance measurements of
the following stages.

Havoc stage. In the second stage of the fuzzing loop,
the non-deterministic havoc stage, randomly chosen mutations
are selected from a list of mutational operators [57], [52],
[29], [12]. In Table X, Appendix E, we list the mutations
used in AFL’s havoc stage. The selected mutations are applied
to the inputs received from the deterministic stage or to the
mutated seeds from the fuzzing queue. When the generated
program inputs achieve new coverage, they are again saved
in the fuzzing queue. The fuzzing loop then returns to the
deterministic stage and selects the next element from the
fuzzing queue for the next iteration. The havoc stage is the
most generic stage and widely adopted by AFL-based and
other mutational fuzzers [52], [12], [29], [21], which is also
why our novel mutation scheduler DARWIN targets the havoc
stage.

Splicing stage. The last stage of the fuzzing loop, the
splicing stage, is only activated when none of the inputs in
the fuzzing queue led to new coverage in the havoc stage.
In the splicing stage, a crossover mutation of two inputs is
performed, which is then fed back to the havoc stage, which
again applies a random mutation on the input before testing it
on the target program.

C. Metaheuristics

While in the previous section, we mentioned several ap-
proaches to fuzzing, we did not discuss how such approaches
can actually find good solutions. This is because there exist no
specialized algorithms developed for that particular problem.
Instead, we need to rely on more general solving procedures.
Metaheuristics represent an intuitive choice since they encom-
pass problem-independent techniques used in a broad range
of applications. For example, we can consider the problem of
finding a suitable mutation schedule in the havoc stage as an
optimization problem. Since there is no explicit cost function
for this optimization problem, it cannot readily be paired with
classical optimization algorithms requiring gradient informa-
tion. In that case, metaheuristic algorithms, which do not pose
any requirements on the optimization problem, have proven

to be the method of choice in many engineering applications.
Metaheuristic techniques are commonly used in domains like
the automotive industry [22], medicine [1], scheduling [9],
adversarial examples [59], and implementation attacks [65].

Metaheuristics, in their original definition, represent solu-
tion finding methods that orchestrate an interaction between
local improvement and higher-level strategies to create a
process capable of escaping from local optima and performing
a robust search in a solution space [26]. A common division of
metaheuristic optimization algorithms is into single solution-
based and population-based metaheuristics [60]. Population-
based metaheuristics work on a population of solutions (e.g.,
Evolutionary Algorithms (EA) and swarm algorithms like Par-
ticle Swarm Optimization (PSO)). A population in this context
denotes a set of individuals used during an optimization pro-
cess, whereby an individual is a data structure that corresponds
to an element in the search space (a candidate solution). In
contrast, single solution-based metaheuristics manipulate and
transform a single solution (or a smaller number of solutions)
during the search.

Evolutionary algorithms occupy a prominent place among
metaheuristic algorithms, as they have been successfully ap-
plied to a large number of difficult optimization problems [24],
[54]. We depict pseudocode for the generic evolutionary al-
gorithm in Algorithm 3, Appendix A. In each iteration, the
algorithm applies a selection mechanism that emulates natural
selection. Based on their respective quality, usually denoted
as fitness, better individuals survive, while worse ones are
eliminated. The population then undergoes variation, creating
new genetic material as new individuals in the population.
Finally, all the individuals are reevaluated, and the process
is repeated until a specific termination criterion is met. Since
no knowledge is presumed about the nature of the solutions
in the current population, the termination is usually based on
the number of iterations, allotted time, or finding a solution of
acceptable quality.

Metaheuristic optimization algorithms balance diversifica-
tion and intensification properties; diversification enables the
discovery of promising areas in the search space and escaping
from local optima. Intensification aims to exploit a promising
area by concentrating on the current best solution and finding
better neighboring solutions. The interplay of these properties
determines the effectiveness of metaheuristic methods when
applied to a specific optimization problem.

III. CHALLENGES

Designing a mutation scheduling algorithm comes with a
number of challenges, as mutation scheduling is a fragile part
in the fuzzing process. These challenges are:

C.1: Optimal Mutation Selection. Finding an optimal prob-
ability distribution for mutation selection is challenging, as
the optimal distribution might change per target. Further, the
probability distribution might depend on the state implied by
a part of the input (that is not mutated). Hence, a mutation
scheduler needs to show that this mutation selection indeed
needs to adapt dynamically and, if so, show that iterative
adaption outperforms random selection.
C.2: Integrating an Optimization Algorithm. Properly se-
lecting a candidate algorithm for mutation scheduling is itself

3

Bitflip

…

…

Overwrite Bytes

Instrumented
Target

Havoc Stage

Feedback

New Probability Distribution

1 2

3

8%

Se
le

ct
 M

ut
at

io
n

1%

0%

9%

DARWIN

Mutation Scheduler

4

Test Case

Fig. 1. High-level overview showing how DARWIN iteratively optimizes the probability distribution for mutation selection and how the selected mutations
are applied to the testcases.

highly challenging. However, integrating this algorithm into
the existing fuzzing process requires a 1) carefully designed
representation not only of the problem but also the solution to
avoid spending too much computation on encoding, 2) finding
a parameter fit for the respective algorithm that fine-tunes
exploration versus intensification.
C.3: Easy Adoption and Reproducibility. A complex ap-
proach with a large number of user-tweakable parameters
might achieve outstanding results. However, it will still not
be used in practice due to the difficulties in integrating the
approach into a fuzzer or because users fail to find good pa-
rameter values, and hence, they cannot achieve results similar
to the ones reported by the authors.
C.4: Performance Trade-off. Achieving an optimal trade-
off for the mutation selection scenario, which is our goal,
is complex. For instance, fuzzing approaches typically tune
the trade-off between performance and cleverness in seed
selection. Better seeds reach basic blocks guarded by complex
constraints, but optimizing seed selection with algorithms takes
additional time, and hence, decreases execution speed.

We designed DARWIN with these challenges in mind.
Next, we explain how we addressed these challenges through-
out the design, implementation, and evaluation of DARWIN.

IV. DARWIN DESIGN

DARWIN is a novel mutation scheduling algorithm
using an Evolution Strategy (ES) to find an optimal mutation
selection probability distribution to be applied during the
havoc stage. DARWIN is not only determining a static
probability distribution but keeps on adapting the distribution
throughout the fuzzing run based on coverage information.
Our approach, as depicted in Figure 1, comprises a well-
defined optimization module that does not need to expose
any parameters to the user of the fuzzer. In detail, a fuzzer
featuring DARWIN performs the following steps in the havoc
stage (each step is marked in Figure 1):

1) At the beginning of the havoc stage, the fuzzer selects
an input from the queue and randomly selects the next
mutation to apply. Initially, the probability distribution for
mutation selection is uniform.

2) After applying a mutation, the fuzzer decides whether it
should keep mutating this input or if the input should be
tested on the instrumented application.

3) After running the instrumented application with the se-
lected input, feedback is reported to assign a success score
to the test input and the DARWIN Mutation Scheduler.
The mutation scheduler learns based on the reported
feedback and optimizes the probability distribution using
DARWIN’s Evolution Strategy.

4) Finally, the updated probability distribution is applied
for the next iteration.

In the following, we explain the optimization process of
DARWIN’s Mutation Scheduler in more detail.

A. Metaheuristics and Mutation Scheduling

In the context of the complete fuzzing pipeline, we con-
centrate on improving the mutation scheduler, as illustrated in
Figure 1. The problem of finding a suitable mutation schedule
is considered here as an optimization problem, where the
candidate solution is a vector of relative mutation operator
probabilities. In a classical optimization scenario, a candidate
solution is refined through a series of iterations. In each
iteration, the candidate is evaluated, which is usually the
most time-consuming part of the optimization. Only after a
number of iterations, when a candidate of acceptable quality is
obtained, the solution is applied to the process being optimized.

In the case of fuzzing, however, the optimization is per-
formed concurrently with the process being optimized since
each candidate solution is used as it is being evaluated, and
the optimization is performed for each target independently.
Because of this, the optimization algorithm should be able to
provide a fast convergence, which means as large a perfor-
mance improvement with as few evaluations as possible.

4

8%

1%

0%

9%

Parent

5% 1% 0% 9%

8% 1% 2% 9%

8% 1% 5% 9%

8% 3% 0% 9%

Children

P
e
rt
u
rb
a
ti
o
n

Fitness

determines

next parent

Fig. 2. Example of an ES instantiation with one parent and four children
(µ = 1, λ = 4). Based on the fitness function, the parent for the next iteration
is determined.

As mentioned in Section II-C, metaheuristic techniques
balance between diversification and intensification, with con-
flicting goals to evade local optima and, at the same time,
enable convergence to better quality solutions. Population-
based metaheuristics, such as Genetic Algorithm (GA) [43] or
Particle Swarm Optimization (PSO) [55] are generally focused
on diversification and can locate an optimum with a greater
probability. However, as mentioned above, the optimum in
the fuzzing process is not fixed, and the algorithm should
adapt swiftly to the current target. Since they need to eval-
uate a population of candidate solutions in every step, these
approaches usually require a large number of evaluations, and
consequently, computation time, to reach a solution of accept-
able quality. Those methods may also include computationally
intense domain-dependent operators acting on multiple solu-
tions, such as the crossover operator in GAs, which is a process
where a new individual is created from two or more parent
solutions [16]. Since, in our case, fast convergence and ease
of use are the primary goals, population-based metaheuristics
do not present an appropriate choice.

Instead of population-based methods, algorithms that op-
erate on a single solution (or a small set of solutions) should
prove to be a better option. It is expected that single solution
algorithms will obtain better performance; since they primarily
focus on intensification, convergence is usually faster than in
the population-based methods [45].

In optimizing fuzzing mutation probabilities, where each
evaluation may take a considerable amount of time, this behav-
ior translates into a far smaller number of evaluations needed
to reach an acceptable solution quality. At the same time,
such algorithms still provide a means to escape local optima
with solution perturbations and random restarts. Examples of
these algorithms include Simulated Annealing (SA) [36], Tabu
Search (TS) [25], and Evolution Strategy (ES) [6].

B. Evolution Strategy as used in DARWIN

When considering domain-independent optimization meth-
ods, as is the case here, Evolution Strategy has proven to
be an efficient and versatile method found in a multitude
of applications [17], [23]. As such, we opted to use ES as
the method of choice, both for its simplicity and proven
track record as a multi-purpose optimization algorithm [6].

Additionally, ES is well-known to be robust [5], making it an
ideal choice when dealing with difficult optimization problems.

The intensification process in metaheuristics is commonly
performed with the use of a mutation operator. Mutation
operators use only one parent and create one child by applying
a randomized change to its genotype (i.e., the encoding of
an object) [16]. However, since we already use the term
“mutation” for changes in seeds performed by the fuzzer, we
will slightly bend the terminology and denote the mutation
operator used in ES as the perturbation operator. We depict
the process in Figure 2.

In its most common form, ES operates on a single so-
lution µ, called the parent. In each iteration, a randomized
perturbation operator is applied on the parent solution pro-
ducing a number of different modified solutions, commonly
called children. The number of children solutions is denoted
with λ, which is a parameter of the algorithm. After every
child solution is evaluated, the best among all the children
solutions and the current parent is chosen as the parent in the
next iteration. This allows DARWIN to adjust the mutation
schedule dynamically, addressing Challenge C.1. This type of
Evolution Strategy is denoted as (µ+λ)−ES. If the parent is
disregarded, such selection method is denoted as (µ, λ)−ES.
The process is repeated until a designated termination criterion
is met, commonly based on elapsed time or a number of
evaluations. We provide the ES pseudocode in Algorithm 1.

Algorithm 1 Evolution Strategy
1: initialize the parent solution
2: repeat
3: create λ child solutions using perturbation on the parent
4: select the best solution
5: set the best solution as the parent
6: until TerminationCriterion

When using a single starting parent solution, the algorithm
will mainly concentrate on its relative vicinity in the search
space. While it is possible for the perturbation operator to move
the search to a more distant area, this occurs with a lower
probability. To allow the fuzzer to discover more promising
areas in the search space (e.g., more efficient mutation oper-
ator combinations), DARWIN uses an extended form of the
algorithm that starts not with one but several different starting
parent solutions. In this case, the search is conducted in paral-
lel, independently for each parent, addressing Challenge C.4.
The number of parent solutions in this algorithm variant is
denoted with µ. The modified algorithm can be represented
with the following pseudocode:

Algorithm 2 Multi-parent Evolution Strategy
1: initialize µ parent solutions
2: repeat
3: for all parent solutions do
4: create λ child solutions using perturbation on the parent
5: select the best solution
6: set the best solution as the parent
7: end for
8: until TerminationCriterion

Using algorithm parameters µ and λ, we can balance
between the diversification and intensification segments of the

5

search. In our experiments, we have used the value of 4 for
the parameter λ, which is a common choice in diverse ES
applications, see, e.g., [33], [35], [42]. With this parameter
value, the parent for the next iteration is selected among five
solutions in total (the parent and four child solutions). If
multiple parents are used, we set the parameter µ to the value
of 5. Note that we experimented with several values for µ, and
the main difference from the performance perspective is in the
speed of convergence, realizing in slightly worse coverage in
our preliminary experiments (cf. Section VI-B).

Let us consider more why taking a small λ size (but larger
than 1) makes sense. First, if we consider an extreme case
where λ equals 1, we effectively reach a local search algorithm.
While such an algorithm could work for this problem, it would
face issues with a high probability of getting stuck in local
optima. The second extreme for λ would represent a large
population size (e.g., order of magnitude 100). Then, we face
two issues:

• Due to the large population size, we must conduct more
evaluations 1, which will be a problem as fitness evalua-
tion is computationally expensive.

• When having a large population size, it is also common to
use the crossover operator to foster search space exploita-
tion, which increases the computational complexity of the
algorithm but also makes tuning more difficult. Indeed, by
adding crossover, we must tune the algorithm for different
crossover operators and the probability of the crossover
action.

Finally, unlike in a classical optimization scenario, here, the
algorithm’s efficiency is not measured based just on the final,
best solution the algorithm has found. Since the optimization
is performed concurrently with the fuzzing, every candidate
solution that appears during the algorithm run contributes to
the overall fuzzing efficiency. For that reason, and because
the optimization is performed per-target basis, it is important
to provide a fast convergence, which can be acquired with a
smaller population size.

C. Solution Encoding and Perturbation

The ES algorithm can be used with any form of solution
encoding, as long as a suitable perturbation operator (or opera-
tors) is defined. In the case of optimizing the fuzzing mutation
schedule, we used two solution encodings and corresponding
perturbation operators.

First, we investigated an encoding that uses a real-valued
vector to represent relative probabilities of mutation operators;
this representation is equal to the one used in MOPT [39].
The size of the vector is equal to the number of mutation
operators since each element of the vector represents the
relative probability that a certain mutation operator (given in
Table X) will be selected. In each invocation, the values in
the vector are used to determine the next mutation operator.
Initial values of vector elements are generated uniformly at
random in the range [0, 1]. As the perturbation operator, we use
a simple Gaussian perturbation with zero mean and standard

1Alternatively, we would need to reach good solutions in only a few
generations, which is highly unlikely for a problem of such difficulty and
the lack of structure in the genotype.

deviation of 0.25; the obtained random value is added to a
single randomly selected element in the vector (Figure 8(a),
Appendix A). The value of 0.25 is selected after tuning,
where we followed common reasoning for ES: the operator
needs to be able to do significant changes (thus, we do not
select a very small standard deviation), but it also should not
behave like a random search (which would happen with a large
standard deviation value). The values are always kept greater
than zero but are allowed to exceed 1 (to allow the algorithm
to emphasize an operator if needed).

The second encoding uses a binary vector (with values
assuming only 0 and 1), where each element in the vec-
tor corresponds to a mutation operator. This simplifies the
mutation operator choice so that only a subset of operators,
whose corresponding values in the vector are 1, are used
for mutation selection; among the elements of this subset, a
random mutation is selected by the fuzzer. As the perturbation
operator, a simple one-bit flip is used; each time a solution
needs to be modified, a randomly selected bit in the vector is
inverted (Figure 8(b), Appendix A).

We decided on the binary encoding for the solution encod-
ing since a preliminary evaluation showed a geometric mean
coverage increase of around 3%. What is more, with the binary
encoding, we do not need to tune the standard deviation value
for the perturbation operator (as we needed for the real-valued
representation). This design decision addresses Challenge C.2.

D. Objective Function

The algorithms described above can be used with any
conceivable performance measure related to the process being
optimized. In this case, the primary criterion used for the
evaluation of individual solutions is the number of unique
paths encountered in the instrumented application. Unique
paths encode all different ways to reach every possible basic
block. While keeping track of all of them is tough (and leads
to state explosion), counting new unique paths per iteration
is simple and efficient. Hence, we decided to leverage the
number of new unique paths as a feedback signal, especially
since most fuzzers already provide this number. The solution
with the highest number of paths will get selected as the next
parent. Thus, our goal is the maximization of the following
expression, which is in the evolutionary computation field
commonly denoted as the fitness function:

fitness = # Unique Paths (1)

This performance measure follows previous work [39], but
the proposed optimization method can be used to optimize a
different criterion if necessary. An alternative approach to a
single criterion would be to use a multi-objective optimization
algorithm, but this choice is justified only when conflicting
objectives need to be optimized concurrently, which is not the
case here. Furthermore, using simpler fitness functions has the
advantage of better interpretability, i.e., it is clear why a certain
solution is better than some other one.

By combining our simple algorithm design (small popula-
tion, no need for the user to tweak the parameters), support
for various solution’s encodings, and fitness function, we
address Challenge C.3. We emphasize that Evolution Strategy

6

is commonly used in the (µ+λ) form, where standard values
are 1 (note that here we talk about the number of parents in a
single search, and not the total number of parents due to the
parallel execution of ES) and 4, see, e.g., [6], [31]. Thus, while
one could experiment with other values and then consider µ
and λ as parameters that need to be tuned, our investigation
shows this is unnecessary. Consequently, we do not consider
µ and λ as user parameters, nor would the change of those
values result in significant performance differences.

V. IMPLEMENTATION

We implemented a prototype of DARWIN in C as an
extension to AFL 2.54b [29], a popular generic fuzzer that is
leveraged by many research works as a foundation [39], [7],
[4], [56]. DARWIN consists of about 320 lines of code. AFL
is easily extendable and does not contain other algorithmic
improvements itself, unlike projects like AFL++ [21] that try
to incorporate all state-of-the-art improvements for best results
in practice. For our DARWIN mutation scheduling algorithm,
we added an interface to AFL to report feedback in the form of
newly discovered paths from the instrumented application to
the mutation scheduler. The interface exposes three functions:
initialization, selecting a mutation, and reporting feedback
to DARWIN. This enables a modular design for different
mutation scheduling algorithms.

To derive the random numbers needed for our Evolution
Strategy, we leverage the RomuDuoJr random number gen-
erator (RNG) [46] to balance out the higher reliance on the
random number generation of DARWIN’s ES algorithm. In
Appendix B, we show that the speed difference is negligible
compared to the standard RNG.

VI. EVALUATION

We analyze DARWIN regarding a variety of aspects. First,
we evaluate DARWIN’s general ability to explore programs as
an approximation for the fuzzer’s efficiency in Section VI-A.
Second, we evaluate the fuzzers in terms of execution speed
in Section VI-C to ensure our efficiency improvement can be
attributed to the novel mutation scheduling algorithm and that
the algorithm does not have grave consequences on execution
speed. Finally, we evaluate DARWIN’s ability to find crashes
using the LAVA-M [14] (Appendix D) and MAGMA [32]
(Section VI-D) benchmarks, to show that the aforementioned
aspects lead to finding more bugs faster.

Setup. Our evaluation setup across all experiments consists
of four workstations with an AMD EPYC 7402P 24-Core
processor and 256GB of RAM (to perform the evaluation in
parallel while keeping memory accesses independent). The
target applications, fuzzers, and seeds are all stored on a
ramdisk to reduce the influence of disk I/O. Each evaluation
run is executed sequentially on a dedicated machine to reduce
the influence of, e.g., memory bandwidth.

We evaluate DARWIN against the most-related work,
MOPT, and AFL 2.54b as a baseline (as both DARWIN and
MOPT extend AFL). We ported MOPT to AFL 2.54b (by
diffing AFL 2.52b and AFL 2.54b) to ensure that MOPT got
the same bug fixes that DARWIN and AFL have.

TABLE I. INVOCATION OF BENCHMARK TOOLS AND FILE FORMATS
USED AS SEEDS.

Benchmark Invocation Format
bsdtar -xf @@ /dev/null TAR
cxxfilt -t ELF
djpeg @@ JPEG
jhead @@ JPEG
objcopy –dump-section text=/dev/null @@ /dev/null ELF
objdump -d @@ ELF
readelf -a @@ ELF
size @@ ELF
strip -o /dev/null @@ ELF
tcpdump -nr @@ PCAP

Evaluation of fuzzers is, as with most research topics
in security, not standardized, leading to fluctuating results
reported in papers and varying results in practice. This is
mainly due to two aspects: 1) evaluating related work with
non-optimal parameters and 2) missing statistical analysis of
the results. For the former, we disable the deterministic stage
of DARWIN and AFL for all experiments completely while
using the corresponding Pacemaker mode (with the parameter
“-L 0”) to achieve the same effect and focus on the havoc stage
for MOPT. Note that this is crucial for a fair comparison [66].
For the latter, we integrated the approaches proposed by Klees
et al. [34] to the best of our knowledge and investigated
broadly used fuzzing benchmarks to reason about DARWIN’s
performance.

A. Evaluating Coverage

In the first step, we use code coverage as a proxy metric for
a fuzzer’s success. While code coverage is a well-established
quality measure in related work [39], [67], [7], [4], it merely
approximates the fuzzer’s capabilities in finding bugs, as a
fuzzer needs to cover a line of code to find a bug in it.

In all experiments, we leverage six applications, which
process an executable ELF file without modifying it, from the
well-fuzzed GNU binutils suite 2 in version 2.34 [4], [67],
[39], [37]. We further include jhead 3.06.0.1, bsdtar (from
libarchive) 3.6.0, tcpdump 4.99.1, and djpeg 2.1.2, as they
are also commonly used [67], [4], [39], [37]. For increased
reproducibility, we also kept the number of seed files low.
Otherwise, as each seed is selected randomly by default,
the variance for each run increases. The seeds used for the
binutils targets always remain the same: one uninformed,
empty test case and one minimal correct test case. We used
the standard testcases bundled with AFL, except for binutils,
where we used a minimal C program (smaller than the one
bundled) described in Appendix C.

We evaluate the performance of the selected fuzzers over
three independent runs, reporting the mean and 25%/75%
quartiles. Each experiment runs for 24 hours. We present
the mean coverage for each benchmark but also the standard
deviation over time. Further, we additionally conduct the
non-parametric Mann-Whitney U test to evaluate whether
there are statistically significant differences among results, as
suggested by Arcuri et al. [2] and Klees et al. [34].

2https://www.gnu.org/software/binutils/

7

https://www.gnu.org/software/binutils/

0 10 20 30 40 50 60
Time [m]

0

20

40

60

80

100
Sh

ar
e

[%
]

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

(a) DARWIN

0 10 20 30 40 50 60
Time [m]

0

20

40

60

80

100

Sh
ar

e
[%

]

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

(b) MOPT

0 10 20 30 40 50 60
Time [m]

0

20

40

60

80

100

Sh
ar

e
[%

]

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

(c) AFL

Fig. 3. Mutation history for cxxfilt.

0 200 400 600 800 1000 1200 1400
Time [m]

0

500

1000

1500

2000

2500

3000

3500

Pa
th

s

DARWIN
AFL
MOPT
AFL-S

(a) bsdtar

0 200 400 600 800 1000 1200 1400
Time [m]

500

1000

1500

2000

2500

3000

3500

Pa
th

s

DARWIN
AFL
MOPT
AFL-S

(b) cxxfilt

0 200 400 600 800 1000 1200 1400
Time [m]

500

1000

1500

2000

2500

3000

Pa
th

s

DARWIN
AFL
MOPT
AFL-S

(c) djpeg

0 200 400 600 800 1000 1200 1400
Time [m]

100

150

200

250

300

Pa
th

s

DARWIN
AFL
MOPT
AFL-S

(d) jhead

0 200 400 600 800 1000 1200 1400
Time [m]

1000

2000

3000

4000

5000

6000

Pa
th

s

DARWIN
AFL
MOPT
AFL-S

(e) objcopy

0 200 400 600 800 1000 1200 1400
Time [m]

0

1000

2000

3000

4000

5000

6000

Pa
th

s

DARWIN
AFL
MOPT
AFL-S

(f) objdump

Fig. 4. The coverage results on the various benchmarks for AFL, MOPT, DARWIN, and the statically optimized variant AFL-S. Shaded areas represent the
respective 25%/75% quartiles.

The results of our coverage evaluation for DARWIN,
MOPT, and AFL are depicted in Table II. In Figure 4 and Fig-
ure 6, we show the respective graphs for coverage over time.

First of all, we can observe that MOPT is constantly
performing worse than DARWIN, as well as AFL (except in
one experiment). For djpeg, jhead, objcopy, objdump,

8

TABLE II. MEAN COVERAGE RESULTS MEASURED IN UNIQUE PATHS AND EDGES FOR WELL-FUZZED TARGETS OVER TEN RUNS. AFL-S IS AFL WITH
OPTIMIZED, STATIC PROBABILITY DISTRIBUTION. GEOMETRIC MEAN IMPROVEMENT (“GEOMEAN”) OF DARWIN OVER MOPT AND AFL, RESPECTIVELY.
P-VALUES FOR THE MANN-WHITNEY U TEST FOR DARWIN ON THE NUMBER OF UNIQUE PATHS FOUND IN 24H. P-VALUES FOR THE MANN-WHITNEY U
TEST FOR DARWIN ON THE NUMBER OF UNIQUE PATHS FOUND IN 24H. NOTE THAT EXPERIMENTS WITH A SIMILAR RESULT ACROSS SAMPLES (ITALIC)

LEAD TO A HIGH P-VALUE NATURALLY; ALL REMAINING EXPERIMENTS ARE STATISTICALLY SIGNIFICANT WITH p < 0.05.

DARWIN MOPT AFL AFL-S
Benchmark unique paths edges unique paths edges p-value unique paths edges p-value unique paths edges p-value
bsdtar 3147.20 5369.70 2347.50 4832.0 9.13e-05 3246.50 5302.60 0.093 1801.30 4970.90 9.08e-05
cxxfilt 3334.18 2327.27 3343.00 2333.09 0.0001 3594.91 2425.36 1.95e-04 3395.50 2500.30 0.647
djpeg 2964.60 3191.00 1807.80 2765.90 9.13e-05 2866.00 3148.80 0.163 1978.50 2851.80 9.13e-05
jhead 285.40 340.00 265.4 339.00 2.17e-04 283.90 340.00 0.520 164.30 336.00 8.88e-05
objcopy 5760.82 7912.36 4562.00 7606.00 4.08e-05 5453.09 7881.27 4.05e-04 5038.20 7507.90 6.20e-05
objdump 6018.91 7269.82 5028.82 7003.73 4.06e-05 5895.91 7141.55 0.028 4947.90 7044.00 6.20e-05
readelf 29715.64 13012.36 26686.73 12273.00 4.08e-05 29439.27 12032.18 0.162 29519.90 13019.20 0.805
size 3020.91 4030.91 2206.82 3773.45 4.07e-05 2726.91 3809.55 5.32e-05 2861.50 3941.00 8.24e-04
strip 5732.55 7703.55 4497.36 7470.82 4.08e-05 5519.36 7756.45 0.001 5047.60 7354.30 6.20e-05
tcpdump 9361.20 13834.10 4723.60 11618.70 9.13e-05 9354.10 13317.2 1.0 4255.70 11952.10 9.13e-05
geomean +29.40% +6.77% +1.60% +1.73% +32.35% +4.38%

0 10 20 30 40 50 60
Time [m]

0

20

40

60

80

100

Sh
ar

e
[%

]

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

(a) DARWIN

0 10 20 30 40 50 60
Time [m]

0

20

40

60

80

100
Sh

ar
e

[%
]

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

(b) MOPT

0 10 20 30 40 50 60
Time [m]

0

20

40

60

80

100

Sh
ar

e
[%

]

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

(c) AFL

Fig. 5. Mutation history for size.

size, and tcpdump, DARWIN clearly reaches the highest
number of paths and edges, and also has the steepest in-
crease in unique paths found over time for the first hour of
fuzzing. For objcopy and strip, we saw that DARWIN
the probability for mutation 0 (flip single bit) and 14 (overwrite
bytes with a randomly selected chunk) tremendously, whereas
DARWIN reduces probability of mutation 4 (randomly sub-
tract from byte) for objdump and 5 (randomly add to byte)
for size. Besides looking only at the paths covered, we
can also consider the time to the same coverage as a figure
of merit. For example, for size, DARWIN reaches AFL’s
maximum coverage approximately 800 minutes earlier, similar
for objcopy and objdump where DARWIN reaches the
same point approx. 700 minutes earlier.

The cxxfilt benchmark shows such a different behavior
than other benchmarks that it warrants further discussion. This
is the only case where AFL is a clear winner, and both
mutation-scheduling-based fuzzers reach a similar coverage.
While we noticed that AFL is achieving new coverage with
the splicing stage around 50% more often than DARWIN,
MOPT found four times as many coverage-triggering inputs
using splicing. As such, we can exclude splicing being one
reason for this effect.

Hence, we looked at the mutations scheduled within a
timespan of 1h, as shown in Figure 3. There we can see that
DARWIN as well as MOPT put more and more emphasis on
mutators 8 and 10 after around 40 minutes. This is also the very
same moment where AFL starts to outperform both fuzzers.
As cxxfilt is aiming at demangling overloaded functions

(and the similarly behaving bsdtar is unpacking archives),
it seems like mutation schedulers only add little benefit to
fuzzing targets that are heavily relying on parsing. Yet, their
performance impact (as we explore later) reduces the raw
execution speed of the fuzzer, resulting in inferior coverage
results.

Looking at size Figure 5, a target where DARWIN
significantly outperforms AFL and MOPT, DARWIN avoids
scheduling mutators 0, 5, 11, while mutator 0 has a large share
in MOPT.

While analyzing the mutation histories, we noticed that
MOPT schedules only 8 of the 15 mutations across all of
our benchmarks. Most likely, this is an implementation bug
as there is no visible calibration effect (in comparison to, e.g.,
the first 10 minutes of DARWIN, where DARWIN converges
quickly afterward). This is also one possible factor for the
diverse results MOPT shows in our experiments.

In conclusion, DARWIN shows a geometric mean im-
provement in edge coverage of 6.77% over MOPT, and 1.73%
over AFL, hence, this addresses Challenge C.1. While this
might seem insignificant at first, coverage measurements are
only an approximation of a fuzzer’s efficiency in finding bugs,
as we show later.

FuzzBench. FuzzBench [40] is a fuzzing benchmark suite de-
veloped by Google. The benchmark comprises various widely-
fuzzed real-world targets, e.g., from OSS-Fuzz [28]. We con-
ducted a local FuzzBench coverage experiment over ten runs,
where each run took six hours. All Fuzzbench experiments

9

0 200 400 600 800 1000 1200 1400
Time [m]

0

5000

10000

15000

20000

25000

30000

Pa
th

s

DARWIN
AFL
MOPT
AFL-S

(a) readelf

0 200 400 600 800 1000 1200 1400
Time [m]

500

1000

1500

2000

2500

3000

Pa
th

s

DARWIN
AFL
MOPT
AFL-S

(b) size

0 200 400 600 800 1000 1200 1400
Time [m]

1000

2000

3000

4000

5000

6000

Pa
th

s

DARWIN
AFL
MOPT
AFL-S

(c) strip

0 200 400 600 800 1000 1200 1400
Time [m]

0

2000

4000

6000

8000

Pa
th

s

DARWIN
AFL
MOPT
AFL-S

(d) tcpdump

Fig. 6. The coverage results on various benchmarks for AFL, MOPT, DARWIN, and the statically optimized variant AFL-S. Shaded areas represent the
respective 25%/75% quartiles.

TABLE III. MEDIAN RELATIVE CODE-COVERAGES ON EACH
BENCHMARK AFTER 10 RUNS WITH 6H EACH. MEDIAN RELATIVE

PERFORMANCE OF EACH FUZZER TO THE ENCOUNTERED EXPERIMENT
MAXIMUM.

DARWIN AFL MOPT
FuzzerMedian 97.11 96.89 86.70
FuzzerMean 96.34 95.46 83.64
bloaty fuzz target 96.40 94.95 89.62
curl curl fuzzer http 98.35 97.25 92.19
freetype2-2017 94.80 93.68 78.74
harfbuzz-1.3.2 98.95 97.70 86.48
libjpeg-turbo-07-2017 88.81 88.72 69.20
libpng-1.2.56 99.72 98.79 94.05
libxml2-v2.9.2 93.34 96.89 61.79
libxslt xpath 97.11 92.21 83.69
mbedtls fuzz dtlsclient 98.94 97.63 95.26
openssl x509 99.87 99.88 99.73
openthread-2019-12-23 88.74 88.84 86.70
php php-fuzz-parser 96.78 98.94 94.64
proj4-2017-08-14 94.95 93.40 28.57
re2-2014-12-09 98.45 98.34 83.51
sqlite3 ossfuzz 92.44 86.38 78.14
systemd fuzz-link-parser 99.92 99.84 97.97
vorbis-2017-12-11 97.01 96.77 84.87
woff2-2016-05-06 97.78 95.75 91.88
zlib zlib uncompress fuzzer 98.12 97.71 92.14

were conducted on a workstation with an Intel Xeon Silver
4110 CPU with 2.10GHz and 128GB RAM.

Experiments are depicted in Table III. DARWIN outper-
forms both AFL and MOPT in the avg. normalized score and
avg. rank. Specifically, DARWIN reaches the highest median
relative code coverage in 15 out of 19 experiments, is even with
AFL in two (DARWIN has in openssl_x509 0.00001%
and in openthread-2019-12-23 -0.11% less coverage).

In the remaining two experiments, AFL slightly
outperforms DARWIN: libxml2-v2.9.2 (3.80%)
and php_php-fuzz-parser (2.23%) are both parsers, as
such, coverage mainly comes from well-structured testcases.
As DARWIN does not improve testcase generation itself,
e.g., using grammars, both fuzzers generate testcases of
similar (bad) quality and hence, largely fail to cover a big
part of the targets. AFL’s faster execution speed allows it to
generate more testcases per second, which is the cause for
the differences.

MOPT is last in every experiment, with openssl_x509
being the experiment closest to DARWIN and AFL. Thus,
DARWIN is the first mutation scheduler to show coverage
improvements over AFL in FuzzBench.

Static Optimization vs. Adaptive Optimization. For the
mutation scheduling problem at hand, it is not clear if the
perfect mutation probability distribution changes over time
with the same target application. Hence, we used DARWIN
to fuzz the targets from Section VI-A for 24h, but this time,
storing the ”best so far” parent in the current set of parents after
24h. As shown in Table II, DARWIN outperforms the static
variant (referred to as AFL-S) by 4.38% geometric mean in the
number of covered edges (and 32.35% in paths). Especially in
the non-binutils experiments, DARWIN shows the importance
of adaptive optimization throughout the fuzzing process.

In binutils, the static variant is much closer to the adap-
tive variant,as a lot of library code is shared between the
individual applications, and the inputs are always executables.
This also reflects in the resulting probability distributions, i.e.,
readelf, size, and cxxfilt share the same distribution,

10

and strip, objcopy, and objdump share the same distri-
bution. Both groups have 7 disabled mutations and commonly
disable mutations 3, 5, and 8 (cf. Appendix B). From our
investigations, the mutations left are enough to overcome the
initial parsing steps and then concentrate on common library
code, which is also what we expect the probability distribution
to converge to in later phases in the adaptive variant.

In all experiments, DARWIN outperformed AFL-S also
after 200 minutes. In the six experiments where AFL-S even-
tually reached the same (average) coverage DARWIN reached
after 200 minutes, it took AFL-S 285 more minutes on average.
Further, in four experiments, AFL-S never even reached that
mark.

B. Parameter Selection

Even though the parameters for µ and λ are widely
consistent throughout literature [6], [31], we also evaluated
neighboring configurations, as shown in Table IV. Our 24h
experiments over ten runs show that within the large body
of coverage evaluation targets, the initial configuration still
outperforms them.

Orthogonality to Advanced Fuzzing Methods. To high-
light DARWIN’s benefit in more recent fuzzers, we extend
EcoFuzz [67] with our mutation scheduler. EcoFuzz optimizes
AFL’s power schedule process to reduce AFL’s focus on high-
frequency paths. Within the fuzzer, we added four invoca-
tions to the DARWIN interface at the appropriate places in
the code. We conducted a FuzzBench coverage experiment
with 10 runs, 6h each. The full results are depicted in Ta-
ble V. EcoFuzz-DARWIN outperforms its baseline in all but
four experiments. While libjpeg-turbo-07-2017 and
systemd_fuzz-link-parser are quite close, the other
two experiments show a larger difference. The DARWIN
variant cannot outperform its baseline in libxml2-v2.9.2
and openthread-2019-12-23 openssl_x509, simi-
lar as in the previous coverage experiment. Based on our
investigation, this is also caused by the strongly structured
input (openthread is an implementation of the OpenThread
networking protocol), where the baseline fuzzer profits from
higher execution speeds.

C. Execution Speed versus Efficiency

Challenge C.4 underlines the difficulty of optimizing prob-
ability distribution without spending too much time on a
learning algorithm. This is important as an optimal distribution
does not lead to a measurable improvement if the optimal
selection can be found via brute force in less time. As such, we
measure the effectiveness of the mutation scheduler in finding
a good mutation probability distribution. Further, we analyze
and compare the execution speed of DARWIN’s ES, MOPT’s
PSO, and AFL’s random sampling with a uniform probability
distribution.

Scheduling Effectiveness. While it is rather simple to mea-
sure the effects of an algorithmic change in fuzzing via
coverage or crash analysis, the resulting numbers are hard to
attribute to the algorithmic change itself due to the fuzzers
complexity. Hence, we derived a metric to directly capture the
impact of mutation scheduling, namely the average number of
mutations needed to go from one coverage point to another.

Here, we get 1981.90 mutations for AFL, 1484.81 for MOPT,
and 1491.32 for DARWIN. This clearly shows the advantage
of mutation scheduling. MOPT and DARWIN achieve very
similar results, where we attribute the difference to noise. The
remaining question is whether both fuzzers also achieve the
same execution speed, as the mutation schedulers’ efficiency
depends on both factors.

Performance Measurements. Table VI presents the observed
execution speed over ten runs. Notably, AFL has the most
executions, which makes sense considering that both DAR-
WIN and MOPT add an optimization algorithm on top of
AFL’s random sampling; yet, the DARWIN’s execution speed
is relatively close to random selection. However, the numbers
demonstrate that DARWIN is 48.26% (geometric mean) faster
than MOPT while outperforming both other fuzzers in terms
of coverage. This makes DARWIN solve Challenge C.4 and
also highlights that the representation encoding for ES does
not induce a major performance overhead.

This underlines that (1) DARWIN’s mutation scheduler
improves efficiency compared to uniform random sampling
and (2) that DARWIN’s mutation scheduler achieves this with
less computational overhead than MOPT, addressing Chal-
lenge C.2 In conclusion, DARWIN has the same scheduling
effectiveness but is much faster than MOPT, resulting in better
efficiency.

D. MAGMA - Time-to-Bug Evaluation

MAGMA [32] is a recently published fuzzer benchmark
that emphasizes the capability to uncover bugs, in particular,
the time needed to reach a bug within a target. For this, the
authors forward-port real-world bugs into current versions of
tools used in practice, namely libpng, libtiff, libxml2,
openssl (which we could not get to run with the cur-
rent version of MAGMA on GitHub at the time of writing,
php, poppler, and sqlite3. Further, MAGMA provides a
framework around these tools to detect when a fuzzer reaches
and triggers such a forward-ported bug. Hence, MAGMA’s
attempt to measure the time to reach a bug gives a much clearer
picture of a fuzzer’s efficiency in practice, as code coverage is
merely a proxy metric to measure a fuzzer’s success. We set up
five hours fuzzing campaigns for each target for the MAGMA
benchmark and repeated each experiment three times.

The results are depicted in Figure 7. Out of 21 bugs found
in total, DARWIN can find 15 of them the fastest. MOPT is in
4 cases the fastest, but only because in two of them DARWIN
could not trigger the bug (where MOPT is expected to take
more than two days to find the bug on average). Finally, AFL
can only find 12 bugs, further emphasizing that DARWIN
increases the efficiency of the mutation selection.

E. Crashes

This final experiment explores DARWIN’s ability to find
crashes in well-fuzzed targets, which is commonly done to
evaluate fuzzers [67], [39], [58], [52]. Note that our experiment
differs from the setup MOPT paper to increase statistical
meaningfulness. In the MOPT paper, the authors use 100
seed files per target. This, however, makes interpretation of
the resulting data highly challenging, as the outcome heavily
depends on which seed has been scheduled (also makes finding

11

TABLE IV. COVERAGE RESULTS MEASURED IN UNIQUE PATHS AND EDGES FOR WELL-FUZZED TARGETS IN BINUTILS OVER 10 RUNS, 24H EACH.

DARWIN (µ:5 λ:4) µ:5 λ:3 µ:5 λ:5 µ:6 λ:4 µ:4 λ:4
Benchmark unique paths edges unique paths edges unique paths edges unique paths edges unique paths edges
cxxfilt 3334.18 2327.27 3375.10 2365.70 3233.50 2301.00 3251.70 2323.00 3224.80 2294.10
objcopy 5760.82 7912.36 5567.10 7866.10 5564.70 7835.60 5584.20 7821.60 5565.10 7813.90
objdump 6018.91 7269.82 5832.80 7239.20 5820.00 7256.00 5774.30 7221.60 5880.90 7244.40
readelf 29715.64 13012.36 29821.00 12990.70 29101.90 12813.30 29409.20 12928.80 29551.10 12934.20
size 3020.91 4030.91 2984.20 3979.70 2999.60 3990.60 2975.20 4022.80 2925.60 4018.80
strip 5732.55 7703.55 5533.70 7667.60 5608.8 7716.20 5542.80 7693.30 5549.30 7696.90

TABLE V. MEDIAN RELATIVE CODE COVERAGE ON EACH
BENCHMARK AFTER 10 RUNS WITH 6H EACH. MEDIAN RELATIVE

PERFORMANCE OF EACH FUZZER TO THE ENCOUNTERED EXPERIMENT
MAXIMUM.

EcoFuzz-DARWIN EcoFuzz
FuzzerMedian 97.31 95.43
FuzzerMean 94.47 94.29
bloaty fuzz target 95.86 91.39
curl curl fuzzer http 97.31 95.89
freetype2-2017 95.92 95.79
harfbuzz-1.3.2 97.36 94.12
libjpeg-turbo-07-2017 84.67 86.47
libpng-1.2.56 97.83 96.51
libxml2-v2.9.2 78.84 93.66
libxslt xpath 94.03 93.97
mbedtls fuzz dtlsclient 99.23 96.71
openssl x509 99.67 99.62
openthread-2019-12-23 80.11 98.45
php php-fuzz-parser 99.62 99.49
proj4-2017-08-14 90.53 84.77
re2-2014-12-09 98.83 98.50
sqlite3 ossfuzz 95.78 83.01
systemd fuzz-link-parser 97.96 98.90
vorbis-2017-12-11 96.09 95.43
woff2-2016-05-06 97.60 93.60
zlib zlib uncompress fuzzer 97.70 95.24

TABLE VI. AVERAGED EXECUTIONS PER SECOND REACHED WITH
THE RESPECTIVE MUTATION SCHEDULING APPROACH.

Benchmark havoc afl mopt
bsdtar 2631.86 2385 1185.87
cxxfilt 2060.07 3766.8 2888.56
djpeg 2830.72 2609.9 1097.79
jhead 5097.98 5484.94 1679.58
objcopy 2019.37 2086.37 1867.22
objdump 1908.94 1932.47 1887.44
readelf 2439.79 2715.96 2389.04
size 2082.11 2147.08 1945.45
strip 2005.56 2159.54 1876.9
tcpdump 5042.22 5232.37 1554.85
geomean -7.6% +48.26%

novel bugs much more likely). Additionally, the experiment
was running only once. Here, We conducted a 24h experiment
with 10 runs (and same seeds as in previous experiments) to
also evaluate the stability in finding bugs. We use the same
benchmarks as used in Section VI-A already.

The resulting crashes are shown in Table VII. Then, we
minimized the test cases using afl-tmin and verified them with
afl-collect [53]. Then we first removed test cases with the
same MD5 hash, and the Address Sanitizer output refers to the
same line. Finally, we manually verified that they differ and
lead to a crash, which we refer to as ”triaged” in Table VII. In
total, we found 20 unique bugs with DARWIN, and 26 unique
bugs with the DARWIN-enhanced version of EcoFuzz. In
contrast, the baselines, AFL and EcoFuzz, only found 12 resp.
1 unique bug(s). Also, the stability of their findings (i.e., the
mean over all runs) is way below the DARWIN-based fuzzers.

21.5.2021 summary_expected_ttb_heat.svg

file:///C:/Users/Patri/out_fixed_2/data/summary_expected_ttb_heat.svg 1/1

Fig. 7. The expected time to reach a bug in the MAGMA benchmark
over three runs. Y axis shows the individual bugs. Lower time is better, grey
indicates that a fuzzer has not found this bug.

DARWIN also found a completely novel bug in
objcopy (working up to binutils 2.39, introduced more
than 24 years ago), which is leading to a memory leak.
copy_relocations_in_section in objcopy.c is not
freeing a buffer (relpp) in every possible case. This bug is
very hard to trigger, as the function is only called at high
stack depths. The testcase leading to the bug was found through
splicing based on a relatively early testcase and a testcase from
the middle of the experiment. We responsibly disclosed the
triaged bug to the respective developers, who acknowledged
and fixed the bug 3.

VII. RELATED WORK

Fuzzing is an active research domain but is also widely
used in practice. It has been improved in various areas, e.g.,
grammar-based fuzzing that also might use mutations [3],
dedicated mutations, or program transformations for common
roadblocks [4], [63], [49], or fuzzers for hard-to-fuzz software,
e.g., due to hardware dependencies [69], [20]. We consider
these works orthogonal to ours. Next, we restrict ourselves
to the areas of mutation scheduling but also seed-selection

3https://sourceware.org/bugzilla/show bug.cgi?id=29233

12

https://sourceware.org/bugzilla/show_bug.cgi?id=29233

TABLE VII. CRASHES ENCOUNTERED IN A 24H CAMPAIGN OVER 10 RUNS. ALL BUGS ARE TRIAGED CRASHES. ”MAX” REFERS TO THE MAXIMUM
ENCOUNTERED BUGS WITHIN A RUN. ”UNIQ” REFERS TO THE NUMBER OF UNIQUE CRASHES OVER ALL 10 RUNS.

DARWIN AFL AFL-S MOPT EcoFuzz-D EcoFuzz
Benchmark mean max uniq mean max uniq mean max uniq mean max uniq mean max uniq mean max uniq
bsdtar 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
djpeg 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
tcpdump 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
jhead 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
readelf 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
strip 0.25 3 3 0.09 1 1 0.3 2 3 0 0 0 0 0 0 0 0 0
size 0.92 2 11 0.45 1 5 0.7 1 7 0.17 1 2 0.3 1 3 0.1 1 1
filt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
objdump 0.25 1 3 0.09 1 3 0.1 1 1 0 0 0 0.2 1 2 0 0 0
objcopy 0.25 1 3 0.18 1 3 0.1 1 1 0 0 0 2.1 17 21 0 0 0
Total 7 20 4 12 5 12 1 2 18 26 1 1

algorithms, as the underlying approaches are often similar.
Finally, we compare DARWIN to the presented works.

A. Mutation Strategies

Mutation strategies try to optimize either what mutations
should be applied (which we refer to as mutation scheduling)
or where in the input those mutations should be applied
(which we refer to as location optimization).

Mutation Scheduling. In 2018, two works proposed to
leverage machine learning approaches to improve mutation
scheduling. Böttinger et al. used deep Q-learning (a type of
reinforcement learning) to find policies that can next generate
new higher reward inputs [10]. Drozd and Wagner optimized
mutation operators using reinforcement learning to achieve
deeper coverage across several varied benchmarks [15]. De-
spite leveraging complex algorithms, both of those works do
not manage to show significant improvements in vulnerability
discovery, underlining that the algorithms are too complex
to address Challenges C.1 and C.4. Lyu et al. considered
a different approach for optimizing mutation scheduling and
proposed a mutation scheduling scheme called MOPT [39].
MOPT was the first work to propose using heuristic techniques
for optimizing general mutation scheduling. More precisely,
MOPT uses a custom variant of Particle Swarm Optimization
(PSO) to approximate the best selection probability distribution
for mutation operators. We note that for PSO, there is no
guarantee to converge to the global optimum (only to the
best particle in the swarm) [61], [18]. At the same time,
there are proofs of convergence for evolution strategy [31].
Further, MOPT proposes to deactivate the deterministic fuzzing
stage either temporarily or permanently to make PSO converge
faster.

As this work is closest in the objective and applied tech-
niques to ours, we discuss the main differences between MOPT
and DARWIN in more detail . From MOPT’s design perspec-
tive, the authors do not show how several parameters need to be
tuned to reach a good performance under which condition. In
particular, it is not evaluated how many solutions (swarms) are
needed in practice and how difficult it is to tune them, or how
sensitive those parameters are. Hence, MOPT does not solve
Challenge C.3. Since the MOPT algorithm has both local and
global positions for particles, the algorithm requires additional
measures to find the best solutions, increasing the complexity
of the algorithm. This leads to a performance reduction in
the havoc stage, as we explore in Section VI-C. Thus, MOPT
cannot address Challenge C.4. A change of solution encoding,

as proposed in Section IV-C, requires changes in MOPT ’s
algorithm. Finally, what the authors call a swarm is actually
a solution in a swarm. What the authors denote as multiple
swarms is one swarm.

In contrast, DARWIN has no parameters to tune from the
fuzzer side. ES has only two parameters, µ and λ, which are
intuitive to select during fuzzer development time and have a
clear role in the evolution process. DARWIN does not require
any additional communication between modules to run the
evolution process. DARWIN uses a simple fitness function
where the goal is the maximization of the code coverage.
DARWIN supports various solution representations without
requiring changes in the DARWIN algorithm. We develop
DARWIN not only to be well-performing for the specific
application at hand but also to conform to standards from the
EA community regarding the design choices and performance
evaluation.

From the performance perspective, MOPT’s PSO integra-
tion is computationally intense (i.e., already reducing cov-
erage significantly over time due to decreased speed), and
the evaluation does not explore whether a simpler algorithm
or even a static distribution might already be enough. The
evaluation results are also produced by a varying amount of
seed files, but not a typical setup with one empty and one small
seed suitable for the application. Further, MOPT’s mutation
scheduling algorithm is not evaluated separately from the other
stages of the fuzzer but always with the deterministic stage
running at least once.

Our evaluation shows that these two aspects distorted the
comparison with the default random mutation selection by
microbenchmarking the mutation selection using our proposed
average-mutations to a new coverage metric. Besides, the
huge size of seeds might lead to a distortion in coverage
measurements since a fuzzer might be stuck for a while given
a bad randomly chosen seed. While we consider MOPT’s
pacemaker mode as orthogonal, we still show that with a
permanently disabled deterministic stage, AFL discovers
significantly more unique paths than MOPT, which is in line
with the results reported in Google’s FuzzBench [27]. In
contrast, DARWIN’s selection algorithm is much simpler,
has, thanks to its more lightweight Evolution Strategy and
solution representation, a lower impact on execution speed,
brings a measurable improvement over the standard uniform
mutation selection, and even outperforms MOPT significantly
in terms of coverage and crashes found.

13

Location Optimization. In contrast to mutation scheduling
approaches, some works aim to find the right locations in the
inputs to mutate. One example is FairFuzz which applies a
deterministic combination of mutations to explore which bytes
in the test case reach rare branches when mutated [37]. These
bytes now form a mask used in the havoc stage to (partially)
limit mutation operators to these bytes. A similar approach has
been proposed by Rajpal et al. [51], where neural networks are
used to infer (un-)promising bytes in inputs generated by past
mutations. Promising bytes are then preferred during mutation.
Another work, Steelix [38], leverages static analysis to extract
information about comparisons in the target program, which is
then used to mutate responsible bytes in the input efficiently.
Analogous to FairFuzz, the information generated by the static
analysis is used to create a mask. If a mutated input does not
generate new coverage, but a byte in the mask is closer to
what the comparison expects, this byte is further mutated. All
of these approaches above focus on where to apply mutations,
whereas DARWIN optimizes general mutation selection. Fur-
ther, many of the mentioned ideas can be combined with our
approach.

B. Seed-selection Algorithms

Seed-selection algorithms aim to distill and select a subset
of seeds to optimize for a specific branch to pass or improve
coverage in general by preferring more promising seeds or
minimizing seeds to improve execution speed. MoonShine uses
system call traces of real-world programs to distill them into
a minimal test case that still achieves 86% of the pre-distilled
coverage [48]. These minimal tests can then be used to 1)
trigger basic blocks that require a certain order of system calls
and 2) improve the fuzzing speed.

A similar idea is used by FasterFuzzing, which employs
a Generative Adversarial Network trained with an initial seed
corpus to generate new, better seeds [44]. EcoFuzz [67] pro-
poses a seed scheduling algorithm to fine-tune exploration and
exploitation. After a short fuzzing period, EcoFuzz switches to
the exploration phase, where the remaining seeds are fuzzed
to estimate their reward probability. Then, EcoFuzz switches
to the exploitation phase to fuzz these seeds that have the
highest reward probability. If a new path has been discovered,
EcoFuzz switches back to the exploration phase. This increases
coverage while reducing the number of test case generations.
AFLFast identifies that fuzzers are often stuck with high-
frequency paths [8]. To balance this, AFLFast leverages a
Markov model to identify and prefer low-frequency paths as
a heuristic. Similarly, VUzzer uses an evolutionary algorithm
approach to leverage control-flow features and find hard-to-
reach paths while also avoiding inputs that reach basic blocks
containing error-handling code [52]. NeuFuzz, instead, does
not try to balance low- and high-frequency paths but uses
a neural network to prefer paths that are prone to contain
vulnerabilities [64]. Angora follows a more general strategy by
preferring inputs that lead to unexplored branches, effectively
also balancing high- and low-frequency path exploration [12].
AFLSmart uses a structural representation of seed to perform
semantically correct mutations and increases time spent on
mutating promising seeds that pass the input parsing [50].
AFLGo [7] enables directed fuzzing close to chosen target
locations by prioritizing seeds that reach paths close to the
target [7]. Seed-scheduling and -distilling algorithms optimize

an early stage in the fuzzing process. Hence, it is challenging
for these techniques to steer the mutation phase unless the
havoc stage is specifically aware of, e.g., the phases defined
in EcoFuzz. This might lead to counterproductive mutations
being applied to optimized seeds, canceling out the desired
effect. In contrast, DARWIN optimizes a late stage in the
fuzzing process and thus, can learn a favorable probability
distribution to keep the properties of promising inputs.

C. Algorithmic Improvements vs. Optimizing Execution Speed

Many works recently focused on the raw speed of input
generation and mutation with big coverage improvements [56],
[19], [4], [30]. While DARWIN offers fewer coverage im-
provements as reported by these fuzzers, DARWIN’s mutation
scheduling is orthogonal to performance increases achieved
through, e.g., fast snapshotting. Hence, DARWIN can fur-
ther increase coverage, and more importantly—as we show
in Appendix D and Section VI-D—improve the bug triggering
capabilities of these fuzzers.

VIII. CONCLUSION

We presented DARWIN, a novel mutation scheduling
algorithm that uses an Evolution Strategy to optimize the
mutation selection probability distribution based on the in-
strumented application’s feedback. DARWIN tackles all of
our identified challenges in building a mutation scheduler:
Challenge C.1 by integrating Evolutionary Strategy as a mu-
tation scheduler, significantly outperforming the state-of-the-
art mutation scheduler MOPT [39], while also being the first
mutation scheduler to show a significant increase in edge
coverage of 1.73% over AFL respectively, bugs uncovered
in both, LAVA-M and MAGMA, and decrease in time to
find bugs over AFL and MOPT; Challenge C.2 by choosing
reasonable encoding and parameters; Challenge C.3 by intro-
ducing no user-facing parameters that need to be tuned per
target; and Challenge C.4 by maintaining a high execution
speed compared to the AFL baseline, in contrast to related
work, which is far slower. Further, DARWIN found 20 unique
bugs in widely-used real-world applications, outperforming
both AFL and MOPT. DARWIN was the only fuzzer able
to also uncover a new bug that is still working on the most
recent version of the target. While our experiments show that
unique path coverage for fitness provides good feedback for
ES, other heuristics could be used. For example, it would be
interesting to include the number of crashes and consider the
Pareto fronts of the solutions. Further, future research could
study the efficiency of multi-objective algorithms for mutation
scheduling that combine several of the previous suggestions,
e.g., also include the frequency of the path to focus more on
low-frequency paths or the block hit count to promote stronger
intensification.

ACKNOWLEDGMENTS

This work was supported by the German Federal Ministry
of Education and Research in the StartUpSecure funding pro-
gram ”Sanctuary” (16KIS1417), the German Federal Ministry
of Education and Research and the Hessian State Ministry for
Higher Education, Research and the Arts within ATHENE, and
by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme
(grant agreement No. 952697).

14

REFERENCES

[1] Mohamed Abouhawwash, Kalyanmoy Deb, and Adam Alessio. Ex-
ploration of multi-objective optimization with genetic algorithms for
pet image reconstruction. Journal of Nuclear Medicine, 61(supplement
1):572–572, 2020.

[2] Andrea Arcuri and Lionel Briand. A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering. Software
Testing, Verification and Reliability, 24(3):219–250, 2014.

[3] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick
Jauernig, Ahmad-Reza Sadeghi, and Daniel Teuchert. Nautilus: Fishing
for deep bugs with grammars. In NDSS, 2019.

[4] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik,
and Thorsten Holz. Redqueen: Fuzzing with input-to-state correspon-
dence. In NDSS, volume 19, pages 1–15, 2019.

[5] H.-G. Beyer and B. Sendhoff. Evolution strategies for robust opti-
mization. In 2006 IEEE International Conference on Evolutionary
Computation, pages 1346–1353, 2006.

[6] Hans-Georg Beyer and Hans-Paul Schwefel. Evolution Strategies – A
Comprehensive Introduction, volume 1. Kluwer Academic Publishers,
USA, May 2002.

[7] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik
Roychoudhury. Directed greybox fuzzing. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
pages 2329–2344, 2017.

[8] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-
based greybox fuzzing as markov chain. In ACM Conference on
Computer and Communications Security (CCS), 2016.

[9] Jürgen Branke, Su Nguyen, Christoph W. Pickardt, and Mengjie Zhang.
Automated design of production scheduling heuristics: A review. IEEE
Transactions on Evolutionary Computation, 20(1):110–124, 2016.

[10] K. Böttinger, P. Godefroid, and R. Singh. Deep reinforcement fuzzing.
In 2018 IEEE Security and Privacy Workshops (SPW), pages 116–122,
2018.

[11] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie,
Xiuheng Wu, and Yang Liu. Hawkeye: Towards a desired directed grey-
box fuzzer. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 2095–2108, 2018.

[12] Peng Chen and Hao Chen. Angora: Efficient fuzzing by principled
search. In IEEE Symposium on Security and Privacy, 2018.

[13] Yaohui Chen, Dongliang Mu, Jun Xu, Zhichuang Sun, Wenbo Shen,
Xinyu Xing, Long Lu, and Bing Mao. Ptrix: Efficient hardware-
assisted fuzzing for cots binary. In Proceedings of the 2019 ACM Asia
Conference on Computer and Communications Security, pages 633–
645, 2019.

[14] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea
Mambretti, Wil Robertson, Frederick Ulrich, and Ryan Whelan. Lava:
Large-scale automated vulnerability addition. In 2016 IEEE Symposium
on Security and Privacy (SP), pages 110–121. IEEE, 2016.

[15] William Drozd and Michael D. Wagner. Fuzzergym: A competitive
framework for fuzzing and learning. CoRR, abs/1807.07490, 2018.

[16] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing.
Springer-Verlag, Berlin Heidelberg New York, USA, 2003.

[17] Michael Emmerich, Ofer M Shir, and Hao Wang. Evolution Strategies,
chapter 4, pages 1–31. Springer International Publishing, 2018.

[18] Andries P. Engelbrecht. Fundamentals of Computational Swarm Intel-
ligence. Wiley, 2005.

[19] Brandon Falk. Vectorized emulation: Hardware accelerated taint track-
ing at 2 trillion instructions per second. https://gamozolabs.github.io/
fuzzing/2018/10/14/vectorized emulation.html. Accessed: 2022-04-26.

[20] Bo Feng, Alejandro Mera, and Long Lu. P 2 im: Scalable and hardware-
independent firmware testing via automatic peripheral interface model-
ing. In Proceedings of the 29th USENIX Security Symposium, 2020.

[21] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse.
Afl++: Combining incremental steps of fuzzing research. In 14th
USENIX Workshop on Offensive Technologies (WOOT 20), 2020.

[22] Abhinav Gaur, A.K.M. Khaled Talukder, Kalyanmoy Deb, Santosh
Tiwari, Simon Xu, and Don Jones. Unconventional optimization for
achieving well-informed design solutions for the automobile industry.
Engineering Optimization, 52(9):1542–1560, 2020.

[23] Morteza Gholamipoor, Parviz Ghadimi, Mohammad H. Alavidoost,
and Mohammad A. Feizi Chekab. Application of evolution strategy
algorithm for optimization of a single-layer sound absorber. Cogent
Engineering, 1(1):945820, 2014.

[24] Abhiroop Ghosh, Erik Goodman, Kalyanmoy Deb, Ronald Averill, and
Alejandro Diaz. A large-scale bi-objective optimization of solid rocket
motors using innovization. In 2020 IEEE Congress on Evolutionary
Computation (CEC), pages 1–8, 2020.

[25] Fred Glover and Manuel Laguna. Tabu Search. Kluwer Academic
Publishers, USA, 1997.

[26] Fred W. Glover and Gary A. Kochenberger, editors. Handbook of Meta-
heuristics, volume 114 of International Series in Operations Research
& Management Science. Springer, 1 edition, January 2003.

[27] Google. Fuzzbench: 2020-09-28 report. https://www.fuzzbench.com/
reports/2022-04-19/index.html. Accessed: 2022-04-26.

[28] Google. Oss-fuzz. https://google.github.io/oss-fuzz/. Accessed: 2022-
04-26.

[29] Google. american fuzzy loop (afl). https://github.com/google/AFL,
2020.

[30] Rahul Gopinath and Andreas Zeller. Building fast fuzzers. arXiv
preprint arXiv:1911.07707, 2019.

[31] Nikolaus Hansen, Dirk V. Arnold, and Anne Auger. Evolution Strate-
gies, pages 871–898. Springer Berlin Heidelberg, Berlin, Heidelberg,
2015.

[32] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. Magma: A
ground-truth fuzzing benchmark. Proceedings of the ACM on Mea-
surement and Analysis of Computing Systems, 4(3):1–29, 2020.

[33] Xiaolin Hu, Carlos A Coello Coello, and Zhangcan Huang. A new
multi-objective evolutionary algorithm: Neighbourhood exploring evo-
lution strategy. Engineering Optimization, 37(4):351–379, 2005.

[34] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael
Hicks. Evaluating fuzz testing. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, 2018.

[35] Walter Krawec, Stjepan Picek, and Domagoj Jakobovic. Evolutionary
algorithms for the design of quantum protocols. In Paul Kaufmann and
Pedro A. Castillo, editors, Applications of Evolutionary Computation,
pages 220–236, Cham, 2019. Springer International Publishing.

[36] P. J. M. Laarhoven and E. H. L. Aarts. Simulated Annealing: Theory
and Applications. Kluwer Academic Publishers, USA, 1987.

[37] Caroline Lemieux and Koushik Sen. Fairfuzz: A targeted mutation
strategy for increasing greybox fuzz testing coverage. In Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, pages 475–485, 2018.

[38] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin,
Yang Liu, and Alwen Tiu. Steelix: program-state based binary fuzzing.
In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, pages 627–637, 2017.

[39] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee,
Yu Song, and Raheem Beyah. MOPT: Optimized mutation scheduling
for fuzzers. In 28th USENIX Security Symposium (USENIX Security
19), pages 1949–1966, 2019.

[40] Jonathan Metzman, László Szekeres, Laurent Simon, Read Sprabery,
and Abhishek Arya. Fuzzbench: an open fuzzer benchmarking platform
and service. In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pages 1393–1403, 2021.

[41] Microsoft. Microsoft announces new project onefuzz frame-
work, an open source developer tool to find and fix bugs at
scale. https://www.microsoft.com/security/blog/2020/09/15/microsoft-
onefuzz-framework-open-source-developer-tool-fix-bugs/. Accessed:
2022-04-26.

[42] Julian F. Miller. Cartesian Genetic Programming, pages 17–34.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[43] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press,
Cambridge, MA, USA, 1998.

[44] Nicole Nichols, Mark Raugas, Robert Jasper, and Nathan Hilliard.
Faster fuzzing: Reinitialization with deep neural models. arXiv preprint
arXiv:1711.02807, 2017.

15

https://gamozolabs.github.io/fuzzing/2018/10/14/vectorized_emulation.html
https://gamozolabs.github.io/fuzzing/2018/10/14/vectorized_emulation.html
https://www.fuzzbench.com/reports/2022-04-19/index.html
https://www.fuzzbench.com/reports/2022-04-19/index.html
https://google.github.io/oss-fuzz/
https://www.microsoft.com/security/blog/2020/09/15/microsoft-onefuzz-framework-open-source-developer-tool-fix-bugs/
https://www.microsoft.com/security/blog/2020/09/15/microsoft-onefuzz-framework-open-source-developer-tool-fix-bugs/

[45] Beatrice Ombuki-Berman and Franklin Hanshar. Using Genetic Al-
gorithms for Multi-depot Vehicle Routing, volume 161, pages 77–99.
Springer Berlin Heidelberg, 09 2008.

[46] Mark A Overton. Romu: Fast nonlinear pseudo-random number
generators providing high quality. arXiv preprint arXiv:2002.11331,
2020.

[47] Inc. OWASP Foundation. Owasp top ten 2017. https:
//owasp.org/www-project-top-ten/2017/A9 2017-Using Components
with Known Vulnerabilities. Accessed: 2022-04-26.

[48] Shankara Pailoor, Andrew Aday, and Suman Jana. Moonshine: Opti-
mizing OS fuzzer seed selection with trace distillation. In 27th USENIX
Security Symposium (USENIX Security 18), pages 729–743, 2018.

[49] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-fuzz: fuzzing by
program transformation. In 2018 IEEE Symposium on Security and
Privacy (SP), pages 697–710. IEEE, 2018.

[50] Van-Thuan Pham, Marcel Böhme, Andrew Edward Santosa, Alexan-
dru Razvan Caciulescu, and Abhik Roychoudhury. Smart greybox
fuzzing. IEEE Transactions on Software Engineering, 2019.

[51] Mohit Rajpal, William Blum, and Rishabh Singh. Not all bytes are
equal: Neural byte sieve for fuzzing. arXiv preprint arXiv:1711.04596,
2017.

[52] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano
Giuffrida, and Herbert Bos. Vuzzer: Application-aware evolutionary
fuzzing. In Proceedings of the Network and Distributed System Security
Symposium (NDSS), 2017.

[53] rc0r. afl-utils. https://gitlab.com/rc0r/afl-utils/-/tree/master/afl utils.
Accessed: 2022-04-26.

[54] Lino Rodriguez-Coayahuitl, Alicia Morales-Reyes, Hugo Jair Escalante,
and Carlos A. Coello Coello. Cooperative co-evolutionary genetic
programming for high dimensional problems. In Thomas Bäck, Mike
Preuss, André Deutz, Hao Wang, Carola Doerr, Michael Emmerich,
and Heike Trautmann, editors, Parallel Problem Solving from Nature –
PPSN XVI, pages 48–62, Cham, 2020. Springer International Publish-
ing.

[55] Claude Sammut and Geoffrey I. Webb, editors. Particle Swarm
Optimization. Springer US, Boston, MA, 2010.

[56] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian
Schinzel, and Thorsten Holz. kafl: Hardware-assisted feedback fuzzing
for OS kernels. In 26th USENIX Security Symposium (USENIX Security
17), pages 167–182, 2017.

[57] Kosta Serebryany. Continuous fuzzing with libfuzzer and addresssani-
tizer. In 2016 IEEE Cybersecurity Development (SecDev), pages 157–
157. IEEE, 2016.

[58] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu
Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and
Giovanni Vigna. Driller: Augmenting fuzzing through selective sym-
bolic execution. In NDSS, volume 16, pages 1–16, 2016.

[59] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One
pixel attack for fooling deep neural networks. IEEE Transactions on
Evolutionary Computation, 23(5):828–841, 2019.

[60] El-Ghazali Talbi. Metaheuristics: From Design to Implementation.
Wiley Publishing, 2009.

[61] Frans Van Den Bergh and A. P. Engelbrecht. An Analysis of Particle
Swarm Optimizers. PhD thesis, ZAF, 2002. AAI0804353.

[62] Dmitry Vyukov. syzkaller - kernel fuzzer. https://github.com/google/
syzkaller. Accessed: 2022-04-26.

[63] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. Taintscope: A
checksum-aware directed fuzzing tool for automatic software vulner-
ability detection. In Security and privacy (SP), 2010 IEEE symposium
on, pages 497–512. IEEE, 2010.

[64] Yunchao Wang, Zehui Wu, Qiang Wei, and Qingxian Wang. Neufuzz:
Efficient fuzzing with deep neural network. IEEE Access, 7:36340–
36352, 2019.

[65] Lichao Wu, Gerard Ribera, Noemie Beringuier-Boher, and Stjepan
Picek. A fast characterization method for semi-invasive fault injection
attacks. In Stanislaw Jarecki, editor, Topics in Cryptology – CT-RSA
2020, pages 146–170, Cham, 2020. Springer International Publishing.

[66] Mingyuan Wu, Ling Jiang, Jiahong Xiang, Yanwei Huang, Heming
Cui, Lingming Zhang, and Yuqun Zhang. One fuzzing strategy to rule

them all. In Proceedings of the International Conference on Software
Engineering, 2022.

[67] Tai Yue, Pengfei Wang, Yong Tang, Enze Wang, Bo Yu, Kai Lu,
and Xu Zhou. EcoFuzz: Adaptive Energy-Saving Greybox Fuzzing
as a Variant of the Adversarial Multi-Armed Bandit. In 29th USENIX
Security Symposium (USENIX Security 20), 2020.

[68] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim.
QSYM: A practical concolic execution engine tailored for hybrid
fuzzing. In 27th USENIX Security Symposium (USENIX Security 18),
pages 745–761, 2018.

[69] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong
Zhu, and Limin Sun. FIRM-AFL: high-throughput greybox fuzzing
of iot firmware via augmented process emulation. In 28th USENIX
Security Symposium (USENIX Security 19), pages 1099–1114, 2019.

[70] Peiyuan Zong, Tao Lv, Dawei Wang, Zizhuang Deng, Ruigang Liang,
and Kai Chen. Fuzzguard: Filtering out unreachable inputs in directed
grey-box fuzzing through deep learning. In 29th USENIX Security Sym-
posium (USENIX Security 20), pages 2255–2269. USENIX Association,
August 2020.

APPENDIX

A. Evolutionary Algorithms

The pseudocode for evolutionary algorithms is given in
Algorithm 3, while in Figures 8(a) and 8(b), we present
mutations working on floating-point and binary encoding,
respectively.

Algorithm 3 Pseudocode for EA.
t← 0
P (0)← CreateInitialPopulation
repeat
t← t+ 1
P ′(t)← SelectionMechanism (P (t− 1))
P (t)← V ariationOperators(P ′(t))

until TerminationCriterion
Return OptimalSolutionSet(P)

0.11 0.27 0.34 0.180.06 0.27

0.11 0.27 0.34 0.181.12 0.27

(a) Depiction of perturbation for real-valued
vector. The sum of all values does not need
to be equal to 1 and every gene must have a
non-negative value.

0 1 1 01 1

0 0 1 01 1

(b) Depiction of perturbation for binary
vector.

Fig. 8. Perturbation operators for various solution encodings. The gene
depicted in the blue color is mutated.

B. Experiments on Encoding & RNG

We depict the evaluation results for different encodings and
RNGs in Table VIII

16

https://owasp.org/www-project-top-ten/2017/A9_2017-Using_Components_with_Known_Vulnerabilities
https://owasp.org/www-project-top-ten/2017/A9_2017-Using_Components_with_Known_Vulnerabilities
https://owasp.org/www-project-top-ten/2017/A9_2017-Using_Components_with_Known_Vulnerabilities
https://gitlab.com/rc0r/afl-utils/-/tree/master/afl_utils
https://github.com/google/syzkaller
https://github.com/google/syzkaller

TABLE VIII. AVERAGED EXECUTIONS PER SECOND REACHED WITH
THE RESPECTIVE VARIATION OF DARWIN. POSITIVE PERCENTAGES THAT
DARWIN WAS THIS MUCH FASTER THAN THE FUZZER IN THE COLUMN.

DARWIN D-Std. RNG D-Real Valued
Benchmark execs/s execs/s execs/s
cxxfilt 2210.41 2151.47 1860.02
objcopy 2610.73 2630.80 2678.77
objdump 1687.52 2161.75 2225.95
readelf 3405.55 2711.17 2815.48
size 3140.08 2733.33 2910.92
strip 2686.19 2492.25 2665.44
geomean +3.62 % +2.42%

C. Seed Used for Binutils

We build a minimal ELF seed testcase for binutils to
achieve adequate execution speed. Its code is depicted in List-
ing 1.

1 e x t e r n ”C” vo id s t a r t () {
2 asm (”mov $60 , %r a x \n\ t
3 xor %r d i , %r d i \n\ t
4 s y s c a l l ”) ;
5 }

Listing 1. Source code for binutils seed, calling sys_exit.

D. LAVA-M - Finding Known Bugs

LAVA-M [14] is a synthetic set of bugs inserted into
the GNU coreutils suite. These hard-to-reach bugs are in-
jected automatically into the real-world binaries who, uniq,
md5sum, and base64. While LAVA-M has questionable
implications on real-world performance, it is commonly used
to evaluate fuzzers in research [4], [52], [49], [12], [64],
[39]. As LAVA-M is heavily focusing on comparisons, LAVA-
M favors approaches that concentrate on improving mutation
operators themselves [4]. Hence, we keep this for the sake of
completeness here in the abstract. While the benchmark pro-
vides one initial test case per target, we added an uninformed,
empty test case for each target to be consistent with our other
experiments. Each target is fuzzed for five hours, as commonly
done for the LAVA-M benchmark in fuzzing papers [39], [4],
[52]. Table IX depicts the results for DARWIN, MOPT, and
AFL over three runs. Notably, DARWIN is the only fuzzer in
our evaluation that finds bugs across all targets and consistently
finds the highest number of bugs in each target. For uniq
and who, which are the only targets where all fuzzers found
bugs, we further analyze in which fuzzing loop stage the
bugs were found. In the case of uniq, DARWIN finds 50%
of the bugs using the havoc stage, while MOPT and AFL
exclusively found all bugs using splicing. For who, the havoc
stage attributes for one-third of the bugs found by DARWIN,
whereas on AFL, the havoc stage accounts for 20% of the
bugs. On MOPT, the havoc stage is never successful in finding
a bug, possibly because some mutators are never scheduled.
By comparing the maximum numbers found per fuzzer, we
can conclude that DARWIN found more bugs than just the
overlap between all fuzzers. Finally, DARWIN’s approach for
mutation scheduling is orthogonal to, e.g., improvements in
overcoming branch checks [12], [68], [4], and can be used to
optimize the scheduling of the respective mutation operators
to achieve a synergetic effect.

TABLE IX. CRASHES FOUND IN LAVA-M, AVERAGE CRASHES OVER
THREE RUNS AS WELL AS THE HIGHEST NUMBER OF CRASHES

ENCOUNTERED WITHIN AN INDIVIDUAL RUN.

DARWIN MOPT AFL
Benchmark Avg. Max. Avg. Max. Avg. Max.
base64 1 2 0 0 0.33 1
md5sum 0.33 1 0.33 0 0 0
uniq 3.67 4 0.33 1 0.33 1
who 3 3 2 2 2.67 3
Total 8 10 2.67 3 2.33 1

E. Mutations in the AFL Havoc Stage

Table X lists all mutations defined in the AFL havoc stage.

ID Description
0 Flip single bit
1 Set byte to interesting value
2 Set word to interesting value
3 Set dword to interesting value
4 Randomly subtract from byte
5 Randomly add to byte
6 Randomly subtract from word
7 Randomly add to word
8 Randomly subtract from dword
9 Randomly add to dword

10 Set a random byte to a random value
11 Delete Bytes
12 Delete Bytes
13 Clone bytes (75%) or insert a block of constant bytes (25%)
14 Overwrite bytes with a randomly selected chunk (75%) or

fixed bytes (25%)
15 Overwrite bytes with an extra
16 Insert an extra

TABLE X. MUTATIONS DEFINED IN THE AFL HAVOC STAGE,
DESCRIPTIONS TAKEN FROM THE AFL SOURCE CODE [29]. EXTRA

REFERS TO TARGET-SPECIFIC DICTIONARY ENTRIES. 11 AND 12 TRIGGER
THE SAME MUTATION TO INCREASE SELECTION PROBABILITY BASED ON

PRACTICAL EXPERIENCE.

17

	Introduction
	Background
	Fuzzing
	Fuzzing Loop of Mutational Fuzzers
	Metaheuristics

	Challenges
	DARWIN Design
	Metaheuristics and Mutation Scheduling
	Evolution Strategy as used in DARWIN
	Solution Encoding and Perturbation
	Objective Function

	Implementation
	Evaluation
	Evaluating Coverage
	Parameter Selection
	Execution Speed versus Efficiency
	MAGMA - Time-to-Bug Evaluation
	Crashes

	Related Work
	Mutation Strategies
	Seed-selection Algorithms
	Algorithmic Improvements vs. Optimizing Execution Speed

	Conclusion
	References
	Appendix
	Evolutionary Algorithms
	Experiments on Encoding & RNG
	Seed Used for Binutils
	LAVA-M - Finding Known Bugs
	Mutations in the AFL Havoc Stage

