
Attacks as Defenses: Designing Robust Audio
CAPTCHAs Using Attacks on Automatic Speech

Recognition Systems

Hadi Abdullah1∗, Aditya Karleka2, Saurabh Prasad2, Muhammad Sajidur Rahman2, Logan Blue2, Luke A. Bauer2,
Vincent Bindschaedler2, Patrick Traynor2

Visa Research, Atlanta, GA1 University of Florida, Gainesville, FL2

Email: habdulla@visa.com, {akarlekar, sprasad1, rahmanm, bluel,
lukedrebauer, vbindsch, traynor} @ufl.edu

Abstract—Audio CAPTCHAs are supposed to provide a strong
defense for online resources; however, advances in speech-to-
text mechanisms have rendered these defenses ineffective. Audio
CAPTCHAs cannot simply be abandoned, as they are specifically
named by the W3C as important enablers of accessibility.
Accordingly, demonstrably more robust audio CAPTCHAs are
important to the future of a secure and accessible Web. We
look to recent literature on attacks on speech-to-text systems for
inspiration for the construction of robust, principle-driven audio
defenses. We begin by comparing 20 recent attack papers, classi-
fying and measuring their suitability to serve as the basis of new
“robust to transcription” but “easy for humans to understand”
CAPTCHAs. After showing that none of these attacks alone are
sufficient, we propose a new mechanism that is both compara-
tively intelligible (evaluated through a user study) and hard to
automatically transcribe (i.e., P (transcription) = 4× 10−5). We
also demonstrate that our audio samples have a high probability
of being detected as CAPTCHAs when given to speech-to-text
systems (P (evasion) = 1.77 × 10−4). Finally, we show that our
method can break WaveGuard, a mechanism designed to defend
adversarial audio, with a 99% success rate. In so doing, we not
only demonstrate a CAPTCHA that is approximately four orders
of magnitude more difficult to crack, but that such systems can be
designed based on the insights gained from attack papers using
the differences between the ways that humans and computers
process audio.

I. INTRODUCTION

CAPTCHAs (Completely Automated Public Turing Test
to tell Computers and Humans Apart) are a nearly ubiquitous
security feature on the Web. These challenge-response puzzles
attempt to regulate access to resources (e.g., account sign-up,
service abuse, etc) through tasks that are simple for human be-
ings to solve but extremely difficult for machines. CAPTCHAs
now come in a wide array of formats, from the transcription of
images of character strings [31], [45] and image recognition

∗ This work was done while this author was at the University of Florida.

[55], [50], to noisy audio samples [57], [81]. This variety
benefits inclusive computing, and ensures that users with
access limitations (e.g., vision impairments/blindness) can still
use the majority of the Web without being limited by security
features [83].

Unfortunately, what constitutes a challenge for computers
has changed drastically since the inception of CAPTCHAs.
Nowhere has this shift been more obvious than in audio
CAPTCHAs, where advances in the power of neural network-
driven speech-to-text systems allow for the real-time, auto-
mated breaking1 of audio CAPTCHAs [34]. However, au-
dio CAPTCHAs cannot simply be discarded for other avail-
able methods, and remain the fallback/supplemental meth-
ods for many other techniques. This explains why Google’s
reCAPTCHA, one of the most CAPTCHA services on the
Internet, offers audio CAPTCHA challenges (despite the avail-
ability of other methods such as math challenges, open-
ended questions). Accordingly, stronger and more principled
techniques are required for their construction.

We argue that audio CAPTCHAs are so easily breakable
because of a fundamental misunderstanding of their adversary.
That is, while adding noise to audio generally decreases
comprehension by humans and unintelligent systems, it fails
to model subtle differences between the two parties. The
difference between how humans and computers perceive audio
has been exploited repeatedly in recent literature attacking
Automatic Speech Recognition (ASR) systems (e.g., Amazon’s
Alexa, Apple’s Siri, etc) [25], which allows adversaries to cre-
ate starkly different audio and transcriptions. Such approaches
could potentially be used to exploit weaknesses in speech-to-
text systems to make humans and computer observers “hear”
dramatically different messages.

In this paper, we leverage the large body of literature on
attacks against ASRs as a means of creating a defense in
the form of a robust audio CAPTCHA generation algorithm.
That is, instead of simply adding noise to audio, we modify
existing audio samples in ways that significantly decrease
machine transcription accuracy without impacting human in-

1Attack example from previous work:
https://www.youtube.com/watch?v=wXrTQzskJLE

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.24243
www.ndss-symposium.org

telligibility. However, these attacks were originally designed
to force target ASRs to output specific transcriptions for
perturbed “adversarial” audio samples. Therefore, their use as
defenses prevent an adversary’s unknown ASR from correctly
transcribing — and therefore breaking — a CAPTCHA brings
forth several fundamental questions, such as: Can these attacks
be successfully used as a defense? If so, what properties
of such attacks are required for the defense to be effective?
Which among the plethora of existing techniques are the most
suitable? And what approaches (if any) are robust to adaptive
adversaries who know that the defense is in place and can
adjust their attacks accordingly?

To answer these questions, we start our investigation by
deriving requirements for an attack that can be used as a
defense. We then turn to the literature and select 20 candidate
attacks. Out of three promising candidates, we find that only
one, the Kenansville attack [23], survives preliminary experi-
ments because of its high transferability. Transferability — the
ability of adversarial audio samples to fool models they are
not directly crafted against — becomes an essential property.
When an audio CAPTCHA is crafted, the defender does not
know which target ASR an adversary may eventually use for
transcription. Thus to be maximally robust, CAPTCHAs need
to be mistranscribed by as many models as possible. Our
design goal is to force ASR models to output an empty string
when presented with our audio CAPTCHAs. This is ideal
because it prevents the adversary from using phonetic map-
ping and statistical analysis techniques, in conjunction with
incorrect or partial ASR outputs, to help break CAPTCHAs.

Further experiments reveal that the Kenansville attack is
not robust against an adaptive adversary that simply adds noise
to the CAPTCHA before transcribing it. Therefore, we propose
Yeehaw Junction, a new algorithm that still achieves high
transferability but is robust against an adaptive adversary. The
Yeehaw Junction defense brings two key technical innovations:
(1) the addition of Gaussian noise to the perturbed sample
during CAPTCHA creation to increase robustness, and (2)
a novel thresholding technique that clips large amplitudes of
dominant frequencies in a way that confuses ASR models but
still preserves the location of the frequency peaks so that the
audio remains highly intelligible to the human ear.

We make the following contributions:

• Principally-Designed CAPTCHA Construction:
The design of audio CAPTCHA has been largely ad
hoc, relying on the experiential addition of cover noise
to attempt to thwart bots. In contrast, our approach
exploits weaknesses in modern ASR pipelines to in-
tentionally target audio components that are ignored
by our ears. We categorize 20 attacks, point to the
desirable elements found in these works, and then
demonstrate weaknesses in attempting to directly use
any of these schemes for CAPTCHA creation in the
face of an adaptive adversary.

• Measure Robustness, Intelligibility, and Attack De-
tection: We implement Yeehaw Junction and eval-
uate its suitability as a defense to produce au-
dio CAPTCHAs. We find that an attacker has
a low chance of correctly transcribing our audio
CAPTCHAs (P (transcription) = 4 × 10−5). We

then conduct a user study that shows that human
transcription accuracy of Yeehaw Junction is larger
than even Google’s popular reCAPTCHA [13] audio
CAPTCHA service. Finally, the distinctive profile of
Yeehaw Junction audio CAPTCHAs provides ASR
owners a 99.99% probability of detecting that their
ASR is being used to break CAPTCHAs [34].

• Robustness to Defenses: We test our method against
WaveGuard, which is one of the most effective de-
fenses against adversarial examples in the audio do-
main. WaveGuard’s goal is to undo the adversarial
perturbations present in the audio sample, thereby al-
lowing the ASR to output the original audio transcript
instead of the adversarial one. We demonstrate that
our adversarial CAPTCHAs can break all five defenses
proposed in the WaveGuard paper with a probability
greater than 99.99%. This means that there is no
method in existing literature that bots can use to undo
the perturbations introduced by our method. To our
knowledge, ours work is the first to successfully break
the WaveGuard defenses.

We note that the nature of adversarial systems means that
other researchers may eventually break this new technique;
however, the contribution of this work is deeper than a single
defense. Rather, it is the principle-driven approach for design-
ing transcription-resistant CAPTCHAs without making intel-
ligibility worse. To assist other researchers in testing similar
schemes, we will make all of our code and audio samples
available at sites.google.com/view/attacksasdefenses/home

II. BACKGROUND

A. Audio CAPTCHAs

A CAPTCHA protects resources against bots by generating
and grading tests that humans can pass, but current computer
programs cannot [3]. Audio CAPTCHAs are essential since
they are one of the only ways for visually impaired users to
complete a CAPTCHA. Without audio CAPTCHAs, a signif-
icant number of systems would either become vulnerable to
adversaries or lockout visually impaired users from potentially
critical services.

A good CAPTCHA must maintain accessibility to humans
while protecting the resource from adversaries. However, not
only can audio CAPTCHAs be broken by machines [37], [94],
[34], [89] with high success rates (91%) [18], but the intended
human users successfully pass them at a lower rate (< 50%)
[33] than the attack. These CAPTCHAs are especially difficult
for their intended Visually impaired users since the audio play-
back can overlap with a screen reader software, the users have
to remember the audio while navigating the page acoustically,
and they are unable to compare the audio against the associated
text CAPTCHA [33], [39], [49].

B. Automatic Speech Recognition systems (ASRs)

ASR systems take in speech samples and output transcrip-
tions of the spoken content [26], [103]. They enable human-
to-machine interaction, such as issuing commands to a digital
voice assistant (e.g., Amazon Alexa [28]). This is not an
easy task since the ASR system must be able to filter out

2

background noise and handle variations in accents and speech
patterns. For this reason, ASR systems’ processing generally
consists of three stages: preprocessing, feature extraction, and
decoding. Some models combine the feature extraction and the
decoding steps into a single Machine Learning (ML) model,
and others split the decoding step across several different ML
models [29], but all still perform each of these steps in some
manner.

Preprocessing: This phase in ASR systems consists of
taking in the raw audio file and eliminating the background
noise, interference, and other information that makes it more
difficult to understand the speech. Generally, low pass filters
which filters remove unwanted high-frequency noise from the
signal that are not directly related to the speech [52].

Feature Extraction: Next, the clean signal is converted
into overlapping frames, each of which is then passed through
a feature extraction algorithm. This algorithm retains only
the salient information from each frame. A variety of signal
processing techniques [74] and ML extraction layers [98] have
been used to establish which features to extract.

Decoding: Finally the extracted features are passed to a
decoding function, usually a machine learning model. This
model takes in the extracted features from the previous step
and outputs the final transcription. There have been a wide
variety of models are used for this purpose in ASR systems,
including Convolutional Neural Networks (CNNs) [19], [76],
Recurrent Neural Networks (RNNs) [56], [79], [80], [78],
Hidden Markov Models[73], and Gaussian Mixture Models
[65].

C. Phonemes

Human speech is made up of various component sounds
known as phonemes. Each phoneme represents the smallest
unit of sound in a word. The set of possible phonemes is fixed
due to the anatomy that is used to create them, but different
languages use different phonemes. For example, English is
made up of 44 phonemes, while the International Phonetic
Alphabet (IPA) contains 107 [30].

To perform phonetic translation, we use the Carnegie
Melon University (CMU) Pronouncing Dictionary [101]. This
is a machine-readable dictionary of over 130,000 words with
information on their pronunciation. Namely, it maps the words
to their phonemes. The CMU Pronouncing Dictionary out-
puts translations in the ARPAbet phoneme transcription code,
which is composed of 39 unique phonemes. ARPAbet is one
of several phoneme transcription codes related to the Inter-
national Phonetic Alphabet (IPA), with ARPAbet specializing
in English transcription. This dictionary greatly aids feature
extraction and decoding, since it allows us to evaluate how
translations are spoken, rather than how they are written
for instance, “two bear sail” and “to bare sale” are spoken
identically, yet written differently.

D. Breaking Audio CAPTCHAs

The adversary’s goal is to use automated means to break an
audio CAPTCHA (i.e. transcribe it correctly). Recent methods
often involve the use of commercial ASRs for transcribing
CAPTCHAs [89], [34]. This method is a multi-step process.

The audio CAPTCHA consists of sound bites or utterances
of words, digits, characters, etc. The adversary splits these
into individual sounds, each containing a single utterance. For
example, the adversary splits the CAPTCHA containing the
sequence “ABMKL2” into six individual audio files, each of
which is then passed to the ASR individually for transcription.
Passing individual utterances, instead of the entire CAPTCHA
audio wholesale, improves accuracy. The adversary then parses
the transcripts to ensure these are in the correct format and only
contain numbers and digits.

In case the ASR outputs an incorrect transcript for an
utterance, the adversary uses one of two techniques to recover
the real one: phonetic mapping or statistical analysis. Phonetic
mapping is employed when the ASR outputs a phonetically
similar transcript to an expected digit or character (e.g., “too”
for the digit “2”). In this case, the adversary can use phonetic
mappings to identify the digit that sounds closest to “too” as
the correct transcript (“2”).

Statistical analysis is used when the ASR regularly outputs
the same unique incorrect transcript for a sound bite. For
example, the ASR might output “crown” for the CAPTCHA
digit “two,” even though they are phonetically dissimilar. An
adversary with enough queries can perform simple statistical
tests to detect this pattern. As a result, she transcribes “2”
every time the ASR outputs “crown.”

E. Datasets

We used several audio training datasets to create our
models.

LibriSpeech [69]: is a corpus of English speech used to
train ASR models. The audio is derived from audiobooks that
are part of the LibriVox project. This dataset contains about
1000 hours of text-aligned, short utterances sampled at 16kHz.
This data is segmented using Smith-Waterman alignment [88]
and samples, where the audio and text do not match, are
removed.

Google Speech Commands Dataset [77]: is composed of
short single-word utterances. Specifically, the dataset consists
of 65,000 one-second samples of thousands of different people
saying one of 30 words. This dataset was designed to be used
to train simple ASR models for words such as “Yes”, “No”, and
“Up.” While the vocabulary is small, the number of different
voices, accents, and speech patterns in this dataset is useful in
representing the many variations of speech that exist.

LDC: ISOLET Spoken Letter Database [48]: is used
to train ASR models on the English Alphabet. The dataset
contains two samples of each English letter being spoken by 75
males and 75 females of varying ages. If a letter was severely
misspoken then the sample was removed from the dataset.

III. PROBLEM FORMULATION & THREAT MODEL

In this section, we formulate the goal of this work. Next, we
describe the adversary’s capabilities and techniques for break-
ing audio CAPTCHAs and detail the different requirements
for a CAPTCHA generation algorithm to this adversary.

3

A. Problem Formulation

Our goal is to design a CAPTCHA generator that can
perturb benign audio samples to produce audio CAPTCHAs
that are intelligible to humans, but can force the attackers’
ASR into outputting incorrect transcriptions. We also want to
produce CAPTCHAs that are easily detectable by commercial
ASR services, alerting when their APIs are being misused.

B. Adversary

We consider an adversary whose goal is to break audio
CAPTCHAs (i.e., correctly transcribe their audio) in an auto-
mated way using an ASR. We assume that the adversary has
the ability to query the CAPTCHA service (i.e., check if the
proposed transcription is correct).

Query Access: CAPTCHA services enforce rate limits to
prevent unfettered access from malicious users. However, we
assume a strong adversary who has no such constraints and
can make unlimited queries to the CAPTCHA service.

Success Rate: By combining statistical analysis and pho-
netic mappings, researchers have been able to break audio
CAPTCHAs with success rates of up to 98.3% [89]. As in
earlier works, we assume that the adversary is successful if
it can correctly transcribe the entire CAPTCHA at a success
rate of just 1% [38]. We show that our CAPTCHAs are robust
to such a small upper bound. While the success rate of 1% is
considered standard in the research community [38], improve-
ments made by future attacks may cause the community to
reduce the threshold of success in future years. As a result, our
goal was to design an algorithm that is (at least partially) future
proof. Our method has a success rate of less than 4 × 10−5,
which is orders of magnitude below the current threshold.

Adaptive Adversary: This adversary has perfect knowl-
edge of the audio CAPTCHA generation algorithm. Having
this knowledge allows the adversary to modify her behavior
to overcome the algorithm, improving her chances of breaking
the CAPTCHA. There are a number of ways the attacker can
modify her behavior, the two most popular of which are vul-
nerability analysis [96] and adversarial training [66], [84], [63].
As the name suggests, vulnerability analysis involves finding
weaknesses in the CAPTCHA algorithm. The adversary can
then modify the CAPTCHA audio, before passing it to the
ASR, so that the ASR will output the correct transcript. On the
other hand, adversarial training involves training a local ASR
to specifically label audio CAPTCHAs. The local model will
be designed to be more robust to the CAPTCHA algorithm and
will likely produce correct transcripts. We show in this paper
that our CAPTCHAs are robust to an adaptive adversary with
perfect knowledge of our algorithm.

C. Defender

Considering these adversarial capabilities, we now list the
requirements of the defender (and her CAPTCHA generation
algorithm) in order to be robust to such a strong adversary.

Intelligibility: The defender’s audio CAPTCHAs must
be intelligible to humans (i.e., human transcribable). Naively
degrading audio CAPTCHA quality might help prevent ASRs
from producing correct transcriptions, but will also negatively
impact human intelligibility.

ASR Output: Even if the ASR mistranscribes an audio
sample (e.g., “too” instead of “two”), an adversary can recover
CAPTCHA text. To prevent this, our goal is to force the ASR
to output an empty string. This is an incredibly strong threat
model since ASRs can still output some text. However, by
forcing an empty output, our attack makes it impractical for
the adversary to recover the CAPTCHA text.

Transferability: An adversary can use any commercially
available ASR, or even a locally trained one, to transcribe the
CAPTCHA. This means that the defender will likely not have
knowledge of or even query access to the adversary’s ASR.
Therefore, the CAPTCHA audio must be highly transferable
to force any unknown ASR to output an empty string.

Detection: Adversaries leverage commercially available
ASRs to conduct attacks against CAPTCHA services without
the consent of the ASR owners. These ASRs are available via
API calls and handle massive volumes of requests. Our final
requirement is that the audio CAPTCHA be identifiable by the
ASR owner. This will allow the ASR owner to flag, block, or
delay the adversary’s requests.

IV. SELECTING ATTACKS AS DEFENSES

One way to meet the requirements outlined above is
to craft audio samples specifically designed to fool ASRs.
Fortunately, there are a plethora of attacks in the space of
adversarial machine learning that try to do exactly that [25].
We hypothesize that these attacks can be used as a defense
mechanism to beat the ASRs used by CAPTCHA breaking
adversaries. In this section, we give an overview of these
attacks and evaluate them as potential defenses using our threat
model.

A. Different Attacks on ASRs

The goal of the CAPTCHA generator is to craft audio
samples that are intelligible to humans, but can force the
adversary’s remote ASRs into a phonetically dissimilar mis-
transcription (i.e., force the ASR to output random garbage
e.g., “HadJSNm” for the audio containing “one two three”,
instead of “Juan too tree”). There are a number of attacks that
can help achieve this goal (Table I):

White-Box Attacks: These attacks exploit knowledge of
the model’s decision boundaries to craft adversarial samples.
The most popular of these are optimization attacks. However,
it is unclear whether these attack audio can force phoneti-
cally dissimilar transferability. If so, these attacks will be a
good candidate for crafting audio CAPTCHAs. There are a
multitude of attacks, representative candidates are shown in
Table I. Optimization attacks can be classified into two types:
psychoacoustic and hard-clipping [24]. We choose one attack
from each, CW [42] and P-PGD [24] as potential candidates.
We choose these specific attacks because they have the highest
rates of attack success and are architecture agnostic (i.e., can
work against all ASR architectures). Other attacks in this
category are too sensitive and can fail even due to minor
modifications to the ASR architecture.

Black-Box Attacks: These attacks do not require any
knowledge of the target ASR to craft adversarial samples. The
two most popular types are gradient-free and signal processing

4

Potential
CAPTCHA

Use

Audio
Quality

Attack
Type

Taori et al. [95] ✗ Intelligible Grad Free
M. Azalnot et al. [27] ✗ Intelligible Grad Free

HVC (2) [41] ✗ Inaudible Misc
Cocaine Noodles [97] ✗ Inaudible Misc
Dolphin Attack [105] ✗ Inaudible Misc
Light Commands [92] ✗ Inaudible Misc

Roy et al. [75] ✗ Inaudible Misc
HVC (1) [41] ✗ Unintellgible Opt

CW [42] ✓ Intelligible Opt
Houdini [47] ✓ Intelligible Opt

Schonherr et al. [82] ✓ Intelligible Opt
Kreuk et al. [61] ✓ Intelligible Opt
Qin et al. [72] ✓ Intelligible Opt

Yakura et al. [102] ✓ Intelligible Opt
Commander Song [104] ✓ Intelligible Opt

Devil’s Whisper [44] ✓ Intelligible Opt
Abdoli et al. [20] ✓ Intelligible Opt

P-PGD [24] ✓ Intelligible Opt
Kenansville Attack [23] ✓ Intelligible Sig Proc

Abdullah et al. [21] ✗ Unintellgible Sig Proc

TABLE I: Overview of existing attacks. Inaudible: Audio
will not be heard by the human ear. Unintelligible: Audio
will sound noisy to the human ear. Intelligible: Audio will
be clean and understandable by the human ear. Grad Free:
Gradient Free, Misc: Miscellaneous, Opt: Optimization, Sig-
Proc: Signal Processing

attacks. Gradient-free attacks are a constrained version of the
optimization attack family because they estimate the decision
boundaries of the target ASR. However, these produce lower
quality adversarial audio and therefore, are not good candidates
for audio CAPTCHA.

On the other hand, signal processing attacks exploit the
imperfections in the signal processing algorithms used in the
ASR pipeline that are designed to emulate the human ear [21].
These attacks can produce samples that can successfully trans-
fer to and exploit remote models. This makes signal processing
attacks good candidates for generating audio CAPTCHAs. Of
the signal processing attacks, only Kenansville can produce
intelligible audio [23]. As a result, we will use it as a candidate
attack for our experiments.

B. Evaluation: Transferability

Having chosen the three attack candidates [24], [42], [23],
we evaluate these as potential CAPTCHA algorithms. The goal
is to quantify how well these attacks provide phonetically dis-
similar transferability. Attack audio with higher transferability
will have a higher probability of fooling the adversary’s ASR.

ASRs: For this experiment, we chose a total of four
models [16]: one surrogate (DeepSpeech [6]), and three remote
(Wit.ai [9], Google [7], and IBM [8]). The surrogate model is a
local model available to the CAPTCHA service owner. This is
designed to emulate the adversary’s ASR or the remote ASR.
We chose the popular and open-source DeepSpeech ASR as
the surrogate. In each case, the candidate algorithm constructs
adversarial samples for the surrogate ASR and transfers them
to the remaining remote ones.

Dataset: We followed the procedure laid out in previous
works [25], [24]. We pooled a set of 1000 benign audio files by

(b)
Peturb

(a)
Benign

(i)
Decomposition

(ii)
Thresholding

(iii)
Reconstruction

(c)
Attack

(d)
ASR

(e)
Check

Attack
Success?

Fig. 1: The Kenansville attack pipeline. (a) We start with the
audio sample we wanted to perturb. (b(i)) It is decomposed
into frequency components using the DFT. (b(ii)) Next, all the
frequency bins that have less power than the threshold are set
to zero. (b(iii)) The remaining frequencies are reconstructed.
(c) This produces a raw perturbed audio, (d) which is passed
to the ASR. (e) If the attack succeeds, the threshold value is
decreased, otherwise, the threshold is increased. Then the steps
repeated again.

randomly sampling from the LibriSpeech [69] dataset. Each of
these was transcribed using the surrogate DeepSpeech model
to ensure an average Word Error Rate of less than 0.1.

Adversarial Audio Generation: Each of the 1000 audio
files was then perturbed using the three candidate attacks to
work against the surrogate DeepSpeech model. Each audio
sample was perturbed to random target transcripts using the
three attacks using 1000 attack iterations. In the end, we have
1000 audio samples from each attack.

Transferability: Next, we pass each of the 1000 attack
audio samples to the three remote ASRs and retrieve the corre-
sponding adversarial transcriptions. We calculate the phonetic
similarity using the Levenshtein distance scores between the
phonetic representations (extracted using the CMU Pronounc-
ing Dictionary [15]) of the original transcript and the one
produced by the remote ASR.

Results: Table II shows the results of our experiment.
Smaller distance scores mean that the adversarial transcript
(produced by the remote ASR) is phonetically similar to the
original label. We can observe that optimization attacks have
lower distance scores compared to the signal processing attack.
This demonstrates that optimization attack CAPTCHAs will
produce transcripts similar to the original CAPTCHA label
(e.g., “too” for the number “two”), allowing the adversary to
easily reconstruct CAPTCHA text. Thus, optimization attacks
are unfit for use as CAPTCHA generation algorithms. In
contrast, the Kenansville attack resulted in the highest distance
scores. This indicates that the Kenansville attack fulfills the
transferability requirement for CAPTCHA generation mecha-
nism.

C. Evaluation: Adaptive Adversary

As described in our threat model, any valid CAPTCHA
generation method should succeed in the presence of an adap-
tive adversary. Having filtered the potential attack candidates
to just Kenansville, we now evaluate its performance against
an adaptive adversary. This adversary can either perform

5

Attack Name Attack Type Transcription Distance
Google [7] IBM [8] Wit.ai [9]

CW [42] Optimization 2.56 5.94 23.76
P-PGD [24] Optimization 13.64 24.5 19.82

Kenansville [23] Signal Processing 49.31 49.76 48.39

TABLE II: Transferability results. The numbers represent the Levenshtein distances between the original and the adversarial
transcript. Smaller distances imply high phonetic similarity to the original, benign label (e.g., “Juan too tree” for the original
label “one two three”). Larger distances imply lower phonetic similarity to the original label (e.g., “HadJSNm” for the original
label “one two three”). Optimization attacks have higher phonetic similarity (than signal processing attacks) and therefore, can
not be used as CAPTCHA generators. This leaves the signal processing attack, which we further evaluate in Figure 2.

adversarial training or vulnerability analysis. While the original
paper demonstrated that Kenansville is robust to adversarial
training (reasons for which discuss in the next section), in this
paper we will perform vulnerability analysis.

Attack Steps: We first discuss how the Kenansville attack
works. The pipeline performs signal decomposition using the
DFT on a given audio sample. Next, all the frequency bins with
power less than the threshold are set to zero, reconstructed
back into a raw signal, and passed to the ASR. If the ASR
outputs the wrong transcript, we lower the threshold and start
again. This is because smaller thresholds result in better audio
quality. If the ASR outputs the correct transcript, the threshold
is increased and the steps are repeated.The user can either
manually pick a fixed threshold (as defined in the original
Kenansville paper), or find one using binary search. In order
to avoid over-fitting the adversarial samples to a single model,
we manually pick a fixed threshold for our experiments. A
diagram of this attack can be seen in Figure 1.

Why The Attack Works: This attack exploits the dif-
ferences between how humans and ASR pipelines process
audio. Specifically, the attack discards low power frequencies
(by setting their intensities to zero). Due to their already low
intensity, these frequencies are inaudible to the human ear.
Therefore, removing them does not affect the audio quality
for human listeners. However, passing these perturbed audio
samples to the ASR forces an incorrect output. That is because
audio samples with zero intensity frequencies do not occur in
the natural world. As a consequence, such samples do not
exist in the training datasets for ASRs and therefore force
mistranscriptions.

Initial Hypotheses: Audio samples with empty frequency
bins do not exist in the natural world, and therefore not in the
ASR’s training dataset. As a consequence, these samples force
ASRs into producing a mistranscription. Adding power to the
empty frequency bins will undo the effects of the attack and
allow the ASR to produce the correct output.

Methodology: The adaptive adversary will use this knowl-
edge to add small intensities of power back to the spectrum.
One way to do this is to add Gaussian (white) noise. Using
any other noise might bias some frequency bins over others. In
contrast, Gaussian noise increases the power evenly across the
previously empty frequency bins, thereby undoing the effects
of the attack. To account for the noise, the attack algorithm
will need to perturb the audio even more by setting a higher
threshold. This will further degrade the quality of the attack
audio but will make it robust to the Gaussian noise. In essence,
the attack will balance robustness to Gaussian noise against the
intelligibility of the attack audio sample.

In this experiment, we quantify the intelligibility of the

Kenansville attack in the presence of this adaptive adversary.
Specifically, we will use multiple magnitudes of noise to
produce different noised versions of the adversarial audio. The
attack succeeds only if all the resulting noised versions produce
an empty string. We also run a similar baseline experiment,
without the presence of the adaptive adversary. For a fair
comparison, we maximize Kenansville’s intelligibility and use
binary search to find the optimal perturbation parameter (as
recommended by the original authors).

Setup: For this experiment, we opt for datasets that are
frequently used in real-world CAPTCHA services2, consisting
of words, letters, and digits. Our dataset included 26 English
language characters from the LDC dataset [48], and 10 digits,
and 20 words from the Google speech commands dataset [100].
We then randomly sample 10 audio files from each of these
labels.3 We only use files that the commercial ASRs transcribe
correctly. This results in approximately 560 audio files for the
adaptive adversary and the baseline experiments.

We use Gaussian noise with the mean-centered at zero, and
variance selected on a logarithmic sweep between 0.001% to
20% of the maximum amplitude found in the attack audio,
resulting in 46 amplitudes. We generate five different Gaussian
noise samples for each of these 46, producing 230 noise
samples. We repeat the trial five times since Gaussian noise
is random, and could potentially impact our results. Each of
the resulting 230 noise signals is added to the perturbed audio
sample, resulting in 230 noise outputs. These are then passed
to the model for transcription.

We pick four commercially available ASRs that the ad-
versary can employ. These included Microsoft Azure, Google
Speech, IBM, and Wit.ai.

Results: We evaluate the effectiveness of the adaptive
adversary similar to the authors of the original Kenansville
paper. Specifically, we compare the transcription success rate
of several ASRs against the acoustic distortion measured
using the Root Means Squared Error (RMSE) between the
original and perturbed audio. Higher RMSE means greater
audio distortion to successfully fool the model.

Figure 2 shows the results of these experiments. As the
RMSE increases, the successful transcriptions decrease. And
the faster the rate of decrease (greater steepness of line), the
better the attack. We can observe that the steepness decreases

2We have placed these findings on current CAPTCHA services in the
Appendix Table VII.

3We only chose 10 samples per label because we make 1,380 queries for
each sample ballooning to a total of 900,000 queries. Increasing the total labels
to greater than 10 would have made it difficult to use any of the commercial
ASRs since these impose strict rate limiting.

6

Fig. 2: We evaluate Kenansville against four popular ASRs.
Each line shows the change in ASR accuracy with respect
to Kenansville’s distortion (measured using the RMSE). The
vertical red line is the maximum distortion before which the
audio starts to become unintelligible. The dotted lines represent
the normal ASR, while the solid ones represent the ASR
controlled by an adaptive adversary. Kenansville requires sig-
nificantly more distortion to fool the adaptive adversary’s ASR.
Therefore, the solid lines have a dramatically higher RMSE
than the corresponding dotted ones. The increased distortion
makes the audio unintelligible. Therefore, Kenansville audio
can not be used in CAPTCHAs.

markedly for the adaptive adversary (solid line), than without
one (dotted line). For example, consider the results for the
Google ASR (green). The percentage of successful transcripts
degrades far more slowly for the adaptive adversary (solid
green line) than the baseline (dotted green line). This indi-
cates that the presence of the adaptive adversary (green solid
line) results in higher audio distortion, significantly degrading
human audio intelligibility.

To better visualize the intelligibility of the audio, we denote
the GSM audio codec’s average RMSE as the baseline for
audio comprehension (the red vertical dashed line in Figure 2).
The GSM audio codec is used during 2G cellular calls, which
is the most common global means of telephony communica-
tion. We will assume any audio created that has an RMSE
greater than GSM (to the right of the GSM line in Figure 2)
is unintelligible, and thus unfit as an audio CAPTCHA.

Examining the Google results again, we can see that the
presence of the adaptive adversary results in a significant
degradation in the attack audio quality. In the baseline, Ke-
nansville can force more than 90% of the audio samples to
mistranscribe, before crossing the GSM line, and become un-
intelligible. However, in the presence of the adaptive adversary,
Kenansville is only able to degrade the transcription success to
50% before the audio becomes too degraded for CAPTCHA
use. We see these results consistently across all models (except
for Wit.ai4). These plots, therefore, show that the Kenansville
attack is insufficient for CAPTCHA generation as it is unable
to produce intelligible audio in the presence of an adaptive
adversary. This means that the Kenansville attack is broken
and should not be used for either CAPTCHA generation or

4There are a number of reasons that might explain Wit.ai’s performance.
These range from model architecture, pre-processing to quality of the training
data. However, it is difficult to make a concrete assessment as Wit.ai is a
black-box system, with no publicly available information.

Frequency
(Hz)

In
te
ns

ity

Td

Frequency
(Hz)

In
te
ns

ity

Td

Before After

Fig. 3: From the Yeehaw Junction pipeline: Decimation is
performed on the audio spectrum. We set all the frequency
bins (blue) below Td to zero.

for any of the applications proposed in the original paper.5.

Take Away: Despite the plethora of candidate attacks, none
of them can be used as CAPTCHA generators. Attacks either
fail to transfer between different ASRs or are vulnerable to
adaptive adversaries. Thus, the current work does not suffice.
Lastly, even though we use RMSE in this experiment, such
metrics are a poor measure for human audio intelligibility [21].
Therefore, in the later subsections, we will evaluate the
CAPTCHA quality under the adaptive adversary via a user
study.

V. YEEHAW JUNCTION OVERVIEW

So far, we have demonstrated that existing works from
adversarial ML can not be used as CAPTCHA generation
algorithms. The three potential candidate CAPTCHA gener-
ators do not meet the threat model requirements: The two
optimization attacks failed to exploit remote ASRs and the
Kenansville attack is vulnerable to adaptive adversaries. Based
on the lessons learned from our experiments, we design a new
strategy to overcome the limitations inherent to prior work.

We design our CAPTCHA algorithm, Yeehaw Junction,
based on the signal processing family of attacks. This is
primarily because this family of algorithms has high trans-
ferability against remote models (a necessary condition for
CAPTCHA audio), as we saw in the Section IV. However,
crucially, these attacks (including Kenansville) lack robustness
to adaptive adversaries. Our new Yeehaw Junction defense
overcomes this limitation by exploiting the differences in how
humans and ASRs process audio, and produces CAPTCHA
that are robust to bots.

A. Defense Steps

Our defense has three major steps: decimation, clipping,
and noising. The Kenansville method has none of these steps,
which explains its lack of robustness to adaptive attackers.
Each of our steps is either motivated by the requirements of
the threat model or the lessons learned during the evaluations
in the previous section.

Step 1: Decimation: Decimation is the process of discard-
ing frequencies below a predefined threshold Td. This property

5Readers are invited to listen to and compare the audio samples here:
https://sites.google.com/view/attacksasdefenses/home

7

Frequency
(Hz)

In
te
ns

ity

Tc

Before After

Frequency
(Hz)

In
te
ns

ity

Tc

Fig. 4: From the Yeehaw Junction pipeline: Clipping is per-
formed on the audio spectrum. We set all the frequency bins
(blue) above the Tc to the value of Tc.

is known to be robust against adversarial training [23], as it
prevent the ASR from converging during training. As a result,
models trained on decimated audio have lower accuracy than
their baseline counterparts. Intuitively, it is because frequency
bins are dissimilarly discarded across the spectrum (even for
two utterances of the same word), which affects the model’s
ability to learn proper decision boundaries. We use this key
observation to design the first step of our defense, shown
in Figure 3. Here, we take the DFT of the audio sample,
discard the frequencies below the threshold Td (shown in
blue). We then use the remaining frequencies (shown in red)
to reconstruct the raw audio waveform.

Step 2: Clipping: We use spectral clipping to force the
model to output an empty string. The human ear largely relies
on small bands of dominant frequencies (e.g., formants in
the case of vowels) to identify individual phonemes [91]. For
example, the phoneme /æ/ (such as in the word “hat”) has
an average first formant of 585 Hz and the second formant
of 1710 Hz. These frequency peaks vary between people and
within the same speaker, thus making the raw frequency values
less critical to intelligibility. Instead, humans rely on the ratio
between these two frequency peaks. In the case of /æ/, the
difference between the first two peaks is generally around 1.9
times the value of the first formant [35]. The human ear can
still identify phonemes even if the maximum amplitude within
these peaks have been clipped, as long as the location of the
frequency bands with the spectrum remain unchanged and the
frequency band still dominates its neighboring frequencies.
This is because, the amplitude of the peak only determines
the volume at which the listener hears the phoneme. As long
as the clipped peaks do not change the overall structure of
the waveform (i.e., the highest peaks are still at the same
frequencies before and after clipping) the listener can still
determine the intended phoneme. This is because the formant
frequency values are the main determining factor in phoneme
identification [91].

In the following procedure, we propose clipping the dom-
inant frequencies of the spectrogram as a means of fooling
the model. Clipping these frequencies will create phonetic
structures that do not exist in the natural world, and will
therefore fool the ASRs. However, since clipping does not
change the location of the dominant frequencies, it will still
sound the same to the human ear.

Additionally, clipping has the added benefit of being robust
to the Gaussian noise-based adaptive adversary. By clipping,

(ii)
Decimation

Fig. 5: Full Yeehaw Junction pipeline. (a) The audio sample is
(bi) is decomposed into its frequency components. (b.ii) Deci-
mated by discarding low-intensity frequencies. (b.iii) Clip the
decimated frequencies based on a threshold. (b.iv) Reconstruct
the modified spectrum into a (c) raw audio sample. (d) Add
noise to the audio, to account for the adaptive adversary (e)
and pass it to the ASR. (f) Check for success. If so, lower the
clipping threshold and rerun.

we are leveling out the structure of the peaks that the ASR
needs for correct transcriptions. Adding random noise will not
recreate the structure of the peaks that we clipped out and not
result in the correct original transcript.

For this step, we will use a clip function to clip the values
outside a specified interval [0, Tc] (Figure 4), calculated using:

Tc = max (DFT (x))− α (1)

where α is the clipping value between [0, max (DFT (x))].
All the frequencies that have more intensity than a threshold
Tc (shown in blue) will be clipped to Tc. All the frequencies
that lie below the Tc (shown in red) will remain unchanged.
Therefore, higher values of Tc will clip out more components,
producing lower-quality audio. Such clipping will impact the
dominant frequencies (i.e., the ones with the highest power)
while, maintaining the overall phonetic structure will. We will
use a binary search to efficiently locate the minimum Tc to
minimize the impact on audio quality. The goal here is to
find the minimum threshold that also guarantees that the ASR
will output an empty string. Instead of iteratively reducing the
Tc value until we find the smallest value that can fool the ASR,
we run the binary search algorithm.

Step 3: Noising: As seen in the previous section, an
adaptive adversary can break Kenansville by adding small
amounts of noise, enabling the ASR to transcribe the audio
CAPTCHA correctly. Therefore, we account for the noising
step as part of our defense pipeline, We will add noise to
every sample produced with our defense before we pass it to
the ASR. This will ensure that we take account of the adaptive
adversary during audio CAPTCHA generation.

The full pipeline is shown in Figure 5. We perturb an audio
sample (a), by first performing signal decomposition (bi). We
then decimate (bii) the audio by some fixed threshold, Td.
Next, we clip the spectrum (biii) using a variable threshold,
Tc, and then reconstruct the raw audio waveform. To account
for the adaptive adversary, we noise the audio (d) by adding
Gaussian noise, before passing it to the ASR for transcription.
We then check whether the ASR output an empty string. If

8

Yeehaw Kenansville
[23]

CW
[42]

PPGD
[24]

Intelligibility ✓ ✓ ✓ ✗
Transferability ✓ ✓ ✗ ✗

Adp-Adv
(Adv-Training) ✓ ✓ N/A N/A

Adp-Adv
(Vuln-Analysis) ✓ ✗ N/A N/A

Detection ✓ N/A N/A N/A

TABLE III: Comparison between our CAPTCHA algorithm
and existing ones using the threat model. Our algorithm meets
all requirements. ✓: Meets Requirement. ✗: Does not meet
requirements. N/A: We did not test since other requirements
not met.

so, we reduce Tc and repeat the steps until we find the lowest
value for Tc that forces the ASR to produce an empty string.
Lastly, lowering the value of Tc and Td does improve attack
success, but at the cost of audio quality. The lower the value,
the lower the audio quality.

VI. EVALUATION OF YEEHAW JUNCTION

We now evaluate Yeehaw Junction against the threat model
(Table III) and compare it against other CAPTCHA algorithms
from literature and industry.

A. Transferability

As discussed in Section III, audio CAPTCHAs should be
able to transferable to unknown remote ASRs (i.e., force the
ASR to output an empty string). This prevents the attacker
from using phonetic mapping or statistical analyses to get the
extract transcript. In this experiment, we will quantify our
attack’s transferability. We craft audio CAPTCHAs for each
(surrogate) ASR using our CAPTCHA algorithm and then
pass these to the remaining remote models to calculate the
transferability rates.

Setup and Methodology: We use Yeehaw Junction to
perturb each audio file. The CAPTCHA quality controlled
using two parameters: the decimation (Td) and clipping (Tc)
thresholds. We use binary search to find the values of these
parameters. We will continually perturb the audio for different
values until the surrogate model produces an empty transcript.
We target four models: Google, Wit.ai, IBM, and Azure.

The vast majority of our experiments were conducted on
a 2015 Macbook Pro laptop. This is because our technique is
designed to be fast. It takes a few milliseconds to generate
an adversarial sample and requires O(logN) time (in the worst
case). Moreover, it does not require any expensive hardware
(such as GPUs).

Dataset: Similar to the previous experiments, our audio
dataset consists of words, numbers, and characters. We will
pool benign audio samples from across 56 labels (20 words,
10 digits, and 26 characters). We will select 10 audio samples
for each file, resulting in 560 utterances.

Results: Table IV shows the results of the transferability
experiments. Samples created for the Azure model are the
most transferable. This means that CAPTCHAs designed to
evade Azure (i.e., force empty string output) will also evade

Remote
Azure Google IBM Wit.ai

Su
rr

og
at

e Azure 100% 93% 97% 81%
Google 54% 100% 96% 76%
IBM 31% 82% 100% 64%

Wit.ai 43% 76% 97% 100%

TABLE IV: Transferability experiments for Yeehaw Junction
show that it has high transferability. Numbers in bold show
the highest levels. Models names have been arranged in
descending order of their transferability rates.

remote models as well. In the worst case, the audio generated
against Azure will have an evasion rate of at least 81%
against remote models. Upon further inspection, we observed
that Azure required the highest Tc of all the models. There-
fore, crafting audio samples for Azure will guarantee success
against a six-length CAPTCHA with at most probability of
P (transcription) = (1−0.81)6 = 4×10−5. This is orders of
magnitude below the 1% success rate needed for the adversary
to be considered successful. However, higher Tc values meant
that adversarial audio that successfully evaded Azure had the
lowest quality across all the models. This means that a sample
that can fool the Azure model could also fool other models.

The Azure results make sense in the light of the follow-
ing observation: lower quality audio generally has a higher
probability of fooling the target ASR and higher probability
of transferring to unknown models. Additionally, as the value
of Tc increases the quality of the generate audio decreases,
which consequently, makes it harder for the Azure model to
understand the audio content. However, while the Azure model
fails to produce any transcript, the human listener can manage
to make out the contents of the audio samples (as we show
later in the User Study).

B. Intelligibility

So far, we have demonstrated the robustness of Yeehaw
Junction to remote ASRs. We want to ensure that our audio
is intelligible to humans. As a result, we conduct a user study
to examine intelligibility. We compare the human transcription
rate of Yeehaw Junction against and reCAPTCHA (which is
the most popular CAPTCHA service [11]). Our goal is to
demonstrate that Yeehaw Junction is as intelligible as other
services while providing robustness to ASRs. It is important to
note that the goal of this paper is not to develop the most usable
CAPTCHAs (like previous works [51]). Instead, we want to
develop the most intelligible CAPTCHAs. We can improve
overall usability with findings from other work [51].

We also include in our experiment Kenansville audio sam-
ples that can fool an adaptive adversary. While we have shown
in earlier experiments that Kenansville produces audio samples
with high distortion when trying to evade an ASR controlled
by an adaptive adversary, this experiment will demonstrate that
these audio samples are not intelligible to humans listeners.
This will justify the need for Yeehaw Junction.

Setup: We conducted a single-session, within-subject user
study (IRB reviewed and exempted), with participants recruited
from Amazon’s Mechanical Turk (MTurk) crowd-sourcing
platform. Participants were located within the United States,
had an approval rating for Human Intelligence Task completion
of more than 95%, and had ages from 18 to 55 years.

9

During the study, each transcribed three randomly selected
CAPTCHAs.

Four CAPTCHAs were sampled from each of Yee-
haw Junction, Kenansville (Adaptive Adversary), and re-
CAPTCHA. Each audio samples from reCAPTCHA, Yeehaw
Junction, and Kenansville contain either three or four-word
phrases from the English language. Each participant was
presented with three CAPTCHA audio samples from the three
CAPTCHA generators in random order, and the participant
was asked to transcribe. Transcription accuracy was evaluated
using the word level edit distance. We treat each word as an
individual token (instead of each character) as a misspelled
word is considered a failure by the CAPTCHA service.

Moreover, as it is not feasible to test all the Td and Tc

values, we pick perturbed audio samples from our earlier
experiments. However, we avoid using characters that were
phonetically similar (e.g., m vs n), to avoid confusing listeners.
This is a very common problem, which explains why militaries
use the NATO phonetic alphabet [14], instead of the English
alphabet, during audio communications.

In addition to transcribing, the participants were asked the
number of times they played back the audio, a demographic
questionnaire, and compensated with $1 for taking part in the
study. Before running the experiment, we calculated the sample
participant size to be 199, with an effect size of 0.5, a type-I
error rate of 0.05, and statistical power of 0.8 and recruited
201 participants. On average, participants took three minutes
to complete the study.

Lastly, we pass the CAPTCHA samples from three gener-
ators to the Google Speech API to see which ones transcribe
correctly. If the model did not transcribe them correctly, we
use the unCAPTCHA [34] strategy of passing one utterance
at a time. If the model got a correct transcription in either
scenarios, that CAPTCHA audio was considered broken.

Results: Table V shows the results of our experiment.
There are three main takeaways here. First, Yeehaw Junction
audio is more intelligible than reCAPTCHA. Smaller edit
distance scores means smaller transcription errors. Table V
shows that Yeehaw Junction has the smallest score. After
running a repeated-measure t-test, we found that transcription
errors (missing or misspelled words) for Yeehaw Junction are
significantly lower than both reCAPTCHA (t = 2.17, p <
0.05) and Kenansville (t = 11.63, p < 0.001). Table V
presents summary statistics (mean and standard deviation) of
transcription evaluation based on word-level edit distance.

Second, the Kenansville produces highly unintelligible
audio. We can see that Kenansville has the highest distance
score of 3.09 across all the CAPTCHA samples. Upon further
inspection, we noted that over 55% of the users had left
the Kenansville audio transcriptions blank as they could not
understand the audio at all. In stark contrast, no transcription
was left blank for Yeehaw Junction. This proves that Ke-
nansville audio is unintelligible and can not be used for audio
CAPTCHAs. Additionally, participants, on average, had to
playback Kenansville three times for transcription, compared
to twice for for Yeehaw Junction and reCAPTCHA. This also
supports the lower audio quality and incomprehensible nature
of Kenansville. Even though Kenansville and Yeehaw Junction

CAPTCHA
Algorithm Broken Edit Distance

(M/SD)
reCAPTCHA [99] ✓ 1.50/1.49
Yeehaw Junction 1.21/1.69
Kenansville [23]

(Adaptive Adversary) 3.09/1.45

TABLE V: User study results. First, our Yeehaw Junction de-
fense is robust to ASRs, while having the lowest edit distance
scores (even lower than reCAPTCHA). Second, Kenansville
has the highest scores, meaning its audio samples are least
intelligible. Third, reCAPTCHA is broken (i.e., is unable to
fool ASRs). M: Mean, SD: Standard Deviation.

belong to the same family of signal processing attacks, they
have widely different characteristics and audio quality.

Third, the table V shows that reCAPTCHA is broken as
its samples were correctly transcribed by the ASR. This was
possible even without using the stronger unCAPTCHA strat-
egy. In contrast, the ASR did not correctly transcribe any of
the audio samples from Yeehaw Junction or Kenansville, even
when using the unCAPTCHA method. This means that even
a lazy adversary can break reCAPTCHA by passing audio to
the ASR wholesale. In contrast, such an adversary is unable to
break Yeehaw Junction and Kenansville. These results confirm
our hypothesis that Yeehaw Junction is a viable CAPTCHA
generator. Our defense has both higher transcription accuracy
and robustness than the popular reCAPTCHA.

C. Adversarial Training

So far, we have demonstrated that our defense can produce
intelligible audio that can fool commercial ASRs with very
high success rates. This effectiveness can be attributed to two
reasons. First, commercial ASRs are not designed to break
CAPTCHAs. Second, their training data does not account for
our Yeehaw Junction audio. To overcome these limitations, an
adaptive adversary can train a local model specifically designed
to break our CAPTCHAs. This is known as adversarial training
and has been shown to be the most robust means of tackling
adversarial samples [96]. However, in this experiment, we
show that even under ideal circumstances, adversarial training
will be unable to break our CAPTCHAs.

As with any model, the model trained by the adversary will
be more accurate on certain labels than others. We can assume,
however, that the defender will also have this knowledge since
she too can train a local model. The defender can use this
information to decide how frequently certain labels should
be used in CAPTCHAs. For example, if the defender knows
that the adversarial model has poor accuracy on “2,” she can
have this label occur more frequently within the CAPTCHAs
she produces. Therefore, to calculate the accuracy of the
adversary’s local model, we can not simply take the accuracy
of the test set. We instead need to weigh the samples by how
frequently a defender will select them for use in a CAPTCHA.

Methodology: We exactly follow the adversarial train-
ing methodology described in prior works [23]. We perturb
the entire dataset (of words, letters, and digits) using our
Yeehaw Junction. We use all the samples from the datasets
to ensure high model accuracy, which is a total of 72,800
audio samples. Instead of merely augmenting the data, we
perturb all the samples from both the train and test sets.

10

Fig. 6: Adversarial training experiments. Increasing Td de-
creases the accuracy of the ASR. This is understandable since
larger Td results in poorer quality audio. LEGEND: [X,Y]: X
= Number of layers. Y = Neurons per layer.

This ASR will be specifically built for breaking CAPTCHA
samples produced using Yeehaw Junction (instead of being
used for general purpose speech recognition). This will ensure
greater effectiveness at breaking CAPTCHAs as the decision
boundaries will not be skewed towards some other recognition
task. Additionally, since the attack is non-stochastic (i.e., does
not randomly decimate or clips frequency bins), perturbing
one sample for each attack parameter is enough [23]. We
then conduct two sets of experiments to observe the effect
of changing Td and Tc on model accuracy.

Models: We specifically design our models for key-word
spotting using the architecture from earlier work [23] which
can achieve a baseline of 85% on benign audio samples. We
improve on its robustness to adversarial samples by incor-
porating recent findings for robustness literature [22]. Recent
work has shown that certain ASR architectures are particularly
robust to adversarial audio [22]. Factors such as (1) presence
of the RNN layer (e.g., LSTMS or GRUs), (2) multi-sequence
output, and (3) large model complexity [22] can decrease
robustness to adversarial samples, and therefore, prevent an
ASR from breaking CAPTCHAs. This rules out the possibility
of using any general-purpose ASR, such as DeepSpeech, for
adversarial training (e.g., via fine-tuning, transfer learning,
etc.). This is because DeepSpeech, and similar general-purpose
ASRs, contain the above three listed factors. Therefore, we
use an ASR architecture most closely resembles those used
by key-wording spotting models [17]. Our ASR design does
not contain the RNN, produces non-sequential outputs (i.e.,
a single output label per audio sample), and it does not
include a large number of neurons/layers. As a consequence,
our model architecture consists of a signal processing-based
feature extraction layer, followed by multiple convolutional
layers. We run experiments with three, four, and five layers
containing 100, 150, and 200 hidden units, respectively to
observe the impact of model complexity on model accuracy.
We also assume a very powerful adversary that knows the exact
timestamps of each label in the CAPTCHA. This will allow her
to pass each label individually to the model, which is known
to improve CAPTCHA recognition accuracy [34], [22].

Training: We train the model on a batch size of 32, for 50
epochs. We use early stopping if the cross-entropy loss on the
validation set does not fall more by than 0.01 for three epochs.

Fig. 7: Adversarial training experiments. Increasing the Tc

decreases the accuracy of the ASR. This is understandable
since larger Tc results in poorer quality audio. LEGEND:
[X,Y]: X = Number of layers. Y = Neurons per layer.

Results: Figures 6 and 7 show the results of our experi-
ments. Figure 6 shows the effect of keeping Tc constant (to a
value of 4%), while increasing Td. While Figure 7 shows the
impact of increasing Tc while keeping Td constant (to a value
of 4%). In both cases, increasing the thresholds will reduce
model accuracy. This is understandable as high thresholds
reduce audio quality by discarding features that are necessary
for learning valid decision boundaries.

More importantly, the largest accuracy we get across all
experiments is around 51% for a Td factor of 2% (Figure 6).
Since audio CAPTCHAs are on average six utterances long,
the adversary can only break the entire audio CAPTCHA
0.516 = 1.7 ∗ 10−2 of the time. This is a major improvement
on the success rate of 94% observed in prior works [89]. A
defender can easily reduce the accuracy rate even further by
merely perturbing each utterance with a different Td and Tc

value. The attacker will then be forced to retrain their model
for the highest expected threshold. For example, if any single
utterance in the CAPTCHA has a Td value of 5%, the attacker
will need to train an ASR which has an accuracy of 41%
in the best case. At this point, the success rate for breaking
CAPTCHAs falls further to 0.416 = 0.0047.

Lastly, our model architecture is specifically designed
for keyword spotting and is based on a model from prior
work [23]. It achieved a success rate of 85% on the clean
dataset. We improved upon this architecture using recent work
to increase accuracy and robustness [22]. However, despite
these improvements, our adversarial perturbations prevented
model accuracy from going barely over 50%.

D. Detection

Adversaries often abuse commercial ASR services to tran-
scribe audio CAPTCHAs. For instance, Bock et al. showed
that an adversary can defeat Google’s reCaptcha [13] service
by feeding its audio CAPTCHA to Google’s own ASR [7]. If
ASR owners can detect when an adversary is misusing their
service, they can block the requests.

Yeehaw Junction is designed to force ASRs to confuse
the CAPTCHAs for random noise by outputting only empty
strings. Based purely on the empty transcript, it is not possible
for the ASR owner to ascertain whether an input was real
noise or an audio CAPTCHA. However, the key observation
here is that random noise and our CAPTCHAs have different

11

Fig. 8: Detection experiment for the word “Forward” for one
layer of the ASR. We can see that CAPTCHA have higher
distances than those for benign examples. Any sample that
has an empty output and greater distance than the τ (solid
black line), is a CAPTCHA.

levels of acoustic structure. Simply put, random noise lacks
any form of structure, while Yeehaw Junction maintains the
structure of the original audio sample. We hypothesize that
due to the difference in these structures, both samples will
produce different sets of activations [70].

We analyze the activations produced when passing random
noise and Yeehaw Junction CAPTCHAs through an ASR. We
start by extracting the activations from each layer of the ASR
for random noise audio samples. These activations correspond
to points in an d-dimensional space, where d is the size of the
activation vector. For each layer, we find the center (i.e., the
activation point that has the smallest L2 distance from all the
others). Next, we get the activations for CAPTCHA samples
and calculate their distances from the center. If our hypothesis
is correct, noise activations will be closer to the center than
the adversarial one. This will enable us to detect whether an
input sample was adversarial or just noise.

Setup and Methodology: We use the same dataset of 56
characters, words, and letters as before. Our data is split into
train and test sets. The train and test set contained 778 and
600 files respectively. This defense method requires white-box
access to the ASR since we are extracting sample activations.
The operator of an ASR would realistically have this level of
access. In our case, we use the DeepSpeech model, which is
a general-purpose ASR and is locally available to us.

Results: Figure 8 shows the CDFs for distance values
calculated for both the noise and the Yeehaw Junction sample
sets for one layer of the ASR6. The figure shows that most
of the noise samples (blue) are closer to the center (which
exists at 0,0) than the CAPTCHA samples (red). This indicates
that the activations for noise samples are clustered in a small
section. In contrast, Yeehaw Junction activation vectors exist
in a larger region. This means we can use the distance from the
center as a simple differentiator between noise and CAPTCHA
samples. For example, if the detection threshold, τ , was set
at the value indicated by the black line, activations left of τ
could be classified as noise, while those on the right could
be classified as CAPTCHA. The ASR owner should therefore
flag any samples that produce empty string outputs that have

6We use all the layers of the ASR as part of the final detection algorithm.
However, we are only showing the results for one layer for brevity.

higher activations than τ as possibly malicious. Since values
of τ are dependent on model activations, the exact value of τ
will depend on the defender’s ASR.

However, selecting the optimal τ is a balancing act and
will depend on the ASR owner’s goals. For instance, the
aggressiveness of the ASR owner’s mitigation strategy plays
a major role in τ ’s selection. If the mitigation strategy is
highly aggressive (e.g., account suspension or blocking), then
τ should be selected to maximize the precision of the detector
to ensure benign users are not being punished. However, if the
mitigation strategy is more lenient (e.g., delayed response or
rate-limiting), then the selected τ should balance the precision
and recall. We select τ so that the precision and recall are
both equal to 89%. Additionally, these values are calculated
for transcribing a single label from our dataset. CAPTCHAs
are typically comprised of up to six utterances (Table VII). An
attacker would therefore need to evade our detector multiple
times in order to successfully avoid detection. For instance, in
a six label CAPTCHA where a single positive classification
is sufficient to raise suspicious, then the attacker would only
have an P (evasion) = (1− 0.89)6 = 1.77 ∗ 10−4% chance of
evading detection. In comparison, the average benign sample
will only have a 18.9% chance of being incorrectly classified as
suspicious. However, all Yeehaw Junction audio samples only
transcribe as an empty string. Therefore, samples that produce
empty strings (an already rare event for real users) are at risk
of being incorrectly labeled malicious.

Finally, an attacker could attempt to evade this detection
mechanism by further perturbing the CAPTCHA audio. The
adversary could perturb the audio randomly or by employing
an optimization technique. In either case, the adversary is
likely to fail since both would adversely affect the transcription
of the underlying audio.

E. Evaluation against WaveGuard

WaveGuard paper [59] is one of the most popular defenses
against adversarial audio examples. The paper proposes five
transformations that can remove the perturbations from the
adversarial audio, enabling the ASR to output the original
audio transcript (instead of the adversarial one). While the
WaveGuard method has been effective against the optimization
family of attacks, we demonstrate that our signal processing
inspired method is robust to these transformations. Specifically,
these transformations are unable to undo the perturbations
introduced by our Yeehaw Junction method. As a result, the
ASR will still output the empty transcript even after the
WaveGuard transformations are applied, which is the stated
goal of the audio CAPTCHA algorithm.

Setup and Methodology: We randomly sample 1000 audio
files from our dataset of words, digits, and letters. Next, we
apply our Yeehaw Junction method to craft audio samples
against a modified ASR that uses WaveGuard. We run our
method until the ASR outputs the empty transcript. Next, we
count the number of audio samples that resulted in a non-
empty transcript despite the presence of the WaveGuard. A
small empty transcript count means that the defense was able
to defeat a small number of attack audio samples. Lastly, we
performed manual listening tests to make sure the resulting
audio had human intelligibility.

12

Single Character Six Character
CAPTCHA

Quantize 0.171 2.5E-10
Resample 0.002 6.4E-17

Filter 0.01 1E-12
LPC 0.001 1E-18

MFCC 0.004 4.096E-15

TABLE VI: The table shows the evaluation results of our
method against the popular WaveGuard defense. The values
in the columns correspond to the probability of audio samples
that were successfully defeated by WaveGuard. Small values
correspond to fewer successes by WaveGuard.

Results: Table VI shows the results of our experiments.
The first column lists the names of all the transforms from
WaveGuard. The second column shows the probability of the
transformation breaking our method i.e., by resulting in a non-
empty string transcript. Here we simply counted all the sam-
ples that were broken by WaveGuard and divided them by the
total number of samples. The second row shows the projected
probability of breaking our method a six-character CAPTCHA.
Even in the worst-case (i.e., for the quantization transform, row
1), the probability of our method being successfully broken
by WaveGuard is 0.176 = 0.000024. Therefore, our method
is robust to bots using WaveGuard to break and transcribe our
audio CAPTCHAs.

Lastly, it is important to note the limitations of this method-
ology. Defeating WaveGuard does not imply our method
is robust against all defenses. This is because WaveGuard
is designed to be effective against the optimization family
of attacks, while our method leverages signal processing-
based methods to generate adversarial samples. WaveGuard
is considered state-of-the-art for defending against adversarial
audio samples and serves as a good proxy in the absence
of defenses specifically designed against Signal Processing
attacks. However, success against this single defense, does not
imply success against all defenses.

F. Comparison to Existing Literature

Using the four metrics described in Section VI, we now
compare our work against existing methods from current
literature. The idea of using adversarial machine learning
algorithms to build robust CAPTCHA is still new. Very little
work has been done in this space. Therefore, we were only
able to identify three papers [58], [86], [46] that attempt to
build robust CAPTCHA algorithms using adversarial machine
learning algorithms. While these works present good first steps
in this space, they have significant limitations:

Transferability: Both these methods have very low trans-
ferability rates against black-box ASRs. This allows the at-
tacker to easily reconstruct the CAPTCHA text, specifically,
with rates of 36% and 48% (for [86] and [46] respectively)
compared to our method which is < 0.01%.

Audio Quality: It is not possible to assess their audio
quality since the authors perform very small user studies.
[86] ran the study with 15 participants, and [46] ran it with
10 participants. In contrast, our user study included around
200 participants across different age groups and backgrounds.
Therefore, it is difficult to assess the quality of their audio.

Detection and Adaptive Adversary: Neither paper pro-
vides experiments regarding detection or adaptive adversaries.

Our audio has distinctive characteristics that can help the ASR
owner detect if their service is being abused, and is also robust
to adaptive adversaries.

Defenses: None of the three papers were neither evaluated
nor will be effective against the popular WaveGuard defense.
This is because these CAPTCHA generation methods are
based on optimization attacks. However, WaveGuard has been
incredibly successfully at undoing the perturbations introduced
by this class of attacks, thereby defeating the attack. On the
other hand, we show that our Yeehaw Junction method can
successfully break WaveGuard defenses with a probability
greater than 99.99%.

VII. RELATED WORK

Audio CAPTCHAs are an essential tool for protecting
online resources. However, they can be easily broken using
ASRs [34]. To prevent this, audio CAPTCHAs must be created
to be robust to ASRs, while simultaneously ensuring human
intelligibility. One way to do so would be via adversarial
samples. These are imperceptibly modified inputs that can
force ML models to produce a misclassification [54], [93],
[63], [32], [36], [85], [71], [67], [106], [90]. One of the most
popular ways of producing these samples against ASRs is
via use of optimization attacks[82], [40], [53], [60], [104],
[27], [61], [47], [62], [42], [102], [72]. However, these attacks
require white-box access to the target ASR, which limits their
use for CAPTCHA generation purposes.

To add to that, these attacks fail to demonstrate transfer-
ability [25] (i.e., surrogate and target ASRs produce different
outputs). This alone does not rule out optimization attacks as
viable CAPTCHA algorithms. This is because the attack audio
might produce one of two transcriptions: phonetically similar
or dissimilar. For CAPTCHA audio, we want a phonetically
dissimilar output (e.g., “HadJSNm” for the audio containing
“one two three”). As a result, the bot’s ASR will be unable to
reconstruct the original CAPTCHA text. However, if the attack
audio output is phonetically similar to the original CAPTCHA
command (e.g., “Juan too tree” for the audio containing “one
two three”), then the bot can easily reconstruct the CAPTCHA.
Prior work [25] failed to identify which one of the two was the
case. We show that optimization attacks produce phonetically
similar transcriptions, making them vulnerable to Bots.

Due to these aspects, the CAPTCHAalgorithms [86],
[46] that build on these optimization attacks suffer from
severe limitations, which include lack of effectiveness against
black-box models, questionable audio quality, and robustness
against adaptive adversaries. To overcome these, we propose
a CAPTCHA generation that exploits the differences in how
the human ear and ASRs process audio. As a result, our attack
can successfully exploit any ASR, produce high-quality audio
that is easy for human listeners to understand, while also being
robust to adaptive adversaries.

Additionally, we demonstrate how adversarial example
attacks against ASR models can be used to create secure and
usable audio CAPTCHAs. Using an adversarial example attack
to generate CAPTCHAs has been previously proposed for text
and image CAPTCHAs [87], [64], [68]. These CAPTCHAs
were shown to be nearly impossible to transcribe by machine,
but still usable by humans.

13

VIII. CONCLUSION

Breaking audio CAPTCHAs has become easier with the
improvement in machine learning systems. Specifically, adver-
saries can now use ASRs to correctly transcribe CAPTCHAs.
In response, CAPTCHA services have been forced to degrade
the quality of their audio, which has adversely impacted human
intelligibility. We design a new attack, Yeehaw Junction,
that can produce intelligible audio CAPTCHAs that are also
robust to ASRs. We evaluate it against a range of criteria,
including intelligibility, robustness to adaptive adversaries, and
transferability. We show that no attack in this space fulfills all
of these requirements and that our method is the only viable
audio CAPTCHA generator currently in existence.

ACKNOWLEDGEMENTS

This work is partly supported by the National Science
Foundation under CNS-1933208 and CNS-2206950. Any opin-
ions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] ASP.NET AJAX Captcha - RadControls for Web Forms: Telerik UI
for ASP.NET AJAX.

[2] Authenticating users with sign in with apple.
[3] CAPTCHA: Telling humans and computers apart automatically.
[4] MTCaptcha.
[5] Securimage php captcha.
[6] DeepSpeech, Last accessed in 2019. Available at https://github.com/

mozilla/DeepSpeech.
[7] Google Cloud Speech-to-Text API, Last accessed in 2019. Available

at https://cloud.google.com/speech-to-text/.
[8] IBM Speech to Text, Last accessed in 2019. Available at https://ibm.

co/2UGDcGc.
[9] Wit.ai Natural Language for Developers, Last accessed in 2019.

Available at https://wit.ai/.
[10] Botdetect captcha generator. Available at https://captcha.com/, Last

Accessed in 2021.
[11] CAPTCHA Usage Distribution in the Top 1 Million Sites, Last

accessed in 2021. Available at https://trends.builtwith.com/widgets/
captcha.

[12] Captchas.Net - Free CAPTCHA-Service. Available at http://captchas.
net/, Last Accessed in 2021.

[13] Google reCAPTCHA. Available at https://www.google.com/recaptcha/
about/, Last Accessed in 2021.

[14] Nato phonetic alphabet - wikipedia. Available at https://en.wikipedia.
org/wiki/NATO phonetic alphabet, Last accessed in 2021.

[15] pronouncing 0.2.0, Last accessed in 2021. Available at https://pypi.
org/project/pronouncing/.

[16] Uberi Speech Recognition Modules for Python, Last accessed in 2021.
Available at https://github.com/Uberi/speech recognition.

[17] Google reCAPTCHA. Available at https://www.tensorflow.org/
tutorials/audio/simple audio, Last Accessed in 2022.

[18] NikolaiT/uncaptcha3, Last accessed in 2022. Available at https:
//github.com/NikolaiT/uncaptcha3.

[19] Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, and Ger-
ald Penn. Applying convolutional neural networks concepts to hybrid
nn-hmm model for speech recognition. In 2012 IEEE international
conference on Acoustics, speech and signal processing (ICASSP),
pages 4277–4280. IEEE, 2012.

[20] Sajjad Abdoli, Luiz G Hafemann, Jerome Rony, Ismail Ben Ayed,
Patrick Cardinal, and Alessandro L Koerich. Universal Adversarial
Audio Perturbations. arXiv preprint arXiv:1908.03173, 2019.

[21] Hadi Abdullah, Washington Garcia, Christian Peeters, Patrick Traynor,
Kevin Butler, and Joseph Wilson. Practical Hidden Voice Attacks
against Speech and Speaker Recognition Systems. Proceedings of the
2019 Network and Distributed System Security Symposium (NDSS),
2019.

[22] Hadi Abdullah, Aditya Karlekar, Vincent Bindschaedler, and Patrick
Traynor. Demystifying limited adversarial transferability in automatic
speech recognition systems, 2021.

[23] Hadi Abdullah, Muhammad Sajidur Rahman, Washington Garcia,
Logan Blue, Kevin Warren, Anurag Swarnim Yadav, Tom Shrimpton,
and Patrick Traynor. Hear “no evil”, see “Kenansville”: Efficient
and Transferable Black-box Attacks on Speech Recognition and Voice
Identification Systems. IEEE Security and Privacy, 2021.

[24] Hadi Abdullah, Muhammad Sajidur Rahman, Christian Peeters, Cas-
sidy Gibson, Vincent Bindschaedler, Washington Garcia, Tom Shrimp-
ton, and Patrick Traynor. Beyond lp clipping: Equalization-based
psychoacoustic attacks against asrs. 2020.

[25] Hadi Abdullah, Kevin Warren, Vincent Bindschaedler, Nicolas Paper-
not, and Patrick Traynor. SoK: The faults in our ASRs: An overview of
attacks against automatic speech recognition and speaker identification
systems, 2020.

[26] Alejandro Acero and Richard M Stern. Environmental robustness
in automatic speech recognition. In International Conference on
Acoustics, Speech, and Signal Processing, pages 849–852. IEEE, 1990.

[27] Moustafa Alzantot, Bharathan Balaji, and Mani B. Srivastava. Did
you hear that? Adversarial Examples Against Automatic Speech
Recognition. In Neural Information Processing Systems Workshop on
Machine Deception 2017, 2017.

[28] Amazon. Amazon Alexa.
[29] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai,

Jingliang Bai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catan-
zaro, Qiang Cheng, Guoliang Chen, et al. Deep speech 2: End-to-
end speech recognition in english and mandarin. In International
conference on machine learning, pages 173–182. PMLR, 2016.

[30] International Phonetic Association. Handbook of the International
Phonetic Association: A guide to the use of the International Phonetic
Alphabet. Cambridge University Press, 1999.

[31] Henry S Baird, Allison L Coates, and Richard J Fateman. Pessi-
malprint: a reverse turing test. International Journal on Document
Analysis and Recognition, 5(2):158–163, 2003.

[32] Shumeet Baluja and Ian Fischer. Adversarial transformation net-
works: Learning to generate adversarial examples. arXiv preprint
arXiv:1703.09387, 2017.

[33] Jeffrey P Bigham and Anna C Cavender. Evaluating existing audio
captchas and an interface optimized for non-visual use. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
pages 1829–1838, 2009.

[34] Kevin Bock, Daven Patel, George Hughey, and Dave Levin. uncaptcha:
a low-resource defeat of recaptcha’s audio challenge. In 11th USENIX
Workshop on Offensive Technologies WOOT, 2017.

[35] Ruth M Brend. A Practical Introduction to Phonetics. Studies in
Second Language Acquisition, 12(3):352–353, 1990.

[36] Tom B Brown, Dandelion Mané, Aurko Roy, Martı́n Abadi, and Justin
Gilmer. Adversarial patch. arXiv preprint arXiv:1712.09665, 2017.

[37] Elie Bursztein, Romain Beauxis, Hristo Paskov, Daniele Perito, Celine
Fabry, and John Mitchell. The Failure of Noise-based Non-continuous
Audio Captchas. In IEEE symposium on security and privacy, pages
19–31, 2011.

[38] Elie Bursztein and Steven Bethard. Decaptcha: breaking 75% of eBay
audio CAPTCHAs. In Proceedings of the 3rd USENIX conference on
Offensive technologies, volume 1, page 8. USENIX Association, 2009.

[39] Elie Bursztein, Steven Bethard, Celine Fabry, John C Mitchell, and
Dan Jurafsky. How Good are Humans at Solving CAPTCHAs? A
Large Scale Evaluation. In IEEE Symposium on Security and Privacy,
pages 399–413, 2010.

[40] Wilson Cai, Anish Doshi, and Rafael Valle. Attacking speaker recog-
nition with deep generative models. arXiv preprint arXiv:1801.02384,
2018.

[41] Nicholas Carlini, Pratyush Mishra, Tavish Vaidya, Yuankai Zhang,
Micah Sherr, Clay Shields, David Wagner, and Wenchao Zhou. Hidden

14

Voice Commands. In USENIX Security Symposium, pages 513–530,
2016.

[42] Nicholas Carlini and David Wagner. Audio adversarial examples:
Targeted attacks on speech-to-text. In IEEE Security and Privacy
Workshops (SPW), pages 1–7, 2018.

[43] Kumar Chellapilla, Kevin Larson, Patrice Simard, and Mary Czer-
winski. Designing human friendly human interaction proofs (HIPs).
In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 711–720, 2005.

[44] Yuxuan Chen, Xuejing Yuan, Jiangshan Zhang, Yue Zhao, Shengzhi
Zhang, Kai Chen, and XiaoFeng Wang. Devil’s whisper: A general
approach for physical adversarial attacks against commercial black-
box speech recognition devices. In 29th USENIX Security Symposium,
2020.

[45] Monica Chew and Henry S Baird. Baffletext: A human interactive
proof. In Document Recognition and Retrieval X, volume 5010, pages
305–316. International Society for Optics and Photonics, 2003.

[46] Jusop Choi, Taekkyung Oh, William Aiken, Simon S Woo, and
Hyoungshick Kim. Poster: I can’t hear this because i am human:
A novel design of audio captcha system. In Proceedings of the 2018
on Asia Conference on Computer and Communications Security, pages
833–835, 2018.

[47] Moustapha Cissé, Yossi Adi, Natalia Neverova, and Joseph Keshet.
Houdini: Fooling Deep Structured Visual and Speech Recognition
Models with Adversarial Examples. In Advances in Neural Informa-
tion Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA,
pages 6980–6990, 2017.

[48] Ronald Allan Cole, Y Muthusamy, and Mark Fanty. CSLU: ISOLET
Spoken Letter Database Version 1.3. Advances in Neural Information
Processing Systems, 25:1097–1105, 2012.

[49] Josh Dzieza. Why captchas have gotten so difficult, Feb 2019.
[50] Jeremy Elson, John R Douceur, Jon Howell, and Jared Saul. Asirra:

a captcha that exploits interest-aligned manual image categorization.
In ACM Conference on Computer and Communications Security,
volume 7, pages 366–374, 2007.

[51] Valerie Fanelle, Sepideh Karimi, Aditi Shah, Bharath Subramanian,
and Sauvik Das. Blind and human: Exploring more usable audio
CAPTCHA designs. In 16th Symposium on Usable Privacy and
Security (SOUPS 2020), pages 111–125, 2020.

[52] Stanley A Gelfand. Hearing: An Introduction to Psychological and
Physiological Acoustics. CRC Press, 2017.

[53] Yuan Gong and Christian Poellabauer. Crafting Adversarial Examples
for Speech Paralinguistics Applications. ICLR, 2015.

[54] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. arXiv preprint arXiv:1412.6572,
2014.

[55] Rich Gossweiler, Maryam Kamvar, and Shumeet Baluja. What’s up
CAPTCHA? A CAPTCHA based on image orientation. In Proceed-
ings of the 18th International Conference on World Wide Web, pages
841–850, 2009.

[56] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech
Recognition with Deep Recurrent Neural Networks. In IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing, pages
6645–6649, 2013.

[57] Jonathan Holman, Jonathan Lazar, Jinjuan Heidi Feng, and John
D’Arcy. Developing usable CAPTCHAs for blind users. In Pro-
ceedings of the 9th International ACM SIGACCESS conference on
Computers and Accessibility, pages 245–246, 2007.

[58] Imran Hossen and Xiali Hei. aaecaptcha: The design and implemen-
tation of audio adversarial captcha. In 2022 IEEE 7th European
Symposium on Security and Privacy (EuroS&P), pages 430–447.
IEEE, 2022.

[59] Shehzeen Hussain, Paarth Neekhara, Shlomo Dubnov, Julian McAuley,
and Farinaz Koushanfar. {WaveGuard}: Understanding and mitigating
audio adversarial examples. In 30th USENIX Security Symposium
(USENIX Security 21), pages 2273–2290, 2021.

[60] Corey Kereliuk, Bob L Sturm, and Jan Larsen. Deep learning and
music adversaries. IEEE Transactions on Multimedia, 17(11):2059–
2071, 2015.

[61] Felix Kreuk, Yossi Adi, Moustapha Cisse, and Joseph Keshet. Fool-
ing End-to-end Speaker Verification by Adversarial Examples. The
43nd IEEE International Conference in Acoustic, Speech and Signal
Processing (ICASSP), 2018.

[62] Deepak Kumar, Riccardo Paccagnella, Paul Murley, Eric Hennenfent,
Joshua Mason, Adam Bates, and Michael Bailey. Skill squatting
attacks on amazon alexa. In 27th USENIX Security Symposium, pages
33–47, 2018.

[63] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial
machine learning at scale. ICLR, 2017.

[64] Hyun Kwon, Hyunsoo Yoon, and Ki-Woong Park. Robust CAPTCHA
Image Generation Enhanced with Adversarial Example Methods. IE-
ICE TRANSACTIONS on Information and Systems, 103(4):879–882,
2020.

[65] Paul Lamere, Philip Kwok, William Walker, Evandro Gouvea, Rita
Singh, Bhiksha Raj, and Peter Wolf. Design of the cmu sphinx-4
decoder. In Eighth European Conference on Speech Communication
and Technology, 2003.

[66] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu. Towards deep learning models resistant to
adversarial attacks. ICLR, 2018.

[67] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are
easily fooled: High confidence predictions for unrecognizable images.
In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 427–436, 2015.

[68] Margarita Osadchy, Julio Hernandez-Castro, Stuart Gibson, Orr
Dunkelman, and Daniel Pérez-Cabo. No bot expects the deepcaptcha!
introducing immutable adversarial examples, with applications to
captcha generation. IEEE Transactions on Information Forensics and
Security, 12(11):2640–2653, 2017.

[69] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudan-
pur. Librispeech: an ASR corpus based on public domain audio books.
In IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5206–5210, 2015.

[70] Nicolas Papernot and Patrick McDaniel. Deep k-nearest neighbors:
Towards confident, interpretable and robust deep learning. arXiv
preprint arXiv:1803.04765, 2018.

[71] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson,
Z Berkay Celik, and Ananthram Swami. The limitations of deep
learning in adversarial settings. In IEEE European symposium on
security and privacy (Euro S&P), pages 372–387. IEEE, 2016.

[72] Yao Qin, Nicholas Carlini, Ian Goodfellow, Garrison Cottrell, and
Colin Raffel. Imperceptible, Robust, and Targeted Adversarial Exam-
ples for Automatic Speech Recognition. 36th International Conference
on Machine Learning, 2019.

[73] Lawrence R Rabiner. A tutorial on hidden markov models and
selected applications in speech recognition. Proceedings of the IEEE,
77(2):257–286, 1989.

[74] Lawrence R Rabiner, Ronald W Schafer, et al. Digital processing of
speech signals. Prentice-hall, 1978.

[75] Nirupam Roy, Sheng Shen, Haitham Hassanieh, and Romit Roy
Choudhury. Inaudible voice commands: The long-range attack and
defense. In 15th USENIX Symposium on Networked Systems Design
and Implementation, pages 547–560, 2018.

[76] Tara N Sainath, Abdel-rahman Mohamed, Brian Kingsbury, and Bhu-
vana Ramabhadran. Deep convolutional neural networks for LVCSR.
In IEEE International Conference on Acoustics, Speech and Signal
Processing, pages 8614–8618, 2013.

[77] Tara N Sainath and Carolina Parada. Convolutional neural networks
for small-footprint keyword spotting. In Sixteenth Annual Conference
of the International Speech Communication Association, 2015.

[78] Haşim Sak, Andrew Senior, Kanishka Rao, and Françoise Beaufays.
Fast and accurate recurrent neural network acoustic models for speech
recognition. INTERSPEECH, 2015.

[79] Hasim Sak, Andrew W Senior, and Françoise Beaufays. Long short-
term memory recurrent neural network architectures for large scale
acoustic modeling. 2014.

[80] Hasim Sak, Oriol Vinyals, Georg Heigold, Andrew Senior, Erik
McDermott, Rajat Monga, and Mark Mao. Sequence discriminative

15

distributed training of long short-term memory recurrent neural net-
works. 2014.

[81] Graig Sauer, Harry Hochheiser, Jinjuan Feng, and Jonathan Lazar.
Towards a universally usable captcha. In Proceedings of the 4th
Symposium on Usable Privacy and Security, volume 6, page 1, 2008.

[82] Lea Schönherr, Katharina Kohls, Steffen Zeiler, Thorsten Holz, and
Dorothea Kolossa. Adversarial Attacks Against Automatic Speech
Recognition Systems via Psychoacoustic Hiding. 26th Annual Net-
work and Distributed System Security Symposium, NDSS, 2019.

[83] Scott Hollier and Janina Sajka and Jason White and Michael Cooper.
Inaccessibility of CAPTCHA – Alternatives to Visual Turing Tests on
the Web. https://www.w3.org/TR/turingtest/, 2019. iW3C Working
Group Note 09 December.

[84] Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John Dickerson,
Christoph Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein.
Adversarial training for free! 33rd Conference on Neural Information
Processing Systems, 2019.

[85] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K
Reiter. Accessorize to a Crime: Real and stealthy attacks on state-
of-the-art face recognition. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security, pages 1528–
1540, 2016.

[86] Heemany Shekhar, Melody Moh, and Teng-Sheng Moh. Exploring
adversaries to defend audio captcha. In 2019 18th IEEE International
Conference On Machine Learning And Applications (ICMLA), pages
1155–1161. IEEE, 2019.

[87] Chenghui Shi, Xiaogang Xu, Shouling Ji, Kai Bu, Jianhai Chen,
Raheem Beyah, and Ting Wang. Adversarial captchas. arXiv preprint
arXiv:1901.01107, 2019.

[88] Temple F Smith, Michael S Waterman, et al. Identification of common
molecular subsequences. Journal of Molecular Biology, 147(1):195–
197, 1981.

[89] Saumya Solanki, Gautam Krishnan, Varshini Sampath, and Jason
Polakis. In (cyber) space bots can hear you speak: Breaking audio
captchas using ots speech recognition. In Proceedings of the 10th
ACM Workshop on Artificial Intelligence and Security, pages 69–80,
2017.

[90] Yang Song, Rui Shu, Nate Kushman, and Stefano Ermon. Constructing
unrestricted adversarial examples with generative models. In Advances
in Neural Information Processing Systems, pages 8312–8323, 2018.

[91] Kenneth N Stevens. Acoustic Phonetics, volume 30. MIT press, 2000.
[92] Takeshi Sugawara, Benjamin Cyr, Sara Rampazzi, Daniel Genkin, and

Kevin Fu. Light commands: laser-based audio injection attacks on
voice-controllable systems. 29th USENIX Security Symposium, 2020.

[93] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties
of neural networks. ICLR, 2014.

[94] Jennifer Tam, Jiri Simsa, Sean Hyde, and Luis V Ahn. Breaking audio
captchas. In Advances in Neural Information Processing Systems,
pages 1625–1632, 2008.

[95] Rohan Taori, Amog Kamsetty, Brenton Chu, and Nikita Vemuri.
Targeted Adversarial Examples for Black Box Audio Systems. IEEE
Security and Privacy Workshops (SPW), 2019.

[96] Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander
Madry. On adaptive attacks to adversarial example defenses. Neural
Information Processing Systems, 2020.

[97] Tavish Vaidya, Yuankai Zhang, Micah Sherr, and Clay Shields. Co-
caine Noodles: Exploiting the Gap between Human and Machine
Speech Recognition. WOOT, 15:10–11, 2015.

[98] Subhashini Venugopalan, Huijuan Xu, Jeff Donahue, Marcus
Rohrbach, Raymond Mooney, and Kate Saenko. Translating videos
to natural language using deep recurrent neural networks. Conference
of the North American Chapter of the Association for Computational
Linguistics – Human Language Technologies, 2015.

[99] Luis Von Ahn, Benjamin Maurer, Colin McMillen, David Abraham,
and Manuel Blum. recaptcha: Human-based character recognition via
web security measures. Science, 321(5895):1465–1468, 2008.

[100] Pete Warden. Speech commands: A dataset for limited-vocabulary
speech recognition. arXiv preprint arXiv:1804.03209, 2018.

[101] Robert Weide. The carnegie mellon pronouncing dictionary [cmudict.
0.6]. Pittsburgh, PA: Carnegie Mellon University, 2005.

[102] Hiromu Yakura and Jun Sakuma. Robust Audio Adversarial Example
for a Physical Attack. International Joint Conferences on Artificial
Intelligence Organization, 2019.

[103] Dong Yu and Li Deng. AUTOMATIC SPEECH RECOGNITION.
Springer, 2016.

[104] Xuejing Yuan, Yuxuan Chen, Yue Zhao, Yunhui Long, Xiaokang
Liu, Kai Chen, Shengzhi Zhang, Heqing Huang, Xiaofeng Wang, and
Carl A Gunter. CommanderSong: A Systematic Approach for Practical
Adversarial Voice Recognition. In Proceedings of the USENIX Security
Symposium, 2018.

[105] Guoming Zhang, Chen Yan, Xiaoyu Ji, Tianchen Zhang, Taimin
Zhang, and Wenyuan Xu. DolphinAttack: Inaudible voice commands.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 103–117. ACM, 2017.

[106] Zhengli Zhao, Dheeru Dua, and Sameer Singh. Generating natural
adversarial examples. In International Conference on Learning Rep-
resentations, 2018.

APPENDIX

Service
Potential
Captcha

Use
Min Len Max Len

Apple [2] Numbers (10-99) 3 5
BotDetect [10] 0-9 a-z 4 6

Captchas.net [12] 0-9 alpha-zulu 4 6
Microsoft [43] Sound Identifcation 3 3
Securimage [5] 0-9 a-z 4 6

Telerik [1] 0-9 alpha-zulu 4 6
Google

(Recaptcha v1) [99] 0-9 10 10

Google
(Recaptcha v2) [99] words 3 3

Google
(Recaptcha v3) [99] words 3 3

Ebay Recaptcha Recaptcha Recaptcha
MTCaptcha [4] 0-9 a-z 4 4

Amazon Recaptcha Recaptcha Recaptcha
Sound Identifcation 3 3

Slashdot Recaptcha Recaptcha Recaptcha

TABLE VII: An overview of the existing commercial
CAPTCHA services. Since words, numbers, digits are com-
monly used by these services, we use them in our experimental
setup. We also base our results on CAPTCHAs of length 6,
since this is the most common size.

16

