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Abstract—Mobile instant messengers such as WhatsApp use
delivery status notifications in order to inform users if a sent
message has successfully reached its destination. This is useful
and important information for the sender due to the often
asynchronous use of the messenger service. However, as we
demonstrate in this paper, this standard feature opens up a
timing side channel with unexpected consequences for user
location privacy. We investigate this threat conceptually and
experimentally for three widely spread instant messengers. We
validate that this information leak even exists in privacy-friendly
messengers such as Signal and Threema.

Our results show that, after a training phase, a messenger
user can distinguish different locations of the message receiver.
Our analyses involving multiple rounds of measurements and
evaluations show that the timing side channel persists indepen-
dent of distances between receiver locations – the attack works
both for receivers in different countries as well as at small
scale in one city. For instance, out of three locations within
the same city, the sender can determine the correct one with
more than 80% accuracy. Thus, messenger users can secretly spy
on each others’ whereabouts when sending instant messages. As
our countermeasure evaluation shows, messenger providers could
effectively disable the timing side channel by randomly delaying
delivery confirmations within the range of a few seconds. For
users themselves, the threat is harder to prevent since there is
no option to turn off delivery confirmations.

I. INTRODUCTION

In recent years, messaging applications (or messengers)
have become the de-facto standard for mobile communication.
They have transitioned into integral parts of daily lives, with
the most prominent messenger, WhatsApp, connecting more
than two billion monthly active users world-wide [47]. Mes-
sengers are used in a wide range of scenarios, from informal
communication among working colleagues [29] and social
engagement among elderly people [31], to parents coordinating
school matters [44] and citizens organizing neighborhood
watches [11]. In some cases, messengers are also used for
official communication with government authorities [25], [38],
thus composing large and heterogeneous sets of contacts in one
application per user.

Whenever a user sends a message in a messenger, the client
application displays the current status of the message – from

being in transit, processed and forwarded by the messenger
server, to delivered to the recipient, and (if enabled) read by
the recipient [2], often indicated by small symbols such as
checkmarks. This is helpful information for users to track if a
message has successfully reached its destination.

However, as we will demonstrate in our paper, this feature
can also serve as a side channel that allows to learn sensi-
tive information about message recipients, such as revealing
information about their current whereabouts, with undesired
potential harm to location privacy.

In more details, we conduct a series of experiments in
Signal [34], Threema [49], and WhatsApp [55] to evaluate and
demonstrate to what extent we can classify different message
receivers and their respective locations based on delivery
notification timings of a set of subsequently sent messages.
Deriving sensitive information about someone by sending them
a few messages is problematic because it is simple, rather
unsuspicious, and hard to mitigate. Users cannot effectively
prevent receiving messages from people in their contact list,
except for permanently blocking them and, therefore, stopping
having mobile conversations with them at all.

Based on characteristics such as the location of a receiver,
delivering a message and returning the respective confirmation
takes a specific amount of time. Physical transmissions on
the Internet are influenced by the travelled distance, they
depend on the network topology, i. e., routing and the hops in-
between, and processing by the messaging service. We show
that sending messages using each of these three messengers
to receivers at different locations results in different and
distinguishable delivery notification timing patterns.

This issue is critical for multiple reasons: First, all three
messengers we examine are generally considered secure as
they use end-to-end encryption between clients. It is not
intuitive for users that the mere usage of the messenger service
may leak information about their whereabouts. Second, Signal
and Threema are best known for their focus on privacy –
Signal’s protocol serves as the blueprint for provably secure
key establishment between clients [9] and has been adapted
by other applications such as WhatsApp. Leaking information
of the user’s location contradicts this notion of privacy. Third,
a user cannot do much about someone in their contact list
sending them instant messages. Other than read receipts that
can be turned off by the receiver for privacy reasons, there is
no such option for delivery notifications [54].

In order to experimentally validate this concept we need
to take into account the server infrastructures of messengers.
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This information is not publicly shared and it is a challenge
in itself to reliably extract the relevant information such as
the number and locations of messenger servers. To this end,
we conduct experiments to collect and aggregate information
about the geographical distribution of servers of popular instant
messaging services and analyze if and how knowledge about
the messaging server in use affects the outcome of the delivery
timing evaluation. We note that the server infrastructure setup
does not change frequently, so this step would not have to be
redone for each user localization attempt. Beyond the proof-
of-concept attack done in this work, knowledge about the
messenger infrastructure may be useful for other purposes.

In summary, our paper makes the following contributions:

1) Messenger Infrastructure Analysis. We aggregate and
provide an overview of the geographical distribution of
servers of mobile messaging services from a series of
experiments to discover and analyze their infrastructures.

2) Empirical Messaging Experiments. We conduct large-
scale measurements collecting the transmission timings
of message delivery notifications between devices in
multiple locations in Europe and the Middle East.

3) Attack and Countermeasure Evaluation. We demon-
strate to what extent we can distinguish different receivers
and their respective locations from each other based on
the measured delivery notification timings. We also show
that this threat can be mitigated by randomly delaying
delivery notifications in the range of a few seconds.

Experimental Overview: Figure 1 provides an overview
of our experiments for each of the three parts, their results
and connections with each other. We start with infrastructure
discovery experiments that result in sets of server locations
used to determine the infrastructure overhead in the messaging
experiments. At the core of our study, we use sequences of
message delivery notification timings to classify receiver loca-
tions at different granularity levels and measure the accuracy.

Disclosure Process: The timing side channel exploited
in this paper may potentially affect the location privacy of
millions of messenger users. Following the guidelines of
responsible disclosure, we got in contact with the providers
of the messenger apps (Signal, Threema, WhatsApp) and
reported the vulnerability to them prior to the submission of
this paper in May 2022. Whereas Signal and WhatsApp have
not acknowledged the issue to date (October 2022), we have
exchanged ideas for mitigating the problem with Threema and
they are currently evaluating how specific countermeasures
(cf. Section VI) would affect user experience.

II. MESSENGER INFRASTRUCTURE ANALYSIS

Our first goal is to obtain a comprehensive overview of the
infrastructures of the messengers we use in our experiments,
i. e., for Signal, Threema, and WhatsApp. For the delivery
notification timing analysis, knowledge about the infrastructure
is crucial to assess the different parts of the connection between
sender and receiver, their distances, and timings.

A. Discovery and Aggregation

In order to gain first insights into the messenger infras-
tructures, we conduct a set of experiments to identify servers
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Fig. 1: Structural overview of the sequence of experiments
(rounded nodes) and their outcomes (square nodes) in our
paper and how the three main parts build upon each other.

used by messaging services. In the first step, we set up two
smartphones running client applications for all messengers
under consideration and capture their network traffic when
the applications are running. From the collected captures, we
extract the IP addresses of the servers that the application on
the smartphone connects to. Since we assume that messenger
servers are geographically distributed, the resulting sets of
IP addresses may only represent specific fractions of the
messenger infrastructures, i. e., they comprise servers near to
our own location.

To broaden the perspective derived from our local obser-
vations, we perform a two-step DNS analysis, as follows:

(1) For all IP addresses that appear in the communication
using one of the messaging applications, we perform
reverse DNS lookups to learn what (sub)domain names
are used by the messenger operations.

(2) For each domain name in the set derived from reverse
look-ups, we perform federated DNS resolving from mul-
tiple locations across all continents.

We continue to describe the exact procedures for each mes-
senger individually.

1) Signal: For Signal, two specific IPv4 addresses are in
use. Reverse DNS lookups point to the same domain name
operated by Amazon Web Services (AWS), also when we
perform these lookups from different geographical locations.
When we resolve the resulting domain name, the same two
IP addresses are returned, irrespective of the location. Even
though the order of the two addresses varies, there is no
indication that one address is preferred over the other at
specific locations.

2) Threema: For Threema, we identify two similar IP
addresses from the same IPv4/24 address range, for one of
which the reverse DNS lookup points to a threema.ch
domain name. Reverse lookup fails for the other address. We
manually identify several more IP addresses whose domain
names are resolved to threema.ch, resulting in an extended
set of 12 IP addresses. However, it is unclear if all these IP
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addresses are actually used for the messaging application of if
they serve other purposes related to the same domain.

3) WhatsApp: Our reverse domain name resolving of
server IP addresses reveals that WhatsApp establishes con-
nections to servers in five different domain name ranges.
Additionally, different servers within the same domain name
range have been used. Irrespective of the location at which we
perform the reverse DNS lookup for a particular IP address, it
is resolved to the exact same domain name. Across the three
messengers, we discover the largest number of different IP
addresses when we explore the network traffic of WhatsApp.

The WhatsApp domain names within the same namespace
only differ in 3-letter strings which appear to be IATA airport
codes1 near our experimental locations. Random checks of
additional domain names with the identifier replaced with
different ones (in other regions all over the world) reveal
further IP addresses, strengthening our assumption.

Since all tested domain names resolve to similar IP ad-
dresses in five different IPv4/16 subnets, we conduct a full
search of the respective address ranges. We record all domain
names and their corresponding IPv4 addresses that contain a
reference to WhatsApp (cf. Table I). We further extend the
resulting set by manually spot-checking even more identifiers,
which leads to a small number of additional servers. In total,
our set of discovered WhatsApp servers comprises 410 server
instances using 143 different location identifiers.

TABLE I: Namespace prefixes used by WhatsApp servers.

Namespace (Prefix) No. of IPs No. of Locations

fna-whatsapp 126 75
whatsapp-chatd-edge 94 73
whatsapp-chatd-msgr-edge 92 72
whatsapp-cdn 92 72
whatsapp-pp 6 4

Total Unique IPs/Locations 410 143

B. Location Analysis

In the next step, we map messenger servers to their
individual geographical location and validate the mapping
with the help of simple plausibility checks. We initially map
each messenger server identified in Section II-A, i. e., their IP
addresses, to a specific geographical location. We use different
strategies depending on the information that we can obtain per
messenger.

Little official information about messenger infrastructures
is made public by their providers. In the set of messengers
we explored, only Threema mentions that their servers are
located in the Zurich area, Switzerland [50]. For Signal, no
official information is available but several sources indicate
that servers are hosted by AWS at the US east coast [4], [14],
[45], [56] which is presumably located near Ashburn, VA.

The only information we find with relation to WhatsApp
is a list of the locations of Facebook data centers on their
website [15]. It is, however, unclear if these locations are also
related to WhatsApp. We additionally take into account the

1https://www.iata.org/en/publications/directories/code-search/?airport.search=
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Fig. 2: Locations of Signal, Threema, and WhatsApp servers
around the world (larger version in the Appendix).

presumable IATA location identifiers within the domain names
associated with IP addresses used by WhatsApp. We perform
look-ups for all 143 codes that appear in our data set and use
the resulting city as baseline location for the server. In a few
cases, identifiers could not be resolved – and we manually
annotate them. For example, the codes frx and frt most likely
belong to the area of Frankfurt, Germany (whose original IATA
identifier is fra).

We continue with a series of systematic Ping and Tracer-
oute experiments from different geographical locations using
a public API provided by CheckHost [7]. Over a period of
four weeks we collect ping and routing information to all
messenger servers. To confirm a location candidate as correct,
we require that the shortest Ping time is received by the probe
host that is closest to the location candidate and only accept
minor deviations.

Whereas for WhatsApp and Threema the results are consis-
tent and confirm our initial assumptions about the baseline, the
case is more difficult for Signal. Ping information is heavily
inconsistent with results being within less than 10ms from all
different continents, which suggests that they are returned from
different physical locations close to each of the probing hosts.
While Traceroute information can only be partially retrieved
for Signal, they include traces with hosts that are likely located
in the US, which again strengthens the initial assumption of
Signal servers to be US-based.

Figure 2 shows our extracted geographical overview of
the server locations for the three messengers (a larger/more
readable version can be found in Figure 14 in Appendix B).

III. MESSAGE STATUS TIMING SIDE CHANNEL

The main idea of the attack we present is the use of a timing
side channel provided by message status information to derive
characteristics of a target user’s Internet connection. Whenever
two users are in each other’s contact list of a mobile messaging
application, i. e., they have accepted to be in a conversation on
that messenger, the application shows status information for
exchanged messages.

Small icons (e. g., check marks) along with each message
indicate whether a message has been sent to the messenger
server, delivered to the receiver, or read by the receiver. The
messages between users as well as the information about the
message status are exchanged through TCP messages between
the client application and the messenger server. We measure
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Fig. 3: Schematic overview of the message flow from the
senders’ perspective. The illustration is simplified since sender
and receiver can be connected to different messenger servers.

the time between sending a message (i. e., the TCP packets
containing the message leaving the sender’s device) and the
server and delivery confirmations (i. e., the TCP packets con-
taining these confirmations) arriving at the sender’s device.
Observing the resulting timing difference allows us to reason
about characteristics of the receiver, such as their location,
or their network connection. A schematic overview of the
information flow is depicted in Figure 3.

Factors such as the travelled distance between sender,
server, and receiver, routing through the Internet between these
entities, as well as processing at the messenger server and at
hops in-between can affect the observed timings. Repeatedly
sending messages to receivers under different conditions (e. g.,
location, network connection) and observing the timings be-
tween messages allows us to learn characteristics of the timings
under these conditions in a controlled setup. For different
receiver locations, the duration or the distribution of RTTs may
be different, e. g., longer times likely represent longer distances
between the communication partners.

Within our experiments, we demonstrate to what extent it
is feasible to determine certain receiver characteristics upon
observing delivery notification timings.

A. Threat Model

From a technical perspective, the adversary is required
to operate a regular smartphone that is capable of running
a messenger application. The adversary additionally needs
to be able to access and analyze their own TCP traffic to
extract timing information. This traffic can be captured either
on a node in their local network, or directly running on the
smartphone when running a packet capture app.

As an operational requirement for the attack, adversary and
victim must be in each other’s contact lists in the messenger.
Thus, the threat is limited to parties who likely know each
other, as the attack can only be conducted against users who
have added the adversary to their contacts. However, the var-
ious contexts in which people have messenger conversations,
be it in personal (extended family, acquaintances), professional
(e. g., work collaborators) or other contexts (e. g., interaction
with public institutions, clubs, authorities, within neighbor-
hoods) in combination with low technical requirements still
yield a considerable threat scope within social circles, e. g.,
for stalking.

In an initial training phase, the adversary sends messages
to the victim and learns timing characteristics while knowing

their whereabouts. Subsequently, the adversary can send new
messages to the victim, and determine their location or network
connection out of the set of previously seen plausible ones.
Since the attack entails sending messages, the adversary’s be-
havior might be observed by the victim and appear suspicious.
Therefore, the attacker might leverage timings of messages
they send anyway which would, however, narrow down the
practical threat scope to people who regularly exchange larger
numbers of messages.

B. Setup

We conduct measurements while sending messages be-
tween multiple smartphones in different geographical loca-
tions. Our setup comprises two types of devices:

(i) Active devices are used to send messages to other de-
vices. Each active device is connected via USB to a
computer scheduling the experiment and controlling the
smartphone via Android Debug Bridge (ADB).

(ii) Passive devices are used to receive messages from active
devices. The only requirement for a passive device is
having an active Internet connection.

We conduct two rounds of measurements serving different
purposes:

1): In the first round, we conduct long-distance mea-
surements with devices distributed across different countries.
During this round of measurements, each device is assigned
a specific, permanent location. Out of three devices for active
measurements, two are located in Germany (DE-11 and DE-
12) and one in Greece (GR-11). Our setup comprises three
more passive devices, located in Germany (DE-13), the Nether-
lands (NL-11) and the Middle East (AE-11). This experiment
is meant to demonstrate a proof of concept that the message-
status timing side channel actually exists. For the sake of
simplicity, all devices operated on a WiFi Internet connection
for these measurements.

2): In a second round of measurements, we send mes-
sages from a single active device to passive devices at locations
closer to each other, i. e., within the same city, and also rotate
passive devices through these locations. Furthermore, passive
devices switch between WiFi and cellular Internet connections.
We replicate this type of setup in Germany (DE-2X) and the
Middle East (AE-2X). This round of measurements is meant
to demonstrate a more practical and realistic attack scenario,
imitating a natural everyday behavior of a target messenger
client, e. g., being at their home and work location (WiFi) and
moving in between and around (cellular). Furthermore, this
second round also shows to what extent the attack works at a
smaller scale, which is less obvious than comparing timings
at country level.

In Table II, we provide an overview of the devices and their
locations involved in the two rounds of our experiments. For
each location, we also indicate whether we use WiFi (W), or
cellular (4G/4G+/5G) connections, or both for measurements
at the respective location. Additionally, Table III lists distances
between locations for all three setups.

C. Measurement Procedure

We measure the time it takes for a message from a sender
device to be delivered to the messenger server and to the
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TABLE II: Devices and locations in our measurements.

ID Model (Year) Type Locations

Round 1
AE-11 Huawei P40 (2020) P AE-A (W)
DE-11 Xiaomi Mi A3 (2019) A,P DE-A (W)
DE-12 Huawei P8 Lite (2017) A,P DE-B (W)
DE-13 OnePlus 7 Pro (2019) P DE-B (W)
GR-11 Samsung Note 10+ (2019) A,P GR-A (W)
NL-11 Samsung S6 (2015) P NL-A (W)

Round 2 (United Arab Emirates)
AE-21 Huawei P40 (2020) A AE-B (W)
AE-22 Samsung Note 10 (2019) P AE-A, AE-D (W, 4G+)
AE-23 Samsung S22 (2022) P AE-B (W, 5G)
AE-24 Nokia X10 (2021) P AE-C (W, 4G+)

Round 2 (Germany)
DE-21 Huawei P8 Lite (2017) A DE-A (W)
DE-22 Huawei P8 Lite (2017) P DE-A (W), DE-B (W, 4G), DE-C (W)
DE-23 Google Pixel 3a (2019) P DE-A (W, 4G), DE-B (W), DE-D (W)
DE-24 Samsung S6 (2015) P DE-A (W), DE-B (W, 4G), DE-E (W)

Locations: AE-A,B,C,D: Abu Dhabi, UAE; DE-A,B,D,E: Bochum, Germany;
DE-C: Essen, Germany; NL-A: Nijmegen, Netherlands; GR-A: Athens, Greece

TABLE III: Distances [km] between device locations.

Round 1 Round 2 (UAE) Round 2 (Germany)

D
E-

B

N
L-

A

G
R

-A

A
E-

A

A
E-

B
A

E-
C

A
E-

D

D
E-

B

D
E-

C

D
E-

D

D
E-

E

DE-A 1.5 98.7 1972.9 4981.0 AE-A 7.8 0.4 19.3 DE-A 1.5 14.4 3.4 5.4
DE-B 97.5 1974.4 4982.2 AE-B 8.1 24.9 DE-B 13.5 2.3 4.0
NL-A 2065.8 5079.5 AE-C 18.9 DE-C 11.2 10.3
GR-A 3263.3 DE-D 2.3

recipient. To this end, we capture an active smartphone’s
network traffic directly on the device using the tPacketCapture
app. The phone is connected to a computer via USB and
a Python script controlling the phone via Android Debug
Bridge (ADB) automatically schedules the processes of sending
messages and capturing network traffic. The script uses system
commands to open and close the packet capture and messaging
apps, and interacts with the UI to navigate within the apps,
i. e., simulates human touch input to select contacts or type
messages.

In a single experiment iteration, the phone subsequently
sends a series of five messages to all receivers, with each
messenger that is running on the sender and on the receiver
device. The texts of the messages remain the same throughout
the whole experiments. The first four messages are short and
only consist of a single wordeach, while the last message is
a whole text paragraph. We send the first four messages at
an interval of 10 seconds to allow for the confirmations to
arrive before sending the next message, while we increase
the waiting time before the last messages to 20 seconds in
order to accommodate the longer time it takes to type the
long text, thus facilitating the analysis of the packet captures.
The measurement procedure is complete when all iterations
have terminated successfully for all recipients and their cor-
responding messaging applications. Algorithm 1 shows our
measurement procedure.

Algorithm 1: Texting Thumb
input : A list of messengers which are supported

applications of the receivers
input : A list of receivers according to the contact

list
input : A list of words which are sent to the

receivers consecutively
output: void function

1 sleep time = 10;
2 num of messages = 5;
3 for receiver in receivers :
4 for messenger in messengers :
5 start_pcap ();
6 start_app (messenger);
7 open_chat (receiver);
8 for i← 0 to num of messages - 2 :
9 send (words[i]);

10 sleep (sleep time);
11 sleep (sleep time);

/* Send the long text */
12 send (words[num of messages - 1]);
13 close_app (messenger);
14 stop_pcap ();

We repeat this procedure over a period of several weeks in
July and August 2021 for Round 1 and March to April 2022 for
Round 2. Whereas the physical locations of receiving devices
remain unchanged throughout the Round 1 measurements, we
collect data for at least one week for each location a receiving
device was placed at in Round 2. In total, we use more than
240,000 messages sent during the two rounds of experiments
for evaluation.

IV. DESCRIPTIVE DATASET ANALYSIS

Using the setup described in Section III, we collected our
dataset and use it in the further investigations.2

A. Data Processing

For each measurement iteration, we evaluate the recorded
packet captures to determine the elapsed time between a
message sent by the sender and the notifications (by the server
and receiver) that return to the sender.

Since the messengers we consider use multiple layers of
encryption (i. e., end-to-end encryption between the communi-
cation partners and TLS-encryption for connections between
clients and servers on the transport layer), we are not able to
access the contents of the communication. Yet to analyze the
communication flow and identify the messages and confirma-
tions, we develop heuristics from sample captures. We analyze
characteristics of the network traffic such as packet sizes, their
order and flow direction, which is a common technique, e. g.,
for traffic analysis [8], [48].

Within our analysis, we only consider traffic between the
sender device and IP addresses within the IP address range(s)
of the respective messaging service (cf. Section II). We are

2The raw data contain private location data we prefer not to share publicly.
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TABLE IV: TCP packet lengths of notifications.

Messenger Bytes (Server) Bytes (Receiver)

Signal 123–124 773–828
Threema 38 158–390
WhatsApp 68–69 61–62

interested in sequences of packets of the form as illustrated in
the information flow overview in Figure 3. The message sent
by the sender usually consists of one or more outgoing TCP
packets whose destination is one of the messenger servers.
After a message has been sent, there is one incoming TCP
packet containing the server notification, coming from the
messenger server. Finally, once the receiver has confirmed that
they have retrieved the message, there is another incoming TCP
packet containing the delivery notification. From the sender’s
perspective, this packet is also coming from the messenger
server. These observations are based on a first manual visual
inspection of a small set of packet capture files.

Taking into account the aforementioned network traffic
structure, we conduct our detailed packet capture analysis in
two steps:

(1) Identifying typical packet sizes of server and receiver
notifications.

(2) Matching sequences of TCP packets to determine round-
trip times between sending a message and receiving the
notifications.

1) Identifying Packet Sizes of Notifications: In the first step,
we use a subset of n = 1000 randomly selected packet capture
files and analyze the packet sizes of the two types of incoming
packets (i. e., the notifications from server and receiver). To
make sure that we only consider packets that contain these
notifications, we limit our first analysis to sequences of packets
that appear right after one another and right after the message
has been sent.

We then analyze the lengths of the two inbound packets
in all matched packet sequences across all packet capture files
to identify the lengths of the packets containing the two types
of notifications. We evaluate the frequencies of packet lengths,
conducting an additional round of manual plausibility checks
within the traces. The results are listed in Table IV. Most
notably, the length of the packet containing the notification
that a message has been delivered to its receiver in Threema is
uniformly distributed between 158 and 390 bytes. In contrast,
the other notifications have smaller variations in packet length:
Signal’s notifications range from 773 to 828, and WhatsApp’s
from 61 to 62.

2) Matching Packet Sequences to Determine RTTs: In the
second step, we systematically analyze all packet captures
we have collected during the two rounds of measurements.
Since we now know the sizes of packets we are interested
in, we omit the requirement of packets to appear right after
one another in the correct order. This helps us to also identify
messages whose delivery notification is delayed, or when the
traffic patterns we are interested in interferes with other packets
exchanged between the client application and the messenger
server. We first identify the two inbound packets (i. e., the two
notifications n1 and n2) based on their size and match them

idx=207, t=53.9259, dir=outbound, len=536

idx=208, t=53.9261, dir=inbound, len=42

idx=209, t=53.9263, dir=outbound, len=97

idx=210, t=53.9264, dir=inbound, len=42

idx=211, t=54.0722, dir=inbound, len=123

idx=212, t=54.1225, dir=outbound, len=42

idx=213, t=55.0154, dir=inbound, len=776

idx=214, t=55.0656, dir=outbound, len=56

m

n1

n2

Fig. 4: Excerpt from an example packet capture with the three
identified packets of interest highlighted.

with the latest outbound packet (i. e., the message m) sent
before those two packets arrived. An example is illustrated in
Figure 4. We use the timestamps of the three packets (i. e.,
t(m) for message m) to determine the notification round-trip
times (RTT) between (S)ender and (M)essenger Server, and
(S)ender and (R)eceiver:

RTTS,M = t(n1)− t(m)

RTTS,R = t(n2)− t(m).
(1)

Finally, we calculate the hypothetical RTT between
(M)essenger Server and (R)eceiver:

RTTM,R = RTTS,R −RTTS,M . (2)

Additional Notes on Signal in the UAE: In the Signal
data collected in Round 2 in the UAE, we observed different
traffic characteristics. In particular, there is only one specific
packet returned from the server – presumably containing
both confirmations from server and receiver. Thus, we cannot
determine the difference between the two but only consider
RTTS,R for our analysis.

B. Delivery Notification Timings

We now present a first view into our delivery notification
timing dataset. We start by analyzing the measured times
in relation to the traveled distance, and later continue with
distributions of timings to different receivers.

1) Timings and Distances: We are first interested in the
relation between the timings we observe and the traveled
distances between sender, messenger server, and receiver. To
this end, we analyze what messenger servers have been picked
on the sender’s side and leverage the findings from our
messenger infrastructure analysis (cf. Section II) to determine
the distances from the server to sender (distGCD(S,M))
and receiver (distGCD(M,R)), respectively. We emphasize
that the receiving device might be connected to a different
server (location) than the sender – however, from the attacker’s
position (i. e., the sender), this information cannot be further
resolved. We can then analyze the relation between timings
and distances for the two segments.

In Figure 5a, we see a slight tendency for minimum timings
to increase for longer distances between sender and server
(for Threema and Whatsapp), even though timings are largely
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Fig. 5: Round trip time distributions of distance splits for (a)
sender to server and (b) server to receiver – (each with 10,000
randomly sampled timings per measurement round)

scattered for similar distances. In Figure 5b, there is, again,
a comparably small set of distances between servers and
receivers, and timings being scattered a lot without clear trends.
Since our experiments only cover a small set of distances
between devices, and only consider Great Circle Distances
(GCD) between entities, without taking into account the actual
routing through the Internet topology, our dataset does not
allow to develop a generalized model to put timings in direct
relation to the traveled distances. To reduce the noise intro-
duced into our data at this stage, we continue with focusing
on the timings between messenger server and receiver, i. e., we
use RTTM,R in subsequent analyses.

2) Differences between Receiver Characteristics: In the
next step, we analyze to what extent timings we collected
comprise differences between receivers, or their characteristics,
respectively.

We first compare the measured RTTM,R between receivers
the different countries involved in the first round of experi-
ments. Figure 6a illustrates distributions of these timings of
messages sent from device DE-11 to receivers in different
countries for each messenger. For all messengers, we observe
that timings to Germany are shorter (lower medians) and
tighter distributed (smaller boxes). Shorter timings for Ger-
many are the result we expect in this case, since all messages
have also been sent from a device in Germany. Whereas the
differences between the medians are smaller for the other
countries, distributions have different widths (heights of boxes)
or are differently shifted (position of boxes).

While differences between the distributions of notifica-
tion timings to receivers in different countries can be easily
identified, we also analyze if such differences also exist at
smaller scale. Moreover, we cannot entirely exclude that these
differences are partially grounded in the devices itself, since
in the first round of measurements, each country location
corresponds to a different device. In this regard, we now
compare notification timings of messages sent to device DE-22
at its different locations in Germany during the second round
of measurements. Figure 6b shows the distributions of timings
to the three locations. Differences appear to be much smaller
than those on the per-country level, we can only observe small
variations in, e. g., medians or ranges of timing distributions,
indicated by ranges and shapes of boxes.
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(a) Messages sent from device DE-11 to receivers in different coun-
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differences within each messenger.

DE-A DE-B DE-C
(a) Signal

0

1

2

RT
T(

M
,R

) [
s]

DE-A DE-B DE-C
(b) Threema

0

1

2

RT
T(

M
,R

) [
s]

DE-A DE-B DE-C
(c) Whatsapp

0

1

2

RT
T(

M
,R

) [
s]

(b) Messages sent to device DE-22 separated by the device’s location.

WiFi Cellular
(a) Signal

0

1

2
RT

T(
M

,R
) [

s]

WiFi Cellular
(b) Threema

0

1

2

RT
T(

M
,R

) [
s]

WiFi Cellular
(c) Whatsapp

0

1

2

RT
T(

M
,R

) [
s]
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tion.

Fig. 6: Empirical distributions of RTTM,R [s] for messages
sent at different stages of our experiments.

In the last step, we also compare notification timings sent to
the same device depending on its network connection. In this
case, differences appear to be larger again, with distributions
of timings of messages received over cellular data showing
a higher variance (larger box) and being slightly slower,
indicated by a higher median (cf. Figure 6c).

V. DELIVERY NOTIFICATION TIMING CLASSIFICATION

Classifying the timing measurements collected in the ex-
periments can help to determine certain characteristics of the
receiver of a message, such as their location. We demonstrate
at what scale it is feasible to classify different targets based on
delivery notification timing measurements and to distinguish
these characteristics from each other.

A. Classification Tasks

To evaluate and demonstrate at what scale the classification
of receivers and their characteristics works, we specify a set
of classification tasks at different granularity levels as follows:
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(1) Country: We distinguish our measurements by the country
a receiving device is located in (out of the set of countries
we have measurements for).

(2) Within Country: We only distinguish whether or not a
receiving device is located within a specific country.

(3) City Location: We distinguish timings to different locations
within the same city. We repeat this classification task for
devices individually and conjointly.

(4) Network Connection: We distinguish whether a device is
using a WiFi or a cellular Internet connection.

According to the designs of our measurement setups
(cf. Section III-B), we use data from the first round of
measurements for classification tasks (1) and (2), whereas
classification tasks (3) and (4) are based on data from the
second round of measurements.

B. Classification Setup and Parameter Tuning

We use sequences of delivery notification timings for clas-
sification. A sequence is a set of notification timings derived
from up to five subsequently sent messages (cf. Section III-C).
We repeat the classification with different sequence lengths,
starting with n = 1, i. e., a single notification round-trip time
from a single message.

For each classification task, we analyze the measurement
data for each sender device and for each messenger indepen-
dently. We randomly sample k notification timing sequences
from each class, whereas k is the number of timing sequences
of the class with the lowest number of sequences. This way,
we reach an evenly weighted set of samples per class.

We use convolutional neural networks (CNN) as classifiers,
train them with sequences of delivery notification timings from
different classes and then measure their accuracy in predicting
newly observed timing sequences. This selection is grounded
in our own preliminary parameter tuning evaluation and builds
upon findings by Rimmer et al. [40], who extensively evaluate
the performance of different types of neural networks for a
similar network traffic analysis task (Website Fingerprinting)
and report CNNs to perform best when compared to Long
Short-Term Memory (LSTM) networks and Stacked Denoising
Autoencoder (SDAE) networks. Before we start the actual
classifications, we repeatedly run the first classification task
with varying parameters to find the optimal classification setup
for each of the three types of neural networks, i. e., CNN,
LSTM, and SDAE and compare the results. Details about the
parameter tuning configurations can be found in Appendix A.

C. Classification Procedure and Evaluation Metrics

For each classification task, we randomly split the respec-
tive data into five portions and use all but one of these portions
as training set for the neural network. The remaining portion
serves as test set from which all samples are to be classified.
For each sample in the test set, the neural network output
comprises a softmax result, i. e., assigning each candidate class
a probability that the classified sample belongs to this class.
Based on the softmax output, we assign each sample the
class with the maximum probability, considering this as the
classification decision. To avoid model over-fitting, we repeat
this procedure until each of the five data portions has served

DE GR NL

DE
GR

NL

CN
N

Ac
tu

al
 T

ar
ge

t

0.90 0.06 0.04

0.07 0.70 0.23

0.05 0.23 0.73

Signal

DE GR NL

0.91 0.02 0.07

0.01 0.82 0.17

0.05 0.12 0.83

Threema

AE DE GR NL

0.87 0.02 0.04 0.08
0.03 0.82 0.08 0.07
0.03 0.05 0.74 0.18
0.09 0.05 0.21 0.65

Whatsapp

DE GR NL

DE
GR

NL

LS
TM

Ac
tu

al
 T

ar
ge

t

0.84 0.08 0.08

0.05 0.78 0.17

0.05 0.29 0.67

DE GR NL

0.91 0.01 0.09

0.02 0.81 0.17

0.08 0.11 0.81

AE DE GR NL

0.85 0.02 0.03 0.09
0.04 0.83 0.06 0.07
0.03 0.06 0.73 0.17
0.08 0.05 0.23 0.64

DE GR NL
Predicted Target

DE
GR

NL

SD
AE

Ac
tu

al
 T

ar
ge

t

0.69 0.21 0.09

0.21 0.68 0.11

0.23 0.53 0.24

DE GR NL
Predicted Target

0.81 0.07 0.12

0.01 0.85 0.14

0.08 0.43 0.50

AE DE GR NL
Predicted Target

0.77 0.04 0.04 0.15
0.06 0.81 0.08 0.05
0.13 0.16 0.42 0.28
0.21 0.07 0.31 0.41

Fig. 7: Detailed classification results for the receiver country
based on measurements from sender DE-11 with three different
neural network types. For each classification, numbers report
precision values, i. e., the fractions of predicted classes (x-axis)
given the actual class (y-axis).

as test set and merge the five classification results, effectively
implementing 5-fold cross-validation.

The performance of the classification is determined by
the numbers of classifications that identify the correct class
(precision) and the number of samples in each class that are
correctly classified (recall). In our evaluation, we focus on
precision, i. e., we are interested in the fraction of samples per
class that can be correctly identified and how the classifications
are distributed for all samples of a particular class. We also
analyze changes in classification performance when we vary
the sequence length.

We report these detailed results for the first classifica-
tion task (i. e., distinguishing receiver countries) to provide
detailed insights into our evaluation and how it works. For
subsequently presented classification tasks, we report overall
accuracy results for a large number of different classifications
using the maximum delivery notification sequence length (i. e.,
5 messages). We do so to provide a broad overview of the
varying effectiveness of leveraging the timing side channel in
different scenarios.

Finally, we also analyze the convergence of the classifica-
tion accuracy depending on the sample size, i. e., we repeat a
selected set of classifications multiple times with increasing
numbers of samples per class, and measure the resulting
performance.

D. Receiver Classification by Country

In the first step, we present the results of the receiver
country classification for one sender device in Germany (DE-
11). For WhatsApp, the receiver can be one of four countries
(AE, DE, GR, NL). For the two other messengers, we cannot
present data for AE due to the messenger not being available at
all in the country (Threema) or too little successful delivery no-
tification measurements (Signal). To this end, we are restricted
to the three remaining countries for Signal and Threema.
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TABLE V: Detailed precision results for the classification of
receiver countries (CNN-based classification).

Sender DE-11 DE-12 GR-11

Messenger SIG THR WA SIG THR WA THR WA

Classification Task: Country
AE – – 84 % – – 94 % – 95 %
DE 90 % 94 % 81 % 73 % 70 % 77 % 71 % 89 %
GR 77 % 84 % 79 % 53 % 68 % 64 % – –
NL 70 % 80 % 63 % 61 % 68 % 53 % 66 % 88 %

Samples/Class 177 527 825 66 60 135 187 168
Overall Acc. 79 % 86 % 77 % 62 % 69 % 72 % 68 % 90 %

Classification Task: Within Germany
DE 92 % 91 % 90 % 86 % 84 % 92 % 90 % 90 %
NOT-DE 91 % 94 % 92 % 78 % 85 % 88 % 51 % 94 %

Samples/Class 559 1135 1888 250 180 605 187 349
Overall Acc. 91 % 92 % 91 % 82 % 85 % 90 % 70 % 92 %

Detailed results are presented in confusion matrices in Fig-
ure 7, separated by messenger (columns) and neural network
type (rows). The numbers indicate the fractions of predicted
classes for each actual class (precision values). A darker
principal diagonal in each matrix indicates higher accuracy
since numbers on this axis refer to correct predictions. Figure 8
illustrates corresponding overall accuracy for this classification
tasks for all three messengers depending on the length of the
notification timing sequence.

For Signal (left column matrices), the receivers located in
Germany can be distinguished from receivers in the two other
countries quite well. We observe false classifications mostly
between devices in GR and NL. This result is not surprising
since timing distributions for GR and NL largely overlap,
whereas timings of messages to receivers in DE are lower
(cf. Figure 6a). The overall classification accuracy rises from
60% for a single timing per sample to 79% for 5 timings per
sample (cf. Figure 8) in the case of a CNN classification. For
Threema, there is a quite similar outcome. Again, classification
works best for receivers in DE with most false classifications
between GR and NL. For longer timing sequences, Threema
reaches a better overall accuracy of 86% for 5 timings per
sample, compared to 60% for single-time samples. In the case
of WhatsApp, receivers in DE and AE can be distinguished
best from the others and performance increases for longer
timing sequences. The overall accuracy is a bit lower for the
other two messengers (i. e., 47% to 77%).

Regarding the classifier type, CNN and LSTM perform
with similar quality with CNN reaching slightly higher per-
formances in most cases. SDAE results are noticeably worse.
Therefore, and taking into account previous findings [32], [40],
we continue with CNN throughout the remaining evaluations.

Table V lists precision results per class for the country
classification for messages sent with all three messengers from
three sender devices (DE-11, DE-12, and GR-11). We also
report sample sizes of notification timing sequences there. All
results listed in the table refer to the maximum notification
timing sequence length, i. e., timings of five subsequently
sent messages. The results in the top left block of the table
correspond to the numbers presented in Figure 7 with each
table column corresponding to the principal diagonal axis in
the respective confusion matrix.
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classification per country, depending on delivery notification
timing sequence length (x-axis) and NN type (icon shape)

.

4 Countries 3 Countries 2 Countries Within Country
0.0

0.2

0.4

0.6

0.8

1.0

Sender DE1
Signal

Sender DE2
Threema

Sender GR
Whatsapp

Fig. 9: Overall accuracy of receiver country classification
separately for all possible country subsets for each sender
device (icon shape) and messenger (colors).

1) Country Subsets: We repeat the classification of delivery
notification timing sequences with the other devices and for
every subset of countries in our data set. The resulting set
comprises one more classification of four countries (sender
device DE-12) and multiple evaluations of all possible pairs
and triplets of countries including measurements from all three
sender devices. In this context, we only consider the maximum
sequence length, i. e., delivery notification timings of n = 5
subsequently sent messages.

Figure 9 shows the overall accuracy values of the receiver
country classification for all combinations of countries in our
data set. For smaller target sets, classifications perform better,
with overall classification accuracy mostly between 70% and
90%. In the case of two countries, some classifications even
perform with more than 95% accuracy. Such nearly perfect
results can only be achieved when timings can be clearly
distinguished, which is mostly the case when the candidate
locations are far from each other (one receiving device located
in the UAE and the other one in a European country). However,
also for distinguishing notification timings of messages sent
to Germany and to the Netherlands (DE11-2countries1), we
achieve a classification accuracy of more than 90% (92% for
Threema and 91% for Signal and WhatsApp).

2) Within Country: In the second classification task, we
are interested in whether or not a receiver is located in a
specific country. Different from the previous task, we are
not interested in determining the exact location but only in
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Fig. 10: Overall accuracy of receiver location classification separately for all possible combinations of locations in Germany.
Colors indicate messengers and icon shapes indicate different receiver devices (we refer to Rec. DE-2ALL for the cross-device
analysis). Dotted lines indicate the probability of randomly guessing the correct location out of the set of known locations.

a binary decision about a specific location. Therefore, we only
distinguish notification timing sequences of messages sent to
the country we are interested in (e. g., DE) from timings to
any of the other countries, effectively summarizing timing
sequences of all other countries into one class (e. g., NOT-
DE). Technically, this type of prediction is similar to the
classification of two countries.

Figure 9 also includes accuracy results for all such classifi-
cations, with the majority being very similar to the two-country
classification. As an example, we provide more detailed pre-
cision results for the Within Germany classification task in
Table V for all three sender devices.

E. Receiver Locations Within the Same City

We now present classification results for receivers at dif-
ferent locations within the same city to demonstrate that the
timing side channel provided by delivery confirmations also
persists at smaller scale. In this case, the end-to-end distances
between sender devices, messenger servers, and receiver de-
vices remain roughly the same across all measurements. Sim-
ilar to the per-country classification, we consider all possible
combinations of WiFi locations and subsets and evaluate the
classification performance for each of them. Subsequently, we
repeat the analysis also including the timing data retrieved from
receivers operating on a cellular connection as a separate class.
We repeat these analyses for receiver devices individually and
across all devices within the same setup, i. e., the Round 2
measurements in Germany and in the UAE (cf. Table II).
Whereas cross-device analyses provide first insights towards
the generalizability of receiver location classification models
(i. e., whether or not the classification requires training for
each individual device), the individual analyses ensure that the
classification is not biased by timing artifacts introduced by
characteristics of the different devices.

1) Individual Receivers: The classification results for the
three receiving devices in Germany are illustrated in Fig-
ure 10a+b. The accuracy highly varies between messengers,
devices, and the respective combination of locations. Across
all combinations of two locations, in each of which the device
is connected via WiFi (a), the prediction performance can reach
more than 90% in some cases, e. g., when distinguishing loca-
tions DE-A and DE-B for the receiver device DE-24 (2wloc1-
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Fig. 11: Overall accuracy of receiver location classification
separately for all possible combinations of locations in the
UAE. Colors indicate messengers and dotted lines indicate the
probability of randomly guessing the correct location.

DE-24). On the other side of the spectrum, there are also
combinations of two locations which cannot be distinguished at
all – a classification accuracy of around 60% is hardly better
than randomly guessing one of the two location candidates,
e. g., when distinguishing locations DE-B and DE-C for device
DE-22 (2wloc5-DE-22). For distinguishing three WiFi loca-
tions, accuracy is lower with a maximum of 77% for Signal,
78% for Threema, and 66% for WhatsApp (3wloc3-DE-24).
However, the chance of randomly guessing one location is also
lower in this case (33%).

Identifying the correct location becomes easier when the
receiving device operates on a cellular connection in one of
them (cf. Figure 10b). For distinguishing two WiFi locations
and one on mobile data, the classification accuracy is mostly
between 60% and 80%. Such a scenario could, for example,
model home and work locations of the device owner, whereas
the cellular connection represents any other place in which the
phone is not connected to a WiFi network.

2) Cross-device Analysis: When distinguishing locations
across different devices (cf. Figure 10c+d), classification per-
forms similar to the case of individual devices, with accuracy
increasing slightly. Such differences might come from individ-
ual devices introducing specific timing characteristics into the
dataset that facilitate distinguishability of locations.
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Fig. 12: Overall accuracy of four different classification tasks, depending on the number of samples per class (x-axis).

For the data collected in the UAE setup, the picture is more
diverse. As the results in Figure 11 show, both two and three
WiFi locations can be distinguished with up to more than 90%
accuracy in WhatsApp, which resembles better performance
than comparable classifications in the German setup. However,
for Signal, the classification of locations does not seem to
work at all, which we attribute to the different structure of
message exchange (and in particular the presence of only one
confirmation packet) as described in Section IV-A.

F. Receiver Network Connections

Since different locations can apparently be better distin-
guished when the receiving device operates on a mobile data
in one of them, we also analyze if we can generally detect
whether a phone is connected via WiFi or using a cellular
connection. Being able to distinguish these two cases allows
us to determine whether a target is currently in one of their
usual locations (i. e., we assume that they are connected to the
respective WiFi network there) or not (mobile data).

The results for the evaluation of this classification task are
listed in Table VI. In the setup in Germany, we can detect
the receiver’s Internet connection type with high accuracy for
all devices for all messengers, both for individual devices
and also across different ones. Classifications reach an overall
accuracy of 90% or even above, with only one prediction
performing worse (Device DE-23, Threema). In the setup in
the UAE, predicting the network connection performs on a
similar level for WhatsApp. In the case of Signal, results do
not seem convincing (50% corresponds to randomly guessing
the connection type), which is in line with results of the WiFi
location distinguishability.

TABLE VI: Classification accuracy for receiving devices’
network connections (WiFi vs. mobile data)

Germany UAE

Receiver SIG THR WA Receiver SIG WA

DE-22 92 % 90 % 94 % AE-22 54 % 91 %
DE-23 90 % 75 % 90 % AE-23 61 % 89 %
DE-24 95 % 94 % 92 % AE-24 77 % 90 %

DE-2ALL 91 % 85 % 88 % AE-2ALL 62 % 87 %

G. Classification Accuracy Convergence

Whereas the results reported for the classification so far
always refer to the maximum number of notification timing
sequences available for all classes, we are also interested
in how many samples are actually required for an accurate
classification. To this end, we repeatedly run four specific
classifications representing different classification tasks with
increasing numbers of notification timing samples. We start
with 10 samples per class and increase this number in steps of
10 until we reach 300 or the maximum number of available
samples for all classes (if it is lower than 300). Figure 12
illustrates the results of these evaluations. We include (a) the
receiver country classification based on the first round of
measurements, two classifications of three WiFi locations, both
(b) device-specific in Germany (device DE-23) and (c) cross-
device in the UAE (referred to as AE-2ALL), and (d) a
receiver network classification for one of the devices (DE-
22) in Germany. Whereas the overall classification accuracy
is varying for smaller sample sizes, there are only minor
improvements for more than around 100 sequences of 5
delivery confirmation timings. This observation seems to hold
for all three messengers and across the different classification
tasks.Thus, we can already reach considerable classification
results with sample sizes of around 100 delivery confirmation
timing sequences per class – for some cases, e. g., the network
connection detection, even with lower sample sizes.

H. Experimental Factors

While we are mostly interested in differences between re-
ceiver characteristics such as their location or network connec-
tion type, there are many dynamic features that can influence
the RTTs of delivery confirmations, including network, device,
and server characteristics. We now carefully discuss how such
features are reflected in our measurements, and to what extent
they can affect our experiments.

Network Characteristics: Varying network loads, both
in terms of general Internet traffic and messenger use, may
affect the time required to send a message and receive the
confirmations. However, such circumstances cannot be influ-
enced by our setup. In general, network loads are mostly
varying depending on the time of day, with higher loads during
mornings and evenings [16], [51]. Since we continuously
collect data for at least one week per receiving device and
location, all relevant load levels should be covered by our
measurements. When looking into our timing dataset, we do
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Fig. 13: Overall accuracy of four different classification tasks with increasing random delays (x-axis) added to message delivery
confirmation timings. For higher delays, the accuracy approximates the chance of randomly guessing the receiver’s location.

not observe large deviations or suspicious patterns depending
on the time of day. Thus, the influence of network load on our
dataset should be negligible. Figure 15 in Appendix C serves
as an example and shows detailed distributions of RTTM,R

for messages sent from device DE-11 to receiving devices in
their respective countries per hour of day.

Timings may also depend on the routes taken between
sender, messenger server, and receiver, which could vary
depending on the provider of the devices’ Internet connections,
making WiFi locations easier distinguishable when different
connection providers are involved. In our measurements in
Germany, only locations DE-C and DE-E were using the same
connection provider but, unfortunately, our dataset does not
include measurements of the same device in both locations. In
the UAE, all Internet connections were provided by the same
operator, with timings being fairly distinguishable (e. g., 82%
accuracy for 2wloc1-AE-22). However, our dataset is too small,
to adequately measure the effect of using the same provider at
multiple locations vs. using different ones.

Device Behavior: During our measurements, receiving
devices were idling at each location while receiving messages.
This comprises a limitation of our setup, since active inter-
action with the devices and parallel processes may affect the
timings we measure while sending messages, with potential
consequences for classification accuracy.

To overcome this issue, we conducted additional experi-
ments over one week sending messages to one author’s private
smartphone while it was in everyday use and continuously
recorded its network connection type (i. e., WiFi or mobile
data). We then used the data to predict its network connection
following the procedures described in Section V. Classification
reaches overall accuracy of 82% for Signal, 80% for Threema,
and 74% for WhatsApp. These numbers are fairly lower than
the ones in our original and fully controlled setup (cf. Table VI)
and shows that the threat vector still persists in a realistic usage
profile, although with lower accuracy.

Server Behavior: Through the experiments, the sender
devices were connected to different servers when sending
WhatsApp messages. We only consider WhatsApp here, since
Threema only has one server location and Signal’s actual
infrastructure remains unclear. While the same sender con-
nected to up to 34 different WhatsApp IP addresses (AE-21),
3 servers (4 for DE-21, respectively) make up at least 95%
of connections used when sending messages. Additionally,

server selection follows similar distributions for all receiver
locations. Thus, the selected server should have little unin-
tended influence on our measurements. While our data does not
contain meaningful differences in round-trip times depending
on the selected server, it may be possible that strategic server
selection could help the attacker (e. g., by locally changing
DNS resolution) to make timings better distinguishable, i. e.,
further improve classification accuracy. We leave the required
data collection and evaluation an open task for future work.

VI. COUNTERMEASURES

We now shed light on possible countermeasures that can
be applied to make the receiver location classification harder
to better protect clients’ location privacy. We consider coun-
termeasures on the messenger’s and on the user’s side.

A. Randomizing Delivery Confirmation Times

Since timing measurements are a noisy source of infor-
mation used for the attack, randomly delaying the delivery
confirmation might be a viable solution to make timings to
receivers in different locations harder to distinguish. While
adding random delays must be implemented by messenger
providers to come into effect, we can evaluate the impact of
such a mechanism through a simulation based on the timing
data we collected.

Timings can be perturbed by adding a delay sampled
uniformly at random between 0 and a specific maximum
delay. We systematically repeat the evaluation of the same
four classification tasks (cf. Section V-G) and increase the
maximum delay in every iteration by 1 second from 0 s to
20 s. Our goal is to find a threshold value that is sufficient to
make the delivery confirmation timings to receivers in different
locations indistinguishable. In addition, the maximum delay
should be as small as possible to keep the impact on user
experience low.

Figure 13 shows the overall accuracy values for four
classification tasks with maximum random delays between
0 s and 20 s. We selected the same classification tasks as
for the classification accuracy convergence analysis, again, to
cover different types of classifications (cf. Section V-G). A
maximum delay of 0 s corresponds to the original classification
results. When we increase the maximum delay, the overall
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classification accuracy continuously decreases and approxi-
mates the chance of randomly guessing the location, which
depends on the number of location candidates. Depending on
the classification task, the random guessing accuracy is reached
for a maximum delay of between 5 s and 10 s, as for example
for determining the network connection of receiving device
DE-22 (cf. Figure 13d). Messenger servers randomly delaying
delivery confirmations by up to 6 s seems to be sufficient to
render the timings indistinguishable and, thus, to disable the
timing side channel in message delivery confirmations. We
emphasize that there is a graceful degradation of accuracy with
increasing delays – introducing maximum delays of as little
as 1 or 2 seconds will already have a positive and measurable
impact on users’ location privacy under our attack.

If and to what extent the maximum delay can be further
decreased or even flexiblized, e. g., different delays for differ-
ent groups of contacts, or depending on dynamic parameters
should be subject to extensive further evaluations. The best
option from a user perspective would actually be the possibility
to disable sending (and receiving) delivery confirmations at
all – exactly as it is already offered for read receipts (verbatim
a privacy option) in all messengers we analyzed in this paper.

B. User-side countermeasures

Users’ means to reduce the effects of the timing side
channel are limited, since delivery confirmations cannot be
turned off in the messengers we analyzed – randomly delaying
these timings can only be applied by the messenger providers.
However, the use of VPN services or Tor routing all traffic
through dedicated servers at distant and changing geographical
locations may be a promising mitigation strategy that can
be applied by users. The overhead of additional servers may
perturb the delivery notifications in a similar fashion like
adding random delays.

We run a small additional experiment to get a preliminary
estimate of the effects of using a VPN as a countermeasure.
To this end, we send messages to one receiver phone (DE-
23) in one location (DE-B) both on WiFi and cellular Internet
connections – in both cases connected to a US-based VPN
server provided by a commercial VPN provider. Whereas
without VPN, the network connection of this device can
be distinguished with up to 90% accuracy (cf. Table VI,
classifications perform worse when using a VPN. For Threema
(51%) and WhatsApp (62%), performance is hardly better
than random guessing (50%). However, for Signal, we reach a
surprisingly high overall accuracy of 77%. When repeating the
same small experiment with using Tor instead of a VPN, WiFi
and cellular connections can be distinguished better (Signal:
72%, Threema: 58%, WhatsApp: 82%).

Without investigating these issues more systematically, we
can only speculate about the reasons. One explanation could be
that Signal’s servers are US-based and, therefore, the routing
overhead introduced by using the VPN server is too small
to adequately perturb timings. For the case of Tor, the set
of circuits selected in either sample may have biased the
comparably small sets of timings we measured. However, since
conclusive statements require more systematic and extensive
measurements to allow a thorough evaluation, we leave this
issue an open task for future work.

Since users’ means to perturb timings and, thus, to disable
the side channel seem ineffective in practice, another option
could be to totally block delivery confirmations, e. g., by
filtering the related packets based on their size out of their
local network traffic by means of a firewall. While this might
be a viable solution for technically adept users or in specifically
security-sensitive use cases, it does, however, not apply to the
vast majority of the 2 billion WhatsApp users.

VII. RELATED WORK

Security of Messengers: A systematization of knowledge
by Unger et al. [52] provides an extensive overview of security
features in many instant messaging applications. Similarly, also
other studies have analyzed security features of specific subsets
of messengers and their cryptographic foundations [1], [20],
[21], protocols [9], [17], [24], [42], or exploited specific fea-
tures such as contact discovery to crawl millions of American
phone numbers [19].

Additionally, the analysis of encrypted messenger traf-
fic has served as a side channel to identify the language
used in iMessage conversations [10], specific user actions in
KakaoTalk [36], and users in various messengers [4]. Our
paper complements such works in providing empirical evi-
dence for a similar side channel under real-world conditions.
Different from these works, though, our attack is conducted
from one participant and directed at a specific target.

Despite such attacks, messengers specifically designed to
improve the privacy of contact discovery [22] or to resist traffic
analysis [53] are, however, not widely in use.

Analysis of Timings and Internet Traffic: There is a large
body of work studying the connection between timings and
distances and taking into account the Internet topology for
the purpose of localization [6], [13], [23], [26] and distance
bounding [3], [30], [37], [39] on the Internet. Our work is
different, in that we do not directly relate timings to traveled
distances, but instead use recurring timing characteristics to re-
identify previously seen, expected locations. Similarly, traffic
analysis [12], [46] is regularly used to analyze encrypted
network traffic in various other domains. Purposes include
website fingerprinting [27], [35], [40] or deanonymizing users
and their end-to-end connections in anonymity networks such
as Tor [5], [18], [28], [32], [33], [41], [43] with the most recent
ones technically reaching accuracy of up to 100% using deep
learning techniques.

VIII. CONCLUSION

We presented a novel timing side-channel in popular instant
messengers, allowing to distinguish different receivers and
their locations by sending them instant messages. We have
demonstrated how measuring the time between sending a
message and receiving the notification that the message has
been delivered enables clients to spy on each other, e. g., to
determine whether or not they are at their usual location.
While making use of this side channel is mostly limited to
people who are in each others’ contact lists and have already
started a conversation before, it yet comprises an unexpected
and privacy-infringing act with low technical requirements that
is equally hard to detect and to mitigate for a potential victim.
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APPENDIX

A. Parameter Tuning Configuration Details

The tuned parameters for each neural network type are
listed below, the best performing configuration is highlighted
in bold.

Convolutional Neural Network (CNN):

• Activation function: tanh, relu
• Optimizer: SGD, Adam, RMSProp
• Dropout rate: 0, 0.1, 0.2, 0.3
• Number of epochs: 20, 30, 40, 50, 60
• CNN input filters: 8, 16, 32, 64
• Number of fully connected layers: 1, 2, 3, 4, 5
• Number of neurons on fully connected layers: 50, 100,

200, 500

Long Short-Term Memory Recurrent Neural Network
(LSTM-RNN):

• Activation function: tanh, Sigmoid, relu
• Optimizer: SGD, Adam, RMSProp
• Dropout rate: 0, 0.1, 0.2, 0.3
• Number of epochs: 20, 30, 40, 50, 60
• Number of LSTM layers: 1, 2, 3, 4, 5
• Number of LSTM units: 50, 100, 200, 500

Stacked Denoising Autoencoder (SDAE):

• Activation function: tanh, Sigmoid, relu
• Optimizer: SGD, Adam, RMSProp
• Dropout rate: 0, 0.1, 0.2, 0.3
• Number of epochs: 20, 30, 40, 50, 60
• Number of encoding layers: 1, 2, 3
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B. Messenger Infrastructures
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Fig. 14: Locations of Signal, Threema, and WhatsApp servers around the world. Signal is located at the US east coast, Threema
is hosted in Switzerland, and WhatsApp instances are widely distributed across all continents.

C. Detailed Timing Data

More data included in the extended version available at https://arxiv.org/abs/2210.10523
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Fig. 15: Distributions of RTTM,R of messages sent from device DE-11 to receivers in different countries per hour of day.
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D. Detailed Classification Results

More data included in the extended version available at https://arxiv.org/abs/2210.10523
1) Round 1:

TABLE VII: Detailed classification results for the first round of measurements. Precision values for each class and overall
classification accuracy values. Five values per messenger represent different notification sequence lengths.

Classification Task Receiver Loc. Signal Threema Whatsapp
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Two countries measured with sender DE-11

DE11-2countries1 Overall Acc. 0.81 0.83 0.85 0.85 0.91 0.73 0.81 0.84 0.86 0.92 0.77 0.85 0.89 0.9 0.91
DE11-2countries1 DE 0.77 0.81 0.88 0.86 0.89 0.83 0.82 0.83 0.89 0.91 0.84 0.83 0.88 0.89 0.9
DE11-2countries1 NL 0.84 0.86 0.82 0.85 0.92 0.63 0.79 0.84 0.84 0.93 0.7 0.87 0.91 0.91 0.93

DE11-2countries2 Overall Acc. 0.82 0.85 0.85 0.86 0.95
DE11-2countries2 AE 0.88 0.9 0.87 0.91 0.96
DE11-2countries2 DE 0.76 0.8 0.84 0.8 0.94

DE11-2countries3 Overall Acc. 0.76 0.85 0.87 0.88 0.89 0.87 0.9 0.92 0.95 0.96 0.77 0.83 0.84 0.86 0.9
DE11-2countries3 DE 0.75 0.81 0.86 0.9 0.88 0.89 0.91 0.93 0.94 0.96 0.76 0.85 0.88 0.9 0.91
DE11-2countries3 GR 0.76 0.88 0.87 0.87 0.9 0.84 0.89 0.91 0.95 0.96 0.77 0.81 0.81 0.83 0.89

DE11-2countries4 Overall Acc. 0.66 0.78 0.82 0.85 0.89
DE11-2countries4 AE 0.57 0.75 0.8 0.85 0.88
DE11-2countries4 NL 0.75 0.81 0.84 0.85 0.9

DE11-2countries5 Overall Acc. 0.64 0.65 0.7 0.71 0.76 0.68 0.75 0.77 0.82 0.85 0.57 0.65 0.7 0.73 0.78
DE11-2countries5 GR 0.83 0.74 0.78 0.73 0.71 0.76 0.67 0.76 0.83 0.89 0.83 0.63 0.68 0.74 0.79
DE11-2countries5 NL 0.45 0.57 0.61 0.7 0.82 0.6 0.83 0.78 0.8 0.8 0.3 0.67 0.72 0.73 0.77

DE11-2countries6 Overall Acc. 0.66 0.79 0.83 0.86 0.92
DE11-2countries6 AE 0.56 0.77 0.81 0.86 0.9
DE11-2countries6 GR 0.77 0.81 0.86 0.87 0.93

Three countries measured with sender DE-11

DE11-3countries1 Overall Acc. 0.61 0.74 0.77 0.78 0.87
DE11-3countries1 AE 0.52 0.74 0.73 0.84 0.88
DE11-3countries1 DE 0.75 0.73 0.75 0.72 0.88
DE11-3countries1 NL 0.56 0.76 0.83 0.78 0.85

DE11-3countries2 Overall Acc. 0.6 0.65 0.69 0.7 0.79 0.6 0.7 0.73 0.79 0.86 0.54 0.63 0.69 0.73 0.77
DE11-3countries2 DE 0.76 0.75 0.76 0.87 0.9 0.81 0.81 0.8 0.88 0.94 0.77 0.78 0.85 0.86 0.83
DE11-3countries2 GR 0.6 0.65 0.71 0.7 0.77 0.77 0.77 0.78 0.79 0.84 0.71 0.52 0.51 0.65 0.73
DE11-3countries2 NL 0.44 0.54 0.59 0.54 0.7 0.23 0.52 0.6 0.69 0.8 0.14 0.6 0.69 0.69 0.75

DE11-3countries3 Overall Acc. 0.62 0.72 0.76 0.77 0.87
DE11-3countries3 AE 0.59 0.71 0.77 0.83 0.91
DE11-3countries3 DE 0.75 0.73 0.77 0.72 0.88
DE11-3countries3 GR 0.51 0.71 0.73 0.76 0.81

DE11-3countries4 Overall Acc. 0.45 0.61 0.68 0.73 0.78
DE11-3countries4 AE 0.49 0.67 0.76 0.79 0.84
DE11-3countries4 GR 0.57 0.58 0.69 0.69 0.77
DE11-3countries4 NL 0.28 0.58 0.59 0.7 0.73

Four countries measured with sender DE-12

DE11-4countries Overall Acc. 0.48 0.6 0.64 0.67 0.77
DE11-4countries AE 0.5 0.64 0.72 0.74 0.84
DE11-4countries DE 0.73 0.71 0.7 0.72 0.81
DE11-4countries GR 0.55 0.53 0.57 0.58 0.79
DE11-4countries NL 0.13 0.51 0.55 0.66 0.63

Two countries measured with sender DE-12

DE12-2countries1 Overall Acc. 0.75 0.84 0.87 0.84 0.88 0.67 0.77 0.86 0.86 0.86 0.72 0.8 0.86 0.87 0.81
DE12-2countries1 DE 0.83 0.8 0.84 0.82 0.9 0.73 0.81 0.84 0.87 0.87 0.75 0.79 0.88 0.87 0.82
DE12-2countries1 NL 0.66 0.88 0.9 0.86 0.86 0.62 0.74 0.87 0.86 0.86 0.69 0.8 0.84 0.87 0.8

DE12-2countries2 Overall Acc. 0.86 0.92 0.94 0.96 0.98
DE12-2countries2 AE 0.95 0.97 0.98 0.97 0.97
DE12-2countries2 DE 0.77 0.88 0.9 0.95 0.99
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TABLE VII – continued from previous page

Classification Task Receiver Loc. Signal Threema Whatsapp
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

DE12-2countries3 Overall Acc. 0.59 0.62 0.62 0.6 0.67 0.63 0.77 0.79 0.86 0.78 0.76 0.81 0.84 0.82 0.85
DE12-2countries3 DE 0.73 0.77 0.68 0.6 0.67 0.75 0.76 0.76 0.86 0.78 0.84 0.83 0.87 0.88 0.87
DE12-2countries3 GR 0.44 0.46 0.57 0.61 0.67 0.51 0.78 0.83 0.86 0.77 0.68 0.78 0.81 0.76 0.84

DE12-2countries4 Overall Acc. 0.77 0.87 0.91 0.92 0.94
DE12-2countries4 AE 0.85 0.88 0.95 0.92 0.94
DE12-2countries4 NL 0.7 0.85 0.87 0.93 0.94

DE12-2countries5 Overall Acc. 0.61 0.75 0.74 0.82 0.78 0.55 0.7 0.78 0.8 0.82 0.62 0.58 0.59 0.57 0.73
DE12-2countries5 GR 0.49 0.62 0.72 0.84 0.76 0.31 0.62 0.68 0.77 0.87 0.42 0.48 0.59 0.54 0.77
DE12-2countries5 NL 0.74 0.88 0.75 0.81 0.8 0.8 0.78 0.88 0.84 0.78 0.82 0.68 0.6 0.6 0.68

DE12-2countries6 Overall Acc. 0.82 0.89 0.95 0.94 0.96
DE12-2countries6 AE 0.87 0.89 0.96 0.93 0.96
DE12-2countries6 GR 0.78 0.9 0.95 0.94 0.96

Three countries measured with sender DE-12

DE12-3countries1 Overall Acc. 0.66 0.76 0.78 0.84 0.88
DE12-3countries1 AE 0.77 0.89 0.87 0.91 0.94
DE12-3countries1 DE 0.71 0.74 0.75 0.86 0.86
DE12-3countries1 NL 0.51 0.65 0.73 0.74 0.83

DE12-3countries2 Overall Acc. 0.46 0.5 0.49 0.54 0.62 0.45 0.57 0.69 0.72 0.69 0.57 0.59 0.62 0.61 0.71
DE12-3countries2 DE 0.76 0.64 0.44 0.69 0.73 0.72 0.68 0.73 0.72 0.7 0.71 0.76 0.77 0.79 0.77
DE12-3countries2 GR 0.01 0.17 0.4 0.27 0.53 0.13 0.37 0.53 0.67 0.68 0.43 0.48 0.52 0.57 0.7
DE12-3countries2 NL 0.6 0.68 0.63 0.66 0.61 0.51 0.67 0.8 0.77 0.68 0.57 0.52 0.57 0.47 0.64

DE12-3countries3 Overall Acc. 0.7 0.77 0.85 0.85 0.89
DE12-3countries3 AE 0.84 0.84 0.94 0.94 0.95
DE12-3countries3 DE 0.69 0.71 0.82 0.84 0.86
DE12-3countries3 GR 0.57 0.76 0.79 0.79 0.86

DE12-3countries4 Overall Acc. 0.55 0.68 0.67 0.71 0.72
DE12-3countries4 AE 0.79 0.87 0.9 0.91 0.94
DE12-3countries4 GR 0.54 0.64 0.52 0.54 0.64
DE12-3countries4 NL 0.31 0.52 0.59 0.69 0.59

Four countries measured with sender DE-12

DE12-4countries Overall Acc. 0.57 0.59 0.66 0.67 0.72
DE12-4countries AE 0.83 0.83 0.87 0.93 0.94
DE12-4countries DE 0.72 0.64 0.73 0.84 0.77
DE12-4countries GR 0.45 0.55 0.53 0.52 0.64
DE12-4countries NL 0.3 0.35 0.48 0.4 0.53

Two countries measured with sender GR-11

GR11-2countries1 Overall Acc. 0.59 0.61 0.66 0.68 0.68 0.75 0.84 0.83 0.87 0.91
GR11-2countries1 DE 0.85 0.91 0.7 0.8 0.53 0.8 0.86 0.8 0.84 0.86
GR11-2countries1 NL 0.32 0.3 0.62 0.55 0.83 0.7 0.81 0.87 0.9 0.97

GR11-2countries2 Overall Acc. 0.88 0.96 0.96 0.96 0.98
GR11-2countries2 AE 0.88 0.99 0.98 0.97 0.99
GR11-2countries2 DE 0.88 0.93 0.93 0.95 0.98

GR11-2countries3 Overall Acc. 0.68 0.79 0.86 0.89 0.95
GR11-2countries3 AE 0.87 0.92 0.92 0.91 0.95
GR11-2countries3 NL 0.48 0.66 0.8 0.86 0.95

Three countries measured with sender GR-11

GR11-3countries Overall Acc. 0.62 0.74 0.82 0.83 0.9
GR11-3countries AE 0.81 0.88 0.93 0.87 0.95
GR11-3countries DE 0.88 0.8 0.8 0.83 0.89
GR11-3countries NL 0.18 0.54 0.74 0.79 0.88
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