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systems be injected with personalised, malicious code, their
physical whereabouts be known; notorious examples of this
kind were the attacks in the style of “IMSI-catchers” [17],
[8], whereby mobile-phone users have been traced around the
network based on different identifiers1, or in the tracking of
RFID-tagged goods in the supply-chain [44]. In this work,
we place ourselves in the domain of secure and privacy-
sensitive systems, and aim to systematically define and analyse
meaningful variations notions of such “(non)-trackability” in
a generic, not domain-specific manner.

Pfitzmann and Hansen offer a consolidated report [39] of
distinct privacy notions such as undetectability, unobservabil-
ity, pseudonymity, anonymity, identity management, unlink-
ability and untraceability. We are most interested in notions
of privacy closest to “un-traceability” and/or “un-linkability”,
and specifically in considering these over multiple, concurrent
executions of security protocols. Whether we call our notions
of interest “(non)-trackability”, “(un)linkability’ or “(non)-
traceability”, we intend to capture one aspect: an adversary’s
(in)ability to link a long-term identifier (or a pseudonym of
it) to secured application-level traffic in such a way that the
adversary would infer “who” issued a given message or
took a given action in executions of the systems. In privacy-
aware applications, such inferences by attackers are clearly
undesirable. Our adversary may attempt this by looking at
the whole protocol execution, including the exchanges done
before the secure-channel establishment and/or by comparing
several executions (i.e., sessions). We choose to use the word
“(non)-trackability”, to distinguish this line from prior work.
Clearly, “non-trackability” is a positive notion (i.e., a privacy
requirement), whereas “trackability” denotes a negative aspect
that is an attack (i.e., the refutation of a privacy requirement).

Fine-Grained Trackability Notions. We define a frame-
work called TrackDev that encompasses several distinct track-
ability notions. There are privacy notions close to ours, such
as (non)-traceability [31], [44] or (un)linkability [19], whereby
the latter was studied particularly as part of formal verification
in, e.g., [10], [15], [16], [19], [5], [33]. But, as per Pfitzmann’s
report [39], there are many subtle differences amongst notions
related to this. Thus, we believe that a framework that can

1We show a different way to track mobile user, even if IMSIs are now
obfuscated via changeable/ephemeral identifiers; our tracking is also outside
of the Registration procedure, a la [8].

Abstract—We introduce a new framework, TrackDev, for 
encoding and analysing what we call the “tracking” of an entity 
via its executions of a protocol or its usages of a system. TrackDev 
considers multiple dimensions combined: whether the attacker 
is active or passive, whether an entity is trackable in its every 
single appearance on the network or just in a compound set 
thereof, and whether the entity can be explicitly or implicitly 
identified. TrackDev can be applied to most identification-based 
systems, and, interestingly, in practice, i.e., over actual executions 
of systems. To this end, we test TrackDev on real-life traffic for 
two well-known protocols, the LoRaWAN Join and 5G handovers, 
showing new trackability/privacy attacks on these and proposing 
countermeasures. We study the strength of TrackDev’s various 
trackability properties and show that many of our notions are 
incomparable amongst each other, thus justifying the fine-grained 
nature of TrackDev. Finally, we detail how the main thrust of 
TrackDev can be mechanised in formal-verification tools. We 
exemplify this fully on the LoRaWAN Join, in the Tamarin prover. 
We also uncover and discuss within two important aspects: (a) 
TrackDev’s separation between “explicit” and “implicit” track-
ability offers new formal-verification insights; (b) our analyses 
of the LoRaWAN Join protocol in Tamarin against TrackDev’s 
privacy notions, as well as against existing approximations of 
unlinkability by Baelde et al., concretely show that the latter 
approximations can be coarser than our notions.

I. INTRODUCTION

Privacy is an umbrella term for a number of notions [39]. 
But –in most cases– it refers to entities not being linked 
to their actions. In the strictest case, in a privacy-preserving 
environment, an entity may wish that no individual action 
of theirs could ever be linked back to them. Or, in weaker 
privacy-preserving cases, no group of such actions should be 
collectively identifiable as being theirs. Meanwhile, if any 
such discerning can occur, then it is possible to track entities 
via their actions. Broadly speaking, we refer to this type of 
privacy breach as “trackability” and its absence (in a system 
or context) as “non-trackability”. Clearly, if entities/devices 
can be tracked, then they can become the subject of tar-
geted attacks: e.g., their traffic be selectively blocked, their
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systematise multiple nuances of (un)linkability-related notions,
potentially both for practical and formal-methods purposes,
is required. TrackDev is such a framework and provides
increased expressivity and finesse, as it has four orthogonal
dimensions: (1) whether the attacker is active or passive;
(2) whether the attacker is free to choose whom to track
or this is imposed by someone/something else (i.e., static
vs. adaptive); (3) whether an entity is trackable in its every
single appearances or just in a compound set thereof (session
trackability vs. session-insensitive trackability); (4) whether
the entity can be tracked via its real identity or via some
temporary one (explicit vs. implicit trackability).

Generic & Widely-Applicable Trackability Notions.
Moreover, our trackability notions are not limited to specific
domains (such as RFID [44]), but aim to be applicable to track-
ing over any secure application-level executions/messages.

Realistic & Practical Trackability Notions. Finally, we
define our trackability notions in such a way that are also
easy to assess in practice, e.g., with tools that capture network
traffic, rather than it be just a theoretic/formal notion. We do
so in 5G and in IoT traffic. In 5G, this means that subscribers’
whereabouts are known by parties they may not suspect, in
IoT — that someone can target a specific device to block its
access to services. Such is the real-life impact of our findings
that the upcoming LoRaWAN specifications v1.2 will contain
our countermeasures to the trackability attacks we show in IoT.

Our Contributions.

(1) New Trackability Framework. In Section III we de-
fine our trackability framework TrackDev, which sys-
tematically combines protocol-dependent types of track-
ing (session-sensitive (SesTrack) vs session-insensitive
(Track), threat types (passive vs active attackers), and
two natures of identifiability (explicit vs implicit). In
TrackDev, we also distinguish between static (St-Track)
and adaptive (Ad-Track) attacks, i.e., the attacker can
freely choose their victim, or this choice is imposed on
them, respectively.

(2) Fine-Grained Trackability Notions. In Section V we
give a full characterisation of the strengths of our track-
ability notions over their orthogonal dimensions. For
example, we show that varying the threats’ nature from a
passive to an active attacker does not necessarily increase
the trackability powers from implicit to explicit, or from
session-insensitive to session-sensitive.

(3) Trackability in Real-life Traffic. In Section VI we
exhibit TrackDev’s main attacks in practice on the Lo-
RaWAN Join v1.0 protocol, and on 5G handover proce-
dures.

(4) Mechanisable Trackability. In Section VII, we show
explicit (session) trackability is mechanisable in formal
verification tools without any loss, and discuss the gaps
and impossibilities in mechanising our other trackability
notions. We mechanise explicit (session) trackability in
LoRaWAN Join v1.1, inside the Tamarin tool [38].

(5) Value-Added Unlinkability Analysis. In Section VII-E
we align TrackDev with previous relevant privacy no-
tions, and show that TrackDev’s distinction between
implicit and explicit trackability is also useful in formal
methods. We exemplify concretely, in Tamarin [38], that

End Device
(ED)

Network Server
(NS)

Join Server
(JS)

Application Server
(AS)

1. JoinRequest: JoinEUI,
DevEUI, DevNonce,
mac((JoinEUI, DevEUI,
DevNonce);NwkKey)

generate DevAddr;

2. JoinReqFwd

DevNonce > OldDevNonce

3. JoinAns: JoinAccept

4. JoinAccept:
enc((DevAddr), NwkKey)

5. DevAddr, enc(data;AppSKey)

6. DevEUI, DevAddr, enc(data;AppSKey)

Fig. 1. LoRaWAN Join v1.12

prior approximations of unlinkability [5] have been coarse
and TrackDev’s explicit trackability can be finer.

(6) Novel Attacks, Both in Practice & in Formal Verifica-
tion. The three main attacks we show are new. Moreover,
they were found via mechanisations of TrackDev, be it
in practical, traffic-capturing tools (for one attack on the
LoRaWAN v1.0 protocol and one on 5G handovers), or in
the formal-verification Tamarin tool [38] (for one attack
on LoRaWAN v1.1). Finally, we disclosed our privacy
flaws to the Lora Alliance and the upcoming LoRaWAN
specifications v1.2 will contain our countermeasures.

II. PRELIMINARIES

Now, we briefly describe the authenticated key-
establishment (AKE) protocol called the “LoRaWAN Join
v1.1”. We use this protocol as a case study: we find new
trackability attacks on it by using practical tools, as well as
formally verifying our and others’ trackability notions on it.

The LoRaWAN Join protocol [13], [12] is used by Internet
of Things (IoT) devices in order to (re-)connect to a LoRaWAN
network. After this (re)connection, these devices can run the
IoT application stored on them, and, most importantly to us,
they can securely send and receive application-level messages
over the LoRaWAN network.

A. LoRaWAN Join v1.1

Fig. 1 gives a simplified description of the LoRaWAN Join
v1.1 protocol, and we now provide details on that:

(1) The End Device (ED) sends a plaintext JoinRequest mes-
sage, comprised of a DevNonce, a DevEUI, a JoinEUI,
and a Message Authentication Code (MAC) to the NS.
The DevEUI is the long-term identifier of the ED, while
the DevNonce is based on a counter starting at 0 and
incremented with every JoinRequest. The JoinEUI is
the identifier of the LoRaWAN Join Server (JS) with
which the device is registered. The MAC authenticates
the DevNonce, DevEUI, JoinEUI, using a long-term key,
NwkKey, which devices share with the JS.

(2) The NS generates a DevAddr (an ephemeral identifier)
to be used until a next Join/Re-Join message. The NS
appends this to the JoinRequest and forwards the result to
the JS, identified via the JoinEUI inside the JoinRequest.

(3) The JS verifies the MAC using its copy of NwkKey
and checks that the DevNonce value is larger than the

2Dashes vs. lines: secure vs. insecure channels; dots: down to implementers.
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DevNonce value previously associated with the DevEUI.
If these checks fail, no response is given. If they pass, then
the JS creates a JoinAns, which contains (amongst other
data) a JoinAccept message. This message is comprised
of the DevAddr and a JoinNonce generated by the JS, all
encrypted with NwkKey. The JoinAns is sent to the NS.

(4) From the JoinAns, the NS extracts and forwards the
JoinAccept to the ED. The ED decrypts the JoinAccept
(using NwkKey), checks it against its local view, and uses
the values inside to compute an AppSKey session-key. At
this point, the Join procedure is complete and the ED is
able to send encrypted application-level messages to an
Application Server (AS) via the NS proxy.

(5) The ED constructs an application-level data-packet en-
crypted with AppSKey, and places in its header its new
DevAddr. This is sent to the NS.

(6) The NS appends the DevEUI and forwards the encrypted
data packet to the AS. The AS retrieves the associated
AppSKey for the DevEUI and decrypts the data packet.

— After the Join and until a ReJoin (possibly for some days),
the ED will send messages as per step 5.

This description of the LoRaWAN Join Protocol [13], [45]
is sufficiently detailed for our subsequent discussions of it.

III. THE TRACKABILITY FRAMEWORK TrackDev

In this section, we define our TrackDev framework for
trackability analysis in secure, networked applications.

A. Identification-Based Functionality IDnServe, Protocols &
TrackDev Terminology

Def. 1 gives a generic identification functionality called
IDnServe. This functionality generalises and idealises the case
where a server identifies a client, after which the former pro-
vides some application-level service to the latter. In the actual
implementation of such an ideal functionality, this application-
level service can be as simple as providing access to a network
or granting a permission; the functionality operates at the
idealised level, so we are not concerned with specifying what
the actual service is.

Definition 1. IDnServe Functionality. An IDnServe func-
tionality Π is described via:

• Two entities A and B running probabilistic polynomial
time algorithms interacting on channels, such that idA is
a long-term identifier which uniquely identifies the entity
A, and which is known to, or verifiable by, B;

• The algorithms run by the two parties A and B encode
the following exchange:

1. A → B : m1 //pre-application msg.
. . .

[p. B → A : m2] //optional pre-application msg.
. . .

q. A → B : m3 // application msg.
. . . ,

where the above notation is as follows:

(1) “. . .” denotes there can be more (non-essential) ex-
changes, while “[ ]” denotes an optional step in the
functionality;

(2) 1, p (if it is used), and q are steps in the cross-interaction
of A and B. Due to the optional nature of steps it is
possible that in certain realisations of IDnServe, q=2,
i.e., B sends no pre-application message to A;

(3) application message m3 delivers application-dependant
functionality from A to B, whereas pre-application mes-
sages m1, m2 do not (i.e., they can be viewed as initial-
isation steps);

(4) the channels/communications between parties A and B
are public, yet messages m1, m2 and m3 may be en-
crypted and authenticating,

and the following two functional requirements hold:

Req 1. As part of steps 1 to q, B identified A via idA.

Req 2. In step q and/or thereafter, A is accessing the
application-level service that B is facilitating, based on
the identification that took place in steps 1 through to q.

Def. 1 above fully defines IDnServe. But, other aspects
w.r.t. IDnServe are notable: (i) Optionally, B confirms A’s
identification back to A, via the message in step p; (ii) Whilst
entity B is identifying A as being the sender of message m3,
the message m3 (or those thereafter) may not contain idA in
clear-text; (iii) Messages in step q or other steps may contain
individually or collectively, in an explicit or implicit form, an
ephemeral identifier of A, i.e., a temporary pseudonym for idA.

Functionalities similar to IDnServe exist and model au-
thenticated key-exchange, access-control, etc. However, we
aim for IDnServe to be more generic. (1) We only need to
express that unique IDs (e.g., idA) exist in protocols, without
differentiating if they are cryptographic keys, serial numbers,
etc.; (2) We do not need the cryptographic machinery to be
modelled. We need just a means to say messages are linkable
to real or ephemeral IDs.

Wide Realisation of IDnServe. The IDed-Prot Pro-
tocols: We use the term identification-based security pro-
tocol/system/application IDed-Prot to refer to any proto-
col/system/application π that realise/implement3 IDnServe,
i.e., it conforms with statements 1–4 in Def. 1 and satisfies
requirements Req. 1 and Req. 2; this realisation is purely
functional and the threat model does not matter. Henceforth,
we use “protocol” to denote any protocol/system/application
realising IDnServe. The part of the functionality pertaining to
entity A, in a protocol realising IDnServe, is called the “role
of A”.

An IDed-Prot protocol may contain “conditionals”, i.e.,
tests in its logic (e.g., to check counters or other stateful
data). We refer to such instances of IDed-Prot protocols as
identification-based protocols with conditionals.

Applicability of TrackDev: There are numerous secu-
rity protocols that realise identification functionality. In fact,
steps 1 to q are realised by most AKE protocols: Blue-
tooth [30], key-establishment procedures in mobile networks,
e.g., [1], and IoT protocols [13], [12]. Indeed, all our trackabil-
ity definitions (e.g., Defs. 4, 5) apply to any traffic generated by
such protocols. Thus, TrackDev is widely applicable, in fact,

3We do not formalise “realisation” here; it is as per usual [37].
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it aims to track a party over encrypted messages it sends in the
case where this party has been implicitly/explicitly identified
in this traffic via long-term or ephemeral identifiers.

The LoRaWAN Join is an IDed-Prot Protocol: The
IDnServe entity A is LoRaWAN’s ED, while LoRaWAN’s
NS, JS, and AS form the IDnServe entity B. Mapping the
LoRaWAN Join further to the IDnServe terminology, we have:

• IDnServe’s message m1 in step 1 is LoRaWAN’s Join-
Request message;

• IDnServe’s message m2 in step p is LoRaWAN’s JoinAc-
cept message;

• IDnServe’s message m3 is LoraWAN’s message 5:
(DevAddr, enc(data;AppSKey)).

As aforementioned, like most IDed-Prot protocols, the
LoRaWAN Join protocol has additional messages but they are
immaterial to the realisation of IDnServe.

Parties/Entities’ Identification in IDnServe: We do
not specify, on purpose, if this idA is a serial number, a public
key, or a virtual identifier that B can extract out of the pre-
application messages; all we require is idA uniquely identifies
the actual entity, a.k.a. the party, sending messages m1 and
m3. At the level of the identification functionality, we also do
not need to mandate how B gets this idA: e.g., idA could be
sent either in clear-text, encrypted, in code, or otherwise.

B. Adversary & Execution Model

Our proposed framework TrackDev considers a powerful
adversary akin to a Dolev-Yao (DY) adversary [20]. Like DY
adversaries, our attacker is not concerned with breaking the
cryptographic primitives used in the protocols. In terms of
actions, our adversary can passively capture, actively block and
inject messages on/from channels. Consequently, we define the
type T of our adversary by their actions. If the adversary only
listens and captures messages, then their type T is passive.
If the adversary acts on the channels, e.g., by blocking or
injecting messages, then their type T is active.

C. Preview on TrackDev’s Trackability Notions

For IDed-Prot protocols, we will formalise a set of privacy
requirements called “non-trackability (NoTrack)”, broadly
encoding that an ID in such protocols’ executions is not track-
able by the attacker. We also specialise this to non-tracking
over individual protocol sessions/executions: “session non-
trackability (SesNoTrack)”. Both NoTrack and SesNoTrack
can be qualified further as: static (St-) vs. adaptive (Ad-)
denoting if the attacker is free to choose whom to track or not;
explicit vs. implicit, denoting the nature of the ID tracked; both
can be acted upon by active vs. passive attackers. Finally, each
notion can be universal – if all IDs in the protocol executions
are non-trackable (∀-), or existential – if just some IDs in
the protocol executions are non-trackable (∃-), If we lay out
all our non-trackability notions, over all these dimensions and
flavours, we get Table I.

Clearly, Table I shows that we have 32 notions of non-
trackability where each notion has all our trackability dimen-
sions fixed/prescribed. However, there are many more notions
of non-trackability if we leave one or more dimensions “free”:
e.g., static non-trackability (St-NoTrack) is a valid notion
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implicit, passive 1 2 3 4 5 6 7 8
implicit, active 9 10 11 12 13 14 15 16
explicit, passive 17 18 19 20 21 22 23 24
explicit, active 25 26 27 28 29 30 31 32

TABLE I. NON-TRACKABILITY NOTIONS WITH ALL TrackDev
DIMENSIONS FIXED

in its own right (and subsumes all its flavours of “implic-
it/explicit”, “active/passive”, “universal/existential”); similarly,
non-trackability (NoTrack) is a valid notion in TrackDev
which subsumes all possible flavours of more precise non-
trackability notions.

Finally, for any non-trackability requirement (NoTrack),
we also have the corresponding notion of a trackability attack
(Track), e.g., static non-trackability (St-NoTrack) is refuted
by a static trackability (St-Track) attack. We often write
“NoTrack” and “Track” in the generic sense, and we add
precise detail when needed: e.g., adding “Ses” making it
session-sensitive, as in “SesNoTrack” and “SesTrack”.

One may already anticipate that some non-trackability
notions are weaker than others. Importantly, many non-
trackability notions are incomparable, meaning that there is
no guarantee that breaking one leads to breaking the other:
e.g., implicit, active NoTrack vs. explicit, active SesNoTrack.
All of the hierarchy and separation results will be discussed
in Section V.

Note: All the measures that follow are polynomially quan-
tified; i.e., if we formally considered a security parameter, then
the number of executions (available to the adversary) would
be polynomial in this parameter, as would the adversary’s
execution time to refute our privacy definitions.

D. Formalising Non-Trackability

1) Attack Setups: All our (non-)trackability definitions use
the notion of an attack setup in Def. 2. This models a “handle”
to protocol executions, to which the attacker has access to in
order to track IDs/parties in the protocol.

Definition 2. Explicit/Implicit Non-Trackability Attack Se-
tups. Let π be an IDed-Prot protocol. Let Id be the set of all
identifiers of A parties associated with π, known to all parties
(including adversaries). Let E be the set of executions of π
such that they contain the pre-application and application-level
messages coming from at least two4 parties A1, A2, . . ., An of
role A with real identifiers idA1

, idA2
, idA3

, . . ., idAn
∈ Id.

A non-trackability attack setup for π’s executions E is a
tuple S(E)=(Mid,Mapp) as follows:

(a) Mid is an arbitrarily chosen, non-empty set of pre-
application identification messages appearing in E;

(b)Mapp is an arbitrarily chosen, non-empty set of application
messages appearing in E .

The non-trackability attack setup S is called explicit if the
real identifiers idA1

, idA2
, . . . are present in the executions

4Otherwise, our next non-trackability definitions can be refuted trivially due
to the fact that all application-level messages come from one single party.

4



E of protocol π by each party, and so are recorded in the sets
Mid and Mapp.

The non-trackability attack setup S is called implicit if
the real identifiers idA1

, idA2
, . . . are not present in the

executions E of protocol π by each party, and as such are
not recorded in the setsMid andMapp. Bijections of the real
identifiers idA1 , idA2 , . . . to their implicit identifiers can be
associated with said executions by honest parties who know
the full data of these executions5.

In subsequent trackability notions, our attack setups S(E)
(in Def. 2) model an attacker interacting with a series of
executions E of an IDed-Prot protocol observing, interacting
with, and ultimately recording all or part of these executions.
Such an attack setup S(E) constitutes the “material” the
attacker uses to mount their attack onto the executions E .

a) Explicit vs. Implicit Attack Setups: Def. 2 distin-
guishes between explicit and implicit attack setups. An explicit
attack setup will contain long-term, real IDs of parties and as
such, an attacker will be able to track them. An implicit attack
setup corresponds to executions of an IDed-Prot protocol
where the long-term IDs exist, but the executions hide them
(from the attacker).

2) Trackability Relations: Def. 3 below gives another no-
tion which our trackability definitions will use; it encapsulates
what the attacker has to output at the end of a successful
trackability attack.

Definition 3. Explicit/Implicit Trackability Relations. Let π
be an IDed-Prot protocol.

Given an explicit attack setup S(E)=(Mid,Mapp) for a
set E of π’s executions, an explicit trackability relation for
S(E) is a non-empty relation Tr ⊆ Id×P(Mapp)6 such that
for some idA ∈ Id, we have (idA,MA) ∈ Tr if:
(i) the set MA ⊆Mapp is non-empty, i.e., MA 6= ∅,
(ii) ∀m ∈MA, m was sent by the entity A with idA.

Given an implicit attack setup S(E)=(Mid,Mapp) for a
set E of π’s executions, an implicit trackability relation is a
non-empty relation Tr ⊆ φ(Id)× P(Mapp), such that:
(iii) φ is a bijection from real id-s in Id to ephemeral id-s,
(iv) for some φ(idA) ∈ φ(Id), we have (φ(idA),MA) ∈ Tr
if conditions (i), (ii) above hold.

Def. 3 gives relations that index application-level messages
in a protocol execution by IDs, be it real ones or aliases. In the
first case, the relation is called explicit and in the second case
implicit. These are the mappings that a trackability attacker
will be asked (via subsequent definitions) to create in order
to “demonstrate” that they have tracked some party via some
protocol executions E “encapsulated” in an attack setup S(E)
as per the above.

3) Who Is Tracked & How:

5Each honest party idA1
will know they executed under some alias. Yet,

there may not exist a polynomial algorithm D to retrieve these aliases, e.g.,
when D has just observed these executions but D is not taking part in them.

6P denotes the power set of a set.

a) Who Is Tracked: For clarity, we reiterate some
aspects around parties and roles. To simplify the notation,
in the definitions for attack setups (Def. 2) and trackability
relations (Def. 3), “A” is overloaded to mean a role as
well as party/entity playing that role. For instance, the role
A denotes a software/algorithmic client, whereas the parties
A1, A2, A3, . . . playing this role are actual machines/comput-
ers. Then, idA1

, idA2
, . . . denote e.g., the Media Access Con-

trol (MAC) addresses idalice, idalison, . . ., of these machines.
In our definitions when the attacker is asked to track one
specific idA in the series idA1

, idA2
, . . ., that would be to

track alice, alison, . . . via the messages they sent, and index
these messages correctly as coming from idalice, idalison.

b) How One Is Tracked: If alice has multiple IDs, for
instance idalice1 and idalice2, then one trackability relation can
be that idalice1 is linked to a message, and another relation
where both (idalice1, ·) and (idalice2, ·) appear linked to some
message each. In other words, our trackability relations allow
for parties with multiple IDs to be tracked via each ID, via
some IDs, or via all IDs. Meanwhile, alice can also be tracked
not just by their one/all long-terms IDs, but also by ephemeral
IDs they may have, e.g., session data, pseudonyms, etc. Finally,
the trackability relation defined thus far in Def. 3 does not
distinguish between tracking a party via their execution i vs.
via their execution j. Def. 7 refines that: i.e., our notions
also capture distinct tracking per each session/execution. Put
simply, in TrackDev, alice can be tracked via one or all
of their real, long-term identifiers, or via one or all of their
ephemeral pseudonyms, in each of their executions/sessions
or indistinctly in their overall traffic.

E. Non-Trackability Flavours

Having given the notions of attack setups and trackability
relations, we will continue with our non-trackability defini-
tions, which will mainly depend on four aspects:

(1) the adversary chooses themselves whom to track (static
trackability) vs. the adversary is given an attack setup and
a specific identifier to track7 (adaptive trackability);

(2) the adversary is able to track A but is unable to single
out the execution of the IDed-Prot protocol that A has
run (non-session trackability) vs. the adversary being able
to track A as well as identify every execution of the
IDed-Prot protocol that A runs (session trackability);

(3) the adversary intervenes in the executions (trackability
with active attacker) vs. the adversary just observes the
executions (trackability with passive attacker);

(4) the IDs tracked are the real, long-term IDs appearing in
the protocol (explicit trackability) vs. the IDs tracked are
some ephemeral versions of the real IDs, produced “on
the fly” during the protocol executions or by the attacker
for the purposes of tracking (implicit trackability).

1) Static Non-Trackability: We first look at a type of
trackability we call “static” in Def. 4 below. The IDs, which
are tracked or the attack setup under which they are tracked,
can be chosen by the adversary, i.e., are not pre-imposed.

7We use the terminology of “static” and “adaptive” attackers as per the
usual ways in security [18]. Therein, adaptive attackers can change behaviour
during their attack. Similarly, herein adaptive attackers have to “adapt” to track
an identity not of their choice but imposed by someone/something else.
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Definition 4. Static Explicit/Implicit Non-Trackability With
Adversary of Type T (St-NoTrackT ). Let π be an IDed-Prot.

We say that π achieves static explicit/implicit non-
trackability w.r.t. an adversary of type T (St-NoTrackexpl,T )
if given that:
(i) ∀Adv adversaries of type T ,
(ii) ∀ sets E of π’s execution and the resulting non-trackability
attack setup S(E),
adversary Adv cannot produce an explicit/implicit trackability
relation for S(E).

Def. 4 states that a protocol is statically non-trackable
(explicitly/implicitly) if there is no attacker that can find the
right executions to observe or interact with, such that it would
allow them to pinpoint the application-level messages of at
least one explicit/implicit ID in these executions.

To indicate that static non-trackability is explicit or im-
plicit, we write St-NoTrackexpl.,T or St-NoTrackimpl.T , re-
spectively. When the type T of adversary is clear or unimpor-
tant, we omit it from the notation.

Universal vs. Existential (Static) Non-Trackability:
Def. 4 has an implicit universal quantification inside its state-
ment: i.e., the attacker is free to choose any identifier to track.
So, we sometimes refer to static non-trackability as universal
static non-trackability and we use the “∀” symbol in its
shorthand ∀-St-NoTrack. To specifically say which identifier
id cannot be statically tracked, we write St-NoTrackT (id).

Non-Trackability vs. Trackability: Def. 4 and its
notion St-NoTrack speak of a privacy requirement dubbed
as non-trackability. In general, to denote the refutation of
such requirement, we drop the “non” and speak of trackability
attacks. In such refutations, the quantifications would natu-
rally change: for instance, a universal static non-trackability
requirement can yield an existential static trackability attack,
written ∃-St-TrackT (id), meaning that some identifier id can
be tracked under the conditions of Def. 4.

2) Adaptive Non-Trackability: We define another notion
of non-trackability called “adaptive non-trackability”. In this
case, the adversary is challenged as to which identifier they
are supposed to track, thus having to “adapt” their behaviour.

Definition 5. Adaptive Explicit/Implicit Non-Trackability
With Adversary of Type T for idA (Ad-NoTrackT (idA)). Let
π be an IDed-Prot protocol.

We say that π achieves adaptive explicit/implicit
non-trackability of idA w.r.t. an adversary of type T
(Ad-NoTrackT (idA)) if given that:
(i) for an arbitrarily chosen set E of π’s executions,
(ii) for any arbitrarily chosen idA ∈ Id, such that E contains
pre-application and application messages by idA,
(iii) ∀ adversaries Adv of type T ,
(iv) ∀ explicit/implicit attack setups S(E),
adversary Adv cannot produce an explicit/implicit trackability
relation for S(E) containing a tuple (idA, ·) in the explicit
case, or (φ(idA), ·) in the implicit case for some bijection φ.

To see an example of refuting trackability (be it static or
adaptive) in our LoRaWAN case study, refer to Example 1 in
Section III-G.

Universal vs. Existential (Adaptive) Non-
Trackability: Def. 5, via Ad-NoTrackT , has an implicit
universal quantifier in it; so, we also call it “universal
adaptive non-trackability (∀-Ad-NoTrackT (idA))”. As with
the static case, we also employ the dual notion too: existential
adaptive non-trackability (∃-Ad-NoTrackT (idA)) for not
being able to adaptively track some given idA.

Existential trackability ∃-Ad-NoTrackT (idA) may appear
a weak guarantee: protocol π would still achieve adaptive
non-trackability ∃-Ad-NoTrackT (idA), even if the adversary
could track all identifiers except for one idA. However, this
is strengthened by the fact that idA is named by a challenger,
who also imposed the attack setup onto the adversary.

Static vs. Adaptive Non-Trackability: The most im-
portant difference between static and adaptive trackability is
the two different orders of quantification between Adv and the
executions E . In the adaptive case, any adversary that mounts
an attack would depend on the set E , whereas in the static
case such an adversary would be entirely free to choose the
executions to attack.

F. Session Non-Trackability

We now look at trackability that explicitly pins IDs not
only to application messages, but also to individual protocol
runs. In Defs. 4 and 5, the adversary is not concerned in
saying something as specific as “this message belongs to idA
as a consequence of idA executing this/a specific run of the
protocol”. Up to now, these notions of trackability do not look
at when the party with idA created the message; Defs. 4 and
5 indiscriminately consider all runs of π, i.e., trackability does
not separate idA’s application messages in the ith run of π
from idA’s application messages in jth run of π. To achieve
this notion, we introduce session trackability by strengthening
our previous definitions with an indexing of the sets Mid and
Mapp of messages by the corresponding ith run of the protocol
π. We then require the adversary to not only say if a given
m ∈ Mapp belongs to a given idA, but also whether idA
has produced it in the ith run of π from the set of runs that
underpins the messages Mapp.

Sessions: As per usual, identification-based security
protocols would run multiple times for the same entities. As
normal, we refer to one such run of the protocol as a session.
If multiple sessions for one entity A with idA occur, then idA
would be identified by entity B more than once over this period
of time. In Def. 6, we extend attack setups (Def. 2) to operate
over sessions.

Definition 6. Session Non-Trackability Attack Setups. Let π,
Id and E be as per non-trackability attack setups (Def. 2). Let
Sess be an arbitrarily chosen set of sessions associated with
all idA ∈ Id where a session s for idA is defined as above.

A non-trackability attack setup for π’s executions E and
sessions Sess is a tuple S(E , Sess)=(MSess

id ,MSess
app ) with:

(i) MSess
id is an arbitrarily chosen family of pre-application

messages appearing in Sess;
(ii)MSess

app is an arbitrarily chosen family of sets of application
messages appearing in Sess.

We extend trackability relations in Def. 3 over sessions:
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Definition 7. Session Trackability Relations. Let π be an
IDed-Prot protocol.

Given a session attack setup S(E , Sess)=(MSess
id ,MSess

app )
for a set of π’s executions E and a set of π’s sessions Sess,
a session trackability relation for S(E , Sess) is a non-empty
relation Tr ⊆ Id× Sess× P(MSess

app ) defined as follows:
(idA, i,M

i
A) ∈ Tr if:

(i) M i
A 6= ∅,

(ii) M i
A ⊂MSess

app , i ∈ S,
(iii) ∀m ∈M i

A, m was sent by the entity A with idA in its ith
session.

We lift the static and adaptive trackability notions
in Defs. 4 and 5 to their finer, session-based coun-
terparts. Thus, we respectively get: static session non-
trackability (St-SesNoTrack) and adaptive session non-
trackability (Ad-SesNoTrack). These lifts make trackability
operate in a session-sensitive manner: they both ask that
the adversary produce not binary, but ternary relations which
include session identifiers in their tuples.

To see an example refuting session trackability on our
LoRaWAN case study, refer to Example 2 in Section III-G.

Adaptive, Static, Universal and Existential Ses-
sion Non-Trackability Flavours: All the concepts of
“adaptive”, “static”, “universal”, “existential” transfer iden-
tically from the case of session-insensitive non-trackability
(St-NoTrack) to the case of session-sensitive non-trackability
(St-SesNoTrack). We thus have the full range of properties:
from strong positive requirements like universal static session
non-trackability (∀-St-SesNoTrack) to the weaker classes
of attacks such as existential adaptive session trackability
attacks (∃-Ad-SesTrack), etc. All notations also transfer from
the session-insensitive case with “Ses” before “NoTrack” or
“Track” being added to denote the session-sensitive case.

G. Illustration of Refuting Non-Trackability

We now give examples on how to refute non-trackability as
per Def. 4, Def. 5, and their session-based variants in Def. 7.

Example 1. How trackability attacks could look on Lo-
RaWAN Join v1.1. In this example, we do not distinguish
between adaptive and static cases, but only between universal
and existential. For illustration purposes, we exclude the pre-
application messages observed by the attacker; this impacts
the example in no way.

Assume the adversary obtained the following traffic:

• (DevAddr1, data1), . . . , (DevAddrn, datan), where
(DevAddri, datai) ∈Mapp for 1 ≤ i ≤ n and these
originated from the same DevEUI1 after different
executions of the LoRaWAN Join v1.1 by this DevEUI1.

• (DevAddr′1, data
′
1), . . . , (DevAddr′n, data

′
n) ∈ Mapp

and these originated from a DevEUI different from
DevEUI1, after different executions of the LoRaWAN
Join v1.1 of that DevEUI.

Any of the following relations form a valid existential

trackability attack (∃-Track) on the LoRaWAN Join:

{(DevEUI1, {(DevAddri1 , datai1), . . . ,

(DevAddrik , dataik)})}

where 0 < k ≤ n and {i1, . . . , ik} ⊆ {1, . . . , n}.
In other words, there would be an existential trackability

attack against the LoRaWAN Join v1.1, if the adversary could
track just one of the 2 devices, e.g., DevEUI1, to some of its
application data: one message, 2 messages, or all n messages.

Similarly, consider the adversary observed/obtained:

(DevAddr1, data1), . . . , (DevAddrn, datan), where
(DevAddri, datai) ∈ Mapp for 1 ≤ i ≤ n, and they
originated from n distinct EDs. Assume (for simplicity) that
each DevAddri is associated with DevEUIi in the Join.

A universal trackability attack (∀-Track) on this dataset
would mean the adversary can produce the following relation:

{(DevEUI1,{(DevAddr1, data1)}), . . . ,
(DevEUIn,{(DevAddrn, datan)})}

So, there would be a universal trackability attack against the
LoRaWAN Join v1.1 if the adversary were able to track not
just one, but each DevEUI (i.e., DevEUI1, . . . , DevEUIn)
to some of its application data.

Example 2. How session trackability attacks could look on
LoRaWAN Join v1.1. Let ms

idA
denote the instance of the

message m in a session s of a protocol π run by party A with
idA.

For the LoRaWAN Join v1.1 protocol, let us assume a
device DevEUI1 ran the Join in two sessions denoted i and
j, and device DevEUI2 ran the Join in two sessions denoted
k and l; also, we assume both ran more Join sessions and
other devices were running concurrently in multiple sessions.
Assume that the set MSess

app contains messages:

−(DevAddr1, a
i
DevEUI1), from DevEUI1

(DevAddr1, b
i
DevEUI1) in session i,

−(DevAddr2, c
j
DevEUI1

), from DevEUI1

(DevAddr2, c
j
DevEUI1

) in session j,

−(DevAddr3, e
k
DevEUI2), from DevEUI2

(DevAddr3, f
k
DevEUI2) in session k,

− similar from DevEUI2 in session l,

− other such messages.

On an attack setup partly described as above, a relation
sufficient to produce an existential session trackability attack
(∃-SesTrack) on the LoRaWAN Join v1.1 is:

(DevEUI1, i, (DevAddr1, a
i
DevEUI1))

The attacker needs to link at least one DevEUI to at least
one message in their mutual session. The relation above does
so for DevEUI1, message a, and session i.

For session-based trackability, not only can the attacker
identify the messages of an idA but can partition these by
different sessions. In practice, this would lead to more serious
and very targeted attacks: an intruder can stop/pollute the
messages of a given idA in a given execution.
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Clearly, non-trackability is a weaker property than session
non-trackability, meaning that if a party idA cannot be tracked
in general, then they cannot be tracked session-wise, either.

IV. CONCRETE TRACKABILITY ATTACKS

In this section, we show actual trackability attacks on
the LoRaWAN Join v1.1; we found these attacks either in
practice, LoRaWAN-Attack1 (Section VI), or via formal
verification, LoRaWAN-Attack2 (Section VII). These have
been acknowledged by the LoRa Alliance and one of our
solutions is now being adopted for LoRaWAN v1.2 specifi-
cations. In Section VI, we also show trackability attacks on a
5G procedure.

As we said in Section III-G, the trackability challenge in
the LoRaWAN Join v1.1 (see Fig. 1) is to link the DevEUI
to the corresponding DevAddr, be it in every Join session in
which a DevAddr is issued (∀-St-SesNoTrack), or at least
in some sessions, indiscriminately (∀-St-NoTrack).

A. Explicit Trackability Attacks

1) LoRaWAN-Attack1: An St-SesTrackexpl.,passive At-
tack on the LoRaWAN Join v1.1: This attack works in
the following setting: n devices are already sending applica-
tion messages and only one new device identified, e.g., via
DevEUI1, is now (re)joining the network.

In this scenario, an adversary only has to observe the
(Re)JoinRequest, see a JoinAccept message, and then a soon-
to-come application message. Not only is this application
message identifiable as it comes in a predictable number of
seconds (≈2 seconds) after the JoinAccept message, but it is
also characterised by its frame counter, FCntUp, being at 0
(this counter is reset to 0 after each successful Join/ReJoin).
All other n devices will have their FCntUp not at 0, as this
counter increments with every uplink message. Consequently,
this first uplink/application message can be easily observed
by a passive adversary, who can thus extract the DevAddr
from the message header and then link the DevAddr to the
DevEUI1 sent as part of the original JoinRequest. They can
also continue to track the application messages from this
DevAddr with counter FCntUp equal to 1, 2, . . ., etc.

2) LoRaWAN-Attack2: An St-SesTrackexpl.,active At-
tack on the LoRaWAN Join v1.1: This attack works in
the following setting: there are at least two devices sending
a JoinRequest roughly at once (e.g., within a window of ≈1
second, if the response time to the JoinRequest is ≈6 seconds).

There are two attack strategies for an active adversary,
and both result in one of the two JoinRequests not receiving
a JoinAccept from the JS. These strategies are as follows:

• Selective Blocking: Given two devices DevEUI1 and
DevEUI2, an active adversary can block the JoinRequest
message of DevEUI1 while letting the JoinRequest mes-
sage of DevEUI2 through.
• Forced Condition: The LoRaWAN Join v1.1 proto-

col is an identification-based protocol with conditionals
(see Section III). If an adversary changes a DevNonce
in a JoinRequest to a certain incorrect value (e.g., 0),
the JS will drop the JoinRequest; the “conditional” on
DevNonces being strictly increasing will fail, as will the
verification of the MAC included in the JoinRequest.

This is therefore similar to the LoRaWAN-Attack1, with
only one device, DevEUI2, receiving a successful JoinAccept.
The adversary can again link it to the first application message
containing DevAddr2 as described above.

3) Countermeasure to LoRaWAN-Attack1 & LoRaWAN-
Attack2:

Our Join-EncRequest Protocol. To counteract
LoRaWAN-Attack1 and LoRaWAN-Attack2, we encrypt
the JoinRequest message using a public key of the NS8. That
way, the DevEUI is not revealed to the adversary, and hence,
cannot be linked to the subsequent DevAddr.

Our countermeasure via the Join-EncRequest protocol
only does away with explicit trackability and session trackabil-
ity. A much weaker, not session-sensitive St-Trackimpl.,active

attack is still possible on our Join-EncRequest protocol.
In our Join-EncRequest protocol, the encrypted JoinRe-
quest message sent by a DevEUI acts as an implicit identifier
for it. However, this trackability does not apply at session level,
i.e., the next time the device sends an encrypted JoinRequest,
it will be different to its previous one and thus the two are
unlinkable to the same device.

B. Implicit Trackability Attacks

1) LoRaWAN-Attack3: An St-SesTrackimpl.,passive on
LoRaWANJoin v1.1 & Its Join-EncRequest Enhance-
ment: The LoRaWAN Join protocol allows a device to send
a ReJoin-request message to which the network replies with
a JoinAccept message that can change the DevAddr of a
device [13]. In this attack, we assume the following:

(i) the countermeasure of encrypting the DevEUI in the
Join-EncRequest enhancement of the LoRaWAN
Join is in place;

(ii) n devices are transmitting application messages at regular
intervals, i.e., within t time ticks, all n devices have sent
at least 1 application message;

(iii) one and only one device sends a Join or (Re)JoinRequest
during a given interval.

If one of the n devices, e.g., DevEUIi, sends a suc-
cessful ReJoinRequest, then this results in the reset of i’s
frame counter to 0 and its address, DevAddri, be changed
to DevAddr′i. Not only is DevAddr′i linked to a 0-value
FCntUp, but DevAddri also no longer sends another applica-
tion message when all other n-1 devices do. So, the adversary
can link the old DevAddri address to the new DevAddr′i
address as belonging to the same device.

2) Countermeasures to the LoRaWAN-Attack3:
Our Join-Rand_Ad Protocol. Unless we constantly

change the DevAddr, which is impractical, one cannot stop
this attack. We use Join-Rand_Ad to refer to this impracti-
cal improvement of the original LoRaWAN Join v1.1 protocol,
whereby the DevAddr changes with every uplink message via
some function known just to the devices and the NS.

8If public-key cryptography will never become part of the LoRaWAN
specificationsopen , then the SigFox [41] approach can be adopted, in which
the JoinRequest is encrypted with a symmetric key the device shares with
the NS. To decrypt such a request, the NS will cycle through all its known
device-specific keys; improvements based on expected times for ReJoins and
key rotations can be proposed.
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Our Join-Rand_Ad__NoCounters_InHdrs Proto-
col. If we wish to counteract the timing-based failing in
LoRaWAN-Attack1 as well, then we can enhance the
Join-Rand_Ad protocol further to include random tim-
ing delays in the JoinAccept replies, as well as hide the
FCntUp from the header. We call this resulting protocol
Join-Rand_Ad__NoCounters_InHdrs.

The same “improvements” on DevAddrs’ generation and
unpredictable timing between the JoinRequest and the JoinAc-
cept can be applied to our Join-EncRequest protocol, too.

C. Adoption by the LoRa Alliance & the Relevance of Our
LoRaWAN Attacks

We demonstrated the usefulness of TrackDev by apply-
ing it to the LoRaWAN Join v1.1 protocol. Importantly, we
actually found these attacks via a practical implementation of
TrackDev (see Section VI) as well as via a formal-verification
mechanisation of TrackDev (see Section VII). We presented
them in this section, explicitly first, for ease of understanding.
So, we show that TrackDev can find, in practice, a wide
range of real attacks: some where the attacker is passive,
some where they are active, some session-sensitive and some
session-insensitive.

Importantly, the LoRa Alliance was receptive to all our
attacks. As a consequence, in version 1.2 of the LoRaWAN
specifications (to appear later this year), our countermeasures
will be adopted to a great extent: (i) JoinAccept will arrive at
varying time intervals to thwart passive attackers; (ii) an adap-
tion of our Join-RandAd-NoHDRCounters is adopted:
i.e., at random times, the NS will send the device (in the
encrypted application layer) a new, fresh DevAddr to use
starting from randomly-picked FCntUp counter amongst the
future FCntUp values of the device.

One of the authors of this manuscript is actively working
with the security working group of the LoRa Alliance to
incorporate these changes to the LoRaWAN specifications.

On a more generic note, LoRaWAN-Attack1 and
LoRaWAN-Attack2 are more serious and practical than
LoRaWAN-Attack3. Thus, one could also use this concrete
example to extrapolate a wider understanding of TrackDev:
implicit session-insensitive attacks (like LoRaWAN-Attack3)
may be too weak, or, equivalently, that implicit, session-
insensitive non-trackability may be too strong a property.

V. TRACKABILITY CHARACTERISATION

We now look at the strengths of our non-trackability
properties, over their orthogonal dimensions.

A. Immediate Comparisons of Trackabilities’ Strengths

Active vs Passive Attacks: If a protocol has tracka-
bility of a specific type (universal/existential, static/adaptive,
session (in)sensitive, explicit/implicit) w.r.t. to a passive ad-
versary, then it also has trackability (of the same type) w.r.t.
to an active adversary, but not vice-versa:

Trackpassive
=⇒
6⇐= Trackactive

∀-Ad-SesTrack

⇓6 ⇑

∀-Ad-Track

⇓6 ⇑

∃-Ad-Track

=⇒
6⇐=

=⇒
6⇐=

=⇒
6⇐=

∀-St-SesTrack

⇓6 ⇑

∀-St-Track

⇓6 ⇑

∃-St-Track ∃-Ad-Track

⇓6 ⇑

∃-Ad-SesTrack

⇓6 ⇑

∀-Ad-SesTrack

=⇒
6⇐=

=⇒
6⇐=

=⇒
6⇐= ∃-St-Track

⇓6 ⇑

∃-St-SesTrack

⇓6 ⇑

∀-St-SesTrack

∀-Ad-Trackactiveon∀-St-Trackpassive

∀-Ad-Trackimpl.on∀-St-Trackexpl.
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Fig. 2. (In)Comparable (Non-)Trackability over TrackDev’s Parameters

Static vs. Adaptive Attacks: In the adaptive cases,
any adversary is given access to specific executions to track,
as well as being given the target id to track. In the static cases,
the adversary’s strategies are not conditioned in any way. Apart
from this, the attack setups are the same in both cases. So,
a successful adaptive trackability attack entails a successful
static trackability attack, but not vice versa:

Ad-Track
=⇒
6⇐= St-Track

Existential vs. Universal Attacks: Any universal at-
tack implies an existential attack but not vice-versa:

∀-Ad-Track
=⇒
6⇐= ∃-Ad-Track

∀-St-Track
=⇒
6⇐= ∃-St-Track

Session-sensitive vs. Session-insensitive Attacks: If
a protocol has session-insensitive non-trackability w.r.t. to an
adversary of type T , then it also has session non-trackability
w.r.t. to an adversary of type T , but not vice-versa:

SesTrackT
=⇒
6⇐= TrackT

Implicit vs Explicit Attacks: If a protocol has implicit
non-trackability w.r.t. to an adversary of type T , then it also
has explicit non-trackability w.r.t. to an adversary of type T ,
but not vice-versa:

Trackexpl.,T
=⇒
6⇐= Trackimpl.,T

B. Non-Trivial Comparisons of Trackability Strength

The above compared the strengths of (non-)trackability
by varying just one parameter. But, TrackDev has multiple
parameters (see Section III-E) and varying multiple parameters
at once can lead to incomparable (non-)trackability notions. We
depict this via the lemmas that follow, as well as in Fig. 2.

We say that two properties are totally incomparable (de-
noted by on) if there exist protocols that satisfy one but not
the other. In Fig. 2, “blue” and “red” attacks are incompa-
rable (denoted by “on”), and both are weaker than “green
attacks” (denoted by “ =⇒ ”). Indeed, ∀-Ad-TrackT and
∀-St-SesTrackT are incomparable; i.e., intuitively, if an at-
tacker can, in a session-independent way, track any externally-
chosen identifier than this does not necessarily lead to an
attacker that can track, session-wise, such/the identifiers even
if the latter attacker elects themselves the executions to track.

Now, we state the formal results shown in Fig. 2.
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Lemma 1 (Adaptiveness of Tracking vs Attack-Type). Active
adaptive trackability does not imply passive static trackability,
i.e., ∃-Ad-Trackactive 6=⇒ ∃-St-Trackpassive.

Lemma 2 (Adaptiveness vs Explicitness of Tracking). Explicit
adaptive trackability and implicit static trackability are totally
separable: i.e., ∀-Ad-Trackexpl. on ∀-St-Trackimpl..

Lemma 3 (Session-Sensitivity vs Attack-Type). Session active
trackability and session passive trackability are totally sepa-
rable: i.e., ∀-St-SesTrackactive on ∀-St-Trackpassive.

Lemma 4 (Session-Sensitivity vs Explicitness). Session-
sensitive implicit trackability and session-insensitive explicit
trackability are totally separable: i.e., ∀-St-SesTrackimpl. on
∀-St-Trackexpl..

The lemmas above are proven similarly to Lemma 5 below.

Amongst our non-trackability notions, there are more in-
comparable ones that Fig. 2 shows. An example is Lemma 5.

Lemma 5 (Explicitness of Tracking vs Attack-Type). Let
“Track” denote any arbitrarily fixed trackability attack. Then,
Trackexpl.,active and Trackimpl.,passive are totally incompara-
ble: Trackexpl.,active on Trackimpl.,passive.

Proof: First, we prove that: Trackimpl.,passive 6=⇒
Trackexpl.,active.

We need to show that there are protocols that admit a
Trackimpl.,passive attack, but not a Trackexpl.,active attack.

The Join-EncRequest protocol given by us in Sec-
tion IV-A2 allows for the Trackimpl.,passive LoRaWAN-
Attack3 in Section IV-B, but not for a Trackexpl.,active
attack. Indeed, the Join-EncRequest protocol cannot
allow for an explicit attack, since the IDs (i.e., DevEUIs)
are communicated encrypted.

Second, we prove that: Trackexpl.,active 6=⇒
Trackimpl.,passive. We need to show that there are protocols
that do not admit a Trackimpl.,passive attack, but do admit a
Trackexpl.,active attack.

Consider the Join-RandAd-NoHDRCounters protocol
in Section IV-B, which modifies the LoRaWAN Join protocol
with a randomised DevAddr and hides FCntUp from the
header. This protocol allows for a Trackexpl.,active attack. This
attack is variation of LoRaWAN − Attack1: (i) the attacker
sees the DevEUIs in clear, so the attack is explicit; (ii) the
attacker needs to be active and block a JoinRequest of one of
the DevEUI of the two at their disposal; (iii) this attacker can
link the DevAddr seen in the first, subsequent uplink message
to the unblocked DevEUI .

However, the Join-RandAd-NoHDRCounters does
not allow for a Trackimpl.,passive. A passive attacker can
observe the DevAddrs in uplink messages, but they will
arrive at randomised intervals from the previous JoinRequests
and their associated FCntUp will not be visible (it shows 0
initially). The DevAddr will also change frequently outside
of the (Re)Join calls, so several uplink messages will not
have the same DevAddr. A passive attacker has no long-term
information in the preamble of uplink messages to link to the
DevEUIs in the prior JoinAccepts.

VI. TrackDev APPLIED IN PRACTICE

A. Applying TrackDev to LoRaWAN

We now show how we implemented most of TrackDev in
practice and applied it to LoRaWAN protocols.

At the time of the experiments, no off-the-shelf LoRaWAN
v1.1 devices were available. So, we experimented on the
LoRaWAN Join v1.0. Note that the LoRaWAN Join v1.0 is not
essentially different from the LoRaWAN Join v1.1 discussed in
Section II-A. Moreover, the trackability attacks we will show
below depend only on features that are the same in both the
LoRaWAN Join v1.0 and v1.1.

1) FLoRa: A Packet-Inspector for LoRaWAN: We devel-
oped on top of a proprietary product9 called FLoRa, which is
primarily a LoRaWAN traffic sniffer. FLoRa is composed of
two RAK831 LoRaWAN gateways10 which, respectively, inter-
cept up- and downlink LoRaWAN traffic between any LoRa-
capable devices (e.g., PyCom devices [40]) within a given
LoRa-capable network (e.g., The Things Network (TTN) [34]).
The application logic behind the gateways is implemented via
the “FLoRa server”, which is written in Python. The traffic is
stored in a database and can be queried via the command line
or a user interface. FLoRa has other capabilities, e.g., replaying
packets, but they are not relevant to our attack scenario.

2) Collecting LoRaWAN Traffic: We used two LoRaWAN
v1.0-capable11 devices, with the DevEUIs below:

DevEUI1: 75 C6 00 00 0A CA 25 00
DevEUI2: 64 7F DA 00 00 00 3F ED

Time Type DevAddr DevEUI FCnt

’2021-09-05 11:34:23.87’ ’Join-Request’ ’b6bf6b860a8b1ea7’

’2021-09-05 11:34:56.31’ ’Join-Request’ ’75c600000aca2500’
’2021-09-05 11:35:01.39’ ’Join-Accept’

’2021-09-05 11:35:04.25’ ’Uplink Msg (C)’ ’260b0523’ ’0000’

’2021-09-05 11:35:04.26’ ’Uplink Msg (C)’ ’260b0523’ ’0000’

’2021-09-05 11:35:17.95’ ’Join-Request’ ’ed3f000000da7f64’

’2021-09-05 11:35:40.26’ ’Uplink Msg (UC)’ ’260be271’ ’0000’

’2021-09-05 11:35:40.27’ ’Uplink Msg (UC)’ ’260be271’ ’0000’

’2021-09-05 11:36:04.51’ ’Uplink Msg (C)’ ’260b0523’ ’0001’

’2021-09-05 11:37:04.51’ ’Uplink Msg (C)’ ’260b0523’ ’0002’

’2021-09-05 11:37:53.19’ ’Uplink Msg (C)’ ’e96adc6f’ ’4c47’

’2021-09-05 11:38:04.50’ ’Uplink Msg (C)’ ’260b0523’ ’0003’

’2021-09-05 11:38:04.50’ ’Uplink Msg (C)’ ’260b0523’ ’0003’

’2021-09-05 11:39:00.35’ ’Join-Request’ ’790ef4364d04e6ab’

’2021-09-05 11:39:02.78’ ’Join-Request’ ’ed3f000000da7f64’

...

’2021-09-05 11:41:31.88’ ’Join-Request’ ’75c600000aca2500’
’2021-09-05 11:41:36.94’ ’Join-Accept’

’2021-09-05 11:41:39.22’ ’Uplink Msg (C)’ ’260b24d9’ ’0000’

’2021-09-05 11:41:39.23’ ’Uplink Msg (C)’ ’260b24d9’ ’0000’

’2021-09-05 11:42:28.75’ ’Join-Request’ ’ed3f000000da7f64’

’2021-09-05 11:42:35.56’ ’Join-Accept’

’2021-09-05 11:42:39.47’ ’Uplink Msg (C)’ ’260b24d9’ ’0001’

’2021-09-05 11:42:39.48’ ’Uplink Msg (C)’ ’260b24d9’ ’0001’

’2021-09-05 11:42:51.07’ ’Uplink Msg (UC)’ ’260b7bbd’ ’0000’

’2021-09-05 11:42:51.09’ ’Uplink Msg (UC)’ ’260b7bbd’ ’0000’

’2021-09-05 11:43:24.07’ ’Join-Request’ ’75c600000aca2500’

’2021-09-05 11:43:29.15’ ’Join-Accept’

’2021-09-05 11:43:31.39’ ’Uplink Msg (C)’ ’260b785b’ ’0000’

Fig. 3. Snippet of captured FLoRa traffic.

These were configured to join the TTN and send/receive pack-
ets. We then randomly disconnected them from the network

9This is a product by NCC Group, now to be released open source; a version
can already be found at [9].

10https://tinyurl.com/v99v2n7k
11Our attacks have been implemented against LoRaWAN v1.0 devices/-

traffic, due to no availability of LoRaWAN v1.1 devices at the time of the
experiments; but, the trackability attacks shown above reside on features that
are the same in both v1.1 and v1.0 LoRaWAN Joins.
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to force new sessions, and, hence, JoinRequests. We added
additional devices to generate more traffic. FLoRa captured
several hours of LoRaWAN traffic12. See Fig. 3 for a sample.

3) Mounting the LoRaWAN-Attack1 in Practice: The
aim was to see if a passive attacker (emulated by FLoRa)
can mount a St-SesTrackexpl.,passive attack targeting, e.g.,
DevEUI1. Fig. 3 shows a JoinRequest captured at 11:34:56
and, within 6 seconds, we see a JoinAccept at 11:35:01. At
11:35:04 we can see an Uplink Msg (C) with a DevAddr of
260b0523 and an FCnt of 0; recall that the counter FCnt at 0
denotes the very first uplink/application-level message (Mapp

in TrackDev terminology). As per our setup, our devices were
randomly disconnected and reconnected to force the sending of
JoinRequest messages. After the 11:35:04 message in Fig. 3,
we see more uplink and downlink traffic (in Mapp as well
as in Mid). The next JoinRequest message that we see for
DevEUI1 is at 11:41:31. Again, within 6 seconds, we see a
JoinAccept at 11:41:36 and an Uplink Msg (C) at 11:41:39
with a DevAddr of 260b24d9 and an FCnt of 0.

Note: As described in LoRaWAN-Attack1, the attacker
can gather DevEUI1’s application messages with FCnt being
1, 2, . . ., at least until DevEUI1 sends a new JoinRequest.

In total, FLoRa captured 225 uplink (JoinRequest and
application-level) messages. For all the traffic gathered by
FLoRa, out of 39 JoinRequest messages 31 were followed by
a JoinAccept within the 6 second timeframe (avg. 6 seconds).
Of the remaining 8, 6 were found to be corrupted packets
and 2 were found to be a replay of a JoinRequest within
6 seconds of the original message. Within our small sample,
there is thus a 93% ( 31

39−6= 31
33 ) probability that the LoRaWAN-

Attack1 is able to link a DevAddr appearing in the very first
uplink/application-level message after a JoinAccept to the
DevEUI contained within the JoinRequest sent just before.
If more traffic were to be gathered, then the confidence of the
LoRaWAN-Attack1 would increase, as the overall percentage
of corrupted packets is likely to drop.

4) Verifying Our Findings: FLoRa has a decryption
capability which, given the right NwkKey, will decrypt
all captured JoinAccepts. As the devices DevEUI1 and
DevEUI2 belong to us, we have their NwkKey. To verify
that the LoRaWAN-Attack1 above is correct, we applied the
NwkKey for DevEUI1 to our captured traffic and found that,
indeed, the JoinRequest, JoinAccept, Uplink Msg (C)
tuples which came within the 6 second timeframe of each
other, allowed for the correct linking between a DevEUIi
and its DevAddris. So, the St-SesTrackexpl.,passive attack
we found on the LoRaWan Join v1.0 is correct.

B. Applying TrackDev to 5G Handover Procedures

We now show how TrackDev can be applied to 5G (5th
generation mobile network) procedures. The 5G procedures we
use to demonstrate this are the 5G handover procedures which
we describe first.

1) 5G Handovers – Background: A handover procedure
is executed whenever a User Equipment (UE) needs to be
served by a different radio “base-station” than the one currently

12The capture traffic is available at [9] in the files:
flora_lorawan_traffic.db and flora_lorawan_traffic.csv.

Fig. 4. XN (5G Handover Procedure) – A Sketch

serving the UE. Such base-stations in 5G are called gNBs (next
generation nodes). A UE may switch to a new gNB for the
purposes of load balancing, a change in radio conditions, or a
change in the user’s location [23].

There are two main types of 5G handover procedures,
XN and N2 [23]. For TrackDev, either procedure would be
suitable. Thus, we just focus on the XN procedure. Figure 4
depicts the 5G handover procedure called the XN handover.

In the description that follows, as well as in Figure 4,
we simplify the settings of the handovers’ execution (i.e., we
present it without roaming, whereby the serving network is
that of the subscribers’ provider), we simplify the network
architecture (e.g., we do not distinguish the different parts
of the back-end/core of the network as well as leaving out
certain entities altogether), and we do not focus on the key-
establishment aspects of the protocol, but only on the UE
identifying data passed around (be it short-term/ephemeral or
long-term identifying data).

The following is a description of the XN handover as
depicted in Figure 4.

1) The UE’s current gNB, the source gNB (S-gNB), issues
a request to transfer the UE to a target gNB (T-gNB).
S-gNB provides T-gNB with the current ephemeral Cell
Radio Network Temporary Identifier (C-RNTI) [25] of the
UE and a freshly generated session key KgNB , which will
be used by the UE and T-gNB to derive access-stratum
keys to encrypt and authenticate the communication link
between themselves. Included in this Handover-Request
message is the Protocol Data Units (PDU) session-list
for the UE.
• A PDU session is a networking and billing-related data-

structure used by the 5G network to book-keep the
connections and the associated usage that UEs have.
A PDU session will contain several long-term details,
such as what a given user is entitled to by its contract
(e.g., minimal Quality of Service (QoS) parameters), as
well as real-life details such consumption data, actual
speed of the connection, network information (i.e., via
which User Plane Function (UPF) the connection is
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routed), all as present on the current connection. An
active UE has what is called a PDU session-list,
which is a series of PDU sessions, each with a unique
identifier.

2) The T-gNB responds with an ack which includes fresh
ephemeral identifiers to be used to name the UE being
handed-over, i.e., new C-RNTIs.

3) The UE receives the new parameters from the S-gNB and
computes the same session key, KgNB , issued to the T-
gNB in the previous step [25].

4) The UE confirms the handover to the T-gNB.
5) The T-gNB notifies the Core Network (CN) that a han-

dover is being carried out for a given UE, and sends the
current list of PDU sessions for said UE.

6) The CN acknowledges the handover to the T-gNB, and
sends the updated PDU session list to the T-gNB (as well
as other parts of the network which we ignore here).

7) Mobile Registration Update (MRU): This is an additional
optional step that may be taken during the handover. The
UE, T-gNB and the CN exchange and update additional
parameters such as the 5G Globally Unique Identifier
(5G-GUTI), which is another ephemeral identifier for the
UE [23].

8) Finally, in the last message in Figure 4, the UE is also
updated with all the details from the CN’s side, e.g., the
new PDU session list.

Note that all these messages in the XN procedure are sent
securely, i.e., they are encrypted and authenticated.

2) 5G & the TrackDev Framework: Let us consider
TrackDev being applied to the 5G handover procedures. We
consider a passive attacker in the case of the attacker not
knowing the UE’s real long-term 5G identifiers (e.g., their
IMSIs [22]). So, let us focus on an St-Trackimpl.,passive

attack on 5G XN handovers.

This is very pertinent, as the handover executions only ex-
pose (even to someone who can decrypt the traffic) ephemeral
identifiers of the UE. It is the very aim of 5G that the use
of these ephemeral identifiers helps improve privacy and non-
traceability [24], [11], [8].

At a glance, based on Figure 4, an St-Trackimpl.,passive

attack linking several executions of the handover to the same
UE would consider either (a) “bagging” several ephemeral C-
RNTIs together as belonging to the same UE, or (b) “bagging”
several ephemeral 5G Global Unique Temporary Identifiers
(GUTIs) together as belonging to the same UE.

Worryingly, in practice, if an attacker is able to link
together several ephemeral identifiers of the same one UE
via handover executions, it also implies that this attacker can
determine the physical whereabouts of that UE, since the
handovers’ executions will pertain also to the gNBs executing
them.

a) Threat Sub-Model: To mount such an attack, traffic
needs to be recorded in different places: (a) between the CN
and (several) gNBs; (b) between the UE itself and (several)
gNBs; (c) between the gNBs. To mount the attack, such traffic
also has to be decrypted or collected in decrypted form. This
corresponds to a strong threat-model, whereby some (subnet

of) gNBs13 are corrupted and leak decrypted traffic, or are
the traffic collectors themselves. That said, since gNBs run
software that is provided not by the CN, but by third-party
vendors, this threat is realistic. Indeed, it is well-known that
rogue gNBs, installed with the very purpose of tracking exist
and are active [28].

Thus, we consider two scenarios for our attacker, both of
which lead to trackability attacks: (a) a corrupt gNB gather-
s/leaks traffic in between the UE and itself, or in between itself
and another gNB – Section VI-B4; (b) a corrupt gNB gather-
s/leaks traffic between itself and the CN – Section VI-B5.

3) The Setup for a ∃-St-Trackimpl.,passive Attack on 5G
XN Handovers: We explain the setup used to mount the
aforementioned ∃-St-Trackimpl.,passive attack on 5G XN
handovers in practice.

Experimental Setup. For our practical attack, we used an
experimental but operational 5G network where we have
access to the CN. The CN is minimal in the sense that unlike in
commercial mobile networks, there are not numerous entities
of the same type, e.g., Access and Mobility Management
Functions (AMFs). This makes some aspects of the protocol
simpler, e.g., the PDU sessions will not contain various AMFs,
billing information, etc. The gNBs in this network run Huawei
software. The XN protocol is as per the specifications.

Experiment Design. For ease, we focus on the tracking of
one single 5G-capable mobile phone generating XN traffic in
this network.

We used a Huaweii BLA-L09 in this network. This phone
was connected to the network and physically moved between
multiple gNBs to trigger the handover procedures for the
duration of 1 hour, and other traffic was present in the network.
We recorded traffic: (a) at the CN-side between the CN and
the gNBs, and (b) at the gNB side, between the UEs and
the various gNBs. We used both sets of traffic to mount the
aforementioned ∃-St-Trackimpl.,passive. Clearly, we know the
long term identifiers as well as the movements of said phone,
and we will use that to ascertain the correctness of the attack
applied on the collected traffic.

4) Mounting a ∃-St-Trackimpl.,passive Attack on 5G Han-
dovers Using gNB-Facing Traffic: We focus on mounting the
attack using traffic collected on the gNB nodes. The traffic we
collected is a Huawei proprietary format (called “tmf”) and
can be found at [9].

We show that by looking at several Handover-Request
messages (message 1 in Figure 4) between different gNBs,
we can tell which handovers belong to the same UE.

That is, even if the same UE has two different C-RNTIs
over every two handover executions, we can still say that these
two C-RNTIs belong to the same UE. PDU-session data does
not change (or changes minimally) across two such Handover-
Request messages, which are not far apart in time. It is likely
that over two handovers close in time, the billing data, the
Internet-traffic routing, etc., has not changed14 much for the
same UE [23].

13There would be the alternative of the UE being corrupted, but in this case
tracking its identifiers can be done differently.

14In our experimental setting, the AMF does not change either.
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For clarity, in Figure 5, we show several Handover-Request
messages (as well as other XN messages) in our captured
traffic, with an expanded window on the PDU-session data
inside this message. Handover-Requests 17 and 25 marked
on Figure 5 in green are 13 minutes apart and were sent by
different gNBs. The side-by-side comparison can be seen in
Figure 6.

The comparison shown in Figure 6 focuses on two aspects:
C-RNTIs (in red) and PDU-session data. We see in this
(extreme) case that the PDU-session data is identical (the
same 30 bytes are illustrated15), even if the C-RNTIs differ.
This is therefore clearly the same phone doing two handover
executions, being at different locations at given points in time.

Note that not all PDU-session data for the same UE
was identical across our collected data over two different
Handover-Requests, but ≈ 90% of the bytes match. This
allows to unequivocally link C-RNTIs and different handover
executions to the same UE. We did this sort of comparison for
all our traffic. It was 100% accurate in identifying our target
UE.

Note that more sophisticated attack strategies are possible,
where one links together Handover-Requests and Handover-
Request Acknowledgment messages. This is not necessary for
our illustration purposes here.

5) Mounting a ∃-St-Trackimpl.,passive Attack on 5G Han-
dovers Using Core-Facing Traffic: We focus on mounting the
attack using traffic collected on the CN-side. The traffic we
collected is stored in a .pcap file and can be found (zipped)
at [9].

The identifiers of interest for our attack are:

• 5G-S-TMSI: The 5G S-Temporary Mobile Subscriber
Identity [21] is the shortened version of the 5G GUTI,
and is an ephemeral identifier of UEs, used between UEs
and gNBs. The 5G-TMSI is refreshed with each handover
and a fresh 5G-TMSI is used between the UE and gNB
right after a handover (in the MRU) and (re)registration
messages. We will refer to all these messages, by some
abuse of naming, as the InitialUEMessage.

• AMF-UE-NGAP-ID: A unique ID between the UE and
the NG interface within the AMF. This ID is refreshed
with every new connection, as a UE can only be con-
nected to one AMF at a time [27], [26].

• RAN-UE-NGAP-ID: A unique ID between the UE and
the NG interface within a gNB node (RAN). This ID is
refreshed with every new connection, as a UE can only
be connected to one gNB at a time [27], [26].

To mount this attack, the adversary has to observe several
InitialUEMessage and InitialContextSetupRequest messages
(in this setting by capturing them between the gNB and the
CN). These messages are sent in a new connection between the
UE and a gNB [27]. The attack works because across several
InitialUEMessage and InitialContextSetupRequest messages of
the same UE, there will be at least one identifier discussed
above that does not change.

In Figure 7, we show a snippet of our captured traffic
between the 5G CN and the gNB towers. As per Figure 7,

15This is also true on field-by-field inspection.

the attacker is able to deduce that the 5G-S-TMSI values
of 3623909776 and 3623903776 belong to a single device
through the following steps:

1. (5G-S-TMSI,RAN-UE-NGAP-ID) pairing of
(3623909776, 1048819) in packet 103987

2. (AMF-UE-NGAP-ID, RAN-UE-NGAP-ID) pairing of
(65, 1048819) in packet 103995

3. (AMF-UE-NGAP-ID, RAN-UE-NGAP-ID) pairing of
(65, 14) in packet 104159

4. (5G-S-TMSI,RAN-UE-NGAP-ID) pairing of
(3623903776, 14) in packet 104166

This attack is largely possible because the same UE is
handed over in our experiments between several gNB nodes,
but the AMF stays the same. Note this is a setup in our
network, but this can happen in real 5G networks, too, as
the AMF does not always change. In our setup this attack
is very effective, working for 82% of the handovers (whilst
some captured traffic is malformed).

However, due to the fact that the AMF would change,
this attack is less effective in reality than the attack in
Subsection VI-B4. The attacker can then look at the Path-
SwitchRequest message which is sent in each such execu-
tion of handover/registration by the backend of the network
(e.g., gateways/user-plane functions (UPFs)) to the gNBs [27].
A PathSwitchRequest message contains the details of the PDU
session to be switched, such as the ID of the associated device
and the new gateway tunnel endpoint. The attacker can then
reinforce the first correlation of several 5G-S-TMSIs suspected
to be of the same UE (based on the AMF-UE-NGAP-ID,
RAN-UE-NGAP-ID) via looking at the PDU session data in
the associated PathSwitchRequest messages; this is similar to
Subsection VI-B4.

6) Final Words on TrackDev’s Application to 5G Han-
dovers: The investigation we made started from the known
premise that PDU-session data carries long-term data and that
the AMF-UE-NGAP-IDs are known to be relatively static. On
this premise, we wished to use TrackDev in a systematic way,
to see if these are enough to track UEs based on C-RNTIs and
5G-S-TMSI, and do so in line with our well-defined notions.
To this end, we do show that TrackDev can indeed be used to
systematically capture trackability attacks over 5G handovers.

Meaning of the attacks. In practical terms, our findings
mean that “honest but curious” gNBs can look at all the traffic
they see and link/track together multiple C-RNTIs (which are
ephemeral, privacy-driven identifiers) and data associated to
these (e.g., PDUs) to determine which C-RNTIs pertain to the
same UE, and thus track their traffic/movements long-term.

Since our threat model is arguably strong16 (i.e., gNBs have
to leak decrypted traffic), our findings do not say that C-RNTIs
and 5G-S-TMSIs are necessarily/always not useful in masking
long-term identifiers such as the IMSIs.

Disclosure. We discussed with 3GPP, and they find the
premise of corrupt gNBs to be a low risk. We will pursue the

16Yet, our threat-model is totally plausible if someone has access to,
e.g., (one or more) gNBs that did handovers of UEs, as shown to be the
practice in some cases [28].
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Fig. 5. XN Data on gNBs: Focus on Handover-Request & Inner PDU-session List

Fig. 6. Two Handover-Requests: Two C-RNTIs & The Same PDU-session List Data

Packet Source Destination Message 5G-S-TMSI AMF-UE-NGAP-ID RAN-UE-NGAP-ID
103987 Tower 1 5G-Core InitialUEMessage 3623909776 1048819
103995 5G-Core Tower 1 InitialcontextSetupRequest 65 1048819

...
104159 Tower 2 5G-Core InitialUEMessage 3623903776 14
104166 5G-Core Tower 2 InitialcontextSetupRequest 65 14

Fig. 7. Snippet of Captured Traffic between the gNB and the Core

conversation further based on certain on-going experiments at
our end, in which we aim to make our trackability simpler

and more resolute, i.e., track UEs with more certainty based
on more data.

VII. TrackDev FOR FORMAL VERIFICATION: TrackDev
MECHANISED IN TAMARIN

We discuss how our TrackDev notions are mechanisable
in formal verification tools, how it relates to existing privacy
properties in formal analysis, and how we add to that.
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A. Preliminaries on Related Formal-Verification Notions

1) Arapinis’ Unlinkability [2] (unlink.Arapinis): Tracka-
bility as encapsulated by TrackDev transcends privacy prop-
erties encoded as a trace-to-trace equivalence and verified in
tools such as Deepsec [10] or SAT-Equiv [15], [16]. Instead, it
is closest to unlinkability as presented by Arapinis et al. in [2];
unlinkability denotes an equivalence property between (any)
two sets of traces, not just between two traces. We refer to this
notion as unlink.Arapinis. One flavour of unlink.Arapinis is
as follows: a protocol-execution in which alice has just one
session should be indistinguishable to an attacker from the
protocol-execution in which alice has two or more sessions.

2) The Verification of unlink.Arapinis: Currently, no tool
exists that can verify unlink.Arapinis, in general. However,
the authors of [5], [33] showed that, for two-party, stateful
protocols, unlink.Arapinis can be reduced to verifying if the
protocol achieves the following three properties:

• Well-Authentication (WA): Whenever the outcome of
a conditional is positive, the corresponding agent has
an honest interaction with a counterpart of the expected
identity. It thus ensures that the attacker cannot learn
anything about identities by (indirectly) observing the
outcome of conditionals;

• No-Desynchronisation (ND): Honest sessions are not
desynchronised in stateful protocols;

• Frame Opacity (FO): The attacker cannot distinguish
(ephemeral or long-term) identities via any relations over
run-time messages17.

The first two properties (WA, ND) are trace properties that
can be verified in well-established protocol/authentication/se-
crecy verification tools such as Tamarin [38] and Proverif [6].
Moreover, ND is only needed for stateful protocols. The third
property, FO, is not a trace property (as it refers to messages
across traces) and can be mechanised as an extension of diff-
equivalence [7], which is implemented in Tamarin [38] and
Proverif [6]; if it is does not hold, the verification is trackable,
but if it does hold, it is harder to verify with these tools.

In the next section, we model our (non-)trackability prop-
erties on the LoRaWAN Join v1.1 as well as unlink.Arapinis

(as WA, ND and FO) in Tamarin [38]. We show that WA
holds while FO does not, which means that unlink.Arapinis

does not hold for LoRaWAN Join v1.1. We also compare the
results of verifying unlink.Arapinis in this way vs. verifying
our non-trackability (in LoRaWAN Join v1.1).

B. Mechanising Explicit Trackability

1) Explicit Trackability as Trace Properties: We
now explain how static explicit session-sensitive and
session-insensitive trackabilities ∀-St-NoTrackexpl.,·

and ∀-St-SesNoTrackexpl.,· can be reduced soundly
to reachability checking. We also explain any gaps in
mechanising other types of trackability.

The idea of this mechanisation hinges on the LoRaWAN-
Attack2 attack given in Section IV-A2 on the LoRaWAN

17This is clearly a very strong requirement: to achieve this, with a universal
quantification over messages, a protocol would need to have its run-time
messages be idealised/random, i.e., all messages look the same to an attacker.

Join v1.1, which is a ∀-St-SesNoTrackexpl.,active attack.
Recall that for this attack, we presented two “strategies”: (i)
selective blocking and (ii) forced condition. In fact, these
strategies work for active trackability attackers against any
IDed-Prot protocol as follows:

• Selective blocking applies to all explicit attack setups
and active attackers: i.e., any active attacker can block
messages with specific IDs;

• Forced conditions are a general exploitation technique
by an attacker in all protocols with conditionals: i.e., any
active attacker can force the protocol to take the if as
well as the else branch of a test to “see” the results.

Moreover, our notion of the forced condition strategy is
equivalent to the failure of WA by Baelde et al. [5]. Concretely,
WA encodes that whenever a protocol-condition is positively
evaluated, the agents involved up to then are, in fact, honest. In
LoRaWAN Join v1.1, it means that if a party was authenticated,
then there was no forced condition applied.

The mechanisation is done in two steps. Firstly, one of the
above trackability attack strategies has to be implemented in
a model in a trace-based verification tool. On the one hand,
selective blocking comes almost for free in any DY [20] tool:
the attacker can and will try to block any message, and the
“selective” nature is achieved by writing a model with a set
of rules, restrictions and/or predicates, which quantify over a
particular ID whose messages were “selectively” blocked18. On
the other hand, forced conditions are implicitly implemented
in any DY tool: the DY attacker will try arbitrary inputs
forcing both the if and the else branch of all protocol tests.
Explicitly forcing a condition thus reduces to quantifying over
the right predicates in the model.

Secondly, ∀-St-NoTrackexpl. or ∀-St-SesNoTrackexpl.

can be checked with an “exist-trace” lemma that quantifies over
the aforementioned implementation of strategies and expresses
the trackability relations in the definitions ∀-St-NoTrack·,expl.

or ∀-St-SesNoTrack·,expl.. Clearly, the quantification in our
definitions allows for this to be expressed as a trace. However,
the chosen strategy must be built in the model first, so the
lemmas encapsulates not just simply a relation that (always)
exists, but one the attacker can build.

This mechanisation may be prescriptive, but it is arguably
similar to the approximation [5] of unlinkability by a series
of (trace-)properties. Our illustration of the mechanisation is
protocol specific, as is the approximation in [5]. Yet, in our
case, the above provides a clear and generic recipe to formulate
the necessary rules and lemmas to demonstrate static explicit
trackability in general.

2) Explicit Trackability Concretely Encoded in Tamarin:
We implement our mechanisations in Tamarin [38], a well-
known DY protocol prover [38]. Yet, any trace-based verifica-
tion tool, such as Proverif [6] or AVISPA [4], can be used.

We now concretely illustrate the mechanisation sketched
above in Section VII-B1 in Tamarin [38] for the LoRaWAN

18Selective blocking can also be implemented explicitly: via a simple
fact restricting the number of communicating parties; we show this in
Section VII-B2a (using the LoRaWAN Join); see our Tamarin files in [9],
and/or Fig. 8 in our long version [9].
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Join v1.1 protocol, as shown in Fig. 1. In our model, we
collapse the NS and JS servers into one entity as we are not
concerned with the messages sent between them. Indeed, our
framework is about two parties A and B, where A corresponds
to the device in the LoRaWAN Join and B represents the
whole of the backend network (NS, JS and AS). In fact, the
messages sent between the NS and JS are sent over a secure
channel [14] (i.e., confidential, integral, authenticated) and are
thus immaterial to Tamarin’s DY attacker19.

a) Our Selective Blocking in Tamarin: Within the
DY model, we model an active attacker who implements the
selective blocking strategy: i.e., blocks messages from all but
one party. Without loss of generality, we can restrict our
attention to two devices, DevEUI1 and DevEUI2, send-
ing a JoinRequest at roughly the same time. As shown in
Section IV-A2, the LoRaWAN-Attack2 consists of blocking
the JoinRequest of, say, DevEUI1 and then linking the first
subsequent application message containing DevAddr2 to the
DevEUI2 which appears in the unblocked JoinRequest.

Selective Blocking Implemented via Action Facts. To im-
plement selective blocking, we use Tamarin’s action facts [42].
These conditions are essentially fairness constraints: predicates
that restrict the set of executable traces which are analysed. To
this end, we use a predicate called OnlyOnce() which restricts
the analysed traces to those in which only one JoinRequest
goes through while the model allows several JoinRequests to
be sent (see our Tamarin files in [9], and/or Fig. 8 in our long
version [9]).This corresponds to the behaviour where the DY
attacker, underpinned in the tool, blocks all but one device’s
requests.

Selective Blocking Leading to the Trackability Lemma.
In order to demonstrate the ability of the attacker to link the
unblocked DevEUI to the DevAddr, we show that the model
presents a trace in which one device is blocked while the other
one completes its run of the LoRaWAN Join v1.1 protocol and
sends its first application message and receives a response. In
fact, the lemma in our Tamarin files in [9] (also shown in Fig. 8
in the long version [9]) captures the query for such a trace.
This lemma holds.

b) Our Forced Conditions In Tamarin: As per
Section IV-A2, forced conditions are about forcing a test in
a protocol. In the LoRaWAN Join v1.1 protocol we consider,
for the attacker to mount the LoRaWAN-Attack2 they have
to force the test on the incremental DevNonce to fail on the
JS side by changing its value in-transit for a device-issued
JoinRequest.

Forced Condition as Well-Authentication [5]. As we
said, our forced condition strategy is equivalent to the failure
of WA by Baelde et al. [5]. We encoded a lemma for the
WA-property in our Tamarin model for the LoRaWAN Join
v1.1 (see our Tamarin files in [9], or Fig. 9 in the long
version [9]). This lemma holds, as expected, showing that if
no forced condition is applied, devices authenticate correctly.
The WA-property holds as the JoinRequest is subject to an
integrity check, which ensures that the values inside cannot be

19Our Tamarin files can be found at [9]:
LoRaWan_v1_1_PrivacyModel.spthy for Section VII-B2a and
VII-B2b, and LoRaWan_v1_1_PrivacyModel_diff.spthy for
Section VII-D.

manipulated without detection, despite the message being sent
in cleartext.

We also show that there exists a trace where the attacker
inflicts a change in a DevEUI’s DevNonce to DevNonce′,
thus making DevEUI’s authentication fail and emulating the
forced condition strategy. We can then mechanise the tracka-
bility of this DevEUI by exhibiting a trace with DevEUI
and DevNonce′ in it, in the right order. To this end, see our
Tamarin files in [9] and/or Fig. 10 in the long version [9]. This
means that trackability can be shown simply by the existence
of a trace that proves that a property linked to WA fails,
i.e., that a forced condition exists.

In the long version of our paper (see [9]), we give snippets
of the Tamarin code we used to illustrate in a more didactic
way the aforesaid mechanisation of the trackability verification
for the LoRaWAN Join v1.1.

c) Statistics of Our Tamarin Models: In the models
we provide, for simplicity/speed of the proof and without loss
of generality, we limit the number of devices to 2 in some
of the lemmas. Thus, when also using the provided oracle,
LoraWanPrivacy.py, the verification times are under 1
min for all lemmas. Our timings were obtained using a laptop
with an Intel i7-1065G7 CPU @ 1.3GHz/3.9GHz with turbo
boost, 4 cores/8 threads and 16GB RAM. Note that no special
proof techniques are needed (i.e., , one can use the “automatic”
mode in Tamarin); so anyone can replicate these results easily,
even on modest hardware.

C. Gaps in Mechanising Adaptive & Implicit Trackability

We do not show a generic mechanisation method for
implicit attacks. Whilst the selective blocking strategy does not
apply for implicit attacks (as the IDs are not visible), the forced
condition strategy does. A lemma could be written quantifying
over implicit IDs in a meaningful way, but this would not be
generalisable as in the above case of explicit tracking (i.e., it
would be highly protocol specific) and thus we cannot express
this is in a generic way.

Adaptive attackers can be mechanised in tools such as
Tamarin via restrictions (i.e., fairness constraints [35]), but
that would depend on what adaptiveness one wishes to model
(i.e., which executions to “cull” from the attacker’s visibility).

D. Verifying Our Trackability vs. Arapinis’ Unlinkability

As we said above, for unlinkability to fail, at least
one of Baelde et al. [5]’s “well-authentication” (WA), “no-
desynchornisation” (ND), or “frame opacity” (FO) has to fail.
These should be checked in the order stated, as that is the order
of their respective strength. In the LoRAWAN Join v1.1, WA
does not fail while it is easy to see that FO does. Therefore,
in our example, different JoinRequest messages would need to
be indistinguishable. However, this is obviously not true since
each JoinRequest contains the DevEUI in plain text, thus
clearly labelling each message, i.e., two JoinRequest messages
from the same DevEUI are easily “linkable”. So, FO trivially
fails and the LoRaWAN Join v1.1 is therefore deemed linkable
by Baelde et al. [5]. While the failure is “obvious” in the
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LoRaWan Join protocol, we also modelled FO and checked
its failure using Tamarin’s diff-equivalence mode20.

Our analysis highlights a gap between practice and the
formalisation in the method by Baelde et al. [5]. We show
a more fine-grained reason why LoRaWAN Join v1.1 lacks
privacy which is not due to the lack of the very idealised
FO, but because of the trackability attacks we found. This
is a concrete example that making protocols idealised, so
that they respect a property as strong as FO, may not be
necessary. Indeed, we refer the reader to Section IV in which
we give simpler countermeasures to the lack of privacy in the
LoRAWAN Join, guided by our trackability attacks.

E. Expressions of Our Trackability vs. Unlinkability Beyond
Formal Verification

We now compare our framework with the notion
unlink.Arapinis, beyond formal verification (which is covered
in Section VII-B).

1) Our ∀-St-SesNoTrackimpl,active notion implies
unlink.Arapinis and vice-versa. Intuitively, this is
because both notions speak of an attacker pinning down
sessions to entities.

2) Our ∀-St-SesNoTrackexpl,active notion is stronger than
unlink.Arapinis. Intuitively, unlink.Arapinis does not
ask that there is a pinning-down to an explicit long-term
identifier id of the entity tracked.

3) Our ∀-St-NoTrackimpl,active notion is weaker
than unlink.Arapinis. Intuitively, this is because
unlink.Arapinis asks to pin down the sessions to
entities, and not just to a collection of messages.
∀-St-NoTrackimpl,active asks just for the latter.

4) Our ∀-St-NoTrack·,passive notion and our
∀-St-SesNoTrack·,passive notion do not relate
to unlink.Arapinis. Intuitively, this is because
unlink.Arapinis does not consider passive (i.e., non-
active) attackers separately from active ones.

The above implications, present in both directions,
show our framework is overall more fine-grained than
unlink.Arapinis. Points 3 and 4 show that our session-
insensitive trackability notions (i.e., ∀-St-NoTrack) have
been largely overlooked by formal unlinkability analysis
and, as Section IV shows, these notions carry meaning-
ful threats. In fact, session-insensitive trackability notions
(i.e., ∀-St-NoTrack) are sufficient in most cases; at the in-
tuitive level, one may simply wish to know where you were
yesterday, without caring that it was you who was there exactly
at 2am or at 5pm during the day.

Final Words on Trackability vs. Unlinkability. The
above shows that our distinction between explicit and implicit
trackability is useful; also, Section VII-B showed that explicit
trackability can be expressed as a reachability property without
any gap. But, this is not true for implicit trackability, in general;
in those cases, one ought to rely (for now) on using the
approximations in [5], [33].

VIII. RELATED WORK

We cover the most relevant pre-existing work in the field.

20See LoRaWan_v1_1_PrivacyModel_diff.spthy available at [9].

A. Domain-Specific Privacy

We aim for a generic framework, applicable to a variety
of protocols that contain an identification element, explicit or
implicit, cryptographic or non-cryptographic, unlike domain-
specific traceability notions recounted below.

Vaudenay proposed a formal model that addresses privacy
in RFID in [44]. This is totally focused on the ability to
manipulate RFID tags. It considers notions of weak and strong
privacy with different powers of attackers (e.g., narrow, insid-
ers, etc.). Hermans et al. [31] propose a similar RFID privacy
model to that of Vaudenay’s, but theirs is based on different
formal definitions for the same notions. Arfaoui et al. [3] use
a similar method to create a privacy model specifically for the
TLS 1.3 protocol. In [36], Koustos introduces a new privacy
property inspired by Vaudenay’s work, the σ-unlinkability
property, for the purposes of privacy verification specifically in
the 5G AKA protocol; others AKA-based tracing of users [17],
[8], not necessarily via systematic privacy frameworks.

Vaudenay’s non-narrow, insider privacy attackers do not
correspond to any adversary in our framework, as they would
corrupt the parties and not just actively block messages. Yet,
the trackability attacks we present on 5G handovers in Sec-
tion VI relate to his insider attackers to some extent (i.e., the
gNBs are not corrupted to have arbitrary behaviour, but they
leak the decrypted traffic or the channel keys they share with
the network).

Other works looked LoRaWAN Join but not at its privacy,
only its security, formally [45] or in practice [32].

B. On Formal Analysis of Privacy

This is discussed in detail in Section VII. Therein, (for
LoRaWAN Join), concrete verification comparisons are shown
between our mechanisation in Tamarin for our non-trackability
properties vs. the approximation of unlinkability put forward
by [33], [5], and also implemented by us for the LoRaWAN
Join in Tamarin; our mechanisation trackability proved finer
for the case of tracking over the LoRaWAN Join.

C. On the Terminology Around Trackability

Some of these aspects, such as the seminal report of
Pfitzmann and Hansen [39], were discussed in the introduction
when we contextualised our work. Trackability is closest to
unlinkability in these senses. Tsukada et al. investigate and
organise some of these concepts further [43], particularly relat-
ing the concept of unlinkability to that of minimal anonymity.
Goriac [29] expands on the work by Pfitzmann and Hansen
by adding definitions for involvement and unobservability,
and investigates privacy in terms of behavioural equivalence
between local states to define indistinguishability.

IX. CONCLUSIONS

We have defined a new, multi-parameter framework called
TrackDev, to reason about tracking protocol participants in
their protocol executions. We show TrackDev is worthwhile:
it has several new privacy notions, separable concepts, adds
to existing formal analysis’ capabilities, it is mechanisable in
traffic-capturing practical tools, as well as formal-verification
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tools, and has yielded new, realistic attacks, some of which
has already led to the edition of existing standards.

In the future, we will refine TrackDev further, add proba-
bilistic dimensions, enhance the mechanisation efforts (includ-
ing in computational tools), and apply it to more protocols.

REFERENCES

[1] 3GPP. System architecture for the 5G System (5GS). Technical
Specification (TS) 23.501, 3rd Generation Partnership Project (3GPP),
10 2020. Version 16.0.0.

[2] M. Arapinis, T. Chothia, E. Ritter, and M. Ryan. Analysing unlinkability
and anonymity using the applied pi calculus. In 2010 23rd IEEE
Computer Security Foundations Symposium, pages 107–121, Edinburgh,
UK, 2010. IEEE, IEEE Computer Society.

[3] G. Arfaoui, X. Bultel, P.-A. Fouque, A. Nedelcu, and C. Onete. The
privacy of the TLS 1.3 protocol. Proceedings on Privacy Enhancing
Technologies, 2019(4):190–210, 2019.

[4] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuel-
lar, P. H. Drielsma, P. C. Heám, O. Kouchnarenko, J. Mantovani,
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