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process may require vendor involvement for using proprietary
APIs and performing security verification [9]. This can in-
crease the time-to-market for new third-party services.

We propose MyTEE to address the limitations of hosting
TEE on embedded devices. It is designed with the harsh
assumption that most TrustZone extensions are not supported
(other than the security state of the CPU). In other words,
TrustZone Address Space Controller (TZASC) and TrustZone
Memory Adapter (TZMA) for memory access control, and
TrustZone Protection Controller (TZPC) for establishing a
secure IO channel, are not supported. The input/output memory
management unit (IOMMU) for preventing malicious direct
memory access (DMA) is not available either. Without such
hardware security primitives, MyTEE isolates the TEE region,
prevents DMA attacks, and dynamically builds a secure IO
channel between the TEE and peripherals.

Memory protection is achieved by deliberately managing
the page tables. The stage-2 page table [15] (i.e., extended page
table on x86 [3]) that maps the intermediate physical addresses
to physical addresses is leveraged to isolate the TEE from
the untrusted OS. Part of MyTEE is implemented as a tiny
hypervisor, which can also be compromised. Because stage-
2 paging-based protection is not effective once the attacker
obtains hypervisor privileges, we also ensure that the page
table of the hypervisor does not map the TEE and is im-
mutable. However, even with careful management of the page
table, security of MyTEE could still be broken by malicious
DMA. To address this, we implemented a DMA filter that
traps, verifies, and emulates any memory-mapped IO (MMIO)
to the DMA controller. To realize secure IO, we delegated a
task to the untrusted OS that sends a request to the peripherals
(e.g., TPM commands) instead of porting the device drivers
in the TEE. Minimal but essential components for trustworthy
communication, such as the buffer for peripheral output and
MMIO region for peripheral controllers, are protected by the
stage-2 paging. Then, the partial code block of the device
driver is given hypervisor privilege to access the secure objects
and log the transactions for future validation by the trusted
application (TA).

We implemented MyTEE on a Raspberry Pi 3 development
board equipped with a Broadcom BCM2837 SoC that does
not support TrustZone extensions. OP-TEE [4] and Raspbian
OS with Linux 4.15 were hosted as the TEE and the rich
execution environment (REE) software platform, respectively.
The ARM trusted firmware was patched to enable memory
isolation. The DMA filter and MyTEE services (e.g., privilege
escalation of a device driver) were implemented as part of the

Abstract—We propose a solution, MyTEE, that enables a 
trusted execution environment (TEE) to be built even in worst-
case environments wherein major hardware security primitives 
(e.g., ARM TrustZone extensions for memory access control) are 
absent. Crafting page tables for memory isolation, filtering DMA 
packets, and enabling secure IO exist at the core of MyTEE. 
Particularly for secure IO, we shield the IO buffers and memory-
mapped registers of the controllers and securely escalate the 
privilege of the partial code block of the device drivers to provide 
permission to access the protected objects. By doing so, the need 
to host the device driver in the TEE (in whole or in part), which 
can potentially introduce a new attack surface, is exempted. 
The proof-of-concept (PoC) of MyTEE is implemented on the 
Raspberry Pi 3 board, which does not support most of the 
important security primitives for building the TEE. Additionally, 
three secure IO examples with the hardware TPM, framebuffer, 
and USB keyboard are demonstrated to show the feasibility of 
our approach.

I. INTRODUCTION

The trusted execution environment (TEE) is one of the 
reasonable security measures for protecting security-critical 
services and data on embedded devices. Particularly, consider-
ing ARM’s high market share in mobile and embedded devices 
(90% for mobile, IoT, and in-vehicle systems), TrustZone, 
the security extension of ARM processor, is the most potent 
measure to enable TEEs on embedded devices. It provides 
various security extensions, such as separating the security 
states of the CPU, hardware-based memory access control, and 
secure IO. Using such features, various TEE applications have 
been proposed [27], [28], [32], [33], [35], [38], [40], [41], [43],
[50], [52]–[54], [56], [57].

Despite its effectiveness and adoption in a wide range 
of research, deployment of the TEE in actual working en-
vironments is limited for the following reasons. Embedded 
devices sometimes are incomplete in their implementation 
of the hardware components required to build the TEE. For 
example, the Broadcom BCM2837 SoC [7], which is deployed 
in commercial devices [16] (e.g., smart hub), does not support 
TrustZone extensions for memory and peripheral isolation 
[12]. Even if the hardware components are available, the 
entire trusted application (TA) development (and deployment)
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Fig. 1: Communication channel between an application and a
peripheral.

tiny hypervisor’s trap handler. In particular, MyTEE services
were invoked by MyTEE APIs that are implanted in the device
drivers. Three example applications that build secure IO to
a TPM, framebuffer, and a USB keyboard were developed
using the APIs. During the performance evaluations, we ob-
served negligible overhead to the overall system. By contrast,
overhead of example applications was variable depending on
the type of peripheral and the baseline latency. Finally, the
contributions of this work can be summarized as follows:

• We propose MyTEE to build and strengthen the TEE,
even without the support of mandatory TrustZone
hardware extensions such as TZASC and TZPC.

• The secure IO can be established by equipping the
existing device drivers with MyTEE APIs instead of
hosting them in the TEE. The proposed scheme can
be readily extended to build secure IO channels with
various peripherals.

• The peripheral and controller device drivers for the
hardware TPM, framebuffer, and USB keyboard were
analyzed and then protected as MyTEE example appli-
cations to demonstrate the feasibility of our approach.

II. BACKGROUND

A. ARMv8 Architecture

Here, we discuss the security states of the CPU, TrustZone
extensions, and virtualization on the ARMv8.0 architecture.

Security states. On a TrustZone-enabled system, there are
two CPU security states: secure and non-secure. The non-
secure state provides three privilege modes: user, kernel, and
hypervisor. The rich execution environment (REE) runs in this
state. The security state of the CPU is changed to secure
to run security-critical software in the TEE. In general, the
user, kernel, and monitor modes are available in the secure
state (from ARMv8.4 onward, the hypervisor mode is also
supported). The software running in the monitor mode acts as
a gatekeeper between the REE and the TEE, and saves and
restores the context of each environment. Not limited to the
gatekeeper, the monitor mode is leveraged to implement the
kernel integrity monitor [27], [32].

TrustZone extensions. In addition to the security states of
CPU, TrustZone hardware extensions are defined and can be
integrated to a SoC. TZASC and TZMA enable the TEE
memory to be isolated from the rest of the system. Specifically,
they partition the memory regions and configure different
access permissions for each region in accordance with the
security state. For example, we can enforce that a memory
region allocated to the TEE is accessed only when the CPU
is in the secure state. TZPC dynamically changes the security

TABLE I: Example ARMv8-A based SoCs that lack TrustZone
extensions and their target device types.

Vendor SoC Secure State TZPC TZASC TZMA ISA Device
Broadcom BCM2837  # # # v8.0 I
Unisoc SC9863A  # # # v8.1 M, T
Amlogic G12A  # G# # v8.0 I
NXP LS1012ASN  G# # G# v8.0 I
MediaTek MT6739, 6765  # # # v8.0 M, T
Samsung Exynos 7570, 7578  # # # v8.0 M

 Supported, G# Presumably supported (not publicly opened), # Not supported, M: Mobile phone, T:
Tablet PC, I: IoT device

states of peripherals to either secure or non-secure. By using
this, a secure IO channel between the peripheral with secure
state and the TEE can be established.

Virtualization. ARM defines hardware-assisted virtualiza-
tion as a mandatory feature from ARMv8.0-A onward. The
stage-2 paging translates the intermediate physical address,
which is the physical address to the virtual machine view, to the
machine address. In addition, access permission to the machine
address can be configured in the stage-2 page table entry. Any
stage-2 paging fault (e.g., access violation) is trapped to the
hypervisor. The base address of the stage-2 page table is set
to the hypervisor system register, the virtualization translation
table base register (VTTBR). Previous work has leveraged this
additional translation layer to isolate security-critical software
from untrusted OS [36], [45], [55].

B. Communication with Peripherals

Peripherals communicate with a host machine using various
protocols, such as the Serial Peripheral Interface (SPI), Inter-
Integrated Circuit (I2C), Peripheral Component Interconnect
(PCI), and the Universal Serial Bus (USB). The controller
of each protocol performs operations to manage the com-
munication, such as assigning a device address, selecting a
channel for communication, and initiating the transactions.
Those operations are conducted by setting memory-mapped
controller registers.

A user process interacts with device drivers to commu-
nicate with peripherals. In general, device drivers for the
controller (cDrv) and the peripheral (pDrv) are involved for
the communication. The pDrv provides interfaces to the user
process, such as ioctl, write, and read. Additionally, it
creates a protocol (e.g., USB) message that delivers required
information such as the addresses of IO buffer and peripheral.

The cDrv retrieves information from the message and
configures the controller through MMIO. In addition, it reads
data from the IO buffer and delivers it to the peripheral
that is connected to the controller. The response from the
peripheral is also read and written to the buffer. These memory
operations can be fulfilled by DMA to minimize the CPU
burden. For example, the cDrv for an SPI controller can set
up a DMA controller such that the source and target of the
DMA operations are set to the buffer and SPI FIFO register,
respectively. Figure 1 illustrates the communication channel
between the application and the peripheral.

III. MOTIVATION

As discussed in Section II-A, various security extensions
have been defined and can be integrated into an SoC. However,
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Fig. 2: Active integrity monitor for memory isolation, DMA
packet filter, and secure IO constitute MyTEE.

implementation of the security extensions in an SoC is op-
tional; hence, part or all of them are not present in some SoCs.
A quick analysis of the latest trusted firmware repositories
[5], [18], [21] and consultation with some vendors readily
revealed such an incomplete implementation. Table I shows
the example SoCs that lack the extensions. BCM2837 [7],
which is deployed in production IoT devices [16] such as
industrial controllers and smart hubs, does not provide Trust-
Zone extensions. SC9863A [26], MT6739 [20], and Exynos
7570 [19] are hosted in low-end mobile phones [22]–[24] and
tablet PCs [25] to reduce costs and target specific markets
(e.g., developing countries). On the contrary, even if the
extensions are provided, they are generally proprietary, which
requires close involvement of SoC vendors in the development
and deployment processes of secure services [9] and hence
might hamper the time-to-market requirement. MyTEE aims
to ameliorate this problem by providing an alternative solution
for creating TEEs without depending on hardware security
extensions.

IV. ATTACK MODEL AND ASSUMPTION

In addition to the assumption of an untrusted OS, the
TrustZone hardware extensions illustrated in Section II-A
are assumed to be not implemented in our target system.
Therefore, even if the TEE software platform is installed, it
is completely unsecure [12].

In contrast, the security states and virtualization of CPU,
which are defined as mandatory features on ARMv8-A, are
implemented and trusted. We also assume secure boot; thus,
the firmware, boot loader, and the OS kernel images are
intact at boot time. This can be accomplished by placing the
images in the immutable region of an SD card [14] instead
of depending on a device key isolated in the TEE, which
is not possible in our attack model. Moreover, the host and
peripheral hardware are physically isolated and not malicious.
Therefore, physical attacks such as tampering with the SD card
or performing a cold boot attack [31] are not possible. Finally,

Physical
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Fig. 3: Physical memory layout and memory permission set-
tings for protecting the TEE and MyTEE components.

side channel attacks [42], [48], [60], [61] are not considered
in our attack model.

V. SYSTEM DESIGN

A. Overview

MyTEE aims to enable the TEE in a strictly limited
environment wherein hardware security extensions are not
supported. In other words, open-source TEE platforms such
as OP-TEE [6] can be secured by MyTEE even if they are
deployed on such limited environments. To support memory
protection without TZASC, the active integrity monitor isolates
memory using stage-2 paging [15] and de-privileges kernel
(Section V-B). Furthermore, the DMA filter that monitors
every MMIO transaction to DMA controllers is designed to
prevent DMA attacks (Section V-C). For secure IO, the pDrv
and cDrv are hardened using MyTEE APIs to shield the
IO buffers and memory-mapped registers of the controller
and to allow part of the device driver code to securely and
seamlessly access them (Section V-D). Figure 2 describes the
core components of MyTEE. Notably, MyTEE components
running in the hypervisor and monitor modes constitute our
trusted computing base (TCB). In particular, filtering DMA
and supervising the critical operations enable strict isolation of
the trusted components from the untrusted OS. Further trusted
services such as secure IO are built based on the isolation.

B. Execution Environments Isolation

MyTEE comprises the TEE and REE components. The
tiny hypervisor and MyTEE APIs implanted in the device
driver constitute the REE component. The active integrity
monitor as the TEE component runs in the monitor mode to
emulate critical operation of the kernel and hypervisor. Both
components are protected by carefully managing the kernel
page tables and stage-2 page tables. First, by removing the
mapping for the TEE and the hypervisor from the stage-2 page
tables, MyTEE ensures that the untrusted OS cannot access
both regions. The kernel text embedding MyTEE APIs calls
and the hypervisor text are also enforced to be read-only. The
stage-2 page tables are created as part of the secure boot.

For privilege escalation of the device drivers (Section
V-D), the hypervisor uses the kernel page table to map its
virtual address space instead of managing its own page table.
This approach enables the privilege-escalated code block to
seamlessly run with the hypervisor privilege. That is, kernel
APIs and dynamically allocated kernel objects can be accessed
using the kernel virtual addresses in the hypervisor without
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Fig. 4: MyTEE verifies DMA control blocks to prevent mali-
cious DMAs from being triggered by an untrusted OS.

explicitly creating mappings to them in a separate hypervisor
page table. To this end, the kernel page table maps the entire
REE (including the hypervisor), except the TEE. Nevertheless,
the untrusted OS cannot access the hypervisor region due to
the stage2-paging-based isolation. Furthermore, to prevent the
untrusted OS or compromised hypervisor from manipulating
the page tables, the active integrity monitor deprivileges the
kernel and hypervisor. Similar to previous work [27], [32], the
(shared) kernel page table is set to read-only and the integrity
monitor verifies and emulates the page table update; it ensures
that a new page table entry does not map to the physical
memory that is already allocated to the protected components
and invariants (e.g., TEE, hypervisor, kernel text).

Additional security-critical operations, such as managing
system registers (e.g., page table base register), are also
emulated. In particular, instructions for such critical operations
are replaced with the secure monitor call (SMC) for entering
the TEE. The stage-2 page tables are protected from the
attacker who obtains the hypervisor privilege by placing them
in the TEE region that is not mapped to the hypervisor or
the untrusted OS. We also ensure that the security-critical
instructions that manage the hypervisor system registers are not
included in the hypervisor. For example, the instructions that
configure VTTBR and the system control register (SCTLR) of
hypervisor are removed from the memory once the registers are
initialized at boot time. Finally, the watchpoint-based memory
protection technique [37] was adopted to monitor privileged
malicious access to the DMA controller registers (Section
V-D). Figure 3 describes the memory layout with MyTEE.

C. DMA Filter

Due to the absence of TZASC, MyTEE depends on careful
page table management and deprivileging for the memory
protection of itself and the TEE. This might be vulnerable to
DMA attacks because compromised peripherals can arbitrarily
read and write any memory region. The DMA attack can be
triggered by two different subjects: malicious hardware or the
untrusted OS. As elaborated in Section IV, we assume that
the host device is physically isolated and that peripherals on
the device are not malicious. Thus, a DMA attack performed
by the malicious hardware is not considered in our work. In
contrast, the untrusted OS can maliciously program the DMA
controller to break MyTEE security. To obviate this, MyTEE
filters out malicious DMA requests that may lead to the DMA
controller performing abnormal operations. Because there are
two types of DMA controllers—built-in and external DMA
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Fig. 5: In DMA two-dimensional (TD) mode, MyTEE checks
the CB settings to ensure that the DMA does not access the
protected region on each data transmission iteration.

controllers—depending on whether the controller is integrated
into an individual device or externally hosted, slightly different
monitoring strategies should be applied.

External DMA controller. MyTEE secures the external
DMA controller by monitoring every DMA control block
(CB). The CB is a data structure that specifies mandatory
information for transmitting a data, such as source and des-
tination addresses, data size, and transmission types. As can
be seen in Figure 4, because the address of the CB is delivered
to the DMA controller through MMIO, MyTEE traps and
validates any access to the memory-mapped registers of the
DMA controller. Again, stage-2 paging is leveraged to lock
the registers. Accesses to the locked registers generate page
faults that are trapped by the MyTEE hypervisor. MyTEE first
dereferences the CB address and copies the CB to the secure
memory. Because several CBs can be chained together by
setting the NEXT_CB, which presents the 32-bit bus address of
the next CB, we continue to dereference the value of NEXT_CB
and copy the CBs until the NEXT_CB set to 0x0 is encountered.

Then, the copied CBs are verified to hinder the DMA
from accessing any protected region. The data transmission
of DMA is performed in different ways depending on the
TD_MODE flag setting in TXFR_INFO. As illustrated in Figure
5, when the flag is set, the transmission between the source and
destination memory buffers is performed in two-dimensional
(TD) mode. The source data, the size of which is specified by
XLENGTH, is transferred to the destination memory. Further,
the transmission is performed YLENGTH times. D_STRIDE
and S_STRIDE contain signed integers and are added to
SRC_ADDR and DST_ADDR, respectively, to determine the
source and destination addresses for the next transmission.
The SRC_WIDTH, SRC_INC, DST_WIDTH, and DST_INC
flags in TXFR_INFO also configure the addresses for the next
transmission. Specifically, if the SRC_INC or DST_INC flag
is set, each memory read from source or write to destination
increases the source and destination addresses by 4 or 32
depending on the settings of SRC_WIDTH and DST_WIDTH.
On the contrary, the normal (non-TD) mode works in an even
simpler manner. TXFR_LEN as a whole specifies the amount
of data to be transferred. STRIDE is also ignored in this mode.

Based on the observation of how the CB programs the
DMA controller, MyTEE verifies expected accesses by the
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DMA in advance to filter out malicious CBs. Any CB that
programs the controller to perform the DMA to the immutable
region (i.e., kernel text, hypervisor, TEE) is considered ma-
licious and blocked. Finally, the address of the copied CB,
instead of the original one, is written to the DMA controller
register to remove the race condition between the verification
and use. Once the address is written to the controller register,
each field of the CB is copied into the read-only registers in the
controller (COPY_OF_CB in Figure 4). In addition, we allow
the DMA to access the secure buffers only when both the
source and destination buffers are hosted in secure memory.
By doing this, we prevent secrets in the buffer from being
leaked or manipulated by malicious DMA.

Built-in DMA controller. The DMA controller can be
integrated into other devices. On the Raspberry Pi 3, the USB
controller incorporates its own DMA controller. Compared
with the external DMA controller, this type of built-in DMA
controller has a simpler configuration mechanism. Instead
of using the DMA CB that is first located in memory and
subsequently subsumed by the DMA controller, it enables an
OS to directly update the memory-mapped controller registers
that configure the size and address of the data transmission
memory. In addition, no memory-to-memory operation occurs
with this DMA controller. Either the source or destination
is set to the FIFO of the peripheral that is attached to the
USB hub. For example, the DMA operation for fetching the
USB keyboard input is performed such that the input is read
from the FIFO and written to the buffer in host memory. This
nature of the built-in DMA controller simplifies the DMA
filtering. The controller registers are locked by stage-2 paging
to monitor any attempt to update them, but copying the CBs
in secure memory is not required. In particular, updates to
the registers for configuring the buffer address and its size are
investigated to prevent the DMA from accessing the kernel text
and data, hypervisor, TEE, and the locked registers themselves.
In addition, any DMA access to the secure buffer other than
that conducted as part of secure IO transactions is dropped
(Section VI-B).

D. Peripheral Isolation

The absence of TZPC and TZASC hinders the establish-
ment of the TrustZone-based secure IO. Here, we illustrate
how MyTEE establishes a secure IO channel between the
TA and the peripherals without depending on such TrustZone
extensions.

1) Design primitives for secure IO: Previous work [40],
[41], [52] enabled the secure IO between the TEE and the
peripherals by configuring TZPC to set up the security state of
peripherals to be secure so that they could access the TZASC-
protected memory. In addition, the peripheral device driver
was hosted in the TEE. Unfortunately, this approach cannot be
applied to a limited environment that does not provide such
hardware protection units. Porting the device driver to the TEE
also enlarges the attack surface of the TEE. MyTEE addresses
these limitations and satisfies the following requirements: R1)
should not bloat the TEE, R2) is easy to use and deploy, R3)
ensures IO is verifiable, and R4) should not be abusable.

priv_down
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Access AllowedAccess Denied Shared P.T. Stage-2 P.T.

Driver Text MMIO Driver Text MMIO
(RX) (NA) (RX) (RW)

Address
Translation

Fig. 6: Temporal privilege escalation of a device driver par-
tition and the combination of shared and stage-2 page tables
enable secure IO without bloating the TEE.

2) Temporal privilege escalation: To satisfy R1, we revisit
the device drivers instead of hosting them in the TEE. The CA
functions as a proxy to deliver the request from the TA. As
already illustrated in Section II-B, the pDrv, cDrv, and con-
troller are involved in the communication with peripherals. We
protect part of them to enable secure IO, namely the memory-
mapped registers of controllers and buffers that are allocated
to deliver IO requests and responses. Note that depending
on the type of peripheral and scenario, the requirements of
preserving confidentiality or integrity of the secure buffer
differ. For example, both confidentiality and integrity should
be ensured for medical data in a framebuffer. By contrast, the
TPM command in the buffer is not a secret but should be
delivered intact to TPM.

Figure 6 illustrates how MyTEE realizes secure IO. The
memory-mapped registers are set to non-accessible from the
OS by managing the stage-2 paging. The predefined IO buffers
in secure (hypervisor) memory are used on demand, instead of
kernel-allocated buffers. Only peripheral hardware and the TA
can access them. Even the device drivers that are engaged in
secure IO cannot read from or write to these shielded objects.
Thus, we temporarily escalate the privileges of code blocks that
manage the secure buffer and register so that driver operations
are not blocked. As discussed in Section V-B, a page table
is shared to map both the kernel and hypervisor. However,
because the actual kernel space permission is determined by
the combination of settings of the kernel and stage-2 page
tables, sharing the page table does not undermine the hyper-
visor security. That is, we can still enforce different memory
permissions between the kernel and hypervisor; the shielded
objects are accessible only when the privilege is escalated to
the hypervisor.

The privilege escalation is conducted using MyTEE APIs–
mytee_priv_up and mytee_priv_down–which wrap
the selected code blocks (Table II). The APIs are implemented
as hypercalls. Once the mytee_priv_up is invoked, the cur-
rent CPU mode switches to hypervisor, a new stack is allocated
in secure memory, and interrupt is disabled. Although we trust
the hypervisor, the privilege-escalated code chunk could be
vulnerable, giving an attacker a chance to obtain the arbitrary
read/write primitives with hypervisor privilege. This might
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TABLE II: MyTEE APIs for secure IO.

Name Description
mytee shield mmio() Protect the MMIO region using the stage-2 paging
mytee priv up() Escalate the privilege to hypervisor
mytee priv down() Restore the privilege to kernel
mytee verify memopr() Validate the address and size of memory operations
mytee log txn() Create a secure log for the privileged operations

lead to corrupting the DMA controller to collapse the paging-
based TEE isolation. We adopted the debug watchpoint-based
memory protection [37] to prevent this attack. The watchpoint
is configured to monitor the MMIO region for the DMA
controller at every privilege escalation. Hence, any write access
to the controller generates the watchpoint exception that is
trapped and handled by the trusted hypervisor. Finally, the
control flow transfers to the instruction following the API
invocation without deprivileging to kernel. Thus, the code
block after the mytee_priv_up executes with hypervisor
privilege and hence can access the secure buffer and register.
The mytee_priv_down is placed at the end of the code
block and draws back what is set by the mytee_priv_up.
Note that to prevent the attacker from abusing these APIs, we
enforce that only the drivers that are statically built as part of
the kernel text can use the APIs. We check the link register
(LR), which is automatically updated with the return address
when a function is invoked, to distinguish kernel text from the
loadable kernel modules (LKMs).

Thanks to the use of MyTEE APIs, a secure IO channel
with a peripheral can be readily established (satisfying R2).
This helps minimize the modification of the privileged software
(i.e., hypervisor) to reflect the peripheral specific logic and
data structure. For example, as discussed in Section VI-A, all
commands sent to the TPM hardware must be logged for future
verification by the TA. The logging is required to understand
the semantics of TPM and protocol, such as the TPM command
and the SPI message formats. Using MyTEE APIs enables
developers to manage such peripheral specific data and logic
in the relevant device drivers instead of having to adapt the
MyTEE hypervisor.

3) Robustness and security: Because MyTEE API calls in
the device drivers are exposed to potential attackers, they can
be abused or bypassed. The attacker can simply bypass the
API calls by bending the control flow to ensure that the MMIO
regions are not shielded. Furthermore, the privilege-escalated
code blocks can be abused to send malicious requests to the
peripheral. This can be mitigated by enforcing operations in
the privileged code blocks to be logged and letting TA verify
the operations, which meets R3. The mytee_log_txn API
supports logging, which is invoked in the privilege-escalated
block to log the events in secure memory. The operation type
(e.g., shielding MMIO registers, writing a command), message
to the peripheral, and configuration values of the controllers
are logged. The verification can be conducted as follows:
check (1) whether the buffer and MMIO regions are shielded
during a transaction and (2) whether the request delivered
to the peripherals is intact. There could be malicious and
multiple accesses to MMIO. However, logging performed in
the privileged block is non-bypassable, as long as the API is
properly implanted. Once an unexpected log is detected (e.g.,
TPM command tampering), the TA can simply stop or continue

Listing 1: Original function with writel.
1 static int bcm2835_send_data(struct mbox_chan *

link, void *data){
2 ...
3 writel(msg, mbox->regs + MAIL1_WRT);
4 ...
5 }

Listing 2: Instrumented function with MyTEE APIs.
1 /** A new wrapper function is defined **/
2 + mytee_wrapper_writel(u32 msg, u32 mmio_addr)
3 + {
4 + int ret;
5 + ret = mytee_verify_memopr(MAILBOX_WRT, \
6 + mmio_addr, sizeof(u32));
7 + if (!ret){
8 + mytee_log_txn(MAILBOX_WRT, msg);
9 + writel(msg, mmio_addr);

10 + }
11 + }
12

13 static int bcm2835_send_data(struct mbox_chan *
link, void *data)

14 {
15 ...
16 /** Privilege escalation for accessing **/
17 /** the locked memory-mapped registers **/
18 + mytee_priv_up();
19 + mytee_wrapper_writel(msg, mbox->regs + \
20 + MAIL1_WRT);
21 + mytee_priv_down();
22 ...
23 }

iterating the transaction until it is normally achieved.

The memory operation (e.g., writel) in the privilege-
escalated blocks should not be abused (R4). To this end,
MyTEE supports the mytee_verify_memopr API that
verifies the address and size of the memory operation in the
privileged block. Because the addresses of the secure objects
are deterministic, e.g., the MMIO regions for peripherals are
defined and fixed by the SoC manufacturer, the verification is
simply conducted by checking whether the memory operation
is performed within the valid memory range. Note that all
relevant parameters (e.g., addresses of the source and target)
and their dereferenced values are marshaled into the secure
stack in the hypervisor memory before the verification to
prevent time-of-check-to-time-of-use (TOCTOU) attacks.

Furthermore, the privilege-escalated driver chunks could
be vulnerable. However, even if the attacker obtains the
hypervisor-privileged ”write-what-where” primitive by exploit-
ing the vulnerability, the read-only regions are still immutable
because the TEE (i.e., active integrity monitor) is the sole
anchor to update the page tables. Although the writable objects
such as the log can be corrupted, the effectiveness of the attack
is confined to the REE as the device driver is hosted outside the
TEE; thus, the exploitation cannot directly corrupt the TEE.

Finally, like general TEE services, MyTEE-protected ser-
vices are also vulnerable to the denial-of-service (DoS) attack.
However, as shown in Section VI, MyTEE provides a way
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to build an indicator for secure IO activation, which prevents
masquerading unprotected IO as secure IO. In addition, si-
multaneous accesses to the IO devices from the REE and TEE
are handled in a way that TEE access is always given higher
priority. This approach aligns with general TEE-based secure
IOs that freeze the REE while conducting the IO from the TEE
[46], [52].

4) Instrumentation example: Listing 2 demonstrates an
example instrumentation of a device driver with MyTEE. On
Raspberry Pi, the OS can communicate with the GPU using the
Mailbox protocol [10]. The function bcm2835_send_data
aims to write a message through MMIO to the Mailbox
controller so that it is delivered to the GPU. In our example,
the MMIO region is assumed to be already shielded, and we
attempt to log every message written to the region. As can
be seen in Listing 2, we first put the original writel func-
tion in the new function, mytee_wrapper_writel, with
additional MyTEE APIs for verifying and logging the write.
One of the input parameters of the APIs, MAILBOX_WRT,
is a constant value that indicates the current context for
logging. It is referenced in the verification function to re-
trieve a valid address range for the MMIO with the Mail-
box controller. The developer can add finer-grained filtering
logic to capture only a specific type of request message
(e.g., display configuration) that is delivered by the Mailbox.
Because the mytee_wrapper_writel is wrapped again
with mytee_priv_up and mytee_priv_down, it oper-
ates with the hypervisor privilege and thus can access the
shielded MMIO region. Note that in this example we do
not marshal the parameters for mytee_wrapper_writel
because their size is 4 bytes; therefore, they are delivered using
general registers. However, passing address taken variables as
arguments requires marshalling in the secure stack.

VI. SECURE IO APPLICATIONS

In this section, three examples are illustrated to show how
the communication channels between the TEE and peripherals,
i.e., the hardware TPM, USB keyboard, and framebuffer, can
be hardened with MyTEE. Although implementation (particu-
larly how the drivers are instrumented with MyTEE APIs) can
be variable depending on peripherals, the MyTEE-supported
secure IO can be exemplified as shown in Figure 7.

A. Secure TPM

For PoC of secure TPM, we used SLB 9670 TPM [11]
from Infineon. It is a hardware implementation of TPM 2.0
and connected to the GPIO pins on Raspberry Pi 3. The
communication between the OS and TPM is performed using
SPI protocol. The device drivers for TPM (pDrv) and SPI
controller (cDrv) are integrated in the Linux mainstream. Any
request from a user application bounding for the TPM is first
delivered to pDrv and formatted as a SPI message. Then, the
message is written to the TPM through MMIO to the controller.
The response from the TPM is also read from the controller
through MMIO. Both MMIOs are performed by cDrv.

The secure IO to TPM is built and works as follows. The
TA creates a TPM command and delivers it to the proxy CA.
In turn, the CA delivers the command with a flag requesting
the secure IO to the pDrv. The MMIO region for the SPI

Create 
Protocol 
Msg.

CA pDrv cDrv Hyp Mon TA
Create  
PayloadStart TXN

Syscall for TXN
mytee_shield_mmio

Configure 
Stage-2 
Page Table

Send Protocol Msg.
mytee_priv_up

mytee_priv_down
Privileged Oprs. w/
MMIO & IO Buffer

Normal Oprs.

Verify Log & 
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Privilege Escalation

Privilege Restoration

Notify TXN Completion

Fig. 7: Communication process for secure IO.

controller is protected by the mytee_shield_mmio in the
pDrv and this shielding operation is also logged in the secure
(hypervisor) memory. After the TPM is initialized by an init
command sent by the pDrv, the SPI message that embeds
the command and flag from the CA is sent to the cDrv.
Once the cDrv checks the flag, it performs the privilege-
escalated MMIO. To realize this, the bcm2835_wr function
is instrumented in a similar manner as that illustrated in Listing
2. The function is placed in the new wrapper function, then
the mytee_priv_up and mytee_priv_down APIs are
invoked before and after the wrapper function. Additional
APIs for parameter marshalling, memory write verification,
and command logging are placed in the wrapped function.
Specifically, we marshalled the command and its length field
in the SPI message. The bcm2835_wr function writes the
command to the FIFO of the slave (i.e., TPM); one byte is
written per iteration in a loop following the SPI transmission
protocol. Once all the commands are passed to the TPM, the
privilege is reverted back to the kernel.

Reading a response from TPM requires privileged
read access to the shielded MMIO region. Therefore, the
bcm2835_rd function is instrumented in a similar manner.
The read operation is also fulfilled with 1 byte granularity.
Each byte from the TPM is written to the buffer in secure
memory instead of the one in the SPI message. Later, the TA
verifies whether its TPM request is managed in a trustworthy
manner by checking the logs and then consumes the output in
the secure buffer. Note that the header of the TPM response
message contains a status flag for the transaction. A response
message with a success status delivers the output (e.g., a
random number) depending on the type of command. Thus,
only responses with success status are filtered and written to
the secure buffer. In addition, we also maintain a transaction
flag that indicates the completion of a single transaction to
prevent further (malicious) requests from being made before
the TA consumes the output. The flag is checked as part of
the validation of MMIO for writing a TPM command and is
cleared by the TA after the consumption of the TPM output.

B. Trusted USB Keyboard

In this section, we first elaborate the communication mech-
anism between the host and general USB devices. Then, we
demonstrate how MyTEE can establish a secure IO with the
USB devices by providing an example of hardening commu-
nication with a USB keyboard.
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1) General USB Peripheral: USB devices can have several
configurations. Each configuration can also define several
interfaces. For example, a USB headset has interfaces for a
microphone and for audio. Each individual interface has at
least one endpoint, which is a hardware buffer at the peripheral
for communication between the host and the peripheral. There
are two types of endpoints: control and data. The control
endpoint aims to set up and control the USB device (e.g.,
LED control on keyboard), and endpoint0 is dedicated for this
purpose. The data endpoint is optional and is defined for data
transmission. The direction of the endpoint is defined based on
the host. For example, the IN endpoint is used for transmission
from the peripheral to the host, whereas the OUT endpoint
transmits data from the host to the device.

On Linux, the USB Request Block (URB) is a data struc-
ture defined for data transmission with USB peripherals. The
URB is created by the pDrv and contains all the information
required for the transaction (e.g., endpoint, device address,
buffer address). Once the cDrv for the USB controller receives
the URB from the pDrv, it configures the USB controller based
on the information in the URB to start the transaction. In
general, USB controllers support several channels for com-
munication with peripherals. Each channel has the same set of
configuration registers that are mapped in host memory. As part
of bootstrapping a transaction, the cDrv selects an idle channel
and configures it based on the information in the URB, such
as the device address and endpoint. The buffer address in the
URB can also be configured to the controller to enable the
DMA between the host and the peripheral.

The completion of the DMA incurs an interrupt, which is
trapped by a kernel thread that finally invokes the interrupt
handler registered by pDrv. The handling of interrupts is
performed based on the updated information in the URB. The
handler first checks the status flag that indicates whether the
previous transaction triggered by the URB is successful. The
URB is then resent to the peripheral if the status flag sets
to failure. The handler executes peripheral specific service
routines to further handle the URB with a success flag. For
example, the URB is referenced to obtain a scan code in
the buffer. The handler converts the scan code into the key
code based on keymap [8]. Furthermore, the keyboard input is
written into a file so that applications can consume the events
(e.g., /dev/input/eventX).

2) Trusted Keyboard: We designed the trusted keyboard
with MyTEE based on the analysis of USB device drivers in
Linux. The following security requirements were considered
for the trusted keyboard design: (1) A user should be able to
recognize whether secure IO with the keyboard is currently
established. (2) Confidentiality and integrity of the communi-
cation should be guaranteed.

Control message inspection. We used the LED for the
NUM Lock key as an indicator for secure IO activation. Thus,
the LED should be turned on only when the TA initiates
and requests the trusted keyboard. The TA first sets a trusted
keyboard flag in the hypervisor memory and asks the proxy CA
to turn on the LED. Then, the CA simply turns on the NUM
Lock LED using xset utility [17]. This triggers the pDrv
of the USB keyboard. In the pDrv, the URB for the control
message is created and sent to the cDrv of the USB controller.
Note that as illustrated in Section V-C, every DMA packet is

monitored. This locks not only the DMA address register but
also all controller registers due to the granularity of stage-2
paging, the minimal size of which is 4 KB. Therefore, we
can essentially trap any attempt to configure the controller for
URB transmission.

Benefiting from this property, we additionally implemented
the trap handler in the hypervisor to monitor the channel
configuration as well as the DMA packet and thus enable
access control to the LED. Any attempt to write the device
(peripheral) address and buffer address to the controller reg-
isters for the channel configuration is monitored. First, by
decoding the value written to the channel characteristic register
(hcchar), the device address can be retrieved. We compare
it with the predefined keyboard address to filter out URBs for
other peripherals. Furthermore, the current channel number can
be obtained based on the trapped stage-2 page fault address.
Specifically, because each channel has the same memory layout
of configuration registers that are placed in the contiguous
memory, we can obtain the channel number based on the offset
between the first channel address and the fault address. The
following setup of buffer address, which is used by the DMA
controller, also incurs a stage-2 page fault. We can similarly
obtain the current channel number based on the fault address. If
the current channel is one that was assigned for the keyboard,
we can copy and decode the content of the buffer in the secure
(hypervisor) memory. MyTEE turns on the LED only when the
LED control message is found from the decoded content and
the trusted keyboard flag is set.

Keyboard input protection. The key input is also pro-
tected by monitoring the MMIO to the controller registers.
We retrieve the device address and channel number based on
the stage-2 page fault in the same manner as shown for control
message inspection. The only difference pertains to how we
manage the stage-2 paging fault that is incurred by setting up
the buffer address for DMA. The buffer is updated by DMA
with a fetched scan code. The integrity and confidentiality
of the scan code should be protected. To this end, MyTEE
switches the address of the buffer with that of the secure buffer
allocated in the hypervisor region when handling the trapped
MMIO. By doing so, we can ensure that the untrusted OS
cannot access the buffer, but it is still possible to fetch the
scan code because the hardware (i.e., DMA controller) can
still access the secure buffer.

As part of handling the interrupt due to completion of
DMA, the secure buffer is accessed to execute peripheral-
specific logic, such as scan code conversion. Therefore, es-
calated privilege is required to read data from the protected
memory. The approach that escalates the privilege of driver
code blocks shown in Listing 2 can be adopted to achieve this;
that is, the code blocks that access the secure buffer can be
wrapped with mytee_priv_up and mytee_priv_down
APIs. For simplicity of implementation, we developed a new
function that integrates mandatory and minimal operations for
translating and protecting the keyboard input. Then, we wrap
the function in its entirety using the MyTEE APIs instead of
wrapping the scattered code blocks in the kernel that access
the secure buffer. In the function, the scan code is converted to
the key code. In addition, the key code is written to the secure
memory for future use by the TA.

Note that further operations can be performed by the
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device driver, beyond the translation of key code. For example,
provided that the keyboard supports volume control keys, the
driver can notify a key-press event to another (e.g., speaker)
device driver. We let the unprivileged part of the driver
continue to conduct such tasks in our example implementation.
Also note that the interrupts generated due to the key events
are not directly handled in the TEE. Instead, the OS and
device driver instrumented with MyTEE take over the task.
Specifically, each key event is processed in the REE until the
CA finishes collecting user input. Then, the key codes stacked
in the secure memory are consumed by the TA. Our approach
has clear advantages over directly handling the interrupt in the
TEE, which requires additional changes to the OS and TEE
for forwarding (and handling) interrupts to (and in) the TEE
and thus complicates system design and bloats the TEE.

Tracking device address. In our example, the device
address should be kept updated for reliable peripheral iden-
tification. To this end, we monitor two standard control mes-
sages: GET_DESCRIPTOR and SET_ADDRESS. USB devices
have a default device address of 0x0 when they are first
connected to the USB port. The OS sends a URB with the
GET_DESCRIPTOR to get the information such as USB class
and protocol of the device. MyTEE hooks this to detect
the keyboard connection. Then, the following URB with the
SET_ADDRESS, which aims to assign a new device address
for the device, is further monitored.

C. Trusted Display

In this section, we demonstrate how MyTEE protects
the framebuffer for trusted displays. On Raspberry Pi, the
videocore (i.e., GPU) manages configuration of the display,
such as the framebuffer allocation and display resolution setup.
The OS can send a request for the display configuration to
the videocore. The inter-processor communication between
the CPU and videocore is conducted through the Mailbox
controller. Any request or response is exchanged by performing
MMIO to the Mailbox controller registers.

For secure IO, we first ensure that the display configu-
ration is not maliciously changed. Toward this end, we lock
the memory-mapped registers of the Mailbox controller by
leveraging stage-2 paging. The mytee_shield_mmio is
invoked in the ioctl handler for display configuration (i.e.,
FBIOPUT_VSCREENINFO) in the pDrv. Furthermore, the
cDrv of Mailbox controller is patched in a similar fashion
as that shown in Listing 2 to enable access to the shielded
registers under MyTEE supervision. To prevent TOCTTOU
attacks, we restrict the display configuration to be performed
only once after the Mailbox controller registers are locked. The
validity of configuration is checked against the TA’s original
request right before updating the framebuffer. In general, there
are two interfaces for manipulating the framebuffer: write
and mmap. MyTEE supports both mechanisms to realize the
trusted output as follows.

mmap-based access. The pDrv generally provides the
mmap mechanism to enable the user application to directly
access the framebuffer. To support mmap in establishing secure
IO, a privileged block with MyTEE APIs is placed at the
end of the mmap handler in the pDrv. When the proxy CA
maps the framebuffer to handle the mmap request from the

TABLE III: Lines of code (LoC) in C for MyTEE TCB and
secure IO examples.

Trusted component
Monitor* Hypervisor Kernel*

517 + 1492 (ASM) 1552 (ASM) 673
Secure IO (driver patch + TA)

TPM USB keyboard Framebuffer
159 + 516 96 + 156 168 + 201

* Include TZ-RKP adoption

TA, the patched mmap handler is triggered. The physical
address of the framebuffer is obtained as part of general mmap
handling process. Then, the privileged block validates the
address and size for mmap to prevent any of the MyTEE-
protected regions from being maliciously mapped to the TA
(e.g., Boomerang attack [44]). Furthermore, the valid region is
shielded and its (physical) address and size are written to the
secure memory. Subsequently, the TA verifies the controller-
and framebuffer-related logs and asks the TEE OS to directly
map the framebuffer to its address space by referring to the
information in the secure memory.

Write system call. The write handler in the pDrv
supports directly writing data to the framebuffer. Enabling this
in secure IO requires the system to ensure that the written data
cannot be leaked or manipulated by the untrusted OS. To this
end, the TA first places the secret data in the secure memory
and asks the CA to invoke the write system call with dummy
data. Similar to the mmap-based approach, the write handler
of pDrv is instrumented such that it entails the privileged code
block that shields the framebuffer and validates the memory
operations. The secret data is then copied from the secure
memory to the shielded framebuffer. Note that because the task
of updating the framebuffer is delegated to the instrumented
device driver (unlike in the mmap support), log verification is
performed in the privileged block. Also note that an indicator
for successful establishment of a secure IO channel for both
approaches can be similarly implemented, as shown in Section
VI-B2.

VII. IMPLEMENTATION

The PoC of MyTEE was implemented on a Raspberry Pi 3
development board equipped with Broadcom BCM2837 SoC.
The SoC was integrated with a quad-core ARM Cortex-A53
processor, DesignWare USB 2.0 controller [1], DMA controller
with 16 channels, and SPI controller. Specifically, as security
features, only the security state of the CPU is supported;
TrustZone extensions such as TZPC, TZASC, TZMA are
missing in this SoC. The OP-TEE and Linux (ver. 4.14)
were deployed for the TEE and REE software platforms,
respectively. Table III shows the size of trusted components
and device driver patches (and TAs) for secure IO. Note that
673 LoC in the kernel and 821 LoC (ASM) in the monitor are
added for the TZ-RKP [27] adoption.

A. ARM Trusted Firmware

We updated the ARM trusted firmware to create the stage-
2 page tables for isolating TEE and hypervisor from the un-
trusted OS. Specifically, the memory region for security-critical
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TABLE IV: Protected security-critical system registers for OS.

System register Description
SCTLR Controls MMU, instruction alignment, etc.
TTBRx Sets the base address of page tables
TTBCR Configures memory translation attributes
DACR Defines access permissions for memory domains

objects (e.g., hypervisor stack, secure buffer) including the
tables themselves is not mapped in the stage-2 translation layer.
Runtime management of the stage-2 page tables for shielding
the MMIO region of controllers on demand is performed
in the monitor mode (i.e., BL31 in the trusted firmware).
Furthermore, emulation of critical kernel operations such as
the update of page tables and system registers is conducted in
the monitor mode as well.

B. OS Kernel and Drivers

The kernel page table is shared with the hypervisor (Section
V-D). Thus, the page table format and virtual address range
supported by the kernel and hypervisor should be equiva-
lent. As discussed in Section XI-B, the virtual address range
supported by the hypervisor mode is smaller than that by
the kernel mode when 64-bit virtual addresses are used. By
contrast, the supported address range is same with the 32-bit
address mode. Two types of page table descriptor formats for
this mode are available: short descriptors and long descriptors
[2]. However, the hypervisor mode only supports the long
descriptor format. Thus, we compiled the kernel as a 32-bit
binary with the large physical address extension option (i.e.,
CONFIG_ARM_LPAE in the .config file) so that the kernel
also uses the long descriptor format.

Once the kernel text, data, and hypervisor are loaded in the
memory, they are protected by stage-2 paging. The shielding
request is generated by the init process that is instrumented
to invoke the MyTEE. Critical operations, such as the page
table update, are patched with SMC for their verification and
emulation by MyTEE. We refer to the Samsung open-source
project [13], which provides the kernel patch for TZ-RKP
implementation, to locate such critical operations in the kernel
source. Table IV lists the critical system registers that are
dynamically reconfigured in the kernel at runtime, thereby
resulting in the operation for the configuration being emulated
instead of simply being removed. For example, TTBR0 is set
at context switches and SCTLR is configured to activate the
memory alignment trap at every kernel entry from user mode.

C. Hypervisor

The tiny hypervisor is implemented in ASM from scratch.
For page table sharing, we configured the hyp translation
table base register (HTTBR) with the same value in the
translation table base register (TTBR1) that contains the kernel
page table address. This configuration is conducted at boot
time and the instruction for setting HTTBR is nullified to
ensure that it is not abused by the attacker. The hypercall
handler is implemented to support MyTEE APIs such as
mytee_priv_up. The context of the kernel is stored in the
saved program status register (SPSR) when the hypercall is
invoked. In general, the saved context is restored by using the

eret instruction when returning to kernel. Instead, we use
the ret instruction to return to kernel without deprivileging
so that the chosen (wrapped) blocks of device drivers run with
the hypervisor privilege. Note that the watchpoint-based DMA
register protection was not implemented because configuring
watchpoints for the 32-bit hypervisor is not supported in the
ARM architecture [2] (viz., Section XI-B).

D. OP-TEE

In our use cases, some OS-level services need to be
supported for the TA implementation. For example, the page
table mapping to the secure memory in the hypervisor region
needs to be created to enable the TA to access the secure
buffers. To this end, OP-TEE APIs were leveraged instead of
adding new system services. In contrast, the peripheral specific
logic needed to build secure IO, such as TPM command
generation and log verification, was implemented in the TA.
Note that we used a GitHub branch for OP-TEE [4] that
supports Raspberry Pi OS (i.e., Raspbian). However, there is no
technical difficulty in applying MyTEE to the official version
of OP-TEE [6].

VIII. SECURITY ANALYSIS

Race condition attack. MyTEE logs operations in the
privileged blocks and enables the TA to verify them later.
However, because the APIs can be arbitrarily invoked by the
untrusted OS, TOCTOU attacks can be conducted to reduce
or eliminate the effectiveness of log verification. For example,
an untrusted OS can attempt to lead the TPM to overwrite a
random number requested by the TA with a known hash value
right after the TA verifies the TPM command log. To remove
this race condition, we maintain the transaction flag that is
set when any transaction is completed and checked before a
new command is delivered to the TPM (Section VI-A). In the
trusted display example, a similar race condition attack can be
conducted by having multiple cores write to the same shielded
framebuffer. However, in the privileged block, the source of the
write operation to the framebuffer is always fixed to the secure
buffer that only can be updated by TA. Thus, exploiting the
race condition is not beneficial for the untrusted OS.

Abusing MyTEE APIs. The privilege escalation primitive
can be abused to undermine the security of TEE as well as
MyTEE itself. Because the TEE is not mapped in the shared
page table, the privilege-escalated malicious code cannot di-
rectly access the TEE. In addition, the page table is set to
read-only, preventing its manipulation. However, the attacker
can attempt to update the page table base register (i.e., HTTBR,
VTTBR) with a malicious page table that has a mapping to
the TEE. Thus, we nullify critical instructions that configure
the system registers of hypervisor at boot time. In addition, we
ensure that the mytee_priv_up API is executed within the
static kernel text, not in the dynamically loaded modules (e.g.,
LKMs) that are potentially malicious. The privileged memory
operation can also be abused. To prevent this, we verify the
memory operation with the context information that indicates
the target peripheral joining the secure IO. By doing so, we
can restrict the memory operation to be performed within the
predefined regions of controller registers and secure buffers.

Exploiting vulnerabilities. The privileged code block is
small enough to be formally verified. Even if the attacker
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Fig. 8: LMBench and CoreMark-PRO results of MyTEE
normalized to that of Linux. Maximum overhead of 23% was
observed with exit in LMBench.

hijacks the control flow by exploiting the vulnerability in the
privileged block, the TEE is still secure because no critical
instructions, such as those for configuring the HTTBR, exist
in the executable region. In addition, any illegitimate writing
to the DMA controller registers is monitored by leveraging
the watchpoint-based memory protection. Colluding with the
dynamically loaded kernel modules that contain such critical
instructions possibly empowers the attacker. However, this can
still be addressed by adding further security facilities for the
privilege escalation. For example, we can remove the mapping
to all the executable regions other than the static kernel text
when the privilege is escalated. We leave this as a future work.

IX. PERFORMANCE EVALUATION

Adopting MyTEE imposes overhead to the OS, due to
the stage-2 paging for memory isolation and filtering DMA
packets. We measured this overhead by running LMBench
and CoreMark-PRO. Additionally, the performance of DMA
and three secure IO examples with TPM, USB keyboard, and
framebuffer was measured.

A. LMBench

We ran LMBench to measure the rudimentary operations
of an OS. Figure 8(a) describes the average latency of 10
iterations of the tests in LMBench. We observed a minimum
overhead of 2% and a maximum overhead of 23% for write
and exit, respectively. execve and /bin/sh also resulted
in relatively high overhead of 15% and 11%. These high
overheads were incurred due to not only enabling the stage-
2 paging but also emulation of critical operations, which are
performed in the monitor mode. Specifically, exit, execve,
and /bin/sh generate more page faults to fork a new process
and more context switches due to relatively longer execution
times compared to other tests. Therefore, more overhead for
switching CPU modes and emulating the critical operations
was imposed.

B. CoreMark-PRO

The CoreMark-PRO benchmark supports five integer and
four floating point workloads to measure the performance of
the processor and memory subsystem. We ran each workload
10 times and evaluated the average latency. As can be seen
in Figure 8(b), the observed overhead was negligible. Most
tests were observed with overheads of 1 to 2%. Considering
the fact that the average runtime of CoreMark-PRO tests was
much longer (approximately 22426×) than that of LMBench,
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Fig. 10: Performance of a hardware TPM for random number
generation and hashing with SHA1 and SHA256 (in µs.)

presumably, the overhead was somewhat obscured when the
overall runtime increased beyond a certain amount of time.

C. DMA Performance

The overhead imposed by DMA filtering was evaluated by
measuring the time for configuring the DMA controller, which
is trapped, verified, and emulated by MyTEE. Specifically,
we created CBs that program the DMA controller to perform
memory-to-memory data transmission in TD mode. The num-
ber of chained CBs and the number of transmissions defined
by a single CB both ranged from 1 to 16. Figure 9 presents the
results. The time includes the latency for preparing the CBs
(e.g., allocating non-cacheable memory) as well as the MMIO
with the controller. The performance impact of the number
of transmissions by each CB was negligible. By contrast, the
average overhead decreased from 17% to 8% as the number of
CBs increased. According to our analysis, this is because the
time for MyTEE verification—which consists of copying CBs
and verifying the expected memory access—was smaller than
that for creating CBs; thus, the overhead gradually decreased
with the larger number of chained CBs.

D. Trusted Applications

1) Hardware TPM: We evaluated the overhead imposed
on TPM resulting from the adoption of MyTEE. Among TPM
operations, we specifically measured the latency of random
number generation and hashing with SHA256 and SHA1
algorithms. The size of random numbers generated by TPM
ranges from 2 bytes to 32 bytes. For hashing, the input
sizes range from 64 to 1024 bytes. Each TPM operation was
performed 10 times, and the average latency is described in
Figure 10. We observed a performance degradation of 3.68×
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TABLE V: Performance of updating a framebuffer with write and mmap (in ms.)

Input 1.6 MB 3.2 MB 6.4 MB
size Baseline MyTEE Baseline MyTEE Baseline MyTEE
write 51.80 59.02 (1.14×) 93.97 64.46 (0.68×) 149.63 93.32 (0.62×)
mmap 56.44 44.06 (0.78×) 97.15 63.64 (0.66×) 143.10 75.63 (0.53×)

TABLE VI: Performance of a trusted USB keyboard.

Kernel service (in µs.) Secure key input application (in sec.)
URB trans. IRQ handling 125† 250† 500† 1000†

94.2 (3.05×) 64.7 (1.33×) 2.8 (1.05×) 6.8 (1.08×) 14.1 (1.09×) 28.8 (1.07×)
†

# of virtual key inputs

with the generation of a 2-byte random number. However, the
performance slightly improved as the output size increased.
In contrast, performance degradation by maximum 2.71× was
observed in hashing. The overhead was incurred due to addi-
tional privileged operations in device drivers such as logging
TPM commands and protecting TPM output. Moreover, the
latency for communication between the CA and TA is also
included in the overhead. In the case of random number
generation, a tendency was observed wherein the overhead
slightly decreased as the size of the random number increased.
This stems from the fact that the overhead imposed by MyTEE
is almost invariable, whereas the time taken by TPM for the
random number generation is generally affected by the size of
the random number. By contrast, because the impact of input
size was negligible in the hash operation of TPM, a nearly
invariable overhead was observed in the hash tests, regardless
of input size.

2) Framebuffer: The overhead of framebuffer protection
was evaluated. To this end, we compared the performance
of writing data, the size of which ranged from 1.6 MB
to 6.4 MB, to the shielded and non-shielded framebuffers.
The data was linearly written from the starting point of the
framebuffer memory. Both mmap-based and write-based
approaches were evaluated. Table V illustrates the average
latency of 10 runs of each test and the resulting overhead.
We observed 14% overhead in writing 1.6 MB data with
the write-based approach. However, writing larger data
improved the performance: 32% and 38% with 3.2 MB and
6.4 MB data, respectively. With the mmap-based approach,
writing to the protected framebuffer outperformed in all test
cases. Specifically, we observed a performance improvement
of 47% when 6.4 MB data was written to the framebuffer with
mmap. According to our analysis, the performance improved
due to the settings for the privilege escalation of the code block
that accesses the protected framebuffer. That is, because the
interrupt is disabled in the privileged block, the write operation
can be atomically performed. By contrast, in baseline, several
context switches occur during the write and the time consumed
for the switches was large enough to obscure the overhead of
MyTEE.

3) USB Keyboard: The performance of the protected USB
keyboard was evaluated in two aspects: (1) overhead of han-
dling a single key stroke in kernel and (2) performance of
an application that generates secure key inputs. One cycle of
handling a key input in kernel consists of two phases: sending

a URB to read the scan code from the keyboard via DMA and
handling the interrupt that is raised by the completion of the
DMA. The performance of these two phases was separately
measured and the average latency of 10 runs for each phase
is shown in Table VI. For sending a URB, approximately
3× the amount of time was required due to the adoption
of MyTEE. In particular, overhead was incurred by handling
stage-2 paging faults to access the shielded MMIO region
of the USB controller. As described in Section VI-B2, the
faults are monitored to track the currently assigned channel
and to configure a secure buffer as the DMA destination. The
performance of interrupt handling was evaluated by measuring
the execution time of hid_irq_in function, which defines
several branches for handling URBs depending on their status
fields. The status field indicates whether the sent URB was
successfully processed, or whether an error was encountered.
We only measured the time for handling a successful URB, the
urb->status field of which was cleared, and observed 33%
overhead. As illustrated in Section VI-B2, the new function
that translates scan code and is wrapped as a privileged code
block was the main cause of the overhead.

In the application benchmark, multiple key inputs between
125 and 1000 were virtually generated. We added 10 ms
delay between each key input and wrote the same number of
characters to the framebuffer. The overhead of application was
between 5% and 9%. We expect that the overhead is reasonable
in general secure IO scenarios in that the input size is even
smaller (e.g., passcode, OTP) and human input speed is slower
and more variable compared to virtual key inputs and thus
causes more factors (e.g., interrupt) to obscure the overhead.

X. RELATED WORK

A. Adoption of TrustZone

Previous research has proposed security facilities in the
TrustZone-based TEE that are protected by configuring the
TZASC and TZMA. TrustShadow [33] hosts a lightweight
agent in the TEE that isolates unmodified applications from
the untrusted OS while still enabling them to communicate
with OS services. TZ-RKP [27] and Sprobes [32] implemented
the kernel integrity monitor in the TEE. SeCReT [38] and
Ginseng [59] hook untrusted OS services and verified them
in the TEE to authenticate the CA and protect the application
secrets, respectively. The stealthy malware analyzer [47], soft-
ware TPM [49], memory dumper [53], and the mobile device
management (MDM) service [29] also leverage TrustZone for
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their isolation. Some research has dynamically reconfigured
the TZASC to realize flexible isolation. That is, the TZASC
is set up on demand at runtime to shield applications on
a per core basis [28] and build additional secure execution
environments in the untrusted OS [30], [54]. The TZPC has
also been utilized to isolate peripherals for their exclusive use
by the TEE. Adattester [40] configured the TZPC to isolate the
keypad and display from the untrusted OS, thereby preventing
ad frauds. Similarly, TrustOTP [52] proposed a TEE-based
onetime password (OTP) by isolating such IO peripherals.
Previous research was essentially conducted based on the
assumption that TrustZone and its extensions are properly
deployed and available to anyone who needs to utilize them.
By contrast, MyTEE attempts to assure the security and
universality of TEE, even if that assumption is not satisfied.
Approaches for TrustZone virtualization [34], [39] and creating
a new isolated execution environment [36] can also be revisited
to create the TEE without leveraging the TrustZone hardware
extensions. However, MyTEE is still advantageous over such
approaches in that it enables secure IO without crowding the
TEE and is not limited to emulating missing features.

B. Secure IO

To build a secure IO channel, previous work has proposed
ways to secure a device driver that is an interface to a
peripheral. Wimpy Kernel [62] deprivileges the critical part
of the USB device driver and protects it as a shielded user
process. Trusted Display [58] adds and shields a kernel com-
ponent that mediates and emulates security-critical accesses
to GPU. These works require thorough analysis on device
drivers to separate the security-critical logics of device drivers.
Furthermore, engineering efforts to port security hypervisor
framework [45], [55] to embedded devices is expected. By
contrast, MyTEE provides APIs that can be implanted in
existing device drivers, instead of partitioning and shielding
the device drivers. Furthermore, the adoption of a de-facto
standard public TEE platform (e.g., OP-TEE [6]) minimizes
the complexity of hypervisor implementation by delegating the
task for shielding a user process to the TEE. BitVisor [51]
migrates critical parts of the device driver to the hypervisor
layer, which also requires considerable analysis and engineer-
ing effort and enlarges the trusted computing base (TCB).
Tabellion [46] provides the hypervisor and TEE APIs that
are invoked in the device drivers to protect IO buffers. We
propose a more flexible approach in that the peripheral specific
logics (e.g., accessing IO buffers in URBs) that need to be
executed in the higher privilege can be integrated as part of the
device driver instead of migrating to the privileged software.
AdAttester [40] and TrustOTP [52] maintain separate device
drivers in the TEE, potentially enlarging the attack surface of
the TEE. Furthermore, the presence of TrustZone extensions is
assumed, which is not always true depending on SoC design.

XI. DISCUSSION AND FUTURE WORK

A. Usability and Security

Adopting MyTEE to build a secure IO channel requires in-
depth analysis of device drivers to pinpoint proper locations
for implanting MyTEE APIs. However, other than analyses that
would require significant effort depending on the complexity
of driver implementation, it is straightforward to equip the

driver with MyTEE APIs, as described in Listing 2. One of
the concerns with this approach is escalating the privilege of
memory operation, which potentially enlarges attack surfaces.
To address this, we validate arguments for memory copy oper-
ations performed in the privileged block. In addition, because
only the simple memory copy APIs, such as writel, are
limitedly privilege-escalated in our general usage model, we
can readily perform formal verification against instrumented
(privileged) code blocks, including the APIs. Developers might
misuse MyTEE APIs, creating new security holes. For exam-
ple, missing logging might break the reliability of secure IO.
Checking the correctness of privileged block implementations
at compile time can be a reasonable solution, but we leave this
for future work.

B. 64-bit OS Support

Although ARMv8 supports both 32-bit and 64-bit virtual
addresses, the OS and MyTEE hypervisor are compiled as
32-bit binaries in our PoC. This aims to enable page table
sharing between the kernel and hypervisor in our develop-
ment environment (i.e., Raspberry Pi 3), which is equipped
with a Cortex-A53 processor. In particular, the processor
implements ARMv8.0 specifications that support different
virtual address ranges for the kernel and hypervisor modes.
The kernel mode supports two virtual address subranges:
the bottom range of 0x0 to 0x0000_FFFF_FFFF_FFFF
and the top range of 0xFFFF_0000_0000_0000 to
0xFFFF_FFFF_FFFF_FFFF. The 64-bit Linux maps the
user and kernel spaces to the bottom and top ranges by
maintaining different page tables for each space. By contrast,
the 64-bit hypervisor mode supports only the bottom range on
ARMv8.0. Thus, even if the hypervisor uses the kernel page
table, it cannot map the privilege-escalated device driver that
is mapped with the top range of virtual addresses in Linux.

Therefore, we use 32-bit virtual address for the kernel and
hypervisor, which can present the entire virtual address space
with a single page table. The only requirement is the ability to
compile the kernel with the LPAE option, as illustrated in Sec-
tion VII-B. Unfortunately, the fallback to 32-bit disables the
watchpoint-based DMA protection from hypervisor-privileged
attacks. Thus, in this case, the MyTEE security depends on
whether privileged blocks contain vulnerabilities and thus re-
quires them to be thoroughly verified. However, this restriction
can be lifted from ARMv8.1. The virtualization host extensions
(VHE) support using two subranges of virtual addresses in
hypervisor mode as well. We will explore adopting this feature
in MyTEE in our future work.

XII. CONCLUSION

In this paper, we presented MyTEE to build and strengthen
the TEE on embedded devices without depending on the
TrustZone hardware extensions that have been assumed to
be generally available in previous work. Toward this end,
the kernel deprivileging and careful memory management,
DMA packet filter, and temporal privilege escalation tech-
niques were proposed. In addition, MyTEE and its example
use cases for secure IO were implemented on the Raspberry
Pi 3 development board, which lacks mandatory TrustZone
extensions for building the TEE. MyTEE is available at:
https://github.com/sssecret2019/mytee.
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