
Towards Automatic and Precise Heap Layout
Manipulation for General-Purpose Programs

Runhao Li, Bin ZhangB, Jiongyi ChenB, Wenfeng Lin, Chao Feng, and Chaojing Tang
National University of Defense Technology

{lirunhao, b.zhang, chenjiongyi, linwf16, chaofeng, chaojingtang}@nudt.edu.cn

Abstract—A critical challenge in automatic heap-based exploit
generation is to find out whether an exploitable state can be
constructed by manipulating the heap layout. This is usually
achieved by re-arranging the objects in heap memory according
to an orchestrated strategy that utilizes the program’s heap
operations. However, hindered by the difficulty in strategically
coordinating the use of heap operations given the complexity in
the program logic and heap allocation mechanisms, the goal of
precise heap layout manipulation for general-purpose programs
has not been accomplished.

In this paper, we present BAGUA, an innovative solution
towards automatically and precisely manipulating heap layouts
for general-purpose programs. Specifically, BAGUA first precisely
identifies the primitives of heap layout manipulation using the
heap operation dependence graph and thoroughly analyzes their
dependencies and capabilities. On this basis, it models the heap
layout manipulation as an integer linear programming problem
and solves the constraints, in order to identify the sequence of
primitives that achieves a desired heap layout. By triggering the
primitives in such an order, we are able to construct new proof-of-
concept inputs of target programs to achieve an exploitable heap
layout. Highlights of our research include a set of new techniques
that address the specific challenges of analyzing general-purpose
programs, such as eliminating the side effect of heap allocators
and extending the capability in manipulating heap layouts. We
implemented a prototype of BAGUA and evaluated it on 27
publicly-known bugs in real-world programs. With BAGUA’s
strength in pinpointing primitives and handling the side effect
of heap allocators, it successfully generates desired heap layouts
for 23 of the bugs, which is way beyond what prior research can
achieve.

I. INTRODUCTION

Nowadays, memory corruption vulnerabilities are still pre-
vailing. Among them, heap-based vulnerabilities are becoming
one of the most dominant threats to software and computer
systems with their number continuing to expand [6]. With
the popularity, generating exploits for a vulnerability is an
imperative way to assess the potential damage of the vulner-
ability [27], [22]. Given the complexity in the workflow of
exploitation, heap layout manipulation for heap-based vulner-
abilities is fundamental to verifying whether an exploitable
state can be constructed [13]. Given a crashing input for the

B Corresponding authors

heap-based vulnerability, heap layout manipulation is typically
achieved by strategically utilizing the heap operations of the
program and precisely placing the critical objects to a specific
location in heap memory. For instance, to exploit a use-after-
free vulnerability, a target object such as a pointer must be
accurately placed to the memory location of a freed vulnerable
object. Once the target object is placed on the specific location,
hijacking the program control flow becomes feasible.

To automate heap layout manipulation, a line of research
regard it as a search problem and leverage directed greybox
fuzzers to gradually shorten the distance between the target
object and the smashed area in the heap [28], [29]. The fuzzy
approaches are suitable for heap-based buffer overflows that
are more tolerable when placing the target objects. Never-
theless, they are not suitable for other types of heap-based
vulnerabilities like use-after-free vulnerabilities and double-
free vulnerabilities, as exploiting them requires accurate place-
ment of target objects. On the other hand, by treating heap
layout manipulation as a problem of digging and filling holes,
MAZE [33] models the capability of each heap operation and
establishes Diophantine equations [7] to solve the constraints
about object placement. It only targets interpreters whose heap
operations are highly capable of manipulating the heap layout
and can be independently triggered. However, for general-
purpose programs, the triggering of heap operations is con-
strained by the program’s execution logic and is dependent on
each other, which limits the heap operations’ capabilities when
performing heap layout manipulation. Even worse, complex
heap allocation mechanisms would be activated when trigger-
ing a sequence of heap operations, introducing side effects
during heap layout manipulation.

In this paper, we present BAGUA, a new approach that
can automatically and precisely place target objects into target
heap locations for general-purpose programs. In particular,
BAGUA first extracts primitives of heap layout manipulation
based on the heap operation dependence graph and analyzes
the inter-primitive dependency and the constrained capabilities
for manipulation. Based on that, BAGUA then models the
heap layout manipulation as an integer linear programming
problem. A particular challenge in our research is to handle the
side effect of complex heap allocation mechanisms when the
primitives of heap layout manipulation are triggered. To this
end, BAGUA leverages an innovative algorithm to eliminate
the side effects by adding new constraints to the integer linear
programming model. In addition, constrained by the program’s
execution logic, the primitive’s capability is often inadequate
for the general-purpose programs. Therefore, BAGUA extends
the capabilities by leveraging the state-varied feature of heap

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.23232
www.ndss-symposium.org

allocators to fill the target holes. In the end, by solving the
constraints of the integer linear programming model, BAGUA
outputs a sequence of primitives to construct an exploitable
state for the heap-based vulnerability.

With the evaluation on 27 bugs collected from the
well-known websites such as EXPLOIT DATABASE [10],
HackerOne [12] and CVE MITRE [4], which involves 12
general-purpose programs, BAGUA successfully generates ex-
ploitable inputs to trigger corresponding primitive sequences
and achieve the desired heap layout on 23 of them. Compared
with the state-of-the-art solutions, BAGUA demonstrates its
effectiveness in heap layout manipulation for the general-
purpose programs with complex structures and execution logic,
given its capability in pinpointing primitives of heap layout
manipulation and handling the side effect of heap allocators.
Besides, we build up an augmented set of primitive sequences
to assess in what ways the heap layout manipulation can be
affected.

Contributions. The contributions of this work are concluded
as follows:

• New Problem and new techniques. To the best of our
knowledge, this is the first work towards automatic and
precise heap layout manipulation for real-world general-
purpose programs. Particularly, we leverage the integer
linear programming model to describe and solve the con-
straints and objectives in heap layout manipulation. A set
of new techniques are presented such as eliminating the
side effects of the complex heap allocators and extending
the capability in manipulating the heap layout, to tackle
the specific challenges in the adaption of heap layout
manipulation to general-purpose programs.

• Implementation and Evaluation. We implement this
approach and open source it 1 for continuous research.
This tool is evaluated with 27 real-world bugs, and the
assessment shows that BAGUA outperforms the state-of-
the-art solutions by properly handling the side effects for
real-world general-purpose programs.

II. BACKGROUND

A. Heap Layout Manipulation

Heap layout manipulation (HLM) is to place a target
object into a designated location in heap memory, achieving
an expected heap layout for further exploit generation. The
manipulation of heap layout plays an indispensable role in the
exploitation of heap-based vulnerabilities. First, to hijack the
instruction pointer with a heap-based buffer overflow, an object
that contains a function pointer or a data pointer needs to be
placed adjacent to a vulnerable object (VO); On the other hand,
to exploit a use-after-free vulnerability, the freed chunk should
be reoccupied by a target object (TO) with suitable size. To
fill a target hole, one has to use up all the free chunks before
the target hole in the chain in specific order.

Free chunks in heap memory are managed by chains (C)
in the heap allocator, and each chain usually contains chunks
with the same size. Free chunks in one chain are allocated in
specific orders such as “First In, Last Out (FILO)” or “First
In, First Out (FIFO)”. We regard the freed chunks as holes

1https://github.com/Stab1el/BAGUA

in memory. As such, HLM is achieved by freeing objects to
dig holes or allocating chunks to fill holes [33]. The hole for
accommodating a target object is called the target hole. Hence,
with an expected heap layout, HLM is to put a target object
into the target hole. In this paper, the number of the free chunks
before filling the target hole is also known as the number of
holes to be filled.

Heap operations are a particular type of system calls
that are used to manipulate the heap memory. This pa-
per focuses on four commonly used heap operations,
namely malloc(), free(), calloc(), and realloc().
calloc() and realloc() are essentially different combi-
nations of malloc() and free(). malloc() usually fills
a hole in the heap memory and free() usually digs a hole.
The size of the hole is determined by the allocation size of
malloc() under specific allocators and operating systems.
Regarding the effect on heap memory, the heap operations
can be represented by the following two notations (or the
combinations of the two notations):

• A(x) : allocating one chunk with size x by bytes. A(∀)
means the allocation size can be controlled;

• F(ptr) : freeing one chunk pointed by pointer ptr.

Primitives are the code snippets that can be triggered
multiple times with a certain input [35], They serve as the
basic units to achieve HLM. A primitive p can be described
as a set of heap operations, and a target program contains
a set of primitives. The primitives are strategically utilized to
achieve an expected heap layout and have different capabilities
to manipulate the heap layout, which is highly related to the
types of programs:

• For interpreters such as Python interpreters and PHP
interpreters, a statement that operates the heap could be
regarded as a self-contained primitive. Primitives of in-
terpreters seldom depend on each other and are relatively
easy to be triggered. For example, the statement in Python
a = bytearray() can be leveraged to fill a hole of
any size. Similarly, in PHP, the statement pair $var =
str_repeat("STR", x) and $var = 0 could also
dig a hole of any size [21].

• However, a primitive in general-purpose programs often
contains multiple heap operations that are dependent on
each other. For example, in a network service program,
a session close function that frees a chunk relies on the
session creation function that allocates a chunk. The use
of such a primitive involves sequential triggering of the
dependent operations like malloc() and free().

B. State-Varied Feature of Heap Allocators

Unlike interpreters where a heap operation can be directly
leveraged to dig or fill a hole with the given size, the complex
mechanisms of heap allocators about splitting and merging
chunks are enabled for general-purpose programs2. In other
words, with the complex heap allocation mechanism, how
a chunk of certain size is freed or allocated is dynamically
determined according to the current heap layout. This feature
is enabled in mainstream heap allocators such as the split and

2Details about the complex heap allocation mechanism is elaborated in
Appendix A.

2

https://github.com/Stab1el/BAGUA

 A(0x200)

After Filling
Fill

0x200 0x400 0x600 0x200 0x400 0x600

0x200

(a) Chunk Allocation without State-Varied Feature

 A(0x200)

After Filling

Fill

0x200 0x400 0x600 0x200 0x400 0x600

0x200

(b) Chunk Allocation with State-Varied Feature

Fig. 1: The effects when allocating a chunk of size 0x200
under two different heap layouts.

merge mechanism under ptmalloc. The dynamic behaviors
of chunk allocation are designed to improve security and
utilization of heap memory. We call it state-varied feature in
this paper. To illustrate the state-varied feature, we consider
a simple heap layout with only three chains (C0x200, C0x400,
and C0x600), each of size 0x200 bytes, 0x400 bytes, and 0x600
bytes. A(0x200) represents the heap operation that occupies a
chunk with 0x200 bytes. Fig. 1(a) and Fig. 1(b) show the two
allocation outcomes under different heap layouts. In Fig. 1(a),
A(0x200) simply fills one hole in the chain 0x200. However,
in Fig. 1(b), when the heap layout is changed, the allocator
consumes a hole in the chain 0x400 and creates a hole in
the chain 0x200. If one heap operation allocates or frees a
chunk with size x, this operation is a standard operation to
Cx. Otherwise, the heap operation is a noise operation. For
example, A(0x200) is a standard operation to the chain C0x200

but a noise operation to the chain C0x400.

The state-varied feature causes side effects to HLM. As
a result, the effect of using primitives becomes unexpected if
the state-varied feature is not properly handled. From another
point of view, such a feature can also be tactically leveraged
to achieve a desired heap layout, by extending the primitive
capability.

III. MOTIVATION

In this section, we provide the motivation of this research
by providing a running example to illustrate the challenges and
highlighting our key insights to tackle them.

A. A Running Example

This example is from CVE-2016-10191 [5]. Listing 1
shows a code snippet of the vulnerable program FFmpeg. The
heap-based buffer overflow occurs due to lack of validation
for the size variable in the function at line 42. The pro-
gram allocates a buffer by ff_rtmp_packet_create()
at line 23 to store the message, and the buffer can be
overflowed in ffurl_read_complete() (line 44), which

is regarded as a vulnerable object VO. The target ob-
ject TO is the RTMPPacket (line 1 to line 7), which
contains one controllable data pointer *data, and func-
tion ff_rtmp_check_alloc_array() (line 16) uses
realloc() to allocate a chunk to accommodate several
target objects.

1 typedef struct RTMPPacket {
2 ...
3 uint8_t *data; //controllable pointer
4 int size;
5 int offset;
6 int read;
7 } RTMPPacket; // within size 48 bytes
8

9 void *av_realloc(void *ptr, size_t size){...
10 return realloc(ptr, size + !size);}
11

12 void *av_realloc_array(void *ptr, size_t nmemb, size_t size)
13 {...
14 return av_realloc(ptr, nmemb * size);}
15

16 int ff_rtmp_check_alloc_array(RTMPPacket **prev_pkt, int *
nb_prev_pkt, int channel){...

17 nb_alloc = channel + 16;
18 // When *prev_pkt is NULL, p1 is triggered; otherwise,

p2 is triggered
19 ptr = av_realloc_array(*prev_pkt, nb_alloc, sizeof(**

prev_pkt));
20 ...
21 }
22

23 int ff_rtmp_packet_create(RTMPPacket *pkt, int channel_id,
RTMPPacketType type, int timestamp, int size){...

24 if (size) {
25 pkt->data = av_realloc(NULL, size);
26 ...}
27 ...}
28

29 // vulnerable function
30 static int rtmp_packet_read_one_chunk(RTMPPacket *p){...
31 // allocate target object here
32 if ((ret = ff_rtmp_check_alloc_array(prev_pkt_ptr,

nb_prev_pkt, channel_id)) < 0)
33 return ret;
34 ...
35 // allocate vulnerable object here
36 if (!prev_pkt[channel_id].read) {
37 if ((ret= ff_rtmp_packet_create(p, channel_id, type,

timestamp, size)) < 0)
38 return ret;
39 ...}
40 ...
41 size = size - p->offset;
42 toread = FFMIN(size, chunk_size);
43 // overflow here
44 if (ffurl_read_complete(h, p->data + p->offset, toread)

!= toread){...}
45 ...}

Listing 1: Code Snippet from CVE-2016-10191

The Primitives. This program uses realloc() function
to allocate TO, which calls malloc() and free() under
different conditions. Based on the program’s logic, we can
identify two primitives: p1: A1(∀)—A2(∀), and p2: A1(∀)—
F(p1:A1)—A2(∀), where A(∀) represents the allocation size
is controllable and F(p1:A1) means freeing A1 of p1. When
the program receives the first incoming packet, it uses p1 to
allocate two chunks. When more packets with different channel
IDs are received, p2 is triggered.A1 is used to allocate a chunk,
whose size is larger than 0x300 bytes, to accommodate TO. A2

is used to allocate a chunk to accommodate VO. It should be
noted that only after the execution of p1 could p2 be executed.
Also, under the constraints of the program’s logic, p1 can only
be triggered once.

3

Placing Objects. To exploit this bug, we are supposed to place
TO to a higher address position that is adjacent to VO in the
heap. To achieve that, appropriate holes should be selected and
those objects should be placed into the holes by leveraging
primitives. Unfortunately, with the crashing input of this bug,
we were unable to find out suitable and adjacent holes in heap
memory for accommodating TO and VO, as shown in Fig. 2(a).
Also, it is rather difficult to dig proper holes using existing
primitives due to their limited capability. Therefore, to achieve
the expected layout, users have to place two objects adjacently,
select one huge hole, and leverage the state-varied feature to
occupy (part of) the hole for accommodating these two objects.
Therefore, we leverage p1 and p2 sequentially to achieve the
expected layout with TO and VO placed in the hole with size
0xf90 bytes, which is shown in Fig. 2.

...

Low address High address

0x50 0xc0 0x80 0xf900xb00x4100x800x500x3f0 ...

Free chunks

Allocated chunks

(a) Heap layout from crash input

... 0x50 0xc0 0x80 0xb00x4100x800x500x3f0 ...VO TO

pkt ->data RTMPPacket

Low address High address

Free chunks

Allocated chunks

(b) Expected heap layout

Fig. 2: The initial heap layout and expected heap layout of
CVE-2016-10191. The number in the chunk represents the size
of chunk by bytes.

B. Challenges and Key Insights

Although previous approaches [33], [29], [28] could
achieve HLM for interpreters, HLM is still challenging for
general-purpose programs. Achieving this goal presents the
following three particular challenges that previous research do
not address:

• How to precisely identify primitives? A primitive con-
sists of a set of heap operations that are dependent on each
other. In the presence of a large number of heap operations
scattered in the complex logic of real-world programs, it
is difficult to identify which heap operations “logically”
belong to the same primitive. Existing approaches [27],
[28] only deal with the primitive that includes several
heap operations in interpreters. In addition, those ap-
proaches are based on static analysis and cannot handle
heap operations in third-party libraries, which limits the
total number of primitives identified.

• How to dig or fill holes with primitives’ limited capa-
bilities? A primitive contains a set heap operations that
must be sequentially executed. As a result, for real-world
programs, digging or filling holes by triggering a single
primitive is not as flexible as triggering a single heap
operation. Even worse, determined by the program’s exe-
cution logic, some primitives are dependent on others. The
dependency among heap operations (or among primitives)
would significantly restrict the primitives’ capabilities on
manipulating the heap layout.

• How to deal with the side effect introduced by the
state-varied feature? As we mentioned before, the be-
haviors of chunk allocation are dynamically determined
by the current heap layout, and modeling such behaviors
are complicated. As a result, the triggering of primitives
would lead to unexpected outcomes, which makes it
difficult to accurate place the object to a suitable location.
Prior research do not model the state-varied feature and
fail to properly handle the side effect brought by this
feature.

Fortunately, in this research, we have observed the follow-
ing insights to tackle the aforementioned challenges.

• Leveraging the heap operation dependence graph
(HODG) to identify primitives. We leverage a heap
operation-guided fuzzer to explore the paths where heap
operations are located and combine all those paths as a
HODG, whose nodes are heap operations and edges are
control flows and data flows. Based on the graph, we
identify a loop dispatcher structure in the graph by firstly
recognizing an anchor node and entry nodes of primitives,
and then pinpointing the primitives on the basis of the
entry nodes.

• Leveraging the state-varied feature to extend capabili-
ties. With the state-varied feature, the allocation of chunks
is dynamically determined by the current structure of the
chains. Therefore, we model the behaviors of the state-
varied feature and leverage its characteristics to extend the
primitives’ capabilities. For example, originally A(0x200)
in Fig. 1(a) can only occupy a hole with size 0x200. Such
a capability can be different (e.g., filling part of a larger
hole) when leveraging the state-varied feature in Fig. 1(b).

• Formulating side effects as constraints. To fill a target
hole, one needs to eliminate noise operations’ impacts on
the target chain. To this end, we dig a new hole or fill
a specific hole to eliminate the side effects and keep the
target chain unchanged. This is achieved by modeling the
allocation mechanism and adding new constraints to the
constraint set of manipulation.

IV. OVERVIEW

A. Threat Model

The inputs of BAGUA are a target program, an input that
can crash the program, and a specification of the desired
heap layout. We focus on the crash caused by heap-based
vulnerabilities such as heap-based buffer overflows and use-
after-free vulnerabilities. The goal of BAGUA is to achieve
an exploitable heap state by manipulating the heap layout,
leveraging the attacker-controlled program inputs to steer the
heap operations of the program during its execution. In an
exploitable heap state, an attacker-controlled object is placed
into the location of a freed object in the heap or placed into
an overflowed heap area. The output of BAGUA is a primitive
sequence that can be triggered by altering the crashing input.
On this basis, we manually construct an exploit that can hijack
the instruction pointer. Mitigations including ASLR [1] and
DEP [8] are enabled3.

3ASLR and DEP only determine the specific address of chunks, which
does not change the size of chunks and the structure of the chains. Therefore,
enabling them would not affect HLM.

4

Extended

Capability

Basic

Capability

Primitive

Identification

Crashing

Input

Primitives
Capability

Modeling
Dealing with Side

Effects

Sequence

Generation

Integer Linear Programming

Model

VerificationPrimitive

Sequence
Exploit

Constraints of

Program Logic

Establishing Constraints

 & Objective Function

Target

Program

Expected

Heap Layout

Fig. 3: System overview of BAGUA.

B. Problem Statement

Essentially, the aim of HLM is to fill d holes in the
target chain for letting TO to occupy the target hole. To
this aim, a sequence of primitives are leveraged to achieve
filling and (in case of need) digging holes. Generating such a
sequence involves two steps: ➀ which and how many times
the primitives should be triggered, and ➁ how to sort them to
follow a specific order.

To determine which and how many times the primitives
should be triggered in step ➀, constraints from two sources
should be satisfied in this research: the constraints on the
number of invocations for the primitives and the constraints
of the target layout. Assume that the number of invocation
for primitive pi is ti. ti must satisfy the constraints of the
program’s execution logic (i.e., LP). The constraints of the
target layout is that d holes must be filled to occupy the target
hole. Therefore, we can form HLM as a problem of integer
linear programming [32] and establish the following formulas
based on the constraints:

s.t.

{
c · t+ d = 0

t ∈ LP
(1)

where t = (t1, t2, . . . , tn)
T, c = (c1, c2, . . . , cn). n is the

number of primitives and ci is the number of holes that pi
can fill or dig in the target chain. Equation (1) can give a set
of solutions. To ease the burden on the procedure of manual
exploit generation, we define an objective function ϕ to give
priority to the solutions and output an optimal solution (i.e.,
minϕ(t)).

To sort the primitives in step ➁, we consider the primitive’s
happen-before relationship and leverage two principles to
enhance the steadiness of manipulation. This would produce
a set of suitable primitive sequences. The detailed algorithms
are described in §V.

V. SYSTEM DESIGN

A high-level workflow of BAGUA is shown in Fig. 3.
Primitive identification of §V-A leverages a heap operation-
directed fuzzer to identify a variety of heap operations and
determines the number of invocations. Then it extracts pa-
rameters of the heap allocation operations and determines
the freed pointers based on the data flows, and recovers the
primitives’ happen-before relationship based on the control
flows. Capability modeling of §V-B models the primitives’

capabilities by the number of digging and filling holes on the
target chains. Based on the linear programming model, heap
layout manipulation of §V-D collects and solves the constraints
from the number of invocation for primitives, the goal of
occupying the target hole, and the side effect of the state-varied
feature. Notably, to observe the primitive’s impact on the heap
layout, we implement a heap allocator emulator by integrating
mainstream heap allocators. It is able to accurately simulate the
behaviors of allocation and freeing of heap chunks, in terms
of the property of chains, the side effect of the state-varied
feature, and the allocation order that are related to HLM. In
the end, primitive sequence generation and verification of §V-D
sorts the primitives and generates an exploit to achieve the
desired heap layout.

A. Primitive Identification

1) Construction of HODG: To precisely identify primi-
tives, BAGUA leverages the HODG that characterizes the data
flows and control flows of the heap operations. A HODG is
a graph whose nodes are heap operations and edges are data
flows and control flows. BAGUA leverages a heap operation-
directed fuzzer to explore paths and heap operations. To obtain
diverse primitives for manipulation, it has a particular interest
in discovering the sequences of heap operations that are
different from the current set. Specifically, BAGUA first hooks
the invocation of heap operations by instrumenting the source
code. Then, it utilizes a modified fuzzer [2] to explore reach-
able heap operation invocations, by comparing the identified
heap operation sequences and preserving the seed that triggers
new heap operation sequences. After that, BAGUA determines
which pointer is freed on free() using the execution traces
and uses symbolic execution to recover the size of allocation
on malloc(), calloc() and realloc(). In the end,
BAGUA assembles the identified heap operations, the extracted
data flows and the control flows to construct the HODG.

Similar to previous research [33], BAGUA is applicable
to the programs that are driven by event loops. Considerable
programs are driven by user input events or messages, and
usually have function dispatchers enclosed in loops to handle
these events. For instance, the programs of network interaction
are driven by command messages and language interpreters are
driven by the statements in scripts.

Triggering some primitives for multiple times can provide
more flexibility to the HLM. Therefore, it is necessary to
recognize “loop patterns of control flows” in the HODG. To

5

I

A
E1 E2

N1

N2 N4

N3

E3

N6

p1

p3

p2

anchor node

entry node

other node

Fig. 4: Primitive identification from the HODG.

this end, we first define the anchor node, which is the first
dispatcher that has more than one successors and is usually
the target program’s dispatcher of events. For example, Node
A in Fig. 4 is an anchor node. Based on that, primitives reside
in the dispatched events. The successors of the anchor node
are entry nodes of primitives (e.g., E1 and E2). After locating
the entry node, a primitive includes the nodes starting from the
entry node and ending at the node that returns to another entry
node. For example, In Fig. 4, N2 returns to E1, which means
it is the last node of primitive, and the primitive p1 includes
E1, N1 and N2. Also, there is another type of entry nodes
that are not successors of the anchor node, but the successor
of the last node of other primitives, for example, E3 in Fig. 4.
In the presence of loop structures, the dominating tree still
works. For example, p3 must be activated after p1 as there is
an edge from p1 to E3. For E2 and E1 in one loop structure,
they cannot be activated in sequentially since there is no edge
from p1 to E2, or from p2 to E1.

2) Constraints of Program’s Execution Logic: The con-
straints from program’s execution logic affect the way of
triggering primitives. There are mainly two kinds of con-
straints from the program’s execution logic: the happen-before
relationship among primitives, and the number of primitive
invocations. For instance, a primitive p1 can only be triggered
after the execution of another primitive p2, and p2 can only
be triggered once during the execution.

Happen-Before Relationship. To identify happen-before re-
lationship, we firstly build a dominating tree for all the
primitives’ entry nodes in the HODG. After that, we can extract
the happen-before relationship among the primitives by simply
locating the parent nodes of its entry node in the dominate
tree. For example, as shown in Fig. 4, since the entry node E1

dominates the entry node E3, the primitive p3 has a happen-
before relationship with p1.

Number of Primitive Invocations. The number of a prim-
itive’s invocation is constrained by the program’s execution
logic. In each run, we record the number of invocation for
each primitive. Based on a large number of executions from
the long-time fuzzing campaign, we obtain the maximum and

the minimum values for the number of invocations. Despite
the fact that the boundaries of the number of invocations based
on the fuzzing campaign might be inaccurate, the results are
within the theoretical range by the program logic. Therefore,
when formulating constraints using the results from the real-
world fuzzing, correctness of the solutions from solving con-
straints can be guaranteed.

B. Capability Modeling

We quantify the primitive’s impact on the target chain by
modeling its capabilities in manipulating the heap layout. A
primitive’s capability is the aggregation of its heap operations’
capabilities. When the state-varied feature is enabled, the heap
operation’s capability is regarded as “extended from its basic
capability”.

1) Heap Operation’s Capability: After invoking a heap
operation, the increase or decrease on the number of holes to
be filled are regarded as the heap operation’s capability, in the
form of digging or filling holes. If one heap operation digs one
hole in the target chain, its capability is c = +1. Otherwise, if
a heap operation fills one hole in the target chain, its capability
is c = −1. The modeling of capability is different depending
on whether the state-varied feature is enabled or not:

• Basic Capability. When the state-varied feature is not en-
abled, the capability of a heap operation is deterministic.
We call it basic capability, represented by c. Specifically,
if the target hole locates in the chain Cx, the allocation
A(x) ’s basic capability is c = −1, while the basic
capability of other allocations to Cx is c = 0. Similarly,
if a free operation F(ptr) frees the chunk with size x,
the basic capability of F(ptr) is c = +1. Generally, a
heap operation’s basic capability to the target hole with
size y could be modeled as follows:

cA =

{
−1, x = y
0, x ̸= y

cF =

{
+1, x = y
0, x ̸= y

(2)

• Extended Capability. With the state-varied feature en-
abled, a heap operation’s basic capability cannot precisely
describe the decrease or the increase on the number of
holes to be filled. Therefore, we introduce the extended
capability C that models the side effects on the target
chain. To dig a hole (C = +1) by A(x) on the target
chain Cy , if the number of holes in the chain Cx is zero
(i.e., Lx = 0), we leverage the state-varied feature to split
another hole with size z in the chain Cz (z = x+ y). To
fill a hole (C = −1) on Cy , we just fill a hole on Cy

when x = y, or leverage the state-varied feature to split
a hole with size z on Cy (i.e., z = y). The extended
capability by the allocation A(x) on the target chain Cy

is expressed as follows:

CA =

{
+1, Lx = 0, z = x+ y
−1, (Lx = 0, z = y) ∪ (x = y)
0, otherwise

(3)

Assume F(ptr) frees a chunk with size x. To fill a hole
(C = −1) on the Cy by F(ptr) , we leverage the state-
varied feature to merge the just-freed hole by F(ptr) with
the to-be-filled hole on Cy , which forms a larger hole with
size z (z = x + y). Similarly, F(ptr) can fill two holes

6

(C = −2) on Cy . The just-freed hole by F(ptr) can
be merged with two holes on Cy , when it is adjacent to
the two holes and placed in the middle of them in heap
memory (i.e., z = x+ 2y). The merge mechanism of the
state-varied feature can also be used to dig a hole with
size z, by merging the freed hole by F(ptr) and another
hole. When z = y, the hole is digged on Cy and we have
C = +1. The extended capability by F(ptr) is given by:

CF =


+1, (z = y) ∪ (x = y)
−1, z = x+ y
−2, z = x+ 2y
0, otherwise

(4)

2) Primitive’s Capability: The basic capability of the prim-
itive p is denoted as cp. This value is deterministic and
is the sum of the heap operations’ basic capabilities. The
primitive’s extended capability Cp is the sum of the heap
operations’ extended capabilities. It is varied according to
different heap layouts. We enumerate all possible values when
solving constraints in §V-D.

C. Integer Linear Programming Formulation

The integer linear programming model is used to precisely
manipulate the heap layout by establishing constraints and
objective functions.

1) Constraints: Achieving the goal of manipulation needs
to satisfy two kinds of constraints. One is from the program’s
execution logic when utilizing primitives. The other is from
the demand of occupying the target hole.

Constraints from Program Execution Logic. As mentioned
before, the program’s execution logic determines the number
of primitive’s invocations and the happen-before relationship
among the primitives. In the integer linear programming
model, the quantitative constraints about the number of prim-
itive’s invocation is leveraged to formulate the equations.
Particularly, For the target program’s primitive set P =
{p1, p2, ..., pn}, t = (t1, t2, . . . , tn)

T is the vector of the
primitive’s invocation amount and they satisfy the quantitative
constraints LP from the boundaries of the invocation amount
collected from fuzzing campaigns. For example, LP = {t|0 ≤
t1 ≤ 1, 0 ≤ t2, . . . }.

Constraints from Target Layout. The goal of occupying the
target hole is to decrease the target distance until it becomes
0. We set up equations to describe the goal. For a primitive
pi from the primitive set P, its basic capability is ci and
the invocation amount is ti. Hence, the primitive pi could
manipulate the layout when the number of holes to be filled
is ci ∗ ti. To achieve the goal, we use primitives with proper
number of invocations to gradually decrease the number of
holes to be filled from d to 0. Let c = (c1, c2, . . . , cn) and
t = (t1, t2, . . . , tn)

T. We have the following equation to
describe the constraint.

c · t+ d = 0 (5)

2) Objective Function: To facilitate the procedure of ex-
ploit generation, we define an objective function to output
one proper solution from all the solutions that satisfy the
constraints. The intuition is that it tends to be easier to generate
exploit when a solution contains less primitives and they
are more frequently triggered during the fuzzing campaign.
Therefore, the objective function is given as follows:

ϕ(t) =

n∑
i=1

ti
ρi

(6)

where ti is the number of invocation for primitive pi in a
solution and ρi is the maximum number of invocation of pi
during the fuzzing campaign. Based on the constraints and
the objective function, the HLM problem can be expressed as
finding t according to the integer linear programming model
given by:

min ϕ(t) =

n∑
i=1

ti
ρi

s.t.

{
c · t+ d = 0

t ∈ LP

(7)

When the equations are set up, we use the well-known
z3 [31] to solve the constraints. Since the ILP constraints
are linear, it is easy for z3 to find a feasible solution as
long as the constraints are solvable. To obtain the optimal
solution, the solving process is carried out repeatedly until the
objective function is minimal or a timeout (set to 600 seconds)
is reached.

D. Dealing with Side Effects

We propose two complementary approaches to model and
handle side effects. The first approach is based on basic ca-
pabilities and eliminates the state-varied feature’s side effects,
by adding new constraints to the equation set of the basic
capabilities. This could introduce considerable constraints and
lead to a small solution space. When the first approach gives
an unsolvable equation set, the alternative approach is to
directly leverage the extended capabilities. While the alterna-
tive approach can significantly expand the solution space by
setting up new equation sets, it could output incorrect results
because the condition about the heap state is not considered
when solving constraints. Therefore, a follow-up verification
is needed to verify the results.

1) Basic Capability-Based HLM with Side Effect Elimina-
tion: BAGUA analyzes the underlying cause of the side effects
and turn the side effect elimination into a new problem of
digging and filling holes. As an example, if A(x) occupies
holes in Cy rather than Cx, it indicates that Cx is empty. To
avoid that, it requires digging one hole in Cx. Similarly, if a
freed chunk with size x is merged with a hole with size y that is
adjacent to it in the heap memory, BAGUA will fill the adjacent
hole to avoid the merge behavior of the side effect. This is
accomplished by establishing new equations about digging or
filling holes.

In the new equations, assume the new target chain is Cy

and the number of holes to be filled or digged is d′. The
primitives’ basic capabilities and invocation amounts for Cy

are c′ = (c′1, c
′
2, . . . , c

′
n) and ∆t = (∆t1,∆t2, . . . ,∆tn)

T,

7

respectively. Equation (8) describes how to eliminate the side
effects on the chain Cy by activating primitives for ∆t times.
These extra primitives should not affect the target chain of Cx,
which is represented by (9) where c are the basic capabilities
to Cx.

c′ ·∆t+ d′ = 0 (8)

c ·∆t = 0 (9)

Adding those side effect elimination equations to the orig-
inal equation set, we have the following where t̂ = t+∆t:


c · t+ d = 0

t̂ ∈ LP
c′ ·∆t+ d′ = 0

c ·∆t = 0

(10)

Unfortunately, a procedure of side effect elimination might
bring new side effect. Therefore, the side effect elimination is
an iterative process until no more new side effect is produced
by the digging or filling operations, or the constraints are
unsolvable. To this end, multiple rounds of elimination is
needed, which gives:

c · tk+1 + d = 0
tk+1 ∈ LP

ck · (tk+1 − tk) + dk = 0
c · (tk+1 − tk) = 0

(11)

where:

• k is the round of iteration.
• c = (c1, c2, . . . , cn) represents the primitives’ basic

capabilities.
• d is the number of holes to be filled for HLM.
• tk+1 = (tk+1

1 , tk+1
2 , . . . , tk+1

n)T represents the numbers
of primitive invocationsafter k rounds of iteration.

• ck = (ck1 , c
k
2 , . . . , c

k
n) represents the primitives’ basic

capabilities for a chain in thecurrent k-th round of side
effect elimination.

• dk represents the target distance for a chain in thecurrent
k-th round of side effect elimination.

• LP = {tk+1|tk+1
1 ≥ 0, . . . } is the constraint set on the

number of primitive invocations.

With (11), we can calculate tk+1 after k rounds of side
effect elimination.

2) Extended Capability-Based HLM: In some cases, basic
capability-based HLM with side effect elimination is incapable
of finding a solution, due to the following reasons: firstly,
adding constraints to the equation set could lead to an unsolv-
able saturation 4; Additionally, when a target object is required
to be put into a large target hole, the state-varied feature must
be leveraged to split the large hole, which cannot be modeled
by the basic capability-based HLM.

Extended capabilities provide fine-grained manipulations.
Let C = (C1, C2, . . . , Cn) represents the primitives’ extended
capabilities and d represents the number of holes to be filled.

4A demonstration is shown in Appendix B.

We can establish the following equations with the extended
capabilities:

min ϕ(t) =

n∑
i=1

ti
ρi

s.t.

{
C · t+ d = 0

t ∈ LP

(12)

Since each Ci contains several values (e.g., the capabilities
in (4) and (3)), this could result in multiple combinations of
equation sets. For example, assume p1:A(0x200)—A(0x200)
and p2:A(0x600). The extended capability of p1 to the target
hole with size 0x400 bytes could be −2, −1, 0, +1, or +2
under different heap states. And that of p2 could be +1 or 0.
For each possible value of the primitive’s extended capability,
we could construct a set of constraints. Therefore, we could
construct 10 sets of constraints based on p1 and p2. Those
constraint sets significantly expand the solution space.

However, the extended capability can only be achieved
under specific heap state, and the conditions of using the
extended capabilities are not under consideration when solving
the equations. As a result, we verify whether the solution of
the equations can indeed occupy the target hole using the
allocator emulator. When a solution is verified to be infeasible,
we iteratively solve the next set of constraints until a feasible
solution is found.

E. Placement of Multiple Objects

In some cases, multiple objects need to be placed in specific
order to achieve an expected layout. For example, exploiting
a heap-based overflow needs to place VO and TO respectively.
This subsection describes how to place multiple objects on the
basis of single object placement.

1) Placing Multiple Objects into Multiple Holes: In this
case, placing multiple objects can be decomposed into a
series of single object manipulation tasks. Note that the latter
placement should not affect the earlier placement, meaning that
F(ptr) of the latter placement should not free the occupied
target object that is placed earlier.

2) Placing Multiple Objects into One Large Hole: Holes
do not always have proper sizes to accommodate the objects
with the same exact sizes. Multiple objects may also need to
be placed in one large hole. The target objects are required to
be placed in a specific order. For example, an expected heap
layout of a heap-based buffer overflow requires to place object
TO firstly and then place VO adjacent to TO at a lower address.
We take the following steps to achieve this goal:

• Occupying with AO. Selecting a placeholder AO and
placing it at the lower address of the target hole. The
size of AO equals to the size of VO.
• Occupying with TO. Placing TO to the lower address of

the rest of the hole, which is adjacent to AO.
• Freeing AO. Freeing AO and keeping TO’s occupation

unchanged.
• Occupying with VO. Placing VO to the position of the

freed AO.

Based on our experience, in general, finding an AO in
general-purpose applications is not hard, as the AO could be a

8

structure or data buffer with controllable size. If it cannot be
found, we believe the exploitability of the bug is low as well
and BAGUA gives up.

F. Primitive Sequence Generation and Verification

After determining which primitives and how many invoca-
tions should be leveraged, this section describes how to sort
the primitives and to verify the generated sequences.

1) Primitive Sorting: The order of the primitives in the
sequence is vital to the success of manipulation. On one hand,
the combination of the primitive takes their happen-before
relationships into consideration. On the other hand, if a bunch
of primitives that fill holes are put to the front of the sequence
(i.e., accumulated filling behaviors), there is a chance that the
target hole is occupied before allocating the target object. In
other words, the target hole is taken over by other objects.
Or if the primitives that dig holes are put to the front of the
sequence, the expected number of holes to be digged exceed
the maximum number of chunks on the target chain. Both
situations could fail the manipulation. As an example, for
primitive p1, p2, p3 and p4 within capabilities -3, -4, +2, and
-1 respectively, we want to trigger the first three primitives
to fill 5 holes before the target hole, and leverage p4, which
allocates the target chunk to occupy the target hole. If the
primitive sequence is p1—p2—p3—p4, the target hole will be
occupied by p2 rather than p4, which means the target hole
is wrongly occupied and the expected heap layout cannot be
reached.

To address the aforementioned issues, we use the capability
fluctuation rate, indicating the deviations of the primitives’
capabilities from its average in the sequence, to measure the
quality of sequences and select appropriate ones. Instead of
brute-forcing, higher priorities are given to the sequences
with less fluctuations. It is less likely to wrongly occupy
the target hole and exceed the target chain’s capacity, with
less accumulated digging or filling behaviors. The detailed
algorithm is described in Algorithm 1.

2) Verification: To verify whether the generated primitive
sequence could reach an desired heap memory state, we launch
new fuzzing campaigns to generate concrete inputs and lever-
age symbolic execution to facilitate input byte inference when
the fuzzer is stuck. The test cases from the fuzzing campaigns
in §V-A that trigger desired primitives in the sequence are
kept as the initial seeds for the new fuzzing campaigns.
However, This input generation still involves some manual
efforts. Particularly, once the heap primitives are triggered
using directed greybox fuzzing and the symbolic execution
engine is used to solve path constraints and infer critical input
bytes related to heap operations, still there are some input bytes
that could not be inferred using those techniques. As a result,
we manually inspect the program logic and debug the program
to recover them.

VI. EVALUATION

A. Experimental Setup

We implement a prototype of BAGUA based on the open-
source tools: S2E [26], BooFuzz [15] and afl-fuzz [2], contain-
ing over 12,000 lines of code. Target programs are compiled

Algorithm 1: Fluctuation Rate-Based Sorting
Input : Primitives set P = {p1, p2, ..., pn};

Capability of each heap operation co;
Number of primitive invocation

(t1, t2, . . . , tn)
T;

Output: Primitive sequence seq.
1 Initialize the list flist← ∅, dlist← ∅, seq ← None.
2 for each pi in P do
3 Initialize the fluctuation rate of pi is Rpi ← 0,
4 accumulated fluctuation of operation So ← 0,
5 for each operation oj in pi do
6 So ← So + coj ;
7 Rpi ← Rpi + So;
8 end
9 if Rpi < 0 then

10 for j ← 1 to ti do
11 append {pi : |Rpi|} to flist;
12 end
13 else
14 for j ← 1 to ti do
15 append {pi : |Rpi|} to dlist;
16 end
17 end
18 end
19 sort dlist, flist by |Rpi| increases;
20 for j ← 1 to min{len(flist), len(dlist)} do
21 seq ← seq + dlist[j].keys();
22 seq ← seq + flist[j].keys();
23 end
24 for each {pi : |Rpi|} not selected in dlist do
25 seq ← seq + pi;
26 end
27 for each {pi : |Rpi|} not selected in flist do
28 seq ← seq + pi;
29 end
30 return seq

and tested on Ubuntu 20.04 with a mainstream heap allocator
ptmalloc [18]. The CPU of the machine is Intel i7-10875
2.3GHz with 64G RAM, utilizing 16 logical processors. We
evaluate BAGUA on two benchmarks. On one hand, we collect
27 bugs from 12 real-world programs [9], [11], [4], [16],
[17]. All CVEs and bugs are selected from online websites,
including CVE MITRE [4], EXPLOIT DATABASE [10] and
HackerOne [12]. We select the bugs with the following criteria:

• The bugs are heap-based, such as heap-based buffer
overflows, use-after-free vulnerabilities and double free
vulnerabilities.

• All the bugs are exploitable and could be reproduced. We
search for the bugs whose exploit code is publicly known.
If it is not released, we select the bugs that are proved
to be exploitable by someone (we know that from online
blogs’ descriptions).

• With some preliminary manual analysis, we select the
target programs whose inputs are relatively easy to be
mapped to heap operations, such as event-loop driven
programs, and command line parsers.

On the other hand, we build a test set to assess how HLM
can be affected by some factors like the primitive length,

9

TABLE I: Results of Primitive Identification

Programs Versions # of
Primitive1

Primitive
Length2

Accuracy

FFmpeg 3.2.1 15 | 11 2 - 7 100%
Exim 4.89 21 | 18 1 - 12 95.2%

GoAhead 3.1.3 9 | 9 2 - 12 88.9%
DNSmasq 2.75 8 | 6 1 - 9 100%

ELOG 3.1.4 8 | 7 3 - 12 100%
atftp 0.7.4 10 | 10 3 - 7 90%

ProFTPD 2.78 9 | 8 2 - 14 88.9%
Netgear R7000 1.0.11.116 7 | 6 2 - 7 100%

sudo 1.8.31 7 | 6 4 - 9 100%
curl 7.54.1 11 | 9 1 - 10 90.1%

Python 2.7 2 | 2 1 - 2 100%
PHP 5.3 2 | 2 1 - 2 100%

1 The number on the left-hand side is from the heap operation-guided fuzzer.
The right-hand side is from the afl-fuzz or BooFuzz.

2 The minimum primitive length and the maximum primitive length in ex-
tracted primitives.

the number of provided primitives, the rate of allocation with
arbitrary size, and the rate of noise operations.

B. Benchmark I: Real-world CVEs and Bugs

1) Results of Primitive Identification: The fuzzer is run for
24 hours to explore the program, in order to construct the
HODG and identify the primitives. The statistics of the target
programs, the number and the length of identified primitives,
and the accuracy of primitive identification are given in Table
I. For the Python interpreter and the PHP interpreter, there
are two statements of heap manipulation are directly used
as primitives. Regarding the number of identified primitives,
we can see that there are some improvement made by the
heap operation-guided fuzzer, when compared with the original
fuzzers. On the fourth column, the length of primitive is
diverse except for the two interpreters. This is attributed to the
complexity of the target programs and indicates the difficulty
of HLM. The accuracy of primitive identification is relatively
high (96.1% on average). To obtain the accuracy, we manually
debug the program using the GDB toolkit [19] to verify the
extracted primitives. The inaccuracy mainly comes from the
misidentification of heap operation’s argument.

To measure the correctness of invocation times for the
identified primitives, we randomly select 8 primitives among
all the identified primitives of the target programs and compare
their invocation times with the ground truth. The ground truth
is manually analyzed by code comprehension and facilitated
with debugging using some scripts. The results are shown
in Table II. As can be seen, the results are correct in 6 out
of 8 cases. Although there are two cases that have no upper
bound, the number of invocation triggered during the fuzzing
campaign is still within theoretical range. This ensures that the
constraints provided to the equation set are accurate.

2) Results of Heap Layout Manipulation: Table III shows
the results of HLM in terms of solving constraints and sorting
primitives. As can be seen, BAGUA can achieve desired heap
layouts for 23 out of 27 cases. Among the successful cases,
except for the 11 bugs of the Python interpreter and the PHP

TABLE II: Statistics of the Number of Primitive Invocation

Primitive Program Boundary
from Test*

Ground
Truth

A1(∀)—A2(0x30)—
F(p1:A2)—F(p1:A1)

ELOG 0 ≤ t ≤ 1 0 ≤ t ≤ 1

F(p5:A1)—A1(∀) Exim 0 ≤ t ≤ 12 0 ≤ t

A1(0x20)—A2(0x8010)—
A3(0xf8)—A4(0x3c)—
A5(∀)—A6(0x830)

FFmpeg 0 ≤ t ≤ 1 0 ≤ t ≤ 1

F(p1:A2)—A1(∀)—
F(p2:A1)

Exim 0 ≤ t ≤ 7 0 ≤ t

F(p1:A1)—A1(∀) atftp 0 ≤ t ≤ 1 0 ≤ t ≤ 1

A1(∀)—F(p1:A1)—A2(∀) FFmpeg 0 ≤ t ≤ 1 0 ≤ t ≤ 1

A1(∀)—A2(∀)—
F(p3:A1)—F(p3:A2)

DNSmasq 0 ≤ t ≤ 1 0 ≤ t ≤ 1

A1(0x20)—A2(0x110) GoAhead 0 ≤ t ≤ 1 0 ≤ t ≤ 1

* t refers to the number of primitive invocation.

interpreter, there are 11 cases that require to address side ef-
fects caused by the state-varied feature during manipulation. In
particular, for the three bugs in DNSmasq and ELOG, BAGUA
achieves target occupation using basic capabilities with side
effect elimination. For the rest where side effects occur, such
as CVE-2016-10191 and CVE-2018-0500, there are no suitable
holes in the heap layout to accommodate the target hole. As
such, BAGUA achieves occupation for them using extended
capabilities. The fourth column of Table III shows that 40.7%
of the cases are required to occupy multiple objects in specific
order. For example, to achieve an unlink heap layout in CVE-
2018-6789, TO and VO must be placed with specific order
and positions [20]. The fifth column shows the number of
unique primitives for manipulation by solving the constraints.
On average, only 32.6% of the identified primitives are utilized,
indicating that the fuzzer’s searching efforts for the primitives
are sufficient. The column of program constraint shows that
the constraints from the program’s execution logic exist in 12
out of 23 cases. The eighth column gives the lengths of the
primitive sequences. On average, a primitive sequence contains
3.3 primitives, which is not a large number after the selection
of the objective functions in §V-D.

BAGUA fails to achieve expected manipulation in 4 cases.
For CVE-2020-9273, we find that ProFTPD manages heap
memory with customized allocator, whose allocation and free
operations are not performed by system calls. In this case,
BAGUA is unable to model the capability of its heap operations.
For CVE-2021-31802, the program is extracted from firmware,
where heap allocator is slightly different from that of glibc in
Ubuntu, and it leads to inaccurate modeling of the primitives’
capabilities. For CVE-2017-16943 and CVE-2019-5096, we
find out that BAGUA fails to solve the collected constraints
until reaching a timeout. After manual inspection, we find that
BAGUA misses some primitives that are capable of achieving
the desired heap layout.

3) Comparison with State-of-the-Art: We compare BAGUA
with the automated HLM tools SHRIKE [28], GOLLUM [29]

10

TABLE III: Overall Results

Bug ID (Program) Bug Type Handling # of # of Uni.
Logic Constr.3

Seq.
Constr. Solving Sorting

B.6 S.|G.|M.
Side Effect 1 TO Prim.2 Num. H.-B. Len.4 Time PMU5 Time PMU

CVE-2016-10190 (FFmpeg) heap overflow ③ 1 3 ✓ ✓ 3 47 18% 11|23 10% ✓ ✗| ✗| ✗

CVE-2016-10191 (FFmpeg) heap overflow ③ 1 2 ✓ ✓ 2 54 21% 5|7 4% ✓ ✗| ✗| ✗

CVE-2018-6789 (Exim) off-by-one ③ 2 4 ✓ ✓ 4 89 27% 12|29 13% ✓ ✗| ✗| ✗

CVE-2019-16928 (Exim) heap overflow ③ 2 1 ✓ ✗ 1 51 20% 2|1 3% ✓ ✗| ✗| ✗

CVE-2020-28020 (Exim) heap overflow ③ 2 5 ✓ ✓ 10 163 37% 34|109 19% ✓ ✗| ✗| ✗

CVE-2014-9707 (GoAhead) heap overflow ③ 2 3 ✓ ✓ 3 71 23% 5|18 8% ✓ ✗| ✗| ✗

CVE-2017-14491 (DNSmasq) heap overflow ② 1 3 ✓ ✓ 3 78 26% 6|17 8% ✓ ✗| ✗| ✗

CVE-2009-2957 (DNSmasq) heap overflow ② 1 2 ✓ ✓ 2 46 21% 4|5 5% ✓ ✗| ✗| ✗

CVE-2019-3994 (ELOG) double free ② 1 2 ✗ ✓ 2 62 25% 6|7 8% ✓ ✗| ✗| ✗

CVE-2021-41054 (atftp) heap overflow ③ 1 2 ✓ ✓ 2 53 21% 5|6 9% ✓ ✗| ✗| ✗

CVE-2021-3156 (sudo) heap overflow ① 1 2 ✓ ✓ 2 49 20% 5|5 12% ✓ ✗| ✗| ✗

CVE-2018-0500 (curl) heap overflow ③ 1 5 ✓ ✓ 5 82 29% 21|42 15% ✓ ✗| ✗| ✗

CVE-2014-1912 (Python) heap overflow ① 2 2 ✗ ✗ 3 12 15% 5|11 5% ✓ ✗| ✓| ✓

Issue 24094 (Python) use-after-free ① 1 2 ✗ ✗ 2 21 16% 4|6 7% ✓ ✗| ✗| ✓

Issue 24095 (Python) use-after-free ① 1 2 ✗ ✗ 2 32 18% 5|4 5% ✓ ✗| ✗| ✓

issue 24105 (Python) use-after-free ① 1 2 ✗ ✗ 2 26 17% 5|5 6% ✓ ✗| ✗| ✓

issue 24481 (Python) heap overflow ① 2 3 ✗ ✗ 4 18 15% 12|33 9% ✓ ✗| ✓| ✓

CVE-2016-5636 (Python) heap overflow ① 2 2 ✗ ✗ 4 19 16% 14|27 10% ✓ ✗| ✓| ✓

issue 27211 (Python) heap overflow ① 2 2 ✗ ✗ 5 43 19% 21|63 15% ✓ ✗| ✓| ✓

CVE-2013-4113 (PHP) heap overflow ① 2 2 ✗ ✗ 4 29 17% 14|25 9% ✓ ✓| ✓| ✓

CVE-2013-2110 (PHP) heap overflow ① 2 2 ✗ ✗ 2 16 14% 4|4 4% ✓ ✓| ✓| ✓

bug 76047 (PHP) use-after-free ① 1 2 ✗ ✗ 4 31 17% 18|32 14% ✓ ✗| ✗| ✓

bug 72697 (PHP) heap overflow ① 2 2 ✗ ✗ 5 37 20% 23|46 15% ✓ ✓| ✓| ✓

CVE-2020-9273 (ProFTPD) use-after-free - - - - - - - - - - ✗ ✗| ✗| ✗

CVE-2017-16943 (Exim) use-after-free - - - - - - - - - - ✗ ✗| ✗| ✗

CVE-2021-31802 (httpd) heap overflow - - - - - - - - - - ✗ ✗| ✗| ✗

CVE-2019-5096 (GoAhead) double free - - - - - - - - - - ✗ ✗| ✗| ✗

1 “①” means BAGUA uses basic capabilities without any side effects, and “②” means BAGUA uses basic capabilities with side effect elimination to achieve
occupation. “③” means BAGUA uses extented capabilities to achieve occupation, and “-” means failure for manipulation.

2 “Uni. Prim.” refers to unique primitives solved by constraints for manipulation.
3 “Logic Constr.” means the constraints of program logic. “Num.” represents the constraint of the number of primitive invocation and “H.-B.” represents

the happen-before relationship.
4 “Seq. Len.” means the length of primitives sequence generated by BAGUA.
5 “PMU” refers to peak memory usage, which is obtained by sampling system memory usage every second.
6 “B.” represents BAGUA. “S.” represents SHRIKE. “G.” represents GOLLUM, and “M.” represents MAZE.

and MAZE [33]. SHRIKE and GOLLUM focus on inter-
preters and do not support other applications. Therefore, in
the evaluated cases, they only work on heap-based buffer
overflows such as CVE-2013-4113 and CVE-2013-2110 of
the interpreters. Since these two tools are designed based on
search-based methods, they might face low efficiency when
dealing with precise manipulation. An example is the issue
24015 that involves precisely reoccupying the freed hole using
the use-after-free vulnerability. MAZE sets up Diophantine
equations to precisely place the target object, which works
well for the bugs of the interpreters. We contacted the authors
of MAZE and obtained the code. It turns out that the primitive
capabilities of MAZE are fixed without the state-varied feature.
All in all, BAGUA outperforms the three tools on 12 cases,
involving 8 different general-purpose programs. This is mainly
attributed to the fact that BAGUA is able to leverage the limited
capabilities in the programs and deal with the side effects of
the heap allocator.

4) Cost Evaluation: To evaluate the cost of BAGUA during
manipulation, we measure the running time and the peak
memory usage (PMU) during the constraint solving and the
primitive sorting. We reproduce each step for 10 times and
take their averages. As can be seen from Table III, once

the primitives are ready, it does not take a long time (av-
eragely 57.7 seconds for constraint solving constraint and
10.1 seconds for primitive sorting) to accomplish HLM. Also,
the computing resources required by HLM are acceptable,
given that the average PMU is only 20.5% on our machine.
Regarding the approaches to model and eliminate the side
effects, the extended capability-based approach takes averagely
76.25 seconds and the basic capability-based approach takes
62 seconds to solve constraints. This is mainly because the
former approach takes more equation sets as its inputs. We
also compared the fluctuation-based sorting strategy with a
random combination strategy, in terms of time consumption.
As shown in the 11th column of Table III, the proposed sorting
strategy reduces the time of sorting with random combination
strategy from 22.8 seconds to 10.5 seconds. As the length of
the primitive sequence increases, the fluctuation-based sorting
can save more time.

C. Benchmark II: Augmented Test Set of Primitive Sequence

We construct an augmented test set of primitive sequence
to evaluate how the success rate of BAGUA can be affected.
Four important factors are measured, including the primitive
length (i.e., the number of heap operations in a primitive),

11

the number of provided primitives, the rate of allocation with
arbitrary size, and the rate of noise operations. We set up
an initial heap layout, take constructed primitive sequences
as the inputs, and verify whether the desired layout could be
achieved. Before the experiments, we have manually confirmed
that all the generated primitives are valid and can be leveraged
to achieve the desired heap layout. The primitive sequences
are constructed by varying the to-be-evaluated factors. For
example, to evaluate the impact of the primitive length, we
generate 6 primitive sets whose primitives contain 2, 4, 6, 8, 10
and 12 heap operations respectively, and use those primitives
for HLM. The experiments are carried out under ptmalloc
2.31 and ptmalloc 2.24.

As shown in Fig. 5 and Fig. 6, the success rate of HLM
is barely affected by the primitive length and the number of
provided primitives. It turns out that longer primitives or more
provided primitives increase the time consumption, but do
not improve the success rate of BAGUA. This also indicates
that although discovering more primitives from the program
is necessary, generally speaking, the success rate is barely
affected as long as certain amount of primitives are provided
(e.g., 4 primitives).

2 4 6 8 10 12
Primitive Length

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

0

500

1000

1500

2000

2500

3000

Ti
m

e(
s)

ptmalloc 2.31: success rate
ptmalloc 2.24: success rate
ptmalloc 2.31: time
ptmalloc 2.24: time

Fig. 5: Influence on manipulation by primitive length.

4 6 8 10 12 14 16
Number of Provided Primitives

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

0

200

400

600

800

1000

1200

Ti
m

e(
s)

ptmalloc 2.31: success rate
ptmalloc 2.24: success rate
ptmalloc 2.31: time
ptmalloc 2.24: time

Fig. 6: Influence on manipulation by number of provided
primitives.

The rate of controllable allocation is the ratio of the number
of A(∀) to the total number of allocation operations. Fig. 7
illustrates the influence on HLM by such a rate. As the rate
of controllable allocation increases, the success rate of HLM
and the time consumption increase as well. The rate of noise
operation is the ratio of the number of noise operation to the

number of all heap operations. Fig. 8 shows the impact of such
a rate on HLM. The success rate decreases as noise operation
increases. The main reason is that more noise operations
increase the degree of side effects, which adds the complexity
of the constraints. Some of the constraints become unsolvable
within a timeout. Despite that, BAGUA still achieves desired
heap layouts for more than 50% test cases, even with 80% of
noise operations.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Rate of Controllable Allocation

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

0

200

400

600

800

1000

Ti
m

e(
s)

ptmalloc: 2.31 success rate
ptmalloc: 2.24 success rate
ptmalloc: 2.31 time
ptmalloc: 2.24 time

Fig. 7: Influence on manipulation by rate of controllable
allocation.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Rate of Noise Operation

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

0

200

400

600

800

1000

1200

1400

1600

1800

Ti
m

e(
s)

ptmalloc 2.31:success rate
ptmalloc 2.24:success rate
ptmalloc 2.31:time
ptmalloc 2.24:time

Fig. 8: Influence on manipulation by rate of noise operation.

VII. DISCUSSION

Code Coverage. As BAGUA leverages fuzzing to trigger heap
operations and identify primitives, its capability of discovering
primitives relies on the fuzzer’s ability to explore the code.
Although we design a heap operation-guided fuzzer to improve
that, as the evaluation shows, the HLM could still fail due
to lack of certain primitives for two cases. To address this
problem, an alternative approach is to leverage the results of
static analysis to provide more fine-grained guidance to the
fuzzers. If more accurate identification of primitives and their
dependency can be given for the complex real-world general-
purpose programs, the performance of BAGUA can be further
enhanced.

Scalability. BAGUA is implemented with ptmalloc, a system
allocator widely used in UNIX. For the system allocators
with deterministic behaviors (e.g., ptmalloc, dlmalloc [3] and
jemalloc [14]), BAGUA is applicable as long as the cal-
culation of TO-VO distance and the primitives’ capabilities

12

are adjusted accordingly. However, for the system allocators
with nondeterministic behaviors like mimalloc (with random
allocation), BAGUA is not applicable. On the other hand, for
the program’s customized heap allocators, the challenges lie
in the program’s diverse APIs and complicated mechanisms
of heap management. For example, the mechanism of “delay-
free” in Internet Explorer’s allocator prevents the reuse of a
just freed area, which makes distance calculation difficult to
model. Extending the support for more types of allocators is
left as the future work.

VIII. RELATED WORK

A. Automated Exploit Generation for Stacked-based Vulnera-
bilities

Recent years have seen an increasing interest in automated
exploit generation (AEG) techniques. In earlier years, a line of
research focus on automated exploit generation for stack-based
buffer overflows. Those AEG frameworks focus on exploiting
stack-based buffer overflows and format string vulnerabilities
based on classic exploitation methods. Heelan et al. [27]
proposed an approach to generate control-flow-hijacking ex-
ploits based on a crashing input, which leverages dynamic
taint analysis techniques. Mayhem [23] leverages symbolic
execution to exploit the stack-based buffer overflows, which is
implemented as an end-to-end exploitation system. CRAX [30]
performs symbolic execution in concolic mode, using a whole
system environment model, to generate exploits that hijack the
control flow with stack-based vulnerabilities.

B. Automated Exploit Generation for Heap-based Vulnerabil-
ities

There is a growing interest in AEG for heap-based vul-
nerabilities in recent years. Compared with AEG for stack-
based vulnerability, exploiting heap-based vulnerabilities is
more challenging, due to the requirement of specific heap
layouts. As such, primitive analysis and automatic heap layout
manipulation are two critical steps for AEG of heap-based
vulnerabilities.

Primitives Analysis. As for primitives identification, existing
works leverage static approaches and dynamic approaches
to extract primitives in different types of programs. Sean
Heelen et. proposed SHRIKE [28] and GOLLUM [29], which
focus on automatic exploitation generation of interpreters.
SHRIKE discovers fragments and statements of PHP code
as heap primitives to interact with the heap allocator and
manipulate the heap layout. Similarly, GOLLUM leverages
statements of interpreters to construct two types primitives.
SLAKE [25] tackles automatic manipulation problem towards
vulnerabilities in kernel space, utilizing systems calls for
exploitation. KOOBE [24] focuses on out-of-bound memory
write in Linux kernel, by extracting and utilizing three system
calls. FUZE [34] leverages kernel fuzzing to identify useful
system calls for the exploitation of use-after-free vulnerabil-
ities. ARCHEAP [35]analyzes modern heap allocators and
leverages fuzzers to systematically identify heap exploitation
primitives against various allocators. HAEPG [36] statically
identifies the paths that make up dispatchers and dynamically
executes those paths to collect heap interactions as heap prim-
itives. MAZE [33] regards building blocks that could interact

with target programs, which could be used by users to achieve
heap layout manipulation. MAZE leverages static algorithm to
analyze primitive dependency and semantics by recognizing
the patterns of code structures. Unlike those works, our ap-
proach targets general-purpose programs and relies on a heap
operation-guided fuzzer to explore program paths, identify
heap operations that can be triggered with concrete inputs,
and identify primitives based on the exploration results.

Automatic Heap Layout Manipulation. Existing works to-
wards automatic heap layout manipulation for real-world tar-
gets mainly consider two kinds of programs, namely inter-
preters and the Linux Kernel, due to their simplicity. SHRIKE
leverages random search algorithm to assemble primitives to
automatically manipulate the heap layout. GOLLUM improves
this method by importing genetic algorithm to increase ma-
nipulation efficiency for interpreters. Both of them aim for
heap-based overflow and are restricted in some situations such
as precisely reoccupying a freed object to exploit a use-after-
free vulnerability. MAZE leverages the linear Diophantine
equation to address the manipulation problem. It mainly works
for interpreters and CTF challenges without such complicated
primitives. SLAKE establishes several manipulations methods
based on typical characteristics of Linux kernel vulnerabilities.
KOOBE and FUZE both leverage heap spray techniques to
consume holes and manipulate the target object. Different from
those works, BAGUA leverages the integer linear programming
model and focuses on precise and automatic HLM in the pres-
ence of side effects for real-world general-purpose programs.

IX. CONCLUSION

In this paper, we have presented a new approach towards
automatically and precisely manipulating heap layouts for
general-purpose programs, which is a key step of automated
exploit generation for heap-based vulnerabilities. We have
presented new techniques by solving the challenges that are
specific to general-purpose programs such as identifying prim-
itives on the basis of program’s logic, eliminating side effects
of the state-varied feature of heap allocators, and extending the
limited capabilities. The evaluation shows that this approach
outperforms state-of-the-art in terms of the applicability and
the effectiveness on 27 bugs in general-purpose programs.

ACKNOWLEDGMENT

We want to thank our anonymous reviewers for their valu-
able comments. This work was supported in part by Natural
Science Foundation of Hunan Province, China (Grant No.
2022JJ40553) and Research Funding of National University
of Defense Technology (Grant No. ZK22-53).

REFERENCES

[1] “Address space layout randomization,” https://en.wikipedia.org/wiki/
Address space layout randomization, Accessed: September 2022.

[2] “american fuzzy lop,” https://lcamtuf.coredump.cx/afl/, Accessed:
September 2022.

[3] “C dynamic memory allocation,” https://en.wikipedia.org/wiki/C dyn
amic memory allocation#dlmalloc, Accessed: September 2022.

[4] “CVE,” https://cve.mitre.org/, Accessed: September 2022.
[5] “CVE-2016-10191,” https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2016-10191, Accessed: September 2022.

13

https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://lcamtuf.coredump.cx/afl/
https://en.wikipedia.org/wiki/C_dynamic_memory_allocation#dlmalloc
https://en.wikipedia.org/wiki/C_dynamic_memory_allocation#dlmalloc
https://cve.mitre.org/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10191
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10191

[6] “CVE Details,” https://www.cvedetails.com/, Accessed: September
2022.

[7] “Diophantine equation,” https://en.wikipedia.org/wiki/Diophantine equ
ation, Accessed: September 2022.

[8] “Executable space protection,” https://en.wikipedia.org/wiki/Executab
le space protection#Windows, Accessed: September 2022.

[9] “Exim internet mailer,” https://www.exim.org/, Accessed: September
2022.

[10] “EXPLOIT DATABASE,” https://www.exploit-db.com/, Accessed:
September 2022.

[11] “FFmpeg,” https://ffmpeg.org/, Accessed: September 2022.
[12] “HackerOne,” https://www.hackerone.com/, Accessed: September 2022.
[13] “Heap feng shui,” https://en.wikipedia.org/wiki/Heap feng shui,

Accessed: September 2022.
[14] “jemalloc memory allocator,” https://jemalloc.net/, Accessed: Septem-

ber 2022.
[15] “Network Protocol Fuzzing for Humans,” https://boofuzz.readthedocs.

io/en/stable/, Accessed: September 2022.
[16] “Php bug tracking system,” https://bugs.php.net/, Accessed: September

2022.
[17] “Python bug tracker,” https://bugs.python.org/, Accessed: September

2022.
[18] “The gnu c library (glibc),” https://www.gnu.org/software/libc/,

Accessed: September 2022.
[19] “The GNU Project Debugger,” https://sourceware.org/gdb/, Accessed:

September 2022.
[20] “Unlink exploit,” https://heap-exploitation.dhavalkapil.com/attacks/unli

nk exploit.html/, Accessed: September 2022.
[21] D. Blazakis, “Interpreter exploitation: Pointer inference and jit spray-

ing,” BlackHat DC, 2010.
[22] D. Brumley, P. Poosankam, D. Song, and J. Zheng, “Automatic patch-

based exploit generation is possible: Techniques and implications,” in
2008 IEEE Symposium on Security and Privacy (sp 2008). IEEE,
2008, pp. 143–157.

[23] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
mayhem on binary code,” in 2012 IEEE Symposium on Security and
Privacy. IEEE, 2012, pp. 380–394.

[24] W. Chen, X. Zou, G. Li, and Z. Qian, “{KOOBE}: Towards facilitating
exploit generation of kernel {Out-Of-Bounds} write vulnerabilities,” in
29th USENIX Security Symposium (USENIX Security 20), 2020, pp.
1093–1110.

[25] Y. Chen and X. Xing, “Slake: Facilitating slab manipulation for ex-
ploiting vulnerabilities in the linux kernel,” in Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security,
2019, pp. 1707–1722.

[26] V. Chipounov, V. Kuznetsov, and G. Candea, “S2e: A platform for in-
vivo multi-path analysis of software systems,” Acm Sigplan Notices,
vol. 46, no. 3, pp. 265–278, 2011.

[27] S. Heelan, “Automatic generation of control flow hijacking exploits for
software vulnerabilities,” Ph.D. dissertation, University of Oxford, 2009.

[28] S. Heelan, T. Melham, and D. Kroening, “Automatic heap layout
manipulation for exploitation,” in 27th USENIX Security Symposium
(USENIX Security 18), 2018, pp. 763–779.

[29] ——, “Gollum: Modular and greybox exploit generation for heap
overflows in interpreters,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019, pp.
1689–1706.

[30] S.-K. Huang, M.-H. Huang, P.-Y. Huang, C.-W. Lai, H.-L. Lu, and W.-
M. Leong, “Crax: Software crash analysis for automatic exploit gen-
eration by modeling attacks as symbolic continuations,” in 2012 IEEE
Sixth International Conference on Software Security and Reliability.
IEEE, 2012, pp. 78–87.

[31] L. d. Moura and N. Bjørner, “Z3: An efficient smt solver,” in Inter-
national conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2008, pp. 337–340.

[32] A. Schrijver, Theory of linear and integer programming. John Wiley
& Sons, 1998.

[33] Y. Wang, C. Zhang, Z. Zhao, B. Zhang, X. Gong, and W. Zou,
“Maze: Towards automated heap feng shui,” in 30th USENIX Security

Symposium (USENIX Security 21). USENIX Association. https://www.
usenix. org/conference/usenixsecurity21/presentation/wang-yan, 2021.

[34] W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and W. Zou, “{FUZE}:
Towards facilitating exploit generation for kernel {Use-After-Free}
vulnerabilities,” in 27th USENIX Security Symposium (USENIX Security
18), 2018, pp. 781–797.

[35] I. Yun, D. Kapil, and T. Kim, “Automatic techniques to systematically
discover new heap exploitation primitives,” in 29th USENIX Security
Symposium (USENIX Security 20), 2020, pp. 1111–1128.

[36] Z. Zhao, Y. Wang, and X. Gong, “Haepg: An automatic multi-hop
exploitation generation framework,” in Detection of Intrusions and Mal-
ware, and Vulnerability Assessment, C. Maurice, L. Bilge, G. Stringhini,
and N. Neves, Eds. Cham: Springer International Publishing, 2020,
pp. 89–109.

APPENDIX

A. The State-Varied Feature in ptmalloc2

The state-varied feature of heap operations is raised by the
complex mechanism of heap allocators. For ptmalloc2, it
mainly includes the following three mechanism.

Split. For operation A(x), allocators will firstly allocate
the freed chunk with equivalent size. If there is no appropriate
freed chunk in heap layout, it will cut part of the best fitting
chunk for occupation, which is shown in Fig. 1(b).

Merge. For operation F(ptr), allocators will check ad-
jacent chunks whether satisfies the merging condition. After
merging, two or more chunks will turn to be a large free chunk.

Move. If more than one chains are used to manage freed
chunks, for example, fastbin and tcache in ptmalloc
2.31, holes in these chains are occupied with different pri-
ority. Holes in tcache are always allocated first until they
becomes empty and then holes in fastbin will be moved
the tcache. This will cause the number of holes to be filled
changes unexpectedly.

Fig. 9 shows a typical process of the move mechanism.
Assume Cx1 within maximum capacity M and Cx2 are two
chains to manage holes with size x, and Cx1 has higher priority
to allocate holes than Cx2. Each hole in the chain is marked
with number 1 to M + 2 in case of identification. If holes
in Cx1 are all consumed, the next allocation A(0x200) will
occupy hole 1 and drive the allocator to transfer M holes in
Cx2 to Cx1 at the same time. Due to the transfer order is
different from that of allocation order in the chain, d changes
from M to 2 after A(0x200), and the original equation will fail
to solve primitives’ number as the d changes. In our solution,
we reconstruct the equation within new d after move to deal
with the state-varied feature.

B. No Solution Demonstration Using Basic Capability-Based
HLM with Side Effect Elimination


c · t+ d = 0
c′ ·∆t+ d′ = 0
c ·∆t = 0

t̂ ∈ DP

(13)

To eliminate side effect, we use above constraints to
calculate ∆t. However, sometimes ∆t may not be found, and
we clarify the nonexistence of ∆t in this part.

14

https://www.cvedetails.com/
https://en.wikipedia.org/wiki/Diophantine_equation
https://en.wikipedia.org/wiki/Diophantine_equation
https://en.wikipedia.org/wiki/Executable_space_protection#Windows
https://en.wikipedia.org/wiki/Executable_space_protection#Windows
https://www.exim.org/
https://www.exploit-db.com/
https://ffmpeg.org/
https://www.hackerone.com/
https://en.wikipedia.org/wiki/Heap_feng_shui
https://jemalloc.net/
https://boofuzz.readthedocs.io/en/stable/
https://boofuzz.readthedocs.io/en/stable/
https://bugs.php.net/
https://bugs.python.org/
https://www.gnu.org/software/libc/
https://sourceware.org/gdb/
https://heap-exploitation.dhavalkapil.com/attacks/unlink_exploit.html/
https://heap-exploitation.dhavalkapil.com/attacks/unlink_exploit.html/

0x200 0x200(Empty)

M

2

1

...

0x200 0x200 (M)

2

3

M

...

1xC 1xC2xC 2xC

A(0x200)

Md= 2d =

M+2

M+1

M+1

M+2

Fig. 9: Illustration of move mechanism.

Considering n = 2, which means only two primitives p1
and p2 with basic capabilities c1 and c2 respectively. While
dealing with side effect, we could obtain following equations
to calculate ∆t.{

c′1∆t1 + c′2∆t2 + d′ = 0
c1∆t1 + c2∆t2 = 0

(14)

It is easily to solve the equations:

∆t1 =
c1

c1c′2 − c2c′1
d′, ∆t2 =

c2
c1c′2 − c2c′1

d′

when c1c2 < 0, we have ∆t1∆t2 < 0. Since ∆t1 and ∆t2
are non-negative integers, it means we cannot find ∆t.

In this circumstance, the constraints can not eliminate side
effects, and we need extend capability to utilize side effects.

15

	Introduction
	Background
	Heap Layout Manipulation
	State-Varied Feature of Heap Allocators

	Motivation
	A Running Example
	Challenges and Key Insights

	Overview
	Threat Model
	Problem Statement

	System Design
	Primitive Identification
	Construction of HODG
	Constraints of Program's Execution Logic

	Capability Modeling
	Heap Operation's Capability
	Primitive's Capability

	Integer Linear Programming Formulation
	Constraints
	Objective Function

	Dealing with Side Effects
	Basic Capability-Based HLM with Side Effect Elimination
	Extended Capability-Based HLM

	Placement of Multiple Objects
	Placing Multiple Objects into Multiple Holes
	Placing Multiple Objects into One Large Hole

	Primitive Sequence Generation and Verification
	Primitive Sorting
	Verification

	Evaluation
	Experimental Setup
	Benchmark I: Real-world CVEs and Bugs
	Results of Primitive Identification
	Results of Heap Layout Manipulation
	Comparison with State-of-the-Art
	Cost Evaluation

	Benchmark II: Augmented Test Set of Primitive Sequence

	Discussion
	Related Work
	Automated Exploit Generation for Stacked-based Vulnerabilities
	Automated Exploit Generation for Heap-based Vulnerabilities

	Conclusion
	References
	Appendix
	The State-Varied Feature in ptmalloc2
	No Solution Demonstration Using Basic Capability-Based HLM with Side Effect Elimination

