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Abstract—Despite nearly decade-long mitigation efforts in
academia and industry, the community is yet to find a prac-
tical solution to the Rowhammer vulnerability. Comprehensive
software mitigations require complex changes to commodity
systems, yielding significant run-time overhead and deterring
practical adoption. Hardware mitigations, on the other hand,
have generally grown more robust and efficient, but are difficult
to deploy on commodity systems. Until recently, ECC memory
implemented by the memory controller on server platforms
seemed to provide the best of both worlds: use hardware features
already on commodity systems to efficiently turn Rowhammer
into a denial-of-service attack vector. Unfortunately, researchers
have recently shown that attackers can perform one-bit-at-a-time
memory templating and mount ECC-aware Rowhammer attacks.

In this paper, we reconsider ECC memory as an avenue
for Rowhammer mitigations and show that not all hope is lost.
In particular, we show that it is feasible to devise a software-
based design to both efficiently and effectively harden commod-
ity ECC memory against ECC-aware Rowhammer attacks. To
support this claim, we present Copy-on-Flip (CoF), an ECC-
based software mitigation which uses a combination of memory
migration and offlining to stop Rowhammer attacks on commodity
server systems in a practical way. The key idea is to let the
operating system interpose on all the error correction events
and offline the vulnerable victim page as soon as the attacker
has successfully templated a sufficient number of bit flips—
while transparently migrating the victim data to a new page.
We present a CoF prototype on Linux, where we also show
it is feasible to operate simple memory management changes
to support migration for the relevant user and kernel memory
pages. Our evaluation shows CoF incurs low performance and
memory overhead, while significantly reducing the Rowhammer
attack surface. On typical benchmarks such as SPEC CPU2017
and Google Chrome, CoF reports a <1.5% overhead, and, on
extreme I/O-intensive scenarios (saturated nginx), up to ∼11%.

I. INTRODUCTION

Since its discovery in 2014, Rowhammer [25] has evolved
from a mere ‘side effect’ caused by ever-increasing DRAM
density to a real security vulnerability which can be exploited

∗The work on this submission has been performed while Koen Koning was
employed at the Vrije Universiteit Amsterdam.

on a wide variety of systems. Unfortunately, existing de-
fenses have proven to be impractical (e.g., requiring complex
hardware or software changes) and/or ineffective (e.g., only
stopping specific Rowhammer variants). Research has shown
that Rowhammer is a threat even on Error-Correcting Code
(ECC) memory implemented by the memory controller [10],
which is heavily deployed on server platforms. In this paper,
we show ECC memory is not a lost cause in the fight against
Rowhammer. To this end, we present Copy-on-Flip (CoF),
a practical software mitigation which hardens ECC memory
against Rowhammer. Our design takes advantage of ECC’s
ability to detect vulnerable pages, allowing our mitigation to
render these unavailable to the attacker with a combination of
memory migration and offlining1.

Rowhammer. The research community has devised an abun-
dance of Rowhammer exploits which compromise a wide array
of different systems, including native environments on both
x86 [16], [17], [22], [48], [50] and ARM [15], [57], virtualized
environments [46], browser sandboxes via JavaScript [8], [13],
[18] and networked systems [33], [51]. In addition, research
has shown that the Rowhammer vulnerability can also be used
as a powerful side channel for information leakage [30].

Early on, it was believed that Rowhammer attacks could
be mitigated by deploying Error-Correcting Code (ECC) mem-
ory [25]. Typical ECC memory follows the SECDED scheme:
single error correction, double error detection. Thus, it is able
to correct single-bit errors per code word, by adding control
bits to each chunk of data bits. This significantly hinders
the effect Rowhammer can have, since bit flips are often
automatically fixed. In the worst case, two or more bit flips in a
word crash the system with high probability, effectively turning
Rowhammer into a mere denial-of-service (DoS) attack vector.
However, research by Cojocar et al. [10] shows that exploiting
Rowhammer deterministically on ECC memory is attainable,
by carefully combining three or more specific bit flips in the
same word, effectively bypassing the ECC function.

The most critical step for an attacker to exploit Rowham-
mer on ECC-capable memory is the so-called templating
phase, in which an attacker has to find vulnerable memory
areas which are susceptible to bit flips at the desired offsets. In
ECCploit-like attacks [10], the attacker has to be very careful
to inject only single-bit errors in a code word in any given

1We use the term memory (or page) offlining as used in the Linux kernel
source and by hardware vendors to refer to those pages which are poisoned
and rendered unavailable to the system [19], [26].
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templating attempt (i.e., correctable errors), in order to avoid
system crashes due to detectable but uncorrectable errors.

While many other mitigations beyond ECC have been
proposed by both industry and academia, these all fall short
in terms of comprehensiveness and practicality. Most of the
mitigations have either been hardware-based [5], [23], [37],
[44], [47], [61] or software-based [6], [21], [29], [43], [58],
[63], with only a few proposals of hybrid defenses which
involve cooperation between hardware and software compo-
nents [3], [9]. Both approaches have pitfalls which make them
ineffective at defending from Rowhammer attacks in realistic
settings. New hardware-only defenses are impossible to deploy
on commodity systems and are associated with higher costs to
implement tracking algorithms. On top of that, hardware-based
defenses have also been shown to be vulnerable to targeted
attacks, with fixes unavailable for years to come [13], [16],
[22]. In contrast, while software-only defenses are easier to
deploy, comprehensive ones [29] require complex software
changes and incur high performance/memory overhead.

Copy-on-Flip. In this paper, our key observation is that, while
ECC by itself is insufficient to protect against Rowhammer
attacks, it may still serve as an advance warning system to
detect that an attack is in progress and trigger strong mitigating
action in software to stop it in its tracks. In particular, with
Copy-on-Flip (CoF), we augment the operating system (OS)
kernel to detect templating attempts causing (correctable) ECC
errors and safeguard the data in that area by migrating it out
of harm’s way before the attacker has caused a potentially
dangerous number of corrections in an ECC code word. To
prevent attackers from reusing partially templated memory post
migration, we also immediately offline the vulnerable areas of
memory at migration time.

Our defense prevents templating of ECC memory, thereby
removing the ability to mount a targeted attack. In particular,
CoF fully restores the security guarantees that ECC memory
was assumed to have prior to ECCploit [10] (but did not) and
reduces the Rowhammer threat to that of a DoS attack at worst.

The key challenge to implement our design is the need
to support migration for memory that may be used by the
attacker for templating purposes. This includes user memory
(the common target in existing exploits), but also kernel
memory such as slabs and page tables that may be allocated by
the kernel on the attacker’s behalf (a target in more advanced
exploits). Unfortunately, while user memory is relatively easy
to migrate, kernel memory is normally not migratable on
commodity systems. In particular, the memory management
of the kernel itself typically relies on physical addressing,
so memory cannot be transparently remapped through virtual
address translation. To address this challenge, we propose a
simple design based on removing the kernel’s strict depen-
dency on physical addressing. We show our design is practical
with a Linux-based CoF prototype of only around 600 LoC.
While simple and amenable to further extensions, we show
our design can support migration of all the relevant user
and kernel pages, resulting in a quantifiable attack surface
reduction of over 95%. Moreover, CoF incurs almost negligible
runtime overhead for most programs (0.2% geomean for SPEC
CPU2017 and 1.1% for browsers), with a worst case of ∼11%
overhead for I/O intensive workloads on saturated systems.

Contributions. To summarize, our contributions are:

1) The design and open source implementation2 of
Copy-on-Flip (CoF), a new software mitigation to
harden ECC memory and provide low-overhead pro-
tection from Rowhammer attacks.

2) An analysis of the spatial distribution of Rowhammer
induced bit flips using state-of-the-art Rowhammer
fuzzer data [22]. This analysis helped shape our
design and determine its memory overhead guaran-
tees, but the results are broadly applicable to other
mitigations.

3) An evaluation of our CoF prototype, showing its
practicality and comprehensiveness, running a variety
of workloads including web browsers, showing little
to no runtime overhead.

II. BACKGROUND

In this section we describe several concepts crucial to
understanding the remainder of the paper: the Rowhammer
vulnerability, and how to apply it on ECC implemented by the
memory controller.

The Rowhammer vulnerability allows attackers to flip a
bit in a row of memory that they do not own by repeatedly
activating (“hammering”) one or more neighboring rows [25].
Attackers do not know in advance which, if any, bit will flip in
the victim row, but once they find a bit that flips, they can flip
the same bit again with high probability. Besides the number
of activations, the occurrence of bit flips also depends on the
data (if the cells in the neighboring row contain the same value,
bit flips are unlikely), and on the specific activation patterns.

To enforce the desired activation patterns, an attacker
needs some knowledge of memory addressing. From the CPU
perspective, only a single physical address space is visible,
abstracting away the underlying DRAM geometry. On top
of this, software only sees its own virtual address space,
where virtual addresses are dynamically mapped to physical
page frames (e.g., 4 KB) by the operating system. While
these levels of abstraction complicate Rowhammer attacks,
an attacker can massage the memory mappings in such a
way that the underlying physical memory is hammerable
via virtual memory. While the suitable activation patterns to
trigger Rowhammer bit flips depend on the target system and
the memory modules used, even the latest memory modules
have been shown to be vulnerable [13], [16], [17], [22]. In
general, modern Rowhammer attacks (especially ECC-aware
ones) consist of three steps:

1) Memory templating: Find vulnerable locations (where
bits flip) in memory allocated by the attacker.

2) Memory massaging: Manipulate the memory layout
so that sensitive data is now stored at a vulnerable
location.

3) Hammering: Perform targeted, rapid, and uncached
memory accesses to flip a bit in the sensitive data.

Existing defenses are unable to prevent Rowhammer at-
tacks in today’s memory chips, are expensive, or result in false
positives. In particular, the TRR Rowhammer defense [23],

2https://github.com/vusec/Copy-on-Flip

2



[32], [37] deployed in modern hardware is easily bypass-
able [13], [16], [22], while most of the software defenses as-
sume detailed knowledge of DRAM geometry and either limit
protection to specific memory areas [6], [9], [58] or convert
half of the memory to (slow) swap space [29]. Defenses based
on anomaly detection [3] not only depend on performance
counters that are not always available, but, with increasing
DRAM density, also suffer from many false positives.

In this paper, we are especially concerned with memory
in high-value servers which is commonly protected against
accidental bit flips through Error Correcting Code (ECC).
With the typical single error correction, double error detection
(SECDED) scheme, when a single bit flip occurs in an ECC
word (typically 64 bits), it will be corrected automatically.
If there are two bit flips, SECDED implementations can no
longer correct them, but they will still detect that there is a
problem and trigger a crash. Only the occurrence of three bit
flips may go undetected.

Originally designed to handle accidental bit flips in non-
adversarial conditions, ECC memory was long believed to
offer an adequate defense against Rowhammer as well. After
all, to an attacker a single bit is no good as it will be
automatically corrected, a double bit flip is no good as it will
lead to a crash, and trying to find an ECC word with three
flippable bits without encountering one with two bit flips first
is highly unlikely—in principle reducing a memory corruption
vulnerability to a denial-of-service issue [25], [40].

However, Cojocar et al. [10] show that exploiting Rowham-
mer on ECC memory, while harder, is still possible. By using
data patterns that ensure that at most a single (specific) bit
can flip in an ECC word, in combination with a timing side
channel that reveals that a single bit error has been corrected,
they probe all the bits in an ECC word during the templating
phase until they find a word where three bits are flippable. In
the final attack, they then flip all three bits at once.

III. THREAT MODEL

This paper considers an attacker able to launch an advanced
Rowhammer exploit such as ECCploit on ECC memory [10].
In particular, we assume an attacker with detailed knowledge
of the ECC function and the ability to trigger undetectable
bit flips using ECCploit-like attacks. We further assume that
the target system is equipped with orthogonal mitigations
needed to address other classes of vulnerabilities and that
the memory controller reports ECC correctable errors to the
operating system correctly [10]. The goal is to stop exploitation
(i.e., memory corruption) via Rowhammer on ECC memory by
preventing templating of the memory. We do not aim to stop
attackers from mounting denial-of-service attacks, as they are
always possible (e.g., by blindly hammering ECC memory to
cause a system crash), but generally considered less serious.

IV. WORKFLOW

The core idea of Copy-on-Flip (CoF) is to use ECC bit error
corrections as an early warning of templating and mitigate the
attack by moving the victim page out of harm’s way. Figure 1
shows the end-to-end workflow of our design. In particular, on
a system equipped with ECC memory, the memory controller

hammer:
    mov(X), %eax
    mov(Y), %ebx
    clflush(X)
    clflush(Y)
    jmp hammer

ECC DRAM Copy-on-Flip
MCE

Bit flip #2Bit flip #1

Mark Page for Monitoring

migrate_page()

Physical 
Mem

+

Update
PTE

Offline
Vulnerable

Page

Copy-on-Flip Internals

Fig. 1: High-level workflow of Copy-on-Flip.

informs the OS via a machine check exception (MCE) when-
ever a bit flip occurs. As previously observed by Cojocar et
al. [10], this MCE is raised synchronously, meaning that error
detection leads to immediate execution of the MCE handler in
the OS kernel upon access. As detailed later, CoF responds by
performing different actions depending on whether the number
of observed bit flips in the offending page points to a successful
templating attempt, specifically:

1) First bit flip. If this is the first bit flip reported for
this page, CoF marks it as potentially under attack.

2) Second bit flip. On the second bit flip on the same
page, CoF pauses all user threads and transparently
migrates the data from the vulnerable page to a
new physical page via virtual address translation. In
addition, it offlines the vulnerable page to prevent
further templating/exploitation attempts. Finally, it
resumes the previously paused user threads.

Since the page migration/offlining occurs before the third
bit flip, the attacker is no longer able to obtain a fully templated
page for ECC-aware exploitation [10]. Blindly hammering
memory without a template is still possible, but is almost
guaranteed to result in a detectable error (and a system crash).

V. COPY-ON-FLIP

To enable the hardening of ECC memory pages against
templating, CoF features several components, as shown in
Figure 2. First, the templating detector uses information from
the memory controller to detect successful attempts at templat-
ing areas of memory through Rowhammer. This will, in turn,
request the page protector to render the victim page unusable.
In response, this component must be able to transparently
migrate victim data to a new page as necessary and offline the
original victim page as soon as the page is found vulnerable to
ECC-aware Rowhammer. To this end, this component supports
page migration and offlining for all the memory pages an
attacker could target for templating. This includes user and
kernel pages allocated by the kernel on the user’s (or attacker’s)
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behalf, such as page cache, slab, stack, and page table pages—
as detailed later. In the remainder of this section, we introduce
a general design based on process/memory management fa-
cilities available on modern operating systems such as Linux,
FreeBSD, etc. Later (Section VI), we discuss implementation
details of our current CoF prototype targeting Linux.

A. Templating Detector

To detect templating, we require knowledge of every bit
flip that occurs in the system, and its location. Luckily, the
memory controller reports this information to the OS for every
ECC error in the form of a machine check exception (MCE),
including bit flips that were corrected (i.e., single-bit errors).
Modern operating systems store these error reports in system
logs for later re-evaluation. On Linux, reporting is handled
by the error detection and correction (EDAC) kernel module.
Similar reporting capabilities are available in other commodity
operating systems such as FreeBSD [4]. While the exact
information that is reported differs per memory controller, most
(if not all) report the page frame number (PFN) of the physical
page the error occurred in.

By hooking into the existing error reporting code of the OS
kernel, CoF can thus monitor all correctable bit flips that occur.
Large-scale analysis conducted by Meza et al. [36] on Face-
book data centers has shown that, while accidental correctable
memory errors are widespread, they depend on the workload
and their prevalence is decreasing with time. Furthermore,
recent research [34] shows that, while commodity workloads
can exhibit memory access patterns that induce bit flips, this
only happens in very specific circumstances. This means that
(correctable) bit flips can serve as a robust mechanism to detect
ECC-aware Rowhammer templating. Moreover, even in the
rare case of multiple accidental bit flips that happen to match
those of successful templating attempts, CoF would simply
trigger migration and offlining of the offending page with no
other consequences for the running system.

Identifying vulnerable memory. The templating detector
requires keeping track of every bit flip in the system. In
principle, we could consider an area of memory vulnerable
only when three bit flips are observed in the same ECC
word (typically, 64 bits)—since, again, an attacker needs to
reliably observe at least three individual bit flips in a word to
bypass ECC in common SECDED schemes [10]. Nonetheless,
to rule out relatively low-entropy probabilistic Rowhammer
attacks (with attackers having observed only two bit flips and
attempting to guess the location of the third bit flip), CoF
considers an area of memory vulnerable after observing only
two bit flips in the same word. As we show in Section VII, this
conservative strategy still leads to a low-overhead solution.

Tracking granularity. The second design decision we need
to make concerns the tracking granularity. The most natural
choice is to store metadata on observed bit flips on a per ECC
word basis. However, tracking information at this granularity
could be impractical: even on systems with relatively fewer
flips, some flips are bound to happen throughout the tens
to hundreds of gigabytes of DRAM, complicating metadata
management and likely imposing performance/memory over-
head tradeoffs. Another problem is that the report from the

memory controller about bit flips might not include such
detailed information: while the page frame number is typically
included, the offset within the page is often not.

For these reasons, CoF instead tracks bit flips at the page
granularity. This choice supports common memory controller
implementations and drastically simplifies metadata manage-
ment. Specifically, on the first bit flip observed anywhere in
a page, CoF sets a flag in the page metadata (e.g., struct
page on Linux). When a second bit flip occurs anywhere on
the page, CoF conservatively considers the page templated and
thus vulnerable. The advantage of this policy is that there is
no additional overhead due to tracking. On the other hand,
we may over-approximate the number of vulnerable pages,
since the two bit flips may have happened in two different
ECC words, and are thus not exploitable. However, as we will
show in Section VII, the impact of this over-approximation is
minimal even on “flippy” DIMMs that exhibit many bit flips.

B. Page Protector

In order to prevent templating, CoF offlines pages that are
flagged by the templating detector. However, simply offlining
a page would significantly disrupt the operation of the system.
On the other hand, individually requiring every application and
kernel subsystem to support memory offlining is infeasible.
For this reason, CoF supports transparent memory offlining
by means of page migration (i.e., migrating the victim data
to a new page before offlining the original vulnerable one).
The page protector facilitates this process for all potential
templating targets in the system, in most cases by leveraging
virtual memory remapping. To this end, as we will see, the
key challenge is to support migratable kernel memory for a
comprehensive mitigation.

Templating targets. In order to ensure safety for the system,
CoF must classify and protect all memory an attacker can
attempt to flip for templating purposes. In existing exploits, the
typical target is user memory. However, for a comprehensive
mitigation, CoF also considers other possible targets in kernel
memory. Nonetheless, since kernel memory is normally not
migratable in commodity operating systems, a practical design
needs to carefully pick the kernel memory targets of interest to
minimize changes. As such, we consider the key requirements
an attacker needs to fulfill for any given templating target:

R1 The attacker must be able to allocate the target mem-
ory at will in order to template different pages in
physical memory.

R2 The attacker must be able to allocate aggressor lo-
cations at a predictable physical distance from the
target memory in order to implement the desired
Rowhammer patterns.

R3 The attacker must be able to control/predict the victim
data in the target memory in order to reliably perform
one-bit-at-a-time ECC-aware templating.

R4 The attacker must be able to time the accesses to the
target memory in order to infer if ECC corrected a bit
flip.

We observe that all the requirements are trivially satisfied
by user memory, but harder to satisfy for kernel memory.
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Fig. 2: Components of Copy-on-Flip.

Nonetheless, an advanced attacker can satisfy such require-
ments for many kernel targets. Let us consider page table pages
as an example. The attacker can allocate page table pages at
will by simply allocating user memory (R1), massage the page
frame allocator to conveniently co-locate user pages with page
table pages (R2), leak the content of page table entries using
orthogonal hardware vulnerabilities such as MDS [59] (R3),
and finally time controlled page table walks to check for bit
flips (R4).

The next question is how to generalize this analysis to
arbitrary kernel memory targets. While we could in principle
focus on any of the requirements above, not all of them lead
to a clear way to identify the attack surface. For instance,
for R2, should we include only targets that are managed by
allocators prone to user-controlled massaging? Where do we
draw the line? For R3, should we include all the possible
targets an attacker might potentially leak data from (and wildly
overapproximate) or only all the possible targets that contain
user data (and wildly underapproximate)? Finally, for R4,
should we include all the targets that can be accessed and timed
through user-controlled events (page table walks, syscalls, page
faults, etc.)? Again, it is difficult to draw a clear line. In short,
our analysis shows most of the requirements lead to a fuzzy
definition of attack surface. Luckily, R1 is of exception, given
that kernel memory that is allocated on the user’s behalf is
already carefully defined and accounted for by the kernel. As
such, CoF solely focuses on R1 and user-accounted memory
to identify the relevant targets of interest.

User-accounted pages. To identify user-accounted memory
pages (and our targets), we turn our attention to the memory
accounting infrastructure implemented by the kernel to manage
containers [41], [54]. Intuitively, such infrastructure needs
to fully capture all types of memory that can be allocated

on the user’s behalf so that a malicious or buggy program
part of a container can be prevented from repeatedly allocat-
ing excessive memory (i.e., using limits and out-of-memory
killing). In Section VII-C, we validate this qualitative intuition
with quantitative measurements that confirm our choice of
templating targets drastically reduces the attack surface.

On Linux, such infrastructure is part of the memory
resource controller (or memcg) [54]—although similar con-
trollers are available on other OSes such as FreeBSD [41]. As
expected, memcg performs accounting of user memory, but
also of a number of kernel memory types allocated on the
user’s behalf: page cache (including file-backed pages, swap,
shared memory, etc.), vmalloc, slab, kernel stack, and page ta-
ble memory [54]. In the next section, we discuss how CoF can
protect all these memory types by migrating data in memory
before offlining (discussed in the next subsection). To minimize
kernel changes, our design attempts to reuse existing migration
and offlining mechanisms whenever possible, and piggyback
on well-known design principles such as virtual memory-based
indirection and composable allocators otherwise.

Page offlining. The naive approach to page offlining is to
deallocate a vulnerable page post migration. Unfortunately,
this strategy is susceptible to trivial memory reuse attacks.
Indeed, previous research has demonstrated that the allocation
patterns of kernel memory allocators are very predictable
and vulnerable to physical memory massaging [57]. Thus,
an attacker can easily force the kernel to reuse a vulnerable
page through memory massaging and then resume templating
after an offlining event. An option is to rely on randomized
allocation patterns to deter reuse attacks [43], but it is difficult
to apply this strategy to arbitrary kernel memory without
exceedingly reducing the entropy. As a result, CoF instead
isolates the vulnerable page and simply marks it as poisoned,

5



Type of Memory Migration Strategy

User Pages Migrate Page and Update PTE
Mapped Page Cache Migrate Page and Update PTE
Unmapped Page Cache Evict from Page Cache
Non-contig. Mem (NCM) Add Migration Support
Slab Pages Back with NCM
Kernel Stacks Back with NCM
Page Table Pages Update Physical References

TABLE I: Page Migration in CoF for different memory
types

effectively leaving the page permanently unusable. As shown
in Section VII, offlining events (due to two bit flips observed
in a page) are rare and this simple strategy has low impact on
the memory footprint in practice.

C. Comprehensive Page Migration

We now highlight how CoF handles the migration for the
different (attacker-controlled) memory types. A summary of
the page migration techniques is included in Table I.

User pages. Typically, user memory is oblivious to the un-
derlying physical memory that backs its virtual address space.
Since in non-uniform memory architecture (NUMA) systems
each processor has its own DRAM (to which accesses are
much more performant), most commodity operating systems
implement page migration of (only) user memory, to relocate
physical memory transparently [1]. Migration of pages is also
required to support other memory management features such
as page deduplication (available on Linux [2], Windows [8],
etc.). Page migration is done by allocating a new physical page
(on the desired node), copying over the data from the old page,
and updating the page tables of the process to point to the new
physical page. CoF can reuse this mechanism to move data on
a vulnerable page: the data is migrated to (any) new page by
the kernel, after which the old page is offlined.

Page cache. Data loaded from disk is kept in memory even
after a process might be finished with it. This cache is called
the page cache and makes up a large part of the memory used
by the kernel. While a page cache page is mapped to one or
more user processes, it is “promoted” to user memory and can
thus be easily migrated as explained earlier. However, when
a page is no longer mapped and is left in the page cache for
future use, it can no longer be easily migrated. Luckily, since
the page no longer has any users, CoF can simply evict the
page from the cache before offlining, without the need for
additional migration mechanisms.

Non-contiguous memory. To combat the effects of external
fragmentation, modern OS kernels provide overlay allocators
on top of the (page) frame allocator to allocate memory
which is virtually, but not physically, contiguous. The frame
allocator allocates physical memory areas and gives access
to these through the direct map—a reserved region in the
kernel address space that provides a one-to-one mapping of
virtual to physical memory. Non-contiguous allocators (e.g.,
vmalloc for Linux [11], kmem_malloc for FreeBSD [52]

or memory allocated from the paged pool on Windows [39])
rely on the underlying frame allocator to allocate individual
page frames and support large virtually-contiguous allocations
to store arbitrary kernel data. They work similarly to the user-
level mmap: a set of random physical pages is allocated and
mapped into the (kernel) virtual address space.

In CoF, we enable migration for the pages allocated by
these non-contiguous allocators similarly to user page migra-
tion. In other words, CoF takes ownership of the virtual-to-
physical mappings for these pages and updates the kernel page
tables to redirect the vulnerable virtual mapping to a new
physical page. Not only does this simple extension support
migration for all the pages allocated by these allocators, but
also provides a building block we can reuse to migrate other
kernel memory types.

Slab. The slab allocator is another key overlay allocator
composing on top of the frame allocator to reduce internal
fragmentation. Originally proposed in SunOS [7], slab alloca-
tors are now implemented by all the major operating systems,
including FreeBSD [14] and Linux [31]. Linux even supports
several slab implementations [31]—SLUB being the default.
The slab allocator can place multiple objects in a slab cache
(allocated by the frame allocator), offers high performance,
and is also often used as a backing allocator for higher-level
allocators (e.g., Linux’ kmalloc). This allocator is used to
manage all the frequently accessed small objects in the kernel,
including many (e.g., network) buffers storing user data. To
enable migration of slab pages, CoF changes the target slab
allocator to use the non-contiguous allocator instead of the
frame allocator to allocate its slab caches. The result is that
slab pages are now backed by migratable virtual mappings
rather than direct physical memory mappings.

Kernel stacks. The kernel allocates a dedicated kernel stack
for each user thread on the system. Hence, much like the
memory types discussed earlier, the attacker can repeatedly
allocate kernel stack memory at will (i.e., by spawning addi-
tional threads). Kernel stack pages are normally allocated by
a predetermined backing allocator, typically a slab or frame
allocator depending on the platform. To enable migration of
slab pages, CoF again switches the backing allocator to the
non-contiguous memory allocator in order to allocate kernel
stacks on migratable pages.

Page tables. Page table pages are part of the page table
hierarchy for one of the virtual address spaces. These pages
are a prime target for Rowhammer exploitation [48], but, as
exemplified earlier, they are also convenient for templating,
since they can easily be repeatedly allocated by user-space and
accesses can be triggered and measured through the MMU.
Page table pages are normally allocated by the frame allocator
and cannot easily be managed via the virtual mappings of a
non-contiguous allocator—since the pages reference each other
with physical addresses. To enable page table page migration,
CoF scans the page tables of the owning process and updates
any physical references to the migrated page table page.
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VI. IMPLEMENTATION

To evaluate our design, we implemented CoF on Linux
(v5.4.1), requiring around 600 LoC of kernel changes, the
bulk of which related to migration of vmalloc (i.e., the
non-contiguous allocator) and SLUB (i.e., the default slab
allocator) pages. In the following, we provide more details
on the implementation of the main CoF components.

A. Templating Detection and Vulnerable Page Offlining

Whenever the memory controller detects a correctable bit
flip, it raises a machine check exception and informs the EDAC
module of the kernel. We hook into this module with our
templating detector. In order to keep track of per-page bit flips,
we introduce a new page flag: PG_flip. On the first bit flip
in a page, we set the page flag to remember that a single bit
flip was successfully injected in that page. This allows us to
detect when an attacker manages to flip two bits in the same
page. At that point, we set the existing PG_hwpoison flag
to permanently offline the vulnerable page. By using a single
(unused) page flag, we can do this tracking efficiently with
just one bit of information in the existing struct page.

B. Migration Support for vmalloc Pages

As discussed earlier, the first building block to support the
migration of kernel pages is to add migration capabilities to
the vmalloc allocator. To reduce overall kernel changes, we
aim to make the migration functionality compatible with the
existing user migration interface (i.e., migrate_pages).

On Linux, pages subject to migration need to have an
address_space structure associated to them in order to
specify the memory mapping. We allocate an anonymous inode
to represent the vmalloc memory mappings, as it contains
the address_space_operations structure. This struc-
ture stores callbacks to the three functions that the page mi-
gration routine calls to move a physical page. The vmalloc-
specific migration callback copies the data and flags of the old
page to a new page, unmaps the old page from the kernel page
table, and replaces it with a new page table entry. Finally, we
invalidate the TLB entry for the old page.

Furthermore, since the vmalloc allocator is not aware of
the underlying migration, we must keep all the data structures
associated with a memory allocation consistent. Therefore, we
add a reverse mapping which allows us to get hold of the
corresponding vm_struct from a vmalloc page. This is
done by overloading the private field in struct page
to store the pointer to the data structure. This is required to
update the pages array in the vm_struct, which stores
the pointers to all the order-0 pages backing the vmalloc
allocation.

C. Migration Support for SLUB Pages

To support migration of SLUB pages, our goal is to change
the backing allocator managing slab caches to our migratable
vmalloc variant. However, as a few special slab caches (e.g.,
DMA buffers) rely on physical addressing, we need to be able
to selectively preserve the original allocator backend as needed.
Therefore, our modified SLUB allocator supports using both
vmalloc and the original page frame allocator as backends,

on a per-cache basis. We add support to allocate slab memory
with vmalloc in alloc_slab_page, which is the function
interfacing with the page frame or buddy allocator to request
new pages.

To avoid changing too many code paths in SLUB, we define
a special page structure which holds a struct page and a
struct vm_struct, so that we can cast the pointer to a
struct page and allow the code in SLUB to use a normal
page structure. Depending on the slab flag, we can then cast the
pointer back to our special page in order to access the metadata
of the vmalloc allocation. This design, similar to subclassing
in object-oriented languages, allows us to reuse the existing
SLUB code with minimal changes.

There are three main ways in which SLUB can allocate
memory: named caches, anonymous caches, and large alloca-
tions. We consider each case in detail in the following.

Named caches. In the Linux kernel, data structures that are
allocated/deallocated often have a named slab cache to make
their allocations efficient (and trackable). In CoF, we use a
combination of the slab flag and GFP flags to specify that the
slab pages should be allocated with vmalloc. Our current
prototype allocates most of the objects in the named caches
listed in /proc/slabinfo with vmalloc.

Anonymous caches. The vast majority of memory alloca-
tions made through the slab allocator are satisfied with the
kmalloc interface. The Linux kernel creates a set of anony-
mous slab caches during the initialization phase of the memory
management subsystem. These are multipurpose caches with
predefined power-of-two sizes in the range of [8 − 8, 192]
bytes. The 5.4.1 kernel is equipped with three different types of
anonymous caches, kmalloc for general purpose allocations,
kmalloc-dma for DMA allocations and kmalloc-rcl to
allocate reclaimable memory. With CoF, we introduce a new
general-purpose cache (kmalloc-cof) which is backed by
vmalloc memory. With this design, we can exclude the few
special kmalloc calls from using vmalloc.

Large Allocations. Whenever a subsystem requests an allo-
cation through kmalloc which is larger than the maximum
cache size defined in the kernel, SLUB turns to the buddy
allocator to complete the allocation. In this case, SLUB does
not keep track of the allocation by means of a kmem_cache
structure. Upon a kfree operation, the allocator simply
checks if the pointer to the object has a kmem_cache
associated to it, and if it does not, SLUB simply calls the buddy
allocator’s routine to free the pages (i.e., __free_pages).
In CoF, when a caller requests a large allocation, kmalloc
returns a vmalloc pointer and upon a free operation, we
check if the pointer of the object is in the vmalloc space; if
so, we call vfree.

D. Migration Support for Other User-accounted Pages

For the other types of pages that are covered by the page
protector, CoF relies on existing kernel mechanisms or the
ones presented earlier in this section. In particular, User pages
(anonymous or file pages in page cache) are migrated using
the existing migrate_pages interface. Unreferenced page
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cache pages are directly evicted from the page cache, using the
existing interfaces used by the memory reclaiming subsystem.
Kernel stack pages are allocated with vmalloc by means of
the CONFIG_VMAP_STACK configuration option, after which
they can be migrated like any other vmalloc area.

Finally, page table pages are made migratable via some
simple changes: in struct page (using an existing field
unused for page table pages), each page table page is given
either a pointer to the owning mm_struct (for top-level page
table pages), or a pointer to the parent table’s entry. Then, after
creating the migrated page table page, we update all references
(either in mm_struct or the parent table) by following these
pointers in struct page. We also update any pointers in
the struct page of its child page table pages, to keep our
metadata consistent. We then flush the TLB to complete the
migration process.

E. Addressing Race Conditions

Although page migration is an application-transparent pro-
cess (i.e., user processes are not aware of the remapping of
their page tables), it still takes non-zero execution time. This
introduces a vulnerability window in which a stealthy attacker
could potentially race against page migration from another
thread to continue the attack—i.e., inject a third bit flip with
Rowhammer to evade the ECC function before the migration
completes and the page is offlined.

To address this race condition, upon the execution of the
MCE handler (called synchronously by the memory controller
as soon as an access happens to an address which has suffered
a correctable error event), CoF immediately pauses all the user
threads until the migration completes. To this end, we rely on
the pausing/resuming mechanism part of hibernation support
in modern OSes and specifically freeze_processes and
thaw_processes on Linux. As we confirmed experimen-
tally, this strategy is efficient and does not introduce visible
overhead even in adversarial conditions.

VII. EVALUATION

We evaluate CoF along three different dimensions: memory
overhead, runtime overhead and security. Additionally, we
present an empirical analysis on the distribution of bit flips
in DRAM modules from different vendors. This data underlies
some design choices of CoF, and will be used in the remainder
of the evaluation. We conduct all the experiments on an Intel
Xeon Silver 4110 CPU with 32 GB of DDR4 ECC RAM. We
compare the aforementioned aspects of CoF to a vanilla 5.4.1
Linux kernel.

A. Distribution of Rowhammer Induced Bit Flips

The optimal design that minimizes overhead without com-
promising security depends on the distribution of bit flips. For
instance, if page frames rarely incur multiple bit flips, per-page
tracking is sufficient and, being more efficient, preferable to
tracking per ECC word. Therefore, we conduct an analysis on
the spatial distribution of Rowhammer-induced bit flips, based
on the DDR4 flip database produced by the state-of-the-art
Rowhammer fuzzer presented by Jattke et al. [22].

The data from the fuzzer is a number of “flip tables”, one
per memory module, showing the distribution of flips inside

% of pages

2 bit flips
DIMM Total Bit Flips 1 bit flip 2 bit flips in ECC word

A0 82,183 9.3% 9.0% 2.8%
A1 12,134 7.3% 4.9% 0.1%
A2 134,702 5.1% 4.7% 4.2%
A3 1,746 2.4% 0.2% 0.0%
A4 5,132 5.2% 1.8% 0.0%
A5 113,190 9.3% 9.3% 4.2%
A6 98,425 9.4% 9.3% 3.5%
A7 32,090 8.8% 8.0% 0.6%
A8 92,660 9.3% 9.3% 3.2%
A9 4,889 5.9% 1.3% 0.1%
A10 3,051 4.1% 0.5% 0.0%
A11 3,171 1.6% 1.2% 0.0%
A12 43,581 4.7% 4.7% 1.4%
A13 59,721 4.8% 4.7% 2.3%
A14 64,083 4.7% 4.7% 2.4%
A15 52,580 4.7% 4.6% 2.0%
A16 99,552 5.0% 4.8% 3.7%
A17 138,601 5.3% 5.1% 4.9%
A18 80,601 9.3% 9.2% 2.7%
A19 11,599 4.4% 3.6% 1.6%

B0 63 0.1% 0.0% 0.0%
B1 506 0.7% 0.1% 0.0%
B2 15 0.0% 0.0% 0.0%
B3 111 0.2% 0.0% 0.0%
B4 1,107 1.4% 0.2% 0.0%
B5 14 0.0% 0.0% 0.0%
B6 78 0.1% 0.0% 0.0%
B7 70 0.1% 0.0% 0.0%
B8 258 0.4% 0.0% 0.0%
B9 1,223 1.3% 0.4% 0.1%

C0 26 0.0% 0.0% 0.0%
C1 28 0.0% 0.0% 0.0%
C2 2,551 2.6% 0.9% 0.1%
C3 636 0.9% 0.0% 0.0%
C4 769 1.1% 0.1% 0.0%
C5 1,028 1.2% 0.3% 0.1%

D0 10,646 6.4% 4.0% 0.1%
D1 6,655 3.5% 2.3% 0.1%
D2 2,030 2.2% 0.7% 0.1%
D3 6,797 5.3% 2.4% 0.0%

TABLE II: Spatial distribution of bit flips on DDR4 DIMMs
(anonymized). We show the number of pages that are suscep-
tible to Rowhammer, those could be considered vulnerable by
CoF (i.e., have 2 bit flips), and those that are susceptible to
ECCploit (have 2 bit flips in the same ECC word).

a large buffer (256 MB). The dataset contains these tables for
40 different memory modules, from four different vendors that
collectively produce most of the memory modules in the world.
The names of the vendors are blinded, but are representative of
memory modules found in commodity systems. The memory
chips in the data set are the same for ECC and non ECC
memory. Table II shows the data for all memory modules.
Here, the total bit flips column refers to the bits flips found
in the 256 MB buffer, where a higher number implies that a
module is more vulnerable to Rowhammer.

Next, we calculate the fraction of pages that are vulnerable
to Rowhammer: pages that contain at least one bit flip. These
are the pages that CoF monitors (i.e., for which it can set
the PG_flip flag) to check for any further correctable errors
which would invoke the page protector. The median number of
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Fig. 3: A histogram to show the share of Migratable (or
movable) pages in the system after a run of the LMBench
benchmark.

pages monitored by CoF (i.e., pages which contain at least one
bit flip) is 3.8%. We can see a high variance in the data, with
some memory modules far more vulnerable to Rowhammer.
In particular, the vast majority of bit flips are concentrated in
DIMMs A0−19 and D0−3.

We then extend this analysis to pages containing two
bit flips—the pages CoF might migrate due to templating
attempts. We can see this is less than the previous figures,
since it is less likely that two bit flips occur in the same page.
The median number of vulnerable pages, assuming two bit flips
are required, is only 1.26% of all pages. Finally, we calculate
the fraction of pages that contain at least one ECC word with
two bit flips. With a median of 0.08% across all pages, this is
very unlikely to happen even with active hammering. However,
overall, even on the most vulnerable DIMMs, fewer than 10%
of the pages have multiple flips, and in the worst case, fewer
than 5% incur multiple bit flips in the same ECC word.

Next, we use this data to calculate the average time an
attacker would need to template ECC memory. We can later
use this number to analyze adversarial situations, i.e., where
the system is under attack. We assume that an attacker can
inject one bit flip per ECC word in one DRAM refresh window,
which is typically 64 ms. In practice, this is hard to achieve
and represents the absolute best-case timing for an attacker.
We further assume that a DRAM row is 8 KB wide and can
store the equivalent of 2 page frames (4 KB) from the OS
perspective. These values allow us to derive the following
formula to calculate the expected templating time in seconds:

Ttemplate =
Tpage

P (template)
=

Trefw × size(ECCword)

2× P (template)
(1)

In this formula, Tpage is the time needed to template all
the bits on a single page and P (template) the probability that
this page is a page that is suitable for a Rowhammer attack (as
obtained from Table II). We can template one bit in every ECC
word of a row at the same time. Since we do this for every
refresh window, we need to multiply by the number of bits in
an ECC word (and divide by 2, since we do 2 page frames in a
single row). Substituting P (template) in our formula with the

Baseline CoF

seconds seconds ∆

perlbench_s 379 380 0.3%
gcc_s 544 547 0.6%
mcf_s 864 870 0.7%
lbm_s 1,538 1,538 0.0%
omnetpp_s 530 534 0.8%
xalancbmk_s 295 296 0.3%
x264_s 458 458 0.0%
deepsjeng_s 459 460 0.2%
imagick_s 1,406 1,407 0.1%
leela_s 595 595 0.0%
nab_s 485 485 0.0%
xz_s 2,938 2,938 0.0%

geomean 0.2%

TABLE III: SPEC CPU2017 results for CoF

highest and the median values of Table II, yields an average
templating time of 22 and 163 seconds, respectively.

Given both the distribution of bit flips and the attack rates,
we expect very rare migration events during execution even in
the worst case. Hence, we expect low overheads for CoF, as
confirmed experimentally in the remainder of this section.

B. Memory Overhead

Measuring the exact memory overhead of CoF is hard, as
it depends on the overall state of the kernel, which in turn
depends on all processes in the system. Instead, we define
the overhead as a function of several system variables as well
as the overhead resulting from our modified allocators. We
measure the overhead for two different situations: (1) under
normal operation, and (2) under adversarial conditions where
an attacker is actively hammering the system.

Normal conditions. One of the advantages of CoF is that
we can rely on the memory controller to detect Rowhammer
templating attempts, meaning that we do not have to keep
track of any metadata ourselves. As mentioned in Section VI,
the templating detector marks pages by setting a single flag
of struct page. No further state is required to detect an
ongoing Rowhammer attack.

Our modification to make SLUB migratable, however, does
introduce some overhead. Every 4 KB page used by SLUB
has 72 bytes overhead from the special page struct, and an
additional 64 + 72 byte overhead from the vmalloc metadata.
Overall, this results in a 208 byte overhead, or around ∼5%
overhead per slab page. On an average system we measured
572 pages used by SLUB, meaning an additional 116 KB of
memory was used by SLUB. This represented about ∼0.01%
of the total memory used in the system.

In our current design, every slab page has its own
vmalloc area, while technically a single vmalloc area can
hold multiple pages, and thus one vmalloc area per slab cache
would be sufficient. This would mean only a 72 byte overhead
per page, and a 64 + 72 byte overhead per cache. On our
system we measured ∼150 caches, resulting in an overhead
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Baseline CoF

ms ms ∆

astar 101.1 101.4 0.3%
beat-detection 82.4 83.5 1.3%
dft 117.8 121.3 3.0%
fft 59.3 60.7 2.3%
oscillator 72.5 73.1 0.8%
gaussian-blur 220.9 221.9 0.5%
darkroom 218.7 218.9 0.1%
desaturate 63.2 63.2 0.0%
parse-financial 34.8 35.2 1.1%
stringify-tinderbox 27.9 28.0 0.3%
crypto-aes 90.1 91.9 2.0%
crypto-ccm 93.7 95.1 1.5%
crypto-pbkdf2 85.1 85.8 0.8%
crypto-sha256-iter 44.4 45.2 1.8%

geomean 1.1%

TABLE IV: Mozilla Kraken results for CoF

of ∼2.5% for SLUB. Since this still accounts for only about
∼0.01% of memory, we did not implement this optimization.

Adversarial conditions. In order to calculate the memory
overhead of CoF on a system which is under attack, we refer to
the results reported in Table II. The data shows that the amount
of memory which is offlined under attack highly depends on
the memory module used by the system. The median value of
pages that CoF offlines under adversarial conditions is 1.26%.
The highest values were found for DIMMs A5, A6 and, A8

for which CoF would offline 9.3% of physical memory.

As discussed in Section V, in our current design CoF
tracks the bit flips on a per-page basis. However, if memory
controllers were to consistently report the locations of the
bit flips at a finer granularity when it raises an MCE, we
could implement the tracking per code word. While the data
in Table II suggests that this approach would incur lower
memory overhead on a system under attack, we would have to
employ a more expensive tracking system that requires 64-bits
of extra information per page in the most optimistic scenario.
Specifically, we could use one bit per code word assuming a
page frame can store 64 data words which are 64-bit wide.

In a more realistic scenario, it would not be practical to
add data to struct page, as it is a very compact structure.
Extending it would be detrimental for memory overhead,
but also performance, since it would no longer be cacheline
aligned. Therefore, we would have to store the page frame
number and the offset in the page of a correctable error out-
of-band in a separate data structure. Furthermore, this approach
has the downside of ‘wasting’ memory to store the metadata
representing the code words in software.

C. Security

In order to evaluate the security guarantees of CoF, we
calculated the residual attack surface, which is represented by
the number of non-migratable pages in the system—even if
most such pages are not useful for attackers. In order to collect
the data required to make these calculations, we used the

Baseline CoF

µs µs ∆

null call 0.1 0.1 0.0%
null I/O 0.2 0.2 0.0%
stat 0.6 0.6 0.0%
open/close 1.2 1.2 0.0%
select TCP 3.4 3.4 0.9%
fork proc 230.8 245.3 6.3%
exec proc 777.3 783.4 0.8%
sh proc 2,314.0 2,393.0 3.4%
pipe latency 5.0 5.1 0.2%
TCP latency 11.1 11.6 4.8%
TCP conn. latency 14.2 15.0 5.4%
signal install 0.2 0.2 0.0%
signal handle 1.4 1.4 0.0%
prot fault 0.8 0.8 1.3%

MB/s MB/s

pipe bw 2,832 2,667 5.8%
TCP bw 6,106 5,984 2.0%

geomean 1.9%

TABLE V: LMBench results for CoF

page owner tracing functionality in the Linux kernel [55].
This debug facility records a stack trace for every page frame
allocation in the system. For our analysis, we parsed all these
traces and categorized the memory allocations in buckets to
provide an accurate overview of all memory used in the
system. We then annotated this data with whether each type
of memory was protected by CoF.

The plot in Figure 3 shows that, on our system, after a run
of a system call heavy benchmark such as LMBench, 95.32%
of pages in the whole system were protected. Most importantly,
the graph shows that the pages in a system which are attacker-
controllable as defined in Section V are protected by CoF: the
vmalloc areas (including kernel stacks), page tables, page
cache, and SLUB. For SLUB, we still have a small fraction
of caches that cannot be migrated, due to some reliance on
physical (contiguous) addressing. However, these caches are
all special-purpose ones and we have not observed cases where
the allocations are attacker-controlled.

D. Performance

Experimental setup. To evaluate the performance of CoF, we
tested the prototype with standard benchmarking suites, such
as SPEC CPU2017, LMBench, Nginx and Mozilla Kraken.
These results show the performance overhead of our solution
under normal conditions in various settings. Moreover, to test
the performance of CoF under attack conditions we devised a
microbenchmark to measure the impact of page migration.

SPEC CPU2017. To evaluate the performance of the CoF
kernel, we first ran the SPEC CPU2017 benchmarking suite.
All benchmarks in SPEC CPU2017 are either CPU or memory
bound, and perform little to no I/O. The binaries are compiled
with -fno-strict-aliasing to avoid commonly known
portability issues for the perlbench and gcc binaries [49].
Furthermore, all the benchmarks were compiled with the -O3
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Fig. 4: A plot to show Nginx throughput at saturation.

flag and ran with transparent huge paging off to reduce
noise. We ran all C and C++ benchmarks from both the
integer and floating point sets of the SPECspeed suite. For
benchmarks that supported it, OpenMP parallelization was
enabled with 16 threads. The results, shown in Table III, are
reported as the median runtime value in seconds of five runs,
with negligible standard deviation. The graph shows negligible
overhead (< 1%) of the CoF kernel when compared to the
vanilla 5.4.1 Linux kernel across all binaries, with a geometric
mean (geomean) overhead of 0.2%. These results are in line
with our expectations, because CoF does not modify user
memory allocations as those are already migratable. Moreover,
the benchmarks do not significantly stress the kernel allocators,
due to the scarcity of I/O and system calls.

Web browser performance. To further test commodity pro-
grams and real-world use cases and libraries, we ran Google
Chrome (version 102.0.5005.61) on top of our CoF kernel.
Chrome works reliably, including I/O-heavy websites such as
YouTube, demonstrating our kernel changes are compatible
with highly complex software. To evaluate the performance
of the web browser, we ran the Mozilla Kraken benchmarking
suite. This suite consists of a number of different JavaScript
benchmarks, including scripts for audio processing and image
filtering. Table IV shows the median results of five runs of
Kraken for the baseline and our prototype. Similar to SPEC
CPU2017, Kraken shows that CPU- and memory-intensive
workloads in user-space are largely unaffected by CoF, with
a geomean of only 1.1%.

Nginx. To demonstrate CoF in I/O-intensive situations,
we ran benchmarks on the popular high-performance
nginx-1.18.0 web server. We set up a second (identical)
machine to run the wrk HTTP benchmarking tool to make
the requests. These machines are connected using Mellanox
ConnectX 100G NICs to ensure we can reach CPU saturation
on the server. We configured nginx to use 16 workers, and
use 16 wrk client threads to request a 64-byte file containing
static HTML. We ran the benchmark 3 times for 30 seconds
and reported the median value.

Figure 4 shows the throughput of nginx in requests per
second for the baseline kernel and the CoF kernel. All cores
are saturated for ≥ 256 connections. The median throughput
at saturation is 10.56% lower in CoF compared to the baseline,
while increasing the 90th percentile latency by 12.6%.
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Fig. 5: A plot to show Nginx throughput at saturation under
adversarial conditions.

LMBench. To dig down further into the overhead CoF can
cause, we ran the LMbench benchmarking suite. This suite
contains a number of I/O and syscall microbenchmarks. Ta-
ble V shows the median runtime of five runs compared to the
baseline kernel. In general, the results show that the overhead
for the majority of tests is minor, with the peak overheads
being fork proc (6.3%) and the TCP benchmarks (∼5%).
This overhead is due to the fact that these system calls
make heavy use of the vmalloc-backed SLUB allocator. The
geomean overhead for LMBench is 1.9%.

Performance overhead under attack. Finally, we measure the
performance of CoF under stress, when an attacker is actively
mounting an attack. When an attacker is hammering memory,
this might induce bit flips. If a physical page frame experiences
two bit flips, CoF migrates its data, potentially introducing
overhead to the running applications. For this experiment,
we set up the system to simulate bit flips and migrations
at a deterministic rate. For this, we used our analysis of
Section VII-A, where we found attack rates of flips every 22
and 163 seconds, for worst-case and typical memory modules
respectively.

For our experiment, we measured the overhead of the
nginx benchmark (our most performance-sensitive bench-
mark), similar to our earlier experiments, using both this
median and a worst-case attack rate. As Figure 5 shows, the
impact of this is very minimal, at only 0.22% and 0.69%
throughput degradation for the median-case and the worst-case
adversarial condition, respectively, compared to the throughput
achieved in CoF under normal conditions. This shows that an
attacker cannot abuse CoF’s protection to significantly disrupt
the performance of the system.

E. Detection Accuracy

To further evaluate the effectiveness of CoF, we now
consider its detection accuracy. In particular, we are interested
in circumstances where (i) the template detector may classify
a safe page as vulnerable, leading to unnecessary offlining and
thus memory overhead (False Positive) or (ii) the template
detector may classify a vulnerable page under attack as safe,
leading to residual attack opportunities (False Negative).

To evaluate the former, we measured the number of
migrated pages when running benign applications such as
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the ones used for our performance evaluation, namely SPEC
CPU2017, nginx-1.18.0, LMBench, and Mozilla Kraken.
During the repeated execution of our benchmarks, we did not
encounter any false positives due to spurious bit flips. While
our time-bounded experiments cannot rule out false positives in
the general case, Meza et al. [36] have conducted an analysis
of correctable memory error rates in large-scale production
data centers. Their work has shown that there is a decreasing
trend in the incidence of such errors compared to the previous
decades and that the DIMM architecture characteristics affect
the overall error rate. Moreover, although spurious bit flips
may cause the template detector to (over)mark some pages as
vulnerable, this should only happen rarely. Given that false
positives and (over)offlining can only occur in face of at least
two spurious bit flips within the same page frame, we expect to
have negligible impact on memory or performance overhead.

To evaluate false negatives for the template detector, we
conducted an experiment in which we induce bit flips in
every type of memory page that CoF protects as discussed in
Section V-B. Initially, we ran publicly available Rowhammer
PoCs [16], [22]; however, they reported no flips in our setup.
Therefore, to stress-test our solution, we induced bit flips with
hardware error injection mechanisms. We ran this experiment
on an Intel Xeon Silver 4310 machine which has ECC error
injection capabilities and induced the correctable errors using
the EINJ interface in the Linux kernel [53]. During our
experiments, we used such interface to repeatedly inject bit
flips in all the supported memory types and verified that CoF
was able to detect the flips and trigger page migration (and
offlining) in all cases.

VIII. DISCUSSION

Protecting residual allocations. In Section V-B, we outlined
the requirements for which memory should be protected by
CoF. Moreover, Figure 3 confirms CoF protects most of the
user-accountable memory, and the vast majority of memory in
the system.

One type of memory CoF currently does not protect is
that of DMA buffers. Since different systems load different
drivers, some of which have custom memory allocators, it
is difficult to standardize these allocations and protect them.
Given specific DMA allocations, in principle, one could make
them migratable by using vmalloc. This strategy can take
advantage of a modern IOMMU that supports virtual address-
ing. Conveniently, most modern OSes, including Linux [56],
FreeBSD [42] and Windows [38] support DMA remapping
with modern IOMMUs. However, legacy devices that only op-
erate on physically-contiguous DMA buffers cannot be easily
supported. As suggested in prior work [58], an alternative is
to protect DMA buffers by means of row isolation.

While pages outside user control (Section V-B) are not
good targets for attacks, one might still want to protect them
to provide defense in depth. Doing so is mostly a matter of
engineering. For pages that only rely on virtual addressing, one
can again rely on vmalloc. The few other pages that cannot
be easily migrated could be isolated in dedicated memory areas
and protected by guard rows [9], [29], [51], [58].

Virtualization-based implementation. We decided to imple-
ment CoF on bare metal in order to offer protection to a wider

range of (native or virtualized) systems. However, our CoF
design can also be implemented by relying on Second Level
Address Translation (SLAT)—a hardware virtualization feature
available on modern processors [20]. Rather than changing
the individual kernel allocators to support page migration,
one can interpose on SLAT mappings to dynamically remap
and offline vulnerable pages of a guest virtual machine in
a guest-transparent way. While this strategy would likely
simplify the implementation of our design and is also a natural
match for virtualized environments, it would force a bare-
metal environment to run on a virtualized stack—unnecessarily
incurring virtualization (performance and security) costs.

Offlining DoS attack. In our current prototype, a page is
migrated and offlined when two bit flips occur in the same
page. Due to our optimized metadata for marking pages—
setting a single bit in the page struct—the system cannot
distinguish flips of different bits versus two flips of the same
bit in a given page. Therefore, an attacker could target CoF
to try to offline as many pages as possible. As shown in
our analysis in Table II, the impact of this attack is minimal
in practice. Moreover, we consider denial-of-service attacks
to be preferable over arbitrary memory corruptions through
Rowhammer. Finally, we excluded such attacks from the threat
model since an attacker armed with Rowhammer on an ECC-
equipped system can easily mount denial-of-service attacks by
means of blind hammering anyway.

The Half-Double Attack. Recently, Kogler et al. presented
Half-Double [28], an end-to-end Rowhammer attack which
escalates Rowhammer to rows beyond adjacent neighboring
rows. Moreover, Half-Double does not resort to traditional
memory templating in order to bypass on-DIMM ECC mem-
ory. On the contrary, it introduces the concept of blind ham-
mering. With this technique, an attacker tries to inject bit flips
in page table entries with Rowhammer and relies on stealthy
oracles such as Spectre [27] to verify that the bit flip occurred
at the right offset in a page table entry without causing a crash.

Nonetheless, Half-Double attacks can still be detected by
CoF. First, CoF does not target specific Rowhammer patterns
to protect the system. That is, we can protect page frames
regardless of their distance to the aggressor rows. Furthermore,
CoF relies on memory controller-based (MC-based) ECC
rather than the on-DIMM ECC targeted by blind hammering.
While the latter entirely hides errors from software, making
ECC-agnostic exploitation possible, MC-based ECC raises
machine check exceptions (MCEs) to the OS upon access.
This forces the attacker to resort to ECCploit-style [10] attacks,
but also enables CoF-style bit flip interposition. Finally, with
the experiment outlined in Section VII-E, we experimentally
confirm that the Spectre oracle used as a building block for
blind hammering still raises an MCE on MC-based ECC
systems and is thus detected by the template detector in CoF.

CoF vs. Other Software-Based Defenses. Since it is hard to
directly compare CoF performance to that of other software-
based defenses fairly—as other solutions were each evaluated
with a different set of benchmarks—we focus here on a quali-
tative comparison. First, we observe that CoF is among the few
solutions which aim to provide system-wide protection, with
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the only other defense being ZebRAM [29]. However, in order
to guarantee system-wide protection, ZebRAM trades off sys-
tem memory and performance, incurring nontrivial overhead
for large working set sizes. For instance, the ZebRAM paper
reports a 3x overhead in execution time on a saturated Redis
reaching 70% working set size, with the solution configured to
provide protection to only near-aggressor-based Rowhammer
attacks. The performance impact (and/or memory overhead)
would even be more significant to address far-aggressor-based
Rowhammer attacks such as Half-Double [28]. Other software-
based defenses are more efficient and can compete with CoF
performance, but also limit protection guarantees to specific
data [43], [50], [58], [63], specific security domains [9], or
specific Rowhammer patterns [3].

Moreover, some existing solutions rely on primitives which
are often unavailable in practice. For instance, most isolation-
based defenses rely on precise knowledge of DRAM geom-
etry [9], [29], [63], which is hard to obtain precisely on all
systems [50]. Other defenses rely on advanced performance
counters [3], which are often unreliable [12] and are not sup-
ported by all processors. CoF, , only relies on well-established
process/memory management capabilities of modern operating
system kernels and on memory controller-based ECC which is
widespread on server platforms.

IX. RELATED WORK

A. Rowhammer Attacks

Since the discovery of Rowhammer [25], a plethora of
different attacks which exploit this vulnerability have been
documented, both by industry and by academic researchers.

The first privilege-escalation Rowhammer attack was pre-
sented by Seaborn and Dullien [48], which targeted page tables
as an attack vector to gain privileged access to physical mem-
ory. Shortly after this proof of concept, attackers showed that
Rowhammer is exploitable from virtualized environments [46],
on ARM architectures [57], over the network [33], [51],
from browser sandboxes [8], [13], [15], [18] and also as an
information leak primitive [30].

As more researchers started to turn their attention to
Rowhammer, the community gained more understanding of
how to amplify the Rowhammer effect even more on mod-
ern memory modules. Efforts in reverse engineering of how
physical addresses map to DRAM [45], [50], and of the
inner workings of mitigations implemented by hardware ven-
dors [16], [22], have allowed attackers to build more powerful
“hammering patterns” which result in higher error injection
rates. For example, Tatar et al. [50] showed that with precise
knowledge of the underlying DRAM geometry, an attacker
could find bit flips in up to 99% of modules in DDR3
modules. Frigo et al. [16] and Jattke et al. [22] brought to
light the weaknesses of the mitigations adopted by hardware
vendors, and found that, especially for DDR4 modules, certain
“hammering patterns” are far more effective than others.

B. Rowhammer Defenses

In order to aid in the protection of modern systems,
numerous defenses have been proposed both at the software
and at the hardware layer.

Most of the existing software mitigations against Rowham-
mer target the memory massaging phase of Rowhammer
attacks by isolating, in DRAM, attacker-controlled memory
from sensitive memory by means of guard rows [6], [9], [29],
[58]. Unfortunately, doing so is difficult not just because it
requires accurate knowledge of DRAM geometry (which is
challenging to obtain [50]), but especially because boundaries
are often blurry. For instance, the isolation of kernel memory
proposed in G-CATT [9] is incomplete due to the Linux page
cache and other user-kernel shared areas [17], [58]. Moreover,
isolation-based defenses typically do not offer comprehensive
protection, but rather protect specific memory areas [6], [9],
leaving much of the memory vulnerable to Rowhammer at-
tacks. Conversely, ZebRAM [29], does offer comprehensive
protection by using every other row as a guard row, but at a
nontrivial cost in terms of performance and/or memory.

Other software mitigations focus on the hammering
phase—using performance counters to detect unusual cache
miss rates (or other indications of uncached accesses) and
interpreting those as a Rowhammer attack [3]. The problem
with this approach is threefold. First, performance counters
vary from CPU to CPU and many systems do not support a
counter for uncached accesses. Second, the performance coun-
ters are indirect indicators at best. For instance, a large number
of cache misses may easily stem from benign access patterns
in DRAM. Third, the number of activations required for a bit
flip keeps dropping as the density of DRAM increases. Where
earlier attacks required hundreds of thousands of activations
per refresh interval, recent ones require only a few tens of
thousands. This means that the threshold must be lowered also,
further increasing the likelihood of false positives.

Other software-based defenses have been presented to
target specific types of attack primitives. For instance, Oliverio
et al. [43] presented a defense which stops an attacker from
using memory deduplication as a memory massaging primitive
or as a side channel for information leakage. Zhang et al. [63]
on the other hand, aim to stop bit flips from happening on
pages which store page tables because many attacks corrupt
page tables to gain unsupervised access to physical memory.

Current hardware-based mitigations similarly try to stop the
bit flips from happening by tracking the number of activations
per row, and refreshing adjacent rows when a threshold is
reached. Such technique is generally known as Target Row
Refresh (TRR) [23], [32], [37] and is widely deployed. How-
ever, it has been shown to be easily bypassable by means
of improved Rowhammer patterns [13], [16], [22]. Other
defenses proposed by academic researchers aim to proactively
stop an attacker from launching a Rowhammer attack by
eradicating at least one of the essential primitives required
for exploitation [5], [21], [35], [60], [62]. Another recent
hybrid defense [24] suggests using a cryptographic MAC as a
more secure alternative to normal ECC memory. The defense
enables error detection for an unbounded number of bit flips
in hardware and error correction of up to 8 bits every 256 bits
in both hardware and software.

Although more advanced hardware mitigations may even-
tually reach production, this will take time, leaving memory
that will be in use for 5–10 years at the mercy of attacks.
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X. CONCLUSION

In this paper, we presented Copy-on-Flip (CoF), a simple,
effective, and efficient design for hardening ECC memory
implemented by the memory controller against ECC-aware
Rowhammer attacks. By leveraging the ECC error corrections
as warning signs of an attacker templating ECC memory, we
can accurately migrate and offline vulnerable pages before
the attacker can obtain exploitable templates. With our Linux-
based prototype, we demonstrated we can transparently protect
all the relevant templating targets, including those in kernel
memory, with only small kernel changes. In combination with
our low overhead—negligible in most cases—we believe CoF
can be adopted by the kernel in practice, helping protect
vulnerable ECC-equipped servers everywhere. In such a spirit,
we have open sourced our prototype3.
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