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Abstract—SIM boxes have been playing a critical role in the
underground ecosystem of international-scale frauds that steal
billions of dollars from individual victims and mobile network
operators across the globe. Many mitigation schemes have been
proposed for these frauds, mainly aiming to detect fraud call
sessions; however, one direct approach to this problem—the
prevention of the SIM box devices from network use—has not
drawn much attention despite its highly anticipated benefit. This
is exactly what we aim to achieve in this paper. We propose a
simple access control logic that detects when unauthorized SIM
boxes use cellular networks for communication. At the heart of
our defense proposal is the precise fingerprinting of device models
(e.g., distinguishing an iPhone 13 from any other smartphone
models on the market) and device types (i.e., smartphones and
IoT devices) without relying on international mobile equipment
identity, which can be spoofed easily. We empirically show
that fingerprints, which were constructed from network-layer
auxiliary information with more than 31K features, are mostly
distinct among 85 smartphones and thus can be used to prevent
the vast majority of illegal SIM boxes from making unauthorized
voice calls. Our proposal, as the very first practical, reliable
unauthorized cellular device model detection scheme, greatly
simplifies the mitigation against SIM box frauds.

I. INTRODUCTION

Together with telecommunication fraud [25], [31], [48],
bypass fraud has plagued the global mobile networks in the last
two decades, causing significant financial damage to mobile
network operators (MNOs) [47], [49]. SIM boxes are at the
center of these bypass frauds as they interconnect mobile
cellular networks with low-cost voice-over-IP (VoIP) sessions
in ways that MNOs would not typically approve.

Most notably, interconnect bypass frauds use SIM boxes
deployed in a country in which a callee is located to bypass
international call billing while utilizing low-cost VoIP con-
nections to the callee. The primary reason that SIM boxes
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are useful for such attacks is that they provide a means of
circumventing the billing system at the local MNOs.

Recently, we have witnessed a surge of an emerging type of
criminal activities with a renewed interest in SIM boxes [42],
[52], [53]. Organized crime groups have quickly learned that
with SIM boxes, they can mount financial scamming opera-
tions targeting people in a certain nation while staying outside
the legal boundaries of their targets. Scam calls made through
SIM boxes show local phone numbers on the target’s mobiles,
rendering these calls much less suspicious than traditional
VoIP-based scam calls. These financial scams typically have
targets in developed countries (where the expected financial
gain is large) while their operations take place in less regulated,
attacker-chosen countries anywhere on Earth [9]. Over 256,000
phone frauds, worth approximately $18.6 billion, occurred in
China in 2020 [17], [30]. Korea also has suffered a significant
loss of approximately $0.6 billion due to scam calls [37]. For
simplicity, we will refer to those frauds using SIM boxes as
“SIM box frauds” throughout this paper.

Security researchers have proposed a number of interesting
countermeasures that detect calls that traverse SIM boxes based
on the call data [33], [39] and voice call quality [13], [45].
Specifically, the countermeasures first accept all (including
scam) calls to monitor them and use additional information
obtained from the session. Some [13], [45] utilize packet loss
in the call, while others [33], [39] utilize call detail records
(CDRs) for the detection. Note that these solutions mainly
utilize the properties of the individual SIM or call session,
so that detection is performed after the calls are made.

Meanwhile, one basic approach that has not drawn much
attention is to detect the SIM box (the device itself) in the
network layer when it accesses the cellular network. For this,
a naïve approach is to use the International Mobile Equipment
Identity (IMEI), a primary device identifier that has been
designed and used for device model identification for decades.
Specifically, the cellular network can check the device model
based on the reported IMEI and reject its access if the device
is a SIM box. However, it is well-known that IMEIs are easily
spoofed with little to no effort (e.g., many SIM boxes provide
IMEI spoofing as a feature [22]).

Therefore, instead of solely using this untrustworthy IMEI,
we propose to utilize the information about the device capabil-
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ities from the contents of control-plane messages exchanged
at the time of initial attachment procedures to identify the
device model. More precisely, we utilize the two control-
plane messages from RRC (UECapabilityInformation)
and NAS (ATTACH Request). Both messages report the de-
vice capabilities, related to the setup of the radio connection
and service establishment, to the base station and core network.
Note that those capabilities are closely related to the hardware
support of the device itself and the software support of the
embedded baseband; thus, the capability information of a
device can serve as its fingerprint. We show that individual
smartphone models are accurately fingerprintable.

To this end, we present a systematic way of constructing
a device model fingerprint. Instead of utilizing the content
of control-plane messages blindly, our fingerprint construction
method starts from the specification analysis. Using the spec-
ifications as a guide, we build a filter containing user-specific,
session-specific, or previous-connection-specific fields, which
cannot represent the characteristics of a device itself. This
procedure may seem inefficient as it requires manual effort;
however, it is only a one-time task that occurs at specifica-
tion updates. Notably, as the typical time intervals between
specification updates are a few months, this manual task is not
required frequently. With the filter resulting from the manual
analysis, the device fingerprint is constructed by automatically
pruning out the features in that filter. Note that automatic
comparative analysis is used to double-check the correctness
of our filter, which helps to reflect non-device specific features
missed by manual analysis. As the remaining procedures are
designed to be fully automated, our fingerprint construction
method can easily be scaled out.

We believe that we are the first to present empirical
evidence that smartphones are indeed fingerprintable when
systematically pruning and utilizing the large feature space
(e.g., 31,118 features as of July 2022) in the control-plane
messages. Our large-scale experiment results show that most
smartphone fingerprints are unique. Our dataset contains 279
traces of 102 different mobile devices with various options,
including 85 distinct smartphone models, 6 LTE-compatible
SIM boxes, and 11 other IoT devices on the market. Our
in-depth analysis shows that smartphone manufacturers and
baseband vendors independently and jointly produce a variety
of unique device capabilities and configurations, resulting in
distinct fingerprints for smartphones (§V).

Based on the effectiveness of the designed fingerprints,
we present a fingerprint-based access-control mechanism for
preventing SIM box fraud that can be deployed in today’s
cellular networks. We make specific recommendations for
MNOs’ local policies for IoT devices, including SIM boxes.
The suggested access control list (ACL) successfully prevents
the majority of SIM box fraud use cases (§VI). In addition, we
present practical deployment considerations of the proposed
SIM box fraud prevention system for commercial networks and
analyze the system overhead for each fingerprint construction
step. We demonstrate that the steps can be mostly automated
and that manual procedures do not have much overhead (§VII).

We conclude that, without the supplier’s support or using
the same chipset of smartphones, mimicking the control-
plane messages to smartphones has limitations for fraudsters.
Impersonation of IoT devices may be still possible due to

their simpler capabilities, yet the proposed system makes
such attacks impractical (§VIII). We will open our entire
dataset/codes to the public [1].

Contributions. In summary, our contributions are as follows:

• We present the first empirical study of cellular device model
fingerprinting with a large-scale dataset.

• We conduct concrete feature analysis and consider user-
configurable options. Through feature analysis, features that
are user-specific, session-specific, or related to previous con-
nections are eliminated as these interfere with fingerprinting.
In addition, we demonstrate that device model fingerprinting
would fail if user configurations were not considered.

• We suggest a SIM box fraud prevention system that utilizes
fingerprint-based access policies. This system is the first to
use control-plane messages for prevention.

• We analyze (a) the overhead of the proposed system in the
various scenarios and (b) the required changes for system
deployment on commercial networks.

II. CELLULAR NETWORKS AND SIM BOXES

We first offer a short overview of how MNOs in cellular
networks manage heterogeneous devices (e.g., smartphones,
wearables, IoTs, and SIM boxes) (§II-A). We then outline what
SIM boxes do in cellular networks and in what use cases they
are employed in practice (§II-B).

A. Device Managements in Cellular Networks

LTE architecture. The LTE network includes three compo-
nents: user equipment (UE), an evolved Node B (eNB), and
an evolved packet core (EPC). The UE is an end device
that provides data and voice services to an end user. The
eNB is a base station that provides a wireless connection
to UEs using the radio resource control (RRC) protocol [6].
The EPC is the core of the network that contains a mobility
management entity (MME) for user authentication and ses-
sion/identity management. The MME communicates with the
UE via the non-access-stratum (NAS) protocol [5] to perform
these management functions. The MME is responsible for
authenticating users and managing the keys, sessions, and
identities. On the UE side, the baseband (also called baseband
modem) processes and manages the NAS and RRC control-
plane protocols.

International Mobile Equipment Identity (IMEI). Mobile
devices in cellular networks are assigned multiple identifiers
at different layers. One of them is the IMEI, an identity spec-
ifying the device handset itself [29]. This 15-digit identifier
provides a globally unique ID for each device handset. In
particular, the first 8 digits of an IMEI, called a type allocation
code (TAC), indicate the precise model of an individual device
bearing it.

The TAC system in IMEI is crucial for a range of business
and operational applications in the mobile ecosystem, such as
marketing (for customizing offers and upgrades to different de-
vice models), procurement (for understanding the relationship
between device models and revenue), service differentiation
(for providing different quality of services to different types
of devices), and network planning (for optimizing network
performance and efficiency) [29].
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Device identification procedure. The core network requests
IMEI of the UE in two ways. The first is to utilize
NAS Identity Request and Response messages. When
the core network sends a NAS Identity Request mes-
sage requesting an IMEI, the UE sends its IMEI in re-
sponse. Another way is to utilize NAS Security Mode
Command/Complete. When the core network sends NAS
Security Mode Command message, it can optionally request
the IMEI-Software Version. Once requested, the UE sends a
NAS Security Mode Complete message with its IMEI.

Lack of authentication. Despite the importance of IMEI in
cellular networks, one can forge the IMEI of UE and deceive
the network. Because there is no mechanism to authenticate
the reported IMEI on the network, one can change the IMEI
of a commercial smartphone by using file system modification
tools [21], [57]. SIM box manufacturers also typically provide
a method for users to change various device information,
including the IMEI. Thus, an adversary may easily bypass
IMEI-based access control in the cellular network.

Reporting UE capabilities. When the UE tries to ac-
cess the LTE network, it reports its capabilities through
the two control-plane messages: ATTACH Request and
UECapabilityInformation. ATTACH Request contains
the functionalities that the device supports, including security
algorithms, speech codecs, supporting networks, and telephony
features. While the information in ATTACH Request is related
to the core network functions, UECapabilityInformation,
an RRC layer message, lets the eNB know radio-access
related capabilities of the device. Such information includes
the supporting radio frequency, carrier aggregation (CA) con-
figuration, and radio resource scheduling capabilities of the
device. Those capabilities are highly related to the hardware
support of the device and the software support of the embedded
baseband. Thus, if the reported information does not match
with the device, the communication between UE and network
might be failed.

B. SIM Box and Illegal Use Cases

What is a SIM box? A SIM box is a VoIP gateway device that
contains a number of SIM cards, which are used to connect
to local cellular networks. As shown in Fig. 1, multiple (eight
slots in red rectangles) SIM cards of different MNOs can be
inserted into a SIM box. Large SIM boxes hold more than
hundreds of SIM cards in one device. The sliver plates (yellow
rectangle) are baseband chipsets, each connected to one SIM
slot and one antenna port (orange rectangle). Note that each
group acts as a UE and connects to cellular networks.

How does a SIM box work? A SIM box serves as a VoIP
gateway, transferring VoIP calls to cellular calls. When an
adversary tries to make a call to a victim using a SIM box,
the VoIP session is first established between the victim and
the SIM box. Then, it makes a mobile network call (e.g.,
VoLTE, 3G call) to the victim using its embedded USIM. Thus,
adversaries can make cellular voice calls far away from an
installed SIM box as long as the SIM box and adversaries are
connected through the internet. Consequently, adversaries with
SIM boxes can use local phone numbers even when they are
outside of the mobile network service area.

SIM Slots

Antenna

SIM Card

Antenna Ports

Baseband 
Chipsets

Fraudster VictimSIM box

VoIP

Mobile Network

Fig. 1: SIM box structure and SIM box fraud procedure.

Interconnect bypass fraud. Typical international calls are
routed through the regulated interconnection between callers
and callees. In interconnect bypass frauds, international calls
bypass these regulated interconnect (thus skipping billing for
overseas calls) and route through the low-cost IP voice calls
to the destination network. According to a recent survey [18],
interconnect bypass frauds using SIM boxes constitute the
fourth largest fraud type in the telecommunication business,
with the loss increasing from $2.7 billion in 2019 to $3.1
billion in 2021.

Voice scam fraud. SIM boxes are also used to carry out voice
scams or phishing attacks. By impersonating someone else,
such as a close family member, colleague, or law enforcement
officer, perpetrators mount financial scams. Perpetrators are
usually organized crime groups and the callers are typically
stationed outside the legal boundaries in which the victims are
located. The main benefit of using SIM boxes for such scams
is that the scammers can present local phone numbers (not
suspicious VoIP numbers) on the victims’ caller ID screen.
Using local phone numbers is expected to increase the call
success rates of the scammers. For instance, a bank manager in
Hong Kong in 2020 transferred $35 million to a voice scammer
who impersonated his boss [15]. If the call had reached the
victim with a traditional VoIP caller ID, the bank manager
would have had a suspicion and avoided the scam.

III. THREAT MODEL AND DEFENSE OBJECTIVES

Threat model. We consider SIM box frauds, including both
interconnect bypass frauds and voice scam fraud. The primary
goal of these SIM box frauds is to make successful voice calls
through local MNOs by operating their SIM boxes. We assume
that adversaries have legitimate means of accessing commer-
cial MNOs’ networks with lawfully issued local SIMs. We do
not consider supply-chain attackers that directly or indirectly
influence device manufacturers or baseband vendors. Thus, our
adversaries cannot make arbitrary changes to the device and
baseband implementations or the messages generated by these
systems.
Defense objectives. Our goal is to prevent unauthorized SIM
boxes from making calls on cellular networks. For strong
prevention of such an unauthorized call access, we propose
an access control policy for MNOs to deploy and enforce for
any device attached to them. We aim to present a precise and
delicate access control logic for unauthorized SIM boxes so
that MNOs block illegal use cases of SIM boxed calls but not
the legal case; e.g. telemarketing. With our access policy, SIM
boxes for lawful applications should be pre-registered (e.g.,
self-registration [16]) at each MNO so that they are permitted
to have voice call access.
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Fig. 2: Overview of fingerprint construction.

Our SIM box unit detection scheme is orthogonal to
existing SIM boxed call detection schemes [10], [11], [13],
[23], [32], [33], [38], [39], [45], [50] and they can be used
together to complement each other. For example, our scheme
can potentially stop many fraud calls made by SIM boxes even
before they are detected and handled by other defense schemes.

Key insights. Strict access control at the entry point (i.e., UE
attachment) of a cellular network has been considered difficult
because the de facto standard device model identification,
IMEI, is known to be easily spoofable. Thus, any security
policy based on IMEIs risks missing malicious access to the
system and, worse yet, may give a false sense of security to
operators, regulators, and end users.

To address this issue and design reliable and practical
access control for cellular networks, we propose to utilize
the auxiliary information found in the control-plane messages
when any mobile device attaches to the network. One critical
property we desire to leverage is that the auxiliary information
consists of a wide variety of features depending on each
device model (e.g. Galaxy S20 Ultra or iPhone 13). Through
our large-scale empirical study, we confirm that the 102
different device models tested are indeed fingerprintable with
the information.

IV. CONSTRUCTING DEVICE MODEL FINGERPRINTS

One critical part is to construct the fingerprints that reflect
the differences between device models from control-plane
messages. When device models are uniquely fingerprinted, we
can use these fingerprints to identify device models instead of
IMEIs, which are easily spoofable. More specifically, our goal
is to identify a device model, such as Galaxy S4 or iPhone 13
by using the fingerprint.

Fig. 2 shows an overall flow of constructing a device model
fingerprint. First, we collect two control-plane messages from
the device and convert them into a key-value list (§IV-B). Next,
we collect feature vectors in the same manner while varying
the device configurations (§IV-C). Then, we conduct a pruning
process using the filter mainly built by manual specification
analysis and automatic intra-model analysis (§IV-D). Note
that the specification analysis is manual, yet a one-time task
for each update. Lastly, feature vectors are automatically
refined (§IV-D). Finally, we define the set of refined feature
vectors as a fingerprint.

A. Preliminaries: From Standards to Control-plane Messages

While every device on the market must strictly adhere
to the 3GPP standards, UEs have diversities in their imple-
mentations according to the device and baseband manufactur-

Standardization Product Development Operation

• UE Network Capability
• Mobile Station Classmark 3
• UE Status

...

NAS Attach Req.

• rf-Parameters
• accessStratumRelease
• supportedBandListEUTRA

…

RRC UECap.Info.
NAS
RRC

Phone Vendor

Baseband Vendor Control-Plane 
Message

• Attach Request
• UECapability

Information

AP

ModemImplement
Request

Fig. 3: Illustration of how cellular functionalities are defined,
selected, and observed in modern cellular networks.

ers. These differences exist because implementation of many
optional functionalities are left to the device manufacturers,
allowing highly diverse sets of optional functionalities in the
device implementations. In addition, each device has different
capabilities due to the differences in hardware specifications
and the specific requirements of each device manufacturer.
Consequently, for each baseband vendor or UE, device ca-
pabilities such as supported radio frequencies and available
radio technologies could be implemented differently. Also, the
differences across different device models could be reflected in
the control-plane messages that contain devices’ capabilities.
These messages are sent to the core and base station, as
both require devices’ capabilities to provide cellular services
properly. Therefore, one can obtain such information from the
control-plane messages. Fig. 3 shows the overall flow from
standards to control-plane messages.

B. Converting Capability Information into Feature Vectors

We utilize capability information from the control-plane
messages that mobile devices transmit to the cellular network
during service registration called the ATTACH procedure. To
be specific, inspired by the prior works [34], [51], we utilize
two messages in NAS and RRC protocols: ATTACH Request
and UECapabilityInformation. UE reports its capability
information by using those control-plane messages.

Converting contents of messages. We first convert the con-
tents of the control-plane messages into a key-value (Feature:
Value) representation, as exemplified in Fig. 2. In the message
conversion, we leverage the fact that the control-plane mes-
sages follow a specific format defined by standards [5], [6].
First, the ATTACH Request message follows a format defined
by the NAS specification [5]. Using this format, we set the
name of the information element (IE) as a key and its data as
a value. Similarly, the UECapabilityInformation message
is in ASN.1 format [6], and we set the field name as a key and
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TABLE I: Considered configurations in feature collection.

Configurations Options

Setting option Preferred network 5G-SA, 5G-NSA, or LTE
Engineering mode Band selection Automatic / LTE-only / Band (1, 3, 7)

Service domain CS/PS, PS only

the corresponding data as a value. As this conversion directly
uses the format of each message, some fields and IEs may not
be assigned values. For those cases, we set a value as “Exist”.
Note that the whole message is converted into a key-value list,
i.e., no IEs and fields are dropped during the conversion.

Feature and Feature Vector. In this work, we define a feature
as a key in the converted representation. We also define a fea-
ture vector as a vector of values in the key-value list, resulting
from the feature vector conversion above. As shown in Fig. 2,
UENetworkCapability and EEA0 are the features with corre-
sponding values of Exist and Supported, respectively. Also,
the corresponding feature vector is (Exist, Supported, · · · ).
Note that some features have the same names as other features
in the feature vector, because both RRC and NAS message
formats allow repetition in a nested structure. For example,
a BandInfoEUTRA field in a RRC specification [6] provides
information about the supporting band. The field occurs mul-
tiple times in UECapabilityInformation, according to the
number of supporting radio bands.

C. Feature Vector Collection with Various Options

Existing works [34], [51] suggest collecting control-plane
features of different device models only with default options.
We show that, however, the feature vectors belonging to the
same device model may differ by their options. In other words,
the feature vector of the same model may vary once end
users customize their mobile devices with different settings. In
practice, one can configure a device to use a specific radio band
or the preferred network. Our experiments also show that more
than half of the tested devices changed their feature vectors due
to configuration changes (§V-B). Thus, fingerprinting while
ignoring the effect of end-user configurations yields poor
performance, and we cannot possibly call the feature sets
fingerprints of a device model.

To address this issue, we conduct the feature vector conver-
sion for each device while varying its configurations. Among
various optional configurations, we focus on the network-
related configurations that an end user can modify, because
most features in the used control-plane messages are related
to the network capabilities. In general, end-users can cus-
tomize device configurations in two ways: the settings tab
and engineering mode. First, one can select the preferred
radio technology (e.g., 5G-SA, 5G-NSA, or LTE) through the
settings tab in both the iOS and Android mobile operating sys-
tems. Second, tech-savvy users may change the configurations
of their devices through engineering mode, which provides
various additional configurations. Among them, we choose
network-related configurations, as we focus on the control-
plane messages containing network capabilities. We covered
most of the configurations that can be modified using the set-
tings tab or engineering mode. Tab. I shows the configurations
we covered, including network mode setting, band selection,
and service domain selection. We did not cover the tiny number
of configurations that might disturb the network connection.

TABLE II: Examples of fields/IEs removed by spec. analysis.

Properties Examples

User Specific EPS mobile identity TMSI based NRI container
Session Specific EPS attach type ESM message container
Previous Connection Last visited registered TAI Old location area identification

D. Systematic Pruning of Features

After converting the feature vectors from the messages col-
lected from all test devices with available options, we conduct
a systematic pruning of these features. This aspect separates
our work the most from the existing cellular device model
fingerprinting works [34], [51], in which researchers with
domain knowledge provide anecdotal evidence with small-
scale datasets and handpicked-feature vectors. We build a semi-
automated pruning process for the large feature space in a
systematic manner. Systematic feature vector pruning is critical
for two reasons:

1) Not all available features in the large feature space are
device model specific. For example, some features are too
fine-grained as they carry ephemeral session information
(e.g., key identifiers, sequence number, transaction identi-
fier). Some are permanent but carry individual user-specific
information (e.g., IMSI, TMSI). Some are also too coarse-
grained (e.g., all devices share the same features).

2) The features that are specific to device models (thus, use-
ful for our fingerprinting) change over time, and thus,
the pruning should be repeated frequently to adapt to the
changes. Therefore, without a systematic approach, con-
siderable manual effort is required on characterizing and
pruning procedures whenever new devices are introduced
to the market.

Hence, we present a simple yet highly effective approach
for pruning the features for device model fingerprinting, which
can ultimately be used for SIM box fraud prevention in
real-world cellular networks. The key ideas are 1) to build
a filter, a list of features that are not device model- and
configuration-specific, and 2) to construct a refined feature
vector by removing the features listed in the filter. In particular,
we take two approaches to build the filter: manual inspection
of the specification and automated comparative analysis of the
collected feature vectors in the previous procedures (§IV-B and
§IV-C).

Stage-➀: Specification analysis. This stage aims to find out
the features whose definitions in the specifications are not
device model specific. Thus, those features should not be used
to construct device model fingerprints. For this, we conduct
a manual inspection on the two specification documents [5],
[6]. Due to the enormous volume of the specifications, we set
rules for this manual analysis stage. First, we mainly focus
on the IEs and fields composing the target messages (i.e.,
ATTACH Request and UECapabilityInformation). This
part occupies 162 pages from four standards in total [3], [4],
[5], [6]. Second, we only select the features that meet one of
the following three properties; features are (1) individual user-
specific (e.g., identifiers such as IMSI or TMSI), (2) session-
specific (e.g., MAC, sequence number), or (3) associated with
previous connections (e.g., type of security context). Tab. II
shows the examples of fields and IEs in the filter, which are
found by specification analysis.
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Consequently, the filter has 31 features consisting of 22 IEs
and 9 fields in the collected control-plane messages. Although
the number of features in the filter seems small, it greatly
helps to prune a large number of features in the feature vector.
Note that some IEs and fields contain other IEs and fields due
to the nested structure of the messages. Also, some IEs and
fields are repeated in the control-plane messages. Therefore,
the elimination of such IEs and fields results in pruning the
multiple features in the feature vector.

Stage-➁: Intra-model analysis. Next stage aims to find out
the features whose values are not consistent within a device
model with the same configuration. These inconsistent features
should not be used to construct device model fingerprints.
Also, those features are difficult to determine with specification
analysis alone; so empirical analysis is required. For this, we
conduct a comparative analysis on the same device models.

We conduct the conversion procedure multiple times for the
same device model with the same configuration. In addition,
we collect the control messages in two settings: 1) attaching
the device with different bands and 2) using different SIM card
(but with the same public land mobile network (PLMN)). Note
that all other configurations of test devices are fixed. With the
converted feature vectors, we conduct a comparative analysis
to determine which features should be added to the filter.

As a result, we found that some nested features are mixed
in order even in the messages from the same device, resulting
in different feature vectors. For example, we observe that
the nested features in supportedBandListEUTRA, contain-
ing supporting radio bands information, show differences.
Specifically, the values of the nested features are identical
themselves, but they are listed in a different order, resulting
in distinct feature vectors. Also, the features nested within
supportedBandCombination are listed differently over the
same device, resulting in different feature vectors. To consider
this issue, we exclude those nested features.

This stage completes the feature pruning procedure along
with the first stage. First, this empirical analysis helps reveal
missed features that should not be used for the fingerprint in
the first stage. For example, the abovementioned findings are
difficult to acquire only by inspecting the specifications. Fur-
thermore, considering that there exist way too many features
in the modern 4G/5G cellular network control-plane messages,
human errors could occur in the manual analysis of the
specifications. Second, among many such features, which of
them are indeed useful for device model fingerprinting does not
always well align with our domain knowledge, rendering the
pruning process difficult (not only tedious) even to the domain
experts. For example, some values of features do not follow
the 3GPP specifications due to differences in implementation.
As a result of both stages, we were able to effectively remove
unneeded features for generating device model fingerprints and
greatly reduce the total 31,118 features to 922 features.

Stage-➂: Feature vector refinement. Lastly, we formalize
the feature vector after the pruning procedure. As we directly
construct the feature vector from the collected control-plane
messages, the length of feature vectors might vary over the
devices. Note that the features in the control-plane messages
vary according to the device implementation. Therefore, to
construct a fingerprint, we refine the feature vector using the

union of all features. Consequently, all feature vectors are
represented with the same length and order of the features,
as shown in the end of Fig. 2.

Constructing device model fingerprints. Finally, we define
the term fingerprint as a set of multiple refined feature vectors
from a device with various configuration options. In addition,
we consider a device to be fingerprintable, or has a unique
fingerprint if its fingerprint does not overlap with those of
other devices. In other words, fingerprintable devices do not
share a common feature vector with others.

V. EMPIRICAL STUDY ON DEVICE MODEL FINGERPRINTS

We first evaluate whether the constructed fingerprint can
be used to represent device models and prevent SIM boxes
from connecting to the network. For this, we create fingerprints
of various cellular device models and answer the following
questions:

[Q1] Do smartphones have unique fingerprints?
[Q2] What makes smartphones fingerprintable?
[Q3] Are SIM boxes fingerprintable?

Through large-scale experiments, we make a number of im-
portant observations, which are summarized as follows:

[O1] Smartphones have practically unique fingerprints;
thus their fingerprints can be practically used to
present device models (§V-B, §V-C, §V-D).

[O2] Smartphones are unambiguously separated from other
device types by their fingerprints (§V-E).

[O3] Device models other than smartphones also have
highly distinguishing control-plane features but they
may not be unique (§V-E).

A. Experimental Setup

Test devices. For large-scale analysis, we use 102 commercial
cellular devices in total. Our test devices include smartphones
from 5 baseband vendors (i.e., Qualcomm, Samsung, HiSili-
con, MediaTek, and Intel) and 8 major phone vendors (i.e.,
Samsung, Apple, Huawei, Xiaomi, LG, Google, ZTE, and
Oppo). We also test 6 SIM boxes from 5 different vendors.
All SIM boxes work in LTE networks, and some even support
Voice over LTE (VoLTE) as well. Note that LTE-compatible
SIM boxes have been introduced to the market recently. They
house 4 different baseband chipsets, and all of the modules
are provided by one vendor, Quectel. Note that all the LTE-
compatible SIM boxes from various vendors use the baseband
module from Quectel, according to a recent survey [35].
We also test IoT devices, such as LTE routers, wearable
devices (e.g., Galaxy Gear), tablets (e.g., iPad), and USB
dongles. In our work, we use the term “IoT device” to refer
to a cellular device that is not a smartphone. Please refer to
Tab. XIII in the Appendix for the complete list of test devices.

Datasets. We construct 8 datasets according to the configu-
ration and device type (Tab. III). Each dataset contains the
feature vectors of the device converted from the control-plane
messages. The numbers in parentheses in Tab. III are the total
number of the feature vectors in each dataset. For a baseline
evaluation, we constructed the P dataset using smartphones
configured with the default options. To see the effect of
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TABLE III: Dataset summary.

Dataset # of devices (log) Description Usage

P 85 (85) Phones set to default options All
Pnetwork 35 (39)† Preferred network is configured §V-B
Pband 16 (48)∗ Force to use a specific radio band (1/3/7) §V-B
Pservice 16 (16) Force to use service domain as PS only §V-B
Pupdate

⋄ 71 (71) Phones with each firmware updated §V-B
S 6 (9)‡ SIM boxes force to use LTE and Auto §V-E
I 11 (11) IoT devices §V-E
T 30 (30) Test set of phones for evaluation §V-F

† 35 devices are configured to use LTE network only. Additionally, we could configure
6 different network mode configuration for one device supporting 5G-SA/NSA network.
∗ We configure 3 kinds of radio bands for each of 16 devices allowing band selection.
‡ We could configure the 3 SIM boxes to use both LTE only/Auto, while 2 SIM boxes
only used Auto and 1 only used LTE only.
⋄ All phones have the latest firmware version as of Feb. 2022

various non-default options to the fingerprinting, we construct
datasets for four variants (Pnetwork, Pband, Pservice, Pupdate)
by configuring smartphones with the three types of options
described in Tab. I and by updating their firmware. Note that,
we use subsets of all the devices listed in Tab. XIII to construct
these datasets because some of the devices are restricted from
using engineering mode. The devices composing each dataset
are shown on our webpage [1].

Data collection. We build a testbed using srsLTE [28], an
open-source LTE stack, to collect the control-plane messages.
The EPC/eNB in our testbed is modified from the open-source
LTE stack to transmit UECapabilityEnquiry for collecting
UECapabilityInformation from the devices. The eNB
works on top of a USRP B210 [56] as a software-defined
radio (SDR). The devices are equipped with a programmable
SIM card [54], whose PLMN is set to that of the local MNO.

B. Do smartphones have unique fingerprints?

With our large-scale datasets, we first investigate whether
the smartphones are fingerprintable, by counting the number
of distinct fingerprints (i.e., feature vector) in dataset P . By
comparing each feature vector with others, we observe that 83
fingerprints are distinctive among a total of 85 devices. In other
words, 97.6% of the phones can be successfully identified.

This baseline-evaluation result seems unsatisfactory at first
because some smartphones do not have unique fingerprints.
After a brief examination of the exceptions, however, we
conclude that all 85 smartphones are practically fingerprintable
because all exceptions (pairs of smartphones with the same
fingerprints) can be practically regarded as the same models
for use of SIM box detection. The first two rows of Tab. IV
show the exceptions from P . We find out that the smartphones
in each pair are manufactured by the same vendor and also
have the same baseband model. Furthermore, they are released
to the market in a short period of time.

While they have minor differences in their hardware
specifications (e.g., displays, batteries), these differences are
not related to the radio capabilities utilized for fingerprint
construction. In this paper, we define two smartphones as
"cohorts" if they have 1) the same baseband, 2) the same
vendor, and 3) comparable release dates. Except for cohorts,
the device models in P have unique fingerprints (i.e., they are
fingerprintable).

Why is it necessary to consider the device configuration?
As outlined in §IV-C, understanding and utilizing the effect of

TABLE IV: Cohort analysis.

Duplicated Devices Differences

Galaxy S9 (B) Galaxy S9+ (B) Display, Battery, Camera
Xiaomi MI8 Xiaomi MIMIX2S Released within 2 month

Galaxy S20† Galaxy Note20 ultra† Released within 6 month
Galaxy Note 9∗ Galaxy S9+ (B)∗ Released within 6 month
LG K50 LG X6∗ Released simultaneously
Galaxy S10 (A)∗ Galaxy S10e∗ Released simultaneously
MI 5S∗ MI5S+ Released simultaneously
iPhone12 Pro iPhone12 mini∗ Released within a month

† Both devices shows the same feature vectors only if when both are configured to
use LTE network only or specific bands.
∗ The device with the updated firmware (dataset Pupdate). For instance, fingerprints
of Galaxy Note9 and Galaxy S9+ B overlap when both are updated.

end-user customization on a device is imperative for building
fingerprints of smartphone models in practice. To examine
its importance, we first analyze the difference between the
fingerprints of devices with and without applied configurations.
We utilize three datasets Pnetwork, Pband, and Pservice to
analyze each configuration option. Additionally, we consider
the firmware of the device with a dataset Pupdate.

First, we investigate the number of devices whose feature
vectors changed as a result of configuration changes. For all
four datasets, we find that over half of the devices show differ-
ent feature vectors compared with their default ones (Tab. V).
Also, we investigate the number of features affected by con-
figuration changes. Particularly, when the devices are set to
use the LTE network only, 82 features changed in average,
mainly because GSM/3G-related features no longer needed to
be supported. In addition, firmware updates also resulted in
changes to the feature vectors of 42 devices among the 71
devices in Pupdate. This is because the purpose of updates is
to patch vulnerabilities or add new functionalities, which is
reflected in the control-plane messages. For instance, a group
of security researchers demonstrated that an algorithm GEA1
is insecure [14], prompting a standard [8] change in 2021 [2].
In this regard, 20 phones in Pupdate disabled the algorithm after
the update. These results show that device model identification
fails without understanding the effect of the user configuration;
thus, end-user configurations must be taken into account when
constructing fingerprints.

Second, we examine whether the fingerprints are still
distinct even considering the configurations. For the evaluation,
we first construct the fingerprint by adding all the feature
vectors we collected (Pnetwork, Pband, Pservice, Pupdate) while
varying the configurations from P . We then investigate the
number of devices whose fingerprints have no intersections
with others, similar to the baseline evaluation. As a result, we
find that 77 of the 85 device fingerprints are different from
the others. The fingerprints of six additional pairs of phones
overlapped compared with the baseline evaluation; however,
each pair is a cohort, as shown in Tab. IV.

In summary, most phones have distinct fingerprints, and
this property is maintained even after expanding fingerprints
to a set of feature vectors collected from devices with var-
ious configurations. Furthermore, all pairs of devices with
overlapped fingerprints are cohorts (i.e. same baseband, same
manufacturer, and similar release date).
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TABLE V: Changes in features based on configuration.

Dataset # of changed # of devices showing # of total
features different feature vector devices

Pnetwork 81.7 33 35
Pband 70.5 16 16
Pservice 25.3 9 16
Pupdate 35.4 42 71

C. What makes smartphones fingerprintable?

We further investigate the fingerprints of smartphones to
see how features contribute to achieving accurate device model
fingerprinting. For this, we examine the effects of baseband
vendors and phone vendors on fingerprints. Note that our large-
scale dataset with 85 smartphones enabled us to conduct such
detailed analysis and provide new insight on device model
fingerprinting.

How do baseband vendors affect fingerprints? As the base-
bands play a key role in cellular communication (especially in
the control-plane), the control-plane messages would be highly
affected by the manufacturer. From our large-scale dataset, we
find that baseband vendors influence fingerprints in two ways.

First, each baseband vendor employs unique configurations
for their baseband. For example, they use their own battery-
saving configuration. Specifically, each baseband vendor uses
unique values for SPLIT PG CYCLE CODE; Qualcomm, Sam-
sung, and HiSilicon basebands use values of 10, 16, and 32,
respectively. Also, MediaTek and Intel basebands use value
8 (if that feature exists). Those configurations are adopted in
smartphones consistently, regardless of the phone manufacturer
or chipset number.

Second, baseband vendors implement and support the
functionality in the 3GPP specifications selectively. The 3GPP
specifications contain a number of communication technolo-
gies that are not mandatory. Due to the freedom in the
implementation, the capabilities of each baseband vary, and
these differences show up in its control-plane messages. We
observed several examples through careful examination of
our dataset. For example, the positioning technology [26] is
supported in all basebands from Mediatek and some recent
basebands from Qualcomm, while most basebands from other
vendors do not support it. Likewise, only the devices equipped
with the MediaTek basebands can support TM5, a modulation
scheme-related capability, and Qualcomm basebands do not
support a null integrity algorithm (EIA0).

How do phone vendors affect fingerprints? Vendors also
affect fingerprints. When a phone vendor develops a phone that
uses a given baseband, the manufacturer can choose whether
or not to support certain capabilities of the device as needed.
With the help of our large-scale dataset, we observe that phone
vendors can be distinguished even from devices having the
same baseband chipset model.

As a case study, we choose 6 devices equipped with two
basebands (i.e., Qualcomm Snapdragon 835 and 845) from
three phone vendors (i.e., Samsung, LG, and Xiaomi) and run a
comparative analysis. Among the devices, only the LG devices
did not support EEA3 and EIA3, the encryption and integrity
algorithms. This observation implies that, while the baseband
in those devices could support capabilities (because the devices

having the same baseband from other phone vendors can
support), the phone vendor may choose to support. By further
investigation of 10 other devices listed in Tab. XIII with
Qualcomm baseband that LG manufactured, we confirm that
those algorithms are not supported except for one UE (i.e.,
V50); V50 supports the latest protocol version of RRC (release
15). These studies indicate that phone vendors generate differ-
ences in the capabilities of their devices, resulting in distinct
fingerprints.

D. Will the new device have a distinct fingerprint?

Despite our investigation of a large number of mobile
devices, one may question the uniqueness of the fingerprint
of a newly introduced device. However, the uniqueness of the
fingerprint of a new device will be guaranteed for two intuitive
and solid reasons. First, the 3GPP specifications are continually
updated, and each update produces new features that can be
part of fingerprints; thus, it contributes to the uniqueness of
the fingerprints. Through specifications analysis, we find that
a total of 73.3 fields and 21 IEs are added per update on
average (Tab. IX). As new basebands have a high possibility
of supporting those new features while old basebands do not,
the fingerprints will be distinct. Second, a newly introduced
device embeds improved hardware compared to the previous
model, resulting in better capabilities, such as the support
of more bands. Brand new devices usually embed the latest
baseband and peripheral hardware, thus supporting brand new
technology in the latest 3GPP specification (i.e., 5G-NSA).

To confirm both intuitions, we conduct a comparative
analysis of 7 and 6 phones from the Galaxy S series and the
Apple iPhones, respectively. Note that all devices except the
iPhone 8 and iPhone XS equip Qualcomm basebands.

Tab. VI shows the numbers of features that newly appeared,
compared to the previous device. We find that next-generation
devices always contain at least 3 (and up to 162) newly
emerging features in both series, supporting the first intuition.
For instance, for the first devices supporting release 15, 5G-
related features (e.g., 5G-EA0 and 5G-IA0) are first introduced
among the series. Furthermore, even if two devices support the
same specification version, the more recent device contains
new features, because a more recent device has improved
hardware compared to the previous one, as explained in the
second intuition. For example, even though the Galaxy S7 (B)
and S8 support the same specification version (rel. 11), the
Galaxy S8 supports more bands, resulting in a difference in
the related features compared to the Galaxy S7 (B). These
findings imply that new phones will have unique fingerprints,
unless a manufacturer sells the same phone (same hardware
and software) under a different name.

E. Are SIM boxes fingerprintable?

So far, we have only evaluated the uniqueness of finger-
prints on smartphones. Now, we discuss whether the fingerprint
generated from the control-plane messages of SIM boxes
is distinguishable from those of smartphones and other IoT
devices.

Are phones distinguishable from IoT devices? We first
address whether smartphone fingerprints remain unique from
those of SIM boxes and other IoT devices. To answer this
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TABLE VI: Number of new features along series of devices.
Galaxy phones RRC release # of new features Example of new features
Galaxy S5 (A) 10 - -
Galaxy S7 (B) 11 22 ProSe, rf-Parameters-v1130
Galaxy S8 11 45 rf-Parameters-v1180
Galaxy S9 (B) 12 3 pdcp-SN-Extension-r11
Galaxy S10 (B) 14 162 otdoa-UE-Assisted-r10
Galaxy S20 15 99 5G-EA0, 5G-IA0
Galaxy S22+ 15 5 eutra-CGI-Reporting-ENDC-r15

Apple phones RRC release # of new features Example of new features
iPhone 6 10 - -
iPhone 7 11 17 rf-Parameters-v1130
iPhone 8 11 41 Handover between FDD and TDD
iPhone XS 12 19 rf-Parameters-v1310
iPhone 12 pro 15 124 5G-EA0, 5G-IA0
iPhone 13 15 5 mbms-Parameters-r11

question, we use seven datasets: five smartphone datasets and
two datasets of SIM boxes and remaining IoT devices. In
total, we use 279 feature vectors from 102 devices including
85 phones, 6 SIM boxes and 11 other IoT devices. We then
count the overlapped fingerprints that share one or more feature
vectors of IoTs and SIM boxes. As a result, we observe
that no fingerprints of smartphones overlapped with any other
type of device. This finding implies that smartphones are
unambiguously separated from other device types by their
fingerprints.

Especially, we further examine the effective features that
highly contribute to classifying smartphones and SIM boxes.
Although SIM boxes and smartphones provide the same ser-
vices (e.g., voice and data services), their capabilities show
differences in some features. The differences appear due to
the limitations of the SIM boxes in terms of hardware and
software. First, in terms of hardware, typical SIM boxes only
have one antenna per baseband, as shown in Fig. 1. This
hardware characteristic limits the use of some functionalities
requiring multiple antennas, such as carrier aggregation (CA),
a radio technology utilizing multiple frequencies simultane-
ously. Thus, CA-related features do not appear on the control-
plane messages of SIM boxes, whereas most smartphones
do. In addition, as most IoT devices (including SIM boxes)
embed low-cost basebands, their supporting protocol version
is relatively low or configured to use low-performance opera-
tions (e.g., ue-Category is set to a low value).

Do SIM boxes have distinct fingerprints? One remaining
question is whether SIM boxes have unique fingerprints com-
pared to the other IoT devices. Based on our observations, we
conclude that IoT device models also have highly distinguish-
ing control-plane features but they may not be unique.

First, we count the numbers of distinct fingerprints in
I and S as in §V-B, and found that two SIM boxes from
different manufacturers show the same fingerprints. Moreover,
we observe that identical feature vectors are easily generated
by modifying the configurations of the baseband chipset using
commands available in the product manual (§VIII). In addi-
tion, we argue that GSMA’s TAC allocation rule somewhat
contributes to the collision with fingerprints of IoT devices.
Unlike smartphones whose TACs are allocated to the device
model, IoT devices use the baseband’s IMEI directly [40].
In other words, although both baseband and phone vendors
generate differences in the fingerprint of the smartphone, IoT’s
fingerprints are highly coupled with the baseband vendors. As
a result, those observations imply that IoT devices are more
likely to have overlapped fingerprints, unlike smartphones.

TABLE VII: Exception cases in open-world evaluation.

Test Device Expected result Actual result Cause

T Galaxy S7 Galaxy S7 (B) Unknown Firmware
T Galaxy Note 8 Galaxy Note 8 (A) Unknown Firmware
T Galaxy S10 (A) Galaxy S10 (A) Unknown Firmware

F. How do the fingerprints handle unknown devices?

We next evaluate device model fingerprints in an open-
world scenario to demonstrate whether a partial database could
also handle random devices, including unknown ones.

Datasets. We construct two sets: a fingerprint database and a
test dataset. The fingerprint database consists of all datasets
in Tab. III except T , containing 279 traces from 102 devices
in total (Tab. XIII). We also prepare T consisting of the
fingerprints from 30 other smartphones not included in the
database (Tab. XI). This test dataset contains 15 known phone
models (which are the same model or cohort as one of the
102 devices) and 15 unknown models (which are not the same
model as any of the 102 devices).

Evaluation process. We consider that the models are correctly
identified in the following two cases: 1) an unknown model
is identified as “unknown” (i.e., no fingerprint in the database
matches with the test device’s fingerprint), and 2) a known
model is identified as it is (i.e., fingerprint of the same model
in the database matches with the test device’s fingerprint).

Evaluation results. We confirm that all unknown models
are identified correctly. This finding supports [O1], which
implies that smartphones have practically unique fingerprints.
Also, we could identify 12 out of 15 known models cor-
rectly while three exceptions occurred due to differences in
firmware, as discussed in §V-B. Tab. VII shows the list of
the three exceptions. This is because our database does not
cover the new firmware of those three models. However, when
deploying to a commercial network, these exceptions could be
covered by the methods described in §VII-C. In conclusion,
our method for device model fingerprinting can practically
handle unknown devices, regardless of whether the database
contains the fingerprints of those device models.

VI. SIM BOX FRAUD PREVENTION SYSTEM

With the effective fingerprints we collect, we now design
a SIM box fraud prevention system. Recall that this system
is the first to prevent (i.e., not detect after frauds begin)
unauthorized SIM-boxed voice calls in cellular networks. The
system employs an access control list (ACL) together with
strict operational policies on IoTs (§VI-A). The security of
the ACL is formally analyzed through UPPAAL (§VI-B).

A. ACL for Voice Calls

For a SIM box fraud prevention system, we propose an
ACL for voice call in cellular networks. We focus only on the
voice call because it is the main system resource exploited by
fraudsters in our threat model.

We utilize three orthogonal fields obtained from the device
attaching to the network: (i) a device-reported IMEI, (ii) a
reported fingerprint (or control-plane features), and (iii) a sub-
scribed plan (or simply a plan). The first two should be familiar
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TABLE VIII: Proposed access control list for voice call access to cellular networks.

Case Reported IMEI Fingerprint Plans Decision Reason
Ph

as
e

1
1 Phone A FPhoneA Phone Accept Correct IMEI
2 Phone A FPhoneB Phone Reject IMEI is spoofed
3 Phone A FIoTA (= FIoTB) Phone Reject† IMEI is spoofed
4 Phone A FUnknown Phone Reject† IMEI is spoofed
5 IoT A (registered) FPhoneA Any Reject IMEI is spoofed
6 IoT A (registered) FIoTA (= FIoTB ) Any Accept† Correct, registered IMEI*
7 IoT A (registered) FUnknown Any Reject† IMEI is spoofed
8 IoT B (non-registered) FPhoneA Any Reject IMEI is spoofed

Ph
as

e
2 9 IoT B (non-registered) FIoTA (= FIoTB) Phone Reject† Phone plan is not allowed for non-registered IoT devices*

10 IoT B (non-registered) FIoTA (= FIoTB) IoT Accept† IoT plan does not allow the voice service**
11 IoT B (non-registered) FUnknown Phone Reject† Phone plan is not allowed for non-registered IoT devices*
12 IoT B (non-registered) FUnknown IoT Accept† IoT plan does not allow the voice service**

† It may contain SIM box fraud.
* If IoT B is a SIM box, it can act like IoT A with a phone plan. Still, fraudsters require detailed information about the IoT A having the same fingerprint.
** If IoT B is a SIM box, it can be itself while using an IoT plan. Fraud attempt is limited due to the limitations in IoT plans though.

to readers by now. The third denotes the types of service plans
that are typically chosen by end users when purchasing SIMs
from MNOs. For the purpose of the ACL for voice calls,
we use a coarse-grained distinction of service plans: Phone
plans (which allow both voice calls and mobile data) or IoT
plans (which only allow mobile data). Additionally, the system
employs a fingerprint database, which stores the fingerprints of
various device models. If the database contains the fingerprint
of a certain model, the system can identify the model by
matching the fingerprint in the database.

Tab. VIII shows the ACL we propose. To the best of our
knowledge, it is the first access control policy for voice access
in cellular networks that uses control-plane fingerprints. Note
that without control-plane fingerprints, one cannot enforce any
robust access control because IMEI can be easily spoofed.

For easier understanding of the ACL, we explain it in two
phases. Phase 1 utilizes a fingerprint and reported IMEI to
verify that the IMEI value is spoofed. When the system cannot
decide the validity of the IMEI in Phase 1, the device is sent
to Phase 2 for further decision using the subscribed plan.

Phase 1, validating IMEI. The main goal of Phase 1 is to
validate the reported IMEIs of devices — i.e., whether they
are spoofed, valid, or undecided. Once the device reports the
IMEI of a phone or a registered IoT, the reported fingerprints
can be used to validate its IMEI. For validation, Phase 1
utilizes two fingerprints: (F1) the fingerprint of the model
corresponding to the TAC value in the reported IMEI, and
(F2) the reported fingerprint. Note that F1 is obtained from
the fingerprint database of the system and may not be found
if the database does not cover the model corresponding to the
reported IMEI. Then, [O1] and [O2] imply that we can use
F1 and F2 to make a concrete decision in the following cases.

1) If F1 and F2 match, we consider it a non-fraud case (Cases
1 and 6).

2) If F1 is found in the database but it does not match F2, we
consider it a fraud case (Cases 2–5 and 7).

3) If F2 matches one of the smartphone fingerprints in the
database but its IMEI reports otherwise, we consider it a
fraud case (Case 8).

One important property is that Phase 1 ensures zero false
rejects (i.e., no legitimate user is rejected) assuming that our
system contains all fingerprints of the smartphone models in

the network. The implication when this assumption does not
hold is discussed in §IX.

Phase 2, checking subscription plans. Phase 2 handles the
devices whose IMEIs cannot not be concretely validated in
Phase 1. Note that these are the devices that report the IMEI
of a non-registered IoT devices. Unlike smartphones, the model
of IoT devices cannot be determined strictly with fingerprints
due to [O3]. In other words, the possibility of SIM box usage
cannot be completely ruled out in these cases. To this end, we
rely on a couple of new operational policy rules, which should
be deployed at each MNO for better SIM boxes handling. To be
specific, the operational policies confirm unauthorized access
to the system by examining the subscription plans along with
the IMEI and control-plane features (Cases 9–12 in Tab. VIII).
Again, we use a coarse-grained categorization of plans: phone
plans and IoT plans.

We envision that MNOs adopt the following simple oper-
ational policy: “Phone plans should not be allowed for non-
registered IoT devices.” This policy indeed forces all lawful,
authorized SIM box applications to register with the MNOs
(e.g., the Bring Your Own Device policy at T-Mobile [16])
so that they can have voice call access. Along with this
operational policy, Phase 2 concludes to accept devices with
two criteria: (Cases 9–12 in Tab. VIII):

1) If the identified device is deemed to be an IoT device and
subscribes to an IoT plan, accept the device (Cases 10, 12).

2) If the identified device is deemed to be an IoT device and
subscribes to a phone plan, reject its access (Cases 9, 11).

B. Security Analysis on the ACL

We next conduct security analysis on the ACL to ensure
its completeness. In particular, we examine the existence of
false reject (a legitimate user is rejected) and false accept
(an unauthorized SIM box is accepted). Note that the system
should have zero false rejects as the MNO cares about the
service availability for the users first. Simultaneously, for the
purpose of the system, it should not allow false accept cases.

Analysis procedure. To verify wrong decisions of the ACL,
we utilize UPPAAL [36], a model-checking tool. With UP-
PAAL, we generate a model with two major stages: a decision-
making stage and a validation stage (Fig. 4). In the first
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Fig. 4: UPPAAL model used for security analysis of ACL.

stage, the model receives input composed of five parame-
ters: is_legitmiate, is_simbox, reported IMEI, reported finger-
print, and plan. The first two parameters, is_legitmiate and
is_simbox, are ground truths used to check false rejects and
false accepts, respectively. The remaining three parameters
represent the properties of a device connected to the network.
For each property, we define 1) three reported IMEIs (phone,
registered IoT, and unregistered IoT), 2) three reported finger-
prints (phone, IoT, and unknown), and 3) two plans (phone and
IoT). For all 18 possible cases, our model determines whether
to accept each case according to the ACL.

The model then verifies which cases lead to the false
decision by comparing acceptance results from the above stage
with the type of input devices, i.e. SIM box or legitimate user.
As a result of verification, two wrong decisions can occur:
false accept and false reject. False accept implies that an
unauthorized SIM box can be accepted by the network. On
the other hand, false reject means that the legitimate user is
restricted to utilize the cellular network services.

Results. We confirm that the results of model checking are
in accordance with what we discussed. Among all possible
cases, none of the cases show a false reject. Meanwhile, we
find that the following cases of false accept: Cases 6, 10, and
12 (Tab. VIII). However, fraud could not occur if the device
uses IoT plans, as they are prohibited for voice calls under our
policy. Thus, we conclude that the system has no false rejects,
but false accepts could occur in: Case 6 with a phone plan. In
Appendix §B, we discuss each case in more detail.

False accept. We observe that the ACL could experience false
accepts once fraudsters exploit Case 6 with phone plans. For
instance, the ACL accepts SIM boxes reporting the IMEI of
a registered IoT device having the same fingerprint. This does
not, however, reduce the effectiveness of our SIM box fraud
prevention system at a meaningful scale because to exploit
this niche false accept case, an adversary must know the exact
IMEI of the registered IoT device that happens to share the
fingerprint with their SIM box. We show in §VIII that it is
non-trivial and costly to manipulate control-plane messages.
Additionally, we believe that one can easily distinguish typical
IoT devices using CDR or usage pattern analysis and easily
detect fraudsters by adopting IMEI duplication checking logic
based on the registration/subscription information.

VII. DEPLOYMENT IN OPERATIONAL NETWORKS

Our ultimate goal is to consider the deployment of the
system for commercial networks in addition to presenting a
high-level concept of the SIM box fraud prevention system.

More specifically, we provide practical deployment consider-
ations for the system. First, we provide an analysis of the
system overhead in various scenarios: bootstrapping (§VII-A),
specification updates (§VII-B), and the release of new devices
and firmware versions (§VII-C). Second, we consider the
changes required to the operational network to deploy the
system (§VII-D).

A. Overhead Analysis in Bootstrapping the System

In the system bootstrapping state, the main overhead would
be to build the fingerprint database. Recall that the construction
requires four steps (Fig. 2): (S1) feature vector collection
and conversion, (S2) specification analysis, (S3) intra-model
analysis, and (S4) feature vector refinement. Among them,
only S1 and S2 require manual efforts, while S3 and S4 are
automatic processes. Due to this fact, we mainly consider the
system overheads from S1 and S2 in the bootstrap stage.

Specification analysis (S2). To check the role of each feature
and determine whether it is suitable for constructing the
fingerprint, manual inspection of the 3GPP specification is
inevitable. Intuitively, this process may seem overwhelming,
even with the help of the two rules we set for the analysis
(§IV-D). However, we benefited from the structure of the
specifications: 1) the table structure of the feature definition,
and 2) the nested structure. The features in the messages are
given in a table, which makes it easier to examine them. Also,
definitions are given in a nested format, where tables lead to
a section or document with the definitions we look for. As
a result of our empirical measurement, we could finish this
analysis in 5h. Note that this process is required at the system
bootstrap stage only once.
Feature vector collection and conversion (S1). In our setup,
it took less than 20 min for one smartphone model to process
this step considering its configuration modification. We used
the modified srsLTE implementation and manually changed
the smartphone configuration. Notably, we can automate this
collection procedure by utilizing a phone mirroring and au-
tomation tool such as scrcpy [27], which enables computer-
based phone control. This approach enables us to automate
the process to adjust the configurations and collect messages
automatically. Therefore, with the predefined control flow, we
can automatically change the configurations described.

B. Overhead in Specification Updates

After the bootstrap, manual inspection in specification
analysis (S2) is often required. As the filter used to prune
the features (§IV) is built based on specifications, it should be
updated whenever the specifications are updated, which may
require a huge maintenance cost. However, there are several
reasons supporting that the proposed system is deployable.

First, the specifications are not written from scratch, which
implies that the effort necessary to analyze the added features
does not require considerable manual effort afterward. For
instance, only 10 new pages of specification analysis are
required to upgrade the system from release 16 to 17. To
quantify the overhead, we count the number of newly added
IEs and fields in updates. We examine the two specifications
[5], [6] and compare the document with every release. Tab. IX
reveals that on average, 21 IEs and 73.3 fields are newly
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TABLE IX: # of new features in each specification version.

Release 9 10 11 12 13 14 15 16 17 Average

# of UE Cap. Fields 22 30 27 47 103 105 181 122 23 73.3

# of Attach Req. IEs 12 14 12 9 17 5 85 26 9 21

introduced per release. For instance, a large number of new
features are included in release 15 as the new radio technol-
ogy (5G) is introduced. Second, the specifications take a few
months to be updated, so investigation is only required every
few months. Also, the specifications always appear before the
corresponding devices, making it possible to generate a filter
in advance.

C. Overhead in Handling New Devices/Firmware

Considering the operational networks in which many new
devices are introduced every year, the system needs to conduct
the process of building a fingerprint and updating an existing
fingerprint. In this context, there are two potential concerns:
(1) overheads in fingerprint construction and (2) difficulties in
tracking all of the new devices and firmware.

First, the required steps for handling new devices and
firmware do not necessarily involve manual effort. Except for
the manual analysis of the specifications, only the remaining
steps in Fig. 2 must be conducted. This is because any new
device models should adhere to the latest standards, which
were already analyzed and used to generate a filter.

Second, MNOs can collect new fingerprints and add them
to the database before the new products are even released with
the help of relationships between the manufacturers. In general,
before the deployment of new phones and firmware versions,
MNOs test them on their testbed to check network compati-
bility. Thus, MNOs can collect the control-plane messages of
the new devices and devices with new firmware from the tests.
To confirm this, we asked a tier-1 MNO and a global tier-1
phone manufacturer and received the following two responses.
First, Apple and Samsung, two major manufacturers, provide
new phones and firmwares to MNO for every new release to
ensure that a new or updated device will not harm the network.
Second, new firmware and devices can be released only after
they are authorized by the MNOs through the tests. This policy
holds for all Android phones.

D. Required Changes on the Operational Network

There exists one immediate concern that could arise when
deploying the proposed system in large operational LTE net-
works. Our system utilizes the control-plane messages in two
different control-plane protocols (i.e., NAS and RRC) and
each protocol is managed by different entities (i.e., MME and
eNB), respectively. Thus, each entity with different roles has
limited access to different sets of information on the control-
plane messages; e.g., eNBs cannot monitor NAS messages and
MMEs cannot see RRC messages.

Luckily, there already exist channels between eNBs and
MMEs, and more importantly, they are used to exchange
the control-plane messages that we utilize. According to the
specifications, the eNB delivers the device capabilities to the
MME whenever it receives 1) UECapabilityInformation
from the device or 2) a request from the MME. For this, an UE

Capability Info Indication message in the S1AP [7],
the control-plane protocol between eNB and MME, is used.
Therefore, our detection system does not require additional
channels for the operational networks or new message formats
for the new standards. Only by communicating with MMEs,
the core network can collect the control-plane messages used to
generate fingerprints. Therefore, the core network can receive
both messages with only incremental changes on MMEs.

VIII. CIRCUMVENTING OUR PREVENTION SYSTEM

Advanced fraudsters will wish to circumvent our SIM box
fraud prevention system once the system is deployed. They will
attempt to manipulate the control-plane messages and IMEI to
the model that SIM box impersonates. However, we argue that
such mimicry of the control-plane messages is highly imprac-
tical and costly in all attack scenarios. As we do not consider
supply-chain attackers, the fraudsters cannot manipulate the
baseband chipset itself. Thus, there are three options for the
fraudsters to manipulate the control-plane messages: 1) change
the SIM box configuration (§VIII-A), 2) modify the control-
plane messages with MitM device (§VIII-B), and 3) implement
fully controllable software SIM box (§VIII-C).

A. Changing the SIM box Configuration

We first investigate whether fraudsters can generate the
same fingerprints as smartphones using their own SIM boxes.
For this, we take the approach of being fraudsters and building
our own SIM boxes to have a greater ability on modifying the
control-plane messages. We embed two chipsets, EC25-E [19]
with two versions, widely used by SIM boxes on the market,
onto the dev-board [20].

The operations that could affect the control-plane messages
are performed in two ways: (1) by sending AT commands
and (2) by modifying the configuration files in the firmware
of the chipset (called modem configuration binary, MBN).
Inspecting the AT command manuals [44] reveals 16 cellular-
communication-related AT commands and 12 MBN files that
could be adopted to the baseband chipset (Tab. XII).

We first investigate how such modifications affect control-
plane messages. By sending AT commands and modifying
MBN files, we could modify the SIM boxes and collect 75
feature vectors in total (see Tab. XII for the list of modifica-
tions). Comparative analysis of the feature vectors reveals that
383 features are affected by the operations. This observation
suggests that fraudsters may have the freedom to change those
features.

Base on these observations, we conduct an evaluation to
determine if SIM boxes could have the same feature vectors
as smartphones. To assume that the 383 features could be
modified freely by fraudsters, we exclude these 383 features
from the entire set of features and evaluate the remaining
features. Comparing the feature vectors in our entire phone
dataset (Tab. III) to the 75 generated feature vectors reveals that
no two vectors are identical. As a result, we confirm that a SIM
box cannot mimic a phone. In contrast, the comparison with
I reveals three overlapping SIM boxes, and one of them has a
feature vector identical to that generated by the modification.
These results also support observations [O2] and [O3]. In
conclusion, without manufacturer’s support or changing the
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baseband chipset itself, mimicking the phone’s control-plane
message is infeasible for fraudsters.

B. Control-plane Message Manipulation with MitM Device

We next consider fraudsters who attempt to report ma-
nipulated control-plane messages with additional devices. In
particular, fraudsters can apply a Man-in-the-Middle (MitM)
scheme [46], [58], where a MitM device sends a manipulated
control-plane message instead of the SIM box’s one. The MitM
often utilizes the SDR and software LTE stack. For example,
in a capability hijacking attack described in [51], fraudsters
try to circumvent our system by relaying different capability
information to the network.

While this approach seems a promising means of bypassing
our system, the MNO can easily block such attacks with
the help of slight changes to the network access procedure
of the device. The only change is to request and receive
UECapabilityInformation message, which our system
uses to generate the fingerprint, only after access stratum secu-
rity activation. As the UECapabilityInformation message
is now encrypted and integrity-protected, the fraudsters using
MitM device are not able to manipulate the message. Note
that both UE and network do not require any changes in
their implementation as it only requires changing the order of
message transmission. Notably, this change in the procedure
is an exact recommendation in the standard [6]. According
to our investigation, we observe that tier 1 MNO requests
the message (UECapabilityInformation) after the access
stratum security activation. In summary, unless the collusion
with device manufacturers and baseband vendors together, it
is hard to bypass our fraud detection system by reporting
manipulated control-plane messages to the network.

C. Implementing Software SIM box

Fraudsters may build their own software SIM boxes to
circumvent our system. However, we argue that this possibility
cannot motivate fraudsters, as they need to put a significant
engineering effort to make it as a COTS SIM box (e.g., connect
to an IMS server to use VoLTE, make a phone call, and
support most functions of a SIM box). It is worth mentioning
that it is infeasible to manipulate the control-plane messages
of a COTS SIM box, as discussed in §VIII-A and §VIII-B.
Therefore, rather than purchasing a COTS SIM box, fraudsters
need to implement SIM box software from scratch to alter
the control-plane messages. One way to implement the SIM
box software is to leverage a SDR-based UE. However, all
open-source UE implementations (including the state-of-the-
art open-source LTE, srsUE [28]) do not support quite a
few common functionalities of commercial UEs (e.g., voice
calls, SMS, 3G, 2G, circuit switch fallback, or other advanced
functions).

To show the empirical evidence, we inspected four func-
tions for srsUE, voice call supported by VoLTE, SMS over
IMS, SMS over NAS, and 3G redirection. For this, we built
the cellular network testbed utilizing commercial UEs, srsUE,
srseNB, and Amari callbox [12]. As a result, we verified that
all the functions do not work properly on srsUE. We confirmed
this with the main maintainer of the srsLTE project, through
personal communication [43]. Once we request such behaviors

to the srsUE, we could observe abnormal behaviors on the
network side. For example, we could see control-plane error
messages when we attempted to make a call to srsUE, as it is
not connected to the IMS. Therefore, any features associated
with these basic functionalities, of course, cannot work because
they don’t provide these functionalities. Note that we cannot
test for the possibility of counterfeiting those features unless
we implement the corresponding function stacks.

IX. LIMITATIONS

Easing policy in the real world. Our ACL works with
no false rejects and niche false accepts. Unfortunately, the
statement holds only if the network contains all fingerprints
of the smartphone models attaching to the network. If not,
legitimate users with phones having unknown fingerprints
will get false rejects once they attach to the network. To
handle this problem, MNOs can lower the decision level from
"reject" to "flagging" to prevent such false rejects of legitimate
users. For the "flagged" devices, MNO can employ additional
technologies [10], [11], [13], [23], [32], [33], [38], [39], [45],
[50], which are orthogonal to our ACL, to detect SIM box
calls on them. Once the system is deployed with well-gathered
smartphone fingerprints (not fully collected), the ACL flags
only a few devices so that the overhead of deploying such
technologies is reduced on a great scale.

Dataset size. Even though we utilized a dataset of 102 distinct
device models, the dataset was relatively small compared to the
number of device models on the market. However, comprehen-
sive fingerprinting experiments with various scenarios and the
dataset revealed that 1) most phones, except for reasonable
cohorts, have distinct fingerprints, and 2) SIM boxes have
distinct fingerprints from phones. We also discovered some
reasons for such observations using feature analysis. In sum-
mary, even though the dataset cannot represent all devices in
the market, we anticipate that the two observations will hold
for the majority of devices in the market. This also implies
that the proposed prevention system is highly likely to be
feasible. We also plan to collaborate with MNOs to obtain
a better understanding of our results and the effectiveness of
the proposed system with larger datasets.

X. RELATED WORK

Device identification using control-plane messages. An ap-
proach for identifying devices using the contents of ATTACH
Request and UECapabiltyInformation messages is pre-
sented in [34], [51]. These studies only examined the feasibility
of baseband manufacturer identification, baseband modem
identification, and device type identification with small-scale
data. In contrast, using large-scale data, we demonstrate that
device model identification is feasible and analyze how each
factor (i.e., baseband vendor, phone vendor, and device model)
affects the fingerprints. Park et al. [41] proposed a baseband
vendor identification based on active testing of control-plane
messages. In an actual network, however, this approach is
challenging because an abnormal message may reduce the
quality of service or cause the user to experience denial
of service. Unlike all previous researchers, we performed
feature analysis to eliminate features that should not be part
of the fingerprint. Also, we considered end-user options in
constructing the fingerprint, which may result in changes to
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TABLE X: Comparison to previous works.

Fingerprint
Target

# of
Devices

Testing
Method

# of Used
Features

Feature
Analysis

End-User
Options

Shaik.et.el [51]
Baseband-Vendor,
OS, Device Type

36 Passive Unknown X X

LTrack [34] Baseband-Modem 22 Passive Unknown X X

DoLTEst [41] Baseband-Vendor 5 Active 5 (msgs used) X X

Ours Device-Model 102 Passive 922 O O

the control-plane messages utilized for fingerprints. Tab. X
compares between our work and the previous works.

Other approaches for detecting SIM boxes. Several studies
have been conducted on detecting SIM boxes. The majority
of past SIM box identification techniques relied on the call
detail record (CDR) created during phone calls [10], [11],
[23], [32], [33], [38], [39], [50]. Another study [24] evaluated
the voice and guessed the number of speakers for the same
SIM card. MNOs can detect SIM boxes with both kinds of
methods only after fraud has occurred. Some other approaches
for detecting SIM boxes used voice call quality as a criterion
(Pindr0p [13] and Boxed out [45]). They characterized the
SIM boxed calls whose audio had a distinct pattern due to
packet drops in the VoIP connection. Instead, our research is
focused on the characteristics of the SIM box unit itself in
control-plane of cellular networks. In addition, our SIM box
unit detection scheme is orthogonal to existing SIM boxed call
detection schemes, and they can be utilized in conjunction
to complement one another. Similar to our work, LATRO
asserts that it can detect SIM boxes using signaling message
signatures [55]; however, the specific mechanism for detection
is not disclosed.

XI. CONCLUSION

By utilizing a large-scale dataset, we show that device
model fingerprinting is possible through concrete feature anal-
ysis and consideration of user-configurable options. By utiliz-
ing this fingerprinting, we propose a SIM box fraud prevention
system that prevents SIM boxes from using cellular networks.
Practical deployment issues such as fingerprint collection are
discussed in detail so that our system can easily be adopted to
the commercial network. We are currently in discussion with
a tier 1 carrier to apply the proposed mechanism inside its
infrastructure.
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APPENDIX

A. ACRONYMS

3GPP Third Generation Partnership Project
5G-NSA 5G Non-standalone
5G-SA 5G Standalone
ACL Access Control List
ASN.1 Abstract Syntax Notation One
CA Carrier Aggregation
CDR Call Data Record
C-RNTI Cell RNTI
eNB Evolved Node B
EEA EPS Encryption Algorithm
EIA EPS Integrity Algorithm
EPC Evolved Packet Core
EPS Evolved Packet System
GUTI Globally Unique Temporary Identity
IE Information Element
IMEI International Mobile Equipment Identity
IMSI International Mobile Subscriber Identity
IoT Internet of Things
MME Mobility Management Entity
MNO Mobile Network Operator
NAS Non Access Stratum
PLMN Public Land Mobile Network
RNTI Radio Network Temporary Identifier
RRC Radio Resource Control
SDR Software Defined Radio
SIM Subscriber Identity Module
TAC Type Allocation Code
TMSI Temporary Mobile Subscriber Identity
UE User Equipment
USIM Universal SIM
VoIP Voice over IP
VoLTE Voice over LTE

B. Security Analysis on Proposed Access Control List

In order to verify whether the proposed ACL (Tab. VIII)
can prevent the SIM box fraud effectively, we conduct security
analysis on the ACL. In total, there are 6 possible SIM box
fraud attack scenarios, according to the (1) IMEI that SIM box
reports to the network and (2) its subscription plan. We name
each scenario to represent three conditions as followings: First,
SIM box can possibly report its IMEI to the network using
(1) its own IMEI (not spoofed, SIM box IMEI), (2) IMEI of
a phone (Phone IMEI), or (3) IMEI of an IoT (IoT IMEI);
Second, the reported IMEI could be registered to the network
or not; and Third, the SIM box can use two subscription
plans (Phone plan or IoT plan). For each scenario, we match
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the corresponding cases (policies) of the ACL and verify the
decision.

A1: SIM box IMEI, Unregistered, Phone Plan. This is
the standard scenario when a fraudster uses a SIM box
without configuration change or IMEI spoofing. According to
its fingerprint, we can separate the scenario into two cases.
First, if the SIM box shares the same fingerprint as other IoT
devices, it is handled in case 9. Second, if the SIM box has
an unknown fingerprint, it is dealt with in case 11. In both
instances, unregistered IoT makes use of a forbidden phone
plan. Accordingly, we reject them per our policy and conclude
that fraudsters cannot exploit A1.

A2: Phone IMEI, Registered, Phone Plan. To avoid being
blocked in the scenario A1, a savvy fraudster might counterfeit
the reported IMEI into a phone’s IMEI. However, as described
in §V, fingerprints of the SIM box and the phone are distinct,
and a fraudster cannot imitate the phone’s fingerprint using
the SIM box. Consequently, we know that the IMEI is a
forgery regardless of the type of fingerprint (IoT or unknown).
This scenario involves cases 3 and 4, which we reject due to
IMEI spoofing. As a result, we conclude that fraudsters cannot
exploit A2.

A3: IoT IMEI, Un/Registered, Phone Plan. Even if a
fraudster uses the IoT’s IMEI, the SIM box is completely
rejected with one exception (case 6). If the reported IMEI is
registered in the network, this scenario is handled in case 6
or 7. If not, this scenario is handled in case 9 or 11. In case
7, if the system does not know the fingerprint from control
plane messages, then it does not make sense. This is because
the reported IMEI indicates that the system knows the device.
Therefore, the SIM box’s access would be rejected. However,
in case 6, if the SIM box spoofs its IMEI with the device
having the same fingerprint with it, the network allows the
attach. This is the only case of false accept in our ACL, as
explained in §VI-B. Still, the fraudsters must either know the
precise IMEI of the registered IoT device that shares their
SIM box’s fingerprint or set up the SIM box’s control-plane
features to imitate the target IoT device’s features. This means
that the possible fraud scenario is narrow so that the proposed
access control system can cover most of the SIM box fraud. In
addition, when the IMEI of the registered IoT device (or SIM
box) is exposed, one can easily distinguish typical IoT devices
using CDR or usage pattern analysis, and easily detect the
fraudster by adopting IMEI duplication-checking logic based
on the registration/subscription information. Lastly, in cases 9
and 11, a phone plan is not allowed for non-registered devices.
Therefore, the SIM box’s access is rejected.

A4: SIM box IMEI, Unregistered, IoT Plan. This scenario
is identical to A1, except for an IoT plan subscription. Cases
10 and 12 are included in this scenario, which involves unreg-
istered IoT devices with IoT plans and SIM boxes with IoT
plans. To prevent false rejects (blocking access of legitimate
unregistered IoT devices), we have to accept both cases even
considering that a SIM box might access the network. Even
allowing both cases, the fraudsters cannot accomplish their
objective as voice calls are prohibited in IoT plans under our
policy. Thus, we conclude that fraudsters cannot exploit A4.

A5: Phone IMEI, Registered, IoT Plan. In this scenario, a
SIM box is attempting to masquerade as a legitimate phone

while subscribing to an IoT plan. However, this scenario is not
included in the ACL because it is simple to detect and reject
the SIM box for two reasons. First, legitimate phones do not
subscribe to an IoT plan, and second, the SIM box reports
IMEI which does not match with its fingerprint. Particularly,
the reported IMEI belongs to a phone, but its fingerprint is
“unknown”. Thus, we conclude that fraudsters cannot exploit
A5.

A6: IoT IMEI, Un/Registered, IoT Plan. In the last scenario,
the SIM box uses a faked IMEI of an IoT device and subscribes
to an IoT plan. When the reported IMEI is registered, cases 6
and 7 are applicable to this scenario. If the fingerprint does not
match the registered IoT device, our policy rejects the access
being considered as IMEI spoofing, according to case 7. Note
that, to prevent false reject, we might accept the SIM box if
the fingerprint matches the registered IoT (Case 6). However,
similar to A4, this is not a significant issue because making
a voice call with an IoT plan is prohibited. When it comes
to the scenario where the reported IMEI is unregistered, cases
10 and 12 handles such a scenario. Since it is possible to
subscribe to an IoT plan without registering, cases 10 and 12
must be accepted to avoid rejecting a legitimate user. Again,
similar to the A4, it might accept SIM boxes. However, it is
still acceptable as the IoT plan policy does not allow voice
service. In conclusion, fraudsters cannot exploit A6.

C. Additional Factors that Affect Fingerprints.

We discuss two additional factors that can affect finger-
prints: eNB manufacturers and MNOs of the inserted SIM
cards (i.e., PLMN).

First, to investigate the impact of eNB manufacturers, We
compare the two fingerprints of the same device, which are
generated by connecting the device to the two eNBs from
different manufacturers. As a result, we confirm that the finger-
prints remain the same even though the device communicates
with eNB having different configurations. (e.g., manufacturer,
bandwidth, and radio frequency). This is because the two
control-plane messages we utilize are used to inform the
network of the device’s capabilities; thus, they are not affected
by the condition of current radio connection. Furthermore, the
devices transmit the same capabilities even when accessing a
base station of a different network generation (i.e., 5G base
station).

Second, unlike the eNB manufacturer, the device’s capabil-
ities are affected by the SIM card’s PLMN. To investigate the
impact of the inserted SIM card, we obtain capabilities from
11 phones while varying SIM cards from three major MNOs.
As a result, we observe that a) the devices have pre-defined
information related to the network operation settings of each
MNO and b) the fingerprints differ based on the SIM card
accordingly.

For example, one of the MNOs does not operate the 3G
network, and the devices equipped with that MNO’s SIM
card do not include 3G-related features (e.g., 3G encryption
algorithms, radio configuration for 3G) in their fingerprints.
Furthermore, with the help of static analysis of the baseband
firmware, we find an implementation differentiating some of
the configurations (e.g., SRVCC) depending on the MNO of
equipped SIM card.
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D. Additional Tables

TABLE XI: Devices used for open-world evaluation (Tab. VII).

# Device Phone Vendor Baseband Vendor Chipset
1 T Galaxy Note 4 Samsung Samsung Exynos 5433
2 T Galaxy Z Flip 4 Samsung Qualcomm SM8475 Snapdragon 8+ Gen 1
3 T S21 5G Samsung Samsung Exynos 2100
4 T Galaxy Note 5 Samsung Samsung Exynos 7420 Octa
5 T Galaxy Note 8 Samsung Samsung Exynos 8895
6 T Galaxy Note 9 Samsung Samsung Exynos 9810
7 T Galaxy Note 10 Samsung Samsung Exynos 9825
8 T Galaxy S10 (A) Samsung Samsung Exynos 9820
9 T Galaxy S10 (B) Samsung Samsung Exynos 9820
10 T Galaxy S22+ Samsung Qualcomm SM8450 Snapdragon 8 Gen 1
11 T Galaxy S5 (A) Samsung Qualcomm MSM8974AC Snapdragon 801
12 T Galaxy S5 (B) Samsung Qualcomm APQ8084 Snapdragon 805
13 T Galaxy S5 (C) Samsung Qualcomm APQ8084 Snapdragon 805
14 T Galaxy S7 Samsung Qualcomm MSM8996 Snapdragon 820
15 T Huawei Mate 9 Huawei HiSilicon Kirin 960
16 T Huawei P30 Pro Huawei HiSilicon Kirin 980
17 T iPhone 13 Max Pro Apple Qualcomm Snapdragon X60
18 T iPhone 7 Apple Qualcomm Snapdragon X12
19 T iPhone 7+ Apple Qualcomm Snapdragon X12
20 T iPhone 8 Apple Intel XMM 7480
21 T iPhone 8+ Apple Intel XMM 7480
22 T iPhone SE2 Apple Intel XMM 7660
23 T iPhone12 mini Apple Qualcomm Snapdragon X55
24 T Nexus 5 (A) LG Qualcomm MSM8974 Snapdragon 800
25 T Nexus 5 (B) LG Qualcomm MSM8974 Snapdragon 800
26 T Nexus 5 (C) LG Qualcomm MSM8974 Snapdragon 800
27 T Nexus 5X LG Qualcomm MSM8992 Snapdragon 808
28 T Nexus 6 (A) Motorola Qualcomm APQ8084 Snapdragon 805
29 T Nexus 6 (B) Motorola Qualcomm APQ8084 Snapdragon 805
30 T Oppo A73 5G Oppo MediaTek MT6853V Dimensity 720
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TABLE XII: MBNs & AT commands affecting control-plane messages.

Idx MBN name # of feature vectors
obtained Idx MBN name # of feature vectors

obtained Idx MBN name # of feature vectors
obtained

1 Reliance_India_VoLTE 1 5 ROW_Generic_3GPP 2 9 TF_Spain_VoLTE 1
2 TW_Mobile_China_VoLTE 2 6 Swis_switzerland_VoLTE_VoWiFi 1 10 Commercial-DT-VOLTE 1
3 Bouygues_France_VoLTE 2 7 Telstra-Commercial_VoLTE 1 11 STC_Saudi_VoLTE 1
4 VF_Germany_VoLTE 2 8 Commercial-Smartfren 1 12 Smartfren_Indonesia_VoLTE 1

Idx Category Configuration Option Description # of feature vectors
obtained

1 AT+QCFG nwscanmode Network search mode Network Search Mode Configuration 2
2 AT+QCFG nwscanseq Network search sequence Network Searching Sequence Configuration 2
3 AT+QCFG roamservice The mode of roam service Roam Service Configuration 3
4 AT+QCFG servicedomain Service domain of UE Service Domain Configuration 2
5 AT+QCFG band Bandval / Ltebandval / Tdsbandval Band Configuration 8
6 AT+QCFG hsdpacat HSDPA category HSDPA Category Configuration 5
7 AT+QCFG hsupacat HSUPA category HSUPA Category Configuration 2
8 AT+QCFG rrc RRC release version RRC Release Version Configuration 3
9 AT+QCFG sgsn SGSN release version UE SGSN Release Version Configuration 3
10 AT+QCFG msc MSC release version UE MSC Release Version Configuration 3
11 AT+QCFG pdp/duplicatechk Enable or disable establishment Establish Multi PDNs with the Same APN 2
12 AT+QCFG ims Enable or disable IMS Enable/Disable IMS compulsorily or follows MBN setting 5
13 AT+QGPSCFG gnssconfig GNSS On and off (GLONASS / BeiDou and QZSS / Galileo) Configure Enabled GNSS Constellations 3
14 AT+QGPSCFG plane Plane mode used by MO AGPS session Configure Plane Mode Used by MO AGPS Session 3
15 AT+QGPSCFG autogps Auto run of GNSS Enable/Disable GNSS to run automatically 3
16 AT+QGPSCFG agnssprotocol AGPS and AGLONASS positioning protocol Configure AGNSs Positioning Mode 10

TABLE XIII: A full list of tested devices.

# Device Manufacturer Baseband Vendor Chipset # Device Manufacturer Baseband Vendor Chipset
1 iPad Pro (1st g.) Apple Qualcomm MDM 9645M 52 Galaxy S20 Samsung Qualcomm Snapdragon 865
2 iPad Pro (3rd g.) Apple Intel PMB 9955 53 Galaxy S21 5G Samsung Samsung Exynos 2100
3 iPhone 12 Pro Apple Qualcomm Snapdragon X55 54 Galaxy S22+ Samsung Qualcomm Snapdragon SM8450
4 iPhone12 mini Apple Qualcomm Snapdragon X55 55 Galaxy S5 (A) Samsung Qualcomm Snapdragon 801
5 iPhone 13 Apple Qualcomm Snapdragon X60 56 Galaxy S5 (B) Samsung Qualcomm Snapdragon 805
6 iPhone 6 Apple Qualcomm MDM 9625 57 Galaxy S6 Samsung Samsung Exynos 7420
7 iPhone 7 Apple Qualcomm MDM 9645M 58 Galaxy S6 Edge Samsung Samsung Exynos 7420
8 iPhone 8 Apple Intel PMB 9655 59 Galaxy S7 (A) Samsung Samsung Exynos 8890
9 iPhone XS Apple Intel PMB 9955 60 Galaxy S7 (B) Samsung Qualcomm Snapdragon 820
10 Pixel 5a Google Qualcomm Snapdragon 765G 61 Galaxy S7 Edge (A) Samsung Samsung Exynos 8890
11 Be Y Huawei HiSilicon Kirin 658 62 Galaxy S7 Edge (B) Samsung Qualcomm Snapdragon 820
12 Mate 10 Huawei HiSilicon Kirin 970 63 Galaxy S8+ Samsung Qualcomm Snapdragon 835
13 Mate 10 Pro Huawei HiSilicon Kirin 970 64 Galaxy S8 Samsung Qualcomm Snapdragon 835
14 Nova 3 Huawei HiSilicon Kirin 970 65 Galaxy S9+ (A) Samsung Samsung Exynos 9810
15 P10 Huawei HiSilicon Kirin 960 66 Galaxy S9+ (B) Samsung Qualcomm Snapdragon 845
16 P20 Huawei HiSilicon Kirin 970 67 Galaxy S9 (A) Samsung Samsung Exynos 9810
17 P20 Pro Huawei HiSilicon Kirin 970 68 Galaxy S9 (B) Samsung Qualcomm Snapdragon 845
18 P30 Pro Huawei HiSilicon Kirin 980 69 Galaxy Z Flip3 Samsung Qualcomm Snapdragon 888
19 Y7 Prime Huawei Qualcomm Snapdragon 430 70 Black Shark Xiaomi Qualcomm Snapdragon 845
20 Y9 Huawei HiSilicon Kirin 659 71 K40 Gaming Xiaomi Mediatek MT6893 Dimensity 1200
21 G3 LG Qualcomm Snapdragon 805 72 MI 5S Xiaomi Qualcomm Snapdragon 821
22 G6 ThinQ LG Qualcomm Snapdragon 821 73 MI 5S+ Xiaomi Qualcomm Snapdragon 821
23 G7 ThinQ LG Qualcomm Snapdragon 845 74 MI 6 Xiaomi Qualcomm Snapdragon 835
24 G7+ ThinQ LG Qualcomm Snapdragon 845 75 MI 8 Xiaomi Qualcomm Snapdragon 845
25 G8 ThinQ LG Qualcomm Snapdragon 855 76 MI A1 Xiaomi Qualcomm Snapdragon 625
26 K50 LG Mediatek Helio P22 MT6762 77 MI MAX 3 Xiaomi Qualcomm Snapdragon 636
27 Nexus 5 (A) LG Qualcomm Snapdragon 800 78 MI MIX 2 Xiaomi Qualcomm Snapdragon 835
28 Nexus 5 (B) LG Qualcomm Snapdragon 800 79 MI MIX 2S Xiaomi Qualcomm Snapdragon 845
29 V30 ThinQ LG Qualcomm Snapdragon 835 80 Pocophone F1 Xiaomi Qualcomm Snapdragon 845
30 V35 ThinQ LG Qualcomm Snapdragon 845 81 Redmi 10X Xiaomi Mediatek MT6875 Dimensity 820
31 V40 ThinQ LG Qualcomm Snapdragon 845 82 Redmi 5 Xiaomi Qualcomm Snapdragon 450
32 V50 ThinQ LG Qualcomm Snapdragon 855 83 Redmi Note 4 Xiaomi Qualcomm Snapdragon 625
33 X4 LG Mediatek MT6750 84 Redmi Note 5 Xiaomi Qualcomm Snapdragon 636
34 X6 LG Mediatek Helio P22 MT6762 85 Redmi Note 9T 5G Xiaomi Mediatek Dimensity 800U
35 Oppo Find X Oppo Qualcomm Snapdragon 845 86 Redmi S2 Xiaomi Qualcomm Snapdragon 625
36 A31 Samsung Mediatek Helio P65 MT6768 87 Axon 7 ZTE Qualcomm Snapdragon 820
37 A9 Pro Samsung Qualcomm Snapdragon 710 88 Blade V8 Pro ZTE Qualcomm Snapdragon 625
38 Galaxy A30 Samsung Samsung Exynos Octa 7904 89 Mudi GL.iNet Qualcomm EC-25E
39 Galaxy Fold 5G Samsung Qualcomm Snapdragon 855 90 E3372h-607 Huawei HiSilicon Huawei HiSilicon V7R2
40 Galaxy Gear S3 Samsung Samsung Exynos 7 Dual 7270 91 E397Bu-502 Huawei Qualcomm MDM9200
41 Galaxy Note10 5G Samsung Samsung Exynos 9825 92 UFI-1B UFI Qualcomm Snapdragon 410
42 Galaxy Note20 Ultra Samsung Qualcomm Snapdragon 865 93 A701 IEASUN Qualcomm MDM9200
43 Galaxy Note 5 Samsung Samsung Exynos 7420 94 UC120 Dinstar Qualcomm EC-25-E
44 Galaxy Note 8 (A) Samsung Samsung Exynos 8895 95 ACOM508L-8 (CHN) Ejoin Qualcomm EC-20
45 Galaxy Note 8 (B) Samsung Samsung Exynos 8895 96 ACOM508L-8 (KOR) Ejoin Qualcomm EC-25-E
46 Galaxy Note 9 Samsung Qualcomm Snapdragon 845 97 MV-374 Portech Qualcomm EC25-G
47 Galaxy Note FE Samsung Samsung Exynos 8890 98 SC-111 Suncomm Qualcomm EC25-E
48 Galaxy S10 5G Samsung Samsung Exynos 9820 99 NeoGate TG200 Yeastar Qualcomm EC-21
49 Galaxy S10 (A) Samsung Samsung Exynos 9820 100 T Pocket-Fi Smobile GCT GDM 7243
50 Galaxy S10 (B) Samsung Qualcomm Snapdragon 855 101 TL-MR6500v TP-Link Qualcomm MDM 9607
51 Galaxy S10e Samsung Samsung Exynos 9820 102 Galaxy Tab A Samsung Samsung Exynos 7 Octa 7870
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