
REDsec: Running Encrypted Discretized Neural
Networks in Seconds

Lars Wolfgang Folkerts, Charles Gouert, and Nektarios Georgios Tsoutsos
University of Delaware

{folkerts, cgouert, tsoutsos}@udel.edu

Abstract—Machine learning as a service (MLaaS) has risen
to become a prominent technology due to the large development
time, amount of data, hardware costs, and level of expertise
required to develop a machine learning model. However, privacy
concerns prevent the adoption of MLaaS for applications with
sensitive data. A promising privacy preserving solution is to use
fully homomorphic encryption (FHE) to perform the ML compu-
tations. Recent advancements have lowered computational costs
by several orders of magnitude, opening doors for secure practical
applications to be developed. In this work, we introduce the
REDsec framework that optimizes FHE-based private machine
learning inference by leveraging ternary neural networks. Such
neural networks, whose weights are constrained to {-1,0,1}, have
special properties that we exploit to operate efficiently in the
homomorphic domain. REDsec introduces novel features, includ-
ing a new data re-use scheme that enables bidirectional bridging
between the integer and binary domains for the first time in FHE.
This enables us to implement very efficient binary operations for
multiplication and activations, as well as efficient integer domain
additions. Our approach is complemented by a new GPU acceler-
ation library, dubbed (RED)cuFHE, which supports both binary
and integer operations on multiple GPUs. REDsec brings unique
benefits by supporting user-defined models as input (bring-your-
own-network), automation of plaintext training, and efficient
evaluation of private inference leveraging TFHE. In our analysis,
we perform inference experiments with the MNIST, CIFAR-10,
and ImageNet datasets and report performance improvements
compared to related works.

I. INTRODUCTION

The rapid growth of cloud computing services has
amplified concerns about the need for data privacy. Users of
these services trust their personal data to the cloud for storage
and computation, putting their privacy at risk. For instance,
a curious cloud service provider can read the sensitive user
data stored on its servers. This allows the provider to learn
proprietary secrets as well as personal data (such as health
records) to sell to advertisers [63]. In addition, adversaries can
mount cyberattacks against cloud servers, exposing private data
[74], [91]. Attackers are beginning to set their sights on these
servers as more users take advantage of cloud services. There-
fore, direct attacks targeting cloud data centers are becoming
increasingly common [56].

These security threats, coupled with the large number of
organizations adopting the cloud computing paradigm, make it

increasingly necessary to provide security guarantees for out-
sourced computation. This work concentrates on the specific
case of cloud computing known as machine learning as a
service (MLaaS) [73]. In this scenario, a cloud service provider
has a trained network with private weights on their servers
and allows users to upload their data for classification. For
example, cloud service providers can develop and launch novel
machine learning algorithms to process medical images using
the MLaaS paradigm [82]. However, due to legal and regula-
tory issues surrounding privacy and intellectual property (e.g.,
HIPAA [9]), the use of cloud computing for these applications
remains constrained. For this scenario to be secure, special
considerations need to be in place to enable users to securely
upload their data to the cloud and receive provable guarantees
about their privacy during processing.

The most common way to secure user data and protect
confidentiality is through the use of encryption schemes such
as AES [58]. While this successfully prevents attackers and
the cloud from viewing the data, it also limits the usefulness
during processing. Ciphertext data can only be transmitted and
stored, and no meaningful computation can be executed on the
ciphertext. In other words, common encryption schemes do not
allow executing algorithms on encrypted data, such as those
required for MLaaS and other cloud computing scenarios [76].
Luckily, the state-of-the-art cryptographic technique called
homomorphic encryption (HE) [28] allows for computation on
encrypted data while maintaining confidentiality.

Homomorphic encryption encompasses a particular class
of ciphers that share an incredible property: the ability to
perform meaningful ciphertext computations which are crypto-
graphically mirrored in the underlying plaintext. This capabil-
ity allows users to securely outsource computations by sending
HE ciphertexts to a third-party cloud service provider. Then the
cloud service provider executes algorithms on the ciphertext
data without gaining any information about the underlying
plaintext. Finally, the cloud sends the encrypted outcome back
to the users, and the users decrypt it to get the plaintext result.
Here HE is the core technology, allowing the user to access
the algorithm without revealing her private data, while allowing
the cloud to process the data without actually accessing it.

Practical HE encryption applications use either leveled
HE (LHE) or fully HE (FHE). These types of homomorphic
encryption differ in the number and types of operations
computed. Many previous works that aim to solve privacy-
preserving MLaaS utilize LHE, which only permits arbitrary
operations on ciphertext data for a predefined, bounded number
of times [8], [34], [79]. One of the fundamental principles of
HE is the concept of noise, which accumulates in ciphertexts
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during every operation and is necessary to guarantee security.
If too much noise accumulates in the ciphertexts, the user
cannot decrypt the data. LHE abides by this constraint by
limiting the depth of LHE computations and requiring the
depth to be known beforehand. In essence, LHE schemes
need to allocate the proper noise budget ahead of time to
ensure correct decryption. In addition, boosting the noise
budget is only accomplished by either sacrificing security or
progressively increasing the execution time by using larger
encryption parameters. For complex algorithms that perform
many computations with the same data repeatedly, LHE does
not scale and becomes incredibly inefficient in terms of both
speed and memory overheads. This approach is not feasible for
deep neural networks that operate on complex datasets, such
as ImageNet. Most LHE works are optimized only for small,
straightforward networks for the MNIST dataset [5].

Other works employ FHE, which builds upon LHE and
adds a “bootstrapping” mechanism. Bootstrapping allows for
noise reduction in ciphertexts when it reaches a certain thresh-
old. This procedure is considered costly and is generally the
bottleneck of fully homomorphic operations [21]. However,
this approach is still more efficient for complex algorithms than
choosing increasingly larger LHE parameters. For example,
FHE-DiNN [7] employs FHE to conduct private inference for
a tiny neural network, and this approach demonstrates how to
evaluate fully-connected layers.

Because LHE realistically only supports inference for
neural networks with a small number of layers, in this work
we adopt FHE to facilitate inference for arbitrary neural
networks. While bootstrapping remains the bottleneck of fully
homomorphic operations, several works have accelerated the
procedure dramatically [12], [21], [29], [33]. In addition,
FHE evaluation can be accelerated even further with GPUs,
achieving more than an order of magnitude speedup over a
CPU. Even with these techniques, the cost of a bootstrap
remains higher than other HE operations, and minimizing the
invocations of the bootstrap procedure is critical for fast eval-
uation. To mitigate these performance challenges, we propose
a new FHE framework for private neural network inference
that is highly configurable and supports GPU acceleration.
Contrary to prior works, our REDsec framework employs
ternary neural networks (TNNs) and provides a strategy to
enable bidirectional bridging to convert ciphertexts to the
integer domain for accelerating arithmetic operations, before
returning to the binary domain for bitwise operations. These
insights allow us to reduce the number of bootstraps in a neural
network and thus achieve significantly faster inference speeds.

Our contributions can be summarized as follows:
• A new design methodology for FHE-friendly binary

and ternary neural network inference, leveraging be-
spoke multiplication, pooling and data reuse to enable
efficient bridging.

• Bidirectional bridging for the first time in TFHE,
which enables us to use both efficient binary mul-
tiplication and sign extraction operations, as well as
integer additions.

• A state-of-the-art (RED)cuFHE library for GPU accel-
erated HE operations, including leveled operations, en-
cryption of constants, and robust support for multiple
GPUs.

• A detailed analysis of neural network structure to
determine the most optimal times to perform costly
bootstrapping procedures to refresh the noise.

• Bring your own network (BYON): An end-to-end
system for constructing neural network architectures,
including a UI for users to build their model and a
compiler to generate training modules in TensorFlow
and encrypted inference code in C++/CUDA.

Roadmap. In Section II, we provide an overview of homo-
morphic encryption and machine learning concepts as well as
our adopted threat model. Section III provides an overview
of REDsec and Section IV provides specific technical details,
while Section V discusses our experimental evaluation and
analysis of results. Lastly, Section VI provides comparisons
with prior works and Section VIII concludes the paper.

II. PRELIMINARIES

A. Privacy Preserving Cryptography

Here we introduce fundamental concepts for homomorphic
encryption. First, we discuss the learning with errors (LWE)
problem as the cryptographic foundation of LHE and FHE
schemes. Next, we discuss partial, leveled, and fully homo-
morphic HE schemes, and enumerate the state-of-the-art HE
encryption libraries. Finally, for completeness, we discuss
another privacy-preserving technology called multi-party com-
putation (MPC).

1) Learning With Errors (LWE): Both LWE [70], [71]
and Ring-LWE [54] are hard problems that many homo-
morphic encryption schemes and other lattice-based encryption
algorithms rely on for their security. In turn, LWE derives
its hardness assumptions from other important problems in
both coding and lattice theory [3], [40]. Solving the LWE
problem is akin to decoding from a random linear code [70],
[71]. Adapting this problem to cryptographic applications is
relatively straightforward: encryption keys and ciphertexts are
injected with noise to hinder cryptanalysis.

2) Types of Homomorphic Encryption: Partially Homo-
morphic Encryption (PHE). This is the most basic HE
class and was naturally the first realization of homomorphic
evaluation. Cryptosystems such as RSA [75], ElGamal [22],
and Paillier [61] fall into this category and allow for only
one of two basic arithmetic operations on ciphertexts: either
addition or multiplication. These schemes do not derive their
security from the previously defined LWE problem. This
allows them to be fast, have no noise accumulation and execute
an unbounded number of encrypted operations. However, PHE
does not allow for both addition and multiplication operations,
severely limiting its usefulness. In the context of privacy-
preserving machine learning, PHE is often combined with
MPC to make up for its computational shortcomings for neural
network training and inference [39].

Leveled Homomorphic Encryption (LHE). Contrary to PHE,
schemes in this category [8], [34], [79] allow for arbitrary
algorithms to be evaluated on encrypted data because they can
support both encrypted additions and multiplications, which
form a functionally complete set of operations. However,
unlike PHE, LHE cannot execute an unbounded number of
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encrypted operations because of noise accumulation. This con-
straint also makes LHE far more challenging to harness since
complex encryption parameters must be carefully optimized
for both security and the number of operations. The key
parameters include the number of primes in the ciphertext
moduli chain, the degrees of various polynomials, and the stan-
dard deviation of injected noise. Each LHE-based application
must attempt to balance the security level, speed, and noise
threshold specific to the encryption algorithm. While a similar
balancing act exists for FHE, it is generally independent of the
actual algorithm. For LHE, the more operations required for
an application, the slower (or otherwise less secure) leveled
homomorphic operations become in general.

Fully Homomorphic Encryption (FHE). This powerful tech-
nique was realized for the first time in 2009 by Craig Gentry
with the introduction of the bootstrapping theorem [28]. As
mentioned in the introduction, this technique reduces the noise
in ciphertexts and thus allows for an arbitrary number of
encrypted operations. Without bootstrapping, the only way
to eliminate the noise in a homomorphic ciphertext is to re-
encrypt the data. In this procedure, a user needs to receive an
intermediate ciphertext, decrypt it, re-encrypt it with minimal
noise, and finally re-upload it to the server. The bootstrapping
procedure converts this concept to the encrypted domain by
having the user provide the cloud with an encryption of the
secret key. The cloud can use this key to perform homomorphic
decryption and re-encryption procedures on the ciphertext. The
result will be a new ciphertext with significantly reduced noise.
Since this procedure is run homomorphically, the plaintext is
never exposed to the cloud server. FHE can compute an infinite
number of additions and multiplications on ciphertext data
by keeping track of noise growth in ciphertexts and applying
bootstrapping when needed [12].

3) Contemporary HE Libraries: There are a number of
HE libraries which each offer advantages and disadvantages.
IBM’s HElib [34] and Microsoft’s SEAL [79] implement the
BGV [8] and CKKS [11] homomorphic cryptosystems (SEAL
also supports BFV [23]). The underlying plaintext types are
integers (or floating point numbers), and both multiplications
and additions are possible on ciphertexts. These libraries are
used for LHE; it is possible to use HElib in FHE mode, but the
bootstrapping speeds are prohibitively slow. Both HElib and
SEAL are solid options for LHE, but the former is not practical
for FHE, and the latter does not incorporate bootstrapping and
thus does not provide FHE support.

The FHEW [21] scheme, which itself is derived from the
GSW cryptosystem [30], takes an entirely different approach
to HE from these two libraries and improves the speed of
bootstrapping. In FHEW, ciphertexts represent individual bits
of plaintext values, and the operations exposed to users take
the form of logic gate operations. As a result, algorithms
implemented using FHEW must be in the form of (virtual)
digital circuits; for instance, to add two encrypted bytes, one
must implement an 8-bit homomorphic adder circuit.

While FHEW boasts bootstrapping speeds of less than
a second, TFHE [12] expands upon and evolves FHEW’s
approach achieving even more efficient bootstrapping capa-
bilities. TFHE can homomorphically evaluate a single gate
with bootstrapping in 13 milliseconds, and due to these speeds,
many FHE machine learning frameworks use this library. Our

work, REDsec, also utilizes TFHE as the underlying crypto
library as it remains the fastest and most feasible option for
FHE on CPUs. Moreover, the cuFHE [18] and nuFHE [59]
GPU libraries port the TFHE scheme to CUDA and are capable
of accelerating the bootstrapping procedure by over an order
of magnitude. To the best of the authors’ knowledge, these
GPU libraries offer the fastest bootstrapping speeds of any
open-source library so far. In its fastest configuration, REDsec
employs our new (RED)cuFHE library, which is an major
overhaul of cuFHE to evaluate any homomorphic circuit.

4) Multi-Party Computation (MPC): This technology
involves multiple entities performing functions jointly over
their private data. With this approach, no single entity can
see the data of other parties involved in the computation. In
the context of MLaaS, this means both the cloud and the
user share the responsibility for the computation. Moreover,
some popular private MLaaS solutions incorporate both MPC
and HE constructions into their frameworks, including Gazelle
[39], Cheetah [69], and MiniONN [51]. These frameworks use
either LHE or PHE for linear operations on the cloud (e.g.,
convolutions) and MPC in the form of garbled circuits [87] for
non-linear operations (e.g., ReLU activations). Here MPC can
efficiently perform branch decisions, such as the max function
in ReLU.

MPC Limitations. In these methods, the cloud still maintains
control over the convolution weights, making them transparent
to the user. However, MPC computations actively engage
the user, which limits the practicality of MPC in “fire-and-
forget” style MLaaS applications. In addition, there is a sig-
nificant communication overhead between the user and cloud
as data used for MPC computations must be continuously
uploaded and downloaded. Due to these different use cases
and constraints, MPC and HE technologies are not directly
comparable.

B. Binary Neural Networks (BNNs)

BNNs constrain weights and/or values to {-1,1} and are
used as a way to store small weight files on mobile devices, as
each {-1,1} weight can be represented as a bit {0,1} [17], [68].
Additionally, the sign function can be used as the activation,
resetting the values to a single bit. We refer to this class of
activation functions as binary activations [17], [68], [80], [92].
Binary neural networks have many advantages that decrease
latency, rendering BNNs less costly in terms of memory and
execution time compared to full-precision networks [17], [68],
[80], [92]. Since all weights and values are bits, the TFHE
cryptosystem is ideal for running BNNs.

Several works have expounded training binary neural net-
works for quick convergence [80]. Training a BNN is an
interesting problem since the gradient for the sign function is
undefined. Thus, much work on BNNs centers around picking
a suitable gradient function during backward propagation for
training the network [80]. We remark that our work does
not focus on these different implementations, although many
are available in the Larq library [27], which we leverage for
implementing REDsec. Larq also has recommendations for
high accuracy training [46], [47].

Many other works improve neural network architectures for
high accuracy [67], [80], [92]. Indeed, there is a difference be-
tween binary weight networks (BWNs) with integer activation
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TABLE I. POPULAR NETWORK ARCHITECTURES FOR ALEXNET:
HERE WE SHOW THE WEIGHT FORMAT, ACTIVATION FUNCTIONS AND

REPORTED ACCURACY. “MIXED” DENOTES A COMBINATION OF BINARY
(I.E., SIGN) AND FULL PRECISION ACTIVATION FUNCTIONS.

Network Weights Activation Top-1 Top-5

AlexNet [42] Full Precision Full Precision 57.1% 80.2%
Binary Weight (BWN) [68] Binary Full Precision 56.8% 79.4%
XNOR-net [68] Binary Mixed 44.2% 69.2%
BinaryAlexNet [45] Binary Binary 36.3% 61.5%
Hybrid Binary (HBN) [65] Binary Mixed 48.6% 72.1%
BENN [94] Binary Binary 54.3% N/A

functions and binary-weight/binary-activation networks [27],
[80]; this trade-off was first explored in the XNOR-net paper
[68]. When appropriately trained, binary weight networks can
have similar accuracy to full-precision networks. However,
binary-weight/binary-activation networks receive some accu-
racy degradation since information is lost in the binary sign
activation function. Likewise, recent works explore hybrid
techniques to boost accuracy and still have binary weights and
activations [65], [80]; for example, most of the accuracy loss
is mitigated by keeping full-precision pixel values at only a
few of the middle layers [10], [62]. Another helpful technique
is binary network ensembles, where multiple binary neural
networks are trained and return a result to the user. In this
case, users consolidate these results to improve performance
[94]. Finally, RA-BNN networks support early growth, where
slowly adding neurons to a BNN helps improve accuracy [67].
Table I compares and summarizes these different strategies.

Ternary neural networks offer another promising technique
for accuracy improvement, which we find very effective for
our work. These networks offer the possibility of having an
additional zero weight: {-1,0,1} [49]. This optimization comes
with an increase in accuracy, but since it incurs moderate
memory and computation overheads, many discrete neural
network implementations overlook this feature [49], [80].
However, this cost is effectively negligible when working
with encrypted neural networks, making ternary networks a
lucrative alternative to binary neural networks for our system.

Due to their low power consumption, BNNs are also
practical for edge computing devices. Recent work has used
them for emotion detection [1], COVID-19 mask-wearing
[24] and Human Activity Recognition [19]. However, these
edge computing applications did not have a threat model,
and by deploying the neural network on the device, they put
themselves at risk of having the neural network IP stolen [37].

Larq Library. The Larq library for BNNs is actively main-
tained, integrated into TensorFlow, and is well-documented
[27]. Its toolchain supports BNN training and includes many
pre-trained models. The API offers QuantDense and Quant-
Conv2D layers for fully connected and 2D convolutions,
respectively, in the BNN domain. In addition, it supports many
implementations of the sign activation functions, differing in
their backward pass pseudo-gradient, as well as ternary [49]
and DoReFa discrete activations [93].

C. Threat Model

REDsec is designed with the most common MLaaS
scenario in mind: the cloud service provider owns a model
and users pay a fee to upload their personal inputs and receive
classification results from the cloud. This work is concerned

Fig. 1. REDsec Overview: Summary and interaction of the different
components and modules of the REDsec framework.

with protecting user data privacy and direct access to cloud
proprietary network characteristics, such as weights and biases.
We assume an honest-but-curious cloud that executes the
correct operations on encrypted data but is incentivized to
snoop on user data processed by its servers. Likewise, we
consider cyberattacks that attempt to exfiltrate sensitive user
data from the server. This threat model does not consider
adversarial attacks by the user; it is an open research problem,
discussed in Section VII.

In terms of user data, the cloud can determine the size and
dimensions of the inference inputs. However, encryptions of
bits using the TFHE scheme are probabilistic, and operations
using encrypted ones and zeros take the same amount of time
regardless of the underlying plaintext value. Therefore, it is
imfeasible for the cloud to deduce any information about the
underlying user data content.

III. OVERVIEW OF OUR METHODOLOGY

A. End to End System Overview

REDsec is an end-to-end framework that provides an
efficient way to generate, train, and execute secure neural
network inference for arbitrary, user-defined networks (i.e.,
BYON support). In particular, our framework allows for the
execution of configurable networks without writing complex
blocks of FHE code. An overview of the REDsec modules is
presented here, with references to Fig. 1. A detailed description
of technical details is provided in the next section.

• REDsec Model Generator (1). The model generator
is a friendly UI tool used to generate a netlist of the
neural network model in CSV format. Leveraging this
tool makes our system configurable and easy to use.

• REDsec Compiler (2). The REDsec compiler con-
verts the CSV netlists into TensorFlow-based Larq
training code and C++/CUDA secure inference net-
file code.

• Training with Larq (3). Using the Larq library in a
Jupyter notebook, the model is trained on input data
to generate a TensorFlow weights file.

• REDsec Library. Our C++/CUDA-based library pro-
vides optimizations for efficient, secure inference.
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These optimizations include reshuffling the network
architecture, encryption of circuits, and rigorous
parallelism.

• Weight Conversion with REDsec (4). Utilizing
the REDsec library and generated net-file code, the
TensorFlow weight file is condensed and optimized to
run using REDsec.

• Secure Inference (Server) with REDsec (5). Our
server module executes on a remote server. The
C++/CUDA net-file code, generated by the REDsec
compiler, utilizes the REDsec library and reads the
condensed weights file to run secure inference.

• Outsourced Secure Inference (Client). REDsec in-
cludes client modules to prepare, encrypt and upload
the input data, and decrypt the server’s results.

B. Secure Inference Overview
REDsec is designed with cloud computing in mind: a

remote user communicates with a cloud server, uploads in-
puts, and receives outputs in turn. REDsec includes client-
side modules that facilitate prepping private inputs, generating
keysets, and decrypting classification results. To enable private
inference, the cloud and user both need to initiate separate one-
time setup phases. The cloud must specify the neural network
and train it. At this stage, the cloud service provider must
provide a training set in the clear and a description of the
network architecture. The cloud can use the REDsec network
compiler to generate the corresponding TensorFlow training
and REDsec inference code files. After training the network
in plaintext and converting the weights, the cloud can receive
private inference requests. For client setup, the user must
generate the HE keypair and send the evaluation key to the
cloud to facilitate homomorphic operations.

When the user wishes to classify a private input, she
must first supply the data in either picture or binary form
to a converter & verification module, preparing the input and
ensuring that it is in the format that the network is expecting.
This may entail simply resizing the image and centering the
pixels around the value of 0. Next, the user will utilize our
encryption module to take the converted data, encrypt each bit
using the private key generated in the setup phase, and export
the resulting ciphertext array into a file. The user uploads this
file to the cloud, and the cloud initiates the inference procedure.

The cloud will output a ciphertext array, the size of
which depends on the network architecture and the number
of possible classes in the dataset. For instance, the ImageNet
dataset contains 1000 classes, and the result of the inference
will be 1000 scores of the input belonging to each class.
After encrypted evaluation, the cloud will generate an output
ciphertext file encoding the encrypted score of each class, and
send this to the user.

After receiving the output ciphertexts, the user can use
their secret key to decrypt the scores to find the class with
the maximum classification score. In accordance with other
FHE works [7], [13], [52], REDsec opts not to do this in the
encrypted domain because encrypted comparator circuits are
inefficient and do not scale well with increasing numbers of
classes. In addition, the raw scores for each class may provide
relevant information to the user, especially when the second-
highest score is comparable to the maximum. Therefore, users

can sort or find the maximum output, depending on their
applications. This is the only computation executed by the user
besides basic preprocessing, encryption, and decryption.

C. BNN Optimizations
This section provides an overview of our optimizations.

The underlying mathematical formulations are presented in the
Appendix.

1) Multiplication and Data Reuse: One valuable concept
in binary neural networks is the limited values that weights
can take on. With this realization, REDsec can benefit from
performing basic operations once and reusing the result.
Specifically, the XNOR binary weight multiplications only need
to be performed twice per value: once for a {-1} weight, and
once for a {+1} weight. This technique is specific to REDsec
and reduces the multiplications from O(ni ·ni+1) to O(2 ·ni),
where n is the number of neurons in the layer.
Binary-Binary Multiplication using Univariate NOT. Fur-
thermore, REDsec simplifies the binary multiplication problem
since the cloud knows the plaintext weights. Therefore, multi-
plication with weight value {+1} can utilize the multiplicative
identity to eliminate the XNOR gate, and multiplication with
weight value {-1} can substitute the noisy bivariate XNOR gate
with a low noise, univariate NOT gate. REDsec stores these
encrypted multiplication results in an array and later selects
the results according to the plaintext weights. Notably, this
applies to both bitwise and integer multiplication. In practice,
we combine the NOT operation with our bridging procedure to
switch the ciphertexts from the binary to the integer domain.
Binary-Integer Multiplication using 2’s Complement. RED-
sec supports integer-value/binary-weight multiplication using a
similar logic: multiplication by -1 is the 2’s complement, where
all bits are flipped and one is added to the result. The bit flip
can also be accomplished by a NOT gate, while the ‘plus one’
is rolled into the bias term:

−x = x+ 1. (1)

Ternary Weights. For ternary neural networks, multiplication
by a 0 weight is 0 regardless of the input. Therefore, we do
not need to process the input in our calculations but need to
adjust for the zero-valued result in the convolution step [49].
REDsec effectively loads a 0 value in this case, which requires
adding 1/2 offset adjustment to the bias term when switching
from the integer {-1,0,1} to the binary {0, 0.5, 1} domain.
With sign activations, the 1/2 offset in bias is rounded using
the floor function during weight prepossessing; with ReLU
activations, ciphertexts are scaled up to a fixed point precision
before adding the bias.

Novel Contributions. The reduction of the XNOR gate to a
NOT gate and the reuse of weights is a key contribution in
REDsec, which will enable efficient bidirectional bridging (to
be discussed further in Section IV-C2). TAPAS [78] performs
a different mathematical operation which is not as efficient
and does not apply to inputs in the integer domain and does
not work with efficient bridging. A comparison between the
REDsec and TAPAS approaches is presented in the Appendix.

2) Activation Functions:
Sign Function and Offset Conversion. The sign function
requires a comparison, which is expensive to perform in the
encrypted domain. To get around this, we apply an offset value
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equal to signoffset = 2Mbits −M/2, where M represents the
theoretical maximum input value to the activation function,
and Mbits is the number of bits required to represent M such
that Mbits = blog2(M) + 1)c. We end up with the following:

bitsign(x) =

{
+1 iff (x+ offset) > 2Mbits ,

0 otherwise,
(2)

which can be simplified by taking the most significant bit of
x. Since TFHE operates on bits, and assuming the ciphertext
is encoded in the binary domain, the bit extraction is a free
operation.

Furthermore, we need to add in multiple offsets throughout
the layer. These include:

• 2’s complement offsets in integer convolution (eq. 1),
• Ternary zero valued weight offset (sec. III-C1)
• Batch Normalization or Bias offset, and
• Bit sign addition offset (eq. 2).

These offset values can be combined after training to condense
the size of the weights file. Combining these offsets also
means that during inference, each layer needs to apply only
one Mbit addition per value. Therefore, even though REDsec’s
implementation of the activation function requires an addition,
there is no additional cost to our activation function since it is
combined with other operations. Related techniques have been
applied in earlier HE works [7], [38], [52], [78].
ReLU. REDsec also deploys a discretized ReLU function,
based on DoReFa-Net discretization [93]. Since the ReLU
function is an integer activation, we cannot ignore BatchNorm
slope adjustments or overflow detection. Hence, ReLU requires
five parts:

1) Batch Norm slope multiplication,
2) Offset Addition,
3) Bridging from the Integer to Binary Domain,
4) Right shift for fixed point number consistency,
5) ReLU activation with overflow detection.

First, the slope multiplication is between an encrypted
integer and a constant (the BatchNorm slope). We note that
the BatchNorm slope output is a floating point number, so
adjustments must be made in the final steps of training to
ensure discretization of TensorFlow will not affect encrypted
neural network output. The derivation of the BatchNorm slope
and offset are found in the Appendix. Moreover, the offset
addition involves the same offsets as in sign activation, except
that the bit sign offset is substituted with a discretization offset.
This is equal to 1/(2 ·Mbits).

The remaining steps are relatively simple. Bridging
switches back to the binary domain, so that we can efficiently
perform the remaining ReLU steps. The shift operation per-
forms the discretization, and the output bits are determined
by the model owner before training. The ReLU is performed
by applying an AND of the inverse sign bit and the ciphertext
output bits. Finally, in correspondence with DoReFa-Net [93],
we clip the activation output. Here, an OR of the overflow bits
is performed with the ciphertext output bits.

Novel Contributions. For sign activation, we adopt sign off-
sets; this is more related to TAPAS [78], but the authors never
implemented it. For ReLU activations, REDsec is inspired

by the procedure from DoReFa, and is adopted to the FHE
domain. Bridging to the binary domain and performing a
bitwise ReLU are unique features of REDsec.

3) Pooling Functions:
Max Pooling. Max pooling is not typically used in other
homomorphic networks since a costly comparison must be
made between values. For REDsec, we can leverage a com-
mon BNN technique by moving the max pooling step after
the binary activation function, resulting in the transformation
sign(max(x̃)) = max(sign(x̃)). In this case, the max pool-
ing problem is reduced to an OR gate.
Sum Pooling. REDsec uses homomorphic-friendly SumPool-
ing in place of AveragePooling, which is a standard prac-
tice in private neural network inference works [31] [35].
For layers with binary activations, the change is transparent
since sign(avg(x̃)) = sign(sum(x̃)). For layers with inte-
ger activations (e.g., ReLU), we do a multiplication-shift in
combination with the BatchNorm multiplication.

Novel Contributions. Replacing AveragePooling with
SumPooling is often used with LHE [31], and the OR
MaxPooling is often used for plaintext BNNs [17]. REDsec
is the first to adopt these concepts using FHE.

D. FHE Optimizations
The standard open-source TFHE (and cuFHE) implementa-

tion assumes that every gate evaluation is bootstrapped (except
for the homomorphic NOT gate, which essentially results in
minimal noise growth). This paradigm is typically referred
to as gate bootstrapping mode, and results in relatively slow
homomorphic operations even with the superior bootstrapping
capabilities of this scheme, on the order of 10-13 milliseconds
for TFHE and 0.5 milliseconds for cuFHE. While this is an
impressive result for FHE, it is still inefficient for complex
algorithms. Large neural networks require billions of gate
evaluations for inference; even small networks require millions
of gate evaluations.

Efficient Operations. To compensate for this, we adopt
two novel approaches, namely bidirectional bridging and
lazy bootstrapping. The first technique involves switching
back and forth between the binary and integer domains for
efficient operations. REDsec is the first work to enable this
technique in TFHE, leveraging our data reuse optimization
discussed in Section III-C1 (which avoids excessive bridging).
REDsec’s binary-to-integer switching allows us to use efficient
integer additions, as opposed to previous binary domain works
[52], [78] with excessively slow FHE runtimes. Our approach
involves a single bootstrap, as well as dividing the TFHE
torus into multiple segments. REDsec can revert back from
the integer to the binary domain and take advantage of our
optimized low-noise binary circuit operations discussed above
(contrary to prior integer domain works [7]). Our 2-way
bridging technique is discussed further in Section IV-C2.

REDsec also introduces lazy bootstrapping, which utilizes
homomorphic noise estimations to limit the number of boot-
straps and make it easier for the user to implement a neural
network. It is known that additions and multiplications can
affect the noise magnitude differently [30], and all TFHE oper-
ations (in both the binary and integer domain) are composed of
additions and multiplications (modulo 2 for the binary case).
Therefore, REDsec can accurately estimate the new noise
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variance after every type of computation on encrypted bits and
integers. When the noise level exceeds a threshold, REDsec
performs bootstrapping and thus allows for another series of
leveled operations. This paradigm is familiar to common-use
cases of schemes such as BFV [23] and CKKS [11], but has
not been sufficiently explored for the TFHE cryptosystem.

Lazy Bootstrapping with Noise Auto-tuning. To optimize the
lazy bootstrapping approach, we introduce a novel methodol-
ogy to determine bootstrapping locations on the first inference
procedure of a given network. The locations are determined
strictly by noise levels or the need to maintain the correctness
of binary operations. We note that the TFHE bootstrap is
integral to the evaluation of gate operations as it serves to
scale the output to the correct region of the torus. The TFHE
torus can be divided into multiple segments (these can also
be thought of as slices), and the bootstrapping operation can
“fix” the FHE gate result to a specific region on that torus.
In practice, only a certain number of gates can be evaluated
on a ciphertext before bootstrapping is required to rescale the
underlying plaintext value.

Our noise auto-tuning computes noise levels in an offline
preprocessing step. In this case, noise checks are added after
each operation and the noise auto-tuner designates the high-
noise locations where bootstrapping is required as noise vari-
ance exceeds a certain threshold. This provides a significant
speedup over gate bootstrapping, used in prior works such as
SHE [52]. The threshold is a function of the plaintext space:
the noise must not exceed the bounds of a torus slice (i.e., the
region of the torus corresponding to a value modulo P ), and
the variance can therefore grow to 1

2P , where P is the plaintext
space or alternatively the number of torus slices. If the noise
exceeds this limit, there is no guarantee that the underlying
plaintext message still encodes the correct value (with high
probability). After all bootstrap points are determined, there
is no need to perform noise checks on subsequent inferences
since the noise will grow the same way each time.

(RED)cuFHE. Lastly, we introduce a significant overhaul to
the cuFHE library for efficient GPU evaluation of homo-
morphic circuits. First, the original cuFHE library only sup-
ports a single set of parameters corresponding to the recom-
mendations outlined in the original TFHE paper [12]. First,
this parameter set corresponds to only 80 bits of security,
while having a single parameter set offers low flexibility
for arbitrary applications and algorithms. We introduce major
changes to the library that offer customization of injected noise
levels and alterations of the LWE polynomial degrees. The
latter influences the sizes of both keys and ciphertexts. Such
innovations allow users to find optimal parameter sets for their
particular requirements.

Moreover, we introduce new leveled gates (i.e., gates
without any bootstrapping), a robust API for leveled integer
addition and scalar multiplication, and API extensions for
encrypting constant values. These constant values are crypto-
graphically public, enabling the cloud to encode the values
with zero noise. This strategy allows private information from
the user to be mixed with non-private data. We emphasize that
this is a secure operation; assuming one of the operands is a
secure ciphertext with noise, the output of a mixed operation
will have a noise level greater than or equal to the highest
noise level in the operands. For neural network inference,

REDsec converts weights and biases into noiseless constants to
interface with the user inputs (encrypted with the secret key).

IV. DESCRIPTION OF OUR FRAMEWORK

A. Model Generation and Training
In order to make our REDsec framework more accessi-

ble, we developed a bespoke compiler for bring-your-own
encrypted neural networks. First, the REDsec model generator
script generates a CSV netlist. This CSV netlist outlines each
neural network layer, listing the convolution dimensions, pool-
ing options, batch normalization, and dropout requirements of
the desired network. After the REDsec model generator outputs
the CSV netlist, the REDsec compiler can be used on the netlist
to generate the training and secure inference code.

For training, the source code output is a Jupyter notebook
file that leverages TensorFlow and the Larq library. This
notebook file can be executed locally using Jupyter or run
on cloud hosts (e.g., one can use Google Colab for debugging
or rapid prototyping). After the proper training and validation
dataset files are uploaded and linked, REDsec is ready to
train the network. As soon as the network is trained in
TensorFlow, a final weight extraction and compression is per-
formed. The REDsec integrated weight converter transforms
TensorFlow’s floating-point weights to ternary weights and
combines different offsets, as mentioned in Section III-C2.
Finally, the converter outputs a compressed weight file for
secure inference.

B. Secure BNN Inference with REDsec
The inference code consists of C++ and CUDA modules

which are run on the cloud to perform classification in FHE.

Server Modules. After invoking the compiler in the training
step, the cloud service provider should have a compressed
weights file and high-level neural network code modules,
which are fully integrated with the REDsec library. Once the
server receives a client’s evaluation key, it can begin encrypting
the weights and biases as constants (noiseless ciphertexts) prior
to receiving secure inputs uploaded by users. After the cloud
prepares the encrypted weights and biases, the user can send
an inference request and encrypted input data to be classified.
The cloud can then execute the generated net code and send the
encrypted result back to the user. As it is possible to encode
multiple bits in a single ciphertext, the generated net code
takes advantage of this to minimize communication overhead
and memory consumption by packing results of classification
into a single ciphertext per class.

Client Modules. Three programs are run on the client-side,
none of which are computationally demanding. The first is a
key generation process that allows users to specify a security
level (in bits) and creates a homomorphic keypair. The user
must also upload the evaluation key directly to the cloud server
for the FHE inference procedure. Next, the user can utilize
the second client module to prepare any inputs for secure
inference: the raw bytes of the image are read, and checks
are performed to ensure that the image is compliant with the
network architecture. The values of each pixel are encrypted
as an array of eight ciphertexts in the binary domain (since the
value can vary from 0-255). The user uploads these ciphertexts
to the cloud server to start the outsourced secure inference.
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Fig. 2. REDsec C++/Cuda Library: Overview of different REDsec modules
(described in Section IV-C1).

Lastly, when the cloud produces the encrypted results (which
encode the scores for each class), the user can use the third
client module for decryption. The class with the highest score
indicates the most likely match with the input image and can
be computed by taking the max of the values for all classes.

C. REDsec Library Implementation

The REDsec library contains our implementations of the
TFHE machine learning circuits. For additional flexibility,
it can be compiled in unencrypted mode for debugging, or
encrypted mode for evaluation. This section gives an overview
of the library and the optimizations that were contributed.

1) Library Structure: The REDsec library contains the
following layers of abstraction, as illustrated in Figure 2:

• Layer. The layer library encapsulates convolution,
pooling, batch normalization, and activation into a sin-
gle object. The layer object ensures the proper order of
these functions to preserve the REDsec optimizations.

• Func. This level of abstraction contains optimized im-
plementations of convolution, fully connected, pool-
ing, batch normalization, and quantize activation func-
tions. OpenMP-based parallelization is also incorpo-
rated at this level.

• Ops. The Ops layer contains basic, low-level logic
and arithmetic circuits that directly invoke the under-
lying cryptographic library. This level of abstraction
offers encrypted operation implementations. REDsec
supports encrypted operations in CUDA for GPU-
based systems and C++ for CPU-based systems.

In addition to these levels of abstraction, we subdivide the
functions into integer and binary components based on the
layer input. Therefore, the user can use integer layers for higher
accuracy or binary layers for speed.

2) Encrypted Circuit Designs: The goal of the homo-
morphic circuits is to minimize the noise growth in the
ciphertexts to delay bootstrapping as long as possible. REDsec
attempts to bootstrap only when a conversion between the
integer and binary domains is required, thus accomplishing
conversion and noise reduction at the same time. This sub-
section outlines the core building blocks of homomorphic
inference used to construct the different network layers.

Adder constructions. We observe that bitwise-adder circuits
form the most computationally expensive operations. For adder

circuit designs, the basic building block is a full adder using
two XOR gates, two AND gates, and an OR gate. The high
cost of using binary adder circuits is the bootstrapping re-
quired to evaluate it successfully. The core problem is that
noise accumulates in the carry critical path, leading to more
bootstraps and longer latency. Even the carry-lookahead has
many bivariate logic in its critical path. Instead, we use a
bidirectional bridging technique mentioned in section III-D
to perform additions in the integer domain. REDsec uses
the unique properties of the TFHE bootstrap, to rescale the
ciphertexts from the binary message space to an integer space
(modulo an integer representing the total number of regions
on the TFHE torus). This allows us to use the natural FHE
addition operation instead of a costly adder circuit composed of
logic gates to compute the sum of two ciphertexts. Compared
to the naive approach in gate bootstrapping mode that requires
five bootstraps per bit of ciphertext, we can accomplish this
procedure for the total cost of a single bootstrap for the
conversion plus the cost of a single ciphertext addition. As long
as the number of torus regions is sufficiently large to represent
the range of desired plaintext values and the ciphertext noise
is sufficiently low, there will be no rounding errors.

Multiplication. Multiplication circuits are among the slowest
to execute in TFHE. However, because REDsec constructs
BNNs instead of full-precision networks, the multiplication
operation is simply a single homomorphic NOT operation
and plaintext selector. In the TFHE cryptosystem, this NOT
operation does not require a bootstrap procedure and becomes
among the fastest operations in REDsec networks.

Our multiplication procedure also enables the concept of
data reuse, allowing ciphertext inputs to only be “multiplied”
twice for the {−1,+1} weights. As a result, we only need
to bridge these two results, or twice per input, instead of
bridging after every multiplication. Notably, without our data
reuse innovation, bridging costs would be on the order of 85×
slower. Therefore, our data reuse approach enables us to run
bidirectional bridging, and take advantage of the integer adder
construction described above.

Activation. The most efficient operation in REDsec is the
computation of the sign function, which is used as the ac-
tivation function for REDsec networks. While other works
that utilize the sign function need to extract the top bit of
a ciphertext representing integers, which is an expensive and
complicated operation, or perform a programmable bootstrap,
we only need to make a copy of the ciphertext representing the
MSB of the ciphertext vector, assuming the current encrypted
value is represented in the binary domain. This operation is
fast, accumulates no noise, and is essentially free, which is a
major motivation for using BNNs and treating ciphertexts as
individual bits for certain operations in the first place.

The discretized ReLU activation function is more involved
since the magnitude of the output must be preserved. Because
of this, the convolution output must be multiplied by the
BatchNorm slope. This is a fairly noisy operation that increases
the bit size of the ciphertext, followed by a large-bit addition.
Since arithmetic circuits are inefficient in the binary domain,
we opt to do these operations directly over the integers. Then,
we utilize bridging to convert to the binary domain since the
remaining operations are exclusively bitwise. We perform a
shift operation followed by the ReLU procedure, which can
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be calculated using a bitwise AND with the inverse of the sign
bit, which can be extracted for free in the binary domain.

Updates in (RED)cuFHE. Both the TFHE and cuFHE li-
braries only exposed bootstrapped gate functions to users. Even
though the bootstrapped operations are much faster on GPUs,
they are still orders of magnitude slower than their leveled
equivalents. Therefore, (RED)cuFHE constructs leveled oper-
ations to fit with our lazy bootstrapping paradigm and offers
redesigned ciphertext structures that can track the current noise
variance. We remark that this variable accumulates differently
for various operations involving encrypted data. In REDsec,
this enables the proposed auto-tuning feature to predict the
best places in the network to insert bootstrapping operations.
Moreover, we parameterize (RED)cuFHE to allow for different
configurations corresponding to various security levels, as
determined using the LWE estimator framework [2].

Notably, previous work in cuFHE only supports HE oper-
ations on a single GPU, which limits the amount of potential
parallelism. Conversely, (RED)cuFHE supports an arbitrary
number of GPUs regardless of whether or not shared mem-
ory is available. Furthermore, we give cloud servers more
control over ciphertext memory transfers between the CPU
and GPUs. Each 2-input gate evaluation requires three total
memory transfers: two transmissions from the CPU to the
GPU for the ciphertext inputs and one transmission from the
GPU to the CPU for the ciphertext output. For programs that
consecutively operate on ciphertext objects repeatedly (as in
the case of BNN inference), this approach is highly inefficient
and results in large communication overheads due to the size
of HE ciphertexts. In (RED)cuFHE, cloud servers can transmit
encrypted user data at the start of program execution (i.e. prior
to inference in the case of REDsec), keep the data on GPUs
until all HE operations are complete, and then transmit the
output ciphertexts back to the CPU.

V. EXPERIMENTAL EVALUATION

To verify and test the efficiency of our framework, we
conduct experiments using several network architectures to
classify images from three datasets at various levels of com-
plexity. We employ a g4dn.metal AWS instance for GPU
experiments, hosting eight NVIDIA T4 GPUs (compute ca-
pability 7.5) with 40 streaming multiprocessors each, and 96
vCPU cores running at 2.5 GHz. For CPU experiments, we use
an r5.24xlarge AWS instance, which offers 96 vCPUs running
at 3.1 GHz. We configure both (RED)cuFHE and TFHE for
128 bits of security; specifically, we employ a ring dimension
of 1024, an LWE dimension of 630, and an error distribution
with a standard deviation of 2−15. We also base our
comparisons on the number of multiply-accumulate operations
(MACs). MACs influence the complexity of a network as
it is the core computational cost of homomorphic inference
procedures. As such, MAC costs reflect the efficiency of the
inference procedure; the lower the MAC latency, the faster the
classification becomes.

A. Impact of Optimizations
The REDsec framework incorporates many new innova-

tions for binary and ternary neural networks. Specifically,
the use of NOT gates for multiplications, data re-use, and
bidirectional bridging are contributions whose speedup can be
determined directly. All experiments in Figs. 3 and 4 use an

Fig. 3. Layer Optimizations: We compare REDsec to existing implementa-
tions using a fully connected layer of various input-output sizes. The XNOR
and lweAddMulTo use the REDsec framework with modified convolution
functions. The XNOR implementation includes bridging for integer additions,
but performs multiplications with the standard XNOR. The integer domain
comparison assumes no bridging, and uses lweAddMulTo (as used by FHE-
DiNN [7]). The integer input implementation assumes a 10-bit integer input.

Fig. 4. Layer Optimizations: We compare with the standard gate bootstrap-
ping methodology, where binary addition is performed with boolean gates
and each gate is bootstrapped. We also report the impact of our data reuse
methodology to emphasize the benefits of our ML optimizations. Data reuse
eliminates the need for a bootstrap after multiplication, which in turn allows
for bridging without a high-performance impact. Our results in magenta are
identical to those shown in Fig. 3.

r5.24xlarge AWS instance and the REDsec framework with
modified convolution functions. Results were obtained running
a four-hidden layer neural network. Fully connected com-
prises 1024–1024–512–512 output neurons, and convolution
comprises 128–128–256–256 output neurons with a 3 × 3
convolution window on a 32× 32 image using same padding.

Bidirectional Bridging. Our bidirectional bridging allows
REDsec to take advantage of both binary and ternary opera-
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tions. One branch of prior FHE works operate in the binary
domain [52], [78], with runtimes for MNIST networks in the
order of hours due to inefficient adder circuits. Other FHE
works operate exclusively in the integer domain [7], and cannot
take advantage of any binary optimizations. Notably, REDsec’s
bidirectional bridging innovation enables our framework to
benefit from both domains. A comparison between REDsec
and integer domain calculations is shown in Fig. 3 for fully
connected and convolution layers.

NOT-gate. Prior BNN works typically use the XNOR gate
for multiplication, requiring a bootstrap for TFHE. Instead,
REDsec uses the NOT gate and achieve considerable speedups
for both fully connected and convolution layers for integer and
binary inputs (Fig. 3). This is more pronounced with integer
inputs, since the multiplication is more complex; with binary
inputs, the observed cost of convolution is mostly attributed to
bridging and integer addition.

Data Reuse. Comparing data re-use experimentally is a
challenge since this is needed for efficient bridging. If no
data re-use is applied, then we would need to bridge after
every multiplication. Our experimental results for a variety of
layer configurations (Fig. 4) show that data reuse for efficient
bridging reduces latency by up to two orders of magnitude. Re-
using data to enable efficient bridging is a key contribution in
REDsec.

Lazy Bootstrapping. The lazy bootstrap measures noise
growth during the first run of the neural network to determine
the optimal bootstrapping locations. The alternative in TFHE is
gate bootstrapping, where a bootstrap is performed after every
logic operation. This aligns closely with the methodology
employed by SHE [52]. Our lazy bootstrapping procedure also
cuts down computation time by two orders of magnitude, as
shown in Fig. 4. Overall, Fig. 4 demonstrates that without our
data reuse and gate bootstrapping optimizations, the runtime of
our fully connected layers is three orders of magnitude slower.

B. Fully Homomorphic Inference Results
The REDsec experimental results for various neural net-

work architectures and network characteristics are shown in
Table II. We preprocess all networks using a subtraction
operation to center the pixels around 0. We do not include the
time required for key I/O and memory allocation when timing
the inference procedure. Instead, we compute an amortized
cost over five back-to-back inferences after completing this
setup phase. Specifically for GPU evaluation, this setup time
can take up to a few minutes depending on the complexity of
the network in order to allocate pinned memory regions on the
host and device memory to prepare for subsequent inferences.
However, we remark that this is a one-time cost, and the
server can run an arbitrary number of inference procedures
in a session without re-allocating memory. These setup costs
are not included in our inference measurements. However, we
include the time taken for the user to encrypt an image and
decrypt the classification results and find that this takes less
than 3 seconds on a single CPU core for all configurations.

MNIST. For our experiments that evaluate the MNIST digit
dataset, we use networks called Sign1024x1, Sign1024x2, and
Sign1024x3. These networks have have 1,2 and 3 intermediate
layers of 1024 neurons respectively (plus the final 10 neuron
output layer), all with binary activations. The ReLU1024x1,

TABLE II. SECURE INFERENCE EXPERIMENTS: THE FIVE
NETWORKS ARE EVALUATED USING FHE WITH 128-BITS OF SECURITY.

Sign1024x3 ReLU1024x3 BNetS BNet BAlexNet

DataSet MNIST MNIST CIFAR-10 CIFAR-10 ImageNet
Input Size 28x28x1 28x28x1 32x32x3 32x32x3 224x224x3
Activations Sign ReLU Sign Sign Sign
Classes 10 10 10 10 1000
Layers 4 4 8 9 8
Int MACs 0 2.3M 1.6M 3.1M 72.9M
Bin MACs 2.3M 0 58.4M 511.0M 768.5M
Bin Weights 2.3M 2.3M 2.0M 10.4M 61.8M
Int Weights 3.1k 6.1k 1.7k 3.9k 11.4k
CPU-Eval (s) 12.3 18.4 1081 4622 7472.2
GPU-Eval (s) 3.6 8.2 229 1769.4 5918.5
Encrypt+Decrypt2 (s) 1.4 1.4 1.4 1.4 2.6
Communication (MB) 1.9 1.9 7.5 7.5 367.5
Accuracy (%) 98.0 99.0 81.9 88.5 61.5 1

1Top-5 accuracy, as taken from pre-trained BYON benchmark [45].
2Combined client encryption/decryption on an Intel i7-8650U CPU.

Fig. 5. Performance Profiling: The timing breakdowns for each MNIST
network is shown. ReLUs are more expensive than sign, but are found to
improve accuracy. Binary convolutions are more memory-sensitive than integer
convolutions on the GPU, resulting in higher latency for this layer.

ReLU1024x2 and ReLU1024x3 represent identical networks,
except with ReLU activations. An encrypted 2x2 SumPool was
placed at the beginning of the network to reduce the input size.
For the Sign1024x3 network, we achieve 98.0% accuracy. The
ReLU networks have significantly higher accuracy of 99.0%,
although they are slower due to an additional bootstrap per
neuron attributed to an integer-integer BatchNorm multiplica-
tion. The total inference times and the profiling of individual
operations are presented in Figs. 5-6.

In addition to these base networks, we also ran smaller
networks at 80-bits of security on a CPU host. In particular,
using an AWS r5.24xlarge instance, REDsec’s ReLU184x1

networks was evaluated in 2.2896s with 97.2% accuracy.

CIFAR. We use two architectures based on a CIFAR-10 BNN
design from BinaryNet [17]. The BNetS network is a scaled-
down version of the original network design and was optimized
for speed while maintaining acceptable levels of accuracy. The
resulting network uses valid padding and half of the depth
of the original BinaryNet architecture in [17]. Notably, this
provides an excellent middle-ground benchmark between the
relatively simple MNIST network designs and the far more
complicated full BNet and AlexNet networks.

ImageNet. For the ImageNet network with 1000 classes, we
used an open-sourced pretrained version of BinaryAlexNet
for our evaluation [45]. Since REDsec is the first known
homomorphic implementation of a network this size, we hope
future works can use this common benchmark to compare
efficiency across different homomorphic encryption schemes.
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Fig. 6. MNIST Performance: We compare accuracy vs. latency for
various works and neural network types. REDsec networks achieve higher
accuracy with lower latency than earlier works, while REDsec does not
suffer from rounding errors from programmable bootstrapping methods as in
Concrete [13]. In addition, REDsec’s ReLU1024x3 network can run faster than
Concrete’s NN-100 architecture, even with more than double the estimated
multiply-accumulate (MAC) operations. All experiments are configured for
128 bits of security (except TAPAS that only supports 80 bits). REDsec uses
ternary weight MNIST networks discussed in Section V-B.

Fig. 7. Experimental Comparison of Weight Size: We report the accuracy
for our MNIST and CIFAR-10 networks for different weight sizes. All
networks use the same training scripts, only differing the weight size. The
Larq library provides only limited support to full precision weights with sign
activation. Details about BNN accuracy are provided in Section II-B.

For this network, we found that despite the memory transfer
costs just outlined for GPU evaluation, REDsec can achieve
homomorphic inference speeds of about 1.64 hours for the
BinaryAlexNet with 128 bits of security (Table II). Overall,
REDsec’s performance benefits span a diverse set of network
architectures with varying depths and complexity.

C. Accuracy Comparisons
Our Figure 7 presents accuracy comparisons for different

weight sizes. Using ReLU activations helps prevent loss of
information compared to sign, allowing us to achieve similar
accuracy to floating point weight networks. We further found
the latency for REDsec’s ternary weight networks to be similar
compared to the binary weight counterparts, with ternary
achieving a 1-2% speedup on average. Our discussion about
BNN accuracy and applications is found in Section II-B.

VI. RELATED WORKS

Secure inference has three different branches of solutions:
multi-party computation, pure LHE, and FHE solutions. A
comparison of features in relevant secure inference works is
summarized in Table IV. A direct comparison of experimental
results for FHE solutions are shown in Figure 6 and Table III.

A. Multi-Party Computation Solutions
The first class of secure inference solutions involves multi-

party computation [4], [39], [41], [43], [51], [57], [69], [72],
[83], [86]. These schemes typically send the data back to the
user after every layer and require them to perform the non-
linear activation function. This model benefits from its ability
to apply normal activation functions, such as ReLU or sigmoid.
However, this imposes a significant computational overhead
on the user, which is incompatible with “fire-and-forget” style
MLaaS applications. It also incurs communication overheads
of hundreds of megabytes to gigabytes [39], [72]. Recent
works such as Falcon [86] and CryptGPU [83] decrease this
overhead. Also, several models use multiple servers and as-
sume non-collusion, which may not always be guaranteed [43],
[86]. REDsec supports non-linear activation functions while
allowing for completely outsourced computation on a single
server. Likewise, REDsec also supports the sign activation
function, which is a popular choice for binary neural networks
and can be evaluated very efficiently. Finally, some MPC works
require clients to hold garbled circuits locally, resulting in large
amounts of memory storage, which is typically infeasible for
embedded edge and IoT devices [44]. Two MPC solutions
that use binary neural networks are XONN and Samragh
et al. [72], [77]. They propose using the garbled circuit
protocol to speed up additions and a comparison-based sign
function. Although Samragh et al. exhibit faster runtime and
lower communication overhead than XONN, the limitations of
residual communication costs and the requirement of involving
the user in the calculation are still present. This is in addition
to the other challenges of MPC methods already discussed.
B. Leveled Homomorphic Solutions

The second class of secure inference solutions is the pure
LHE solution, including the works of CryptoNets [31], Faster
CryptoNets [15], n-Graph HE [5] and CryptoDL [35]. These
schemes use polynomial activations, including the square
function x2 [31], trained quadratic functions a · x2 + b · x
[5] and n-degree polynomials for ReLU, tanh and sigmoid
approximations [35]. These approximations either suffer from
accuracy loss or generate a lot of noise as more terms must be
evaluated for higher precision [60]. The polynomial activation
functions lack plaintext library support since neural networks
need to train on exact functions.

In addition, LHE schemes also use a technique called
batching to improve data throughput. This technique allows
users to upload multiple images at a time. However, despite
high throughputs, the latency is also high. Notably, these
schemes do not support bootstrapping, which effectively limits
applicability for deep FHE circuits. This is a key reason why
batching does not play a large role in FHE evaluation: most
users will not be able to take advantage of the high number
of slots that batching provides (typically up to 8192 slots),
as this would require an individual user upload thousands of
images to be classified at once. On the other hand, REDsec is
optimized for low latency through its use of the TFHE library.
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TABLE III. NETWORK MODEL COMPARISON: MAX MACS
CORRESPONDS TO THE LARGEST EXPERIMENTAL MODEL IN MILLIONS OF

MULTIPLY-ACCUMULATE (MAC) OPERATIONS. REDSEC SCALES TO
NETWORKS 10× LARGER THAN THE CONCRETE AND SHE FRAMEWORKS,

AND ORDERS OF MAGNITUDE LARGER THAN FHE-DINN.

Performance REDsec Concrete FHE-DiNN TAPAS SHE
(this work) [13] [7] [78] [52]

Biggest Dataset1 ImageNet MNIST MNIST MNIST ImageNet2

Solution FHE FHE FHE FHE LHE

Max MACs (M) 841.3 ∼1.0 0.02 1.9 28
Weight Size Micro Small Small Small Small
Training Lib. TensorFlow N/A Custom Custom N/A
Input Type Int Int Bin Int Int

Weight Type Tern Int Int Bin Scaled
Activ. Type Bin/Int Int Bin Bin Int

MNIST Train Time4 5 minutes N/A3 11 hours 4.5 hours N/A3

1Corresponds to the largest dataset that has actually been implemented.
2SHE uses ShuffleNet [90], which is an ImageNet architecture one order of magnitude

smaller than AlexNet [42].
3No known open source implementation of neural networks.
4Based on a ReLU1024x1 network.

Finally, LHE schemes are not scalable to deeper networks
due to noise. One can use bootstrapping to make these schemes
(e.g., BGV and CKKS) FHE, but preliminary results in this
area have yielded prohibitively slow evaluation times. In the
case of CKKS, Lee et al. demonstrated that inference using
a ResNet-20 model on the CIFAR-10 dataset takes approxi-
mately four hours [48]. Conversely, our approach uses TFHE-
based schemes that offer efficient bootstrapping methods and
allow for BYON architectures with unlimited depth.

One LHE BNN work [66] proposes a three-party threat
model for MLaaS. Their system assumes an edge device with
private user data, a company server run by the edge device
maker, and a cloud server that owns the model. The cloud
server divides the model into full-precision and BNN layers.
It sends the full-precision layers to the edge device company
server. The user gives this server private data, which is run in
the clear through part of the network. The result is transmitted
to the cloud server, which uses HE to run the BNN layers and
the model is protected since the edge server can’t access the
entire model. However, it assumes that the server can be trusted
with sensitive data and requires the edge device company to
maintain an expensive server. REDsec can also support this
threat model, but practical use cases are more limited due to
these drawbacks. In addition, their implementation uses the
SEAL library, which only supports LHE. Therefore, they can
only run a few HE BNN layers at a time [66].

Another leveled homomorphic work is SHE (by Lou and
Jiang [52]), which differs from previous networks in that it uses
a leveled variant of TFHE. SHE also offers partial support
for FHE, but these results are extrapolated and practically
infeasible. Lou and Jiang also discuss the implementation of
a full-precision neural network by approximating weights to a
power of two, and this multiplication optimization allows the
circuit to be an XNOR followed by a bitshift [52]. Although
mixed-precision BNNs sometimes use this technique, it is not
yet supported in the current version of the Larq library [27],
[50], [52], [80], [93]. The main limitation of SHE is that it
builds its architecture upon the Boolean logic gate operation in
TFHE, which is inherently very slow. This increases inference
times compared to using integer arithmetic [14], [52]. Since
bootstrapping is not utilized in the leveled mode of operation

in SHE, the network still suffers from the scalability problems
discussed for other LHE frameworks. For FHE mode, Lou and
Jiang extrapolate that their framework in gate bootstrapping
mode would take over 3 hours to run MNIST inference (our
work performs inference in 2.3 seconds for the same 80-bit
security level). When evaluating on the same r5.24xlarge AWS
instance as REDsec, SHE took 627 seconds for a single 1024-
length dot product; REDsec computes thousands of these dot
products in our MNIST networks in just a few seconds. While
SHE has no working AlexNex implementation, its authors
extrapolate that a leveled implementation would take 24.7
hours to run [52], compared to our experimental evaluation
of AlexNet that runs in 1.64 hours. Finally, the available
implementation of SHE covers only basic functional units
instead of a complete secure inference neural network [53].

C. Fully Homomorphic Solutions
The third class are FHE solutions, including REDsec.

Compared to other FHE works, and all other works, REDsec
has the most robust support for various types of ML layers
as shown in Table IV. It also supports cleartext weights
as well as large datasets (indicated by the full circles in
the Table). Few existing works use the FHE approach, but
since the introduction of TFHE with its efficient bootstrapping
procedure, several works have proposed related solutions, as
summarized in Tables III and IV.

DOReN [55] improves on SHE with an updated Boolean
adder design. However, as discussed, adders are inefficient
due to the large circuits required to evaluate them. REDsec’s
bridging implementation is far more efficient than gate boot-
strapping implementations, as shown in Figs. 3 and 4. DOReN
also uses the high-throughput, high-latency BGV library, which
has significantly slower bootstrapping times than TFHE. As
a result, DOReN’s smallest CIFAR-10 network has a 9 hour
latency with 73.9% accuracy, which is significantly slower
and less accurate than REDsec (Table II). FHE-DiNN [7]
uses binary neural networks to achieve inference, and its
main innovation is the programmable bootstrapping operation,
where a lookup table is used during a bootstrap to evaluate
an activation function. While this allows for generic non-
linear activations, the sign function can be calculated very
efficiently for our scheme in the binary representation. In
addition, REDsec optimizes convolution, max pooling, sum
pooling, and leveled operations through the use of bridging,
all of which FHE-DiNN does not support. Fig. 6 compares
to FHE-DiNN’s 30-neuron single hidden layer network using
an r5.24xlarge instance. Finally, FHE-DiNN is harder to train,
not configurable, and relies on a custom Keras implementation
instead of an optimized library for BNN training [6], [7]. This
lack of support makes it challenging to use in practice.

Another contemporary work called Concrete focuses on
developing integer-based functions with programmable boot-
strapping [13]. Their sample neural network codebase is not
published, making it difficult to compare to our work [89].
Nevertheless, based on the description, their biggest network
has around one million multiply-accumulate (MAC) operations
(92 inputs·92 outputs·100 layers) [13]. As a comparison, our
ReLU1024x3 had 2.3 million MAC operations (and a corre-
sponding higher accuracy), and our AlexNet has 841 million
MAC operations. Also, our max operation for MaxPooling
does not require a bootstrap for standard window sizes, unlike
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TABLE IV. COMPARISON OF COMMON NN FEATURES: SUMMARY OF NN FEATURES AVAILABLE INTO THE PRIVACY-PRESERVING DOMAIN.

Dataset ≤ 2 Conv- Fully Batch Sign Int. Comm. Client
Features FHE Size3 Parties4 olution Connected MaxPool SumPool Norm Activ. ReLU Inputs Configurable5 Implemented 6 Overhead7 Storage

Cheetah [69] 1 1 GB GB
Gazelle [39] 1 1 GB GB

SecureML [57] 1 GB GB
XONN [72] 1 1 1 1 GB GB
MP2ML [4] 1 1 GB GB

MiniONN [51] 1 1 1 1 1 GB GB
Falcon [86] 1 1 1 1 MB/GB GB

CryptFlow [43] 1 1 GB GB
CryptGPU [83] 1 1 1 1 1 MB/GB GB
CryptTen [41] 1 1 1 1 1 1 GB GB

CryptoNets [31] GB MB
Faster CryptoNets [15] 2 GB MB

n-GraphHE [5] GB MB
CryptoDL [35] 2 GB MB

Concrete [13] MB MB
FHE-Dinn [7] MB MB
Hopfield [38] MB MB

SHE [52] MB MB
DOReN [55] MB MB
Tapas [78] MB MB

REDsec MB MB

1Requires more than one computing parties. 2 Operations are polynomial approximations. 3Dataset size on scale of MNIST CIFAR10 Imagenet.
4A third computing party is not required. 5Open sourced framework with bring-your-own-network.
6Results from actual implementation, not extrapolated. 7Communication overhead of AlexNet-sized networks.

Concrete, and our convolution requires one bootstrap for each
input, where Concrete requires two bootstraps for every multi-
plication operation [13]. Further, programmable bootstrapping
yields low precision with efficient parameters, which results in
rounding errors; this is evident in the fact that deeper networks
with more layers result in less accuracy. Concrete’s NN-20
network for MNIST classification offers 97.1% accuracy while
the NN-100 (5× more layers) only yields 83.0% classification
accuracy [13]. Fig. 6 shows this accuracy degradation, and
REDsec’s ability to achieve higher accuracy for lower latency.

TAPAS presents theoretical approaches to secure inference
[78]. A 1024x2 MNIST network on TAPAS on the same
96-core AWS instance used for REDsec, ran in 380.5 min-
utes with an accuracy of 98.5%. This is more than three
orders of magnitude slower than REDsec for comparable
accuracy and lower security (Fig. 6). In addition, they did
not explore implementation details such as ternary networks,
data reuse, and integer activations. Finally, since there is no
material neural network, it remains difficult for future works
to expand on their approach. A Hopfield network architecture
was recently proposed for secure inference [38], which is a
binary recurrent neural network of one or a few layers. It
was first proposed as an early machine learning networks,
and some recent applications have made use of them because
neurons can run independently in parallel [36], [81]. Given its
binary nature, this network architecture is a good choice for
FHE inference, but it is not as widely used as conventional
BNNs for most applications [38], [80]. This solution also
uses a small dataset of faces and requires heavy unencrypted
preprocessing and feature extraction of facial images by the
user. We observe that in terms of multiply-accumulate (MAC)
operations, this network is several thousand times smaller than
the BinaryAlexNet evaluated in our work.

VII. FUTURE WORK

REDsec and other FHE works [7], [13], [52] assume an
honest user and an honest-but-curious cloud which evaluates

the function correctly but attempts to glean information about
user inputs. In future work, we will expand the current FHE
threat model to include malicious users; specifically, we will
investigate adversarial machine learning attacks on the model’s
intellectual property, which can be performed on any MLaaS
model but requires a high number of queries and can only
produce an accuracy close to the original model [16], [64],
[84], [88]. This is an important research direction as privacy-
preserving ML solutions often avoid implementing a max
function for outputs, which can make model inversion attacks
theoretically possible. Fortunately, binary neural networks are
less prone to adversarial attacks [26], [85]. In future work,
we plan on investigating efficient FHE defenses against these
threat models. Further, we will incorporate residual networks
(like ResNet) in REDsec to allow for different styles of DNNs
and determine the feasibility of FHE for these networks.

VIII. CONCLUSION

In this work, we present REDsec, an end-to-end framework
for binary and ternary neural network training and secure infer-
ence using fully homomorphic encryption. To enable BYON
support, we incorporate a compiler to output both TensorFlow
training and secure inference code for easy adoption by data
scientists and researchers. Our framework exploits binary and
ternary network operations to select FHE-friendly functions for
convolution, fully connected, max pooling, average pooling,
ReLU, and quantization activation layers. Furthermore, we
introduce the (RED)cuFHE library for state-of-the-art GPU
acceleration of TFHE, with support for multiple GPUs, GPU
data transfer coordination, encryption of constants, leveled
gate operations, data reuse and bridging between binary and
integer ciphertexts to optimize FHE operation performance.
We demonstrate the benefits of our framework by evaluating
MNIST, CIFAR-10, and ImageNet, and report significant per-
formance improvements compared to related works.
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RESOURCES

The REDsec framework and the (RED)cuFHE library are
available online as open-source software under the MIT license
[25], [32].
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APPENDIX A: DINN FOUNDATIONS IN REDSEC

In this appendix, we present the mathematical foundations
of our discretized neural networks. Basic concepts are adopted
from generic binary neural networks, and our contributions in
REDsec are explicitly labeled.

Binary-Integer Mappings. Before delving into mathematical
operations, it is important to understand the mappings between
the binary and integer domains. For binary inputs in the
convolution layer, such as after the sign activation function,
there are two possible integer values {-1,1} and three possible
weights values {-1,0,+1}. Realizing that zero is a special case,
we can map:

int 7→ bin (3)

−1 7→ 0 (4)

+1 7→ 1 (5)

and for ternary weights:

0 7→ 0.5. (6)

Ternary weights are added to the bias term, as explained below.
Integer inputs are taken at face value, and no special mapping
is required.

Multiply Accumulate. Multiply-accumulates (MACs) are
used in convolution and fully-connected layers. They are
described in section III-C1, and typically computed using an
XNOR gate. This is illustrated in Figure 8. For binary input
MACs, REDsec converts the XNOR into a homomorphic-
friendly NOT gate. Zero weights are mapped to 0.5. Since any
multiplied by zero is zero, we add this 0.5 to the bias as part
of weight preprocessing. For binary input layer, we use z to
denote the zero part of the offset term. Integer input MACs also
utilize the NOT gate by exploiting 2’s complement. Equation
1 was defined as:

−1 ∗ x = x+ 1. (7)

Multiplication by 1 is itself, and multiplication with 0 is 0 (so
no operation needs to be performed. for integer input layer, we
instead use z to denote the accumulated 2’s complement part
of the offset term.

BatchNorm. BatchNorm is useful in training to recenter the
binary neural networks around 0 with a standard deviation of
1. This function is essential for binary neural networks and is
studied for BNNs in Ding et. al. [20]. BatchNorm is placed
before the activation function, and take the form of

BN(x+ z) =
(x+ z)− µ√

σ2 + ε
· γ + β (8)

where µ is the output mean during training, σ is the output
standard deviation during training, ε is a small amount to
prevent division by 0, and β is a learned bias offset. This
can be converted into the form

BN(x) = m · x+ b (9)

m =
γ√
σ2 + η

(10)

b = β − µ · γ√
σ2 + η

+
z√
σ2 + η

(11)

Addition scaling factors are multiplicative applied to the m and
b to adjust for the mappings. For binary inputs, this scaling
factor is always 1/2; an increase of 1 in integer domain
corresponds to an increase in 0.5 in binary, according to
Equations 3-5. For integer inputs, it varies based on the input
size; tensorflow maps from -1 to +1, but out network may map
from -255 to +255.

For binary outputs (i.e., sign), the only the sign of the slope
needs to be taken into account since sign(mx) = sign(m) ∗
sign(x). REDsec adjusts for negative slopes in the following
layer. For integer outputs (i.e., ReLU), the slope m needs to be
utilized. We scale m to a user defined integer (we use 8-bits
in our experiments). Note that additional training must be run,
freezing BatchNorm weights for and allowing the network to
adjust to the rounded integer values. This technique is common
to most BNN networks [20].

Activation. The sign binary output activation function is
straightforward. For binary-input binary-outputs the REDsec
weight preprocessor adjusts the bias b from Equation 9 to
map 0 in the integer domain to a power of 2 in the binary
domain such that the MSB is 1 for all positive numbers.
Then REDsec binarizes the ciphertext to extract individual
bits, and performs a bitshift to extract the most significant

16



(a) Strategies (b) Truth Tables

Fig. 8. Integer to Logical Space: The core idea behind BNNs is that
a complex multiplication operation reduces to an XNOR gate, with the {-
1,1} in the integer domain mapping to {0,1} in the XNOR truth table. In
the encrypted domain, when the weight (W) is known to the server, REDsec
applies either the NOT gate (if W=0) or a copy operation (if W=1) to the
ciphertext (C) instead of the noisy and expensive homomorphic XNOR gate.

bit, representing positive numbers. For integer-input binary-
output, a similar process followed, but the ciphertext is already
centered around 0 and REDsec just needs to extract the sign
bit. Here, bridging to the binary domain and bit extraction
techniques are novel to REDsec.

The discretized ReLU function is more complex. The
TensorFlow implementation follows the form of

ReLUDoReFa(x) =


0 x <

1

2n
i

n

2i− 1

2n
< x <

2i+ 1

2n

1 x >
2n− 1

2n

(12)

where i is the output discretized value, and n is the max
value n = 2qbits − 1. The output is a clipped ReLU, with

outputs rounded to the nearest
1

n+ 1
. To accomplish this

homomorphically, REDsec first applies batch norm through
Equation 9 by multiplying by the slope m and adding the
bias offset b. Then REDsec bridges to get a bit representation
of the ciphertext. These bits are shifted to rescale after the
multiplication and discretize the output. Then a ReLU is
performed by AND-ing with the inverse of the sign bit. Finally,
we use OR gates to clip the output values to 1.

Further Comparisons with TAPAS: TAPAS utilizes a dif-
ferent integer-to-binary mapping than REDsec. Instead of a
mapping, they utilize a +1 trick that essentially maps −1 7→ 0
and +1 7→ +2. This approach requires a bitshift after addition
and TAPAS proposes using binary adders to accomplish this.
REDsec, on the other hand, utilizes the efficient NOT gate for
multiplication and bridges to the integer domain for addition.
REDsec found this bridging technique to be far more efficient

and scalable to wider bit networks than use of binary adders,
with many gate operations and noise accumulation in the carry
bits.

APPENDIX B: GPU MODULES FOR ENCRYPTED
COMPUTATION

GPUs speed up homomorphic operations significantly over
strictly CPU-based systems. For example, a GPU can achieve
over 37× speedup compared to a CPU for bootstrapping
operations using the TFHE scheme [59]. For this reason and
the fact that cloud instances with GPUs are widely available
(such as the P and G families of Amazon EC2 instances), our
REDsec library provides GPU support for all homomorphic
operations through the use of CUDA code, based on the
major (RED)cuFHE optimizations over prior works. Notably,
using our custom GPU scheduler, (RED)cuFHE can effectively
utilize GPU resources for any arbitrary number of available
GPUs.

REDsec uses each GPU streaming multiprocessor to handle
one homomorphic operation at a time across multiple threads,
whereas each CPU core handles one homomorphic operation.
While the high degree of parallelization in neural networks
helps accelerate plaintext inference, the comparatively high
computational cost of homomorphic operations limits the ef-
fectiveness of parallelization in the encrypted domain. Instead,
we focus on utilizing GPU resources and expand techniques
to accelerate expensive homomorphic operations such as boot-
strapping, which is the core bottleneck of private inference
with FHE.

In order to maximize resource utilization for any number
of GPUs, we leverage our custom scheduler to assign GPU
streams to CPU threads running inference operations. The
scheduler runs on a dedicated CPU thread that maintains an
array to keep track of resource utilization and uses shared
memory to direct CPU threads to specific GPUs and stream
handles. When a CPU thread needs to outsource FHE compu-
tation, the scheduler will assign the number of GPU streams
proportional to the work required by entering a shared, thread-
safe queue. The scheduler will return new stream handles
as they become available and when it is at the front of
the queue. In the meantime, the CPU thread can utilize its
currently assigned hardware resources while it waits for more
assignments. When possible, the scheduler will attempt to find
resources on a single GPU for any given CPU thread, as
communicating with multiple GPUs on a single thread will
result in unnecessary overheads. For instance, the CPU thread
will need to switch contexts and transfer data back and forth
between its assigned GPUs.
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