
A Security Study about Electron Applications and a
Programming Methodology to Tame DOM Functionalities

Zihao Jin∗†‡, Shuo Chen∗§, Yang Chen∗§, Haixin Duan†¶††, Jianjun Chen†¶∗∗ and Jianping Wu†∥
∗Microsoft Research
†Tsinghua University

∗∗Zhongguancun Laboratory
††Quancheng Laboratory
‡jinzihao1996@gmail.com

§{shuochen, yachen}@microsoft.com
¶{duanhx, jianjun}@tsinghua.edu.cn

∥jianping@cernet.edu.cn

Abstract—The Electron platform represents a paradigm to
develop modern desktop apps using HTML and JavaScript.
Microsoft Teams, Visual Studio Code and other flagship products
are examples of Electron apps. This new paradigm inherits the
security challenges in web programming into the desktop-app
realm, thus opens a new way for local-machine exploitation. We
conducted a security study about real-world Electron apps, and
discovered many vulnerabilities that are now confirmed by the
app vendors. The conventional wisdom is to view these bugs
as sanitization errors. Accordingly, secure programming requires
programmers to explicitly enumerate all kinds of unexpected
inputs to sanitize. We believe that secure programming should
focus on specifying programmers’ intentions as opposed to their
non-intentions. We introduce a concept called DOM-tree type,
which expresses the set of DOM trees that an app expects to see
during execution, so an exploit will be caught as a type violation.
With insights into the HTML standard and the Chromium
engine, we build the DOM-tree type mechanism into the Electron
platform. The evaluations show that the methodology is practical,
and it secures all vulnerable apps that we found in the study.

I. INTRODUCTION

The Electron platform [1] represents a paradigm to develop
modern desktop apps using HTML and JavaScript (HTML+JS)
running on Chromium. It is becoming an industrial trend, as
many companies’ flagship applications have been written or
re-written as Electron apps, such as Microsoft Teams, Visual
Studio Code, WhatsApp, and Slack. Compared with desktop
apps written in traditional languages, Electron apps have the
advantage to utilize the power of Chromium to build rich
features. In addition, an Electron-app codebase is very easy
to be adapted to web and mobile platforms, saving significant
development and maintenance costs when the app is expected
to run across platforms.

However, from the security perspective, vulnerabilities due
to the nature of HTML+JS have been a risky pitfall for
decades. They manifest in different app categories, spanning

websites, web apps (SaaS), mobile apps, browser extensions,
etc. There is a rich body of literature about vulnerability
studies focusing on these app categories. Compared with them,
desktop apps are usually more sophisticated in their function-
alities, targeting more substantial scenarios, such as enterprise
communication, programmer productivity, business planning,
etc., and impose different security and privacy requirements.
Moreover, unlike in a website, a web app or a browser
extension, security boundaries based on web origins (according
to the same-origin-policy) are often not applicable to most
code and data in a desktop app, which reads from local-input
sources and exercises the local-machine privilege. Because of
all these differences, a dedicated study about Electron apps is
needed to understand the vulnerability sources and to develop
an effective methodology for secure programming. We will
show that our observations from the study are complementary
to those obtained from the previous studies about other app
categories (e.g., [32] [31]).

Our study and key insight. To get valuable insights into
the characteristics of real-world Electron apps and investigate
their potential vulnerabilities, it is important that our study
has both depth and breadth, so we conducted the study in two
rounds. The first round focused on 12 apps of which we could
get source code access. By inspecting and testing the code,
we found that 6 apps could be exploited to cause security and
privacy consequences. For example, an attacker could fake a
group conversation in Microsoft Teams; the Antares SQL client
could get malicious script executed on the local machine when
it operated a remote MySQL database; a user of the SSH client
GraSSHopper who was enticed to log into an attacker’s SSH
server could result in an arbitrary JavaScript execution. Our
second-round study was scaled out to 70 more apps using a
semi-automatic approach. Despite the relatively light-weight
investigation, we still found 13 vulnerable apps.

The essence of all these vulnerabilities can be described as
follows. An app has its intended functionalities, which means
that there is a (usually infinite) set of DOM trees within which
all the intended mutations happen as the app runs. An attack
happens when a DOM tree in the set mutates into one out of
the set, and the latter has extra functionalities that none of the
DOM trees in the set has. The goal of secure programming is
to defend against such gain-of-function DOM-tree mutations.

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.24305
www.ndss-symposium.org

Our proposed methodology. With this understanding, the
question for secure programming becomes how to tame the
DOM functionalities. Today, the intended functionalities (i.e.,
the set of intended DOM trees) only vaguely exist in the pro-
grammer’s mind. Prevention of unintended mutations is done
implicitly through writing code about user-input sanitization
logic and other restriction logics, because the conventional
wisdom is to view these vulnerabilities as “sanitization errors”.
This approach has been known to be error-prone. We em-
phasize that secure programming should focus on specifying
programmers’ intentions as opposed to enumerating their non-
intentions. The methodology we propose in this paper is
called DOM-tree type-checking. A new concept, namely DOM-
tree type, is introduced to safeguard the program execution.
It is inspired by the concept “types-from-data” [21] in the
programming language community. The basic idea is to use
sample values of an object to construct a type that captures
the programmer’s intention about the object, so that if the
object mutates out of the intention during an actual execution,
a type violation is raised. DOM-tree type is essentially the
embodiment of the types-from-data concept for DOM-trees
(i.e., the “object” being typed is a DOM-tree).

To enable this methodology, we build two modules in Elec-
tron. One is a tool named TypeBuilder to assist the programmer
to build a DOM-tree type based on concrete test-runs of an
app. The other is the type-checking mechanism built into the
platform, which we call TypeEnforcer. The design requires a
deep understanding about the internals of the Chromium en-
gine. Specifically, we identify and intercept all the chokepoints
in Chromium to ensure the type enforcement for all DOM-tree-
mutating code paths. For all DOM elements not yet connected
to the DOM tree, TypeEnforcer has the mechanism to defer
their persistent effects until they are connected and checked
against the DOM-tree type. This important mechanism was
missed in the previous DOM-tree inspection techniques, which
we could bypass.

Evaluations. We evaluated the practicality and effective-
ness of the methodology using the vulnerable Electron apps
we discovered. In every case, the programmer only needed
to make a small adjustment (or no adjustment) to the type
generated by TypeBuilder, which showed that the methodol-
ogy was practical for normal programmers. In every case,
TypeEnforcer caught the exploit successfully. Speedometer 2.0
benchmark [20] was used for performance evaluation, which
showed negligible completion time increase under realistic
user-action loads. Meanwhile, we reported the 19 vulnerable
apps to their vendors, who have confirmed or fixed 13 of them.

II. BACKGROUND

In this section, we give the necessary context for our
study and proposed methodology. Section VIII will provide
additional discussions about related research work.

A. Cross-site scripting and scriptless attacks

Cross-site scripting (XSS) is a terminology to describe
many types of vulnerabilities due to the nature of HTML+JS.
Originally, XSS referred to the consequence that an attacker’s
script runs in the context of a target site not owned by the
attacker. Throughout the years, the notion of “cross-site” has

become a misnomer because XSS does not necessarily involve
two sites. For example, the attack payload can come from
a database, a local text string, or any other means of input.
Nowadays, “XSS” means broadly all types of input validation
bugs that execute the attacker’s data as scripts. There is another
type of input validation bugs, usually called “scriptless attacks”
[7]. In these exploits, the attacker’s payloads become harmful
non-script elements in the DOM trees to compromise the user’s
security and privacy. In this paper, we refer to both XSS and
scriptless attacks as payload injection bugs.

B. Security studies about different app categories

Payload injection bugs have been known for decades.
They are due to the inherent vagueness of the distinction
between “data” and “code” in HTML+JS. Specifically, HTML
by design allows elements to have dynamic behaviors, and
JavaScript by design allows texts to be executed as code.
It is unlikely that these bugs can be eradicated in an app-
agnostic manner, unless HTML and JavaScript are fundamen-
tally redefined. Therefore, deeper insights about characteristics
of different app categories become crucial in the search for
effective solutions.

For example, Jin et al. [32] conducted a study about
Android apps running in the PhoneGap framework. The key
insight from the study was that mobile apps had many more in-
put channels than web apps, such as barcode, SMS, file system,
contacts, NFC, etc. Accordingly, the authors proposed a static
code analysis technique. For each input channel, the technique
constructed a JavaScript program slice, and performed taint
analysis to determine whether the input could flow into a
sensitive API. Staicu et al. conducted a study about Node.js
apps [31]. The key observations were that many injection
attacks were due to eval and exec in the code, and that
Node.js modules constituted a significant portion of code in the
ecosystem. The authors developed a code-analysis technique
to statically compute all possible strings that could flow to an
eval or exec call in a module. The result was expressed in a
string template, containing user-controlled portions as “holes”.
The technique then instrumented the call with a runtime check,
which checks its argument value against the template.

Characteristics of Electron apps. The observations we
made about Electron apps are complementary to the ones about
other app categories. The differences exist in several aspects.

• It is very rare for Electron-app programmers to use eval
to evaluate a non-constant string, as we will explain in
Section VI. It suggests that this programmer community is
very aware of the danger and there are good alternatives to
avoid eval in Electron apps. Therefore, unlike in Staicu et
al.’s work, we do not focus on analyzing script’s content,
but on the DOM tree. Specifically, our primary question
regarding a <script> element is whether it is expected in
a particular DOM-tree position. The question is agnostic
to its script content.

• Although not a web app, an Electron app resembles
Single-Page App (SPA) [33], in which the execution after
initialization only updates certain UI elements on the
initial HTML page with new data, but does not navigate
to a whole new page. We will discuss more in Section
VI. For this reason, reflected XSS, which is an XSS

2

category significant for websites and web apps, is unlikely
for Electron apps. Also, the expected stable shape of the
DOM tree underpins our idea of DOM-tree type.

• Taint analysis about unconventional input channels is
effective for PhoneGap apps, but Electron apps take inputs
from both unconventional and conventional channels,
such as network messages, SQL queries, disk-file con-
tents, etc, so it is unclear how to define taint rules with an
appropriate granularity for a precise static analysis. This
is compounded by the path explosion challenge because
Electron apps are often more complex than mobile apps.
Therefore, our methodology switches the focus from all
kinds of input to their common outcome – the DOM tree,
and from static bug-finding to runtime type enforcement.

III. OUR INVESTIGATION AND DISCOVERIES

In this section, we first give an overview of Electron apps’
security situation by showing that payload injection bugs are
a significant challenge. We will show 6 vulnerable apps in our
first-round case studies, followed by a summary of 13 more
apps found vulnerable in the second round. The discoveries
inspire our defense methodology discussed in Section IV.

A. Sanitization challenges

The security of Electron apps relies heavily on sanitization.
However, sanitization turns out to be error-prone in the apps,
for two reasons:

Difficulty of parsing custom sub-grammars. Parsing is
a major source of complexity within a sanitizer. If parsing is
flawed, a dangerous payload can potentially go undetected by
getting itself misinterpreted. An app needs to take user input
from many places to mutate DOM elements. In each place,
the programmer is required to write a parser for a specific
sub-grammar. This includes not only the sub-grammar of any
subset of HTML, but also other languages like CSS, Mark-
down, shell commands, file paths, etc. The parser/sanitizer is
not easy to define and build.

Difficulty of anticipating unsanitized paths. Even with a
perfect sanitizer for each sub-grammar, an app still has the
classical security challenge - path explosion. It is difficult
for a programmer to anticipate paths that an attacker’s data
may flow through. Some data that need sanitization may go
through a path without any sanitization logic. We will describe
several vulnerabilities of this type, which allow the attacker’s
payload to be deployed via strings representing local files
and hostnames. We suspect that the programmers do not even
consider these strings as the “user input”, so the data paths are
completely unsanitized.

There is another type of bugs that we call “de-sanitization”.
They are attributed to cross-team misunderstandings about the
app’s own sanitization logic. For example, a sanitization done
in one app module can be undone by another. A thorough
cross-team understanding is always a challenge in software
development, because every team’s code logic may introduce
special circumstances.

In the following subsections, we will analyze cases of
incorrect and insufficient sanitizations. Today, eliminating
these issues is entirely a responsibility on the programmers’

shoulders. As shown by the examples below, the attack data
and paths are often unexpected with respect to the app designs.
It is an unfortunate security situation when programmers are
required to expect all the unexpected.

B. Case study: Microsoft Teams

Microsoft Teams, abbreviated as Teams in this paper, is a
business communication application. It is one of the flagship
products of Microsoft. The product includes a desktop client,
a web client and mobile clients for Android and iOS. The
desktop client is now an Electron app. It is implemented as a
thin layer (235 kLoC) wrapping around the web client (2170
kLoC). Our description below applies to the desktop and web
clients. The mobile clients are still in native code, rather than
Electron apps.

The main functionality of Microsoft Teams is instant mes-
saging. On the client side, Teams provides a WYSIWYG editor
to compose HTML-enabled messages. For example, bold text
is converted to a element. A link is converted to an
<a> element. An image pasted into the editor is automatically
uploaded to a backend server, and converted to an
element whose src attribute points to the uploaded image. The
server forwards messages between clients. The server performs
its sanitization logic similar to that on the client. This helps
reduce the attack surface of the client, although the client’s
sanitization logic tries to be sound and complete on its own,
not to rely on the server’s logic.

1) Sanitizers: Teams has two different sanitizers for the
server and the client. No library or code snippet is shared
between the two, as they are written in different languages
(C# for server, TypeScript for client).

Client-side sanitizer. The sanitizer of the client is based
on sanitize-html [2]. Sanitize-html first uses htmlparser2 [3] to
parse an input string into HTML tokens (i.e., tags, attributes,
comments, text, etc.), then applies a whitelist supplied by
Teams to filter out dangerous tags (e.g., <script>, <iframe>)
and attributes (e.g., onload, onclick). The sanitization logic
for HTML elements undertakes many tasks crucial to user’s
security and privacy, such as:

• If the src attribute of an (i.e., image) element
points to a URL of a domain not whitelisted by Teams, the
sanitizer rewrites the src to undefined. This is needed
to prevent an attacker from using an to leak user
information (e.g., IP address) to the attacker’s website.

• The sanitizer filters out special characters in src and href
attributes to prevent a URL from “escaping” from the
attribute and being evaluated as an HTML or Angular
variable [4].

• The sanitizer upgrades a URL from http to https in the
src and href attributes.

• The sanitizer rewrites the rel attribute of an <a> (i.e.,
anchor) element to ensure that the link target never
receives the referrer URL.

• The sanitizer rewrites the target attribute of an <a>
element to ensure that it always opens a new window,
rather than navigates the main Teams window.

• Many other rewritings based on custom sub-grammars.

In addition to normal HTML elements, the client-side
sanitization also handles important transformations regarding

3

CSS (Cascading Style Sheet). For example, the following are
performed for the style attribute of every HTML element:

• Removing url() and attr() functions
• Removing position: fixed declarations
• Removing comments
• Filtering out CSS property names not whitelisted

Moreover, the sanitizer also deals with lexical complexity.
There are many legitimate encodings. It requires much care to
parse the user input based on the encoding rules, especially
when it may be decoded into special characters. For example,
curly braces (i.e., { and }) can be represented as the following
strings. Missing any one of the strings may result in security
consequences.

{ �*123;? �*7B;? { { \u007b

} �*125;? �*7D;? } } \u007d

Server-side sanitizer. Although independently developed,
the server-side sanitizer is conceptually similar to the client-
side. It consists of the following steps:

1) Parsing input string into a stream of HTML tokens
2) Filtering HTML tags, attributes, classes and protocols
3) Filtering CSS in the style attribute
4) Removing Angular expression delimiters

As the server-side sanitizer is independently developed,
its sanitization rules are slightly different from its client-side
counterpart. For example, it does not remove comments in
CSS, and does not enforce a whitelist of CSS property names.

2) Vulnerabilities discovered: We discover two vulnerabili-
ties in Teams, exploitable by any user who can send a message
to a group chat.

Vulnerability to allow user tracking. As discussed in
Section III-B1, it is important to disallow an image to be
loaded from an arbitrary website. Otherwise, an attacker can
send a message containing a visible or invisible image to track
other users in the chat, so that whenever the image is loaded
or reloaded, the users’ IP addresses are disclosed. The attacker
can use this repeatedly to monitor other users’ activity patterns
and geographic locations over a long duration.

We study the client-side and server-side sanitizers, and
construct the following string which, when sent to a group chat,
can successfully carry out the attack. Portions of the string are
highlighted and underlined to help our explanation.

<div style="width: 1px; test1:'; background-

image: ur/*x*/l(https://evil.com/tracker.png);

test2:'; height:1px;"> Hello! </div>

After sanitization, the string is transformed into the follow-
ing HTML element, which loads an image from evil.com.

<div style="width: 1px; background-

image: url(https://evil.com/tracker.png);

height: 1px;"> Hello! </div>

The reason is because of the sanitization logic on the client-
side and server-side, summarized as the following 3 steps of
string transformation:

1) The server-side sanitizer rejects any illegitimate HTML
content. If the value of background-image was
“ur/*x*/l(https://evil.com/tracker.png)”, it
would be rejected. However, our string is legitimate
because the entire underlined portion (from the semicolon
to test2:) is enclosed inside the single quotes, thus
parsed as the value of test1.

2) The client-side sanitizer then uses semicolon as the de-
limiter to scan through the string. Because test1 and
test2 are unknown style properties, the two highlighted
portions are removed.

3) The client-side sanitizer then removes “/*x*/” as a
comment, turning “ur/*x*/l” into “url”.

Vulnerability to allow fake chat messages. It is important
for Teams to sanitize the style attribute of every chat message
to ensure that the message’s appearance does not mislead other
users. For example, if a message has its z-index set to a value
greater than 0, and its position property set to fixed, it can
occupy the whole chat window and opaquely overlay on top of
all other messages. Figure 1 shows a demo attack that exploits
the vulnerability described next. Our fake messages appear to
come from the company’s CEO and CTO. The messages have
full HTML functionality. Hyperlinks can be used to take users
to dangerous websites, for example.

Fake messages appear to be
sent by company execu�ves.
The fake contents have the
full HTML func�onality.

Fig. 1: Fake messages in a group chat

The chat message that can exploit the vulnerability is in the
box below, in which “CodeMirror-fullscreen” is the name
of a CSS class that sets z-index to 9, and sets position to
fixed. We obtain this knowledge by searching the keyword
“z-index” in the entire source code. The attack would be sim-
ple if the sanitizers did not prohibit the CSS-class assignment
class="CodeMirror-fullscreen". However, this obvious
attack opportunity is blocked by the sanitizers, which remove
“class” in all HTML elements in chat messages.

<span itemscope="" itemtype="http://schema.

skype.com/Reply" value="CodeMirror-fullscreen

"> Fake messages in HTML!

In the source code, we find a message postprocessing
module for certain types of interactive contents, including
attachment, @-mention, quoted reply and emoji. It infers a
message’s item-type by searching for a list of schema URLs,
such as http://schema.skype.com/Reply, and rewrites the
message in different ways depending on the schema. To
customize the style of the “quoted reply” item-type via CSS,
this module assigns the string in its value attribute to its
class attribute, resulting in the vulnerability.

4

In this vulnerability, the sanitizers do not make any mistake
regarding HTML and CSS. The path is sanitized at first, but the
input then triggers an unexpected postprocessing module after
sanitization. For a complex app like Teams, understanding the
semantics of all modules is challenging.

C. Case study: GraSSHopper

GraSSHopper is an SSH client with a rich set of features,
such as multi-tab, remote file explorer, command history, etc.
Figure 2 shows this app with two tabs open. They connect
to two SSH servers, named “server” and “another-server”,
as user “root”. Accordingly, the titles of the two tabs are
“root@server”, “root@another-server”. Similar to tabs in many
other apps, when the mouse hovers over a GraSSHopper tab,
a popup appears to show the title of the tab in its entirety. In
the terminal area, the user can select a piece of text. If the
text represents a file path, a clickable popup appears to show
the “cd” command to the directory. As shown in Figure 2, the
popup shows “cd /etc/apache2”. Note that Figure 2 overlays
the two mouse positions on the same screenshot to save space
for the paper.

Tabs Mouseover a tab

popup

popup

Fig. 2: GraSSHopper, with two tabs open
Next, we explain two vulnerabilities we find, which lead

to the execution of an arbitrary script.

Script injection via selected text. The first vulnerability
is exploited when a victim user is enticed by the attacker to
select a block of text like the following.

<iframe/srcdoc=<script/nonce="fCRqK3

cHTuOfzyEnqua4UQ==">alert(window.parent

.document.body.innerHTML)</script>>

The selected text is considered by GraSSHopper as a file
path, because the app uses the following regular expression to
determine whether a string is a file path. The regular expression
matches a slash-delimited string that does not contain any
space (the normal ASCII space), single quote or double quote.

^((\/[^/\"'\s]+)|([^/\"'\s]+\/))+([^/\"'\s]+)?$

Note that the selected text takes advantage of the flexibility
of the HTML language to satisfy the regular expression, as it
(1) uses a slash rather than a space to separate the tag name
(iframe) and its first and only attribute (srcdoc), (2) skips
the quotes that surround the attribute value of srcdoc, and
(3) escapes the special characters (<, >, /, '', ') inside it.
Since the text is taken as a file path, it is assigned to the
innerHTML property of the clickable popup. At this point,
it is interpreted as the following HTML content. The script

alert(...body.innerHTML) is an idiom in many DOM-
attacks that indicates the full control of a DOM document.
In our scenario, when the text selection is made, we see this
success indication.

<iframe srcdoc="<script nonce='
TuOfzyEnqua4UQ=='>alert(window.parent.
document.body.innerHTML)</script>">

The attack string can be contained in a large block of
normal-looking text, which may use a Unicode whitespace to
separate words. The victim is unlikely to feel suspicious when
asked to select such a text block, which, when selected, still
deploys the payload. Furthermore, the terminal supports RGB-
color text, so the payload string can be made invisible.

We will explain the purpose of the script’s nonce attribute
after describing the second vulnerability below.

Script injection via hostname. The second vulnerability
can be exploited when a user is enticed to copy the following
“SSH connection string”, paste it into the hostname box, and
start an SSH connection. Obviously, there is no host on the
Internet with this long and strange “hostname”. GraSSHopper
creates a tab for the attempt to connect to the “host”. When
the user moves the mouse over the tab, the popup appears,
taking the “hostname” as a part of its innerHTML property, so
the payload is deployed.

ssh.org:connection=.<iframe srcdoc="<script

nonce='fCRqK3cHTuOfzyEnqua4UQ=='>window.
alert(window.parent.document.body.innerHTML)

</script>">.nonexistent.com

Bypassing content security policy (CSP). GraSSHopper
employs a CSP [8] that disallows unsafe-inline, prevent-
ing the execution of inline event handler (<img src="x"
onerror="...">). The CSP limits script-src to a whitelist
of nonce values, which means that only a script carrying a
whitelisted nonce value can be executed by the app. The nonce
mechanism is a common practice for a web app to selectively
import a third-party script. For a web app, the nonce value
list in CSP is dynamically generated by the server, and is
refreshed every time a user visits the web page. Using the
same mechanism for a Electron app is inherently invalid, as
the CSP and its nonce values are hardcoded into the client app.
We use one of the nonce values to bypass the CSP.

D. Case study: Visual Studio Code

Visual Studio Code, or VS Code, is an IDE built on
Electron. Like Teams, it is also a product of Microsoft, but it
does not need to process rich content like HTML or multimedia
contents. Since text editing is the main UI functionality, the
situations to build HTML strings from user contents are
extremely limited. Thus, the app is carefully designed to only
parse and accept a small subset of Markdown to produce
HTML. This is also known as Markdown rendering. It uses
Marked [5] for rendering, then passes the rendering result to its
sanitizer, which is based on Insane [6], a configurable sanitizer
similar to sanitize-html used by Microsoft Teams.

Although VS Code’s Markdown is highly restrictive, it
still allows the element to be generated in the ren-
dered HTML. We identify two situations where an attacker-
controlled Markdown can be rendered as HTML that contains

5

an external image, as shown in Figure 3. The figure overlays
these two situations on the same screenshot to save space for
the paper. The consequence is like the Microsoft Teams user-
tracking vulnerability in Section III-B2. The user’s IP address
is sent to the attacker’s server when the mouse hovers over
certain texts.

Fig. 3: Markdown rendering in Visual Studio Code

Vulnerability 1: extracted URL as Markdown. When
the mouse hovers over a URL-like text in the terminal area
(the lower portion in Figure 3), a popup appears, in which
the string “[Follow Link](...) (ctrl + click)” is ren-
dered as Markdown. The substring “...” is the URL extracted
from the text.

The extraction is done by a state-machine-based parser.
There are many details in the parser logic. A fact relevant to
this vulnerability is that the following string is extracted as a
URL in its entirety. When the parser scans through the string,
it will exit when it encounters a “)” without a matching “(”.
The parser logic does not regard the backslash as an escape,
so it takes the entire string, including what is beyond “\()”.

https://example.com\()![](https://d1qm7r09oiybbo.

cloudfront.net/minion.png)

However, when this extracted “URL” is placed in the “...”
position, the content of the popup becomes the following.
When it is processed by VS Code’s Markdown renderer, the
backslash is treated as an escape, so the first “)” closes the
first “(”, causing the highlighted substring to become a valid
Markdown image reference to be rendered as HTML. Since the
terminal window can display the program’s execution output,
it is easy for the attacker to place a dangerous URL in it.

[Follow Link](https://example.com\()![](https:

//d1qm7r09oiybbo.cloudfront.net/minion.png))

(ctrl + click)

Vulnerability 2: code comment as Markdown. When
editing source code of certain languages (e.g., TypeScript), VS
Code shows a popup when the mouse hovers over a function
or variable name, e.g., getEngine in Figure 3. The popup
displays the code comment above the definition of the function
or variable name. Because the popup renders in Markdown, an
external image can be loaded into the popup, causing an IP
address exposure. A scenario of the threat is when a third-party
library contains image references in its function definitions.
Every programmer who uses the library has the risk of IP
address exposure and location tracking.

E. Apps with unsanitized paths

In previous subsections, we discussed vulnerabilities that
demonstrate the challenges for sanitizers to exhaustively cover
all potential exploit possibilities. Not surprisingly, we spent a
great amount of effort analyzing the apps to find these bugs
in sanitization logic, although this should not be a hurdle for
the attacker community with dedicated efforts. However, when
investigating three other apps – Antares, Homura and OhHai
Browser, we relatively easily found data paths that did not go
through any sanitization logic.

Antares. Antares is a SQL client used to browse and
query data in a MySQL or PostgreSQL database. We find
Antares shows database table names in HTML without saniti-
zation. When the victim connects to a database where a table
name is attacker-controlled, the attacker can execute arbitrary
JavaScript with the same privilege as Antares’ own code.

Homura. Homura is an RSS reader. An article in an RSS
feed is usually a preview of a website article, which commonly
includes HTML. However, Homura neither implements a san-
itizer for RSS contents, nor isolate them using an iframe. As
a result, if an attacker places malicious contents on a website
which Homura is subscribed to, arbitrary JavaScript can be
executed with the same privileges as Homura’s own code,
which includes local filesystem access.

OhHai Browser. OhHai Browser is a browser built on
Electron, utilizing Electron’s webview to render web pages
in an isolated environment. Although the web pages are safely
isolated, data flowing out of the webview into the browser UI
still requires sanitization. We find the titles of in-history pages
and bookmark items are rendered as HTML without saniti-
zation. An attacker-controlled webpage can execute arbitrary
JavaScript in the browser UI through a JavaScript payload in
its title. As in-history pages are persistent and rendered every
time the browser starts, the attacker’s control is also persistent.

Second-round investigation. To broaden the understand-
ing about real-world Electron apps, we conduct the second-
round investigation, covering 70 apps crawled from Electron’s
official website using a semi-automatic approach. We build a
modified version of Electron with a hook added to the HTML
parser, and run every app on it. Whenever the app parses
HTML, the hook function records the string being parsed.
This helps us identify the inputs that can be used to inject
raw HTML. Navigating through the app’s functionalities is left
as manual effort. With this light-weight approach, we confirm
the 13 apps in Table I are vulnerable. They are all caused by
the attacker input becoming extraneous DOM-tree elements or
attributes. Note that the second-round investigation does not
study any sanitizer logic, which would require significant effort
like in the first round. As a result, the 13 vulnerable apps are
all unsanitized-path cases.

IV. OUR PROPOSED METHODOLOGY

From the traditional perspective, vulnerabilities like the
ones in Section III are often put under the umbrella of
“sanitization errors”. Indeed, they are due to flawed sanitization
logic, unsanitized path or post-sanitization change. Sanitization
errors have been a focused problem in the web security
community for over two decades. Not surprisingly, Electron-
app programming inherits the problem. In fact, the sanitization

6

App Injection point
Jukeboks filename
Poddycast podcast title
Tess filename
WAIL MIME type
Advanced REST Client HTTP header
Altair error message
Another Redis Desktop Manager file path
Appium Desktop error message
Blankup markdown
Blockbench filename
Boost Note markdown
DeckMaster opened file
ElectroCRUD database records

TABLE I: Confirmed vulnerable apps in the second-round
investigation

logic for a real-world Electron app, e.g., Microsoft Teams
or VS Code, is often much more complex than that for a
typical web application. It consists of many steps of string
transformations, using string substitution, regular expression,
state-machine of characters or HTML/CSS tokens, and sub-
grammar parsing.

The fundamental reason why eliminating sanitization errors
is hard is because it requires a programmer to anticipate the
unexpected, i.e., to enumerate all strange input data that are
against the programmer’s intention. We believe that a secure
programming methodology should only rely on a programmer
to correctly express his/her intention, not the negation of it.

Intuition behind our methodology. The methodology we
propose is not focused on sanitization, but on the DOM-tree
mutations during an app execution. Intuitively, in every case
in Section III, we see that the attacker causes a DOM-tree
to mutate to a form that can do something extra, beyond the
programmer’s intention. Therefore, our methodology aims to
achieve two goals: (1) to enable the programmer to express the
intended DOM-trees, (2) at runtime, to prohibit every mutation
resulting in an unintended DOM-tree.

Our inspiration initially comes from Trusted Types [9],
a relatively new browser mechanism to help prevent unsan-
itized texts to be assigned to some well-known XSS-injection
“sinks”. We will give more details about Trusted Types in the
related work section. It is very different from our methodology,
but at the conceptual level, it reminds us that “type” is a
mechanism to express the intention about data and objects,
and that it can be applied to HTML-based security.

Our inspiration also comes from a technology called
“types-from-data” [21], which attracts much attention from
the programming language community. The goal is to base on
sample data in structured formats (e.g., XML, JSON, etc.) to
build static types for programming languages (e.g., F#). During
the execution, the static types are useful to tame the actual
data to be processed by the program. Data cannot turn into an
unintended object without being caught as a type violation.

Our goal of catching an unintended DOM-tree mutation
is similar. A DOM-tree is in HTML, a structured format. If
we can define a notion of DOM-tree type, and enhance the
Electron platform to help programmers build the static type
from test-runs of an app, then the platform will ensure that
every exploit in Section III becomes a type violation.

A. Architecture and programmer’s workflow

The architecture of our enhanced Electron platform and the
programmer’s workflow are shown in Figure 4. TypeBuilder
is a dev-utility to help the programmer build the DOM-tree
type. TypeEnforcer uses the DOM-tree type to safeguard the
actual run of the app, and turn any unintended mutation into
a type violation. A shared component called DOM Interceptor
is responsible for intercepting all DOM-tree change events. It
consists of a number of hook functions defined in the Blink
rendering engine of Chromium. It is important to note that the
DOM-tree type generated by TypeBuilder must be reviewed
by the programmer. It is a part of the app code to release.

Electron

Chromium

Blink

TypeBuilder TypeEnforcer

DOM
Interceptor

func�on
hooks

Test-run 1

Test-run 2

Test-run N

Generated
DOM-tree
type

Programmer reviews
and adjusts the type.

The type is a
part of the
app code to
release. Actual run

unintended
muta�on becomes
type viola�on.

Applica�on
code

(HTML/CSS/JS)

Na�ve
code
(C++)

Fig. 4: Architecture and workflow overview
In theory, the programmer can handwrite a DOM-tree

type for a simple app. However, for a real-world app, it
can be difficult to enumerate all variations of the DOM tree.
TypeBuilder is very helpful in this situation. After TypeBuilder
is turned on, the programmer tests the app by going through
its features as thoroughly as possible. During the test run,
TypeBuilder monitors the DOM tree to construct a DOM-tree
type. The process can also be split into multiple test-runs, each
covering a subset of the app’s features.

The testing process ends when the DOM-tree type con-
verges, i.e., when the DOM-tree type no longer changes upon
more test runs. For some apps, the DOM-tree type naturally
converges after a number of test runs. However, some app
features require manual adjustments to help the convergence.
In Section IV-D, we will describe these mechanisms, namely
subtree-flattening and attribute-value-wildcarding, which en-
ables the programmer to generalize the learned DOM-tree type.
In Section VII, we will show that, even when this programmer
effort is needed, it is usually small.

B. Definitions

In this subsection, we give the definition of DOM-tree type,
and explain how it is constructed from the mutations of an
app’s DOM tree. Specifically, the next two subsections explain
how a DOM-tree type evolves its generality during test-runs
to represent more variations of the DOM tree. The explanation
include how TypeBuilder works, and how the programmer can
discretionally adjust the DOM-tree type. We will then explain
how DOM tree mutations are constrained by a DOM-tree type,
i.e., how TypeEnforcer works. We provide a precise definition
in Backus-Naur Form (BNF) in Appendix B.

Similar to a DOM tree, a DOM-tree type also has a tree
structure. To avoid confusion, we refer to an element in the

7

DOM-tree type as a shadow element, and an element in the
actual DOM tree as an actual element. A shadow element has
four data fields:

1) Children: Like an actual element, a shadow element can
have children. However, the children of a shadow element is a
set rather than a list, i.e., they are unordered and deduplicated.

Text nodes. We do not include text nodes, i.e., plaintext
content within an element, in the DOM-tree type. They are
purely for display purpose, therefore can never become a
payload-injection sink. The only two exceptions are text within
a script element, and text within a style element. For a
script element, according to HTML standard [12], its script-
text only gets executed once during page loading. After that, if
the script-text is changed, or a new script element is injected
to the DOM tree, it has no effect at all. Since the initial DOM
tree of an app is constructed locally, an attacker has no chance
to inject a script element during page loading.

Actual DOM tree DOM-tree type
<div id ="sidebar"> <div id ="sidebar">

Chapter 1
Chapter 2

 </div>
</div> <div id ="content">
<div id ="content">

Apple
Banana </div>

</div>

TABLE II: Element deduplication
2) Identifier: Every shadow element has an identifier used

for deduplication, which consists of a tag name (e.g., div,
form, a) and the id attribute (empty value allowed). The
example in Table II shows two elements under “sidebar”
represented by a single shadow element. If more chapters
are added to the sidebar later, the DOM-tree type remains
unchanged. The same applies to the elements under
“content”. However, the two <div> elements (“sidebar” and
“content”) are represented by different shadow elements as
they differ in the id attribute.

3) Attributes: Like an actual element, a shadow element
has a map (i.e., a key-value store) of attributes. However, in a
shadow element, each attribute has a set of values rather than
a single value. By default, a shadow attribute contains a set of
strings, with special rules applied to URL and script attributes.

For a URL attribute (defined by Blink’s IsURLAttribute
function [10], e.g., src, href), its shadow becomes a set of
origins. In Table III, the two img elements with the same
identifier are represented by one shadow element. However,
since the first img element has the origin https://foo.com
in its src attribute, and the second one has a different origin
file:, the shadow attribute is a set containing two values.

For a script attribute (defined by Trusted Types [11], e.g.,
onclick, onload), its shadow becomes a set of JavaScript
token sequences. The example in Table III shows two li
elements with onclick attribute. As both attributes contain
the same sequence of JavaScript tokens – an identifier, a left
parenthesis, a number, and a right parenthesis, their shadow

attribute contains only one value. This shadow attribute can
also match switchTo(3), but a script-injection payload such
as switchTo(1);alert(99) will be a non-match, because
the highlighted portion is not a “Num”, but a token sequence
“Num RParen Semicolon Ident LParen Num”.

Actual DOM tree DOM-tree type
<img src ="https://foo.
com/hello.jpg">

<img src ="file: |
https://foo.com">

<img src ="img/hello.
jpg">

<li onclick ="Ident
LParen Num RParen">

<li onclick ="switchTo(
1)">Chapter 1

<li onclick ="switchTo(
2)">Chapter 2

TABLE III: Handling URL and script attributes

4) Style properties: A map of style properties is also
included in a shadow element. Slightly different from an
attribute value, a style property value has a type, and some
properties accept multiple types of values. Therefore, for each
style property, we maintain a set for string values, a set of
origins for URL values, and a range (i.e., a min and a max)
for numeric values.

Note that an element’s style properties are not equivalent
to its style attribute. For each element, Blink maintains
an internal data structure holding its style properties, which
cannot be directly set by the programmer. Rather, it is the result
of style calculation using a complex “cascading” algorithm,
whose inputs include global styles (.css files, <style> ele-
ments), local styles (the element’s own style attribute), other
attributes (e.g., id, class) and the element’s parent styles,
etc. Recall the fake chat message vulnerability in Section
III-B2, although the attacker cannot directly control the style
attribute of any element, he can still introduce a style property
(z-index = 9) from a global stylesheet. In other words, a
sound defense mechanism should not prohibit “z-index = 9”
from being a legitimate global style property, but should only
detect a violation when it is attached to a specific element.
Therefore, we include the style properties, which are always
attached to individual elements, in the DOM-tree type.

Layout-dependent properties. Among all 367 style prop-
erties, we exclude 29 properties from the DOM-tree type,
which are categorized by Blink as layout-dependent properties
[13], listed in Appendix A. They include width, height,
margin-left, but not z-index and position [13]. These
property values are expected to change with window resizing,
and differ across machines with different screen resolutions.
We consider the layout changes as expected app behaviors, so
the DOM-tree type excludes them.

C. TypeBuilder

Explained in the previous subsection, a DOM-tree type
represents a set of intended DOM trees. For example, in Table
II, one li element in the DOM-tree type represents a set of
li elements at the position in the actual DOM tree. The li
elements can contain arbitrary content, but must not have any
extra attribute or child element. Similarly, in Table III, the img
element in the DOM-tree type represents a set of img elements
at the position in the actual DOM tree, as long as their images
are loaded from file: (a local file) or https://foo.com.

8

Of course, witnessing the DOM tree only once is insuffi-
cient for TypeBuilder to generalize all intended DOM trees of
an app. Some variations of the DOM tree can only be triggered
when the programmer tests certain features. TypeBuilder works
by monitoring changes to the DOM tree, and extending the
DOM-tree type to represent previously unseen variations.

Table IV shows how TypeBuilder updates the DOM-tree
type when an element, i.e., the highlighted div element (“cat”)
on the left column, is inserted to the DOM tree. Before it is
inserted, there is a pre-existing div element (“dog”) which
similarly contains an img and a h1 element. In this situation,
TypeBuilder only adds the previously unseen parts to the
DOM-tree type, i.e., a p element, an onclick attribute of the
img element, and a new value for its src attribute.

Actual DOM tree DOM-tree type
<div> <div>
 <img src ="file: |
<h1>Dog</h1> https://foo.com"
</div> onclick ="Ident LParen
<div> RParen">
<img src ="https://foo. <h1></h1>
com/cat.jpg" onclick =" <p></p>
meow()"> </div>
<h1>Cat</h1>
<p>The cat is a ...</p>
</div>
<div>

onclick ="moo()">
</div>

TABLE IV: Element insertion
Now suppose a third div element (“cow”) is inserted to

the DOM tree. Its img element has a src attribute with a
file: origin (since it is a local filename), which matches the
first div. Moreover, it has an onclick attribute that matches
the second div. In this situation, TypeBuilder does not add
anything to the DOM-tree type. In other words, TypeBuilder
does not keep a set of whole subtrees it observes during test-
runs to match every incoming subtree against the set. Rather, it
breaks down them into individual elements and attributes, and
merges them into the DOM-tree type. This generalizes unseen
variations of the DOM tree, as they match any recombination
of the subtrees seen during the development time. In this sense,
a DOM-tree type can be thought of as an HTML “template”.
There are many template engines for JavaScript to generate
HTML pages [34]. The task of TypeBuilder is an inverse of
a template engine, because it abstracts from concrete HTML
pages to a “template”.

Besides element insertion, we will explain in Section V
that there are other types of DOM-tree changes TypeBuilder
observes, including: (1) element replacement, (2) element
removal, (3) attribute modification and (4) style recalculation.
The basic rule is, TypeBuilder only adds items to a DOM-tree
type, but never removes them. When an element is replaced
with another element, TypeBuilder simply treats it as an
element-insertion event, i.e., merging the new element into the
DOM-tree type, while keeping the shadow of the old element.
TypeBuilder does nothing when an element is removed. For
attribute modification and style recalculation, TypeBuilder adds
the new value to the shadow attribute or style property, while
keeping the old value in the set.

D. Programmer’s adjustments

We provide two mechanisms to generalize a DOM-tree
type, which are manually applied by the programmer.

Attribute-value-wildcarding allows the programmer to use
wildcard character “?” and “*” to match any character or
string in an attribute value. They are needed mainly for
attributes containing random or incremental IDs (e.g.,). Since there is no reliable way to infer from a
limited number of test-runs how these values are generated,
the programmer should annotate them using wildcards. In
Appendix B, BNF rule 19 specifies that the use of wildcard
characters is limited to WildcardString, which is in turn
limited to attribute values (rule 11), style property values (rule
15), or an Origin (rule 18).

Subtree-flattening is needed to handle a common pattern,
which we call structure-agnostic subtree. In apps such as
article readers and markdown editors, the user’s rich-format
content is usually displayed in a content area, which is a
dedicated subtree. It is often inconvenient or impractical to
specify all legitimate structures. In this case, the programmer
can choose to flatten the subtree, so that it is treated as a
one-layer structure. Today, sanitizers handle the same situation
by filtering according to a whitelist of allowed tag names,
attributes, URL origins, etc., such as the chat-message sanitizer
in Teams. A flattened subtree is equivalent to the whitelist. The
example in Table V shows that, if the div element is marked
as flattened, any combination and nesting level of h1, h2, u
and i element is considered legitimate. In Appendix B, rule 1
specifies that an Element’s child can be either Elements, or
a StructureAgnosticSubtree which is a flat list (rule 3).

Actual DOM tree DOM-tree type
<div id ="editor"> <div id ="editor"
<h1> flatten ="true">
<u>Title</u> <h1></h1>
</h1> <u></u>
<h2> <h2></h2>
<i>Chapter 1</i> <i></i>
</h2> </div>

</div>

TABLE V: Subtree flattening

E. TypeEnforcer

The way TypeEnforcer works is very similar to Type-
Builder, because it also monitors DOM-tree changes and tries
to locate corresponding elements and attributes in the DOM-
tree type. The only difference is that, when TypeEnforcer
detects a missing element, a missing attribute, or a missing
value for an attribute, it does not add the missing part to the
DOM-tree type. Instead, it rejects the DOM-tree change, and
raises an exception. In the example in Table IV, when the
highlighted div element and its subtree are inserted during
an actual execution, TypeEnforcer will forbid the insertions of
the ’s src and onclick attribute and the <p>, leaving
a <div> containing an with no attributes and a <h1>.

Note that different from TypeBuilder, a key require-
ment from TypeEnforcer is the ability to intercept DOM-
tree changes, which is more than passive monitoring. On
some occasions, a DOM-tree change can have side effects
happening before the type-checking is done. Intercepting them

9

requires modifications to Blink. The detailed discussion will
be provided in the next section.

V. REALIZING THE CONCEPT IN ELECTRON

As discussed previously, our mechanism requires the ca-
pability to fully monitor and intercept DOM-tree changes
(including style property changes). We need to inspect every
DOM-tree change to decide if it should be permitted or
rejected. And if we reject the change, it should be fully rolled
back, without causing persistent effect.

To identify a complete set of chokepoint methods of
DOM-tree changes, we carefully studied the source code of
Blink, focusing on basic classes defining HTML nodes. Figure
5 shows the C++ class hierarchy. Node is the base class
for all objects in the DOM tree. Its SetComputedStyle
method is the sole interface to update the node’s style after a
style recalculation. ContainerNode defines a node that may
have children, i.e., a non-leaf node. Methods InsertBefore,
AppendChild and ReplaceChild are the chokepoints of all
node-insertion events. Element inherits from ContainerNode
and holds the set of attributes of the element. Method
WillModifyAttribute is invoked before every attribute-
modification event.

Node

SetComputedStyle

InsertedInto

RemovedFrom

ContainerNode

InsertBefore

AppendChild

ReplaceChild

ChildrenChanged

Element

WillModifyAttribute

AttributeChanged

ParseAttribute

HTMLElement

……

HTMLDivElement

……

CharacterData

……

Text

……

Document

……

virtual

virtual

virtual

virtual

virtual

Fig. 5: Class hierarchy of DOM-tree nodes and our hooks

The DOM Interceptor is implemented by hooking on these
five methods, and sending the observed DOM-change events
to the algorithms discussed in Section IV-C and IV-E.

A. DOM-tree change completion vs. persistent effects

The description above is conceptually simple, but it hides
a major source of complexity, as it implicitly assumes that
no persistent effect can be done before the DOM-tree change
is complete and available for TypeEnforcer to inspect. We
thoroughly study the HTML standard and find this assumption
invalid. For this reason, the MutationObserver API [14], which
may notify a listener function after the DOM tree is modified,
is not suitable. More in-depth work is needed inside Blink.

The important concepts involved in this complexity are
DOM tree, Document and persistent effect. According to
the DOM standard [15], an element always belongs to a
Document, but is not always connected to a DOM tree. A
Document provides a set of APIs that can cause persistent
effects on behalf of the Document, such as accessing the
filesystem, making a web request, registering event handlers,
etc. The only way for an element to cause a persistent effect
is to ask its containing Document to make such an API call.

Next, we explain the complexity and our solution. The
complexity may seem to originate from some obscure corner-
case details, but not solving it would make TypeEnforcer fail

to protect every vulnerable app in Section III, because it is an
easy path for exploitation, once it is known by the attackers.

B. Disconnected elements

When an element is not connected to the DOM tree, its
state is set to “disconnected”. In fact, every element is always
created in the “disconnected” state, no matter if it is created
explicitly by JavaScript through createElement, or implicitly
by the HTML parser. Later, it can be connected to a DOM tree
through methods like appendChild, insertBefore, etc.

It is worth noting that, in some situations, disconnected
elements can also form a separate tree. We call it a discon-
nected tree because its root node is not a Document. One of
the situations is when element foo’s innerHTML property is
changed. Blink parses the new innerHTML value into such a
separate tree. When the parsing is complete, the separate tree is
connected to the DOM tree as the subtree under element foo.
Only at this point is every element set to the “connected” state,
because it is now in a tree of which the root is a Document.

C. Persistent effects triggered by element changes

Regardless of whether it is connected to a DOM tree, an
element can be changed in the following ways: (1) inserting or
removing a child element, (2) being inserted or removed from a
parent element, (3) modifying an attribute. These changes may
trigger persistent effects. For example, when the src attribute
of an element is set to a new value, it triggers a network
request immediately, which may further trigger its onload or
onerror event handler when the request is finished.

D. Solution: deferring persistent effects of disconnected ele-
ments

The essence of our approach is that we use the DOM-
tree type to provide the context for the decision-making about
an element. For example, when we see an element , the decision is not whether
elements are allowed in the DOM tree, or whether they are
allowed to load from foo.com. Instead, it is about whether the
particular element at this DOM-tree position is allowed
to exist and load from foo.com. In other words, the decision
can only be made when an element is connected to the tree.

Because disconnected elements can sometimes trigger per-
sistent effects, our solution is to defer the effects until the
elements are connected to the DOM tree. The deferral does
not limit apps’ functionalities. There are three situations worth
discussing. First, when disconnected elements are implicitly
created via innerHTML parsing, since the effects, e.g., file/net-
work accesses, are asynchronous, an app programmer cannot
assume they are completed by the time the elements are con-
nected to the DOM tree. Second, consider an app programmer
explicitly creates a disconnected element, and waits for its
persistent effects to complete before connecting it to the DOM
tree. We have not seen this need in reality, but can only imagine
one meaningful scenario – the programmer wants to hide the
loading of an element for visual smoothness. For this purpose,
a classical and better approach is to use the visibility or
display CSS property on the connected element. Third, if
an app programmer explicitly creates a disconnected element
that is never connected to the DOM tree, the only purpose

10

is to cause a persistent effect like file/network access. This is
an unreasonable scenario that we have never seen in any app,
because the effect can be simply fulfilled by JavaScript without
using a disconnected element.

Detailed study. The hierarchy in Figure 5 shows that
Blink defines five virtual methods in these basic classes. Every
derived class can override them to implement the actions
to take when they are invoked. For example, the
class overrides ParseAttribute, in which a network request
may be made when its src attribute is changed. Also, the
HTMLElement class overrides ParseAttribute, in which
it registers event handlers that are common to all HTML
elements (e.g., onclick, onfocus).

There are 121 descendant classes of HTMLElement. We
study the source code of them. A total number of 53 classes
override at least one of the five virtual methods, which are the
places where persistent effects may be triggered. The following
is a complete list of persistent effects that can be triggered by
a disconnected element when certain attributes are modified:

• Disconnected <body>, <input>, <iframe>, <portal>
elements can register event handlers.

• Disconnected , <video>, <audio>, <source>,
<track> elements can request file/network resources.

• Disconnected <a> elements may cause DNS prefetch.

In addition, disconnected , <source>, <track>
elements can request file/network resources when they are
inserted under another disconnected element. For example,
when a <track> is inserted under a <video>, a network
request according to its src attribute is made. Element removal
can also cause a persistent effect. Suppose a <picture>
element contains multiple <source> elements. Removing one
<source> element may trigger Blink’s algorithm to select one
of the remaining <source> elements as the effective one, and
make a network request accordingly.

VI. LIMITATIONS

Since the objective of our defense mechanism is to prevent
unintended DOM-tree mutations, it cannot prevent attacks that
do not need to change DOM trees. Specifically, vulnerabilities
due to the following browser functionalities are not prevented.

• JavaScript eval(user_str). If an app directly passes
a user input string to eval(), the attacker can execute
arbitrary JavaScript without modifying the DOM tree.

• Script-initiated top-level navigation. Since Electron is
essentially a Chromium browser, if the top-level docu-
ment contains scripts like window.open(user_str) or
location.href=user_str, the attacker can navigate
the app away to a page containing malicious scripts.
If user_str is “javascript:attack_payload”, the
payload will be executed in the top-level document.

We do not consider those as significant limitations. The
web community is well aware of eval’s security risk, and
strongly discourages its use. We surveyed eval usages in
Electron apps by adding a hook to the runtime JavaScript
compiler in Electron, which not only covers eval, but also
eval-like APIs that interpret strings as JavaScript code, e.g.,
setTimeout [16]. Among all 76 Electron apps studied in

Section III, we find only 13 apps using eval. We inspected their
source code and confirmed that, except for a calculator app
using eval to evaluate mathematical expressions and a plugin
system implemented using eval, every other eval occurrence
takes a string constant as input, which has no security concern.

Regarding the threat of top-level navigation, the Electron
community is well aware of it, and understands that there
is no reason for an app to navigate itself away. Usually,
when an app needs to display an external content, it either
contains the external content in an iframe, or opens a regular
browser to visit the URL, which is facilitated by Electron’s
built-in “will-navigate” mechanism [17]. It allows the app to
register a listener for window navigation events. Whenever it
sees a navigation, it checks the target URL to decide if the
navigation should be permitted, or redirected to an external
browser instead.

VII. IMPLEMENTATION, EVALUATION AND DISCLOSURE

We implement TypeBuilder, TypeEnforcer, DOM Intercep-
tor and the Blink patches on Electron 12.0.0, which is based
on Chromium 89. The implementation is primarily in C++
code. We also write TypeScript code to expose an interface to
Electron apps, which adds the following methods to Electron’s
webFrameMain [18] module:

• SetDOMTreeType loads a DOM-tree type from an HTML
string.

• SetTypeEnforcerMode switches our module between
builder and enforcer mode.

• OutputDOMTreeType serializes the current DOM-tree
type into an HTML string.

In the C++ part, we reuse a few high-level functionalities
of Blink. In our implementation, a DOM-tree type itself is a
DOM tree and consists of HTML elements. Since a standard
DOM tree does not support multiple values in an attribute,
we join them by “|” and store it as a single attribute. To
store an element’s style properties, which are dynamically
computed, we serialize and store them as attributes. For
example, an element’s background-image property is stored
as dtt-s-background-image attribute. We also reuse the
JavaScript tokenizer [19] from V8 JavaScript engine to parse
script attributes into tokens. Blink’s HTML parser and serial-
izer are also used to load and save a DOM-tree type.

Reusing these modules not only reduces the engineering
effort, but more importantly, it eliminates the possibilities of
parsing inconsistencies described in Section III. Since we rely
on Blink to parse the languages of HTML, CSS and JavaScript,
and maintain the data structure for the DOM-tree type, there
is no need for us to implement any parser of our own. It is a
big advantage that we only need to interface with the whole
grammars of HTML, CSS and JavaScript, with no concern
about application-specific sub-grammars, such as “the longest
URL-like string prefix that contains matching parentheses” in
VS Code, or “key-value pairs delimited by semicolons that are
not enclosed inside single or double quotes” in Teams.

Next, we present the evaluation results about validity,
security and performance.

11

A. Validity and security

The proposed methodology is tested on 18 apps in Ta-
ble VI, including VS Code, GraSSHopper, Antares, Homura,
OhHai Browser, and all 13 vulnerable apps in the second
round. Microsoft Teams is not included, because it runs on
a variant of Electron that is proprietary. To show the method-
ology’s practicality for a complex app with an open extension
ecosystem, we apply it to 6 VS Code extensions in Table VII.

Name Programmer’s manual Sec
adjustment ure

d?
VS Code Attr. id = list_id_* ✓
GraSS- Attr. id = sizzle*

✓Hopper Style content = *

Antares
Attr. id = id_* | editor-*

✓Style content = *
Style background-image = *

Homura
Attr. <a> href = *://*

✓Attr. src = *://*
Style <main dtt-flatten>

OhHai Attr. <webview> id = wv_*
✓Browser Attr. <webview> src = *://*

Attr. src = *://*
Jukeboks none ✓
Poddycast none ✓
Tess none ✓
WAIL none ✓
Advanced
REST
Client

Attr. id = anypoint-input-label-* |
anypointAutocompleteInput* |
anypointlistbox-*

✓

Altair
Attr. id = cdk-overlay-*|nb-option-*

✓Style text-shadow = *
Style border-bottom-left-radius = *

Another
Redis
Desktop
Manager

Attr. id = el-popover-*|el-tooltip-*
|dropdown-menu-*|treeId*|el-
autocomplete-*|tab-*|pane-*

✓

Appium
Desktop

Style box-shadow = * ✓

Blankup
Attr. <a> href = http://*|https://*

✓Attr. src = http://*|https://*
Flat. <div id="editorContainer"

dtt-flatten>
Blockbench Attr. id = * ✓
Boost
Note

Attr. id = tree-*|portal-anchor-*|
react-select-*|user-content-*|
backlink__*|search-recently-
visited-*|topbar__breadcrumb
__*|sidebar__search__*|context
__menu-*

✓

DeckMaster Style animation-duration = *
✓Style transition-duration = *

Electro-
CRUD

Attr. id = cdk-overlay-*|nb-option-* ✓

TABLE VI: Evaluation on Electron apps

1) Electron apps: For every app on the list, we first run
it with our enhanced Electron under the builder mode, test
its features as thoroughly as we can to build a DOM-tree
type. We monitor the DOM-tree type during testing. For
some apps, the DOM-tree type converges by itself, i.e., even
with continued testing, no new elements, attributes or style
properties are added. When we encounter a “non-convergence”
situation, we examine the part of the DOM-tree type that keeps

growing, either add an attribute wildcard or flatten the subtree,
then continue testing until it converges. Table VI shows the
adjustments needed for each app. The effort is small.

We rerun the tests under the enforcer mode, which confirms
that no normal functionality is affected by TypeEnforcer.
Then, we repeat the attacks in Section III. They are all
thwarted by TypeEnforcer. For each attack, we examine the
violating mutation, which confirms that the design and im-
plementation, as well as our understanding about the DOM
tree in the attack situation, are correct. We list the DOM-
tree type violation resulting from each attack in Appendix
C. For example, the GraSSHopper attack via text selec-
tion would add an extra iframe element to the location
(/HTML/BODY/DIV[@id="container"]/...) in the DOM
tree, which would be caught by TypeEnforcer.

2) VS Code extensions: VS Code is an example of an
extensible app. As a more diligent evaluation of our method-
ology, we incrementally extend the DOM-tree type for the
extensions in Table VII, which include a “dummy” extension,
three syntax-highlighters for Golang, TypeScript and Mojom,
a to-do list and a FTP client. For each extension, we record
the number of elements, attributes and style properties added
to the DOM-tree type, and the manual adjustments needed to
make the DOM-tree type converge.

While the dummy extension adds no visible functionality,
the numbers in all columns are the highest among these
extensions. Also, it is the only extension requiring a manual
adjustment. Under the hood, the dummy extension contains
the infrastructure common for all extensions, e.g., installation
confirmation/progress, an info page, an “installed extension”
entry, etc. Beyond the commonality, the variation of the DOM-
tree type for each of the other five extensions is small.

As explained in Section IV-C, TypeBuilder iteratively per-
forms a union operation to incorporate every newly witnessed
type into the existing type. Installation of an extension also
performs such a union operation. For this reason, although
the app can install an arbitrary combination of extensions, the
complexity of the DOM-tree type only grows linearly with the
number of installed extensions.

Name Manual adjustment Elem. Attr. Prop.
Dummy Attr. <div> id = * 32 3 94
Golang none 15 0 84
TypeScript none 2 0 12
Mojom none 0 0 0
Todo Tree none 25 2 18
FTP Simple none 16 0 89

TABLE VII: Evaluation on VS Code extensions

B. Performance

The performance evaluation uses the Speedometer 2.0
benchmark [20], which includes 16 different implementations
of a sample app (a to-do-list app), and 3 types of user
actions in the app – adding, finishing, and deleting a to-do
item. First, we run the workloads under the builder mode to
generate the DOM-tree types, then switch to the enforcer mode
for performance measurement. For comparison, the baseline
performance is obtained by running the same benchmark on
the unmodified Electron of the same version.

12

For every implementation of the app, we fire 100 add-
actions to add 100 to-do items, then fire 100 finish-actions
for the items, and finally fire 100 delete-actions for the items.
The frequency of our firings ranges from 10 actions/sec to
100 actions/sec, as shown in Figure 6. For each frequency, we
calculate the average completion time of an action. Because
there are 16 implementations of the app, and we fire 300
actions in every test, each completion time shown in Figure 6
is the average of 300 * 16 = 4800 measurements. For example,
the average completion times of the baseline and our Electron
platform, under the frequency 1000/80 (i.e., 12.5 actions/sec),
are 80.8473 and 81.0793. The slowdown is (81.0793 - 80.8473)
/ 80.8473 = 0.287%.

Freq (1/s) 1000/100 1000/90 1000/80 1000/70 1000/60
Baseline (s) 101.055 90.9504 80.8473 70.7489 60.6612
Ours (s) 101.056 90.9951 81.0793 71.2372 61.5176
Freq (1/s) 1000/50 1000/40 1000/30 1000/20 1000/10
Baseline (s) 50.5433 40.4531 30.3582 20.2579 10.2518
Ours (s) 51.7759 42.2021 32.6014 22.7461 12.9292

Fig. 6: Completion time and slowdown w.r.t. user-action frequency

This performance result proves that our mechanism does
not cause a noticeable slowdown in a realistic scenario. We
consider 10 actions/sec an aggressive load, for which the
slowdown is 0.001%. What the curve shows is a stress-test
using unreasonably aggressive loads, which help us understand
the intrinsic performance characteristics. It is also worth noting
that, because our modules are separate from Blink, they are
not in the optimal position to perform. For example, the CSS
“cascading” algorithm is complex. It produces intermediate
data that Blink uses to trim subtrees that are not affected in
a change. We are unable to utilize these intermediate data.
Also, Blink uses a method to compress several style properties
into one integer to expedite comparison operations. If our
modules were integrated into Blink, it would benefit from this
mechanism. Another optimization we have not done, which
Blink does in similar situations, is to “compile” the DOM-
tree type checking into “if-then-else” statements, instead of
traversing the explicit tree structure, since the DOM-tree type
has been decided at the development time. Despite these
potential opportunities, the performance result demonstrates
that our current platform is already practical to be adopted.

C. Responsible disclosure and code repository

We have reported the vulnerabilities of all 19 apps to the
vendors. As of writing time, the vulnerabilities in Antares,
Tess, Altair, Blockbench and Advanced REST Client have
been confirmed and fixed. The vendors of Microsoft Teams,
GraSSHopper, Homura, Jukeboks, DeckMaster, Poddycast,
Boost Note and Appium Desktop have confirmed the vulnera-
bility, and are fixing the vulnerabilities. The source code of our
enhancement to Electron is publicly available (anonymized)
[35]. Reference [36] is an anonymized website showing videos
and screenshots of the exploits against the vulnerable apps.

VIII. RELATED WORK

Our work is related to defense techniques against web
attacks, such as XSS. Many of them focus on input sanitiza-
tion. Other techniques develop and enforce security policies,
including some that learn policies based on data.

Techniques focusing on sanitization. DOMPurify [22] is
a client-side sanitizer implemented in JavaScript. It is still
actively maintained and widely used. It parses HTML string
into DOM nodes, then flattens them as a list of <tag name,
attribute name> pairs to apply filtering rules. XSSAuditor
[23], implemented in the WebKit engine [24], is an early
example of in-browser sanitizer that focuses on reflective XSS
attacks. It places hooks in the interface between the HTML
parser and the JavaScript engine, inspecting fully parsed DOM
nodes rather than raw HTML. If the JavaScript engine tries
to execute a string which previously appears as a part of the
HTTP request, it is highly suspicious. Because XSSAuditor
only deals with reflective XSS, Stock et al. [27] develop a
taint-analysis-based method as a complementary defense. It
can thwart client-side XSS attacks too.

We mention Trusted Types [9] in Section IV. It ensures
that a set of well-known dangerous “sinks”, e.g., innerHTML,
the src attribute of <script>, etc., always receive sanitized
contents. A sink does not accept a raw string, but only an
object wrapping the raw string into one of the three types
– TrustedHTML, TrustedScript and TrustedScriptURL.
For every type, the programmer is required to provide its
constructor which takes a raw string argument. The constructor
is essentially a sanitizer. Thus, to obtain an object of the type,
a raw string must go through sanitization.

Researchers also discuss important properties of sanitizers
for security. Hooimeijer et al. [25] argue for the importance of
commutativity and idempotence, and propose a programming
language for sanitizer development that makes those properties
verifiable. Saxena et al. [26] point out that context mismatch
and non-commutativity are major sources of sanitization vul-
nerabilities, and propose a taint-analysis-based approach to
apply the right sanitizer (or sanitizers) for a given context.

Techniques focusing on policies. PoliDOM [28] allows
a programmer to specify parts of the DOM tree as read-
only to defend against DOM-based XSS. The policies are
written in CSS selector syntax. However, it does not handle
the situation of disconnected elements, so we believe this is a
vulnerability. ScriptChecker [29] allows web pages to restrict
the capabilities, such as DOM access and network request,
of individual JavaScript tasks to safely execute untrusted
JavaScript code. CSPAutoGen [30] crawls a website to infer
a CSP, with a focus on preventing unsafe usages of eval and
inline scripts. In its training phase, scripts used by the website
are converted to abstract syntax trees (ASTs) and added to a
whitelist. In enforcing phase, an incoming script is allowed to
execute only if its AST matches the whitelist. Mentioned in
Section II, Synode [31] statically analyzes Node.js modules to
compute a JavaScript and shell-script template for every call
of eval or exec. The templates are expressed as ASTs. We
mention in Section IV that “Types-from-data” [21] infers a
type for structured data, e.g., JSON and XML, from a number
of samples. It focuses on type safety rather than security.

13

IX. CONCLUSION

Our study about real-world Electron apps shows the fact
that it is impractical for programmers to anticipate all the unex-
pected inputs that attackers may potentially think of. DOM-tree
type-checking is a methodology to let programmers explicitly
specify their intentions instead of non-intentions. We build
TypeBuilder and TypeEnforcer into Electron. The methodology
is practical, as it only requires a small amount of programmer
effort. It prevents a DOM tree from gaining a functionality
that is unintended in the programmer’s mind, thus blocks all
exploits we show in the study. Our responsible disclosure about
the security issues has been positively responded. The source
code of our Electron enhancement is public. We hope the
community embraces the methodology to safeguard this new
programming paradigm moving forward.

ACKNOWLEDGMENT

We thank the anonymous reviewers for valuable feedback.
The work also benefits from discussions with Haoxiang Lin,
Fan Yang and Mao Yang. Zihao Jin is in part supported by
the Microsoft Research internship program. Jianjun Chen is
in part supported by the National Natural Science Foundation
of China (grant #62272265). Haixin Duan is in part supported
by the National Natural Science Foundation of China (grant
#U1836213 and #U19B2034).

REFERENCES

[1] Electron. https://www.electronjs.org/.
[2] Sanitize-html. https://github.com/apostrophecms/sanitize-html.
[3] Felix Böhm. Htmlparser2. https://github.com/fb55/htmlparser2.
[4] Angular - Text interpolation. https://angular.io/guide/interpolation.
[5] Christopher Jeffrey. Marked. https://github.com/markedjs/marked.
[6] Nicolás Bevacqua. Insane. https://github.com/bevacqua/insane.
[7] M. Heiderich, M. Niemietz, F. Schuster, T. Holz, and J. Schwenk. “Script-

less Attacks: Stealing the Pie Without Touching the Sill.” Proceedings of
the 2012 ACM conference on Computer and communications security.
2012.

[8] Content Security Policy Level 3. https://w3c.github.io/webappsec-csp/.
[9] Trusted Types. https://w3c.github.io/webappsec-trusted-types/dist/spec/.
[10] element.h – Chromium Code Search. https://source.chromium.org/

chromium/chromium/src/+/main:third party/blink/renderer/core/dom/
element.h;l=717;drc=1946212ac0100668f14eb9e2843bdd846e510a1e?
q=IsURLAttribute&sq=&ss=chromium%2Fchromium%2Fsrc.

[11] 4.3.6. Enforcement in event handler content attributes - Trusted
Types. https://w3c.github.io/webappsec-trusted-types/dist/spec/
#enforcement-in-event-handler-content-attributes.

[12] Section 4.12.1 The script element – HTML Standard. https://html.spec.
whatwg.org/#the-script-element.

[13] longhands.h – Chromium Code Search. https://source.chromium.
org/chromium/chromium/src/+/main:out/Debug/gen/third party/blink/
renderer/core/css/properties/longhands.h.

[14] Section 4.3.1. Interface MutationObserver - DOM Standard. https:
//dom.spec.whatwg.org/#interface-mutationobserver.

[15] Section 4.4. Interface Node - DOM Standard. https://dom.spec.whatwg.
org/#interface-node.

[16] setTimeout() – Web APIs | MDN. https://developer.mozilla.org/en-US/
docs/Web/API/setTimeout.

[17] Event: ‘will-navigate’. https://www.electronjs.org/docs/latest/api/
web-contents#event-will-navigate.

[18] WebFrameMain. https://www.electronjs.org/docs/latest/api/
web-frame-main.

[19] Scanner.cc – Chromium Code Search. https://source.chromium.org/
chromium/v8/v8.git/+/edf3dab4660ed6273e5d46bd2b0eae9f3210157d:
src/scanner.cc.

[20] Speedometer 2.0. https://browserbench.org/Speedometer2.0/.
[21] Tomas Petricek, Gustavo Guerra, Don Syme. “Types from data: Making

structured data first-class citizens in F#”. In proceedings of ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), 2016.

[22] Mario Heiderich, Christopher Späth, and Jörg Schwenk. “DOMPurify:
Client-Side Protection Against XSS and Markup Injection.” European
Symposium on Research in Computer Security. Springer, Cham, 2017.

[23] Daniel Bates, Adam Barth, and Collin Jackson. “Regular Expressions
Considered Harmful in Client-Side XSS Filters.” Proceedings of the 19th
International Conference on World Wide Web. 2010.

[24] WebKit. https://webkit.org/.
[25] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M. Veanes.

“Fast and Precise Sanitizer Analysis with BEK.” 20th USENIX Security
Symposium (USENIX Security 11). 2011.

[26] Prateek Saxena, David Molnar, and Benjamin Livshits. “SCRIPT-
GARD: Automatic Context-Sensitive Sanitization for Large-Scale
Legacy Web Applications.” Proceedings of the 18th ACM conference
on Computer and communications security. 2011.

[27] B. Stock, S. Lekies, T. Mueller, P. Spiegel, and M. Johns. “Precise
Client-side Protection against DOM-based Cross-Site Scripting.” 23rd
USENIX Security Symposium (USENIX Security 14). 2014.

[28] Junaid Iqbal, Ratinder Kaur, and Natalia Stakhanova. “PoliDOM:
Mitigation of DOM-XSS by Detection and Prevention of Unauthorized
DOM Tampering.” Proceedings of the 14th International Conference on
Availability, Reliability and Security. 2019.

[29] Wu Luo, Xuhua Ding, Pengfei Wu, Xiaolei Zhang, and Qingni Shen.
“ScriptChecker: To Tame Third-party Script Execution With Task Capa-
bilities.” NDSS. 2022.

[30] Xiang Pan, Yinzhi Cao, Shuangping Liu, Yu Zhou, Yan Chen, and
Tingzhe Zhou. “CSPAutogen: Black-box Enforcement of Content Secu-
rity Policy upon Real-world Websites.” Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security. 2016.

[31] Cristian-Alexandru Staicu, Michael Pradel, and Benjamin Livshits.
“SYNODE: Understanding and Automatically Preventing Injection At-
tacks on NODE.JS.” NDSS. 2018.

[32] Xing Jin, Xunchao Hu, Kailiang Ying, Wenliang Du, Heng Yin, and
Gautam Nagesh Peri. “Code Injection Attacks on HTML5-based Mobile
Apps: Characterization, Detection and Mitigation.” Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security.
2014.

[33] Wikipedia. Single-page application. https://en.wikipedia.org/wiki/
Single-page application.

[34] DeveloperDrive. Seven JavaScript Templating Engines
with Code Examples. https://www.developerdrive.com/
best-javascript-templating-engines/.

[35] Source code repository of our project (anonymized). https://github.com/
1qaz2wsx7u8i9o0p/DOM-Tree-Type.

[36] Videos and screenshots of the exploits. https://1qaz2wsx7u8i9o0p.
github.io/.

14

APPENDIX

A. Style properties excluded in DOM-tree type

top, bottom, left, right, width, height, block-size, inline-size, grid-template-columns,

grid-template-rows, margin-block-end, margin-block-start, margin-bottom, margin-inline-end,

margin-inline-start, margin-left, margin-right, margin-top, padding-block-end, padding-block-start,

padding-bottom, padding-inline-end, padding-inline-start, padding-left, padding-right, padding-top,

perspective-origin, transform, transform-origin

B. DOM-tree type in BNF[1]

1 Element = "<" TagName *AttributeOrStyleProperty ">" (*Element /
StructureAgnosticSubtree) "</" TagName ">"[2][3]

2 TagName = String
3 StructureAgnosticSubtree = *("<" TagName *AttributeOrStyleProperty "></" TagName ">")
4 AttributeOrStyleProperty = ScriptAttribute / URLAttribute / StringAttribute /

StyleProperty

5 ScriptAttribute = ScriptAttributeName "=" *TokenSequence[4][5]

6 ScriptAttributeName = "onclick" / "onload" / "onerror" / ...[6]

7 TokenSequence = *Token[7]

8 Token = "IDENTIFIER" / "LPAREN" / "NUMBER" / "RPAREN" / "STRING" /
...[8]

9 URLAttribute = URLAttributeName "=" *Origin[4][5]

10 URLAttributeName = "src" / "href" / ...[9]

11 StringAttribute = StringAttributeName "=" *WildcardString[4][5]

12 StringAttributeName = "id" / "name" / "target" / "method" / ...[10]

13 StyleProperty = StylePropertyName "=" StylePropertyValue[5]

14 StylePropertyName = "background-color" / "opacity" / "z-index" / ...[11]

15 StylePropertyValue = *Origin "," *WildcardString "," *StylePropertyValueSequence
"," StylePropertyValueRange[4]

16 StylePropertyValueSequence = *StylePropertyValue[7]

17 StylePropertyValueRange = "<" Float "," Float ">"
18 Origin = WildcardString "://" WildcardString ":" WildcardString
19 WildcardString = (String ("*" / "?") WildcardString) / String

Notes:

[1] Following conventions from RFC5234: Augmented BNF for Syntax Specifications: ABNF, specifically, the following
sections:
• 2.3. Terminal Values
• 3.1. Concatenation
• 3.2. Alternatives
• 3.5. Sequence Group
• 3.6. Variable Repetition

[2] For simplicity, white spaces before *Attribute and between Attributes are omitted.
[3] The two TagNames should match each other. Due to space limitations, we do not enumerate every possible tag name of

HTML elements.
[4] For simplicity, vertical bars (|) between TokenSequences, Origins, Strings, and StylePropertyValueSequences are

omitted.
[5] For simplicity, quotes (") around *TokenSequence, *Origin, *String, and StylePropertyValue are omitted.
[6] Scripting attributes defined by Blink’s Element::IsScriptingAttribute function.
[7] For simplicity, white spaces () between Tokens and StylePropertyValues are omitted.
[8] Tokens defined by V8 JavaScript engine’s v8::Token class.
[9] URL attributes defined by Blink’s Element::IsURLAttribute function. Whether an attribute is a URL attribute depends

on its attribute name and the element’s tag name, e.g., href of <a>, src of or <video>, etc.. Due to space limitations,
we do not enumerate every valid TagName-URLAttributeName pair.

[10] A few important attributes that contain only plain strings, as opposed to URL or JavaScript code. For simplicity, we only
list attribute names rather than TagName-StringAttributeName pairs.

[11] CSS Properties defined by Blink’s css_properties.json5, excluding layout-dependent ones.

15

C. DOM-tree type violations

Name Location
Visual Studio URL /HTML/BODY/DIV/DIV/DIV/DIV[@id="quickInput_list"]/DIV/DIV/DIV/
Code extraction DIV[@id="list_id_*"]/DIV[@id="list_id_*"]/DIV/DIV/DIV/DIV[@id=""]/DIV/

/DIV/DIV/DIV/DIV[@id="workbench.parts.editor"]/DIV/DIV/DIV/DIV/DIV/
DIV/DIV/DIV/DIV/DIV/DIV/DIV/DIV/DIV/DIV/DIV/DIV/DIV[@id="list_id_*"]/
DIV[@id="list_id_*"]/P

Code /HTML/BODY/DIV/DIV/DIV/DIV[@id="quickInput_list"]/DIV/DIV/DIV/
comment DIV[@id="list_id_*"]/DIV[@id="list_id_*"]/DIV/DIV/DIV/DIV[@id=""]/DIV/

/DIV/DIV/DIV/DIV[@id="workbench.parts.editor"]/DIV/DIV/DIV/DIV/DIV/
DIV/DIV/DIV/DIV/DIV/DIV/DIV/DIV/DIV/DIV/DIV/DIV/DIV[@id="list_id_*"]/
DIV[@id="list_id_*"]/P

GraSSHopper Text /HTML/BODY/DIV[@id="container"]/DIV[@id="wrapper"]/DIV/DIV/DIV/
selection DIV[@id="sizzle*"]/DIV/DIV/DIV/DIV/DIV/DIV/DIV
Host /HTML/BODY/DIV[@id="container"]/DIV[@id="wrapper"]/DIV/DIV/DIV/
name DIV[@id="sizzle*"]/SPAN/DIV/SPAN

Antares /HTML/BODY/DIV/DIV/DIV/DIV/DIV/DIV/DIV/DIV/DETAILS/DIV/DIV/UL/LI/A/SPAN
Homura /HTML/BODY/DIV/DIV/DIV/DIV/DIV/MAIN/DIV
OhHai /HTML/BODY/DIV/DIV/ACC-PANEL/ACC-ITEM/HIST-LIST/DIV/DIV[@id="HistList"]/DIV/DIV/
Browser DIV/A
Jukeboks /HTML/BODY/DIV/CONTENT/DIV/DIV/NAV/DIV
Poddycast /HTML/BODY/DIV/DIV[@id="content-right"]/DIV[@id="content-right-body"]/DIV/UL/LI/

DIV
Tess /HTML/BODY/DIV/DIV/DIV/DIV/DIV
WAIL /HTML/BODY/DIV[@id="wail"]/DIV/DIV/DIV/DIV[@id="addSeedCard"]/DIV/DIV/DIV/DIV/

P[@id=”checkSeedResults”]
Advanced /HTML/BODY/DIV/DIV/MAIN[@id="main"]/ARC-REQUEST-WORKSPACE/SECTION/
REST Client ARC-REQUEST-PANEL/RESPONSE-VIEW/DIV[@id="panel-headers"]/DETAILS/HEADERS-LIST/

DIV/DIV/SPAN
Altair /HTML/BODY/APP-ROOT/APP-ALTAIR/DIV/NZ-LAYOUT/NZ-LAYOUT/NZ-LAYOUT/NZ-CONTENT/
Another Re-
dis Desktop
Manager

/HTML/BODY/DIV/DIV/DIV/P

Appium
Desktop

/HTML/BODY/DIV/DIV[@id="serverMonitorContainer"]/DIV/DIV/SPAN/SPAN/SPAN/SPAN

Blankup /HTML/BODY/DIV[@id=""]/DIV/DIV
Blockbench /HTML/BODY/UL/LI/UL/LI
Boost Note /HTML/BODY/DIV[@id="root"]/DIV/DIV/DIV/DIV/DIV/DIV/DIV/DIV/DIV/DIV/DIV/DIV/DIV/

DIV/DIV/DIV
DeckMaster /HTML/BODY/DIV/DIV/DIV/DIV/DIV/A
Electro- /HTML/BODY/APP-ROOT/NB-LAYOUT/DIV/DIV/DIV/DIV/DIV/NB-LAYOUT-COLUMN/APP-VIEW/
CRUD APP-VIEW-VIEW/NB-LAYOUT/DIV/DIV/DIV/DIV/DIV/NB-LAYOUT-COLUMN/NB-CARD/NB-CARD-BODY/

NGX-DATATABLE/DIV/DATATABLE-BODY/DATATABLE-SELECTION/DATATABLE-SCROLLER/
DATATABLE-ROW-WRAPPER/DATATABLE-BODY-ROW/DIV/DATATABLE-BODY-CELL/DIV/SPAN

16

