
Sometimes, You Aren’t What You Do:
Mimicry Attacks against Provenance Graph Host Intrusion Detection Systems

Akul Goyal
University of Illinois at

Urbana-Champaign
akulg2@illinois.edu

Xueyuan Han
Wake Forest University

vanbasm@wfu.edu

Gang Wang
University of Illinois at

Urbana-Champaign
gangw@illinois.edu

Adam Bates
University of Illinois at

Urbana-Champaign
batesa@illinois.edu

IDS would refine this technique and incorporate additional
host context (e.g., argument dataflows [13]), the Forrest IDS
codifies the general strategy for host-based anomaly detection:
monitor a stream of audit events to differentiate typical behav-
iors from anomalous (potentially malicious) activity.

However, are malicious acts innately distinct from regular
activity? This question was raised by Wagner and Soto in
their introduction of the mimicry attack [14] – due to various
imperfections in the IDS’ representation of system normality, it
is possible for attackers to pattern their actions such that they
are indistinguishable from benign processes. For example, a
malicious process could defeat the Forrest IDS by executing
no-op system calls, preserving the semantics of the attack
while simultaneously adhering to system call sequences of
approved processes. This finding was repeatedly replicated and
extended [11, 12, 15, 16], casting doubt on the practicality of
an entire generation of anomaly-based detection systems.

This early intrusion detection work was the forebearer to
the explosive popularity of machine learning research seen in
the security literature today. In fact, recent advancements in
machine learning and system auditing have led researchers to
reconceptualize host intrusion detection as a graph learning
problem. These “Prov-HIDS” analyze provenance graphs –
causal dependency graphs that describe the history of system
execution – in an attempt to delineate typical from anomalous
activity. Through identifying connections between current and
historical events in the system, these techniques show promise
as a new primitive for intrusion detection. However, at present
it is unclear how, or even if, such approaches are successful in
the face of determined, resourceful, and adaptive adversaries.

In this work, we resurrect the foundational challenge of
IDS evasion in the context of modern Prov-HIDS. We select
five exemplar Prov-HIDS – StreamSpot [17], Unicorn [18],
ProvDetector [19],1 Pagoda [20], and a Full Graph Autoen-
coder [21] – providing a representative sample of the field.
We dissect these systems’ inner workings to arrive at an
understanding of how each approach sacrifices the historical
context of complete provenance graphs to produce efficient and
generalizable classification models. We then develop a corpus
of candidate mimicry gadgets for crafting evasion attacks
against these systems.

To evaluate our procedurally-generated mimicry attacks,
we make use of the publicly-released StreamSpot [22] and
DARPA Transparent Computing [23] datasets. Our findings

1Our title is a playful jab at the ProvDetector paper title, “You Are What
You Do: Hunting Stealthy Malware via Data Provenance Analysis” [19].

Abstract—Reliable methods for host-layer intrusion detection
remained an open problem within computer security. Recent
research has recast intrusion detection as a provenance graph
anomaly detection problem thanks to concurrent advancements
in machine learning and causal graph auditing. While these
approaches show promise, their robustness against an adaptive
adversary has yet to be proven. In particular, it is unclear if
mimicry attacks, which plagued past approaches to host intrusion
detection, have a similar effect on modern graph-based methods.

In this work, we reveal that systematic design choices have
allowed mimicry attacks to continue to abound in provenance
graph host intrusion detection systems (Prov-HIDS). Against
a corpus of exemplar Prov-HIDS, we develop evasion tactics
that allow attackers to hide within benign process behaviors.
Evaluating against public datasets, we demonstrate that an
attacker can consistently evade detection (100% success rate)
without modifying the underlying attack behaviors. We go on
to show that our approach is feasible in live attack scenarios
and outperforms domain-general adversarial sample techniques.
Through open sourcing our code and datasets, this work will
serve as a benchmark for the evaluation of future Prov-HIDS.

I. INTRODUCTION

Intrusion detection systems (IDS) are an important reactive
security measure that identifies p ossible o ngoing a ttacks on
a host system. With its market size expected to exceed 170
billion dollars [1], cybersecurity is an enormous industry
in which intrusion detection is a highly coveted service.
Further, IDS provide the initial indicators of compromise
used to initiate threat hunting and incident response activities
[2, 3, 4, 5, 6, 7, 8]. Due to the difficulty of outright preventing
attackers from breaching organizational defenses (e.g., [9, 10]),
IDS are a cornerstone of real-world security today.

While IDS typically take two forms, anomaly-based and
heuristic rule-based systems, we focus on anomaly-based ap-
proaches. In host-based anomaly detection, sequences of low-
level events are analyzed to define p atterns o f t ypical host
activity. For example, in Forrest et al.’s pioneering work [11],
each process’ behavioral pattern is defined o ver a sliding
window of system calls of some small length k (e.g., k=6 [12]).
At runtime, if processes deviate from the set of system call
sequences observed when the application was profiled, i t is
considered an anomaly and an alert is raised. While subsequent

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.24207
www.ndss-symposium.org

Send
Recv

Write

Clone

Clone CloneClone Read

cert8.db

CloneSend Recv

Read

libtinfo.so.5.9

Clone

org.chromium.iyhyahlibdl-2.15.so

Read

Clone

Read

Connect

Fluxbox

FireFox

FireFox

FireFox FireFox

SendRecv

130.207.165.120

/home/admin/
clean

Exec

clean

161.116.88.72

146.153.68.151

Send Clone Read Read

/etc/hostsresolv.confFireFox

FireFox12.149.161.245

Send Clone Read Read

/etc/hostsresolv.confFireFox

FireFox12.149.161.245

128.55.12.110

Legitimate Process ActivitiesMimicry Attack
FireFox

Connect

Evades Detection?

Fig. 1: A provenance graph describing a Firefox backdoor attack using Drakon from a DARPA Transparent Computing engagement. Circles indicate processes,
rectangles files, and diamonds network connections. Benign system behaviors are shaded green, while the attack subgraph is red. This work considers Prov-HIDS’
resilience to mimicry attacks that embed substructures from legitimate process activities into the attack subgraph.

show that out of over 100 attack graph samples, we are
able to successfully force misclassification 100% of the time,
regardless of the Prov-HIDS under test. We go on to char-
acterize the cost of evasion in terms of the complexity of
the graph transformation, demonstrate the feasibility of our
approach by adapting our mimicry strategies to live attack
demonstrations, and show that evasion is possible even when
multiple Prov-HIDS are employed in an ensemble. Finally,
we empirically demonstrate the superiority of our approach
over domain-general adversarial sample generation techniques
by evaluating RL-S2V [24], a reinforcement learning system:
After seven days of execution in a variety of configurations,
RL-S2V failed to produce a single successful evasion sample
against the (relatively) simplistic StreamSpot IDS. In contrast,
our methods are highly efficient and reflect testable hypotheses
that provide insight into the failure conditions of Prov-HIDS.

Our contributions can be summarized as follows:

• Sometimes, You Aren’t What You Do. We bring mimicry
attacks into the modern era. Surveying five state-of-the-
art Prov-HIDS to understand how provenance graphs are
encoded for anomaly detection, we propose a battery of
novel mimicry attack methodologies.

• Independent Evaluation of Prov-HIDS. We conduct an
independent evaluation of five exemplar Prov-HIDS. We
uncover systemic vulnerability to evasion, reaching a
100% success rate against all systems.

• Open-source Benchmark for Mimicry Attacks. Our code
and data is publicly available 2 as a benchmark suite.
Future Prov-HIDS research can leverage our adversarial
samples to evaluate system resilience to evasion.

II. MOTIVATING ATTACK SCENARIO

To motivate our work, consider the provenance of an
intrusion attempt from DARPA Transparent Computing’s third
adversarial engagement, shown in Fig. 1, which depicts a Fire-
fox backdoor attack. The red subgraph is a simplified version
of the original attack. A victim machine running a vulnerable
Firefox 54.0.1 unknowingly establishes a connection with a

2https://bitbucket.org/sts-lab/mimicry-provenance-generator/src/master/

malicious ad server located at 146.153.68.151. The server
exploits a backdoor in Firefox and injects a binary executable
“Drakon” in its process memory. Drakon subsequently spawns
a new process (/home/admin/clean) with root privileges
that connects to the attacker’s server at 161.116.88.72, giving
the attacker full access to the victim machine.

As we will soon demonstrate, Prov-HIDS can reliably
detect this attack. By learning a representation of the typical
behavior of a system (i.e., the green subgraph), Prov-HIDS
are able to detect that the attack behavior (the red subgraph)
deviates significantly and is thus an anomaly. For example,
Han et al.’s Unicorn system [18] may learn that Firefox’s child
processes are expected to connect to different servers and read
from system files containing DNS information (legitimate pro-
cess activities). When the attacker instead writes and executes
the file /home/admin/clean, the resulting graph structures
are highly anomalous, making the attack simple to detect.

But what if the attacker is aware that a Prov-HIDS is
monitoring the system? The adversary could then modify their
attack subgraph using a mimicry attack (the orange subgraph)
– while the actual attack logic remains unchanged, the attacker
could fork additional processes that resemble legitimate pro-
cess activities. These activities may be sufficient to confuse
the classifier, resulting in a misclassification of the attack. In
practice, the simplified mimicry attack depicted in Fig. 1 would
not be sufficient to fool state-of-the-art systems. However,
the attacker is free to perform an unbounded number of
actions within process spaces under their control. They could
conceivably integrate many events into their attack behavior,
sampling normal activities from the victim system. Our goal
is to determine, through principled analysis, the feasibility and
cost of launching mimicry attacks on advanced Prov-HIDS.

III. PROVENANCE-BASED HOST INTRUSION DETECTION

A. Provenance Graphs

We define a provenance graph as G = (V,E), where
V = {vj}|V |

j=1 is a set of vertices and E = {ej}|E|
j=1 is a set

of edges. Each vertex in V refers to a concrete system entity
that was accessed during the course of a system’s execution,

2

https://bitbucket.org/sts-lab/mimicry-provenance-generator/src/master/

P1

P3

P5

P4

P2
P6

F4 F6

F2

F3

F7
F1

F5

X 1

X 3

X 1

X 1
X 7

X 3
X 1
X 1
X 8

X 1
X 1
X 1

StreamHashCount

P P P P FP P F F F F F F

P F F

FP

P

F

F F F F

P PP P

P P F F

P F F

P F

P

F

Count

[]

[]

][
[]
[]

[]

[]

[]

1 2 3 4 5 6

Fig. 2: Overview of the StreamSpot Prov-HIDS. StreamSpot 1⃝ takes as input a provenance graph, 2⃝ traverses and 3⃝ chunks the neighborhoods of the graph,
and 4⃝ encodes each chunk using StreamHash to 5⃝ build a final embedding of binary features. StreamSpot 6⃝ fits the final embedding into a trained model
consisting of benign graph embeddings.

such as a file, a process, a network socket, or inter-process
communication. Each edge represents a specific system event
that was observed, corresponding to a single system call in
the audit log from which the graph is built. A path in G
is P (vs, vd) = vs(relsi)vi, · · · , vj(reljd)vd, where each edge
vsrc(rel)vdst ∈ E and edges are causally ordered. The length
of a path L(P (vs, vd)) is the number of edges between vs and
vd along the path. We describe a set of provenance graphs as
G = {Gi}Ni=1, where N = |G|. An individual graph is therefore
Gi = (Vi, Ei), an edge in Ei is eij , and so on.

B. Generic Prov-HIDS Definition

Let each graph Gi in a dataset G be associated with a label
yi ∈ {0, 1}, where 0 is benign and 1 is malicious, such that
G = {Gi, yi}|G|i=1. The objective of a Prov-HIDS f(Gi) is to
minimize the loss function L:

L = 1− 1

|G|

|G|∑
i=1

1(f(Gi) = yi) (1)

where 1(x) = 1 if x is true; otherwise, 1(x) = 0.

The Prov-HIDS f(Gi) makes a classification decision by
encoding substructures within the graph Gi and then compar-
ing them to the substructures of a pre-encoded set of benign
graphs. An anomaly is raised if Gi’s substructures deviate
significantly from the known benign substructures:

f(Gi) = 1(Fδ(Eκ
λ (N

γ
β (Gi))) ≥ α) (2)

N γ
β (Gi) is a deconstruction function, parameterized by γ and

β, that returns a set of substructures zij ∈ Zi such that zij =
N γ

β (v
i
j),∀vij ∈ Vi. 3 γ is a branching factor that determines the

size of vij’s neighborhood, and β is a depth factor describing
the max distance between a node in the substructure and vij .

Eκ
λ (Zi) is an encoding function that summarizes Zi into

an L-dimensional vector Vi. κ specifies the size of a subset
of Zi used to represent Gi. λ is the embedding function used.

Fδ(Vi) is a distance function that compares Vi against a
set of learned graph encodings δ = {Vp

(1), · · · ,V
p
(n)}, which

returns the smallest distance between a graph in δ and Vi. α
is a distance threshold, under which Gi is considered benign.

System Function Method Learning Task Code?
StreamSpot [17] Detect. Unsup. Neigh.-based Whole Graph Ë
FRAPpuccino [25] Detect. Unsup. Neigh.-based Whole Graph Ë
Unicorn [18] Detect. Unsup. Neigh.-based Whole Graph Ë
Pagoda [20] Detect. Unsup. Path-based Whole Graph Ë
P-Gaussian [26] Detect. Unsup. Path-based Whole Graph é
ProvDetector [19] Detect. Unsup. Path-based Subgraph é
PIDAS [27] Detect. Unsup. Path-based Subgraph é
SIGL [21] Detect. Unsup. Whole Graph Autoencoder é

Hercule [28] Invest. Sup. Log Community Detection é
ATLAS [29] Invest. Sup. Log Sequence Modeling Ë
NoDoze [30] Invest. Unsup. Historic Event Analysis é
Holmes [31] Invest. Unsup. Historic Event Analysis é

TABLE I: Summary of graph learning mechanisms in provenance-based
security tools: Function refers to the high-level security function of the
learning mechanism (Detection or Investigation); Method indicates whether
the mechanism is Unsupervised or Supervised; Learning Task describes the
classification task being performed by the mechanism; and Code? indicates
whether the authors have publicly released an implementation of the prototype
of their system. Examplar systems surveyed in our paper are shaded in yellow.
Note that we focus only on the learning components of these systems, not their
end-to-end functionality. We discuss related work more broadly in §VIII.

C. Exemplar System Selection

We ground the evasion techniques we develop in this work
based on an in-depth analysis of a set of exemplar Prov-HIDS.
Our survey of graph learning mechanisms in provenance-based
security tools is shown in Table I. For completeness, we
include in the table investigation-oriented tools that are not
Prov-HIDS but feature related learning mechanisms. As we
can see, the majority of Prov-HIDS decompose the graph into
either neighborhood-based or path-based substructures prior
to vectorization, and then attempt to define normal behavior
with respect to either whole graph or subgraph granularities.

In selecting our exemplar systems, we wish to ensure
coverage of different approaches. While supervised learning
approaches have been used for non-detection tasks, they have
not seen use for intrusion detection. This is appropriate, as
the use of supervised intrusion detection intrinsically makes
assumptions about attacker behavior, which is considered to
be an unsound practice [32]. Therefore, we focus on the more
prevalent class of unsupervised intrusion detection systems. We
ultimately choose five such systems to be our exemplars. Due
to space constraints, we describe in detail three of the exemplar
systems (i.e., StreamSpot, Unicorn, and ProvDetector) below;
brief descriptions of two other systems, Pagoda and a SIGL-

3We slightly abuse the notation here for clarity, since in our prior definition,
N γ

β (·) takes a graph Gi as a parameter, not an individual vertex vij .

3

1 1 1 1 12 1 1 1 1 1ii

iii

P1

P3

P5

P4

P2
P6

F4 F6

F2

F3

F7F1

F5

P7

P8

P9
P10

P11

P12

P13

P14

P15 P16

P17

P18

P19

i

i

ii

Count: 1 1 1 3 1 1 8
P
P
P
P

P
P
F
F

F
F
F
F

F
P P

F
F

P F

Count: 1 1 1 2 1 1 5
P
P
P
P

P
P
F
F

F
F
F
F

F
P P

F
F

P

F
P

F
P

P
P
P

F
P

F P
1 2 5

P
P
P
P

P
P
F
F

F
F
F
Fiii

F
P
P
P

F
P

F
P

F
P

P
P

P
P

P
P

F
P

F
P

F
P P

P
P

F P P
Count: 4 5 8

HistoSketch

]
]
]

[
[
[

i
ii
iii

i

ii

iii

1 2 3 4 5

F F

Fig. 3: Overview of the Unicorn Prov-HIDS. 1⃝ For a streaming provenance graph, at each time step (marked by a dashed circle), Unicorn 2⃝ traverses and chunks
graph neighborhoods to construct a histogram representation, 3⃝ encodes each histogram using HistoSketch, and 4⃝ builds a model from all the embeddings.
5⃝ The final model is a collection of models from all training graphs. At runtime, Unicorn detects an anomaly in a test graph if it does not fit into any model.

like graph autoencoder, can be found in §VI.

StreamSpot. Fig. 2 shows an overview of StreamSpot [17].
StreamSpot’s deconstruction function N γ

β deconstructs G into
substructures of (mostly) equal number of vertices. In 1⃝→ 2⃝,
for each vertex vj , StreamSpot visits all of its neighboring
nodes that are at most K hops away, where K > 0 is a
configurable parameter. Thus, branching factor γ = degout(vj)
and depth factor β = K. In 2⃝→ 3⃝, StreamSpot subsequently
“chunks” substructures into smaller substructures, each of
which contains at most J vertices. As such, N γ

β returns a set
of substructures Z of equal size J , mixed with substructures
of smaller size that cannot be chunked. Fig. 2 illustrates the
deconstruction process with K = 3 and J = 4.4

StreamSpot considers the entire chunk set Z when sum-
marizing G (i.e., κ = |Z|). In 3⃝ → 4⃝, StreamSpot uses
StreamHash [17] as the embedding function λ, which preserves
the cosine similarity between two graph embeddings. λ embeds
each substructure into an L-dimensional binary (either -1 or
1) vector. Eκ

λ sums the embeddings of all substructures in Z
into an integer-value vector I . In 4⃝ → 5⃝, it reduces this
vector to again a binary vector B as the final graph embedding,
assigning each value to 0 or 1 based on the sign in I .

Fδ uses the cosine similarity to compare different graph
embeddings. In the training phase, StreamSpot performs clus-
tering on each observed graph embedding B. At runtime,
it classifies the embedding of each observed (test) graph
according to whether or not its embedding can be clustered into
the existing model. Specifically, for each cluster, a decision
boundary is calculated by finding the cluster’s centroid C and
standard deviation σC . As shown in 6⃝, a test graph GT must
satisfy Fδ(C,BT) ≤ 3σC for some cluster (where BT is
GT ’s graph embedding), or else be flagged as anomalous.

Unicorn. Fig. 3 shows an overview of Unicorn [18]. Like
StreamSpot, in 1⃝ → 2⃝, Unicorn deconstructs a streaming
graph G with N γ

β , where γ = degout(vj), β = K, and
each substructure is chunked into smaller equal sizes of J .
However, Unicorn’s graph deconstruction also takes time into

4Although it is not documented in [17], StreamSpot down-samples vertex
labels from specific system entity names (e.g., /etc/shadow, /bin/bash)
to coarse-grained object types, e.g., F (File) and P (Process). We make note
of this between Step 1⃝ and 2⃝ in Fig. 2.

consideration, where a time step t represents a fixed number
of edges streamed to G. At each time step, Unicorn revisits
vertices whose K-hop neighborhood has changed to update the
substructure set Zt, as well as adding new substructures from
latest streamed vertices. Fig. 3 illustrates this process with 3
different time steps using K = 3 and J = 4.

As shown in 2⃝ → 3⃝, Unicorn uses a histogram Ht to
represent Zt at each time step t, such that each bin in the
histogram represents a unique substructure and is associated
with the frequency of the substructure in Zt (i.e., κ = |Zt|).
Unicorn then encodes Ht into an L-dimensional real-value
vector Rt, using HistoSketch [33] as the embedding function
λ. HistoSketch preserves the Jaccard similarity between two
graphs by comparing the identities and the distribution of
histogram bins that summarize those graphs.

Correspondingly, Unicorn’s distance function Fδ uses the
Jaccard similarity to compare between different histogram
embeddings. In the training phase, Unicorn builds a model M
for each training graph by clustering R = {Rt}, t = 1 . . . T ,
as shown in 3⃝ → 4⃝. The model specifies for each cluster
a decision boundary (i.e., C and σC as in StreamSpot), as
well as the temporal relationships between clusters based on
the time steps. In 4⃝ → 5⃝, Unicorn uses all the models MD

from the set of the training graphs D to detect anomalies at
runtime. It generates a histogram HT

t of an evolving test graph
GT at each time step and compares its embedding RT

t with
every model. Unicorn classifies GT as anomalous if 1) RT

t
cannot be clustered into any model, or 2) the temporal order
of RT

t is different from that in any model.

ProvDetector. Fig. 4 shows an overview of ProvDetector [19].
In 1⃝ → 2⃝, ProvDetector deconstructs a graph G into a
set of overlapping and non-branching substructures Z. To do
so, ProvDetector creates a pseudo source node vps (which is
connected to all vertices in G that have no incoming edges)
and a pseudo destination node vpd (which is connected to all
vertices in G that have no outgoing edges) and finds all paths
P (vps, vpd) in G up to a maximum length of 10, at which point
longer paths are broken into multiple paths. In other words, in
N γ

β , γ = 1 and β = Max(|L(P (vps, vpd)|, 10).
In 2⃝ → 3⃝, ProvDetector selects K paths in Z to represent

G (i.e., κ = K). Paths are selected based on their regularity
scores, which are computed by the frequencies of the edges

4

P1

P5P3

P4

P6P2

F4 F5

F2

F3

F6

F1

F7

P7

i

ii

Doc2Vec

iii

[

[

[

]

]

]

i

iiiii

Count

P1
P6
F7

P1
P5

F6
P7

P1
P6

F1

P1
P2

P1
P3
F3

P1
P4
F5

P1
P4
F4

P1
P2
F2

11 11 1 111

Count

1

F6
P7

P1
P6

P1
P3
F3

1

1 2 3 4 5

Fig. 4: Overview of the ProvDetector Prov-HIDS. 1⃝ Given a provenance graph, ProvDetector 2⃝ extracts all paths from the graph, 3⃝ selects and 4⃝ encodes
using doc2vec the top K paths, and 5⃝ compares the encoded paths to the trained model.

in the path and the in- and out-degrees of their vertices. We
refer interested readers to Hassan et al. [30] for a detailed
explanation. ProvDetector selects top K paths with the lowest
regularity scores, then in 3⃝ → 4⃝, encodes each path into
an L-dimensional real-value vector using doc2vec [34] as the
embedding function λ. Fig. 4 illustrates this process using K =
3.

ProvDetector uses the Euclidean distance in Fδ to compare
between two path embeddings. In the training phase, ProvDe-
tector builds a Local Outlier Factor model [35] by clustering
top-K path embeddings from all training graphs. At runtime,
ProvDetector classifies a test graph as anomalous if at least
N out of its K path embeddings cannot be clustered into the
model, as shown in 5⃝ (with N = 1). Thus, N controls the
sensitivity of classification.

IV. THREAT MODEL

Attacker Capabilities. We consider a sophisticated adversary
that has gained access to a system. The adversary represents
an advanced persistent threat (APT) [36, 37, 38], whose
techniques and objectives are consistent with those observed
in the MITRE ATT&CK knowledge base [39]:

• Masquerading (T1036) [40]. Adversaries commonly manip-
ulate features of their own artifacts to appear legitimate to
security tools. Our attacker therefore will use any available
procedures to evade detection by Prov-HIDS. Restated for-
mally, given the unmodified attack footprint GA = (V A, EA)
that would otherwise be detected by Prov-HIDS as anoma-
lous, i.e., f(GA) = 1, the attacker’s objective is to apply
a transformation function T (GA) = G̃A = (Ṽ A, ẼA) such
that f(GA) ̸= f(G̃A).

• Gather Victim Host Information (T1592) [41]. Adversaries
will use this reconnaissance technique to aid other attack
operations such as masquerading. We assume our attacker
has access to procedures that enable them to access or infer
the contents of audit logs, an especially valuable source of
host information. For example, the attacker may escalate
privileges to read directly from the logs (/var/log/audit
in Linux). If privilege escalation procedures are not available,
the attacker can instead infer log contents through profiling
other processes on the system with ps, netstat, etc., or
even through system side channels (e.g., [42]). For simplicity,
we assume the attacker can read directly from system logs.

We place restrictions on the transformation function T used
by the attacker. T will always take the form of an addition,

i.e., ẼA = EA + Θ, where Θ cannot introduce disconnected
edges to G̃A. Ṽ A comprises the union of V A and the vertices
referenced in Θ; that is, Θ can contain nodes not in the
original graph such that V A ⊆ Ṽ A. While evading detection,
the attacker must still perform the attack and succeed. This
means that T cannot transform GA such that the semantics of
the original attack become invalid. Additionally, the attacker
has control over their attack subgraphs only, i.e., T must be
applied exclusively to subgraphs in GA that describe attack
processes. This more conservative attack model reflects the
requirement for T to produce a realizable attack strategy given
the constraints of the target system; lifting these restrictions
would further empower the attacker and facilitate evasion.

Assumptions & Trust Model. We make the following as-
sumptions about the operating environment. Our trusted com-
puting base (TCB) is comprised of the operating system,
auditing frameworks, and provenance analysis tools including
the Prov-HIDS. We assume the integrity of the components
in the TCB at the time of installation and throughout the
incursion. Platform and audit log integrity are widely assumed
in the auditing literature [43, 44, 45, 46, 47, 48]. Finally,
we do not assume that the attacker has knowledge of the
systems under test. Specifically, we consider whether our
attack strategies can evade multiple Prov-HIDS in §VI-I and
their robustness to changes in model parameters in §VI-J.

V. PROV-HIDS EVASION TACTICS

Following our in-depth analysis of the exemplar systems
and bearing in mind the capabilities of our attacker, we now in-
troduce a series of tactics for evading Prov-HIDS. Rather than
targeting individual systems one-by-one, each tactic describes
a generic strategy that can be recruited by an adversary to
evade one or more Prov-HIDS. Because they are inter-operable
and can be used in concert, we thus consider each tactic to be
a “mimicry gadget” for us in an end-to-end evasion attempt.

A. Preliminary Observations

Before presenting our mimicry gadgets, we make the fol-
lowing observations about the Prov-HIDS detection scenario.

• Adversaries can exert influence over an attack’s embedding.
Prov-HIDS take as input a provenance graph that describes
the totality of system execution. Trivially, an attacker that
is able to engage in attack behaviors on a system is also
able to engage in additional behaviors beyond those strictly
required by the attack. These additional behaviors will appear

5

Alg. 1: The idealized Prov-HIDS evasion strategy.
ADDSUBSTRUCTS follows naturally from our obser-
vations in §V-A, while the PICKSUBSTRUCTS func-
tion is concretized by our mimicry gadgets (see §V).

Inputs : Attack Graph GA, Benign Graph GN

Output: Evasion Graph GE

1 GE = GA // initialize evasion graph

2 ZN = N γ
β (G

N) // deconstruct the benign graph

3 VN = Eκ
λ (ZN) // encode benign substructures

/* repeat step 2 and 3 for evasion graph */

4 VE = Eκ
λ (N

γ
β (G

E))

/* compute the distance to evasion */

5 Dist = Fδ(VN , VE)

/* repeat until GE is misclassified */

6 while Dist ≥ threshold do
/* select substructures from ZN */

7 PN = PICKSUBSTRUCTS(GE , ZN , VN)
/* add substructures to GE

*/

8 GE = ADDSUBSTRUCTS(GE , PN)
/* re-encode GE

*/

9 VE = Eκ
λ (N

γ
β (G

E))
/* re-compute the distance to evasion */

10 Dist = Fδ(VN , VE)
11 end
12 return GE

in the embedding of the attack subgraph, injecting confusion
into the Prov-HIDS’ classification task. This observation is
analogous to Wagner and Soto’s observation that inserting
“no-op” system calls into a malicious process could evade
the Forrest IDS without affecting attack semantics [14].

• Adversarial additions to an attack’s embedding can be
made indistinguishable from benign behavior. While it is
unsurprising that an attacker can add arbitrary behaviors, what
is surprising is that these additions can be made indistinguish-
able from the system’s legitimate behavior. In a provenance
graph, any behavior that an attacker engages can be causally
linked back to their point of entry into the system, seemingly
indicating that any extraneous behavior will still appear
suspicious in the eyes of the Prov-HIDS. Unfortunately,
in the process of vectorizing the provenance graph into a
fixed-length representation, Prov-HIDS’ deconstruction of the
graph disassociates graph neighborhoods from one another
through bounded branching (γ) and depth (β). For example,
the Unicorn authors consider a maximum depth of three [18];
while the ProvDetector authors construct paths of maximum
depth of 10 [19]. To the best of our knowledge, the same
issue arises in all Prov-HIDS in the literature. Thus, even if
an injected behavior has a malicious ancestry, the behavior’s
embedded representation will map to a benign behavior if it
is more than β hops away from the root of the attack graph.

B. Mimicry Gadgets

Based on these observations, the basic premise of an Prov-
HIDS evasion attempt emerges. An idealized version of this
strategy is given in Alg. 1. Starting with the attack graph

(GA), the attacker engages in behaviors found in GN that add
seemingly benign graph substructures into the evasive attack
graph GE . This process continues until the classification of GE

crosses the Prov-HIDS’ decision boundary. We next describe
the construction of the key function, PICKSUBSTRUCTS.

1) Abusing Unweighted Graph Encoding: When a Prov-
HIDS summarizes a graph in such a way that every substruc-
ture is equally weighted, an attacker could change the graph’s
embedding simply by adding additional activity. Consider
an L-dimensional embedding that is derived from summing
over the set of substructures output by N γ

β (Gi). An attacker
that engages in spurious system activities creates additional
substructures into Gi, changing the output of N γ

β (Gi) and
consequently the L-dimensional embedding. In fact, because
the L-dimensional embedding is a fixed length feature vector
that describes a graph whose size is under the attacker’s
control, we predict that for unweighted Prov-HIDS, there will
always exist a set of substructures that can transform the attack
graph into any embedding within the L-dimensional space.

In our first mimicry gadget, the attacker starts by pro-
filing the target system to identify a large number of graph
substructures associated with benign activity (see §IV). They
then select a batch of benign substructures of parameterizable
size and replicate the system activities that produce those
structures. In our implementation, substructures are selected
chronologically in the order that they appeared in the logs.
We predict that, given a batch of benign substructures of
sufficient size,5 this evasion gadget will consistently force
misclassification against unweighted Prov-HIDS.

Consider one of our exemplar Prov-HIDS, StreamSpot,
which uses a bag-of-words approach to embed the input
graph. The hashing function sums over every hash of all the
substructures within the graph to create the final embedding.
Under this unweighted graph encoding approach, StreamSpot
can differentiate typical from anomalous behavior if and only
if there is a significant difference in the set of the substructures
that existed from each behavior. However, by adding benign
substructures to the attack graph, the significance of the
anomalous substructures can be arbitrarily reduced, to the
point that the attack graph would fall inside of the decision
boundary of a benign cluster. Further, as StreamSpot does not
represent any temporal properties within its N γ

β (Gi) function,
the order in which substructures are added does not affect the
embedding, further increasing the likelihood of the mimicry
gadget’s success. While we will evaluate this mimicry gadget
against StreamSpot and Pagoda, we note that other Prov-HIDS
in the literature, including FRAPpuccino [25] and PIDAS [27],
utilize similar graph encoding mechanisms.

2) Abusing Distributional Graph Encoding: Graph em-
bedding techniques that focus on summarizing the substruc-
ture distribution preserve the global graph structure at the
expense of highlighting anomalous activity. Unlike the pre-
vious summarization approaches that weigh all substruc-
tures equally, techniques preserving the underlying distribution
weigh each unique substructure according to its prevalence

5We note that this approach is heuristic, but in theory the attacker could
solve a system of linear equations to determine the minimally sufficient
substructure set required to force misclassification. We opt for the heuristic
approach, because it is computationally less complex and does not assume
that the attacker has perfect knowledge of the Prov-HIDS.

6

within N γ
β (Gi). Prov-HIDS that utilize these encoding tech-

niques assume that the distribution of substructures in a mali-
cious graph differs significantly from that in a benign graph.
However, the distribution of the substructures in a malicious
graph is (at least in part) under the attacker’s control. Further,
to account for the fact that a provenance graph grows continu-
ously over time, these Prov-HIDS must normalize substructure
distributions to compare past (i.e., training data) and present
embeddings (i.e., test data). Thus, we predict that there will
always exist a set of substructures that can transform an attack
graph into any embedding within the L-dimensional space.

In our second mimicry gadget, the attacker profiles the
target system to identify the relative frequency of each ob-
served substructure associated with benign activity. They then
select a batch of benign substructures that preserves this
distribution and replicate the system activities that produce
those substructures. The batch size is again parameterizable; in
this gadget, this parameter must be set such that the normalized
representation of any malicious substructures accounts for a
vanishingly small proportion of the embedding. This gadget
implementation also considers Prov-HIDS that monitor tem-
poral features of the graph by selecting substructures that are
consistent with the distribution of the activities at the time of
the initial compromise and updating its representation of the
substructure distributions as the graph evolves. We predict that,
given the knowledge of a benign substructure distribution and
a transformation of sufficient size, this gadget will consistently
force misclassification against distributional Prov-HIDS.

We return to our exemplar Prov-HIDS, Unicorn, which
represents the underlying substructure distribution in a his-
togram that captures the normalized frequency of each unique
substructure within N γ

β (Gi). This histogram is embedded to
create an L-dimensional vector such that embeddings that are
close together share similar substructure frequencies. However,
by adding benign substructures in a manner that mirrors the
frequencies of an existing cluster, the attack graph can be
moved closer to a benign cluster to the point that it falls
within the decision boundary. This is because the malicious
substructures in the attack graph’s embedding, while easily
identifiable by Unicorn in the original graph, will have a
diminishing contribution to the classifier’s decision as a result
of normalization. While we will evaluate this mimicry gadget
against Unicorn, Pagoda, and SIGL, we note that other Prov-
HIDS in the literature, such as P-Gaussian [26], utilize similar
graph summarization mechanisms.

3) Abusing Downsampled Graph Encoding: Thus far, our
mimicry gadgets have called attention only to the risks of
encoding the entire provenance graph when a portion of it
is under the attacker’s control. An alternate approach is to
perform a downsampling procedure prior to graph embedding,
which may improve the efficiency of training and generaliz-
ability of the model. It also stands to reason that a downsam-
pled graph embedding may be more difficult to insert mimicry
substructures because they must first bypass the downsampling
function. Consider a Prov-HIDS that first passes the target
graph into a downsampling function, i.e., DS(Gi) = G′

i,
before decomposing its substructures (N γ

β (G
′
i)). We observe

an issue with such an approach; namely, that by making
decisions about which subgraphs are relevant to the classi-
fication decision, DS(·) effectively replicates the functionality

of the Prov-HIDS’ core decision function, Fδ(·). There is a
disconnect between these two notions of anomaly – after all,
one is defined over a graph while the other is defined within
the embedding space. We predict that there must exist benign
substructures that can bypass DS(·) while still affecting the
attack’s representation within the L-dimension space.

In our final mimicry gadget, the attacker first profiles the
target system while monitoring the behavior of DS(·) on dif-
ferent observed sequences. They then select a batch of benign
substructure sequences of parameterizable size that bypass the
downsampling operation. As before, the batch size parameter
is based on what is necessary to affect the final representation
of the attack graph in the embedding space. We predict that,
given the knowledge of the downsampling function and a
sufficient transformation size, this gadget will consistently
force misclassification against downsampling Prov-HIDS.

Our exemplar Prov-HIDS, ProvDetector, attempts to clas-
sify the full test graph by downsampling it to only the top K
paths with the lowest regularity scores. Regularity scores are
calculated by observing the frequencies of individual events in
the system and then using a diffusion algorithm to aggregate
these scores along a path. Subsequently, in the embedding
space, ProvDetector uses the Euclidean distance between path
vectors to build a clustering model. Unfortunately, because
ProvDetector’s clustering model only trains on the paths that
have the lowest regularity scores, its notion of normality in the
embedding space is distorted. In particular, if there exists at
least one low-regularity path that occurs frequently enough in
training to form a benign cluster, the attacker can inject copies
of this path K (or fewer) times such that their actual attack
behaviors are entirely removed from the embedding.

VI. EVALUATION

We performed a number of experiments to evaluate the
efficacy and efficiency of our evasion strategies. Our evaluation
focuses on addressing the following research questions:

• How effective are our mimicry gadgets against the five
state-of-the-art, exemplar Prov-HIDS, StreamSpot (§VI-D),
Unicorn (§VI-E), ProvDetector (§VI-F), Pagoda (§VI-G), and
a SIGL-like full graph autoencoder (§VI-H)?
• Are our mimicry gadgets interoperable and generally ap-

plicable to other detection mechanisms (§VI-I)? Relatedly,
how much knowledge does the attacker need when using our
gadgets to successfully evade detection (§VI-J)?
• Can the attacker practically deploy our mimicry gadgets in

the real world? (§VI-K)
• How does our evasion strategies compare to previous,

domain-general graph evasion techniques (§VI-L)?
• What is the runtime performance of our approach (§VI-M)?

A. Experimental Setup

All experiments were run on a modestly provisioned 20-
core Intel Xeon(R) server with 64GB of RAM and an NVIDIA
GeForce GTX 1080 Ti. Our exemplar systems were imple-
mented and configured as follows:

• StreamSpot. We use its open-source implementation [22]
with recommended parameters: depth factor K = 1, chunk
size J = 50, and the embedding dimensionality L = 1, 000.

7

(a) StreamSpot Prov-HIDS

20 40 60 80 100
Edges Added (Thousands)

0.10

0.05

0.00

0.05

0.10

Ja
cc

ar
di

an
 D

is
ta

nc
e

5.1 8.5 11.9 15.3
% of Avg Benign Graph

(b) Unicorn Prov-HIDS

0 2 4 6 8 10 12
Edges Added (Thousands)

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

E
uc

lid
ea

n
D

is
ta

nc
e

2.2 2.5 2.9 3.2
% of Avg Benign Graph

(c) ProvDetector Prov-HIDS

Fig. 5: Evasion results against the StreamSpot dataset. For each value on the x-axis, there are 100 points representing the 100 unique attack samples included
in the dataset. The purple line represents the average decision threshold across the benign graphs. The y-axis varies by Prov-HIDS: StreamSpot uses the cosine
distance from the nearest benign cluster, Unicorn measures the normalized Jaccardian distance, and ProvDetector uses cluster density and the Euclidean distance.

(a) StreamSpot Prov-HIDS

0 20 40 60 80 100
Edges Added (Thousands)

0.12

0.10

0.08

0.06

0.04

0.02

0.00

Ja
cc

ar
di

an
 D

is
ta

nc
e

1.0 1.2 1.4 1.6 1.8 2.0
% of Avg Benign Graph

(b) Unicorn Prov-HIDS

0 2 4 6 8 10 12
Edges Added (Thousands)

0.2

0.4

0.6

0.8

1.0

E
uc

lid
ea

n
D

is
ta

nc
e

0.14 0.16 0.18 0.2 0.22 0.24
% of Avg Benign Graph

(c) ProvDetector Prov-HIDS

Fig. 6: Evasion results against the DARPA Transparent Computing dataset. See Fig. 5’s caption for an explanation of the different plot components. Because
this dataset describes only one intrusion, there is only one point per value on the x-axis.

• Unicorn. We use its open-source implementation [49] with
the best parameters in [18]: K = 3, J = 50, and L = 2, 000.
At each time step, we stream 500 edges to the graph.

• ProvDetector. While ProvDetector is closed-source, we
reimplemented the system based on its description in the
original paper [19] and through extended dialogues with the
authors. The authors recommended the following configu-
ration: depth factor β = 10, the dimensionality of path
embedding L = 100, the number of paths to represent a
graph κ = 20, and the sensitivity of classification N = 3.

Configurations of the other two exemplar systems, Pagoda
and a SIGL-like full graph autoencoder, are provided in §VI-G
and §VI-H, respectively, along with their descriptions.

B. Datasets

We make use of two datasets, the StreamSpot dataset [22]
and DARPA Transparent Computing (TC) Engagement 3. The
StreamSpot dataset, generated from SystemTap [50], was used
in the original evaluations of StreamSpot and Unicorn. The
dataset was generated in 2016 and contains one drive-by-
download attack scenario and five benign host activity sce-
narios (watching YouTube, browsing CNN, downloading files,
checking emails, and playing a game). The attack describes a
Firefox vulnerability in which a victim clicking on a malicious
URL accidentally triggers a bug in Flash that enables the

attacker to obtain root access. Each behavior was recorded 100
times, resulting in 600 provenance graphs. In our experiments,
we exclusively trained on the browsing CNN scenario, which
advantaged the classifier by allowing it to define tighter bounds
around normality. When we evaluate the complexity of our
graph transformations, we note that each benign graph in
the dataset averages about 295K edges, while the attack
graphs average about 28K edges. StreamSpot does not contain
behaviors representative of real-world systems as all of the
benign graphs contain system events from a single activity.
More importantly, attack graphs contain only attack behavior.

DARPA’s Transparent Computing program released mul-
tiple attack engagement datasets that describe a professional
red team’s attempts to penetrate a small network of hosts. We
evaluate our evasion tactics on the Engagement 3 data that
was generated by the THEIA team, which includes a single
provenance graph broken up into 25 different time periods.
While the dataset includes other smaller unsuccessful intrusion
attempts, we make use of the successful and more complex
Drakon intrusion that was described in §II. When evaluating
the complexity of our graph transformations, we note that the
total activity in this dataset is approximately 4.8M edges.
THEIA represents more realistic system activity and features
attack behavior occurring alongside normal system activity.
Table II provides a summary for each dataset.

8

Dataset # of Nodes # of Edges # of Graphs # of Attacks
SS 822,998 27,792,491 600 1
THEIA 3,721,210 46,303,154 25 4

TABLE II: Dataset statistics for StreamSpot (SS) and DARPA TC3 THEIA.
THEIA has one provenance graph split into 25 provenance subgraphs repre-
senting different time periods. There are four different attacks conducted in
THEIA, while StreamSpot had only one attack executed for 100 times.

C. Gadget Implementation and Evasion Procedure

Each of our mimicry gadgets was implemented in Python.
Each gadget takes as input (1) the attack graph to be modified,
(2) a provenance graph of benign activity, (3) the number of
edges/substructures to add, and (4) a point of insertion. We
follow the steps below to create an evasion graph:

1) Load the pre-attack graph from our experimental datasets.
The pre-attack graph describes the state of the victim’s system
immediately before the attacker infiltrates the system. We
create the pre-attack graph from the original attack graph
by identifying the first system process (chronologically) in
the attack footprint according to the ground truth and then
removing all system activity (including both malicious and
benign background activity) after this process.

2) Load benign graphs used to train the Prov-HIDS.
3) Find the insertion point corresponding to the set of edges

within the attack graph that describes the attacker connecting
to and gaining control over a process on the victim’s machine.
For example, in Fig. 1, the point of insertion is the edges
associated with the green/red Firefox process.

4) Inject benign substructures into the attack graph (§V). For
StreamSpot, we deconstruct a benign graph from the training
dataset into its K-hop substructures and then add all sub-
structures to the attack graph multiple times. For Unicorn, we
calculate the normalized count for each K-hop substructure
within a benign graph and then add to the attack graph the set
of the K-hop substructures by their normalized counts multi-
ple times. For ProvDetector, we generate a frequency database
(where ProvDetector stores the frequencies of different edges,
see Fig. III-C) from a benign graph. We then extract all paths
from the graph and identify the most abnormal path based
on the frequency database. We sample another benign graph
if the most abnormal path has a regularity score less than
the attack paths.6 We introduce the path N times into the
attack graph. We describe the procedures to inject benign
substructures for Pagoda and the graph autoencoder in §VI-G
and §VI-H, respectively. Note that in our experiments, we
evaluate the number of edges/substructures to be added to
successfully evade detection successfully. Further, for each of
our attacks, to ensure that the additional innocuous behavior
does not get associated with any malicious edges, we (as the
evasive attacker) fork the initial compromised process up to
a depth factor β to disassociate the mimicry behavior.

5) Insert the attack payload’s substructures to the pre-attack
graph. The attack substructures contain all edges that an
attacker-controlled process can reach after the attacker had
infiltrated the system. Finally, the resulting evasion graph is
evaluated against the Prov-HIDS.

6We assume the ability to estimate each path’s regularity score by running
the attack locally and using the frequency database to calculate the score.

D. Evading StreamSpot

We make use of our first mimicry gadget, abusing un-
weighted graph encoding (§V-B1), to evade the StreamSpot
Prov-HIDS. Using this gadget, we iteratively add batches of
benign substructures to the attack graph until misclassification
occurs. We continue to add more substructures to ensure that
each attack remains undetected after the initial false negative.

Our results are shown in Fig. 5a and Fig. 6a for the
StreamSpot and DARPA datasets, respectively. The primary x-
axis indicates the number of edges added, instead of substruc-
tures, to facilitate comparison across different Prov-HIDS. The
secondary x-axis shows the edges added as as a percentage
of the (average) size of a benign graph in the dataset. The
y-axis shows the cosine distance between an attack graph
and the centroid C of the nearest cluster in the model. The
purple line indicates the average decision boundary among all
clusters in the model, providing a rough estimate of where
misclassification occurs. Against the StreamSpot dataset, some
of the attack graphs begin to evade detection after adding
250K edges,7 and all of the attacks become undetectable after
300K edges. In the DARPA dataset, the attack evades detection
after 80K edges. For both datasets, our evasion strategy had
100% success.

Remarks. As we can see, distance to a benign cluster reliably
decreases as more benign substructures (edges) are added to
the attack graph. At first glance, it may seem unreasonable
to add hundreds of thousands of edges to the attack graph;
surely, such an approach is far from convert. However, in
reality, this transformation simply scales the attack graph to
the same order of complexity as the benign graph samples. In
the StreamSpot dataset, the benign graph averaged 295K edges
while the attack graphs averaged 28K edges. The necessary
transformation added at least 250K edges, 85% of the benign
graph size. This rules out the possibility of using a trivial
event counting mechanism to detect this evasion attempt. The
high cost of evasion on the StreamSpot dataset (250K, or
85%) as compared to DARPA (80K, or 1.5%) may be the
result of lack of diversity of benign activity in the former;
while StreamSpot’s training data describes a single browsing
behavior, DARPA describes system-wide activities. We further
attribute the high evasion cost for the StreamSpot dataset to
the relative naı̈veté of the first mimicry gadget. In §VI-I, we
demonstrate that our second mimicry gadget can evade the
StreamSpot IDS at a much lower cost (40K edges).

E. Evading Unicorn

Against Unicorn, we make use of our second mimicry
gadget, abusing distributional graph encoding (§V-B2). Recall
that the Unicorn Prov-HIDS encodes the temporal properties
of a provenance graph, re-embedding the graph to train its
model after every t new edges. To account for this, for each
batch of t edges in the graph that contains an attack edge, we
parameterize the gadget to select t edges whose substructures
match the distribution of the unmodified training graph.

Our results are shown in Fig. 5b and Fig. 6b for the
StreamSpot and DARPA datasets, respectively. The y-axis

7The careful reader might also notice that a few successful evasions
in Fig. 5a are above the purple line. This is because some cluster boundaries
were more permissive than the average boundary.

9

indicates the Jaccardian distance, Unicorn’s distance function.
Note also the change in scale of the x-axis. Against the
StreamSpot dataset, we successfully evade Unicorn in as few
as 40K edges, or 13.6% of the average size of a benign
StreamSpot graph. Against the DARPA data, we again achieve
evasion in 80K edges, 1.6% of the size of the benign graph.
Our evasion strategy evaded Unicorn 100% of the time.

Remarks. When comparing the performance of our first two
exemplar systems on the StreamSpot dataset, the more sophis-
ticated Unicorn seems to perform more poorly – 350K edges
required to evade the StreamSpot Prov-HIDS, as compared to
just 40K edges to evade the Unicorn Prov-HIDS. Initially,
we attributed this to the fact that the StreamSpot authors
had the opportunity to finely tune their chosen parameters
against this dataset. However, after testing the distributional
gadget against the StreamSpot Prov-HIDS (see §VI-I), we
discover that it is also able to evade the StreamSpot IDS at
the lower cost of 40K edges. This indicates that selecting
substructures distributionally, as opposed to chronologically,
is simply a better approach to attacking StreamSpot’s graph
encoding technique. In contrast, against the DARPA dataset
we evade the two Prov-HIDS with the same transformation
of 80K edges. The lower overall attack cost might reflect the
increased complexity of system-wide activities in the DARPA
data, leading to looser bounds around normal behavior clusters.
Conversely, the similar performance of the two gadgets indi-
cates that the chronological ordering of events in the dataset
happens to better reflect the distribution of events.

F. Evading ProvDetector

Against ProvDetector, we make use of our third mimicry
gadget, abusing downsampled graph encoding (§V-B3). Recall
that this mimicry gadget exploits the disconnect between the
metrics used for graph summarization and the metrics used for
classification; in both datasets, we indeed identified a benign
path that exhibited lower regularity than all attack paths. As a
result, our implementation repeatedly injects the substructures
associated with this low-regularity benign path. ProvDetector
classifies a graph as benign so long as more than K−N of its
substructures fall within a known cluster, where recommended
parameterization of K is 20 and N is 3. In our experiment, we
opt to insert 14 to 20 instances of the low-regularity paths.

The results are shown in Fig. 5c and Fig. 6c. Against
the StreamSpot dataset, inserting 9K edges was sufficient to
achieve a 100% success rate. These 9K edges translate to
18 of the low-regularity benign path, or 3% of the average
size of the benign graph. This is expected, as the sensitivity
parameter used for ProvDetector (N) is set to 3, meaning that
18 substructures are needed to fall within a cluster. Against
the DARPA dataset, misclassification first occurs at 10K edges
(0.2% of the benign graph), a difference of 1K edges between
datasets. The reason for this is that the low-regularity benign
path could be immediately inserted in the StreamSpot attack
graph (it is just another Firefox activity), while the low-
regularity benign path in the DARPA data is not related to
the attack graph. As a result, our gadget had to first perform
a preliminary transformation of roughly 1K edges to create
a graft point for the low-regularity benign path that did not
itself create an additional suspicious low-regularity path. The
evasion strategy achieved 100% success against ProvDetector.

Remarks. Aside from the extra 1K transformation in the
DARPA dataset, the cost of attacking ProvDetector was iden-
tical between datasets. This is intuitive, because ProvDetector
embeds a fixed number of fixed-length paths, placing a low
ceiling on the cost of attacking the system as compared to
StreamSpot and Unicorn. In fact, even against larger prove-
nance graphs describing months or years of activity, we predict
that the cost of evading ProvDetector will remain constant due
to this down-sampling. Conversely, StreamSpot and Unicorn
place less weight on any single substructure within their
graphs, requiring a larger transformation to achieve evasion.

G. Evading Pagoda

Pagoda [20] is a path-based, whole-graph Prov-HIDS.
Similar to ProvDetector, it makes use of an event frequency
database to assign a rarity score to individual edges. If an edge
in the path is not part of the frequency database, it is assigned
a score of one; otherwise, the edge receives a score of zero.

Pagoda flags anomalous graphs in two ways, both based on
path anomaly scores. A path’s anomaly score is the average of
all its edges’ rarity scores. At the path level, if any path in the
graph has an anomaly score greater than a configurable path-
level threshold, the graph is considered to be anomalous. At
the graph level, Pagoda additionally assigns a graph anomaly
score to the entire graph, based on a weighted summation of all
paths’ anomaly scores. A path’s weight is its normalized path
length based on the lengths of all paths in the graph. Pagoda
considers a graph to be abnormal, if its graph anomaly score
is greater than a predetermined graph-level threshold.

The original Pagoda source code is publicly-available;
however, after sustained correspondence with the authors, we
ultimately decided to re-implement the system. Pagoda is
built on top of the 2006 Provenance-Aware Storage System
(PASS) [51], the first provenance-aware operating system,
with deep integration into PASS’ userspace utilities that were
last updated in 2010. After several attempts, we were unable
to recreate a build environment in which these tools could
run. Instead, we referenced the author’s original code and
pseudocode from the paper [20] to reproduce the system. We
configured the system as follows: If an event in the training
dataset appears more than twice, we add the event to the
frequency database. The path-level threshold is set to be the
highest anomaly score among all the paths in the training
dataset. Similarly, the graph-level threshold is the highest
anomaly score of all the graphs in the training dataset. Within
a graph, a path starts from a root node and ends at a leaf node.

To evade Pagoda, we utilized the abusing unweighted graph
encoding (§V-B1) and abusing distributional graph encoding
((§V-B2) mimicry gadgets. Because Pagoda normalizes each
path’s length to compare graphs of different sizes, an attacker
could insert long but benign paths to reduce the weights of
shorter attack paths, thus lowering the graph anomaly score
of the attack graph. In our experiment, we used the training
dataset to identify long benign paths with low anomalous
scores to lower the graph anomaly score. For each attack
path, the attacker could insert edges from the frequency
database to decrease the path anomaly score of the attack
path, preventing it from raising detection. Therefore, in our

10

(a) Pagoda (b) FGA

Fig. 7: Evasion results against the StreamSpot dataset. For each value on the x-axis, there are 100 points representing the 100 unique evasion graphs based on
the attack samples included in the dataset. The y-axis varies by Prov-HIDS: Pagoda uses a graph anomaly score represented as a weighted sum of all the paths
within the graph, while FGA uses the Euclidian distance from the nearest benign embedding.

experiment, we inserted edges in the frequency database into
attack paths to lower their anomaly scores. The results are
shown in Fig. 7a. Our re-implementation can correctly classify
StreamSpot attack graphs against a non-evasive attacker but is
susceptible to our evasion strategies 100% of the time.

H. Evading a Full Graph Autoencoder (FGA)

SIGL [21] is a Prov-HIDS that utilizes a graph autoencoder
to alert security analysts to malicious software installations.
SIGL learns by training a graph autoencoder using recon-
struction losses on SIGs representing clean software installs.
While SIGL is a Prov-HIDS, its focus on software installation
means that it only considers small subgraphs of targeted
process behaviors. It stands to reason that performing anomaly
detection over these smaller, well-formed procedures is a
significantly different graph learning task than highly variable
system-wide anomaly detection. Evidence for this claim can be
found in [21] where larger SIGs (i.e., more variations) incurred
the highest reconstruction losses. To more fairly compare other
Prov-HIDS explored in this paper, we implement a full graph
autoencoder (FGA) to detect intrusion, for mimicry analysis.

Graph autoencoders are machine learning models that con-
sist of two separate neural networks, an encoder and a decoder.
For an input graph, the encoder produces a D-dimensional
vector; the decoder then takes as input the D-dimensional
vector and tries to reconstruct the original input graph. By min-
imizing the difference, also known as the reconstruction loss,
between the input and reconstructed graph, the autoencoder
can learn good representations of graphs within the training
distribution. As SIGL is a proprietary closed-source system,
we implemented an FGA using PyTorch Geometric [52] to
learn normal behavior from benign provenance graphs through
reconstruction loss measurements. Our FGA uses a graph
convolutional network (GCN) [53] to embed each node and
an inner product decoder [54] to reconstruct the node’s neigh-
borhood. We represent a graph’s embedding as the average
of the node embeddings from all the nodes within the graph.
At test time, a graph is labeled as malicious if the distance

Evasion Strategy E.A. StreamSpot Unicorn ProvDetector
Gadget 1 (§V-B1) 80K Ë é é
Gadget 2 (§V-B2) 80K Ë Ë é
Gadget 3 (§V-B3) 10K é é Ë

Gadget 2 → Gadget 3 — é é Ë
Gadget 3 → Gadget 2 — Ë Ë Ë

TABLE III: Cross-comparison of evasion gadgets. Ë’s mark successful
evasion, while é’s denote failure. E.A. refers to Edges Added.

from its embedding to the nearest training graph is greater
than some predefined threshold. We configured the threshold
in FGA using a validation set, which is set to be the tightest
bound we can find to correctly classify all validation graphs as
benign. We see from Fig. 7b that FGA can perfectly classify
attack graphs in the StreamSpot dataset.

To evade FGA, we utilized the second mimicry gadget,
abusing distributional graph encoding (§V-B2), to match the
distribution of node neighborhoods of an attack graph to be the
same as that in benign provenance graphs. Because FGA uses a
GCN to embed the input graph, each node is encoded in terms
of its “ancestral” k-hop neighborhood. GCN uses message
passing to aggregate feature vectors from a node’s parents to
generate the D-dimensional vector for the node. Adding the
same “ancestral” k-hop neighborhood found in the training
dataset to a given attack graph introduces nodes with the same
embedding as nodes associated to benign activity. This allows
the average embedding of all the nodes in the attack graph to
be closer to that of a benign graph, thus successfully evading
the Prov-HIDS, as we can see in Fig. 7b.

I. Gadget Composability Analysis

As discussed in §V, because our mimicry gadgets target
general design features of Prov-HIDS, they are interoperable
with one another and can be deployed in concert to evade more
complex detection systems. As a proxy for such a system,
we now consider whether our evasion techniques can succeed
when three of our exemplar Prov-HIDS (StreamSpot, Unicorn,

11

and ProvDetector) are deployed as an ensemble model. To do
so, we make use of the DARPA dataset. The Prov-HIDS are all
configured identically to the prior experiments. For each test,
we use the evasion strategy to add the number of edges that was
first observed to cause misclassification of the target system.
Based on these findings, we then test whether a composition
of evasion strategies can be used to evade all three systems.

Our results are shown in Table III. As expected, gadgets
designed for one graph encoding strategy were not effective
when tested against another. The one exception to this rule is
the abusing distributional graph encoding gadget (Gadget 2),
which also succeeded against Prov-HIDS that use unweighted
graph encoding. We then attempted to use different composi-
tions of gadgets to see if it was possible to simultaneously
evade all Prov-HIDS. Because the Gadget 2 was already
demonstrated to be sufficient to evade the StreamSpot Prov-
HIDS, Gadget 1 was removed from consideration. We first
applied Gadget 2 and then Gadget 3, but this was detected by
StreamSpot and Unicorn, because the K paths added by Gadget
3 for ProvDetector created unexpected substructures in the L-
dimensional embeddings. We then applied the transformations
in the opposite order, first injecting K paths using Gadget 3
and then concealing any anomalous changes to the substructure
distribution using Gadget 2. This composition of evasion
strategies was sufficient to evade all three Prov-HIDS.

Remarks. This analysis highlights two important consider-
ations regarding the deployability of our evasion attacks.
First, the results indicate that we might be able to relax our
assumptions of the attacker’s knowledge of Prov-HIDS on the
target system – if the attacker can create a generally applicable
evasion transformation, it might be possible to simultaneously
evade many detection mechanisms and many parameterizations
of those mechanisms (which we evaluate in §VI-J). Second,
these results underscore the value of our approach as compared
to domain-general methods of adversarial sample generation.
Techniques for misleading machine learning classifiers abound
(and are discussed at greater length in §VI-L); however, the
existence of an adversarial sample does not illuminate a gen-
eral strategy for evasion, provide interoperability with attacks
against related systems, or highlight the design flaws that led
to its feasibility. Our approach satisfies all these requirements.

J. Evasion Performance Under Incorrect Parameters

Setting the parameters in an intrusion detection system can
often be unique to the deployment, to reflect the nature of
system activity within that environment and the tolerance of the
security analyst for false positives. To assess the practicality of
our evasion strategy, we consider an attacker with imperfect
knowledge of the intrusion detection system. To do so, we
selected a key parameter for each of our three exemplar
systems: StreamSpot’s chunk size, Unicorn’s sketch size, and
ProvDetector’s path length. We selected these parameters,
because they play a roughly analogous role in each system.
Using the StreamSpot dataset for training and testing, we then
slowly increased and decreased each parameter’s value until
classification accuracy against the unperturbed test split began
to degrade. We did not test parameters that would cause more
severe degradation (e.g., 100% false positive rate) as such
classifiers would be impractical to use. Finally, we re-tested
the original evasion samples on each parameterization.

System Parameter Value TPR TNR Evasion Rate
StreamSpot Chunk Size 40 0.86 1.00 1.00
StreamSpot Chunk Size 45 0.91 1.00 1.00
StreamSpot Chunk Size 50 1.00 1.00 1.00
StreamSpot Chunk Size 55 1.00 0.95 1.00
StreamSpot Chunk Size 60 1.00 0.90 1.00

Unicorn HistoSketch Size 500 0.99 0.94 1.00
Unicorn HistoSketch Size 1000 1.00 0.92 1.00
Unicorn HistoSketch Size 2000 1.00 0.93 1.00
Unicorn HistoSketch Size 4000 0.95 0.96 1.00
Unicorn HistoSketch Size 8000 0.29 0.96 1.00

ProvDetector Path Length 4 0.0 1.00 1.00
ProvDetector Path Length 6 0.21 1.00 1.00
ProvDetector Path Length 8 1.00 1.00 1.00
ProvDetector Path Length 10 1.00 1.00 1.00
ProvDetector Path Length 20 1.00 0.92 0.86

TABLE IV: Success of evasion attack when a key parameter is manipulated.
TPR and TNR denote the true positive and true negative rates of the model
parameterization prior to evasion. The reference parameter value used in our
prior experiments, and here (incorrectly) assumed by the attacker to be fixed,
is shaded. Our evasion methodology continues to be effective even as the
baseline performance of the model degrades.

Evasion Strategy StreamSpot Unicorn ProvDetector
Full Knowledge Ë Ë Ë

Limited Knowledge Ë Ë

TABLE V: Live demonstration results for limited knowledge and full knowl-
edge attack scenarios: Ë’s mark successful evasion, and ’s represent partial
success (see details in §VI-K).

Table IV reports the results of those experiments, with
the shaded parameter value denoting the original experimental
setup that the attacker assumes (incorrectly) to be fixed. As we
can see from the True Positive Rate (TPR) and True Negative
Rate (TNR) columns, each parameter value was manipulated
until it reached a clearly suboptimal value for the unperturbed
test data. In spite of this, the adversarial samples we generated
for a different parameterization continue to be effective. Our
attack strategy generates each evasion graph by adding a
set of benign substructures rather than individual edges to a
given graph, meaning that individual perturbation steps are not
strongly linked to parameter values. As a result, there is slack
in each evasion attempt that allows for it to remain successful
despite Prov-HIDS’ parameter changes.

K. Live Attack Demonstration

While we have demonstrated the ability to produce mimicry
attacks in the feature space, previous work [55] has noted that
side effects can occur when one attempts to invert samples
from the feature space to the problem space. In this section,
we demonstrate that these strategies can be operationalized
on a live system by an attacker. We first replicate an attack
scenario similar to the StreamSpot dataset in which benign
activity was generated by opening the Firefox browser and
visiting youtube.com and cnn.com. This activity was used
to train the classifier.

In the attack scenario, the victim clicks a malicious link
that exploits a vulnerability in Firefox, causing a reverse shell
to open and creating an attacker-controlled process. Before
initiating the remainder of the attack, the attacker attempts to
evade the Prov-HIDS by injecting innocuous behavior patterns.

12

These innocuous behaviors are elicited by the attacker using a
simple Python script to visit legitimate websites. After eliciting
these behaviors, the attacker then injects its payload behavior
by using a JavaScript vulnerability to gain root privilege and
extract sensitive information to a remote server. This attack
sequence was used as test data. We simulated the victim’s
and the attacker’s systems using an Ubuntu and Kali VM on
Virtualbox, respectively. Metasploit was used to conduct the
intrusion and privilege escalation.

Prior to the beginning of the attack, the attacker will use
their knowledge of the victim system to both select innocuous
behaviors to inject as well as create a surrogate model of the
target system’s Prov-HIDS for preliminary testing. We consider
two viable methods of injecting innocuous behaviors: a Full
Knowledge (FK) attack and a Limited Knowledge (LK) attack.
In the FK scenario, the attacker can read directly from the
system logs in the training data, allowing them to identify the
websites visited by Firefox. In the LK scenario, the attacker
can infer that Firefox is running but cannot directly access the
logs to determine which websites were visited. Instead, the LK
attacker browses popular websites on their own machine and
inspects the log output to determine plausible low-level system
call patterns. The attacker then visits these other websites (but
not youtube.com and cnn.com) during the attack. These
scenarios reflect different levels of ability to gather victim host
information (T1592) [41], which is explained at length in §IV.

Our results are summarized in Table V. In the FK scenario,
the attacker is able to evade detection against our three
exemplar systems. In the LK scenario, the attacker completely
evades detection against StreamSpot and Unicorn. Against
ProvDetector, an anomaly is not detected and the paths selected
for embedding do not contain malicious behavior; however,
some of the attacker’s innocuous website visits are included in
the top 20 most anomalous paths. As a result, we consider this
to be a qualified success; because an alarm is not raised and
the most anomalous paths appear to be legitimate activities, it
is unlikely that the attack would be detected.

The results of this experiment demonstrate that our attacker
does not need a general solution to feature space inversion to
launch a successful evasion attempt. Instead, they can use the
adversarial sample generated by our methodology as a guide,
and then approximate those behaviors on the target system
by eliciting higher-level events such as page loads. Further,
the results from the limited knowledge scenario demonstrate
that this approach is potentially viable even with only coarse-
grained knowledge of the target system.

L. Comparison to Domain-General Attacks

The above results indicate that Prov-HIDS are broadly
susceptible to evasion, but it is not yet clear whether our
specialized attack strategies are necessary. We now consider
the applicability of domain-general graph evasion strategies.

Domain-General Graph Evasion. A survey of graph eva-
sion methods is given in Table VI, following the taxonomy
presented by Sun et al. [67]. The majority of graph evasion
systems target node classifiers [56, 57, 58, 59, 60, 61, 62, 63].
As we are not aware of any Prov-HIDS that perform node
classification, we rule out these techniques. Amongst whole-
graph classification strategies, two are gradient-based attacks

Attack Cls Ptrb Mdl Grdnt Grph Prov-HIDS
Method Tsk Typ Acs Bsd? Typ Compatible?

InfMax [56] N GA C No Any é
EDA [57] N E O No Any é
GF-Attack [58] N E C No Any é
ReWatt [59] N E C No Any é
EpoAtk [60] N E O Yes Any é
AGA-GAN [61] N E C No Any é
SRL [62] N E C No Any é
CD-ATTACK [63] N E C No Any é
Tang et al. [64] G GA C Yes Any é
Xu et al. [65] G N+E O Yes Any é
TNI [66] G N+E O No Spl é
RL-S2V [24] G E C No Any ?

Our Approach G N+E O No Any Ë

TABLE VI: Related Graph Evasion Attacks— Classification Task (Cls Tsk)
is either on nodes (N) or on the entire graph (G); Perturbation Type (Ptrb
Typ) describes the graph properties transformed: Edge (E), Node (N), and
Graph Attributes (GA); Model Access (Mdl Acs) denotes whether an open
(O)- or closed (C)-knowledge model is assumed; Gradient Based (Grdnt Bsd?)
indicates whether a graph neural network is assumed; and Graph Type (Grph
Typ) designates whether a model can work on any (Any) graph type or only
against a special (Spl) type.

10
1

10
2

10
3

10
4

Number Of Past States

10
1

10
2

10
3

10
4

M
em

or
y

(G
B

)

1
100
1000
10000
100000

Fig. 8: Memory overheads incurred by RL-S2V as the number of saved past
states (x-axis) and edge additions (line color) increases. The black dashed line
denotes the available memory on our test server. RL-S2V can retain a large
number of past states for small graph transformations; however, its per-state
memory requirements become unwieldy when attempting transformations of
the size required to evade Prov-HIDS.

against graph neural networks; these approaches may work
against SIGL [21], but not the seven other Prov-HIDS in Ta-
ble I. Among the two remaining systems, the Targeted Noise
Injection (TNI) [66] “edge mirroring” technique is thematically
similar to our methodology. However, it is designed for a
bipartite graph classification task; provenance graphs are not
bipartite and encode significantly more complex structures,
leading us to believe that TNI would require significant mod-
ification to work on Prov-HIDS. Of the surveyed approaches,
only Dai et al.’s reinforcement learning based RL-S2V [24]
appears immediately applicable to Prov-HIDS.

RL-S2V. The objective of RL-S2V is to learn a policy that
can successfully modify any input drawn from the same
distribution. Given a state s representing graph G with m− 1
modifications, RL-S2V learns the expectations over the proba-
bilities of possible edge additions on G. After m modifications,
RL-S2V updates its parameters based on the response from the
target classifier. RL-S2V cycles through millions of possible
modifications to learn an optimal policy.

Experimental Setup. We attempt to apply RL-S2V to the
Prov-HIDS evasion problem using a minimally modified ver-

13

Execution Time Past State Training Time Per
m Budget Budget Iterations Iteration (sec)
1 7 days 50000 3,024,000 0.2

100 7 days 5000 201,600 3
1,000 7 days 500 20,160 30

10,000 7 days 100 2,240 270
100,000 7 days 10 604 1000

TABLE VII: Training performance of RL-S2V as the number of edge additions
(m) increases. Each configuration was run for the same amount of time and
the past state budget was modified to prevent it from hitting a memory wall.

sion of the authors’ source [68]. To advantage RL-S2V as best
as we could, we tested against the StreamSpot Prov-HIDS,
which evaluated samples much faster than the other systems,
in the static graph classification setting. We also made use of
the modified version of the relatively small StreamSpot dataset,
training on all benign behaviors and testing against a single
attack graph. While our original experiments used a subset
of the benign behaviors for training (§VI-B), by including all
behaviors during training, we made it easier for RL-S2V by
increasing the variance among benign activity. RL-S2V is not
designed for property graphs that carry edge attributes, so we
down-sampled the StreamSpot dataset such that edges denoted
attribute-free information flows. For example, any system call
from a process to a file (e.g., write, writev, etc.) was
mapped to an unlabeled edge between those entities.

In our initial experiments, we observed a halt in the training
routine due to hitting a memory wall – as we scaled up RL-S2V
to explore the very large graph transformations needed to evade
Prov-HIDS, the algorithm’s retention of past states became
prohibitively costly. This trade-off between transformation
size, past states, and memory cost is visualized in Fig. 8. To
explore state changes of 100, 000 edges, RL-S2V’s default con-
figuration of retaining 50, 000 past states requires 10, 000 GB
of RAM. Because it is necessary to explore edge modifications
of this size according to our own results, it was necessary to
modify RL-S2V’s past state “budget” based on the size of the
transformation being explored. For each transformation size,
we used the analysis in Fig. 8 to determine the past state budget
that could be supported by 64 GB of system RAM. Further,
each configuration of RL-S2V was given seven days to train.
As result of that, the number of training iterations varied based
on the speed with which RL-S2V could complete a single
iteration for a given transformation size. This information is
summarized in Table VII.

Experimental Results. Fig. 9 reports on RL-S2V’s best
evasion attempt at the conclusion of training. Although the
cosine distance to the nearest cluster decreases nominally with
larger transformations, RL-S2V is unable to efficiently learn a
discernible pattern from the data and thus cannot successfully
evade the StreamSpot Prov-HIDS. While evasion may eventu-
ally become possible with larger graph transformations or more
training time, the prohibitive cost of training RL-S2V makes
this far less practical than our approach. Similarly, adapting
RL-S2V to consider additional perturbation types like nodes
or attributes would vastly expand the search space, imposing
even more training overhead. Following our experiments, we
reached out to the RL-S2V authors to see if they could suggest
an alternative configuration. They explained that the experi-
ments conducted in [24] considered graph transformations of

10
0

10
1

10
2

10
3

10
4

10
5

Edges Added

0.45

0.50

0.55

0.60

0.65

0.70

0.75

C
os

in
e

D
is

ta
nc

e

Our Attack
RL-S2V

Fig. 9: Performance between our attack technique and RL-S2V. A summary
of notation is given in Fig. 5. Briefly, the attack attempt must reach the purple
dashed line to evade detection. The RL-S2V system was unable to successfully
evade detection, w hile our strategy is successful above 125, 000 edges.

Evasion Step Time (sec)
Load the Pre-attack Graph 0.4334
Load Benign Graphs 0.0007
Find the Insertion Point 0.5490
Inject Benign Substructures 0.8325
Insert the Attack Payload’s Substructures 0.0010

Total 1.8166

TABLE VIII: Runtime performance for each step in our evasion strategy.

at most m = 1; thus, they found it unlikely that RL-S2V would
succeed at our task.

Remarks. These results underscore the difficulties of ap-
plying domain-general evasion attacks to provenance graph
classification. Due to their size, complexity, and rich property
space, provenance graph classification is a fundamentally dif-
ferent task than many other graph classification challenges.
Of course, owing to the widespread success of adversarial
examples on graph models, we fully anticipate their use in
future attacks against Prov-HIDS. However, blindly applying
existing adversarial models to Prov-HIDS, even if successful,
does not elucidate the structural weaknesses of the systems
under test. Our work looks to identify the pitfalls in current
Prov-HIDS designs to inspire further work in the area.

M. Runtime Performance

Table VIII reports the time required to perform a single
attempt to evade the StreamSpot Prov-HIDS on the StreamSpot
dataset. Load the Pre-attack Graph and Load Benign Graphs
denote the time required for the attacker to load and parse the
initial attack graph and the benign training set, respectively.
The initial attack graph describes how the attacker takes control
of a process on the victim’s system, but does not include the
remainder of the attack. Find the Insertion Point returns the
edge/node in the initial attack graph that represents the process
under the attacker’s control. Inject Benign Substructures corre-
sponds to the injection of substructures, starting at the insertion
point, that simulate benign activity. These substructures are
sampled from the benign training set. These times are linearly
dependent to the number of edges inserted. In this example, we
inserted 300K edges into the attack graph. Insert the Attack
Payload’s Substructures is the final step in the evasion where
the attacker conducts the rest of the attack. These steps are
discussed in more detail in §VI-C.

14

Compared to domain-general adversarial sample ap-
proaches, our attack is much more time and space efficient.
Consider the previously reported evasion attempts by RL-S2V,
shown in Table VII. A single unsuccessful evasion attempt that
is roughly the necessary transformation size, m = 100, 000,
requires 16.67 minutes to generate and test. In contrast, our
methodology is able to generate a sufficient evasion attempt in
less than 2 seconds. While other (non-black box) adversarial
sample tools may offer stronger performance than RL-S2V, this
result demonstrates the efficiency of our technique relative to
commodity off-the-shelf tools.

VII. DISCUSSION

A. Applicability to Other Prov-HIDS

While we evaluate five exemplar Prov-HIDS, we briefly
remark on the feasibility of our methods on other systems.
FRAPpuccino [25] and PIDAS [27] both weigh events equally
within an inspection window, i.e., using unweighted encoding
(§V-B1). Thus, using our first gadget to introduce benign
events/substructures to the inspection window will likely force
misclassification. Regarding our attack on distributional en-
coding (§V-B2), P-Gaussian [26] normalizes its graph-wide
anomaly score across all paths in the graph. Therefore, in-
jecting benign substructures will create more low-score paths,
reduce the average score, and eventually force misclassifi-
cation. We also suspect that either of our first two gadgets
would frustrate attack reconstruction for Hercule’s [28] log
correlation mechanism; this is because Hercule assumes that
edges between malicious and benign communities of events are
infrequent, but this assumption is confounded if the attacker
injects a large number of seemingly benign substructures.

Finally, we note that our exploration of mimicry gadgets is
not exhaustive; our general attack methodology suggests other
attacks against Prov-HIDS. For example, path-based systems
(e.g., [19, 20, 26, 27]) suffer from a common design flaw
in which they cannot represent suspicious activity that occurs
along branching causal paths. As a result, an adversary could
transform their attack logic to distribute its payload across a set
of cooperating processes, as suggested by De Gaspari et al.’s
Naked Sun attack [69], to create more attack paths with lower
anomaly scores. While we expect that such an evasion attempt
would be successful against these systems, we pursue different
approaches, as Naked Sun requires modifying the core attack
semantics whereas our gadgets can be applied transparently.

B. Threats to Validity

Most of our experiments assume that the attacker had
access to system logs (i.e., training data). As explained in our
threat model (§IV), accessing host information like logs is a
common reconnaissance technique that is within the abilities of
many intruders. Further, we showed in our live attack demon-
stration (§VI-K) that even limited coarse-grained knowledge
about host activities, e.g., the presence of a certain process,
will often be sufficient. Thus, privileged log access is not a
strict requirement for our evasion methodology. Knowledge
of the Prov-HIDS’ decision threshold is also not required,
since an attacker can conservatively estimate the sufficient
transformation in exchange for a less efficient evasion attack.

C. Potential Mitigation Strategies

As seen in Table I, early Prov-HIDS research has gravitated
towards whole-graph classification. Systems classifying lower-
level graph structures such as nodes, edges, and subgraphs
may be robust to our evasion strategy. At such a granularity,
the additional substructures added by the attacker would have
a difficult time affecting the classification of the anomalous
nodes within the attack graph. The detection of finer-grained
behaviors would also bring the usage model of Prov-HIDS
more in line with commercial endpoint detection products [3].

The inability for Prov-HIDS to account for mimicry attacks
is surprising, given the tremendous promise of provenance-
based causal analysis. We attribute these vulnerabilities to a
disconnect between how provenance has been used in the au-
diting and detection literature. For system auditing, researchers
have leveraged domain knowledge to dramatically improve
the space efficiency and precision of provenance analysis. In
contrast, at present, many of these Prov-HIDS leverage “out of
the box” graph learning solutions that do not account for the
unique constraints of system intrusion scenarios. For whole-
graph classification systems to become more resilient, security
researchers may need to develop bespoke solutions that better
leverage the properties of provenance graphs. For example, one
path forward might be to integrate into intrusion detection the
notions of root cause and impact analysis, which currently are
not reflected in state-of-the-art methods of graph learning.

VIII. RELATED WORK

Intrusion detection is among the canonical challenges of
computer security. At the host layer, host intrusion detection
systems (HIDS) can be classified into three broad categories:
signature-based (e.g., antivirus [70, 71, 72]), rule-based (e.g.,
MITRE ATT&CK [39]), and anomaly-based. While signature-
based approaches scan data on the disk for evidence of
malware, rule- and anomaly-based systems both examine be-
havioral activity on the system for evidence of intrusion.

Our focus is on anomaly-based HIDS, which in addition
to system calls [11, 13, 15, 73, 74, 75, 76, 77, 78] have
also analyzed various host context [77, 79, 80], including call
stack information [81], argument dataflows [13], and process
configuration and environment [82]. Myriad techniques have
been proposed for syscall anomaly detection based on policy
specification [83, 84], sequence learning [11, 15, 85], rule
induction [73], finite state automaton [76], and hidden Markov
models [86]. Other work considers additional factors like the
right length for syscall sequences [74, 77], ensemble and ran-
domized classifiers [75, 87, 88], false positive reduction [89],
multi-log analysis [90], and alert correlation [78, 91, 92].

The skepticism about HIDS’ real-world efficacy has existed
for nearly as long as the existence of HIDS themselves. One
early concern noted that the length of learned sequences in
syscall-based detectors was arbitrarily small and set through
anecdotal testing [12]. Wagner and Soto’s groundbreaking
work on mimicry attacks operationalized this fear, demon-
strating methods for malware to insert no-op events to avoid
detection. Both Wagner and Soto [14] and Tan et al. [93]
employ this method to subvert Forrest et al.’s behavior-based
IDS [11, 15]. Later efforts semi-automated the process of
mimicry attack generation through static binary analysis [16].

15

System auditing is a topic of resurgent interest in computer
security due to the application of data provenance concepts
to audit logs. Recent work has presented threat detection
systems based on provenance graph analysis. In addition to
the graph learning systems presented in Table I, we note
also that a number of Prov-HIDS make use of heuristic-based
detection, including Holmes [31], NoDoze [30] RapSheet [94],
and Poirot [95]. Reasoning about evasion vulnerabilities in
such systems is more difficult due to their heuristic nature;
however, while heuristic detectors cannot be evaded by adding
additional events, they are prone to high false positive rates
and suffer from threat alert fatigue problems [5, 96]. This can
cause detected attacks to go uninvestigated [2], as was the
case in the 2013 Target data breach [97]. Thus, it is especially
important for evasion vulnerabilities in heuristic Prov-HIDS
to be evaluated in the context of organization-scale datasets,
which is beyond of the scope of this work.

IX. CONCLUSION

We demonstrate the feasibility of mimicry attacks on prove-
nance graph host intrusion detection systems based on analysis
of common design features. Our experimental results show that
our evasion strategies are practical and that successful evasion
is consistently possible. We open-source our code and data to
serve as a benchmark for future work in this field.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for
their helpful feedback to improve the paper. This work was
supported by NSF under contracts CNS-16-57534, CNS-17-
50024 and CNS-20-55127. Any opinions, findings, conclu-
sions, or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of their
employers or the sponsors.

REFERENCES

[1] S. Morgan, “Global Cybersecurity Spending Predicted To Exceed $1 Trillion From
2017-2021,” https://cybersecurityventures.com/cybersecurity-market-report/, 2019.

[2] Crowdstrike, “Why Dwell Time Continues to Plague Organizations,” https://www.
crowdstrike.com/blog/why-dwell-time-continues-to-plague-organizations/, 2019.

[3] Gartner Peer Insights, “Endpoint Detection and Response Solutions Market,” https:
//www.gartner.com/reviews/market/endpoint-detection-and-response-solutions,
2019.

[4] T. Hiroki, S. Yoshiaki, K. Koji, and A. Takayoshi, “Automated Security Intelligence
(ASI) with Auto Detection of Unknown Cyber-Attacks,” NEC Technical Journal,
vol. 11, 2016.

[5] Fireeye, “Incident Investigation,” https://www.fireeye.com/solutions/
incident-investigation.html, 2019.

[6] “Automated Incident Response: Respond to Every Alert,” https://swimlane.com/
blog/automated-incident-response-respond-every-alert/, 2019.

[7] Malwarebytes Inc., “Malwarebytes,” https://www.malwarebytes.com/business/edr,
Last accessed April 2022.

[8] Splunk Inc., “splunk,” https://www.splunk.com, Last accessed August 2018.
[9] T. S. Bernard, T. Hsu, N. Perlroth, and R. Lieber, “Equifax Says Cyberattack

May Have Affected 143 Million in the U.S.” https://www.nytimes.com/2017/09/
07/business/equifax-cyberattack.html, 2019.

[10] Target Missed Warnings in Epic Hack of Credit Card Data. [Online]. Available:
https://bloom.bg/2KjElxM.‘

[11] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sense of self for
unix processes,” in Proceedings 1996 IEEE Symposium on Security and Privacy,
May 1996, pp. 120–128.

[12] K. M. C. Tan and R. A. Maxion, “”why 6?” defining the operational limits of
stide, an anomaly-based intrusion detector,” in Proceedings 2002 IEEE Symposium
on Security and Privacy, May 2002, pp. 188–201.

[13] S. Bhatkar, A. Chaturvedi, and R. Sekar, “Dataflow anomaly detection,” in 2006
IEEE Symposium on Security and Privacy (S P’06), May 2006, pp. 15 pp.–62.

[14] D. Wagner and P. Soto, “Mimicry attacks on host-based intrusion detection
systems,” in Proceedings of the 9th ACM Conference on Computer and
Communications Security, ser. CCS ’02. New York, NY, USA: Association

for Computing Machinery, 2002, pp. 255–264. [Online]. Available: https:
//doi.org/10.1145/586110.586145

[15] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions using system
calls: alternative data models,” in Proceedings of the 1999 IEEE Symposium on
Security and Privacy (Cat. No.99CB36344), May 1999, pp. 133–145.

[16] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna, “Automating mimicry
attacks using static binary analysis,” in Proceedings of the 14th Conference on
USENIX Security Symposium - Volume 14, ser. SSYM’05. USA: USENIX
Association, 2005, p. 11.

[17] E. Manzoor, S. M. Milajerdi, and L. Akoglu, “Fast memory-efficient anomaly
detection in streaming heterogeneous graphs,” in Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, ser.
KDD ’16. New York, NY, USA: Association for Computing Machinery, 2016,
pp. 1035–1044. [Online]. Available: https://doi.org/10.1145/2939672.2939783

[18] X. Han, T. Pasqueir, A. Bates, J. Mickens, and M. Seltzer, “Unicorn: Runtime
Provenance-Based Detector for Advanced Persistent Threats,” in 27th ISOC Net-
work and Distributed System Security Symposium, ser. NDSS’20, February 2020.

[19] Q. Wang, W. U. Hassan, D. Li, K. Jee, X. Yu, K. Zou, J. Rhee, Z. Zhen, W. Cheng,
C. A. Gunter, and H. chen, “You Are What You Do: Hunting Stealthy Malware via
Data Provenance Analysis,” in 27th ISOC Network and Distributed System Security
Symposium, ser. NDSS’20, February 2020.

[20] Y. Xie, D. Feng, Y. Hu, Y. Li, S. Sample, and D. Long, “Pagoda: A hybrid
approach to enable efficient real-time provenance based intrusion detection in big
data environments,” IEEE Transactions on Dependable and Secure Computing,
vol. 17, no. 6, pp. 1283–1296, 2020.

[21] X. Han, X. Yu, T. Pasquier, D. Li, J. Rhee, J. Mickens, M. Seltzer,
and H. Chen, “SIGL: Securing software installations through deep graph
learning,” in 30th USENIX Security Symposium (USENIX Security 21).
USENIX Association, Aug. 2021, pp. 2345–2362. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity21/presentation/han-xueyuan

[22] E. Manzoor, S. M. Milajerdi, and L. Akoglu, “StreamSpot: Detecting network
anomalies in edge streams (Source Code and Data),” https://sbustreamspot.github.
io/, 2016.

[23] D. I2O, “Transparent computing engagement 5 data release,” https://github.com/
darpa-i2o/Transparent-Computing, 2020.

[24] H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song, “Adversarial
attack on graph structured data,” in Proceedings of the 35th International
Conference on Machine Learning, ser. Proceedings of Machine Learning Research,
J. Dy and A. Krause, Eds., vol. 80. PMLR, 10–15 Jul 2018, pp. 1115–1124.
[Online]. Available: http://proceedings.mlr.press/v80/dai18b.html

[25] X. Han, T. Pasquier, T. Ranjan, M. Goldstein, and M. Seltzer, “Frappuccino:
Fault-detection through runtime analysis of provenance,” in 9th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 17). Santa
Clara, CA: USENIX Association, Jul. 2017. [Online]. Available: https:
//www.usenix.org/conference/hotcloud17/program/presentation/han

[26] Y. Xie, Y. Wu, D. Feng, and D. Long, “P-gaussian: Provenance-based gaussian
distribution for detecting intrusion behavior variants using high efficient and real
time memory databases,” IEEE Transactions on Dependable and Secure Computing,
vol. 18, no. 6, pp. 2658–2674, 2021.

[27] Y. Xie, D. Feng, Z. Tan, and J. Zhou, “Unifying intrusion detection
and forensic analysis via provenance awareness,” Future Gener. Comput.
Syst., vol. 61, no. C, pp. 26–36, Aug. 2016. [Online]. Available: http:
//dx.doi.org/10.1016/j.future.2016.02.005

[28] K. Pei, Z. Gu, B. Saltaformaggio, S. Ma, F. Wang, Z. Zhang, L. Si, X. Zhang,
and D. Xu, “Hercule: Attack story reconstruction via community discovery on
correlated log graph,” in Proceedings of the 32Nd Annual Conference on Computer
Security Applications, ser. ACSAC ’16. New York, NY, USA: ACM, 2016, pp.
583–595. [Online]. Available: http://doi.acm.org/10.1145/2991079.2991122

[29] A. Alsaheel, Y. Nan, S. Ma, L. Yu, G. Walkup, Z. B. Celik, X. Zhang,
and D. Xu, “ATLAS: A sequence-based learning approach for attack
investigation,” in 30th USENIX Security Symposium (USENIX Security 21).
USENIX Association, Aug. 2021, pp. 3005–3022. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity21/presentation/alsaheel

[30] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, and A. Bates, “NoDoze:
Combatting Threat Alert Fatigue with Automated Provenance Triage,” in 26th ISOC
Network and Distributed System Security Symposium, ser. NDSS’19, February 2019.

[31] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakrishnan,
“Holmes: Real-time apt detection through correlation of suspicious information
flows,” in 2019 2019 IEEE Symposium on Security and Privacy (SP). Los
Alamitos, CA, USA: IEEE Computer Society, may 2019. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SP.2019.00026

[32] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A Survey,”
ACM Comput. Surv., vol. 41, no. 3, jul 2009. [Online]. Available: https:
//doi.org/10.1145/1541880.1541882

[33] D. Yang, B. Li, L. Rettig, and P. Cudré-Mauroux, “Histosketch: Fast similarity-
preserving sketching of streaming histograms with concept drift,” in 2017 IEEE
International Conference on Data Mining (ICDM). IEEE, 2017, pp. 545–554.

[34] Q. Le and T. Mikolov, “Distributed representations of sentences and documents,”
in International conference on machine learning, 2014, pp. 1188–1196.

[35] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying density-
based local outliers,” in Proceedings of the 2000 ACM SIGMOD international
conference on Management of data, 2000, pp. 93–104.

[36] MITRE, “APT3,” https://attack.mitre.org/groups/G0022/, 2019.
[37] ——, “APT29,” https://attack.mitre.org/groups/G0016/, 2019.

16

https://cybersecurityventures.com/cybersecurity-market-report/
https://www.crowdstrike.com/blog/why-dwell-time-continues-to-plague-organizations/
https://www.crowdstrike.com/blog/why-dwell-time-continues-to-plague-organizations/
https://www.gartner.com/reviews/market/endpoint-detection-and-response-solutions
https://www.gartner.com/reviews/market/endpoint-detection-and-response-solutions
https://www.fireeye.com/solutions/incident-investigation.html
https://www.fireeye.com/solutions/incident-investigation.html
https://swimlane.com/blog/automated-incident-response-respond-every-alert/
https://swimlane.com/blog/automated-incident-response-respond-every-alert/
https://www.malwarebytes.com/business/edr
https://www.splunk.com
https://www.nytimes.com/2017/09/07/business/equifax-cyberattack.html
https://www.nytimes.com/2017/09/07/business/equifax-cyberattack.html
https://bloom.bg/2KjElxM.`
https://doi.org/10.1145/586110.586145
https://doi.org/10.1145/586110.586145
https://doi.org/10.1145/2939672.2939783
https://www.usenix.org/conference/usenixsecurity21/presentation/han-xueyuan
https://www.usenix.org/conference/usenixsecurity21/presentation/han-xueyuan
https://sbustreamspot.github.io/
https://sbustreamspot.github.io/
https://github.com/darpa-i2o/Transparent-Computing
https://github.com/darpa-i2o/Transparent-Computing
http://proceedings.mlr.press/v80/dai18b.html
https://www.usenix.org/conference/hotcloud17/program/presentation/han
https://www.usenix.org/conference/hotcloud17/program/presentation/han
http://dx.doi.org/10.1016/j.future.2016.02.005
http://dx.doi.org/10.1016/j.future.2016.02.005
http://doi.acm.org/10.1145/2991079.2991122
https://www.usenix.org/conference/usenixsecurity21/presentation/alsaheel
https://www.usenix.org/conference/usenixsecurity21/presentation/alsaheel
https://doi.ieeecomputersociety.org/10.1109/SP.2019.00026
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://attack.mitre.org/groups/G0022/
https://attack.mitre.org/groups/G0016/

[38] “Threat-based Defense,” https://www.mitre.org/capabilities/cybersecurity/
threat-based-defense, 2019.

[39] MITRE Corporation, “MITRE ATT&CK,” https://attack.mitre.org, 2019.
[40] MITRE, “MITRE ATT&CK: Masquerading,” https://attack.mitre.org/techniques/

T1078, 2020.
[41] ——, “MITRE ATT&CK: Gather Victim Host Information,” https://attack.mitre.

org/techniques/T1592/, 2020.
[42] S. Jana and V. Shmatikov, “Memento: Learning secrets from process footprints,”

in 2012 IEEE Symposium on Security and Privacy, 2012, pp. 143–157.
[43] K. H. Lee, X. Zhang, and D. Xu, “LogGC: Garbage Collecting Audit Log,”

in Proceedings of the 2013 ACM SIGSAC conference on Computer and
Communications Security, ser. CCS ’13. New York, NY, USA: ACM, 2013, pp.
1005–1016. [Online]. Available: http://doi.acm.org/10.1145/2508859.2516731

[44] S. Ma, X. Zhang, and D. Xu, “ProTracer: Towards Practical Provenance Tracing
by Alternating Between Logging and Tainting,” in Proceedings of NDSS ’16, Feb.
2016.

[45] S. Ma, J. Zhai, F. Wang, K. H. Lee, X. Zhang, and D. Xu, “MPI: Multiple
Perspective Attack Investigation with Semantic Aware Execution Partitioning,” in
26th USENIX Security Symposium, August 2017.

[46] W. U. Hassan, N. Aguse, M. Lemay, T. Moyer, and A. Bates, “Towards Scalable
Cluster Auditing through Grammatical Inference over Provenance Graphs,” in
Proceedings of the 25th ISOC Network and Distributed System Security Symposium,
ser. NDSS’18, San Diego, CA, USA, February 2018.

[47] Y. Kwon, F. Wang, W. Wang, K. H. Lee, W.-C. Lee, S. Ma, X. Zhang, D. Xu, S. Jha,
G. Ciocarlie, A. Gehani, and V. Yegneswaran, “Mci: Modeling-based causality
inference in audit logging for attack investigation,” in Proc. of the 25th Network
and Distributed System Security Symposium (NDSS’18), 2018.

[48] A. Bates, W. U. Hassan, K. R. Butler, A. Dobra, B. Reaves, P. Cable, T. Moyer, and
N. Schear, “Transparent Web Service Auditing via Network Provenance Functions,”
in 26th World Wide Web Conference, ser. WWW’17, Perth, Australia, April 2017.

[49] X. Han, T. Pasqueir, A. Bates, J. Mickens, and M. Seltzer, “Unicorn: Runtime
Provenance-Based Detector for Advanced Persistent Threats (Source Code and
Data),” https://github.com/crimson-unicorn, 2018.

[50] B. Jacob, P. Larson, B. Leitao, and S. Da Silva, “Systemtap: instrumenting the
linux kernel for analyzing performance and functional problems,” IBM Redbook,
vol. 116, 2008.

[51] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer, “Provenance-
aware Storage Systems,” in Proceedings of the Annual Conference on USENIX ’06
Annual Technical Conference, ser. Proceedings of the 2006 Conference on USENIX
Annual Technical Conference, Jun. 2006.

[52] M. Fey and J. E. Lenssen, “Fast graph representation learning with PyTorch Geo-
metric,” in ICLR Workshop on Representation Learning on Graphs and Manifolds,
2019.

[53] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and
M. Grohe, “Weisfeiler and leman go neural: Higher-order graph neural networks,”
in Proceedings of the AAAI conference on artificial intelligence, vol. 33, no. 01,
2019, pp. 4602–4609.

[54] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv preprint
arXiv:1611.07308, 2016.

[55] F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro, “Intriguing properties of
adversarial ml attacks in the problem space,” in 2020 IEEE Symposium on Security
and Privacy (SP). IEEE, 2020, pp. 1332–1349.

[56] J. Ma, J. Deng, and Q. Mei, “Adversarial Attack on Graph Neural Networks as
An Influence Maximization Problem,” CoRR, vol. abs/2106.10785, 2021. [Online].
Available: https://arxiv.org/abs/2106.10785

[57] S. Yu, J. Zheng, J. Chen, Q. Xuan, and Q. Zhang, “Unsupervised Euclidean Distance
Attack on Network Embedding,” in 2020 IEEE Fifth International Conference on
Data Science in Cyberspace (DSC), 2020, pp. 71–77.

[58] H. Chang, Y. Rong, T. Xu, W. Huang, H. Zhang, P. Cui, W. Zhu, and
J. Huang, “A restricted black-box adversarial framework towards attacking
graph embedding models,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 04, pp. 3389–3396, Apr. 2020. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/5741

[59] Y. Ma, S. Wang, L. Wu, and J. Tang, “Attacking Graph Convolutional
Networks via Rewiring,” CoRR, vol. abs/1906.03750, 2019. [Online]. Available:
http://arxiv.org/abs/1906.03750

[60] X. Lin, C. Zhou, H. Yang, J. Wu, H. Wang, Y. Cao, and B. Wang, “Exploratory
Adversarial Attacks on Graph Neural Networks,” in 2020 IEEE International
Conference on Data Mining (ICDM), 2020, pp. 1136–1141.

[61] J. Chen, D. Zhang, and X. Lin, “Adaptive Adversarial Attack on Graph Embedding
via GAN,” in Security and Privacy in Social Networks and Big Data, Y. Xiang,
Z. Liu, and J. Li, Eds. Singapore: Springer Singapore, 2020, pp. 72–84.

[62] L. Zhang, P. Liu, and Y.-H. Choi, “Semantic-preserving Reinforcement Learning
Attack Against Graph Neural Networks for Malware Detection,” 2020.

[63] J. Li, H. Zhang, Z. Han, Y. Rong, H. Cheng, and J. Huang, “Adversarial
Attack on Community Detection by Hiding Individuals,” in Proceedings
of The Web Conference 2020, ser. WWW ’20. New York, NY, USA:
Association for Computing Machinery, 2020, pp. 917–927. [Online]. Available:
https://doi.org/10.1145/3366423.3380171

[64] H. Tang, G. Ma, Y. Chen, L. Guo, W. Wang, B. Zeng, and L. Zhan,
“Adversarial Attack on Hierarchical Graph Pooling Neural Networks,” CoRR, vol.
abs/2005.11560, 2020. [Online]. Available: https://arxiv.org/abs/2005.11560

[65] X. Xu, X. Du, and Q. Zeng, “Attacking Graph-Based Classification without
Changing Existing Connections,” in Annual Computer Security Applications

Conference, ser. ACSAC ’20. New York, NY, USA: Association for Computing
Machinery, 2020, pp. 951–962. [Online]. Available: https://doi.org/10.1145/
3427228.3427245

[66] Y. Chen, Y. Nadji, A. Kountouras, F. Monrose, R. Perdisci, M. Antonakakis, and
N. Vasiloglou, “Practical attacks against graph-based clustering,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’17. New York, NY, USA: Association for Computing Machinery, 2017,
pp. 1125–1142. [Online]. Available: https://doi.org/10.1145/3133956.3134083

[67] L. Sun, Y. Dou, C. Yang, J. Wang, P. S. Yu, L. He, and B. Li, “Adversarial attack
and defense on graph data: A survey,” arXiv preprint arXiv:1812.10528, 2018.

[68] H. Dai, “Graph adversarial attack,” https://github.com/Hanjun-Dai/graph
adversarial attack, 2021.

[69] F. De Gaspari, D. Hitaj, G. Pagnotta, L. De Carli, and L. V. Mancini,
“The naked sun: Malicious cooperation between benign-looking processes,” in
Applied Cryptography and Network Security: 18th International Conference,
ACNS 2020, Rome, Italy, October 19–22, 2020, Proceedings, Part II.
Berlin, Heidelberg: Springer-Verlag, 2020, pp. 254–274. [Online]. Available:
https://doi.org/10.1007/978-3-030-57878-7 13

[70] “ClamAV Anti-Virus,” https://www.clamav.net/, 2007.
[71] O. Erdogan and Pei Cao, “Hash-av: fast virus signature scanning by cache-resident

filters,” in IEEE Global Telecommunications Conference, ser. GLOBECOM, vol. 3,
2005.

[72] J. Oberheide, E. Cooke, and F. Jahanian, “Cloudav: N-version antivirus in the
network cloud,” in Proceedings of the 17th Conference on Security Symposium,
ser. SS’08. USA: USENIX Association, 2008, pp. 91–106.

[73] W. Lee and S. J. Stolfo, “Data mining approaches for intrusion detection,” in
Proceedings of the 7th Conference on USENIX Security Symposium - Volume 7,
ser. SSYM’98. USA: USENIX Association, 1998, p. 6.

[74] A. Wespi, M. Dacier, and H. Debar, “Intrusion detection using variable-length audit
trail patterns,” in Recent Advances in Intrusion Detection, H. Debar, L. Mé, and
S. F. Wu, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 110–129.

[75] T. Bass, “Intrusion detection systems and multisensor data fusion,” Commun.
ACM, vol. 43, no. 4, pp. 99–105, Apr. 2000. [Online]. Available: http:
//doi.acm.org/10.1145/332051.332079

[76] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni, “A fast automaton-based method
for detecting anomalous program behaviors,” in Proceedings 2001 IEEE Symposium
on Security and Privacy. S P 2001, May 2001, pp. 144–155.

[77] D. Gao, M. K. Reiter, and D. Song, “On gray-box program tracking for anomaly
detection,” in Proceedings of the 13th Conference on USENIX Security Symposium
- Volume 13, ser. SSYM’04. USA: USENIX Association, 2004, p. 8.

[78] G. Gu, A. A. Cárdenas, and W. Lee, “Principled reasoning and practical
applications of alert fusion in intrusion detection systems,” in Proceedings of the
2008 ACM Symposium on Information, Computer and Communications Security,
ser. ASIACCS ’08. New York, NY, USA: ACM, 2008, pp. 136–147. [Online].
Available: http://doi.acm.org/10.1145/1368310.1368332

[79] F. Liu, Y. Wen, D. Zhang, X. Jiang, X. Xing, and D. Meng, “Log2vec:
A heterogeneous graph embedding based approach for detecting cyber threats
within enterprise,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS 19. New York, NY, USA:
Association for Computing Machinery, 2019, pp. 1777–1794. [Online]. Available:
https://doi.org/10.1145/3319535.3363224

[80] T. van Ede, H. Aghakhani, N. Spahn, R. Bortolameotti, M. Cova, A. Continella,
M. van Steen, A. Peter, C. Kruegel, and G. Vigna, “Deepcase: Semi-
supervised contextual analysis of security events,” in 2022 2022 IEEE
Symposium on Security and Privacy (SP) (SP). Los Alamitos, CA, USA:
IEEE Computer Society, may 2022, pp. 614–631. [Online]. Available: https:
//doi.ieeecomputersociety.org/10.1109/SP46214.2022.00036

[81] H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and Weibo Gong, “Anomaly
detection using call stack information,” in 2003 Symposium on Security and Privacy,
2003., May 2003, pp. 62–75.

[82] J. T. Giffin, D. Dagon, S. Jha, W. Lee, and B. P. Miller, “Environment-sensitive
intrusion detection,” in Recent Advances in Intrusion Detection, A. Valdes and
D. Zamboni, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 185–
206.

[83] C. Ko, G. Fink, and K. Levitt, “Automated detection of vulnerabilities in privileged
programs by execution monitoring,” in Tenth Annual Computer Security Applica-
tions Conference, Dec 1994, pp. 134–144.

[84] D. Wagner and R. Dean, “Intrusion detection via static analysis,” in Proceedings
2001 IEEE Symposium on Security and Privacy. S P 2001, May 2001, pp. 156–168.

[85] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection and
diagnosis from system logs through deep learning,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, ser. CCS
’17. New York, NY, USA: Association for Computing Machinery, 2017, pp.
1285–1298. [Online]. Available: https://doi.org/10.1145/3133956.3134015

[86] K. Xu, K. Tian, D. Yao, and B. G. Ryder, “A sharper sense of self: Probabilistic
reasoning of program behaviors for anomaly detection with context sensitivity,” in
2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), June 2016, pp. 467–478.

[87] J. E. Tapiador and J. A. Clark, “Masquerade mimicry attack detection: A randomised
approach,” Computers & Security, vol. 30, no. 5, pp. 297–310, 2011.

[88] W. Khreich, S. S. Murtaza, A. Hamou-Lhadj, and C. Talhi, “Combining
heterogeneous anomaly detectors for improved software security,” Journal of
Systems and Software, vol. 137, pp. 415 – 429, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121217300420

17

https://www.mitre.org/capabilities/cybersecurity/threat-based-defense
https://www.mitre.org/capabilities/cybersecurity/threat-based-defense
https://attack.mitre.org
https://attack.mitre.org/techniques/T1078
https://attack.mitre.org/techniques/T1078
https://attack.mitre.org/techniques/T1592/
https://attack.mitre.org/techniques/T1592/
http://doi.acm.org/10.1145/2508859.2516731
https://github.com/crimson-unicorn
https://arxiv.org/abs/2106.10785
https://ojs.aaai.org/index.php/AAAI/article/view/5741
http://arxiv.org/abs/1906.03750
https://doi.org/10.1145/3366423.3380171
https://arxiv.org/abs/2005.11560
https://doi.org/10.1145/3427228.3427245
https://doi.org/10.1145/3427228.3427245
https://doi.org/10.1145/3133956.3134083
https://github.com/Hanjun-Dai/graph_adversarial_attack
https://github.com/Hanjun-Dai/graph_adversarial_attack
https://doi.org/10.1007/978-3-030-57878-7_13
https://www.clamav.net/
http://doi.acm.org/10.1145/332051.332079
http://doi.acm.org/10.1145/332051.332079
http://doi.acm.org/10.1145/1368310.1368332
https://doi.org/10.1145/3319535.3363224
https://doi.ieeecomputersociety.org/10.1109/SP46214.2022.00036
https://doi.ieeecomputersociety.org/10.1109/SP46214.2022.00036
https://doi.org/10.1145/3133956.3134015
http://www.sciencedirect.com/science/article/pii/S0164121217300420

Fig. 10: The average rate of edges added per second for benign and evasion
graphs. The green highlights represent the minimum and maximum number of
edges per second among all benign graphs in the train set. The purple vertical
line represents the attacker’s insertion point.

Benign Evasion
Number of Nodes 57,297 57,395
Number Of Edges 121,107 121,427
Degree Assortativity Coefficient -0.4202 -0.4218
Edge Density 0.00004 0.00004
Average Degree 2.11 2.12

TABLE IX: Statistical differences between benign and evasion graphs. The
degree assortativity coefficient is the tendency of nodes with similar degrees to
connect. The edge density is the total number of edges over all edges possible.
The average degree is the number of edges over the number of nodes.

[89] G. P. Spathoulas and S. K. Katsikas, “Using a fuzzy inference system to reduce false
positives in intrusion detection,” in International Conference on Systems, Signals
and Image Processing, 2009.

[90] T.-F. Yen, A. Oprea, K. Onarlioglu, T. Leetham, W. Robertson, A. Juels, and
E. Kirda, “Beehive: Large-scale log analysis for detecting suspicious activity
in enterprise networks,” in Proceedings of the 29th Annual Computer Security
Applications Conference, ser. ACSAC ’13. New York, NY, USA: ACM, 2013,
pp. 199–208. [Online]. Available: http://doi.acm.org/10.1145/2523649.2523670

[91] F. Valeur, G. Vigna, C. Kruegel, and R. A. Kemmerer, “Comprehensive approach to
intrusion detection alert correlation,” IEEE Transactions on Dependable and Secure
Computing, vol. 1, no. 3, pp. 146–169, July 2004.

[92] A. Sadighian, J. M. Fernandez, A. Lemay, and S. T. Zargar, ONTIDS: A
Highly Flexible Context-Aware and Ontology-Based Alert Correlation Framework.
Cham: Springer International Publishing, 2014, pp. 161–177. [Online]. Available:
https://doi.org/10.1007/978-3-319-05302-8 10

[93] K. M. C. Tan, K. S. Killourhy, and R. A. Maxion, “Undermining an anomaly-based
intrusion detection system using common exploits,” in Recent Advances in Intrusion
Detection, A. Wespi, G. Vigna, and L. Deri, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2002, pp. 54–73.

[94] W. U. Hassan, A. Bates, and D. Marino, “Tactical Provenance Analysis for Endpoint
Detection and Response Systems,” in 41st IEEE Symposium on Security and Privacy
(SP), ser. Oakland’20, May 2020.

[95] S. M. Milajerdi, B. Eshete, R. Gjomemo, and V. Venkatakrishnan, “Poirot: Aligning
attack behavior with kernel audit records for cyber threat hunting,” in Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’19. New York, NY, USA: Association for Computing Machinery, 2019,
pp. 1795–1812. [Online]. Available: https://doi.org/10.1145/3319535.3363217

[96] FireEye, Inc., “How Many Alerts is Too Many to Handle?” https://www2.fireeye.
com/StopTheNoise-IDC-Numbers-Game-Special-Report.html, 2019.

[97] M. Riley, B. Elgin, D. Lawrence, and C. Matlack, “Target Missed Warnings in Epic
Hack of Credit Card Data,” https://bloom.bg/2KjElxM, 2019.

APPENDIX A
COVERTNESS AGAINST STATISTICAL TESTS

To successfully evade the exemplar systems, our evasion
strategy requires transformations of tens to hundreds of thou-
sands of edges. Doing so raises the question of whether our
methodology could be detected through the use of a trivial
statistical monitor. Fig. 10 reports the events per second that

occur across all benign logs in the StreamSpot dataset, as
compared to the events per second of a successful evasion
attempt. The early spikes in the attack line (blue) correspond to
the events in the Load the Pre-attack Graph step (§VI-C), the
relatively flat portion corresponds to our insertion of benign
substructures, and finally the more variable portion to the
right corresponds to the injection of the attack payload’s
substructures. If we compare the blue attack line to the green
shaded areas, which represent the maximum and minimum
observed events per second in the benign logs, attack behaviors
never extend beyond the bounds of expected normal activity
in this dataset. While the flattened portion of the line does
not appear naturalistic, the attacker controls these insertion
points and could apply traffic shaping measures to create a
more realistic curve. Larger and more diverse datasets, such
as the DARPA Transparent Computing, are even noisier and
therefore more permissive to the adversary.

We also ran several statistical test between the evasion
graph and benign graphs for signs of abnormality, which we
report in Table IX. Both the benign and evasion graphs have
similar statistical properties. There is a negligible difference in
the number of nodes and edges. Similarly, the degree assor-
tativity coefficient (the tendency of similar nodes to connect),
edge density (the number of edges over all edges possible),
and the average degree between both sets are related. These
findings reinforce the observation, from Fig. 5 and Fig. 6, that
our evasion methodology appeared to be making the attack
behavior more consistent with the statistical properties of the
average benign graph.

18

http://doi.acm.org/10.1145/2523649.2523670
https://doi.org/10.1007/978-3-319-05302-8_10
https://doi.org/10.1145/3319535.3363217
https://www2.fireeye.com/StopTheNoise-IDC-Numbers-Game-Special-Report.html
https://www2.fireeye.com/StopTheNoise-IDC-Numbers-Game-Special-Report.html
https://bloom.bg/2KjElxM

	Introduction
	Motivating Attack Scenario
	Provenance-Based Host Intrusion Detection
	Provenance Graphs
	Generic Prov-HIDS Definition
	Exemplar System Selection

	Threat Model
	Prov-HIDS Evasion Tactics
	Preliminary Observations
	Mimicry Gadgets
	Abusing Unweighted Graph Encoding
	Abusing Distributional Graph Encoding
	Abusing Downsampled Graph Encoding

	Evaluation
	Experimental Setup
	Datasets
	Gadget Implementation and Evasion Procedure
	Evading StreamSpot
	Evading Unicorn
	Evading ProvDetector
	Evading Pagoda
	Evading a Full Graph Autoencoder (FGA)
	Gadget Composability Analysis
	Evasion Performance Under Incorrect Parameters
	Live Attack Demonstration
	Comparison to Domain-General Attacks
	Runtime Performance

	Discussion
	Applicability to Other Prov-HIDS
	Threats to Validity
	Potential Mitigation Strategies

	Related Work
	Conclusion
	Appendix A: Covertness Against Statistical Tests

