
Post-GDPR Threat Hunting on Android Phones:
Dissecting OS-level Safeguards of

User-unresettable Identifiers

Mark Huasong Meng∗§‡, Qing Zhang†, Guangshuai Xia†, Yuwei Zheng†, Yanjun Zhang¶§,
Guangdong Bai§�, Zhi Liu†, Sin G. Teo‡, Jin Song Dong∗

∗National University of Singapore, †ByteDance, ¶Deakin University, Australia,
§The University of Queensland, Australia, ‡Institute for Infocomm Research, A*STAR, Singapore

{menghs, teo_sin_gee}@i2r.a-star.edu.sg, g.bai@uq.edu.au, dcsdjs@nus.edu.sg

Abstract—Ever since its genesis, Android has enabled apps to
access data and services on mobile devices. This however involves
a wide variety of user-unresettable identifiers (UUIs), e.g., the
MAC address, which are associated with a device permanently.
Given their privacy sensitivity, Android has tightened its UUI
access policy since its version 10, in response to the increasingly
strict privacy protection regulations around the world. Non-
system apps are restricted from accessing them and are required
to use user-resettable alternatives such as advertising IDs.

In this work, we conduct a systematic study on the effective-
ness of the UUI safeguards on Android phones including both
Android Open Source Project (AOSP) and Original Equipment
Manufacturer (OEM) phones. To facilitate our large-scale study,
we propose a set of analysis techniques that discover and assess
UUI access channels. Our approach features a hybrid analysis
that consists of static program analysis of Android Framework
and forensic analysis of OS images to uncover access channels.
These channels are then tested with differential analysis to
identify weaknesses that open any attacking opportunity. We have
conducted a vulnerability assessment on 13 popular phones of 9
major manufacturers, most of which are top-selling and installed
with the recent Android versions. Our study reveals that UUI mis-
handling pervasively exists, evidenced by 51 unique vulnerabilities
found (8 listed by CVE). Our work unveils the status quo of the
UUI protection in Android phones, complementing the existing
studies that mainly focus on apps’ UUI harvesting behaviors. Our
findings should raise an alert to phone manufacturers and would
encourage policymakers to further extend the scope of regulations
with device-level data protection.

I. INTRODUCTION

It is well known that many Android apps collect personally
identifiable information (PII) from mobile devices to track
users for the claimed purpose of enhancing user experience
and personalization [45], [51], [57], [84]. Many types of PII
are user-unresettable, such as the device ID and SIM card
information, and thus we refer to them as user-unresettable
identifiers (UUIs). They are not as easily replaceable as

This work is partly done when Mark Huasong Meng is with the TrustLab
of the University of Queensland. Guangdong Bai is the corresponding author.

a password once leaked, so they deserve strict protection.
Nevertheless, there is no way for the users to restrict how
the apps use the collected UUIs. Additionally, a few popular
analytics or advertisement libraries are so extensively reused
among apps that cross-app behavior tracking and user profiling
become viable [5], [7], [11], [55], [68], [75], [76], [87] through
UUIs.

The protection of personal data has gained a great deal
of attention around the world. Many countries have put in
place legislation to regulate the collection and use of personal
data [15], [16], [17], [72], such as the well-known European
Union (EU) General Data Protection Regulation (GDPR) [70].
They impose strict obligations on data controllers. Infringe-
ments of user privacy could result in large penalties, e.g., “a
fine of up to C20 million, or 4% of the firm’s worldwide
annual revenue” set by GDPR [78]. Google recently also has
taken steps to enforce new privacy features to restrict apps’
use of user data, especially on the UUIs [27], [28], [29]. Since
Android 10, most UUIs are regulated with a new privileged
permission of READ_PRIVILEGED_PHONE_STATE, which is only
granted to privileged system apps [26] and the apps signed
with the platform key1. Desensitized, app-unique and user-
resettable identifiers (e.g., Android advertising IDs [25]) are
introduced, and apps are required to use them whenever an
identifier is in need. App developers are also required to release
a privacy policy to disclose their apps’ access, collection, use,
and sharing of user data. They are obligated to engage proper
mechanisms for securely handling data within the disclosed
purposes [21].

The data exfiltration in Android has been extensively
studied by the research community. Many efforts have been
made to analyze data harvesting behaviors of third-party apps
and their consequences through a variety of techniques such as
program analysis [3], [14], [56], [83] and traffic analysis [2],
[9], [77]. However, these offer only a partial view of the UUI
exfiltration in the entire Android ecosystem. The complemen-
tary question of whether the operating systems (OSes) them-
selves comprehensively safeguard UUIs still remains open.
Existing related research mainly focuses on identifying side

1Both are referred to as system apps hereafter. In contrast, we use non-
system apps to denote the apps whose protectionLevel is normal or danger-
ous. In the remaining of this paper, apps indicate only non-system apps unless
stated otherwise.

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.23176
www.ndss-symposium.org



channels and covert channels [50], [58], [66], but there is
still a lack of systematic and rigorous assessment of OS-
level protection. Researchers may have simply assumed the
OSes are able to securely manage the UUIs as they claim,
particularly after a decade’s advancement of Android. Indeed,
some Android phones even have been certified with reputable
standards before they are put on the market [8], [43], [61],
[62].

In this work, we bridge this gap by conducting a compre-
hensive analysis of Android’s OS-level enforcement of UUI
protection. We first review Android’s updates on its privacy
policy in its two most up-to-date versions (10 and 11) as of
December 2021, and we have identified six types of UUIs that
have been stipulated by Google as restricted or inaccessible
by non-system apps. We assess the documented interfaces that
Android exposes for apps to access them, using a “regression
testing” paradigm that invokes the APIs following the manners
documented in the versions prior to Android 10 (i.e., API level
29). A non-regression, which occurs if a UUI is still accessible
through any API, is reported as a failure.

Our approach also considers undocumented interfaces. It
takes the six UUIs as seeds to discover software components
and files (referred to as access channels) that UUIs may flow
through, guided by the intuition that these channels are likely
to engage other unknown UUI types and OEM-customized
UUIs as well. In particular, it takes the APIs used to access the
six UUIs as entry points and traces the call chain within the
Android Framework using static analysis. The publicly acces-
sible functions in the call stack are grouped for identifying the
components they belong to. It also searches the dumped device
images for the files hosting any of the six UUIs, and links
them to software modules that manage them. Our approach
manages to identify three categories of undocumented access
channels, including system services, system properties, and
system settings. The former represents various modules that
serve APIs such as the TelephonyManager, while the latter
two cover the main mechanisms that Android uses to share
runtime and non-dynamic global device information.

The identified access channels are then assessed for weak-
nesses. The first challenge we overcome is to discover all
app-accessible interfaces exposed by them. For the system
services, we employ a hacking way to enumerate all methods
in the service under testing. We use Java reflection to get
the binder stub object and send it transactions containing
method code, which is a short integer (so it is enumerable),
via Android’s binder interprocess communication (IPC). For
the system settings and system properties, we obtain all keys
via the Android Debug Bridge (ADB) debugger and enumerate
them during our testing. The second challenge is to recognize
UUIs from the obtained values, mainly unknown and OEM-
defined UUIs. We use differential analysis to address this.
Intuitively, our testing is repeated after rebooting and factory
resetting the phone, and across phones of the same model.
Only those device-unique values that have a non-short size and
remain stable after rebooting and factory resetting are reported.

We apply our approach to assess phones of 13 models from
9 manufacturers. They are installed with the official AOSP or
an OEM Android that is supposed to inherit the strict privacy
policies and restrictions of AOSP. They all are the latest models

of their manufacturers and represent over 87% of the global
market share of Android devices [67] as of April 2022.

Key findings. Our study is the first to rigorously investigate
the OS-level UUI protection in Android. We unveil the status
quo of this critical safeguard. Our key findings are summarized
below.

• Landscape of OS-level UUI safeguards. The UUI mis-
handling issues are pervasive in the latest Android phones.
Our study finds a total of 51 unique vulnerabilities, leading
to 65 occurrences of UUI leakages. Almost every phone
except AOSP 11 contains at least one UUI leakage, with
the highest 10, mean 6, and median 5. AOSP is less sus-
ceptible to this issue than OEM OSes. Nonetheless, even
though Google has proclaimed that the access to UUIs
is tightened, we have found one non-trivial vulnerability
from AOSP, which fails to be fixed due to incompatibility
issue after Google has acknowledged it.

• Exfiltration points. The undocumented access channels
are the major exfiltration points (45 out of all 51 vul-
nerabilities). Among them, 5 are caught from the system
services, 10 in system settings, and the remaining 30 from
system properties.

• Whitelisting issues. We find an issue in the phones of
three manufacturers who excessively use the whitelisting
mechanism in regulating the invocations of sensitive APIs.
Due to flawed identity validation, a malicious app can trick
the whitelisting mechanism and circumvent permission
control to collect UUIs. It is the first time that such issues
have been revealed to the public.

• Exploits in the wild. The broad UUI collection by apps
in the wild is not observed in our study, but the identified
channels have been (ab)used by a few popular apps from
major app stores. We find that 12 out of analyzed 300
apps have relevant behaviors. All their accesses to UUIs
are through undocumented access channels.

Contributions. The main contributions of this work are sum-
marized as follows:

• Understanding OS-level UUI protection. We conduct
the first comprehensive study on the Android OS-level
UUI protection. Our work complements existing studies
on app-level data harvesting behaviors, completing the PII
protection research in the entire Android ecosystem.

• A systematic assessment approach. We propose a set of
analysis techniques to automatically discover and assess
UUI access channels on Android phones. Our approach
features a hybrid analysis and applies to a broader range
of Android devices and future versions of Android.

• Revealing the status quo of UUI protection. We present
the landscape of UUI safeguards in the latest popular
Android phones from major manufacturers. Our work
should raise an alert to the manufacturers and encourage
policymakers to further extend the scope of regulations
with device-level data protection.

II. BACKGROUND

This section introduces relevant background of Android’s
permission control, and the implication of the emerging per-
sonal data protection legislation to the Android ecosystem.

2



A. Android Permission System

Android enforces strong isolation on its apps with the
security mechanisms inherited from Linux, such as Linux user
identifier (UID) and SELinux. The execution and data storage
of the apps are strictly sandboxed. It employs a permission-
based mechanism to regulate the resource access by the
apps. All data and services on a device are protected with
permission labels, and only the apps that are granted with
correct permissions can access them.

The typical permission labels are grouped into three pro-
tection levels according to their sensitivity [33]. The lowest
level is the normal protection level, and permissions at this
level are automatically granted to the apps at the installation
time. Many essential but insensitive permissions are classified
into this level, such as wallpaper setting and vibration. A
higher protection level is the dangerous level (also known
as the runtime permissions). To access any API protected
by dangerous-level permissions, the app must have properly
requested the access in its manifest file and gained the user’s
explicit consent at runtime. Typical dangerous permissions
include accessing photos and geographic location. Non-system
apps can at most obtain permissions at the dangerous level.
The remaining protection level is the signature level, which is
designed for privileged operations. Permissions at this level can
only be granted to apps developed by the entity that defines
them. Therefore, only system apps, such as the settings app
and the camera app, can request signature-level permissions
pre-defined by the device manufacturer.

B. Android’s Response to Data Regulations

In recent years, many governments around the world have
issued relevant laws and regulations to enforce the protection
of user privacy. The EU GDPR [16] is a well-known example.
It comes with a comprehensive regulation over the entire life-
cycle of personal data, ranging from the access and collection
of those data, their cross-border transmission, until the dele-
tion. It ensures users with the right to be informed and the right
to consent. Together with another EU law titled the Privacy
and Electronic Communications Directive (better known as
ePrivacy Directive) [15], it enforces that any information that
facilitates in identifying a user is not allowed to be collected
without the user’s explicit consent.

In response to these regulations, mobile device manufac-
turers have started taking action. For example, the industry
standards of mobile user privacy protection are made by the
association of several device manufacturers [41]. Android also
imposes strict privacy policies to regulate apps in handling user
data, as Google’s strategic response to the ePrivacy Directive
and the GDPR [48]. Below, we present a brief review of the
evolution of its privacy policies.

In its early versions, apps are provided with two convenient
ways to obtain information that can identify the device. First,
they can request an Android ID (i.e., the Settings.Secure.
ANDROID_ID, or the SSAID), which is generated based on the
device hardware ID and the user ID. Second, they can request
permissions, which are primarily in the dangerous protection
level, to read the device or system status, including the serial
number and the MAC address.

After Google rolled out a series of privacy rules, these
two ways have been disabled. Since Android 8, the public
key of the app developer is incorporated in the Android
ID generation so that the Android ID becomes app-unique.
This prevents cross-app user tracking, unless among apps of
the same developer. Android also introduces an alternative
called Android advertising ID [25] to facilitate apps with
advertisement needs. It can identify a specific user on a
particular device, but unlike UUIs, the user is free to reset
it. Google has escalated the permission of accessing UUIs
since Android 10. Most UUIs are regulated with a new
privileged permission READ_PRIVILEGED_PHONE_STATE, which
is only granted to system apps, indicating that the access of
non-system apps is revoked. In Section III-B, we present more
details on the UUI access policies.

III. UNDERSTANDING ANDROID UUIS

Although the data collection on Android has been ex-
tensively studied [58], [60], [64], [90], there still lacks a
comprehensive understanding of Android UUIs. In this section,
we present our definition of UUIs (Section III-A). We then
summarize the UUIs recognized in Android documents and
widely discussed in the literature (Section III-B), and charac-
terize them (Section III-C).

A. Definitions and Scope

We consider the information that can be used to directly
or indirectly identify a device as identifiers. We refer to an
identifier that has permanent binding with a device, e.g.,
the hardware equipment ID, as a user-unresettable identi-
fier (UUI). They require complex processes, if not impossible,
for the users to reset or revoke, and thus are termed user-
unresettable.

B. Recognizing UUIs

Since there is a lack of a comprehensive list of Android
UUIs as the target of our study, we attempt to recognize some
to guide the design of our assessment approach. We resort to
two sources for this purpose, and we have identified six types
as listed in column 2 of Table I. In the following, we present
these two sources, defering the discussion on the identified
UUIs in Section III-C.

Android’s official documentation. When new versions (10
and 11) of Android are released, their privacy updates are
disclosed in the developer documentation (see [28] for Android
11 and [27] for Android 10). These updates are introduced for
the purpose of fixing security and privacy vulnerabilities, or
complying with the data protection regulations such as the
GDPR. They indicate the data that have raised the concerns of
users, Android developers and policymakers, and thus become
an ideal source.

We examine the documented updates to identify those
identifiable and unresettable items, with a focus of two types.
The first type includes the items that any privacy feature
is designated to protect. For example, Android introduces
MAC address randomization in Android 10 and requires
the signature-level permission NETWORK_SETTINGS to disable
it [29], to prevent apps from obtaining the real MAC address,

3



TABLE I: List of recognized Android UUIs

Literature
No.UUI Category Permission Updates across Android Versions† Considered Sensitive in Collection Techniques Used Validity in

Android 11
1 Serial

number
Chip &
Cellular

v8-9: READ_PHONE_STATE required.
>v10: READ_PRIVILEGED_PHONE_STATE required.

[57], [59], [68], [69] Documented APIs: [68]
System services: [69]

7 (since v10)
3

2 Device ID
(IMEI or
MEID)

<v10: READ_PHONE_STATE required.
>v10: READ_PRIVILEGED_PHONE_STATE required.

[7], [14], [20], [37], [46], [54],
[56], [57], [58], [59], [60],
[68], [69], [74], [77]

Documented APIs: [14], [20], [56], [58], [68]
System properties: [7]
System services: [69]

7 (since v10)
3
3

3 ICCID <v10: READ_PHONE_STATE required.
>v10: READ_PRIVILEGED_PHONE_STATE required.

[14], [46], [54], [56], [57], [59],
[60], [69], [74], [77]

Documented APIs: [14], [56]
System services: [69]

7 (since v10)
3

4 IMSI <v10: READ_PHONE_STATE required.
>v10: READ_PRIVILEGED_PHONE_STATE required.

[14], [20], [46], [54], [56], [57],
[58], [59], [60], [69], [77]

Documented APIs: [14], [20]
System services: [69]

7 (since v10)
3

5 Bluetooth
MAC address

Wireless
Module

All versions: BLUETOOTH required.
>v6: Randomization or a fixed return value required.
v6-10: ACCESS_COARSE_LOCATION or
ACCESS_FINE_LOCATION required.
>v10: ACCESS_FINE_LOCATION becomes mandatory

[68] Documented APIs: [68] 7 (since v6)

6 WiFi MAC
address

All versions: ACCESS_WIFI_STATE required.
v6-9: Randomization suggested.
>v10: Randomization becomes mandatory.

[7], [20], [37], [54], [57], [58],
[59], [60], [63], [74], [77]

ioctl usage: [58]
Documented APIs: [20], [63], [68]
Read from /sys/class/net: [63]

7 (since v6)
7 (since v10)
7 (since v7)

† The color schemes indicate the permission protection levels: normal , dangerous and signature .

so we identify it as a UUI. In this way, we have recognized
UUIs #5 and #6 (column 1 of Table I).

The second type includes the items that are involved
in any update on their permission levels or are newly
taken into Android’s permission control. For example, we
include the IMEI because the permission requirement for the
IMEI is escalated from the READ_PHONE_STATE permission to
READ_PRIVILEGED_PHONE_STATE since Android 10, where the
former can be granted to a non-system app, but the latter is
limited to system apps only. In this way, we have identified
UUIs #1-5.

Literature. Besides Android official documentation, we also
refer to the literature for other UUI types. Since the UUIs
have not been widely discussed, we expand our scope to the
literature on Android data harvesting. We start with Wang
et al. [74] and Shen et al. [64] that are the most recent
publications in this area, and then track other publications
they cite. The scope of referenced literature covers personal
information gathering [7], [46], [54], [59], [60], [74], user
tracking [12], [13], [52], [90], log and traffic monitoring [57],
[64], [68], [77], covert/side channels [6], [58], [79], [86]
and various app analysis techniques [14], [20], [56], [69].
We examine the data types that are considered sensitive by
these studies and include only those unresettable items in our
list. This helps us find the UUIs that concern our research
community.

We summarize the UUIs identified from the literature in
column 5 of Table I. They cover all types we have recognized
from Android documentation. Besides the UUI types, we also
have reviewed the UUI collection techniques proposed in the
literature (column 6) and assessed their validity in the latest
versions (column 7). We note that most of them have been
fixed or disabled with the evolution of Android (marked as
7 in column 7).

C. Characterizing Android UUIs

The six recognized UUIs can be classified into two cate-
gories based on the components they are associated with (col-
umn 3 of Table I). In the following, we briefly describe them.

Chip and cellular identifiers (4 UUIs). A phone has several
unique alphanumeric codes for the purposes of identifying the
device or establishing cellular communication with the base
station.

Serial numbers (UUI #1 in Table I). Each phone is
manufactured with a serial number, which is used for the
manufacturers to trace their products during the manufacturing
process and post-sale warranty service.

Device IDs (UUI #2). Each phone equipped with a cellular
module owns a device ID. It is a fixed-length decimal digits
formatted by authorities or cellular service providers. For the
devices registered to use the Global System for Mobile Com-
munication (GSM) service, the device ID is the International
Mobile Equipment Identity (IMEI), while for Code Division
Multiple Access (CDMA) devices, it is the Mobile Equipment
Identifier (MEID).

SIM card IDs. SIM card IDs include the Integrated Circuit
Card ID (ICCID, UUI #3) and the International Mobile
Subscriber Identity (IMSI, UUI #4).

These four UUIs have been considered highly sensitive in
the latest Android versions. Prior to Android 10, an app can
access them if it is granted a dangerous-level permission named
READ_PHONE_STATE. Since Android 10, the access to them have
been restricted to only system apps.

Wireless module identifiers (2 UUIs). Network communi-
cation through WiFi and Bluetooth has been incorporated by
almost all Android phones. Two UUIs, i.e., the WiFi media
access control (MAC) address and the Bluetooth MAC address
are used to identify a device during communication. Android
has enforced strict regulations on both of them since Android
10 (see Table I). Bluetooth and WiFi MAC addresses can only
be returned after randomization or masking with an all-0 string.

IV. OVERVIEW OF OUR APPROACH

After recognizing the six UUIs, we design and implement
U2-I2 (short for UUI investigator)2 which systematically in-
vestigates the OS-level UUI protection at large scale. We note

2U2-I2 is available at https://uq-trust-lab.github.io/u2i2/.

4

https://uq-trust-lab.github.io/u2i2/


that U2-I2 is designed to assess the protection of not only
the six known UUIs, but also other previously unreported
ones (detailed in Section VI).

A. Objectives and Threat Model

U2-I2 aims to 1) detect programmable interfaces through
which a malicious non-system app can access a UUI without
the required permissions, 2) identify inconsistency between
the de facto permissions imposed on a UUI and Android’s
documented policy, and 3) discover non-compliance of AOSP’s
privacy policy on the OEM OSes.

Threat model. We consider an attacker who aims to collect
UUIs from the mobile device of the victim. The attacker’s
capabilities are defined as follows.

First, the attacker runs its UUI collector only as a non-
system app on the victim’s device, or as a software library
imported by a non-system app.

Second, the attacker’s app is granted the Internet per-
mission, which is used only for transmitting the collected
data. Other than that, it requires no permission when using
undocumented channels (Section VI). It can be granted the
permissions that are valid in an earlier version of Android
when using the documented interfaces (Section V).

Third, the attacker is able to conduct reconnaissance, profil-
ing and analysis offline on various Android devices and OSes.
There is no restriction on this, meaning that the attacker can
obtain static/runtime information of the devices, and pre-built
OSes and firmware, such as the signatures of packages/class-
es/methods and file system structure, via rooting the device,
reverse engineering the firmware, and debugging/testing the
OSes.

B. Challenges and Approach Overview

The core idea of U2-I2 is to identify the access channels
through which non-system apps may obtain any UUI, generate
test cases tailored for an arbitrary Android device, and com-
prehensively test them to pinpoint weaknesses that may lead
to a UUI leakage. During the investigation, the following main
challenges are alleviated.

Challenge 1: Identifying undocumented access channels. U2-
I2 tests the APIs listed in Android documentation, as detailed
in Section V. Besides that, there may exist undocumented in-
terfaces due to the complexity of Android. OEM manufacturers
may also introduce customized interfaces. Therefore, U2-I2
explores other possible unprivileged access channels. This is
detailed in Section VI-A.

Challenge 2: Automating assessment process. Due to the
fragmentation, the ways to access a certain UUI on Android
devices may greatly differ from each other. As U2-I2 aims to
comprehensively assess multiple access channels in AOSP and
multiple heterogeneous OEM phones, its assessment process
is automated as much as possible to make it scalable.

Challenge 3: Pinpointing customized UUIs. The six rec-
ognized UUIs may just be the tip of the iceberg. Device
manufacturers may define new types of UUIs, which also
put users’ privacy at risk if they are not properly protected.
Therefore, U2-I2 employs a differential testing to pinpoint

UUIs that are customized by device manufacturers yet to be
widely recognized and studied. This is detailed in Section VI-B
and VI-C.

V. ASSESSING DOCUMENTED CHANNELS

Android developer documentation details the
programmable interfaces to access data on the device.
U2-I2 thus searches it for the APIs for retrieving the six
known UUIs. It identifies nine distinct relevant APIs, which
are listed in the first two columns of Table II. It turns out
that for any of our recognized UUIs, Android provides at
least one API in particular versions. The API for reading
the serial number is provided by the Build class, while
those chip and cellular-specific UUIs are mainly managed by
the TelephonyManager. APIs for wireless module identifiers
are distributed in three classes (i.e., BluetoothAdapter,
WifiManager and WifiInfo).

U2-I2 builds a non-system app to test these interfaces.
It takes the strategy of software regression testing. In par-
ticular, given that the vulnerabilities are more likely to be
introduced during version upgrading or OS customization, the
tester app includes the cross-version validation and the cross-
manufacturer validation, which validate whether the security
policies specified in the official documentation are complied
with by various Android versions and various devices. During
the testing, we check the following two types of errors.

Legacy permissions. As shown in column 5 of Table I, the
imposed permission control on each UUI since Android 10
becomes disparate from that in the earlier versions. Some
devices thus may fail to keep their permission controls up to
date. To identify non-compliance of this type, U2-I2 grants the
tester app either a permission valid for only earlier versions,
or none of the required permissions, and then checks whether
it can still obtain the UUI. For example, the getSerial()
method is restricted to only system apps since Android 10,
so any invocation from a non-system app, even with the
READ_PHONE_STATE permission that is valid in version 8 and
9, should trigger a security exception in Android 10 or 11.

Missing de-identification. Android documentation also claims
that some APIs return randomized UUIs to non-system apps,
e.g., the Bluetooth MAC address. When testing these APIs,
we pass the test harness (e.g., required permissions and gen-
uine identifiers) to U2-I2. It grants the tester app required
permissions and compares the return values with the genuine
identifiers to validate whether the randomization is conducted
on the UUIs it retrieves.

VI. DISCOVERING AND ASSESSING UNDOCUMENTED
ACCESS CHANNELS

U2-I2 proposes a three-phase approach to exploring and as-
sessing undocumented access channels, as shown in Figure 1.
In this section, we present each phase.

A. Access Channel Exploration

The access channel exploration of U2-I2 (step ¶ in
Figure 1) takes the six known UUIs as seeds, considering
that other unknown UUIs may share the same set of access
channels. It uses the following two techniques to explore
undocumented access channels.

5



Phase 2

Filtering

UUI Manifest Pre-identified UUIs
(47 occurrences)

Vulnerability Report

① Access Channel Exploration ④ UUI Identification③ Testing

Read system properties

Read runtime data from 
system services

3 Tables in the System Settings

phone
wifi
package

… …

Bluetooth_manager
activity
device_identifiers

[ro.serial]: [*******]
[os.version]: [*****]
[persist.radio.volte0.iccid]: [****]
[gsm.network.type]: [*****]

… …

/data/system/users/0/settings_secure.xml

/data/system/users/0/settings_global.xml

/data/system/users/0/settings_system.xml

② Retrieving Entry Points

Test all service interfaces

Misc. UUIs 
(14 confirmed UUIs)

Serial: ***************
IMEI/MEID: *********
IMSI: *****************
ICCID: **************
WiFi MAC: **********
Bluetooth MAC: ****

$ adb shell service list

6 U
U

Is

$ adb shell getprop

$ adb shell content query –uri
content:/settings/global

Enumerate all properties

System.getProperty(“prop_name”)

Query all keys via settings Provider

Settings.System.getString(“key_name”)

Settings.Global.getString(“key_name”)

Settings.Secure.getString(“key_name”)

Serial *********

IMEI/MEID *********

IMSI *********

ICCID *********

WiFi MAC *********

Bluetooth MAC *********

Differential 
Analysis

$ adb shell content query –uri
content:/settings/secure

$ adb shell content query –uri
content:/settings/system

Control Flow Analysis

Forensics of the File System
≠

=

After factory reset

Same model devices

A

A

B

*

Search pre-identified UUIs 
from the manifest

6 U
U

Is

Phase 1 Phase 3

(Ibinder)getMethod(“getService”, …)
.invoke(null, “serviceName”)

***********
********
*
******
***********
***
******
*****
**
*********
***
*****
***
********

Fig. 1: The workflow of our UUI exploration and assessment through undocumented channels

TelephonyManager
getImei()

App

ITelephony$Stub$Proxy
getImeiForSlot(...)

ITelephony$Stub
getImeiForSlot(...)

PhoneInterfaceManager
getImeiForSlot(...)

(A
) 

g
e
t
I
m
e
i
(
)

(B
) 

g
e
t
S
e
r
i
a
l
(
)

Binder Proxy Binder Stub

Build
getSerial()

App

IDeviceIdentifiers-
PolicyService$Stub

getSerialForPackage(...)

SystemProperties
get(...)

IDeviceIdentifiersPolicy-
Service$Stub$Proxy

getSerialForPackage(...)

DeviceIdentifiers-
PolicyService

getSerialForPackage(...)

Legend
Public interfaces

Hidden interfaces

Direct call

Indirect call

IP
C

 (B
in

de
r)

Local Context Remote Context

(SA.I)

(SA.I)

(SA.II)

(SA.II)

(SA.III)

(SA.III)

(SA.IV)

(SA.IV)

GsmCdmaPhone
getImei()

Class inheritance

Fig. 2: Visualization of two typical control flows starting from
documented APIs

1) Static Control Flow Analysis: Typically, when an An-
droid app invokes an API in a service manager to access
system sources, the invocation would reach a local interface
in a Binder proxy. The proxy then sends the request to a
stub through Android’s inter-process communication (IPC)
mechanism, i.e., the Binder. The stub eventually invokes a
system service, which directly or indirectly (e.g., invoking
another component) serves the request. Figure 2 illustrates this
process with two typical control flows. Below we explain how
we use a static control analysis to identify the components
involved in serving UUI-related APIs.

First, we take an API (e.g., getImei()) as the entry
point and extract the method-level call relations (SA.I in
Figure 2) with the static analyzer soot [73]. It gives us a
path ending at the local interface of the service manager (e.g.,
getImeiForSlot()), which is defined in a Binder proxy (e.g.,
ITelephony$Stub$Proxy).

Second, we map the local interface to the correspond-
ing remote interface defined in a Binder stub class (SA.II).
Both the proxy and stub inherit from the same interface
class. For example, both ITelephony$Stub$Proxy (proxy) and
ITelephony$Stub (stub) inherit from ITelephony. They are
actually generated based on Android Interface Definition Lan-
guage (AIDL), and thus, they have the same method signa-
ture (i.e., method names, argument number and types, and
return types).

Third, we target to pinpoint the components the stub
invokes to serve the request. We first traverse the inheri-
tance of the remote interface to locate the method over-
riding the interface (SA.III) (e.g., getImeiForSlot() in
PhoneInterfaceManager). We then extract the call stack start-
ing with the method (SA.IV). By checking the involved classes
and packages in the path, we find that the call paths are within

the system services in most cases. For example, in Figure 2-A),
the path ends at getImei() in GsmCdmaPhone, which belongs
to the system service phone. Thus, we treat system services as
one of the access channels to assess in later phases.

Next, we examine the classes in the path that are out
of system services to explore additional access channels. We
find only one case of this type, as shown in Figure 2-B.
The serial number is not directly read from a system service
but is eventually queried from a system property. We thus
treat system properties as the second type of access channels.
They are used to store configuration and status information of
hardware and operating system, and are initialized at device
booting time [22]. A property is identified by its key (e.g.,
ro.serial for the serial number), and its value is stored inside
the system directory.

We present more details on our control flow analysis on
the two examples (Figure 2) in Appendix A. We note that we
do not target building an exhaustive call graph since our study
only aims to identify the components involved in UUI access.
Accordingly, we adopt a coarse-grained strategy: 1) a call to a
virtual method is resolved to call any of its subclasses, and 2)
a call to an interface is resolved to call any class implementing
it. Moreover, we only focus on the Java context in step SA.IV
as none of the APIs in Table II calls into a native system
service (further discussed in Section IX).

2) Forensics of the File Systems: Second, U2-I2 searches
for the values of the six UUIs in the dumped images of devices.
It excludes the directories that have been strictly restricted
by Android OS (e.g., /proc) and exclusive folders owned by
system apps (e.g., /sys). It catches the occurrence of some
UUIs (e.g., Bluetooth MAC addresses) from the .xml files
inside the /data/system/users/ directory. There are three
xml files located in that directory, namely Settings.Secure,
Settings.Global and Settings.System, which are altogether
known as the system settings. These settings act as key-value
databases to store a list of system-level device preferences,
which are defined by the OS and system apps. Therefore, U2-
I2 recognizes system settings as the third access channel.

B. Automatic Access Channel Testing

With the three undocumented access channels identified,
U2-I2 proceeds with testing them. Given an Android phone, it
first retrieves all entry points in each access channel (step · in
Figure 1) and then enumerates them during testing (step ¸).

6



TABLE II: Documented APIs to access six known UUIs and corresponding system services

UUI Developers API Name(s) System Service(s)
Serial android.os.Build.getSerial() device_identifiers

Device ID/IMEI/MEID
android.telephony.TelephonyManager.getImei() phone

android.telephony.TelephonyManager.getDeviceId() phone

android.telephony.TelephonyManager.getMeid() phone

ICCID android.telephony.TelephonyManager.getSimSerialNumber() phone

android.telephony.SubscriptionInfo.getIccId()† isub

IMSI android.telephony.TelephonyManager.getSubscriberId() phone

Bluetooth MAC android.bluetooth.BluetoothAdapter.getAddress() bluetooth_manager

WiFi MAC android.net.wifi.WifiInfo.getMacAddress()‡ wifi

† To invoke that API, the app must obtain an instance of SubscriptionInfo through another API SubscriptionManager.getActiveSubscriptionInfo() at first.
‡ To invoke that API, the app must obtain an instance of ConnectionInfo through another API WifiManager.getConnectionInfo() at first.

1) Retrieving Entry Points: U2-I2 leverages the Android
Debug Bridge (ADB) to identify entry points from the three ac-
cess channels. For system services, it uses adb shell service
list command to retrieve the full service list and the package
names of all services on the phone. For system settings, it uses
adb shell content query to retrieve the keys of all stored
entries, e.g., System.sim1_imsi. For system properties, it uses
adb shell getprop to retrieve the keys of all stored entries,
e.g., gsm.imei1.

We remark that ADB is not the only way to retrieve entry
points. In Appendix B, we list alternatives based on Java
interfaces. It is also worth noting that the presented steps can
be done offline by the attacker to obtain the entry points, and
the attack app needs no permission to query the values, as we
discuss next.

2) Testing: The actual testing of U2-I2 is through a tester
app installed on the phones to assess. We define each execution
of testing on a certain device as a testing session. For each
model, we test at least two distinct phones with the same
version of OS installed. Moreover, we also perform at least
two testing sessions on the same phone, on the premise of
conducting a factory reset over the device between different
sessions. Thus, we can collect the outputs in both cross-device
and cross-session manners for differential analysis (detailed
soon in Section VI-C). Below we detail our testing for each
access channel.

System services. The client and the server of an Android
system service use the same AIDL interface to facilitate their
RPCs. An IBinder interface is generated based on the AIDL
interface, and the service implements it. In a normal access,
i.e., when an app calls the getSystemService() method,
the client binds the service and then invokes the methods
from the returned IBinder object like normal procedure calls.
Nonetheless, this requires the caller to have an application
context, and the invocation is under the regulation of Android
permission system. U2-I2 thus resorts to a “hacking way”
through Java reflection to bypass the permission check by
getSystemService(). In the following, we take the exploit
code of accessing the serial number on one of our tested
devices as an example, as listed in Figure 3, to explain our
method.

First, U2-I2 calls the getService() method using Java
reflection to obtain the IBinder object (line 3 of Figure 3).
Here the service name, e.g., the “knoxcustom” in our example,
is obtained during entry point retrieval (Section VI-B1). It then

1 public static void getSerialNumber() {
2 try {
3 IBinder iBinder = (IBinder) Class.forName("android.os.

ServiceManager").getMethod("getService",String.class)
.invoke(null, "knoxcustom");

4 Parcel data = Parcel.obtain();
5 Parcel reply = Parcel.obtain();
6 data.writeInterfaceToken("com.samsung.android.knox.custom.

IKnoxCustomManager");
7 if (iBinder.transact(195, data, reply, 0))
8 String serialNumber = reply.readString();
9 ...

10 } catch (Exception e) { ... }
11 }

Fig. 3: Accessing serial number through system service on one
of the tested devices (exploitation of CVE-2021-25344)

specifies the service name and package name to construct the
parcels (line 6). We note that Android has explicitly listed
getService() as a non-SDK interface [31] and labeled it
as @UnsupportedAppUsage. In Section IX-B, we discuss our
recommendations on such non-SDK interfaces.

After obtaining the IBinder object, U2-I2 calls its
transact() method (line 7), which matches Binder’s
onTransact() interface. The latter then calls the service object
on the server side through Android’s binder mechanism. Here
the first argument is a code which is an integer between 1
to 224-1 that indicates the action to perform. For example,
by reverse engineering the image of the device we find that
195 in our example indicates the getSerialNum() method of
the IKnoxCustomManager. U2-I2 enumerates 1 to 224-1 during
testing so as to invoke every method defined in each bound
service. We learn from the analysis in Section VI-A that the
methods involved in system services are usually getter func-
tions that request zero or limited number of simple parameters.
Therefore, we test those methods with a set of predefined
parameters in both primitive types and non-primitive types,
including an integer 0 or 1 that indicates the SIM card slot
index, and a string specifies the package name of our test
app. Once a method successfully returns, U2-I2 captures the
returned data (line 8) and passes them to the differential
analysis (Section VI-C). In Appendix C, we detail this process.

System properties and system settings. A system prop-
erty can be accessed by querying its key through System.
getProperty(). U2-I2 enumerates all keys obtained during
the entry point retrieval to fetch their values. For system

7



TABLE III: Summary of vulnerabilities that may lead to leakages of recognized UUIs (excl. miscellaneous UUIs)

# UUI Access Channels Exfiltration Points (with Devices) Total
1 Serial Number Documented APIs android.os.Build.getSerial() (A10) 1

System Properties gsm.sn (B9), persist.radio.serialno (C10,11), ril.serialnumber (E10), ro.ril.oem.psno (H10,11),
ro.vendor.serialno (C10), ro.vendor.vold.serialno (D11,G10), ro.vold.serialno (D10)

7

System Services knoxcustom.getSerialNumber() (E10) 1
2 Device ID/IMEI/MEID Documented APIs android.telephony.TelephonyManager.getImei() (A10), android.telephony.TelephonyManager.getDeviceId() (A10),

android.telephony.TelephonyManager.getMeid() (A10)
3

System Properties gsm.imei{0/1} (B9), gsm.meid (B9), persist.sys.show.device.imei (G10), ro.boot.deviceid (G10),
ro.boot.em.did (E10), ro.rpmb.board (G10)

6

System Services phone_huawei.getMeidForSubscriber(int slot) (A10)†, oiface.getDeviceId() (D11) 2
3 ICCID Documented APIs android.telephony.SubscriptionInfo.getIccId() (AOSP 10,A10,C10,D10,E10,F10,G10,H10) 1

System Settings System.last_main_card_iccid (A10), Global.oppo_comm_simsettings_daily_alert_{iccid val} (D11),
Global.color_data_roaming{iccid val} (D11), Global.volte_call_status{iccid val} (D11)

4

System Properties persist.radio.volte0.iccid (G10), persist.radio.volte1.iccid (G10), persist.radio.ddssim.iccid (C10) 3
4 IMSI System Settings System.sim1_imsi (B9), System.sim2_imsi (B9), System.sim1_value (E10) 3

System Services phone.vivoTelephonyApi(int slot) (G10)† 1
5 Bluetooth MAC address Documented APIs android.bluetooth.BluetoothAdapter.getAddress() (F10) 1

System Properties sys.bt.address (B9) 1
6 WiFi MAC address System Properties persist.oppo.wlan.macaddress (D10), persist.sys.wififactorymac (G10) 2

System Services wifi.getWifiFactoryMac() (G10) 1

† The method returns a UUI when it is tested with an integer parameter equals 0.

settings, their values can be accessed through the system set-
tings provider (android.provider.Settings). U2-I2 queries
all keys stored in all three tables. Similarly, all fetched values
are then passed to the differential analysis.

C. OEM-defined UUI Identification

In this phase, U2-I2 recognizes UUIs from the outputs of
the testing. It first recognizes the values of the six known
types, by matching the outputs with values fetched through
documented methods. After that, the critical task is to pinpoint
unknown or OEM-defined UUIs. To this end, U2-I2 takes the
following two steps.

Filtering. U2-I2 first excludes those values of insufficient
size, i.e., strings containing less than 4 hex-digit, as they cannot
convincingly identify a device.

Differential analysis. After filtering, U2-I2 conducts dif-
ferential analysis over the values. It excludes the values that
are the same across devices, although they are in the same
model and produced by the same manufacturer, as shown
among devices A and B in step ¹. It keeps those that remain
unchanged after factory-resetting the device, shown as devices
A and A* in step ¹. In the end, the remaining values are
presented to the analyst.

VII. EVALUATION AND LANDSCAPE OF UUI
PROTECTION IN ANDROID PHONES

We apply U2-I2 on 13 popular Android smartphone mod-
els available in the market to understand the landscape of
UUI safeguards in contemporary Android phones. The tested
phones are from 9 distinct phone manufacturers, including
Google Pixel, Huawei, Lenovo, OnePlus, Oppo, Samsung,
Smartisan, Vivo, and Xiaomi. They together represent around
85% of the global market share of Android devices [67] as of
December 2021. We note that our work aims to study the status
quo in general, and it preserves manufacturer neutrality and
avoids bias against certain device manufacturers. We assign
each manufacturer except Google Pixel (which is installed

with the AOSP) with a code from A to H according to the
aforementioned order throughout the paper. When referring to
a device, we use the subscript number to denote the version
of Android installed on it. For example, E stands for the
manufacturer Samsung, and E10 stands for a Samsung device
that is installed with Android 10.

Our investigation aims to answer the following three re-
search questions (RQs).

RQ1. What is U2-I2’s performance in identifying UUI mis-
handling issues? Based on U2-I2’s findings, what is the status
quo of UUI protection in the latest Android phones? Do their
OSes comply with the up-to-date privacy policy of AOSP?

RQ2. Based on U2-I2’s findings, what UUIs are potentially
exposed to non-system apps, and what are the typical exfiltra-
tion points?

RQ3. Have our identified access channels of UUI access
already been (ab)used by apps in the wild?

A. RQ1: Status Quo of OS-level UUI Protection

U2-I2 has detected 51 unique vulnerabilities that lead to
65 occurrences of UUI leakage from the tested phones. It is
capable of detecting vulnerable exfiltration points that involve
the six known UUIs (listed in Table III), and those involving
unknown or OEM-defined UUIs (listed in Table IV). We have
reported them together with our suggested fixes to the relevant
manufacturers. All of them have confirmed and acknowledged
our findings, implying that U2-I2 generates no false positive.

While deferring the characterization of the identified vul-
nerabilities to Section VII-B, in the remaining of this section,
we present the general picture on OS-level UUI protection
in current Android OSes. Overall, almost every device (except
AOSP 11) is found with at least one leakage, and most of them
contain at least three, as shown in Figure 4-A, suggesting the
pervasiveness of the UUI mishandling weaknesses in the latest
Android phones.

8



Legend for documented channels:  Doc. (LP): Documented (Legacy Permission),  Doc. (MD): Documented (Missing De-identification) 

(A) UUI Types vs. Devices (B) UUI Types vs. Access Channels (C) Devices vs. Access Channels

Fig. 4: Statistics of the occurrence of UUI leakages detected in our assessment, counted by UUI types and devices (A), by UUI
types and access channels (B), and by devices and access channels (C)

TABLE IV: List of 14 miscellaneous UUIs found by U2-
I2 (all acknowledged by manufacturers)
Chl. Name of UUI (with Devices) Format & Purpose

Sy
st

em
Se

tti
ng

s Global.cplc (C11) 45-byte hex string, for NFC module
Global.ro.boot.oled_wp (H11) 8-byte hex string, for OLED display panel
System.ReaperAssignedDeviceId (B9) 30-digit decimal string, unknown type†

Sy
st

em
Pr

op
er

tie
s

gsm.serial (C10,11,D10,11) 19-digit decimal string, the device PCB
serial number

ro.ril.oem.sno (H10,11) 8-byte hex string, unknown type†

vendor.camera.sensor.frontMain.
fuseID (H10)

64-byte alphanumeric string, ID of the
front main camera

vendor.camera.sensor.rearMain.
fuseID (H10)

64-byte alphanumeric string, ID of the
rear main camera

vendor.camera.sensor.rearUltra.
fuseID (H10)

64-byte alphanumeric string, ID of the
rear ultra-wide camera

vendor.camera.sensor.rearTele.
fuseID (H10)

64-byte alphanumeric string, ID of the
rear telephoto camera

persist.vendor.sys.fp.info (H10) 8-digit hex string, fingerprint sensor re-
lated, detail not found

persist.vendor.sys.fp.uid (H10) 14-digit hex string, fingerprint sensor re-
lated, detail not found

ro.qchip.serialno (F10) 8-digit hex string, a serial number of an
embedded chip module

ro.recovery_id (B9) 32-digit hex string, ID of the boot image
ro.expect.recovery_id (B9) 32-digit hex string, a same value as above

† The UUIs labelled as “unknown type” contain insufficient information in
their names and values.

AOSP. The UUI mishandling appears less severe in official
AOSP than in the OEM OSes. The Google Pixel phones con-
tain the smallest number of vulnerabilities among all devices,
with only one found in AOSP 10 (i.e., the CVE-2021-04283).

In AOSP 10, we find that one of the two APIs for the SIM
card ID, i.e., the getIccid() in the class SubscriptionInfo,
keeps returning the actual ICCID. This violates Android’s
privacy policy that accesses to the ICCID are prohib-
ited to all non-system apps [27]. Nonetheless, the other

3The details of CVE-2021-0428 and Google’s fix are available at https://uq-
trust-lab.github.io/u2i2/cve/.

API for the ICCID, i.e., the getSimSerialNumber() in the
TelephonyManager, has been updated in AOSP 10 to comply
with the policy. We therefore speculate that the developers
may have missed updating the rarely used SubscriptionInfo
class, while they mainly focused on the TelephonyManager
class which provides getters for most hardware IDs.

The fixing of this vulnerability turns out to be an unex-
pectedly non-trivial process. During our assessment, we notice
that the vulnerability in getIccid() only exists in AOSP 10
and is not inherited by AOSP 11 and later releases. This
may be because Google has been aware of this issue and
has fixed it in AOSP 11, or it may have unintentionally fixed
that vulnerability during the development process. After we
reported it, Google issued a warning in its security bulletin
on 5th Apr 2021 [24], which confirms the issue has been
fixed. However, later in June 2021, the “fix” was recalled
as shown in an updated version of the security bulletin.
Google explained that the recall was because of “application
compatibility issues”. They later updated the comments in the
source code of getIccid() [23], stating that the system-level
permission for this method is imposed since Android 11 (API
level 30) rather than Android 10 (API level 29). This, however,
contradicts Android’s documentation and the policies on other
UUIs, where the system-level permission is imposed since
Android 10.

OEM Android. The OEM OSes have more UUI mishandling
issues than AOSP. This is somewhat expected, given the
notorious fragmentation issue of the Android ecosystem [91].
Unsurprisingly, those installed OSes based on Android 10 have
inherited the vulnerability from AOSP (i.e., the CVE-2021-
0428), suggesting that the manufacturers may have never un-
dertaken a compliance checking against Android documented
policy when they conduct major OS updates.

On the documented APIs, most of them have well followed
AOSP’s update. Two exceptions appear in the permission

9

https://uq-trust-lab.github.io/u2i2/cve/
https://uq-trust-lab.github.io/u2i2/cve/


regulation and randomization though. Huawei (A) mis-exposes
UUIs in its APIs for serial numbers and device IDs, and
Smartisan (F) misses randomization on the returned Bluetooth
MAC address.

However, the OEM OSes are found largely fail to en-
sure sufficient protection in their customized components.
As shown in Table III, they commonly store device-specific
values into the system settings and the system properties.
This practice may be convenient for sharing data among their
system apps but violates the privacy policy of AOSP and allows
malicious apps to collect the stored UUIs. Similarly, they also
fail to regulate the customized service managers, as shown in
Table III.

In addition, we find the devices manufactured by Huawei
(A10), Oppo (D10,11) and Vivo (G10) whitelist apps for UUI
access, and their whitelisting mechanisms have security risks.
By exploiting them, the malicious apps can circumvent An-
droid’s permission control and access various UUIs without
the required permission. We present details of these issues in
Section VIII.

Findings in RQ1: U2-I2 is capable of detecting leakages
of both known UUIs and OEM-customized UUIs. Our
study finds that UUI mishandling is pervasive in popular
Android phones. From the tested devices in 13 models of 9
manufacturers, 51 vulnerabilities are identified. They lead
to 65 UUI leakages. Each tested device except AOSP 11
has been caught at least one leakage, with the highest 10,
mean 6 and median 5.
OEM OSes have more issues than AOSP. The main causes
lie in the undocumented access channels. Three OEM
OSes whitelist apps for UUI access, and security risks
are found from their whitelisting mechanisms.

Responsible disclosure. We have reported all our findings (in-
cluding the whitelisting issues) to the relevant parties. We
also have kept them confidential for at least 90 days for
them to be mended before we reported them in this paper.
As those eight issues on the getICCID() are caused by the
vulnerability in AOSP, we report them to Google so that the
affected manufacturers could receive timely warnings through
Google’s bulletins. For the remaining issues, we report them
to the corresponding manufacturers.

All of them have acknowledged our findings, although
a couple of manufacturers rate the reported issues with low
severity. Most of them have been active and kept us updated
on their fixing processes. We have received 8 common vulner-
abilities & exposures (CVE) entries registered by Google and
four other manufacturers, as listed in Table V.

B. RQ2: Characterization of UUI Leakage Vulnerabilities

In this section, we characterize the identified vulnerabili-
ties, with a focus on their distribution among UUI types and
exfiltration points.

Vulnerability distribution among UUI types. All six known
UUIs are found possible to be leaked in at least one device,
as shown in Figure 4-A. In addition to them, we identify 14
new types of UUIs which are recognized because they keep

TABLE V: All CVE-listed vulnerabilities found by U2-I2
# CVE ID Affected Devices Involved UUIs
1 CVE-2020-12488 G10 Serial
2 CVE-2020-14103 H10,11 Serial
3 CVE-2020-14105 H10,11 Misc. UUID (sno)
4 CVE-2021-0428 AOSP 10 ICCID
5 CVE-2021-25344 E10 Serial
6 CVE-2021-25358 E10 IMSI
7 CVE-2021-26278 G10 WiFi MAC address
8 CVE-2021-37055 A10 ICCID

constant after we factory reset the phones (see our approach in
Section VI-C). We refer to them as the miscellaneous UUIs.
They are introduced by five manufacturers (Lenovo, OnePlus,
Oppo, Smartisan and Xiaomi), and all are found from their
system settings and system properties (Table IV). We attempt
to interpret these UUIs through their names and search online
for details about them. Ten of them are identities of embedded
equipment, such as the camera, the fingerprint sensor, the NFC
module, the PCB (printed circuit board), and the screen panel;
two are the identifies of the boot image; the types of the
remaining two are unknown.

The ICCID (15), the serial number (12) and the device
ID (11) are the top three exposed UUIs. Among the 15
ICCID leakages, over half (8/15) are caused by the AOSP
vulnerability in the API. The other seven are through system
settings or system properties. The vast majority (10/12) of the
serial number leakages are through system properties. Over
half of the device ID leakages (6/11) are through the system
properties. All three top exposed UUIs are in the chip and
cellular category.

Leakage channels. Figure 4-B summarizes the leakage distri-
bution among the access channels. The documented APIs turn
out to be relatively secure, although the vulnerability in AOSP
10 (i.e., CVE-2021-0428) affects all phones that are based on
Android 10. Other than that, only two phones are detected with
weaknesses in this category.

In contrast, the undocumented channels turn out to be
highly risky. The mis-exposed system properties account for
over 50% (37/65) of the leakages, and another 10 leakages
are through the system settings. In fact, most leakages (over
70%) are through these two channels. In particular, all the
newly found miscellaneous UUIs are caught through them.
This should urge the manufacturers to restrain from using them
to share or store device properties and configurations.

The mis-regulation of system services causes another 5
leakages. The functions that can be called through Java reflec-
tion, in fact, are an intermediate when serving corresponding
documented APIs, as we discussed in Section VI-B. All
intermediates in the call trace should be taken into regulation,
as AOSP does for most of its APIs. Nonetheless, this principle
has not been well followed by OEM OSes on their customized
service managers.

Findings in RQ2: The vast majority of vulnerable UUIs
are in the chip and cellular category. The system prop-
erties are the major exfiltration points that reserve over
50% of total leakages. The remaining two undocumented

10



TABLE VI: List of apps found potential UUI collection

# App Package Name Market & Downloads* Involved UUIs Affected Devices Access Channel
1 com.kwai.m2u 81mil+ #2, Misc.† B9,C10,11,D10,11 Properties
2 com.kwai.videoeditor 86mil+ #2, Misc.† B9,C10,11,D10,11 Properties
3 com.lbe.parallel.intl 100mil+ #4 G10 Services
4 com.liulishuo.engzo 116mil+ #2 G10 Properties
5 com.oppo.store 3mil+ Misc.† C10,11, D10,11 Properties
6 com.renrendai.haohuan 25mil+ #2 G10 Properties
7 com.tencent.qqimsecure 682mil+ #4 Unidentified Settings
8 com.tencent.wifimanager 192mil+ #4 Unidentified Settings
9 com.wuba.zhuanzhuan 234mil+ #2 G10 Properties
10 com.xunmeng.merchant 50mil+ #1 H10,11 Properties
11 com.xunmeng.pinduoduo 5bil+/ 500k+ #1 H10,11 Properties
12 ru.yandex.searchplugin 100mil+ #2 G10 Properties

* The apps labelled with are downloaded from Xiaomi App Store, with the statistics provided by Kuchuan.com, those with are downloaded from Google
Play Store.
† The caught UUI access is through requesting the system property gsm.serial.

access channels, system services and system settings, ac-
count for 5 and 10 leakages respectively. All newly found
miscellaneous UUIs are found through system settings and
system properties.

C. RQ3: UUI Collection by Existing Apps

The pervasiveness of UUI mishandling weaknesses on
Android devices has provided a hotbed for excessive UUI
collection that threatens user privacy. Whether the identified
exfiltration points have been (ab)used by existing apps in
the wild before we reported to the manufacturers has greatly
concerned us. We thus conduct a small-scale study to inves-
tigate this. We note that our study only focuses on whether
existing apps use the collection methods we have identified
in this work, and large-scale studies on apps’ data collection
behaviors and purposes can be found in [58], [64], [74], [88].

To be representative, we collect apps from both the official
Google Play Store and a popular alternative app store called
Xiaomi App Store [80]. From each store, we crawl the top 150
apps, which are either mostly installed or increasingly popular
in recent months. We exclude those apps appearing in top 150
in Xiaomi App Store while crawling from Google Play Store,
and thus we have collected 300 distinct apps for our testing.
Nonetheless, for the apps appearing in both stores (overall 16),
we keep both of their packages, so that we can investigate
whether they behave consistently. All collected apps have at
least one million user installations, and they cover various
types such as social networking, financial service, and online
shopping.

Since the access channels U2-I2 identifies are all Java-level
interfaces, our study focuses on only the .class files of the
collected apps. We reverse engineer them into Smali code, and
scan it for the occurrences of API names of the documented
interfaces, methods for reading system settings (i.e., getter
methods in the Settings class) and system properties (i.e.,
getProperty() in the System class), and methods of Java
reflection and the names of system service managers. We
manually confirm the reported suspicions, and our findings
are summarized in Table VI. Out of the 300 scanned apps, 12

apps have used the collection methods. Two apps are found
to retrieve two UUIs, and all others retrieve one. Only one
app (#11 in Table VI) appears in both stores. We analyze
both packages of this app and find they have no inconsistent
behaviors on UUI collection.

No suspicious UUI collection through the documented
interfaces is found. This may owe to the following two reasons.

1) Developers’ awareness. Due to the clear reminders in
AOSP documentation, the app developers may have un-
derstood that invoking those documented APIs leads to a
security exception when their apps are running on a device
installed with the latest Android.

2) IDE inspection. The development environment (e.g., An-
droid Studio) can warn the developers for the invocation
of APIs that are illegitimate or unrecommended in any
version in the app’s release targets.

All three undocumented access channels are involved in the
reported suspicions, including one through system services,
two through the system settings provider, and nine through
system properties. The device ID is the most popular UUI,
and 6 out of 12 apps attempt to access it. Three apps (#1,
#2 and #5 in Table VI) use the key gsm.serial to query the
system properties. This property is identified as a miscella-
neous UUI (see Table IV), and it stores the ID of the PCB
chip in phones from Oppo (D10,11) and OnePlus (C10,11). App
#5 named com.oppo.store is an e-shopping app developed by
the parent company of Oppo and OnePlus, who is apparently
aware of this hidden channel. The other two apps (apps #1
and #2) are developed by the same company, but the reason
why it is aware of the channel is unknown. We have not
figured out how it links to the two manufacturers. Two apps
(apps #7 and #8) query the system settings with the key
default_sim1_value. This key name is similar to those under
the IMSI category in Table III, and thus we speculate it to
be the IMSI. Nonetheless, which device includes this setting
remains unknown (and thus they are labelled as unidentified
in Table VI). One app (#3 in Table VI) involves the hacking
way to invoke the system services. It attempts to call a method
vivoTelephonyApi() from the class vivoTelephonyApiParams,
which is implemented by Vivo (G) to access the IMSI.

11



1 // frameworks/base/telephony/common/com/android/internal/
telephony/TelephonyPermissions.java

2 public static boolean checkReadDeviceIdentifiers(Context
context, ..., int uid, String callingPackage, ...) {

3 final int appId = UserHandle.getAppId(uid);
4 if(appId == Process.SYSTEM_UID || appId == Process.ROOT_UID)
5 return true;
6 ...
7 if(... || !isPackageNameInDeviceIdWhiteList(callingPackage))
8 return reportAccessDeniedToReadIdentifiers(..., uid,

callingPackage, ...);
9 return true;

10 }

Fig. 5: The implementation of permission checking that raises
a whitelisting issue (line 7) on a Huawei device

Findings in RQ3: The identified channels for UUI
collection have been used by existing popular apps from
major app stores. An extensive UUI collection by apps in
the wild is not observed though, with only 12 out of 300
apps being found to have relevant behaviors. All three
access channels have been used for UUI collection.

VIII. WHITELISTING ISSUES

We come across a hidden security issue in our experiments
on a phone of Huawei (A10), which is the first OEM phone
we test. We happen to embed several API calls into a sample
app, and we find they manage to obtain the serial number and
the device ID without any permission of dangerous level or
signature level. Surprisingly, after the same snippet of code
is copied into our tester app, it fails to obtain any UUI.
After exhaustive comparison, we eventually figure out that
the sample app could access the UUIs because it happens to
be named with the package name of a popular e-commerce
app. We dump and investigate the OS image of the device,
and we find that it maintains a whitelist for its permission
checking (line 7 in Figure 5) in the TelephonyPermissions
class. The apps listed in the whitelist are allowed to bypass its
permission control. Obviously, such whitelisting mechanism is
exploitable, as it relies completely on the package name for
access control rather than on the app signature. A malicious
app could deceive this mechanism by simply naming itself
with any package name in the whitelist.

This issue greatly concerns us given its exploitability.
We thus investigate it on all phones. We dump their images
and analyze the classes for permission checking, such as
TelephonyPermissions and WifiPermissionsUtil. We man-
age to find three whitelisting issues from the devices of
Huawei, Oppo and Vivo. Two are related to UUI access, and
one is related to GPS data collection, which is another privacy-
sensitive data that has been extensively studied [58], [59], [60],
[64], [74]. All of them validate the access through app names
only.

• In the devices of Huawei (A10), 253 apps are whitelisted
for chip and cellular UUIs (UUIs #1-4). They are from
various categories such as online shopping, online travel
agents, food delivery, and productivity.

• In the devices of Oppo (D10,11), 272 apps are whitelisted
for background access to GPS location. They include
leading apps for transportation, food delivery and ride-
hailing, and so on. They are all system apps or apps
developed by the manufacturer, such as app store, theme
app, launcher app and mobile wallet. All their package
names are hardcoded in the OS image.

• In the devices of Oppo (D10,11) and Vivo (G10), 3 map
apps are whitelisted for WiFi connection details (SSID
and BSSID). Their package names are also hardcoded in
the OS image.

IX. DISCUSSIONS

In this section, we present our insights on the causes of
the UUI mishandling weaknesses and provide our recommen-
dations to the involved parties. We also discuss the limitations
of our study and outlook the future efforts that are needed.

A. Lessons Learned from UUI Leakages

The causes of the identified vulnerabilities can be summa-
rized into the following three types. We suggest the manufac-
turers pay sufficient attention to them in future to enhance the
privacy compliance of their devices.

Defects in AOSP and OEM OSes. Defects in AOSP and
OEM OSes constitute the immediate cause of the identified
51 vulnerabilities. The vast majority of them occur in OEM
OSes, and the root cause is the customized components in
these OSes. Defects in AOSP have a wider scope of impact
than their counterparts in OEM OSes, as they are likely to be
inherited by all OEM devices.

Inadequate awareness from OEMs. The identified vulner-
abilities are not merely due to unintentional programming
errors, but in most cases are consequence of inadequate
awareness of privacy protection. Most customizations of the
OEMs focus on the functionality but overlook the compliance
with Android security and privacy guidelines. Take the device
of Vivo (G10) as an example. It modifies AOSP’s telephony
manager and exposes a public method vivoTelephonyApi()
in a system service named “phone”. This method returns IMSI
with READ_PHONE_STATE permission only, which is at dangerous
level and should have been abolished for access to IMSI.
As another example, the Bluetooth MAC address should be
randomized since Android 6, but the actual MAC address
can still be obtained through an API on Smartisan’s device
installed with Android 10 that is released four years later than
Android 6.

Opened channels in OEM OSes. It is shown that some
manufacturers whitelist third-party apps to facilitate their UUI
access (see Section VIII), while Google keeps making efforts
to tighten the UUI access regulation in the latest versions. We
search their documentations for the whitelisting mechanism
and find that Huawei discloses the apps in its whitelist. It
declares that the purpose of the whitelist is to ease the burden
of their users on manually granting dangerous-level permis-
sions to those popular apps. In addition, the apps developed
by OnePlus and Oppo (app #5 in Table VI)) use the hidden
channels on the devices manufactured by themselves.

12



B. Recommendations to Involved Parties

We present a few recommendations and mitigation strate-
gies for manufacturers and authorities to suppress UUI leakage.

Strengthening permission enforcement. Manufacturers
are advised to keep in sync with the security and
privacy guidelines of AOSP. For example, the per-
mission READ_PRIVILEDGED_PHONE_STATE has replaced the
READ_PHONE_STATE permission in reading some UUIs, but we
find 12 weaknesses caused by failing to comply with this
change. Manufacturers should perform a thorough checking
of their implementation against AOSP’s guidelines, especially
in revised or customized components.

Avoiding sharing through system settings/properties. Shar-
ing resources through the system settings and the system
properties are efficient and straightforward in certain scenarios.
However, some of these places, such as system settings, are not
designated to store UUIs. Manufacturers should restrain from
sharing UUIs through them. In addition, they are advised to
deploy a rigorous access control in the system settings provider
and to enforce rules through SELinux to regulate the access
to the system properties.

Rigorous permission control. Manufacturers are advised to
avoid deploying/leaving opened channels (e.g., the whitelist)
for UUI access because this violates the integrity of the permis-
sion control, and infringes the user’s right to be informed and
right to consent. In case of some system apps that are necessary
to be granted with privileged permissions, they should strictly
follow Google’s official guideline [30] and enforce appropriate
access control. Manufacturers should also be aware that the
handles of the non-SDK interfaces [31] may be obtained using
reflection and should deploy consistent restrictions over them.

Research community & authority efforts. The existing
studies on Android data collection have been focusing on
regulating the behaviors of third-party apps. To complete the
privacy protection in the entire ecosystem, we advocate that
efforts need to be put into OS-level protection. Authorities
should put in place the regulations on the UUI creation, storage
and processing of devices. Our study should also motivate
privacy checking in other domains [47], [49], [81].

C. Limitations

To the best of our knowledge, this work is the first one
focusing on the OS-level UUI mishandling. However, it carries
several limitations that we target to address in future work.

Scope of UUIs. Besides UUIs, some near-persistent IDs and
non-ID information can also be abused for user tracking or
profiling, as revealed in existing studies [5], [7], [11], [68],
e.g., installed packages and location data. In this paper, we only
focus on those unarguably unresettable IDs to avoid ambiguity.

Access channels. U2-I2 explores undocumented access chan-
nels centered around six types of UUIs that are identified from
Android documentation and literature. It is possible that it
covers only part of all UUI access channels. The manufacturer
may introduce other hidden ones. Besides that, our study
analyzes UUI leakage in the Java context only. It may miss
access channels, if any, that leak a UUI in the native context
of Android.

Missed leakages. Our assessment of system service assumes
the UUI access is through a public getter function, like most
APIs do. It may result in false negative when an interface leaks
UUI through a private function and/or in a more complicated
manner.

Scale of our assessment. Our tested phones cover those
popular models from major manufacturers. We presume the
top-selling models of a manufacturer can represent all devices
produced by it. Due to device availability, we skip the devices
of the same model but for different markets around the world.
Moreover, our study on the existing apps reveals some facts
but remains limited on its scale compared with the studies on
Android data harvesting [58], [64], [74], [88]. We take the
large-scale investigation of the UUI collection by third-party
apps as future work.

Moreover, our study does not cover Android 12 (API level
31) as it has not been widely adopted by vendors at the moment
of this paper being drafted. However, we progressively run our
testing on new models we can find. We have found some rele-
vant vulnerabilities on Android 12 devices, reported them, and
received a few acknowledgments and CVE registrations, e.g.,
CVE-2022-30753, CVE-2022-27822, and CVE-2022-22272.
All these three CVEs are related to the leakage of vendor-
customized UUIs through undocumented channels.

X. RELATED WORK

Threat hunting has recently emerged as a popular topic in
the cybersecurity domain. It describes a solution to detect the
potential flaws or malicious activities at the earliest possible
time. This section briefs relevant research on Android that fall
into this topic.

Access control. The access control mechanism of Android
is a popular area in the security research community. There
are several analysis tools [4], [18], [37] available to scan for
permission leakages since the early Android versions. [19]
studies the permission re-delegation issue though inter-process
and inter-application communications. Later research extends
the analysis with broader coverage such as the authorization
logic within Android middleware [34], system services [35]
and filesystem [36]. Scanning inconsistencies in security policy
enforcement is another direction to assess the Android access
control system [1], [63]. One recent work IAceFinder [89]
finds over twenty inconsistencies in the latest Android OSes
through the analysis across the Java classes and native context.

App-level data gathering. Protecting sensitive user data
against malicious apps has been a persistent topic ever since
the birth of Android. Various types of data that third-party apps
can access through Android APIs, such as the device IDs [14],
[20], [60], geographic locations [68], WiFi status [12], [52],
motion sensor data [10], speakers’ characteristics [92], and
even personalized configurations [44], [53], [56], have been
shown to facilitate privacy leakage. Many efforts have also
been put into their protection [38], [39], [40], [71], [82].

Recent studies have been mostly focusing on the behaviors
of third-party apps in gathering personally identifiable infor-
mation (PII). Gibler et al. [20] uses static taint analysis to iden-
tify relevant API invocations in third-party apps. Papadopoulos
et al. [54] summarizes 32 types of PII and conducts a network
traffic analysis to understand app-level data collection. Later

13



studies analyze apps’ PII collection through either network
traffic [57], [59], [60], [68] or logs files [77]. The feasibility
of persistent identifiers harvesting by unprivileged apps is
demonstrated in [58]. Shen et al. [64] recently presented a
large-scale study on the landscape of app-level data collection,
including the types and destination of the collected data. In our
work, we refer to these studies for UUI recognition, focusing
on the complementary problem of UUI handling by the OSes.

Sensitive data access on Android. Many studies have been
conducted to identify channels of circumventing the permis-
sion system of Android. The process information file system
(procfs) used to be a popular exfiltration point. Zhang et
al. [85] infer key-logging activities through exploitation over
procfs. Besides that, studies [6], [13] figure out that the
app’s activity could also be inferred through the interpretation
of data within procfs. [42] learns a secret from process
footprint to find out what web pages the user is browsing and
consequently extracts more fine-grained information about the
user’s privacy. Zhou et al. [90] also take advantage of procfs
for precise user identification. Spreitzer et al. [65] proposes a
tool called ProcHarvester that boosts procfs exploitation as a
mature and automatic technique. However, Google has fixed
this exfiltration point by gradually tightening its access since
Android 7.

Other research has also discovered various methods to ac-
cess sensitive data on Android. Different covert/side channels,
such as the power channel and the browser cache, have been
revealed by them [50], [58], [66]. Wang et al. [74] study cross-
library data harvesting to stealthily read and upload user data.
Additional channels that allow apps to access private data in-
clude system settings and running services, which are adopted
by [6] and [69]. Our work evaluates existing approaches and
then proposes three categories of access channels that remain
accessible in the latest Android.

XI. CONCLUSION

In this work, we present the first comprehensive study
of UUI protection in Android phones to complement the
existing studies of app-level data harvesting. We design and
implement U2-I2, which uses a set of analysis techniques to
discover and assess UUI access channels. The access channels
are automatically tested by U2-I2 to identify weaknesses that
open any attacking opportunity. We have evaluated the most
popular 13 phones from 9 manufacturers, which are installed
with the official AOSP and OEM OSes, and identified 51
unique vulnerabilities from them. Our work reveals that the
UUI mishandling is pervasive in current Android phones,
caused by errors in documented APIs, mismanagement of
system properties and system settings, and misregulation of
system services. Our study should raise an alert to the device
manufacturers and policymakers, especially in an era where
strict personal data protection laws and regulations are put in
place around the world.

ACKNOWLEDGEMENT

We thank our shepherd Manuel Egele and anonymous
reviewers for their helpful comments. This research is partially
supported by the University of Queensland under the NSRSG
grant 4018264-617225 and the Global Strategy and Partner-
ships Seed Funding, and Agency for Science, Technology and

Research (A*STAR) Singapore under the ACIS scholarship.
Any opinions, findings, conclusions, or recommendations ex-
pressed in this publication are those of the authors and do not
necessarily reflect the views of the funding agencies.

REFERENCES

[1] Y. Aafer, J. Huang, Y. Sun, X. Zhang, N. Li, and C. Tian, “Acedroid:
Normalizing diverse android access control checks for inconsistency
detection.” in The Network and Distributed System Security Symposium
(NDSS), 2018.

[2] A. Arora, S. Garg, and S. K. Peddoju, “Malware detection using network
traffic analysis in android based mobile devices,” in 2014 Eighth
International Conference on Next Generation Mobile Apps, Services
and Technologies. IEEE, 2014, pp. 66–71.

[3] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” ACM SIGPLAN Notices, vol. 49, no. 6, pp. 259–269, 2014.

[4] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: analyzing
the android permission specification,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security, 2012, pp. 217–
228.

[5] R. Binns, U. Lyngs, M. Van Kleek, J. Zhao, T. Libert, and N. Shadbolt,
“Third party tracking in the mobile ecosystem,” in Proceedings of the
10th ACM Conference on Web Science, 2018, pp. 23–31.

[6] Q. A. Chen, Z. Qian, and Z. M. Mao, “Peeking into your app without
actually seeing it:UI state inference and novel android attacks,” in 23rd
USENIX Security Symposium (USENIX Security 14), 2014.

[7] T. Chen, I. Ullah, M. A. Kaafar, and R. Boreli, “Information leakage
through mobile analytics services,” in Proceedings of the 15th Workshop
on Mobile Computing Systems and Applications, 2014, pp. 1–6.

[8] G. Cobucci, “Xiaomi: data protection and privacy at the highest levels
thanks to the ISO / IEC 27701 certification,” 2020, (accessed 13 April
2022). [Online]. Available: https://en.xiaomitoday.it/xiaomi-e-sicura-
protezione-dati-privacy.html

[9] M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde, “Analyzing
android encrypted network traffic to identify user actions,” IEEE Trans-
actions on Information Forensics and Security, vol. 11, no. 1, pp. 114–
125, 2015.

[10] A. Das, N. Borisov, and M. Caesar, “Tracking mobile web users through
motion sensors: Attacks and defenses.” in The Network and Distributed
System Security Symposium (NDSS), 2016.

[11] S. Demetriou, W. Merrill, W. Yang, A. Zhang, and C. A. Gunter, “Free
for all! assessing user data exposure to advertising libraries on android.”
in The Network and Distributed System Security Symposium (NDSS),
2016.

[12] A. Di Luzio, A. Mei, and J. Stefa, “Mind your probes: De-
anonymization of large crowds through smartphone wifi probe requests,”
in IEEE INFOCOM 2016 - The 35th Annual IEEE International
Conference on Computer Communications, 2016, pp. 1–9.

[13] W. Diao, X. Liu, Z. Li, and K. Zhang, “No pardon for the interruption:
New inference attacks on android through interrupt timing analysis,” in
IEEE Symposium on Security and Privacy, 2016, pp. 414–432.

[14] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smartphones,”
ACM Transactions on Computer Systems (TOCS), vol. 32, no. 2, pp.
1–29, 2014.

[15] European Comission, “Directive 2009/136/EC of the European
Parliament and of the Council,” 2009, (accessed 13 April
2022). [Online]. Available: https://edps.europa.eu/sites/default/files/
publication/dir_2009_136_en.pdf

[16] ——, “Data protection in the EU,” 2021, (accessed 13 April
2022). [Online]. Available: https://ec.europa.eu/info/law/law-topic/data-
protection/data-protection-eu

[17] Fedral Trade Commission, “A Brief Overview of the Federal
Trade Commission’s Investigative, Law Enforcement, and Rulemaking
Authority,” 2019, (accessed 13 April 2022). [Online]. Available:
https://www.ftc.gov/about-ftc/what-we-do/enforcement-authority

14

https://en.xiaomitoday.it/xiaomi-e-sicura-protezione-dati-privacy.html
https://en.xiaomitoday.it/xiaomi-e-sicura-protezione-dati-privacy.html
https://edps.europa.eu/sites/default/files/publication/dir_2009_136_en.pdf
https://edps.europa.eu/sites/default/files/publication/dir_2009_136_en.pdf
https://ec.europa.eu/info/law/law-topic/data-protection/data-protection-eu
https://ec.europa.eu/info/law/law-topic/data-protection/data-protection-eu
https://www.ftc.gov/about-ftc/what-we-do/enforcement-authority


[18] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the 18th ACM Conference
on Computer and Communications Security, 2011, pp. 627–638.

[19] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin, “Per-
mission re-delegation: Attacks and defenses.” in 20th USENIX Security
Symposium (USENIX Security 11), 2011.

[20] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Androidleaks: auto-
matically detecting potential privacy leaks in android applications on
a large scale,” in International Conference on Trust and Trustworthy
Computing. Springer, 2012, pp. 291–307.

[21] Google, “User Data - Play Console Help,” 2020, (accessed 13 April
2022). [Online]. Available: https://support.google.com/googleplay/
android-developer/answer/10144311?hl=en&ref_topic=9877467

[22] ——, “Add System Properties,” 2021, (accessed 2 May 2022).
[Online]. Available: https://source.android.com/devices/architecture/
configuration/add-system-properties

[23] ——, “Android Code Search,” 2021, (accessed 13 April
2022). [Online]. Available: https://cs.android.com/android/
platform/superproject/+/master:frameworks/base/telephony/java/
android/telephony/SubscriptionInfo.java

[24] ——, “Android Security Bulletin—April 2021,” 2021, (accessed 13
April 2022). [Online]. Available: https://source.android.com/security/
bulletin/2021-04-01

[25] ——, “Best practices for unique identifiers,” 2021, (accessed
13 April 2022). [Online]. Available: https://developer.android.com/
training/articles/user-data-ids

[26] ——, “Device Identifiers,” 2021, (accessed 13 April 2022).
[Online]. Available: https://source.android.com/devices/tech/config/
device-identifiers

[27] ——, “Privacy changes in Android 10,” 2021, (accessed 13
April 2022). [Online]. Available: https://developer.android.com/about/
versions/10/privacy/changes

[28] ——, “Privacy in Android 11,” 2021, (accessed 13 April 2022).
[Online]. Available: https://developer.android.com/about/versions/11/
privacy

[29] ——, “Privacy: MAC Randomization,” 2021, (accessed 13 April
2022). [Online]. Available: https://source.android.com/devices/tech/
connect/wifi-mac-randomization

[30] ——, “Privileged Permission Allowlisting,” 2021, (accessed 13 April
2022). [Online]. Available: https://source.android.com/devices/tech/
config/perms-allowlist

[31] ——, “Restrictions on non-SDK interfaces,” 2021, (accessed 13 April
2022). [Online]. Available: https://developer.android.com/guide/app-
compatibility/restrictions-non-sdk-interfaces

[32] ——, “Android Interface Definition Language (AIDL),” 2022,
(accessed 18 August 2022). [Online]. Available: https://developer.
android.com/guide/components/aidl

[33] ——, “<permission>,” 2022, (accessed 26 March 2022). [Online].
Available: https://developer.android.com/reference/android/os/IInterface

[34] S. A. Gorski, B. Andow, A. Nadkarni, S. Manandhar, W. Enck, E. Bod-
den, and A. Bartel, “Acminer: Extraction and analysis of authorization
checks in android’s middleware,” in Proceedings of the Ninth ACM
Conference on Data and Application Security and Privacy, 2019, pp.
25–36.

[35] S. A. Gorski III and W. Enck, “Arf: identifying re-delegation vulnerabil-
ities in android system services,” in Proceedings of the 12th conference
on security and privacy in wireless and mobile networks, 2019, pp.
151–161.

[36] S. A. Gorski III, S. Thorn, W. Enck, and H. Chen, “Fred: Identifying
file re-delegation in android system services,” in 31st USENIX Security
Symposium (USENIX Security 22), 2022.

[37] M. C. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic detection
of capability leaks in stock android smartphones.” in The Network and
Distributed System Security Symposium (NDSS), 2012.

[38] M. Gruteser and D. Grunwald, “Enhancing location privacy in wireless
lan through disposable interface identifiers: a quantitative analysis,”
Mobile Networks and Applications, vol. 10, no. 3, pp. 315–325, 2005.

[39] S. Heuser, A. Nadkarni, W. Enck, and A.-R. Sadeghi, “ASM: A pro-

grammable interface for extending android security,” in 23rd USENIX
Security Symposium (USENIX Security 14), 2014.

[40] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These
aren’t the droids you’re looking for: retrofitting android to protect
data from imperious applications,” in Proceedings of the 18th ACM
Conference on Computer and Communications Security, 2011.

[41] N. Hua, Y. Qiang, W. Yanhong, W. Teng, J. Ke, Y. Yinan,
L. Cheng, H. Ying, D. Yun, Z. Fei, D. Youjun, Y. Quan, and
W. Haoqian, “Mobile intelligent terminal and application software user
personal information protection implementation guide, Part 1:General
Principle,” Telecommunication Terminal Industry Forum Association
(China), Tech. Rep. T/TAF 070-2020, September 2020, (accessed 13
April 2022). [Online]. Available: http://www.taf.net.cn/StdDetail.aspx?
uid=6C9F4148-84AA-4990-A3F8-6B11AD13D237&stdType=TAF

[42] S. Jana and V. Shmatikov, “Memento: Learning secrets from process
footprints,” in IEEE Symposium on Security and Privacy, 2012.

[43] A. Khani, “Xiaomi Reacted to the Article regarding its
Privacy Policy by FORBES,” 2020, (accessed 13 April
2022). [Online]. Available: https://gadgettrait.com/xiaomi-reacted-to-
the-article-regarding-its-privacy-policy-by-forbes/

[44] A. Kurtz, H. Gascon, T. Becker, K. Rieck, and F. C. Freiling, “Finger-
printing mobile devices using personalized configurations.” Proc. Priv.
Enhancing Technol., vol. 2016, no. 1, pp. 4–19, 2016.

[45] A. Lerner, A. K. Simpson, T. Kohno, and F. Roesner, “Internet jones and
the raiders of the lost trackers: An archaeological study of web tracking
from 1996 to 2016,” in 25th USENIX Security Symposium (USENIX
Security 16), 2016.

[46] C. Leung, J. Ren, D. Choffnes, and C. Wilson, “Should you use the
app for that? comparing the privacy implications of app-and web-based
online services,” in Proceedings of the 2016 Internet Measurement
Conference, 2016, pp. 365–372.

[47] Y. Ling, K. Wang, G. Bai, H. Wang, and J. S. Dong, “Are they toeing the
line? diagnosing privacy compliance violations among browser exten-
sions,” in Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2022.

[48] N. Lomas, “Google’s Android ad ID targeted in strategic GDPR
tracking complaint,” 2020, (accessed 13 April 2022). [Online].
Available: https://techcrunch.com/2020/05/13/googles-android-ad-id-
targeted-in-strategic-gdpr-tracking-complaint

[49] K. Mahadewa, Y. Zhang, G. Bai, L. Bu, Z. Zuo, D. Fernando, Z. Liang,
and J. S. Dong, “Identifying privacy weaknesses from multi-party
trigger-action integration platforms,” in Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA), 2021, pp. 2–15.

[50] C. Marforio, H. Ritzdorf, A. Francillon, and S. Capkun, “Analy-
sis of the communication between colluding applications on modern
smartphones,” in Proceedings of the 28th Annual Computer Security
Applications Conference, 2012, pp. 51–60.

[51] S. Nath, “Madscope: Characterizing mobile in-app targeted ads,” in
Proceedings of the 13th Annual International Conference on Mobile
Systems, Applications, and Services, 2015, pp. 59–73.

[52] L. Nguyen, Y. Tian, S. Cho, W. Kwak, S. Parab, Y. Kim, P. Tague, and
J. Zhang, “Unlocin: Unauthorized location inference on smartphones
without being caught,” in 2013 International Conference on Privacy
and Security in Mobile Systems (PRISMS), 2013.

[53] G. Palfinger and B. Prünster, “Androprint: analysing the fingerprint-
ability of the android api,” in Proceedings of the 15th International
Conference on Availability, Reliability and Security, 2020, pp. 1–10.

[54] E. P. Papadopoulos, M. Diamantaris, P. Papadopoulos, T. Petsas,
S. Ioannidis, and E. P. Markatos, “The long-standing privacy debate:
Mobile websites vs mobile apps,” in Proceedings of the 26th Interna-
tional Conference on World Wide Web, 2017, pp. 153–162.

[55] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner, “Addroid: Privilege
separation for applications and advertisers in android,” in Proceedings
of the 7th ACM Symposium on Information, Computer and Communi-
cations Security, 2012, pp. 71–72.

[56] L. Qiu, Z. Zhang, Z. Shen, and G. Sun, “Apptrace: Dynamic trace on
android devices,” in 2015 IEEE International Conference on Commu-
nications (ICC), 2015, pp. 7145–7150.

[57] A. Razaghpanah, R. Nithyanand, N. Vallina-Rodriguez, S. Sundaresan,

15

https://support.google.com/googleplay/android-developer/answer/10144311?hl=en&ref_topic=9877467
https://support.google.com/googleplay/android-developer/answer/10144311?hl=en&ref_topic=9877467
https://source.android.com/devices/architecture/configuration/add-system-properties
https://source.android.com/devices/architecture/configuration/add-system-properties
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/telephony/java/android/telephony/SubscriptionInfo.java
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/telephony/java/android/telephony/SubscriptionInfo.java
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/telephony/java/android/telephony/SubscriptionInfo.java
https://source.android.com/security/bulletin/2021-04-01
https://source.android.com/security/bulletin/2021-04-01
https://developer.android.com/training/articles/user-data-ids
https://developer.android.com/training/articles/user-data-ids
https://source.android.com/devices/tech/config/device-identifiers
https://source.android.com/devices/tech/config/device-identifiers
https://developer.android.com/about/versions/10/privacy/changes
https://developer.android.com/about/versions/10/privacy/changes
https://developer.android.com/about/versions/11/privacy
https://developer.android.com/about/versions/11/privacy
https://source.android.com/devices/tech/connect/wifi-mac-randomization
https://source.android.com/devices/tech/connect/wifi-mac-randomization
https://source.android.com/devices/tech/config/perms-allowlist
https://source.android.com/devices/tech/config/perms-allowlist
https://developer.android.com/guide/app-compatibility/restrictions-non-sdk-interfaces
https://developer.android.com/guide/app-compatibility/restrictions-non-sdk-interfaces
https://developer.android.com/guide/components/aidl
https://developer.android.com/guide/components/aidl
https://developer.android.com/reference/android/os/IInterface
http://www.taf.net.cn/StdDetail.aspx?uid=6C9F4148-84AA-4990-A3F8-6B11AD13D237&stdType=TAF
http://www.taf.net.cn/StdDetail.aspx?uid=6C9F4148-84AA-4990-A3F8-6B11AD13D237&stdType=TAF
https://gadgettrait.com/xiaomi-reacted-to-the-article-regarding-its-privacy-policy-by-forbes/
https://gadgettrait.com/xiaomi-reacted-to-the-article-regarding-its-privacy-policy-by-forbes/
https://techcrunch.com/2020/05/13/googles-android-ad-id-targeted-in-strategic-gdpr-tracking-complaint
https://techcrunch.com/2020/05/13/googles-android-ad-id-targeted-in-strategic-gdpr-tracking-complaint


M. Allman, C. Kreibich, and P. Gill, “Apps, trackers, privacy, and
regulators: A global study of the mobile tracking ecosystem,” in The
Network and Distributed System Security Symposium (NDSS), 2018.

[58] J. Reardon, Á. Feal, P. Wijesekera, A. E. B. On, N. Vallina-Rodriguez,
and S. Egelman, “50 ways to leak your data: An exploration of apps’
circumvention of the android permissions system,” in 28th USENIX
Security Symposium (USENIX Security 19), 2019.

[59] J. Ren, M. Lindorfer, D. J. Dubois, A. Rao, D. Choffnes, and N. Vallina-
Rodriguez, “A longitudinal study of pii leaks across android app
versions,” in The Network and Distributed System Security Symposium
(NDSS), 2018.

[60] J. Ren, A. Rao, M. Lindorfer, A. Legout, and D. Choffnes, “Recon:
Revealing and controlling pii leaks in mobile network traffic,” in
Proceedings of the 14th Annual International Conference on Mobile
Systems, Applications, and Services, 2016, pp. 361–374.

[61] Samsung, “Samsung Galaxy Smartphones and Tablets
Join Android Enterprise Recommended Program,”
2020, (accessed 13 April 2022). [Online]. Avail-
able: https://news.samsung.com/global/samsung-galaxy-smartphones-
and-tablets-join-android-enterprise-recommended-program

[62] ——, “Knox certificates and guidance,” 2021, (accessed 13 April
2022). [Online]. Available: https://www.samsungknox.com/en/knox-
platform/knox-certifications

[63] Y. Shao, Q. A. Chen, Z. M. Mao, J. Ott, and Z. Qian, “Kratos: Discover-
ing inconsistent security policy enforcement in the android framework.”
in The Network and Distributed System Security Symposium (NDSS),
2016.

[64] Y. Shen, P.-A. Vervier, and G. Stringhini, “Understanding worldwide
private information collection on android,” in The Network and Dis-
tributed System Security Symposium (NDSS), 2021.

[65] R. Spreitzer, F. Kirchengast, D. Gruss, and S. Mangard, “Procharvester:
Fully automated analysis of procfs side-channel leaks on android,”
in Proceedings of the 2018 on Asia Conference on Computer and
Communications Security, 2018, pp. 749–763.

[66] R. Spreitzer, V. Moonsamy, T. Korak, and S. Mangard, “Systematic
classification of side-channel attacks: A case study for mobile devices,”
IEEE Communications Surveys & Tutorials, vol. 20, no. 1, pp. 465–488,
2017.

[67] StatCounter, “Mobile Vendor Market Share Worldwide, Apr 2021
- Apr 2022,” 2022, (accessed 6 May 2022). [Online]. Available:
https://gs.statcounter.com/vendor-market-share/mobile/worldwide

[68] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Inves-
tigating user privacy in android ad libraries,” in Workshop on Mobile
Security Technologies (MoST), vol. 10. Citeseer, 2012.

[69] M. Sun, T. Wei, and J. C. Lui, “Taintart: A practical multi-level
information-flow tracking system for android runtime,” in Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security, 2016, pp. 331–342.

[70] The European Parliament, “Regulation (eu) 2016/679 of the european
parliament and of the council of 27 april 2016 on the protection of
natural persons with regard to the processing of personal data and on the
free movement of such data, and repealing directive 95/46/ec (general
data protection regulation) (text with eea relevance),” Official Journal
of the European Union, 2016.

[71] L. Tsai, P. Wijesekera, J. Reardon, I. Reyes, S. Egelman, D. Wagner,
N. Good, and J.-W. Chen, “Turtle guard: Helping android users apply
contextual privacy preferences,” in Thirteenth Symposium on Usable
Privacy and Security (SOUPS 2017), 2017, pp. 145–162.

[72] UNCTAD, “Data Protection and Privacy Legislation Worldwide,” 2020,
(accessed 13 April 2022). [Online]. Available: https://unctad.org/page/
data-protection-and-privacy-legislation-worldwide

[73] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundare-
san, “Soot: A java bytecode optimization framework,” in CASCON First
Decade High Impact Papers, 2010, pp. 214–224.

[74] J. Wang, Y. Xiao, X. Wang, Y. Nan, L. Xing, X. Liao, J. Dong, N. Ser-
rano, H. Lu, X. Wang et al., “Understanding malicious cross-library data
harvesting on android,” in 30th USENIX Security Symposium (USENIX
Security 21), 2021.

[75] K. Wang, J. Zhang, G. Bai, R. Ko, and J. S. Dong, “It’s not just the
site, it’s the contents: Intra-domain fingerprinting social media websites

through cdn bursts,” in Proceedings of the Web Conference (WWW),
2021, pp. 2142–2153.

[76] P. Wang, K. Liu, L. Jiang, X. Li, and Y. Fu, “Incremental mobile
user profiling: Reinforcement learning with spatial knowledge graph
for modeling event streams,” in Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
2020, pp. 853–861.

[77] Z. Wang, Z. Li, M. Xue, and G. Tyson, “Exploring the eastern
frontier: A first look at mobile app tracking in china,” in International
Conference on Passive and Active Network Measurement. Springer,
2020, pp. 314–328.

[78] B. Wolford, “What are the GDPR fines?” 2022, (accessed 6 May
2022). [Online]. Available: https://gdpr.eu/fines/

[79] Q. Xiao, M. K. Reiter, and Y. Zhang, “Mitigating storage side channels
using statistical privacy mechanisms,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, 2015,
pp. 1582–1594.

[80] Xiaomi, “Top List - Xiaomi App Store,” 2021, (accessed 13 April
2022). [Online]. Available: https://app.mi.com/topList

[81] F. Xie, Y. Zhang, C. Yan, S. Li, L. Bu, K. Chen, Z. Huang, and G. Bai,
“Scrutinizing privacy policy compliance of virtual personal assistant
apps,” in Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2022.

[82] R. Xu, H. Saïdi, and R. Anderson, “Aurasium: Practical policy enforce-
ment for android applications,” in 21st USENIX Security Symposium
(USENIX Security 12), 2012.

[83] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang,
“Appintent: Analyzing sensitive data transmission in android for privacy
leakage detection,” in Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security, 2013, pp. 1043–1054.

[84] Z. Yang and C. Yue, “A comparative measurement study of web
tracking on mobile and desktop environments,” Proceedings on Privacy
Enhancing Technologies, vol. 2020, no. 2, pp. 24–44, 2020.

[85] K. Zhang and X. Wang, “Peeping tom in the neighborhood: keystroke
eavesdropping on multi-user systems,” in 18th USENIX security sym-
posium (USENIX Security 2009), 2009.

[86] N. Zhang, K. Yuan, M. Naveed, X. Zhou, and X. Wang, “Leave me
alone: App-level protection against runtime information gathering on
android,” in IEEE Symposium on Security and Privacy, 2015, pp. 915–
930.

[87] X. Zhang, X. Wang, R. Slavin, T. Breaux, and J. Niu, “How does
misconfiguration of analytic services compromise mobile privacy?” in
2020 IEEE/ACM 42nd International Conference on Software Engineer-
ing (ICSE), 2020, pp. 1572–1583.

[88] S. Zhao, G. Pan, Y. Zhao, J. Tao, J. Chen, S. Li, and Z. Wu, “Mining
user attributes using large-scale app lists of smartphones,” IEEE Systems
Journal, vol. 11, no. 1, pp. 315–323, 2016.

[89] H. Zhou, H. Wang, X. Luo, T. Chen, Y. Zhou, and T. Wang, “Uncovering
cross-context inconsistent access control enforcement in android,” in
The Network and Distributed System Security Symposium (NDSS), 2022.

[90] X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan, X. Wang, C. A.
Gunter, and K. Nahrstedt, “Identity, location, disease and more: In-
ferring your secrets from android public resources,” in Proceedings of
the 2013 ACM SIGSAC conference on Computer & communications
security, 2013, pp. 1017–1028.

[91] X. Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang, “The peril of frag-
mentation: Security hazards in android device driver customizations,”
in IEEE Symposium on Security and Privacy, 2014, pp. 409–423.

[92] Z. Zhou, W. Diao, X. Liu, and K. Zhang, “Acoustic fingerprinting
revisited: Generate stable device id stealthily with inaudible sound,”
in Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, 2014, pp. 429–440.

APPENDIX

A. UUI Access of Two Example APIs

getImei(). The definition of this API is shown in the code
snippet below (lines 2-4). It calls another method within the
same class (lines 6-14). As shown in line 8, the IMEI is

16

https://news.samsung.com/global/samsung-galaxy-smartphones-and-tablets-join-android-enterprise-recommended-program
https://news.samsung.com/global/samsung-galaxy-smartphones-and-tablets-join-android-enterprise-recommended-program
https://www.samsungknox.com/en/knox-platform/knox-certifications
https://www.samsungknox.com/en/knox-platform/knox-certifications
https://gs.statcounter.com/vendor-market-share/mobile/worldwide
https://unctad.org/page/data-protection-and-privacy-legislation-worldwide
https://unctad.org/page/data-protection-and-privacy-legislation-worldwide
https://gdpr.eu/fines/
https://app.mi.com/topList


obtained from calling the method getImeiForSlot() of an
object of ITelephony.

1 /* .../android/telephony/TelephonyManager.java */
2 public String getImei() {
3 return getImei(getDefaultSim());
4 }
5 ...
6 @Deprecated
7 public String getImei(int slotIndex) {
8 ITelephony telephony = getITelephony();
9 ...

10 try {
11 return telephony.getImeiForSlot(...);
12 }
13 ...
14 }

The ITelephony is a nested interface class used to interact
with the system service phone, in which the getImeiForSlot()
interface is defined in an inner class named Proxy (lines 6-
10, in the code snippet of ITelephony class). The proxy is
generated by another inner class of ITelephony called Stub
(lines 2-13). The remote interface is defined in the stub class
(line 3) and shares the same method name with the local
interface. Both the stub and proxy are inner classes generated
at compilation time based on the predefined Android Interface
Definition Language (AIDL) file to allow apps binding [32].
The code snippet including both the local and remote interfaces
is shown below.

1 /* .../com/android/internal/telephony/ITelephony.java */
2 public static abstract class Stub extends android.os.Binder

implements com.android.internal.telephony.ITelephony {
3 public java.lang.String getImeiForSlot(...) throws android.os

.RemoteException;
4 ...
5 private static class Proxy implements com.android.internal.

telephony.ITelephony {
6 @Override public java.lang.String getImeiForSlot(...)

throws android.os.RemoteException {
7 ...
8 boolean _status = mRemote.transact(Stub.

TRANSACTION_getImeiForSlot, _data, _reply, 0);
9 ...

10 }
11 }
12 }

The remote interface is overridden in the class
PhoneInterfaceManager, shown in the code snippet below.
The IMEI is returned by calling phone.getImei() (line 7).

1 /* .../package/services/Telephony/src/com/android/phone/
PhoneInterfaceManager.java */

2 @Override
3 public String getImeiForSlot(...) {
4 Phone phone = PhoneFactory.getPhone(slotIndex);
5 ...
6 try {
7 return phone.getImei();
8 }
9 ...

10 }

The Phone appearing in the above code snippet is an
abstract class. Its method getImei() is overridden by two
classes, ImsPhoneBase and GsmCdmaPhone. The former class
is invoked when the device has no IMEI (lines 1-5 of the code

snippet below), and the latter corresponds to the case where
the device has a valid IMEI (lines 6-10).

1 /* .../com/android/internal/telephony/imsphone/ImsPhoneBase.
java */

2 @Override
3 public String getImei() {
4 return null;
5 }
6 /* .../com/android/internal/telephony/GsmCdmaPhone.java */
7 @Override
8 public String getImei() {
9 return mImei;

10 }

getSerial(). This API is provided in the class Build, as shown
in the code below. It creates an object of the stub class of
IDeviceIdentifiersPolicyService (line 3) and invokes the
local interface (i.e., getSerialForPakcage() in line 6).

1 /* .../android/os/Build.java */
2 public static String getSerial() {
3 IDeviceIdentifiersPolicyService service =

IDeviceIdentifiersPolicyService.Stub.asInterface(...));
4 try {
5 ...
6 return service.getSerialForPackage(callingPackage, null);
7 }
8 ...
9 }

The API’s invocation is requested through the local inter-
face defined in the proxy class (lines 5-10 in the code snippet
below), and then handled via the remote interface defined in
the stub class (lines 2-13). Both the stub and proxy are inner
classes of IDeviceIdentifierPolicyService, in which a few
interfaces are defined for apps to interact with the system
service called device_identifiers.

1 /* .../android/os/IDeviceIdentifiersPolicyService.java */
2 public static abstract class Stub extends android.os.Binder

implements android.os.IDeviceIdentifiersPolicyService
3 {
4 private static class Proxy implements android.os.

IDeviceIdentifiersPolicyService {
5 @Override public java.lang.String getSerialForPackage(...)

throws android.os.RemoteException
6 {
7 ...
8 boolean _status = mRemote.transact(Stub.

TRANSACTION_getSerialForPackage, _data, _reply, 0);
9 ...

10 }
11 ...
12 public java.lang.String getSerialForPackage(...) throws

android.os.RemoteException;
13 }

Next, the remote interface is overridden in
DeviceIdentifiersPolicyService. The serial number
is returned by calling a getter function of the class
SystemProperties (line 5).

1 /* .../android/server/os/DeviceIdentidiersPolicyService.java

*/
2 @Override
3 public @Nullable String getSerialForPackage(...) throws

RemoteException {
4 ...
5 return SystemProperties.get("ro.serialno", Build.UNKNOWN);
6 }

17



Unlike getImei() that the IMEI is returned within the
scope of a system service, getSerial() is finally served
by querying system properties. For this reason, the system
properties are treated as an undocumented access channel.

B. Alternative Approaches for Entry Point Retrieval

System Settings. Android provides APIs to read data from
the settings database but only when the caller knows the key.
Therefore, we must find an alternative approach to access
system settings without keys. In addition to the ADB approach,
we can also retrieve all the keys by running a URI scheme
query in an app, as shown in the code below:

1 /* Change the "system" to global and secure to query other two
setting tables */

2 Uri uri = Uri.parse("content://settings/system");
3 Cursor cursor = getContentResolver().query(uri, null, null,

null, null);
4 while (cursor.moveToNext()) {
5 /* Three strings to be read from the cursor.
6 They are "id", "name" and "values" respectively */
7 Log.d(TAG, cursor.getString(0) + ", " + cursor.getString(1) +

", " + cursor.getString(2));
8 }

System Properties. The list of all system properties can also
be obtained through executing a specific command through the
Runtime instance, as shown in the snippet below:

1 String propertyValue = ""; // Leave it empty to retrieve all
2 try {
3 Process getPropProcess = Runtime.getRuntime().exec("getprop "

+ propertyName);
4 BufferedReader bufferReader = new BufferedReader(new

InputStreamReader(getPropProcess.getInputStream()));
5 propertyValue = bufferReader.readLine();
6 bufferReader.close();
7 } catch (Exception e) { ... }

System Services. Android does not offer an API to retrieve all
system services. However, the list of system services can be
retrieved through Java reflection. The code sample is shown
below:

results = (String[])class.forName("android.os.ServiceManager").
getMethod("ListServices").invoke(null);

Moreover, the list of system services can also be obtained
by executing a specific command via the Runtime instance, in
a similar way to the retrieval of system properties, as shown
below:

BufferedReader bufferReader = new BufferedReader(new
InputStreamReader(Runtime.getRuntime().exec("service list").
getInputStream()));

C. Testing System Service

First, U2-I2 retrieves all active system services by the
approaches discussed in Section VI-B1 and Appendix B).
Given a list of system services, including the service names
and the corresponding manager classes, U2-I2 takes advantage
of Java reflection to obtain a binder object of each of them. It
attempts to call all public methods defined in it. This process
is briefly presented in the code snippet below. It scans all
services (lines 2-12), and for each service, it enumerates all

public methods to search for any potential UUI leakage from
the data returned (lines 22-32).

1 public static void testSystemServices(String[] nameList,
String[] classList) {

2 for (int i=0, i<nameList.length; i++) {
3 Class class = Class.forName(classList[i] + "$Stub");
4 Field[] fields = class.getDeclaredFields();
5 for (int j=1; j<=fields.length; j++) {
6 try {
7 /* Below we invoke an inhouse method of U2-I2 */
8 String result = callMethod(nameList[i], j)
9 }

10 ...
11 }
12 }
13 }
14 public static String callMethod(String serviceName, int code){
15 String result = "";
16 IBinder iBinder = (IBinder) Class.forName("android.os.

ServiceManager").getMethod("getService",String.class).
invoke(null, nameList[i]);

17 Parcel data = Parcel.obtain();
18 Parcel reply = Parcel.obtain();
19 /* Below we invoke an inhouse method to get the package name

of the service class */
20 data.writeInterfaceToken(getInterfaceDescriptor(serviceName))

;
21 boolean toRepeat = true;
22 while (toRepeat) {
23 /* Below we invoke an inhouse method to feed arguments into

data parcel */
24 data = feedArguments();
25 try {
26 iBinder.transact(code, data, reply, 0);
27 result = reply.readString();
28 ...
29 }
30 ...
31 /* Set toRepeat to false if we have obtained a valid output

or run out of all argument candidates */
32 }
33 return result;
34 }

Invoking an unknown method requests a code (line 26).
It can be exhaustively enumerated from 0 to the maximum
allowed value (224-1). To be more efficient, U2-I2 narrows
down its range in advance. All codes of a service are defined
in the interface class as constants of the type static final
int and are assigned with a unique integer in ascending order.
Therefore, a rough range can be estimated by querying the
total number of variables/constants declared in that class. This
can be achieved by calling getDeclaredFields() (line 4).

U2-I2 also needs to set parameters when calling a
method (line 24). Since most methods for UUI access in
system services are created as getter methods, they usually
take either no argument or a limited number of primitive and
non-primitive types of parameters such as integers indicate the
SIM card slot index, or strings represent the pacakage name of
the caller. Therefore, U2-I2 sets parameters from a predefined
set. This strategy is shown effective in the testing.

18


	Introduction
	Background
	Android Permission System
	Android's Response to Data Regulations

	Understanding Android UUIs
	Definitions and Scope
	Recognizing UUIs
	Characterizing Android UUIs

	Overview of Our Approach
	Objectives and Threat Model
	Challenges and Approach Overview

	Assessing Documented Channels
	Discovering and Assessing Undocumented Access Channels
	Access Channel Exploration
	Static Control Flow Analysis
	Forensics of the File Systems

	Automatic Access Channel Testing
	Retrieving Entry Points
	Testing

	OEM-defined UUI Identification

	Evaluation and Landscape of UUI Protection in Android Phones
	RQ1: Status Quo of OS-level UUI Protection
	RQ2: Characterization of UUI Leakage Vulnerabilities
	RQ3: UUI Collection by Existing Apps

	Whitelisting Issues
	Discussions
	Lessons Learned from UUI Leakages
	Recommendations to Involved Parties
	Limitations

	Related Work
	Conclusion
	References
	Appendix
	UUI Access of Two Example APIs
	Alternative Approaches for Entry Point Retrieval
	Testing System Service


