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Abstract—In a Private section intersection (PSI) protocol,
Alice and Bob compute the intersection of their respective sets
without disclosing any element not in the intersection. PSI
protocols have been extensively studied in the literature and are
deployed in industry. With state-of-the-art protocols achieving
optimal asymptotic complexity, performance improvements are
rare and can only improve complexity constants. In this paper,
we present a new private, extremely efficient comparison protocol
that leads to a PSI protocol with low constants. A useful property
of our comparison protocol is that it can be divided into an online
and an offline phase. All expensive cryptographic operations
are performed during the offline phase, and the online phase
performs only four fast field operations per comparison. This
leads to an incredibly fast online phase, and our evaluation shows
that it outperforms related work, including KKRT (CCS’16),
VOLE-PSI (EuroCrypt’21), and OKVS (Crypto’21). We also
evaluate standard approaches to implement the offline phase
using different trust assumptions: cryptographic, hardware, and
a third party (“dealer model”).

I. INTRODUCTION

Companies collect increasingly larger amounts of data
about their customers’ operation. Each company collects dif-
ferent data depending on their business, and the combination
of these different data sets offers greater benefit than each set
by itself. A standard example is Google collecting which user
clicks on which online ad while Mastercard collects financial
transactions performed by its clients using their cards. To allow
Google to compute the number of successful transactions after
a user clicked on an online ad, Google and Mastercard link
their data based on a common user identifier, e.g., the user’s
phone number.

Abstractly, this is an instance of Private Set Intersection
(PSI). In PSI, two parties, each have a set of (unique) elements
and want to compute their intersection without revealing any
element not in the intersection. PSI is indeed deployed by
Google and Mastercard to analyze ad conversions [43, 83],
but it has many more applications. Consequently, PSI has
recently been extensively studied in the literature [1, 12–
17, 19, 22, 26–28, 31–33, 39, 41, 43, 47, 52, 55–58, 60–63, 66–
72, 74–76, 83]. The currently most efficient state-of-the-art

PSI protocols are based on oblivious pseudo-random func-
tions [15, 57, 76]. They require a constant number of public-
key cryptography operations, linearly many symmetric key
cryptography operations, and one round of interaction. This is
asymptotically optimal, and any performance improvement can
only stem from reduced constants which are, however, already
very low. We note that PSI requires public-key operations,
since two-party computation can be reduced to PSI (see our
reduction in Section II-D), and two-party computation requires
public-key operations. Hence, any (new) approach must deal
with these unavoidable and expensive operations.

In this paper, we present a new (equality) comparison pro-
tocol that is simple, elegant, and very efficient. Our comparison
protocol improves over the state-of-the-art in two aspects: first,
it reduces (equality) comparison to oblivious linear evaluation
(OLE), and, second, it enables the use of offline precomputed
OLE tuples instead of computing the OLE online. This results
in an alternative construction of PSI that off-loads all expensive
cryptographic operations, public and symmetric key, to an
initial offline phase. The offline phase precomputes correlated
randomness and can be run in advance, independently of the
inputs to the protocol. The online phase uses this randomness
and the inputs to securely compute the output. Our online
phase is highly efficient, comprising only four fast operations
in a small field, i.e., one multiplication and three additions per
comparison. Moreover, it takes only one round. The offline
phase can be implemented using standard approaches based
on only cryptographic assumptions, e.g., using lattice-based
homomorphic encryption or Oblivious Transfer (OT), but also
based on more efficient hardware or other trust assumptions,
such as a trusted third party (“dealer model” [38]).

A. Why consider an offline phase?

Our offline phase enables a very fast online phase. In
Figure 1 we display a comparison of computation time and
communication cost to related work [15, 33, 57, 70, 76] for a
data set size of 1 million elements in the online phase online.
Note that VOLE-PSI [76] requires less communication for
these small sets. On a larger data set with 16 million elements
our online phase is between 2.4 and 3.5 times faster than
Kolesnikov et al.’s work [57] and 1.2 and 14.6 times faster
than Rindal and Schoppmann’s work [76] while requiring
less communication than either one of them. In general, our
advantage increases as data set sizes grow, but Rindal and
Schoppmann neither make their code available nor do they
report evaluation results for larger data set sizes which makes
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Fig. 1. Time (online) and communication of our protocol vs state of the art
(KKRT16 [57], PRTY19 [70], CM20 [15], RS21 [76], and GPRTY21 [33]),
sets of size n = 220, 100 MBit/s bandwidth.

comparison difficult.

Employing an offline phase is common in two-party com-
putation, even if the total run-time (slightly) increases, and also
in the context of PSI, it is not new. We emphasize that the
commonly most efficient related work, VOLE-PSI by Rindal
and Schoppmann [76], already requires an offline phase to
derive vector OLE tuples and has been developed by industry,
thus demonstrating the acceptability of such an offline phase.
The type of offline phase we employ has further advantages,
since it can be efficiently implemented using alternatives to
cryptographic assumptions and similar code for the offline
phase is re-usable among secure computation protocols based
on Beaver multiplication triples [7]. This includes the promi-
nent SPDZ family of protocols [24, 50, 51] for generic multi-
party computation.

In summary, we believe that there are good reasons to
consider our construction of a PSI protocol using an offline
phase. There already exist many protocols for the offline phase,
e.g., for secure two-party computation, and our work reuses
those protocols in its construction or implements adjustments
on top of them. This has the additional advantage that further
research in improving these commonly used protocols will
readily extend to our construction. Given additional security
assumptions, such as the availability of trusted execution envi-
ronments during the offline phase (only), our (entire) protocol
reduces computation and communication costs compared to
prior work.

B. Contributions

This paper contributes a new private set intersection pro-
tocol based on a new comparison protocol that can be divided
into an offline and online phase. In particular, we provide

• a new, highly efficient online phase of our
PSI/comparison protocol that uses no cryptographic
operations, but uses precomputed, random OLE tuples.

• several adaptations of existing protocols for the of-
fline phase, based on lattice-based homomorphic en-
cryption, oblivious transfer, trusted execution environ-
ments, and a trusted third party.

• formal security proofs of our protocols.

• an extensive experimental evaluation of our protocol
in comparison to related work [15, 33, 57, 70, 76].

Our PSI protocol’s online phase is 1.2 (10 MBit/s network)
to 3.5 (5 GBit/s network) times faster than the currently most
efficient related work [15, 33, 57, 70, 76]. The maximum
performance increase of our protocol in total time shrinks
to 1.5 when used with an offline phase based on additional
hardware trust assumptions not made in related work.

The next section contains preliminary definitions and build-
ing blocks used in our protocols. In Section III we describe
the online phase of our comparison and PSI protocol. In
Section IV we describe different protocols for the offline
phase. We present our experimental results in Section V. We
compare our work to related work in Section VI and present
our conclusions in Section VII.

II. PRELIMINARIES

A. Semi-Honest Security Model

We consider two-party PSI computation in the semi-honest,
or passive, security model. In this model, parties Alice and
Bob are assumed to follow the protocol as prescribed but keep
a record of each message received, their random coins, and
their input. From this information, called the view ViewX
of a party X ∈ {A,B}, they try to compute additional
information beyond the output. Note that the output of a
party X can be computed from its view ViewX . Informally, a
protocol is secure in the semi-honest security model, if a party
cannot compute additional information. This can be proven
by showing the existence of a simulator SimX that given the
party’s input x or y and the respective output χ or ψ produces a
simulation of the view that is indistinguishable from the party’s
view ViewX during the protocol.

Definition 1. Protocol π is secure in the semi-honest model,
if there exist simulators SimA(x, χ) and SimB(y, ψ), such that

ViewπA(x, y) = SimA(x, χ)

ViewπB(x, y) = SimB(y, ψ)

The semi-honest security model assumes that an adversary
behaves passively, i.e., does not modify its messages. The ma-
licious security model removes this assumption and considers
active adversaries behaving arbitrarily. Any protocol secure in
the semi-honest model can be compiled into one secure in
the malicious model using the GMW compiler [36], but this
compilation may lead to a very inefficient protocol. Hence,
many previous works on PSI consider the semi-honest model.
The malicious model for PSI has two limitations: First, since
the intersection is revealed, a malicious party may simply
substitute its input and learn (parts of) the other party’s set
which cannot be prevented in the malicious model. Second,
in one-round protocols, such as ours, arbitrary behaviour
is only possible in the input-carrying first message. Hence,
additional information can only be computed from the message
(output) received in response to this first message. Techniques
such as certification of inputs [13, 22] can mitigate input
substitution attacks. Our protocol can be augmented with input
certification. However, we leave a detailed description to future
work.
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B. Oblivious Transfer

Oblivious transfer (OT) [73] is a protocol between two
parties Alice and Bob. Its simplest variant is a 1-out-of-2 OT
[29]. Alice has input b ∈ {0, 1}. Bob has input y0, y1. An
OT protocol is correct if Alice obtains yb. An OT protocol
is secure if Alice learns nothing about y1−b, and Bob learns
nothing about b. OT is a powerful primitive and can be used
to implement secure two-party computations [36, 45, 54].
Hence, any OT protocol requires at least one public-key
operation, since secure two-party computations require at least
one public-key operation.

C. Oblivious Linear Evaluation

Oblivious Linear Evaluation (OLE) is a building block
in many secure computation protocols [76] and a method to
generate correlated randomness between two parties. From the
slightly different OLE definitions in the literature [2, 6, 9, 76,
78], we use the following.

Oblivious Linear Evaluation is a secure two-party compu-
tation protocol between parties Alice and Bob, such that Bob
samples a, b ∈ F for some field F, and Alice samples u ∈ F.
After the protocol, Alice obtains f(u) such that

f(u) = au+ b. (1)

The symmetric variant of OLE is referred to as product
sharing [6], where Alice and Bob each know u and v,
respectively, and they obtain additive shares of the product.
In other words, after the protocol, Alice obtains a and Bob b,
such that

uv = a+ b. (2)

As opposed to OLE, a and b are generated randomly. Product
sharing can be used to construct OLE protocols [6].

In vector OLE (vOLE), which is a generalization of OLE,
Bob knows two vectors A,B ∈ Fn, and Alice knows u ∈ F
and obtains V ∈ Fn where

V = Au+B. (3)

Similarly in batch OLE (bOLE), Alice also samples a
vector U ∈ Fn and obtains V ∈ Fn where

V = A · U +B, (4)

and the multiplication is element-wise. Note that, similarly to
the notion of random OT, there exist also random alternatives
of the above OLE protocols. So, parties receive random tuples
(a, u) and (b, v) with uv = a+ b.

In this work, we require a slightly different variant than
(random) vOLE and bOLE for our PSI protocol. Parties will
compute random batches of tuples, but the type of batches
and choice of correlated randomness will be different. We will
present details in Section III-A later.

OLE was first formalized by Applebaum et al. [2] where
they proposed that OLE is the arithmetic analog of oblivious
transfer. One approach for OLE over an arithmetic field is
to repeatedly invoke 1-out-of-2 bit-OT to retrieve the bits of
the results one by one. This approach has a computational

complexity proportional to the size of the binary circuit that
evaluates the linear function [46]. Another approach is to use
hardness assumptions in coding theory such as the pseudo-
randomness of noisy random codewords in a linear code or
the LPN problem [64].

Finally, protocols realizing OLE based on lattices and
lattice-based encryption schemes are also common [6, 25]. All
of these approaches (except LPN) are used in this work to
implement our offline phase.

D. Reduction of Two-Party Computation to PSI

TABLE I. INTERSECTIONS C ∩D FOR THE DIFFERENT INPUTS BY
ALICE AND BOB.

Alice

Bob
y0 = 0 y1 = 1

y1 = 0 y1 = 1 y1 = 0 y1 = 1
D = {2, 3} D = {1, 2} D = {0, 3} D = {0, 1}

b = 0
C = {0} ∅ ∅ {0} {0}

b = 1
C = {1} ∅ {1} ∅ {1}

To underpin the power of PSI, we now present a reduction
of two-party computation to PSI. This reduction may be
folklore, but we have not found it spelled out in the literature.
We prove that the existence of one-sided PSI, where only
Alice learns the intersection, implies the existence of OT by
reducing OT to PSI. It also proves that public-key operations
are necessary for one-sided PSI since they are necessary
for oblivious transfer and two-party computation. The GMW
protocol [36] over the binary field Z2 reduces (semi-honest)
two-party and multi-party computation to OT. Reductions of
maliciously secure two-party computation also exist [45, 54].

We compute a 1-out-of-2 OT for one-bit messages. Alice
has b ∈ {0, 1}. Bob has two messages y0, y1 ∈ {0, 1}. Alice
should obtain yb, but not learn anything about y1−b.

If b = 0, Alice chooses C = {0} as her input set. If b = 1,
Alice chooses C = {1}. Bob starts by creating an empty set
D. If y0 = 0, Bob adds {2} to D. If y0 = 1, Bob adds {0} to
D. If y1 = 0, Bob adds {3} to D. If y1 = 1, Bob adds {1} to
D.

Alice and Bob perform a one-sided PSI protocol for sets
C and D, such that Alice learns intersection C ∩D. Table I
shows the resulting intersection. Observe that the size of input
sets is constant (|C| = 1, |D| = 2). If the intersection C ∩D
is empty, then Alice outputs 0. If the intersection is either {0}
or {1}, Alice outputs 1.

Note that privately evaluating functions over the intersec-
tion is sufficient for this reduction, but not necessary, e.g., set
intersection cardinality or set disjointness. Alice only obtains
either of two possible outputs, either the empty set or her input
set of size 1.

Furthermore, OT can be reduced to labelled PSI – an
extended form of PSI. In labelled PSI Alice obtains a message
(label) for her elements in the set. Bob simply sets the labels
yi for elements i = {0, 1}. However, it does not seem obvious
how to reduce labelled PSI to PSI which our reduction also
implies.
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III. ONLINE PHASE

For ease of exposition, we begin by describing the online
phase of our comparison and PSI protocols.

Roadmap for this section. For now, assume that the offline
phase has output so called OLE tuples which we define in
Section III-A and show how to compute during the offline
phase in Section IV. Given an OLE tuple, we will present
how to compare two elements x held by Alice and y held by
Bob (Section III-B). Finally, we will use hashing techniques
to construct a full PSI protocol for sets X held by Alice and Y
held by Bob, each of size n, in Section III-C. We assume that
the sets have the same size for simplicity of exposition and the
analysis of the algorithm. If they do not, the protocol’s cost is
dominated by the larger one as it is for any of the compared
related work. The goal of the full PSI protocol is to reduce the
number and cost of necessary computations. The online phase
requires O(n log n/ log log n) comparisons, but our constants
are so low that, in concrete numbers, we improve over related
work, most of which also require at least O(n log n/ log log n)
computational steps.

A. OLE Tuples

We operate over a prime field FQ. Let F∗Q = FQ \{0}, and
let rB be a random number in F∗Q. Similarly, let rA, sA, sB
be three random numbers in FQ. The marginal distribution of
each random number is uniform, but their joint distribution is
correlated and satisfies

rArB = sA + sB (5)

If sA+ sB = 0, then rA = 0, but it always holds that rB 6= 0.
In our implementation of the offline phase sA, sB , and rB
are drawn independently, and rA is computed as correlated
randomness from their choices to satisfy Equation 5.

Such a random tuple (rA, rB , sa, sB) is called an OLE
tuple. For our PSI online phase, we assume that the offline
phase has generated a sufficient number of OLE tuples and
distributed the (rA, sA) to Alice and the (rB , sB) to Bob.

Observe the similarity of Equation 5 to Equation 1. If we
set rA = u, rB = a, sB = −b, and sA = f(u), we obtain
a re-ordering of Equation 5. As in OLE, rA and sA (u and
f(u)) are known only to Alice, and rB and sB (a and b) are
known only to Bob.

Note that, in Section III-C5, we will also introduce a new
set version of OLE tuples that further optimizes our online
communication cost. However, this optimization also comes at
a cost: We then need to adapt existing protocols in the offline
phase for our set OLE tuples.

B. Comparison Protocol

We describe the comparison of a single pair of input
elements and then extend it to a full-fledged PSI protocol in the
next section. For some input length σ ∈ N, Alice has element
x ∈ {0, 1}σ , and Bob has element y ∈ {0, 1}σ . As part of
the PSI protocol, they want to determine whether x = y. Let
H : {0, 1}σ 7→ FQ be a cryptographic hash function. In case
the element’s bit length is shorter than the hash’s bit length
({0, 1}σ ⊂ FQ), we do not need a hash function.

The comparison consumes one OLE tuple (rA, rB , sA, sB),
where (rA, sA) is know to Alice and (rB , sB) is known to Bob,
and works as follows.

1) Alice starts by computing c = sA−H(x) and sending
c to Bob.

2) Bob computes

d = (c+H(y) + sB)/rB (6)

and sends d back to Alice.
3) Alice verifies whether d ?

= rA, and if they are equal,
she outputs “match”.

Note that we do not need to compute the multiplicative inverse
of rB . We can immediately choose it when generating the OLE
tuples (see Section IV).

Theorem 1. Our comparison protocol is correct, i.e., if and
only if x = y, then Alice outputs “match”, assuming no hash
collisions.

Proof: We can substitute c in Equation 6 and obtain:

d = (sA −H(x) +H(y) + sB)/rB (7)

We show perfect correctness, i.e., if x = y, then d = rA
and if x 6= y, then d 6= rA. We can reformulate Equation 7 as

drB = sA −H(x) +H(y) + sB

and subtract Equation 5

(d− rA)rB = H(y)−H(x)

Since rB ∈ F∗Q 6= 0, it follows

d− rA = 0⇔ H(y)−H(x) = 0

and then
d = rA ⇔ H(x) = H(y)

Theorem 2. Our comparison protocol is secure, i.e., there
exists a simulator of Bob’s and Alice’s view.

Proof: Bob’s simulator: Since rA and sA are unknown to
Bob, and he only learns Equation 5, sA is uniformly distributed
in FQ for Bob. Consequently, c is uniformly distributed in
FQ for Bob and the simulator can output a uniformly chosen
random number.

Alice’s simulator: If x = y, then the simulator outputs
d = rA. We have shown perfect correctness in Theorem 1 and
hence only need to deal with the case d 6= rA (x 6= y).

We show that since the set {rB , sB} is unknown to Alice1,
d is uniformly distributed in FQ \ {rA} for Alice, if x 6= y.

Let
µ = H(x)−H(y) (8)

Since x 6= y (and we assume no collisions), it holds that µ ∈
F∗Q. Substituting Equation 8 into Equation 7 we get

d = (sA + sB + µ)/rB (9)

1Note that if rA = 0, Alice knows sB = −sA, but rB is still unknown
to Alice which suffices for the proof.
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Solving Equation 5 for rA, subtracting it from Equation 9, and
solving for d we get

d = µ/rB + rA (10)

The simulator needs to output d, but is given rA as input. µ
is in F∗Q and rB is uniformly distributed in F∗Q. F∗Q forms
the multiplicative sub-group in FQ. Hence, µ/rB is uniformly
distributed in F∗Q. The simulator outputs the sum of a uniform
random number v in F∗Q and rA. Since µ/rB 6= 0, it holds
d 6= rA. In summary, the simulator chooses a uniform random
number in FQ \ {rA}.
OPPRFs. An oblivious programmable pseudo-random func-
tion (OPPRF) [57, 71] is an oblivious pseudo-random function
(OPRF) that can be programmed for a number of input values.
Interestingly, our proofs show that our comparison protocol
can be interpreted as an OPPRF that can be programmed for a
single input. However, our comparison protocol is much faster
than OPPRFs for multiple inputs [57, 71] which explains its
advantage over the state-of-the-art even when the comparison
protocol is repeated multiple times.

C. Full PSI Protocol

In the full PSI protocol, Alice and Bob want to compare
elements in the sets X = {xi} held by Alice and Y = {yj}
held by Bob. In order not to compare each pair of elements
(xi, yj), we use a well-known technique of hashing elements
to bins and only comparing elements within each bin. Alice
hashes her elements xi ∈ X using cuckoo hashing with k hash
functions and hashes into α bins. Bob uses regular hashing for
his set Y with each of the k hash functions into the same hash
table [32, 67, 69, 71].

1) Alice: Cuckoo Hashing: Cuckoo hashing [65] is a hash-
ing technique that reduces the maximum number of elements
per bin to 1. Cuckoo hashing uses α = O(n) bins and k > 1
hash functions hi. The idea of cuckoo hashing is to iterate
over the k hash functions for each element. First, an element
x is inserted into bin h1(x). However, if this bin is already
occupied by element y, as h1(x) = hi(y), then x replaces y
in that bin, and y will be inserted into bin hi+1 mod k(y) and
so on. There is a chance of an infinite loop of replacements, so
the algorithm stops after a logarithmic number of replacements
and places the current remaining element on a small stash data
structure. For our protocol, the size s of the stash needs to be
fixed as well. Let λ be a statistical security parameter. We
choose s, such that the probability of failure, i.e., exceeding
the stash size, is less than 2−λ. In our experiments, we set
λ = 40. We use the parameter sets of Pinkas et al. [69] which
we evaluate for our protocol in Section V-A. In our optimal
setting selected in Section V-A a stash is not even necessary.

Note that, in order to not leak information about her set,
Alice pads empty bins with dummy elements, such that the
total number of elements per bin is always 1.

2) Bob: Regular hashing: Bob uses regular hashing to map
his input into a regular hash table of length α. Since Alice
may use any of the k hash functions to bin element x, Bob
has to use all k hash functions for his input y, guaranteeing
that x and y will be in a common bin, if x = y. Inserting
each element into (up to) k bins in Bob’s table, increases the
total number β = O(k log n/ log log n) [37] of elements per

Algorithm 1 Our PSI protocol
Common Input: A set H of k hash functions
Input Alice: X, OLE tuples {{rA,i,j}, sA,i} (i ∈ [α], j ∈ [β])

Input Bob: Y, OLE tuples {{rB,j,i, sB,j,i}}
Output Alice: X ∩ Y

Alice:
α← (1 + ε) · |X|
TA ← {dummy}α
for all xi ∈ X do

Permutation-based cuckoo hash xi into TA
end for
for all ti ∈ TA do

Send i, ci ← sA,i − ti to Bob
end for

Bob:
TB ← {{dummy}β}α
for all yi ∈ Y do

for all hj ∈ H do
Add permutation-based suffix of yi to TB using hj

end for
end for
for all Ti ∈ TB do

for all ti,j ∈ Ti do
Send i, j, di,j ← (ci + ti,j + sB,j,i)/rB,j,i to Alice

end for
end for

Alice:
for all di,j do

if di,j = rA,j,i then
Output the x-value hashed into bin i

end if
end for

bin. β is chosen such that the probability that Bob will exceed
β in any hashtable bin is negligible in the statistical security
parameter λ, i.e., smaller than 2λ. Note that β does not depend
on Bob’s input. To not leak any information about Bob’s set,
he also has to pad all bins to β elements. Observe that β is
crucial for performance, as Alice and Bob have to perform
β comparisons for each of Alice’s elements. Hence, reducing
β significantly reduces the number of necessary comparisons
(including those with dummy elements) and hence increases
the overall performance of the protocol. We use the parameter
sets of Pinkas et al. [67] for β which we evaluate for our
protocol in Section V-A.

3) Alice and Bob: Comparisons: Alice and Bob now need
to run α · β comparisons, i.e., β comparisons for each of the
α bins. With a stash (s > 0), Alice and Bob also compare
each element in the stash with each element of Bob, i.e., s ·
n additional comparisons. Each comparison uses the protocol
from Section III-B. Note that all comparisons can be performed
in parallel, and for each element in X or Y, there can be at
most one match.

While this already concludes the description of the main
steps of the full PSI protocol, we also institute the following
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crucial optimizations.

4) Permutation-Based Hashing: The comparison protocol
operates over field FQ and the up to 2n elements (from
the union of X and Y) need to be mapped to FQ, ideally
without collision. Hence, the size of FQ is determined by
the domain of X and Y. However, the size of FQ is also
linear in our communication complexity and any reduction
again significantly reduces the overall communication cost.
Thus, Alice uses permutation-based hashing [3], similar to the
Phasing protocol [67], to further reduce the size of FQ.

Permutation-based hashing works as follows. Let x be an
σ-bit string which consists of a prefix x1 of σ1 bits and a
suffix x2 of σ2 bits, such that the concatenation of x1 and
x2 is x. Let h be a hash function that maps prefixes to bins.
Element x is inserted into bin h(x2) ⊕ x1. This ensures that
if two different elements x 6= y have a common suffix, i.e.,
x2 = y2 and consequentially h(x2) = h(y2), they will be
mapped to different bins, since then it must be that x1 6= x2.
Hence, it suffices to compare x2 and y2 for each bin to
determine equality of x and y. However, since we use cuckoo
hashing, we need to ensure that the same hash function hi
is used. Otherwise, two different elements x 6= y with the
same suffix x2 = y2 could be mapped to the same bin
hi(x2)⊕x1 = hj(y2)⊕y1, but have different prefixes x1 6= y1
since hi 6= hj . We ensure this by using a field size of FQ
that is larger than k2σ2 and encoding suffixes into different
ranges depending on the hash function, such that suffixes can
only match if they use the same hash function. When using
k hash functions, our technique increases the message length
by log2(k) bits. Permutation based hashing saves log2(α) bits.
Hence, the net effect is log2(α)− log2(k) which is quite large
for the parameters in Table II.

5) Communication Optimization for OLE Tuples: Using
the above hashing techniques, Alice compares each of her
(dummy and input) elements with β (dummy or input) el-
ements from Bob. This allows for another optimization of
Alice’s (and thus the total) communication complexity.

Instead of using a new sA for each comparison, Alice re-
uses one sA for all β comparisons of one x, but uses different
rA. Bob never re-uses a pair (sB , rB). So, we batch one sA
with β-many rA, sB , and rB .

An optimized OLE tuple is tuple
(sA, (sB,1, rA,1, rB,1), . . . , (sB,β , rA,β , rB,β)), where

∀i ∈ {1, . . . , β} : rA,irB,i = sA + sB,i. (11)

For the online phase of the PSI protocol, we assume that the
offline phase has generated a sufficient number of optimized
OLE tuples by choosing sA, sB,i ∈ FQ, rB,i ∈ F∗Q randomly
and rA,i ∈ FQ as correlated randomness such that Equation 11
holds. For each tuple the (sA, rA,1, . . . , rA,β) are distributed
to Alice and the ((sB,1, rB,1), . . . , (sB,β , rB,β)) to Bob.

In the remainder of the paper, we will only consider
these optimized OLE tuples and show how to construct large
amounts of such tuples in Section IV.

The computation of these sets is also more efficient than
the computation of all distinct tuples. Overall, this reduces the
number of messages sent by Alice in the online phase from
α · β to α.

We provide a proof of security for this optimization. Let x
be an element held by Alice and Bob hold a set of elements,
such that Alice compares her element against each element in
Bob’s set as described. We call this a set comparison protocol.

Theorem 3. Our set comparison protocol is secure, i.e., there
exists a simulator of Bob’s and Alice’s view.

Proof:

Bob’s simulator: Same as in Theorem 2.

Alice’s simulator: The case x = yj is handled as above.
We consider the simulation for each element yj 6= x in Bob’s
set. Let

µj = H(x)−H(yj)

Equation 10 is modified to

dj = µj/rB,j + rA,j

Since all rB,j are independently uniformly distributed in F∗Q,
the same derivation as in the proof of Theorem 2 holds. The
simulator chooses j uniform random numbers in FQ \ {rA} if
x 6= yj .

Formal Presentation. We formalize our full PSI protocol,
including the above optimizations and assuming that there is
no stash, in Algorithm 1. It is a sequential composition of set
comparison protocols, one for each bin in the hash table.

IV. OFFLINE PHASE (OLE TUPLE PRECOMPUTATION)

We now turn to the various options to realize the offline
phase for securely computing optimized (set) OLE tuples from
Section III-C5. These are (sometimes small) adaptations of ex-
isting state-of-the-art techniques that complete our comparison
protocol into a full-fledged PSI protocol.

We consider purely cryptographic, hardware-supported,
and trusted third-based approaches for the implementations of
the offline phase. For fair comparison, we note that the related
work with which we compare our performance [15, 33, 57,
70, 76] only uses purely cryptographic assumptions. However,
other related works have considered our assumptions as well to
speed up their (related) protocols. We start with an overview.

1) TTP: The first option we consider is that of a trusted
third party (TTP) providing OLE tuples similar to Beaver
triples as a service. The implementation of Beaver multipli-
cation triples as a service by a TTP (“dealer model”) to speed
up their computation has been proposed multiple times in
the literature, see, e.g., [38, 77, 81] for an overview. Also,
some state-of-the-art PSI protocols assume trusted third parties.
For example, the approach by Pinkas et al. [70] assumes the
following trust model: each party outsources their data to a
cloud provider and then runs the protocol. Sometimes they
even use the same cloud provider. Clearly, this cloud provider
is a real-world trusted third party, since it has access to both
parties’ data and could completely subvert the security of the
protocol. However, Pinkas et al., in our opinion rightly, assume
that the PSI protocol adds a layer of security, since the data is
not revealed to the other party hosted by the cloud provider.
Yet, given such a trusted cloud provider, it is easy to extend
the model, such that the cloud provider also creates the output
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of the offline phase (as our OLE tuples). This will significantly
reduce the cost of our offline phase and hence our entire
protocol significantly below the cost of Pinkas et al.’s protocol
without changing the trust assumptions.

2) Trusted Execution Environments: Secure hardware-
supported implementations of the offline phase are also pos-
sible. For example, Microsoft’s Azure cloud offers trusted ex-
ecution environments (TEE) such as Intel’s SGX. Microsoft’s
Azure cloud’s TEEs are also used to privately intersect the
set of client’s address book with the set of the Signal user
base [20]. Using trusted hardware (and trusted software to run
in the hardware), we will show that the cost of our offline phase
is also very low. For fair comparison, we emphasize that this
is an additional security assumption not made by the protocols
with which we compare our performance [15, 33, 57, 70, 76].
However, the main advantage of our protocol stems from the
shorter online time which does not make additional security
assumptions. Hence, we still consider this a fair comparison
and Signal’s use of TEEs underpins the acceptability of this
assumption. The advantage of only running the offline phase
in the TEE instead of the entire PSI protocol is that the trusted
software (which is difficult to produce and verify) can be re-
used across many secure computation protocols, such as SPDZ,
and the memory requirement is small opposed to the large
data set sizes for PSI that may need to be held in memory
and randomly accessed in a hash table. We need a TEE at
both parties, Alice and Bob, for maximum efficiency which is
different from a single trusted third party.

3) Cryptographic Protocols: We will also describe two
protocols for securely pre-computing OLE tuples using only
cryptographic assumptions (lattice-based homomorphic en-
cryption and OT). These are variations of previous work on
product sharing. If a party is not willing to accept additional
security assumptions during the offline phase (only), they
would implement these offline phases and compare them as
part of the whole protocol with related work. We emphasize
that our performance gain during the online phase is unaffected
by any performance loss during the combined online and
offline phase. First, observe the relation between OLE tuples
and Beaver’s multiplication triples. In Beaver triples, equation
c = a · b holds with a = a0+a1, b = b0+ b1, c = c0+ c1, and
one party holds (a0, b0, c0), and the other holds (a1, b1, c1). As
(c0+ c1) = (a0+a1) · (b0+ b1) = a0b0+a0b1+a1b0+a1b1,
the only information parties have to interactively compute
is a0b1 and a1b0. That is, the two parties compute two
product sharings [46], where the factors stem from the par-
ties, and the products are secret shared between the parties.
The computation of product shares/OLE lies at the heart of
offline phases to compute Beaver multiplication triples. Highly
practical MPC systems typically use one of two approaches to
realize product sharing: lattice-based, somewhat-homomorphic
encryption (e.g., SPDZ [24] and Overdrive [51]) or Oblivious
Transfer (e.g., MASCOT [50]). Both approaches were initially
mentioned by Gilboa [35]. As the cryptographic protocols for
product sharing and consequently Beaver triples in today’s
general MPC frameworks target (expensive) malicious security,
they are significantly slower than lattice-based encryption and
OT implementations that we will describe in the following.

All protocols we describe in detail below have computa-
tional complexity linear in the number of tuples. The proto-

col using TEEs features constant communication complexity,
while the three others have linear communication complexity.

Discussion. Improvements in the underlying, adapted cryp-
tographic protocols and techniques we build on can further
enhance the performance of our offline phase. Recent advances
in pseudo-random correlation generators (PRCG) [11] theoret-
ically enable the generation of OLE tuples and even Beaver’s
multiplication triples [7] with very little communication effort.
VOLE-PSI [76] uses a PRCG for vector-OLE (VOLE), and
an implementation of vector-OLE is available [78]. However,
vector-OLE, as used in VOLE-PSI [76], does not apply to the
OLE tuples we require. Adapting existing implementations of
vector-OLE to our needs leads to inferior performance than
our implementations described in Section IV. Hence, we delay
the development of improved PRCG techniques for the offline
phase to future work.

We now present details of our four protocols for the offline
phase.

A. Third Trusted Party (Dealer)

A naive implementation of the TTP would create
the entire OLE tuples at the TTP and then distribute
their respective pairs (sA, rA,1, . . . , rA,β) to Alice and
((rB,1, sB,1), . . . , (rB,β , sB,β)) to Bob. However, we found
the following implementation using cryptographic assumptions
to be more efficient even in current high-speed networks. The
TTP chooses two random seeds RA and RB . TTP uses RA as a
seed in a pseudo-random number generator (PRG) to generate
sA and uses RB to generate β (for each sA) sB,is and rB,is.
TTP then computes rA,i = (sA + sB,i)/rB,i and sends RA
and all rA,i to Alice and RB to Bob. Alice and Bob use the
same PRG to generate sA, sB,i, and rB,i, respectively. This
process repeats for all OLE tuples required.

B. Trusted Execution Environments

Some cloud providers, such as Microsoft’s Azure, offer the
use of Trusted Execution Environments (TEE) such as Intel’s
SGX.

A straightforward approach for PSI would be that Alice
and Bob compute the entire PSI protocol in a TEE. However,
this has a number of disadvantages. Programs to be executed
in a TEE need to be hardened against side channel attacks
and be free of any software vulnerability, such that the party
controlling the host computer cannot infer the computation
done in the TEE. This has significant costs for both parties
– one developing the program and the other verifying the
correct development (including compilation). Furthermore, in
current TEEs, e.g., Intel’s SGX, the encrypted memory for
the enclave is small (96 MBytes). Such a small memory size
requires memory paging even for the moderately-sized data
sets we consider, and paging quickly becomes a performance
bottleneck, particularly under random access in a hash ta-
ble [4]. Splitting the PSI program into a secure part that runs
in the TEE and unsecure part that has efficient memory access
comes with significant implementation challenges. One would
have to authenticate calls from the unsecure part to the secure
part which may require additional security assumptions. Even
without authentication of calls the performance of an insecure
version that splits the PSI program can be disappointing.
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Consider the following strawman construction. It computes
messages authentication codes (MAC) using a key securely
agreed between the enclaves at each party inside those enclaves
and performs the intersection on the MACs in the unsecure
parts. This construction is 29% to 109% slower in our cloud
settings for data set sizes between 220 and 226 than our
protocol with an offline phase in SGX even when the MACs
are only sent from Bob to Alice. We attribute this disappointing
performance to the computational cost of the MACs which is
much higher than our simple field operations and generation
of pseudo-random numbers.

Instead, we suggest to only generate OLE tuples in the
TEE. Using the generation of OLE tuples as the program
that is to be securely developed, verified, and deployed to the
TEE has several advantages. First, a program for OLE tuple
generation is very small and hence easier to harden. Second,
it can be potentially be re-used among several applications
using pre-computation of correlated randomness, such that
its development costs amortize. Finally, OLE tuples can be
sampled and communicated to untrusted program with constant
memory requirements.

A naive implementation using TEEs would use one enclave
and use that to generate all tuples and distribute them securely
over an encrypted channel (e.g., TLS). However, this incurs
significant communication costs, since all tuples of one party
need to be sent from the TEE’s host computer to that party. A
more communication-efficient implementation uses two TEEs,
one at Alice’s site and one at Bob’s. Both, Alice and Bob load
the same program into their TEE which contains a public key
of each party for authentication. Each party locally attests its
deployment and verifies the remote deployment at the other
party’s TEE, such that the integrity of the programs at start
is assured. The programs then jointly choose a random seed.
Using that seed, they secretly generate the same OLE tuples
using a pseudo-random number generator (PRG). Each party
locally authenticates to its TEE and the TEE releases the pairs
of the OLE tuples for that party. This implementation has only
small, constant communication cost for the establishment of
the joint seed.

C. Lattice-Based Homomorphic Encryption (LBE)

We can precompute the OLE tuples using LBE. Alice
chooses m keys over plaintext fields Fqi , 0 < i ≤ m. If our
prime Q (as used in the comparison protocol) is a possible
plaintext size for the LBE scheme, we set m = 1 and q1 = Q.
If prime Q is larger than the possible plaintext sizes for a
chosen security parameter, then we set m > 1 and for a
statistical security parameter λ we choose

Q′ =

m∏
i=1

qi > Q22λ

Alice chooses a uniform sA ∈ FQ. Let Ei() denote the
homomorphic encryption under the i-th key (with plaintext
modulus qi). Alice encrypts as

ci = Ei(sA mod qi)

for 1 ≤ i ≤ m and sends all ci to Bob. Bob chooses uniform
sB ∈ FQ and rB ∈ F∗Q. If m > 1, Bob uniformly chooses u

in F2λ , else Bob sets u = 0. Then he computes

di = (ci + Ei(sB))((r
−1
B mod Q) mod qi) + Ei(uQ mod qi)

and sends all di to Alice. Alice decrypts di and if m > 1,
Alice uses the Chinese Remainder Theorem to recover v =
uQ+ (sA + sB)/rB ∈ FQ′ . Alice sets rA = v mod Q.

We can re-use the optimization of the comparison protocol
(see Section III-C) and Alice sends one sA, but Bob chooses
rB , sB and computes rA for each pair of comparison with the
same element x. This reduces the number of ciphertexts that
Alice needs to send. Furthermore, ciphertext operations can
be easily batched over vectors of plaintexts, a common SIMD
technique in LBE.

Homomorphically encrypted ciphertexts conceal Alice’s in-
puts from Bob, but not vice-versa. Specifically, the noise level
in the ciphertexts after the protocol might reveal information
about Bob’s inputs to Alice. To prevent this, there exists
techniques to provide circuit privacy. In short, circuit privacy
allows the function that Bob evaluates (f(x) = ax + b in
this case) to remain hidden from Alice. Noise flooding is one
technique to make the noise level of the ciphertext after the
protocol statistically indistinguishable from the noise level a
freshly encrypted ciphertext. Before communicating the results
back to Alice, Bob uses such techniques to make the noise
level of the ciphertexts statistically indistinguishable from fresh
ciphertexts.

Proposition 1. The above OLE tuple precomputation protocol
using LBE is correct, i.e., rArB = sA + sB .

This trivially follows from the construction of the protocol.

Theorem 4. The above OLE tuple precomputation protocol
using LBE is secure, i.e., there exists a simulator of Bob’s and
Alice’s view.

Proof: Bob’s simulator: Bob receives m IND-CPA secure
homomorphic ciphertexts.

Alice’s simulator: In case m = 1, Alice’s messages can
be simulated by the message rA, i.e., part of the output
of the protocol. In case m > 1, Alice’s messages can be
simulated by a choosing random number u′ ∈ F2λ and the
message rA+u′Q. The statistical indistinguishability of these
views has been proven by Damgård and Thorbek [23]. Due to
circuit privacy, the noise level of the ciphertexts are statistically
indistinguishable from fresh ciphertexts.

D. Oblivious Transfer

We use a second, alternative cryptographic approach to pre-
pare OLE tuples that is based on Gilboa’s product sharing [35].
This is technique is implicitly used as a sub-routine in various
general MPC frameworks, see, for example, Keller [49] for an
overview.

a) Intuition: To generate an OLE tuple, Alice chooses
rA randomly from FQ, and Bob randomly chooses rB from
F∗Q. Let ` = logQ and rB [i] be the i-th bit of rB . The main
idea is to rewrite rA · rB using the multiplication formula

rA · rB =
∑̀
i=1

rB [i] · rA · 2i−1.
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Alice and Bob run ` instances of 1-out-of-2 OT. In each
instance, receiver Bob uses rB [i] as choice bit, and sender
Alice inputs 0 and rA · 2i−1. By summing up his OT output,
Bob gets rA ·rB . To restrict Bob to only get a share of rA ·rB ,
Alice offsets each input to the OT by a random ρi. Alice’s share
sA of rA · rB is then the sum of the ρi, and Bob’s share sB
is the sum of the OT output.

b) Details: More formally, to generate an OLE tuple
(rA, rB , sA, sB), Alice and Bob run the following protocol.

1) Alice randomly chooses rA from FQ and ` random
values ρi from FQ. Bob randomly chooses rB from
F∗Q.

2) Alice and Bob run ` instances of 1-out-of-2 OT. In
round i, sender Alice inputs −ρi and rA · 2i−1 −
ρi. Receiver Bob inputs choice bit rB [i] and receives
output oi.

3) Alice sets sA =
∑`
i=1 ρi, and Bob sets sB =∑`

i=1 oi.

The correctness and security of this protocol has been
shown by Gilboa [35, Section 4].

Recall that the optimized communication during the online
phase (Section III-C5) requires only one sA,i for β-many
(sB,i,j , rA,i,j , rB,i,j). That is, we need to compute the tuple
(sA,i, {rA,i,j , rB,i,j , sB,i,j}j=1...β) such that sA,i + sB,i,j =
rA,i,jrB,i,j for j ≤ β. To enable OT-based offline preparation
of communication optimized OLE tuples, we consequently
must institute one additional change. In the above protocol,
instead of choosing ` random ρ values and setting sA,i =∑`
ι=1 ρι in Step 3, Alice randomly chooses one sA,i and β`-

many random ρj,ι such that sA,i =
∑`
ι=1 ρj,ι for each j ≤ β.

While computing the jth product sharing, during round ι, Alice
uses −ρj,ι and rA,i,j · 2ι − ρj,ι as her input to the OT.

We omit proofs of correctness and security, since they are
simple corollaries of the theorems by Gilboa [35] and to abide
by page length restrictions.

V. EVALUATION

We have implemented our protocol’s online and offline
phases in C++. The source code is available for download
at https://github.com/BlazingFastPSI/NDSS23. Using this im-
plementation, we have evaluated our protocol’s communication
cost (at the application layer in the network stack) and its
running time. We compare our implementation to the recent
works of Chase and Miao [15], Kolesnikov et al. [57], and
Pinkas et al. [70] (“SpOT-low”) using their publicly available
implementations. We also compare to the recent VOLE-PSI
protocol by Rindal and Schoppmann [76] and OKVS by
Garimella et al. [33] using their measurements in their paper,
since no implementation is publicly available. These two
protocols are especially interesting, as they have low com-
munication requirements (in bits per element). Our protocol
is a set intersection protocol, revealing the set intersection,
but we also compare to state-of-the-art circuit PSI (or PSI
analytics) protocols [14, 71] to demonstrate the difference.
VOLE-PSI requires an offline phase such as our protocol, but
we concentrate on online timings and communication in this
section. Note that VOLE-PSI by Rindal and Schoppmann [76]
can also be extended to PSI circuit PSI.

We stress that there exists a large body of related work on
practical PSI, e.g., OT-based PSI [67, 69], but our experiments
only focus on the very recent works mentioned above as they
typically outperform other approaches.

All of the related work with which we directly compare
uses purely cryptographic assumptions. If a party is not will-
ing to accept any additional security assumption during the
offline phase only, the relevant comparison is with our offline
phase implemented based on lattice-based encryption. How-
ever, since we focus on the online time of our protocol which
makes no additional security assumption, we also present the
times for offline phases using additional security assumptions,
such as TEEs or a trusted third party.

In all of our experiments, we use an element bit length
of σ = 32. This bit length is used in the evaluation of
many related works [66–69, 71]. It is sufficient for several
applications, including matching on phone numbers (“contact
discovery”) or IPv4 addresses, without using hashing and
hence without collisions. Often, longer domains can be mapped
to 32 bits without collisions using a public dictionary, since the
largest data set sizes we consider are only 226 (which already
exceeds most previous work).

We consider the four implementations for our offline phase
as described in Section IV:

• We implement the TTP (Section IV-A), where the TTP
derives all (rA,i,j , rB,i,j , sA,i, sB,i,j), sends RA and
all rAj to Alice, and sends RB to Bob. Alice then
computes the (sA,i) and Bob the (rB,i,j , sB,i,j).

• We use Intel’s SGX (Version 1) to implement the
offline phase in a trusted execution environment (Sec-
tion IV-B).

• We use the Fan–Vercauteren cryptosystem [30] for the
offline phase using LBE (Section IV-C). Our imple-
mentations employs Microsoft’s SEAL library [79].
There, we set the polynomial modulus degree and
coefficient modulus bit length to be 8192 and 218,
respectively. We also perform modulus switching to
a 40-bit coefficient modulus. We do not implement
the noise flooding technique for our experiments since
the SEAL library does not support the necessary
operations at the moment. However, based on the
analysis of Castro et al. [25], which is summarized in
Lemma 4.2 of their paper, our parameter set provides
circuit privacy for (v)OLE with more than 40 bits of
statistical indistinguishability. The overhead of adding
noise flooding to the protocol is negligible compared
to the rest of the protocol (at most the cost of one
homomorphic addition).

• We implement the OT-based offline phase (Sec-
tion IV-D), building on IKNP OT extensions [44] from
EMP toolkit [82].

A. Theoretical communication cost

We differentiate between online and offline communication
cost. First, we theoretically analyze the online communication
cost and estimate the optimal parameters for the number of
hash functions, hash table length, and the stash size in our
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TABLE II. PARAMETER ANALYSIS FOR OUR SYSTEM WITH STATISTICAL SECURITY PARAMETER λ = 40. n: NUMBER OF ELEMENTS, logQ : NUMBER
OF BITS TO COMPARE, s : SIZE OF STASH, BIT

ELEMENT
: ONLINE COMMUNICATION COST PER ELEMENT (IN BIT, SEE TEXT)

k = 2, α = 2.4n
k = 3, α = 1.27n k = 4, α = 1.09n

(no stash s = 0) (no stash s = 0)
n β logQ s Bit

element β logQ Bit
element β logQ Bit

element
220 19 13 3 663 28 14 516 33 15 556
222 20 11 3 588 28 12 442 34 13 496
224 20 9 2 472 29 10 381 35 11 432
226 21 7 2 384 29 8 305 35 9 353

TABLE III. THEORETICAL COMMUNICATION COST IN BIT PER ELEMENT OF OUR SCHEME VS. RELATED WORK, λ = 40, κ = 128. GPRTY21 [33] AND
CGS22 [14] SPECIFY ONLY ASYMPTOTIC COMMUNICATION COMPLEXITY, SO WE EXTRAPOLATE FROM THEIR BENCHMARKS.

n
Ours (k = 3, α = 1.27n) PSTY19 KKRT16 PRTY19 CM20 RS21 [76] GPRTY21 CGS22 (PSM2)

online total SGX total TTP total LBE total OT [71] [57] [70] [15] online total [33] [14]
220 516 516 1014 2922 78179 20079 972 514 688 394 419 (774) (8856)
222 442 442 869 2956 65303 20079 980 516 691 393 400 (943) (8870)
224 381 381 749 2893 54889 20079 988 518 694 396 398 (1622) (8926)
226 305 305 600 2928 42733 20079 997 520 697 400 400 (4338) (9150)

TABLE IV. OFFLINE BENCHMARKS. CPU TIME: COMPUTATION TIME ONLY, TOTAL OFFLINE TIME: END-TO-END TOTAL TIME (INCLUDING
COMMUNICATION TIME, WAITING FOR OTHER PARTY ETC.) UNTIL PARTIES HAVE ALL OLE TUPLES. DNF: DID NOT FINISH IN 15MIN.

n
CPU Time Total Offline Time (s) Communication

(s) 5 GBit/s 1 GBit/s 100 MBit/s 10 MBit/s Intra-Cont. Inter-Cont. (MB)

220

SGX 0.2 0.3 0.3 0.3 0.3 0.4 0.4 1.5 · 10−5

TTP 0.2 0.3 0.6 5.2 52.2 3.2 3.6 62.23
LBE 10.7 14.7 18.1 55.6 430.3 46.5 48.0 482
OT 13.7 44.7 205.7 DNF DNF DNF DNF 23896

222

SGX 1.1 1.5 1.5 1.5 1.5 2.4 2.4 1.5 · 10−5

TTP 0.6 1.0 2.4 18.8 182.4 11.5 12.1 213
LBE 42.4 58.6 71.6 221.6 DNF 184.9 191.3 1915
OT 50.2 150.4 703.0 DNF DNF DNF DNF 81930

224

SGX 7.8 7.9 7.9 7.9 7.9 12.4 12.4 1.5 · 10−5

TTP 2.5 3.8 8.8 65.9 636.4 40.6 43.0 737.6
LBE 175.6 240.3 289.8 DNF DNF 760.6 787.4 7951
OT 178.9 519.9 DNF DNF DNF DNF DNF 282855

226

SGX 39.1 39.1 39.1 39.1 39.1 61.8 61.8 1.5 · 10−5

TTP 11.5 15.5 31.4 214.7 DNF 136.0 143.9 2357
LBE DNF DNF DNF DNF DNF DNF DNF DNF
OT 576.8 DNF DNF DNF DNF DNF DNF 905135

TABLE V. ONLINE BENCHMARKS. TIME IN SECONDS, COMMUNICATION IN MBYTE. DNF: DID NOT FINISH IN 15 MIN OR CRASHED. “—”: SOURCE
CODE NOT AVAILABLE. CPU: TIME FOR COMPUTATION ONLY, ONLINE TOTAL: END-TO-END TOTAL TIME (INCLUDING COMMUNICATION TIME, WAITING
FOR OTHER PARTY ETC.) UNTIL INTERSECTION HAS BEEN COMPUTED. VALUES IN “()” ARE TAKEN FROM ORIGINAL PAPERS DUE TO LACK OF SOURCE

CODE ([33, 76]). GPRTY21 [33] BENCHMARK WITH 4.6 GBIT/S, 260 MBIT/S, 33 MBIT/S BANDWIDTH.

RS21 [76] Ours Online+Offline
KKRT16 [57] PRTY19 [70] GPRTY21 [33] CM20 [15] Online Online+Offline Time

CommSec. Assumption LBE LBE LBE LBE LBE Ours Online Security Assumption
n Bandwidth Time Comm Time Comm Time Comm Time Comm Time Comm Time Comm CPU Time Comm SGX TTP LBE OT

220

5 GBit/s 1.3

114

16.8

76

(5.8)

(97)

5.1

89

(4.4)

(53)

(5.4)

(54)
0.3

0.4

64

0.7 0.7 15.1 45.1
SGX: 64
TTP: 126
LBE: 546
OT: 23960

1 GBit/s 1.4 17.6 — 5.1 — — 0.8 1.1 1.5 18.9 206.5
100 MBit/s 10.3 17.7 (10.6) 8.1 (8.5) (9.9) 5.9 6.1 11.1 64.4 DNF
10 MBit/s 99.0 66.7 (38.3) 75.9 (48.7) (54.4) 55.9 56.1 108.0 486.1 DNF
Intra-Cont. 4.1 26.0 — 8.8 — — 0.5 2.7 3.1 5.9 49.2 DNF
Inter-Cont. 5.8 26.2 — 9.2 — — 3.4 3.8 7.0 51.4 DNF

222

5 GBit/s 5.1

471

66.1

314 —

25.2

358

(23.9)

(209)

(25.6)

(210)
1.1

1.5

221

3.1 2.5 60.1 151.9
SGX: 221
TTP: 434
LBE: 2136
OT: 82151

1 GBit/s 5.7 66.4 25.6 — — 3.0 4.5 5.4 74.6 706.0
100 MBit/s 42.2 73.3 31.7 (40.7) (43.0) 20.2 21.7 38.9 241.7 DNF
10 MBit/s 408.3 275.2 309.4 (199.0) (204.7) 191.8 193.3 374.2 DNF DNF
Intra-Cont 14.2 103.2 41.9 — — 2.1 7.6 10.0 19.1 192.5 DNF
Inter-Cont. 19.8 103.0 DNF — — 9.6 12.0 21.7 200.9 DNF

224

5 GBit/s 21.4

1894

293.6

1271 —

106.3

1442

(90.74)

(850)

(92.8)

(851)
5.0

6.2

762

14.0 9.9 246.5 526.1
SGX: 762
TTP: 1500
LBE: 8713
OT: 283617

1 GBit/s 22.6 294.1 108.2 — 11.4 19.3 20.3 301.2 DNF
100 MBit/s 169.5 321.8 128.0 (156.4) 70.8 78.6 136.6 DNF DNF
10 MBit/s DNF DNF DNF (814.2) 662.7 670.5 DNF DNF DNF
Intra-Cont. 53.1 460.5 169.8 — — 9.6 27.1 39.5 67.7 787.7 DNF
Inter-Cont. 126.7 459.2 DNF — — 31.3 43.7 74.3 818.7 DNF

226

5 GBit/s 86.3

7800 DNF —

543.0

5769 —
15.8

19.2

2438

58.4 34.8 DNF DNF
SGX: 2438
TTP: 4795
LBE: DNF
OT: 907573

1 GBit/s 97.1 549.9 35.8 74.9 67.2 DNF DNF
100 MBit/s 697.3 670.3 225.8 264.9 440.5 DNF DNF
10 MBit/s DNF DNF DNF DNF
Intra-Cont. 229.7 DNF 24.9 96.2 158.0 232.2 DNF DNF
Inter-Cont. 553.8 DNF 99.4 161.2 243.3 DNF DNF

scheme. We set the statistical security parameter λ = 40 to
minimize the probability of failure that cuckoo hashing exceeds

stash size s or regular hashing exceeds the expected maximum
number β of elements per bin. Equation (3) in Section 7.1
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of Pinkas et al. [67] provides an upper bound for β, i.e.,
the expected maximum number of elements per bin, given n
and α. Similarly, Section 3.2.2 in Pinkas et al. [69] provides
estimations for the stash size based on extensive experimen-
tation and extrapolation where necessary. We compute the
communication cost per element, i.e., the number of Bit per
element, as

Bit

element
=
α · (β + 1) + s · (n+ 1)

n
logQ. (12)

Table II summarizes our results. We conclude that for set
sizes between 220 and 226 using k = 3 has the lowest online
communication cost and also does not require a stash.

Next, we theoretically analyze the offline and the total
communication cost in bits per element and compare it to
related work. We consider the four possible implementations
of the offline phase mentioned before: trusted execution en-
vironments, a trusted third party, lattice-based homomorphic
encryption, and OT.

• The communication cost of using an SGX offline
phase is 256 bits to jointly choose a common seed.
We did not include the time and communication for
attestation, since it can be amortized over multiple
runs.

• The communication cost of the offline phase using a
trusted third party is 128 bits to Bob (RB) and 128+
αβ logQ bits to Alice (RA and rA,is).

• Let N and q be the polynomial modulus degree
and coefficient modulus in SEAL. Also, denote the
coefficient modulus after modulus switching by q0.
Each ciphertext sent from Alice to Bob has a size of
N log2 q bits and Alice can pack N different sA values
into one ciphertext. In sum, Alice sends N log2 q ·d αN e
bits of data to Bob. For each ciphertext received, Bob
sends β ciphertexts back to Alice. Ciphertexts that are
sent from Bob to Alice have a size of 2N log2 q0.
The total communication cost using lattice-based ho-
momorphic encryption is N ·(2β log2 q0+log2 q)d αN e
bits.

• For the OT-based offline phase, we need α ·β product
sharings. Each product sharing is implemented by
logQ instances of 1-out-of-2 OT extensions of length
logQ bit strings. This results in a total of m =
αβ logQ OT extensions with a total of 2m logQ =
αβ · 2 log2Q Bit of communication.
To bootstrap m instances of IKNP OT extensions [44],
we need, first, to perform κ (security parameter) base
OTs of length κ Bit, e.g., using the base OTs by
Chou and Orlandi [18, Figure 1]. When implemented
over an elliptic curve, these base OTs require a total
of κ · (2|P | + 2κ) Bit of communication, where |P |
denotes the bit length of a curve point. Then, we apply
a transformation scheme, e.g., the one by Asharov
et al. [5], where the OT receiver sends κ strings of
length m Bit to the receiver. So, this preparation
phase requires in total κ(2|P | + 2κ) + κm Bit of
communication.
In conclusion, the total communication cost for
the OT offline phase (preparation plus extensions)

computes to 2m logQ + κ(2|P | + 2κ) + κm =
αβ logQ(2 logQ + κ) + 2(κ2 + κ|P |) Bit. Note that
a curve with G points offers κ ≈ log

√
G·π
4 Bit

security [8], so for our security parameter κ = 128
in Table III we use a 256 Bit curve and have |P | =
257 Bit (using point compression).

Note that an alternative to standard IKNP OT extensions could
be recent Silent OT [10, 21]. Silent OT could reduce commu-
nication costs at the expense of higher computational costs
which might be interesting for low bandwidth networks such
as the 10 MBit/s configuration we consider in Section V-B. We
leave a further analysis to determine the best OT extensions
for different network configurations to future work.

Using the above for the offline phases and Equation 12 for
the online phase, we can compute the total communication cost
in Bit per element of our PSI protocol. Table III summarizes
our results. For related work [15, 57, 70, 76], we use the
equations from Table 1 (column 3) of Rindal and Schoppmann
[76]. As Garimella et al. [33] and Chandran et al. [14] specify
only asymptotic communication complexity and also do not
provide source code, we extrapolate their communication costs
from their benchmarks.

We conclude that our online communication cost and our
total communication cost using Intel SGX is the lowest among
related work for larger sets starting from n = 224.

B. Benchmarks

We evaluate the runtime in two different environments and
compare it to recent related work [14, 15, 33, 57, 70, 71, 76].
The two environments we consider are, first, a controlled
environment where we can precisely adjust network bandwidth
using Wondershaper [42]. This controlled environment is a
workstation with a 3 GHz Intel Xeon W-1290 CPU and
64 GByte RAM. The second environment comprises different
data centers in the Microsoft Azure cloud. There, we emulate
an intracontinental scenario (“Intra-Cont.”) by benchmarking
PSI protocols between two data centers on the US East coast
and the US West coast. We also emulate an intercontinental
scenario (“Inter-Cont.”) by benchmarking protocols between
two data centers on the US East coast and Western Europe.
Each data center is running our implementation in a standard
Azure H8 instance, i.e., on an Intel 3.2 GHz (3.6 GHz turbo
frequency) Xeon E5-2667 CPU with 56 GByte RAM.

Our implementation and all benchmarks use statistical se-
curity parameter λ = 40 and computational security parameter
κ = 128.

a) Offline: We first report on our evaluation of the
offline phase in the controlled environment. Note that although
our protocol is highly parallelizable, all experiments both in
the offline and online phases are run single threaded for fair
comparison with related work. Our results are summarized in
Table IV.

As expected, the TTP and SGX offline phases significantly
outperform the OT- and LBE-based ones. For very large values
of n = 226 or low bandwidth networks (10 MBit/s), they do
not complete within our set time limit of 15 minutes, so we do
not report measurement results. For n = 226, we can measure
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TABLE VI. ONLINE END-TO-END TIME COMPARED TO CIRCUIT-PSI SCHEMES. DNF: DID NOT FINISH IN 15 MIN OR CRASHED. VALUE IN “()” TAKEN
FROM ORIGINAL PAPER [71]

PSTY19 [71] CGS22 (PSM2) [14] Ours
n Bandwidth Time Comm Time Comm Time Comm

220

5 GBit/s 37.5

(2540)

17.0

1127

0.4

641 GBit/s 52.5 23.1 0.8
100 MBit/s 255.6 107.2 5.9
10 MBit/s DNF DNF 55.9

222 – 226 DNF DNF see Table V

CPU time and communication requirements for the OT-based
offline phase, simply by releasing the network throttle. This is
not possible for the LBE-based offline phase, as even compu-
tation does not complete in 15 min. As we have theoretically
analyzed in Section IV, the dual TEE configuration in the
SGX offline phase has a small constant communication cost
for setting up the seed whereas all our other offline phases
have linear communication cost. Hence, the running time of
the SGX offline phases is largely independent of the network
environment different from our other offline phases.

We conclude that the offline phase based on SGX is by
far the most efficient in communication cost and total latency.
However, we note that it introduces an addition security
assumption compared to the related work with which we
directly compare. Its communication cost is much smaller than
other implementations and the time to communicate the tuples,
even in plain, exceeds the computation cost in a protected
environment such as a trusted enclave. The offline phase
implemented with a TTP, such as a cloud service provider,
could be scheduled for times of low utilization, thus reducing
its cost. It turns out that, due to smaller communication
requirements, the offline phase using LBE is more efficient
than the OT-based ones. Moreover, it makes the least trust
assumptions of all offline phases. Hence, LBE is the method
of choice when relying only on cryptographic assumptions as
related work [15, 33, 57, 70, 76] does.

b) Online: Next, we report on the running time and
exchanged data of our online phase in comparison to related
work [15, 33, 57, 70, 76]. We compare to the publicly avail-
able implementations where available and measure running
times and the amount of data exchanged within the same
environments. All protocols are executed single-threaded as is
common practice for fair comparison. Only for VOLE-PSI [76]
and OKVS [33], we resort to their published numbers in the
most comparable setting, since there is no publicly available
implementation. The faster of the two, VOLE-PSI [76] was
evaluated on an Amazon EC2 M5.2xlarge VMs, Intel Xeon
Platinum 8175M 2.5 GHz (3.5 GHz turbo frequency), 32 GiB
of RAM. We chose Micrsoft Azure, since it provides access
to TEEs, and consider our configuration the most similar to
the Amazon one among the ones that were available. For
the SpOT-Light PSI protocol by Pinkas et al. [70], we use
the computation-optimized version, since the communication-
optimized version had very high running times and performed
worse in our tested environments.

The benchmarks are summarized in Table V. We measure
our implementation and implementations of related work and
present total, end-to-end running time and communication ex-
changed. For our scheme, we additionally show CPU-only time
(including hashing, all comparisons, and Alice’s computation
of the intersection) to allow a better understanding of our

scheme’s performance.

On larger data sets, starting at n = 224 = 16 million
elements, our online phase is 2.4 to 3.5 times faster than
the protocol by Kolesnikov et al. [57] and 1.2 to 14.6 times
faster than the one by Rindal and Schoppmann [76], the
two currently most competitive related works. At the same
time, our protocol requires less communication than either
one of them. Kolesnikov et al.’s protocol [57] performs best
in high-performance network environments, which may be
the future given that CPU performance currently increases
slower than network performance, and it is already outper-
forming VOLE-PSI [76] in the same-continent cloud set-
ting (compared to the fastest time measured for VOLE-PSI).
Schoppmann and Rindal’s protocol VOLE-PSI [76] has the
lowest communication cost for smaller sets with n = 220 and
n = 222 and performs best in low-performance network en-
vironments. VOLE-PSI has lower communication complexity
(O(n)) compared to our protocol (O(n log n/ log log n)) but
higher computation complexity (O(n) polylog n) compared to
our protocol’s complexity of O(n log n/ log log n). However,
in the common network settings as experienced in our real-
world cloud experiments, we expect that the advantage in total
latency of the online phase of our protocol compared to VOLE-
PSI increases as data set sizes continue to grow, since the
protocols in these environments are computation-bound and
not communication-bound.

Although circuit-PSI provides a richer functionality than
our PSI protocol, we compare communication cost and running
times with the two most recent, cirucit-PSI protocols [14, 71]
in Table VI. Not surprisingly, our protocol is much faster,
and implementations of circuit-PSI protocols do not even scale
beyond set sizes of 220.

c) Total time: When using lattice-based cryptography
for our offline phase, Kolesnikov et al.’s protocol [57] is the
fastest in high-performance network environments and VOLE-
PSI [76] is the fastest in low-performance network environ-
ments. Only when allowing additional security assumptions
during the offline, such as TEEs, our protocol becomes the
fastest in total running time of the combined offline and online
phase. Note that this does not affect our performance advantage
during the online phase which is the focus of this work.

VI. RELATED WORK

Freedman et al. [31] coined the term private set intersection
(PSI) and since then progress has been fast and steady. There
exist many variants of PSI protocols. We can distinguish
between PSI protocols which reveal the intersection itself and
PSI analytics (or circuit PSI) protocols which allow to compute
functions over the intersection, such as the (differentially
private) set intersection cardinality. We can also distinguish
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between protocols secure in the semi-honest model or the
malicious model. However, we argue in Section II-A that
this distinction is of minor practical importance in PSI (not
necessarily PSI analytics) protocols.

A. Industrial Work and Applications

Google has deployed PSI for computing the value of
ad conversion with Mastercard [43, 83]. Their protocol uses
commutative elliptic curve encryption [61, 80], one of the first
techniques to compute PSI. The communication cost of this
protocol is asymptotically optimal, very low in practice, and
has only been recently matched by other protocols [71, 76].
The computation cost of this protocol is rather high, but
Yung mentions its flexibility as one of its advantages when
deployed [83]. Their protocol is a PSI protocol revealing the
intersection and they use extensions to accommodate certain
functions, such as the differentially private set intersection
cardinality [43]. These extensions are also applicable to our
and other PSI protocols. Their protocol is secure in the semi-
honest, but not the malicious model. These properties match
our protocol, and our protocol is also conceptually simple as
can been seen in Algorithm 1.

There exist other industrial implementations of PSI proto-
cols such as by Facebook [12], Microsoft [16, 17], VISA [76]
and VMWare [33]. The VOLE-PSI protocol supported by
Google and VISA [76] also has an offline phase like our
protocol. Miao et al. [62] have developed a maliciously secure,
circuit PSI protocol for restricted functions, such as sum and
cardinality.

A practical proposal is also to use three servers similar
to our trusted third party setup [48]. In this setup, the parties
share a symmetric key and send keyed hashes of the elements
to a third party that compares them but does not have access
to the key. Compared to our construction – even when using a
trusted third party – this setup has two disadvantages. First, the
third party is involved during the online phase whereas in our
construction the third party is online involved in the offline
phase. Second, the online phase still requires cryptographic
operations albeit only fast symmetric key ones whereas our
online phase does not require any cryptographic operations
and hence is significantly faster.

B. PSI protocols

PSI protocols compute comparison between the elements
of the two sets. The first approach by Meadows [61] and
Shamir [80] is to compute the comparisons over pseudo-
random functions (PRF) of the inputs. Their construction still
requires to compute one public-key operation per element. The
number of public-key operations can be reduced by using
PCRGs or PRFs based on OT extensions [44]. Using OT
extensions, it is possible to compute a small number of public-
key operations and only use symmetric key operations for
each element. This significantly speeds up the entire protocol.
Several such constructions of oblivious PRFs (OPRF) exist
[27, 57, 70, 72, 75, 76]. These constructions can often be made
secure in the malicious model with little overhead [72, 75, 76].
The current state-of-the-art protocols for PSI with the best
communication and computation cost [57, 76] are based on
this construction.

We use a different construction than these protocols. In-
stead of computing a PRF per element which has commu-
nication complexity O(n), we perform a secure computation
per comparison (which has higher communication complexity).
However, we are able to provide an incredibly fast implemen-
tation of comparisons (assuming an offline phase) using only
four field operations and no cryptographic operations. This im-
proves the practical latency over medium-fast to fast networks
as our experiments in Section V-B show. Our protocol for
comparisons is inspired by oblivious linear function evaluation
(OLE) and Beaver multiplication triples [7]. Ghosh and Nilges
[34] already present a PSI protocol based on OLE, but use
a complicated construction based on polynomials that cannot
achieve our efficiency even when adapted to the semi-honest
model.

When computing comparisons using a dedicated protocol
instead of a plain comparison algorithm over PRFs, a challenge
is to reduce the number of comparisons necessary, since each
requires interaction. Naively, there are O(n2) comparisons. In
a series of works, Pinkas et al. [66, 67, 69, 71] refined a strat-
egy for Alice and Bob to hash their elements to common bins,
such that only O(n log n/ log log n) comparisons are necessary
between pairs of common bins. We follow this strategy as
described in Section III-C, but replace the comparison protocol
with our own which makes this construction more efficient than
OT extension-based OPRF ones. Note that Pinkas et al. also
provide a different strategy for dual cuckoo hashing which
leads to a circuit PSI protocols [68].

PSI analytics or circuit PSI protocols support a larger
set of functionalities and hence applications, but are usually
slower than PSI protocols. A first PSI protocol based on the
generic secure two-party computation protocol by Yao (garbled
circuits) was presented by Huang et al. [41]. The most efficient
current constructions base on OPRF protocols, but use a
technique called oblivious, programmable PRF (OPPRF) [58].
The idea of an OPPRF is that the value of the PRF at given
inputs can be fixed by the key holder. This allows the compar-
ison result to be secret shared and available for subsequent
secure computations over the intersection. Garimella et al.
[33] generalize OPPRF to oblivious key-value stores (OKVS).
The most recent and most efficient circuit PSI protocol (under
common wired network conditions) is VOLE-PSI [76] which
follows this construction using OPPRFs. VOLE-PSI also can
be used as a PSI protocol (as any circuit PSI protocol) to which
we compare favourably in Section V.

C. Specialized PSI protocols

There exist several variations of PSI and circuit PSI that
cater for specific applications scenarios. Circuit PSI performs
a secure computation on the secret shared outputs of the PSI
protocol. However, the PSI protocols may be a part of a larger
secure computation that does not start with a PSI protocol and
consequently the inputs must also be secret shared. Mohassel
et al. [63] present a variation of PSI for this setting.

It has been proposed to perform contact discovery in
mobile phone messaging apps, such as Signal, using PSI. In
this case, one set, the cell phone users’ one, is much smaller
than the other, the messaging provider’s one, i.e., the set sizes
are imbalanced. Modified OPRF protocols have been proposed
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for this setting [55, 74]. However, they require to store the
PRFs of the larger set in the downloaded software with a key
common to all users and consequently hinge on the security
of this key. Recent protocols without this restriction, which
turn out to be also faster, use fully homomorphic encryption
(FHE) [16, 17, 19]. FHE-based constructions can also be used
for circuit PSI [47].

PSI with a semi-trusted third party has received attention
under several different names. It is beneficial when the com-
munication between the two parties is restricted. Kerschbaum
introduced the concept in 2012 as outsourced PSI [52]. Dong
et al. [26] named the third party an arbiter in 2013 and Abadi
et al. [1] named it delegated PSI in 2015. Some functions
on the intersection, such as intersection cardinality, can be
computed in this setting [28]. Our offline phase using a
trusted third party could be considered this setting, but our
communication complexity between Alice and Bob remains
large (o(n)).

PSI can also be computed among multiple, more than two,
parties. The protocol with the currently best complexity is by
Hazay and Venkitasubramaniam [39] and the protocol with
the best practical performance due to the extensive use of
symmetric encryption is by Kolesnikov et al. [58]. Protocols
with variants for the definition of intersection, such as the
intersection of a subset with a size above a threshold, exist
[56, 60].

PSI requires all elements to be unique within one set,
i.e., there are no duplicates in each set. This is different
from database joins where elements in a relational table
can be duplicated. Database joins require different matching
procedures [59, 63]. PSI also performs only exact matches of
the elements. Private intersection with approximate matches is
often referred to as private record linkage (PRL). The challenge
in PRL is to find the O(n) matches among the O(n2) pairs
where the hashing strategy used by PSI protocols does not
apply. Instead one can use locality-sensitive hashing [40] and
then differentially privately pad the bins or locality-preserving
hashing and use sliding windows [53].

VII. CONCLUSIONS

PSI protocols have been extensively studied in the lit-
erature, and progress in practical latency is only possible
by improving constants. In this paper, we present the first
construction of a PSI protocol that is practically efficient and
uses no cryptographic operations during the online phase.
Instead, all cryptographic operations are moved to an offline
phase. For the online phase, we present a new comparison
protocol which consumes only one OLE tuple per comparison.
The online phase of our protocol outperforms the currently
best related work [15, 33, 57, 70, 76] by factors between 1.2
and 3.5 depending on the network performance. There exist
many different implementations for the offline phase which
can be shared with other privacy-preserving protocols using
precomputed, correlated, random secret shares. Among others,
we present a very efficient construction using TEEs, such as
Intel’s SGX. The performance of our PSI protocol with a TEE-
based offline phase is currently unmatched.
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