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Abstract—Dynamic searchable encryption (DSE) is a user-
cloud protocol for searching over outsourced encrypted data.
Many current DSE schemes resort to oblivious RAMs (ORAM)
to achieve forward privacy and backward privacy, which is a
concept to describe security levels of the protocol. We show
that, however, most prior ORAM-based DSE suffers from a new
problem: it is inefficient to fetch/insert a large set of data blocks.
We call this the large-stash eviction problem. To address the
problem, we present OBI, a multi-path Oblivious RAM, which
accesses multiple tree paths per query for handling a large set of
data blocks. We classify traditional tree-based ORAMs as single-
path ORAMs if they access a single path per query. OBI has
two new high-throughput multi-path eviction algorithms that
are several orders of magnitude more efficient than the well-
known PATH-ORAM eviction algorithm when the stash is large.
We prove that the proposed multi-path ORAM outperforms the
traditional single-path ORAM in terms of local stash size and
insertion efficiency. Security analysis shows that OBI is secure
under the strong forward and backward security model. OBI
can protect the well-known DSE leakage, such as the search
pattern and the size pattern. We also show that OBI can be
applied to oblivious file systems and oblivious conjunctive-query
DSE schemes. We conduct experiments on the Enron dataset. The
experimental results demonstrate that OBI is far more efficient
than the state-of-the-art ORAM-based DSE schemes.

I. INTRODUCTION

A. Background and Motivation

Nowadays, many corporations and users outsource their
sensitive data to cloud servers for low costs and global services.
To search for documents efficiently, the users usually put data
into traditional databases, such as Lucene [1] and Cassandra
[2]. To protect privacy, the users should encrypt their private
data before outsourcing since hackers and honest-but-curious
network managers can break the cloud system. The users
usually adopt two types of encryption techniques, oblivious
RAM (ORAM) [3]–[5] and dynamic searchable encryption
(DSE) [6], [7] . ORAM supports oblivious reading and writing
without leaking the access pattern at the cost of continuously
shuffling and re-encrypting the accessed data. DSE is a user-
cloud protocol that provides efficient search and update ser-
vices on encrypted data. DSE generally achieves excellent ef-
ficiency at the cost of leaking some search/access/size patterns,

which are information relating to how often a keyword is being
queried, how frequently the same location is being accessed,
and how large result size is, respectively.

An ORAM is logically considered a key-value storage
structure that aims to hide the access pattern. There are
two types of ORAMs, tree-based ORAMs and layer-based
ORAMs. The tree-based ORAM has smaller communication
and computation cost in data shuffle operation than the layer-
based ORAM based on the research of [8]. PATH ORAM
[5] is a typical tree-based ORAM since it is compact, low-
cost, and has been deployed on resource-constrained devices
[9]. Many DSE schemes resort to the tree-based ORAMs to
achieve forward privacy or backward privacy [10]–[13], which
is a concept relating to the data-search and data-update privacy
leakage. It is well known that, however, adopting an ORAM
implies inefficiency. One reason is that these schemes rely on
the ORAM that adopts a single-path accessing algorithm to
read/re-encrypt/write a tree path. This type of ORAM might
as well be named a single-path ORAM.

A problem existing in the single-path ORAM is that it is
inefficient to fetch/insert a large set of data blocks. There are
two approaches to reading a set of data blocks existing in an
ORAM tree: reading a single path or reading multiple paths.
Due to encryption, the set of data blocks is generally randomly
distributed in multiple paths of the ORAM tree. To fetch the
blocks, we should access all the paths. If we repeatedly read a
path containing the data block by using the single-path ORAM
algorithm, this will incur high round complexity. In cloud envi-
ronment, one read implies a user-cloud interaction. Retrieving
a large result set with this approach means high interactions.
Another approach is to read multiple paths containing all the
desired data blocks in one time (or many times). To the best of
our knowledge, this approach is not well studied by researchers
currently since this operation might incur poor efficiency. If an
ORAM accesses multiple paths per query, we call this type of
tree-based ORAM a multi-path ORAM, which has a multi-path
eviction algorithm to read/re-encrypt/write the set of accessed
paths. Our motivation is to study the multi-path ORAMs for
improving ORAM-based DSE efficiency.

B. Limitations of Prior Art
The prior non-ORAM-based DSE schemes, such as [14],

[15] are vulnerable to the search-pattern-based attacks [16],
[17] since they have search pattern leakages. The prior ORAM-
based DSE schemes, SDd in [10], Horus in [11], Moneta in
[12], Orion in [11], and Eurus in [13] suffer from the large-
stash eviction problem that remains unsolved. Informally, the
problem is stated as follows: when we search, insert, or delete
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TABLE I. COMPARISONS OF TYPICAL FORWARD-AND-BACKWARD-SECURE DSE SCHEMES

Scheme Search Update CS FP BP SPH APH ZPH OPHCC RT CC RT
SDd [10] O(aw + logN) 1 O(q log3N) O(q logN) O(1)

√ √
× × × ×

CLOSE-FB [14] O(aw + C) 1 O(q · C) 1 O(1)
√ √

× × × ×
Zuo et al. [15] O(aw) 1 O(q) 1 O(m)

√ √
× × × ×

Horus [11] O(nw log dw logN) O(log dw) O(q log2N) O(q logN) O(m)
√

×
√

× × ×

Moneta [12]
∼
O(aw logN + log3N) 2

∼
O(q log2N) O(q) O(1)

√ √ √
× × ×

Orion [11] O(nw log2N) O(logN) O(q log2N) O(q logN) O(1)
√ √ √ √

× ×
OBI (this paper) O(rw logN) 1 O(q logN) 1 O(m)

√ √ √ √
× ×

Eurus [13] O(M2 log2m) 1∗ O(M2 log2m) 1∗ O(m)
√ √ √ √ √

×
ZPH-OBI (this paper) O(M logN) 1 O(M logN) 1 O(m)

√ √ √ √ √ √

N is the total number of keyword-file-identifier pairs, q is the number of keyword-file-identifier pairs to be inserted, and m is the number of distinct keywords. M is the maximum
number of matched file identifiers in the index. M = maxw∈W |DB(w)|, DB(w) is a set of file identifiers matching keyword w, and W is all the keywords that can be
queried. nw is the number of real files containing keyword w, aw is the number of entries matching keyword w, dw is the number of deletions, and rw is the number of entries
matching keyword w after the last search on w. aw ≥ rw ≥ nw . RT denotes the number of interaction round trips. CC denotes Computation cost and Communication cost per
query. CS denotes client storage. FP denotes forward privacy. BP denotes backward privacy. SPH denotes Search-Pattern-Hiding. APH denotes Access-Pattern-Hiding. ZPH denotes
siZe-Pattern-Hiding. OPH denotes OPeration-kind-Hiding, which captures the information of op ∈ {search, add, del}. Update complexity is given per q keyword-file-identifier

pairs. C is a constant value that denotes the maximum number of updates. (1∗) denotes a client-server round trip and many server-server interactions.
∼
O denotes an approximation.

a large number of data blocks, the local stash will contain a
large number of blocks to be re-encrypted and evicted. We call
this the large-stash eviction problem, which might incur high
round complexity or poor insertion efficiency. SDd, Horus, and
ORION make black-box use of the oblivious map (OMAP)
[18], an oblivious data structure embedded in PATH ORAM
[5]. Undoubtedly, they share the inherent drawback of the
OMAP that requires O(logN) user-cloud rounds per access,
where N is the number of keyword-file-identifier pairs. Thus,
all these three schemes need O(q logN) rounds for inserting q
pairs into the index, which is extremely expensive in the cloud
environment. Moneta [12] still has insertion pattern leakage,
though it adopts TWORAM [19]. PATH ORAM, OMAP, and
TWORAM are all single-path ORAMs.

Liu et al. proposed Eurus [13], a DSE scheme for protecting
the DSE size pattern. Their encryption approach relies on
S3ORAM [20] and padding. Since data padding incurs a large
number of pairs temporarily stored in the stash, the large-stash
eviction problem appears, resulting in unscalable search/update
time complexity that we list in Table I. Eurus can be viewed
as a single-path ORAM since it accesses only one tree path
per query.

C. Proposed Approach
In this paper, we propose OBI, a multi-path ORAM. We

embed an inverted index into the ORAM tree, the structure
of the non-recursive PATH ORAM [5], for oblivious key-
set mapping. We introduce the following new techniques to
address the large-stash eviction problem.

Reducing position map. A position map is a storage struc-
ture that stores locations of randomly-distributed keyword-file-
identifier pairs. We randomly inserted all the keyword-file-
identifier pairs into the ORAM tree in the initial stage. To save
insertion locations, we employ a locally-stored keyword hash
table, which maps each keyword to the corresponding keyword
information, including the number of searches and identifiers
of this keyword. In addition, we use a pseudo-random function
to map the keyword information to a set of locations of the
keyword. This computation helps us to avoid storing the large
non-recursive PATH-ORAM position map of size O(N). The
user maintains only the keyword hash table of size O(m),
where m is only the number of keywords, and it is much
smaller than N .

Reducing eviction complexity. PATH ORAM takes O(r2)
time to evict r data blocks in the stash when r is large. The
eviction algorithm is quite inefficient. To address this, we
design two algorithms, a k-Nearest Neighbour Eviction Al-
gorithm (KNNEA) and a Partition-Based Eviction Algorithm
(PBEA). KNNEA employs a sorted array to improve eviction
time complexity. PBEA partitions the ORAM tree into subtrees
to improve eviction time complexity since each subtree can
be processed individually. PBEA reduces the eviction time
complexity of PATH ORAM from O(r2) to O(r logN).

Based on KNNEA and PBEA, we implement two schemes,
OBI and ZPH-OBI. OBI is a multi-path ORAM and also a
DSE scheme without the search and access pattern leakage.
ZPH-OBI is a siZe-Pattern-Hiding scheme, which reduces
computational complexity of Eurus from O(M2 log2m) to
O(M logN) (in Table I).

D. Our Contributions
• We propose OBI, a multi-path ORAM for oblivious

key-set mapping. We prove that the stash overflow
probability decreases exponentially in r, which is the
number of multiple paths per query.

• OBI is the first DSE scheme that satisfies the condi-
tions of leaking no search and access patterns, getting
data in single-round-trip access, and achieving quasi-
optimal search efficiency in the worst-case.

• We propose two high-throughput multi-path eviction
algorithms, KNNEA and PBEA. KNNEA is far more
efficient than the PATH ORAM eviction algorithm [5],
[9] when the stash is large. PBEA supports single-
round-trip large-batch evictions with quasi-optimal
time complexity.

• We propose ZPH-OBI scheme to hide both operation
kinds and size patterns of DSE.

• We give an oblivious file system prototype, and an
oblivious conjunctive-query DSE scheme.

II. RELATED WORK
Searchable encryption (SE) schemes can be classified into

dynamic schemes and static ones, where dynamic schemes
support updating operations and static schemes cannot. Most
of early SE works are static, such as [21], [22]. Compared with
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static SE, dynamic SE (DSE) faces more challenges because
there are new privacy leakages. A newly inserted data maybe
reveal the previous issued queries, and a later issued query
maybe accesses deleted data, which were studied in [23]–[25]
and [11], [15], [26], respectively.

Naveed initiated the formal study of using ORAM to
reduce access pattern leakage for SE [27]. Naveed claimed
that eliminating leakage in SE is impossible, and achieving
even weaker classes of leakage either requires communication
more than downloading the entire database or does not provide
meaningful leakage reduction. There are many new ORAM
choices for DSE, such as [5], [18], [28]–[33]. Unfortunately,
as mentioned above, there are still many big challenges that
prevent DSE from using the ORAMs. If naively employing the
ORAMs to hide the search/access patterns, the scheme suffers
from new problems, such as a large user-side position map,
high round complexity [34], or heavy computational overhead
[19]. Upgrading DSE to oblivious DSE is still challenging,
since DSE provides not only single-keyword queries, but also
Boolean queries [7], [35]–[38], range queries [39]–[44], fuzzy
queries [45], [46], etc. Chang et al. investigated oblivious range
and kNN queries in [47]. They use oblivious batch processing
and caching techniques to improve throughput, but the scheme
is still highly interactive. TaoStore [48] is built on top of
a tree-based ORAM scheme that processes client requests
concurrently and asynchronously in a non-blocking fashion.
ConcurORAM [49] is the first ORAM to achieve parallelism
for stateless ORAM clients without the need for direct inter-
client communication. There are some ORAMs that partially
protect data-write privacy or data-read privacy [50], [51].

Another direction for protecting access patterns is to adopt
secure hardware enclaves. ObliDB [52] is an enclave-based
oblivious database engine that runs general relational read
workloads over multiple access methods. ObliDB makes black-
box use of the non-recursive Path ORAM [5], whose client-
side is stored in a trusted hardware enclave, and whose server-
side resides in untrusted memory. However, the subsequent
studies [34], [53] showed that simply putting the ORAM client
inside the enclave is insecure. To address the challenge, Oblix
[34] uses a doubly-oblivious ORAM, which guarantees that the
accesses to the ORAM server are oblivious, but also those to
the ORAM client’s internal memory. Krastnikov et al. proposed
an oblivious algorithm for database equi-joins using sorting
networks in [54].

III. NOTATIONS AND DEFINITIONS

A. DSE Framework

A DSE scheme consists of three polynomial-time user-
cloud protocols (Setup, Search, Update). We assume that the
user is trusted and the cloud is honest but curious. The cloud
can honestly execute the protocols, but it always wants to
obtain user’s private data. In the Setup protocol, the user
first builds and uploads an index generated by encrypting
a set of plain-text files. In the Search protocol, the user
sends an encrypted query relating to a keyword w. Then
the cloud searches the index and returns the results DB(w)
that matches the query, where DB(w) denotes the set of file
identifiers of files containing w. In the Update protocol, the
user also sends an encrypted query to add or delete a set
of keyword-file-identifiers from the index. All the protocols

perhaps require multiple rounds. To protect access patterns,
we store the encrypted data files in a file ORAM. We use
following two steps to retrieve files in a DSE scheme. First,
we obtain the file identifiers of the files obliviously. Second,
we retrieve the files from the file ORAM via the file identifiers.
We focus on file identifier retrieving in this paper.

B. DSE Security and Privacy
We adopt the adaptive security definition studied in [6],

[12], [21]. A DSE scheme parameterized by a stateful leakage
function L = {LSetup,LQuery} is said to be L-adaptively-
secure, if for any probabilistic polynomial-time (PPT) adver-
sary A, there exists a PPT simulator S such that the following
two executions are PPT computationally indistinguishable. In
the real execution, A, who can adaptively issue a polynomial
number of queries {search, add, del} without accessing the
user’s private data, is initially given a real encrypted database.
Next, A adaptively issues queries for attacks. In the ideal
execution, S initially generates a simulated encrypted database
S(LSetup). Next, S adaptively performs simulated queries
generated by S(LQuery). Adaptive security guarantees that
even if the adversary can adaptively choose keywords for
attacks, the adversary learns no more than the information
described by the predefined leakage function L, which contains
only a part of the search/access/size/kind patterns.

The search pattern is the information relating to how
frequently a keyword is searched. It is defined as sp(w) =
{i : (i, w) ∈ Q}, where Q is the query list. The access pattern
is a set of result file identifiers and timestamps for accessing
data files or the index. Note that the search/access patterns
can, perhaps, be leaked or partially leaked by both search
or update operations. Search/access-pattern-hiding means the
DSE protocol leaks nothing of sp(w) or access patterns from
any operations, respectively. Size pattern is the result size
of a query. Operation kind pattern is the information of
op ∈ {search, add, del}.

We also adopt the forward privacy and backward privacy
definitions studied in [12], [13], [55]. An adaptively-secure
DSE scheme has forward privacy only if update queries leak
no more than the information about operation kinds, update
identifiers, and the number of keywords to be updated. Forward
privacy implies that update queries can not expose histori-
cally searched records. An adaptively-secure DSE scheme has
insertion-pattern-revealing backward privacy only if a search
operation leaks no more than the information about insertion
time stamps, insertion file identifiers, and the result size.
Backward privacy implies that search queries can not match
historically deleted records.

Strong forward and backward security model. Let D be
a set of keyword-file-identifier pairs to be updated, where
D = {(w1, id1), · · · , (wr, idr)}. An L-adaptively-secure DSE
scheme is strong Forward and Backward (strong-FB) secure if
the query leakage function can be written as LQuery(op,D) =
(op, r), where r = |D| is called the size pattern and op =
{search, add, del} the operation-kind pattern. If op=search
to search for w, the input is (search, {(w,⊥), · · · , (w,⊥
)}). If op=add or del, the input is (add, D) or (del, D),
respectively. The strong-FB security can protect the search
and access patterns of DSE. If LQuery can be written as
LQuery(op,D) = (M), where M = maxw∈W (|DB(w)|), the
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scheme achieves operation-hiding-FB security, which further
protects both operation kinds and the size pattern.

C. Oblivious Data Structures
The tree-based ORAMs can be classified into single-path

ORAMs and multi-path ORAMs.

Single-path ORAM. It is a tree-based user-cloud protocol,
where the user can access only one path of the ORAM tree
stored in the cloud per query. Most prior single-path ORAMs
are logically considered a key-value store structure that aims
to hide the data access pattern. We give a brief overview
of the well-known PATH ORAM (for more details, see [5],
[9]). A non-recursive PATH ORAM has three parts, a full
binary tree stored in the cloud, a position map stored in
local trusted memory, and a local stash. Each tree node can
hold Z data blocks. Initially, each data block is mapped to a
random path, whose leaf identifier is stored in the local position
map. To retrieve one block, PATH ORAM should look up
the position map first for obtaining the leaf identifier. PATH
ORAM downloads the whole leaf-to-root path and writes it
into the stash. To hide the access pattern, PATH ORAM
reallocates a new random leaf identifier for the accessed block.
Finally, PATH ORAM re-encrypts the path using an eviction
algorithm, which evicts the stash entries to a single path. A
recursive PATH ORAM can reduce the position map size at
the cost of several interactions. We regard the recursive PATH
ORAM also as a single-path ORAM since it accesses only
one tree path every time. Note that, if an ORAM O consists
of a set of single-path ORAMs, such as [48], [49], [56], where
each ORAM is executed in parallel, we still consider O as a
single-path ORAM.

Multi-path ORAM. A multi-path ORAM is a tree-based user-
cloud protocol, where the user can access r paths of the ORAM
tree stored in the cloud per query, and r (r > 1) is a constant.
This type of ORAM must have a multi-path eviction algorithm,
which evicts the stash entries to the accessed multiple tree
paths. The multi-path ORAM is mainly designed for oblivious
key-set mapping. The multi-path ORAM is secure if for any
two access sequences to the tree with the same length, the two
executions are probabilistic polynomial-time computationally
indistinguishable. The ORAM security implies that all the
accessed paths must be indistinguishable from random. In the
next sections, we show that the multi-path ORAM has the merit
of smaller stash size, compared with the single-path ORAM.

A key-set mapping multi-path ORAM. Most traditional
ORAMs consider only oblivious key-value mapping. In mod-
ern databases, most data blocks work in bulk access mode.
Without the key-set mapping ORAM, the data blocks can be
accessed only one by one. Thus, we study the following key-
set mapping ORAM for improving throughput.

Given a plain-text inverted index DB, we encrypt and
embed it into the ORAM tree. For each keyword w (or called
a key) in the index, we assume the result set DB(w) are
randomly distributed in multiple paths of the ORAM tree. A
key-set mapping multi-path ORAM is a tree-based strong-FB-
secure DSE scheme for mapping each w to DB(w) efficiently
without leaking the search and access patterns from DSE
operations op ∈ {search, add, del}. This structure can be
viewed as an oblivious inverted index. Note that the keyword
w and the file identifier id can be arbitrary fixed-size values

for different purposes. The key-set mapping multi-path ORAM
is not equivalent to the oblivious parallel RAMs (OPRAMs)
[48], [49], [56] since the key-set mapping ORAM works in
single-thread mode.

IV. A KEY-SET MULTI-PATH ORAM: AN
IMPLEMENTATION

A. OBI Data Structures
To obliviously and efficiently perform DSE operations,

such as searching and updating, we redesign the data structures
of the tree-based ORAM. There are three data structures, an
encrypted ORAM tree stored in the cloud, a local keyword
hash table, and a local stash, denoted by (OT ,HT ,ST ),
respectively, as shown in Figure 1. OT is used to save the
encrypted DSE index. HT and ST are designed for the user
to generate encrypted queries.

The ORAM tree OT is an encrypted full binary tree with
the following properties: 1) Each tree node has Z triplets.
2) Each triplet has three fields (key, value, leaf), where
(key, value) is a key-value pair for storing arbitrary fixed-
size data, and leaf is a leaf identifier that indicates the current
triplet exists in the leaf -to-root path. The value field of the
triplet is called a data block. Each data block consists of u file
identifiers. The user encrypts the whole tree node by using
the private-key counter-mode AES algorithm. The user stores
the tree OT into an array such that the cloud can efficiently
retrieve an entire encrypted node by a node identifier or a path.
The tree is initially empty with sufficient preallocated memory
to hold all the triplets.

The local keyword hash table, denoted by HT , is a data
structure designed for mapping each keyword w to a structure
named keyword information, denoted by KI = (len, count),
where len is the length of blocks for w (i.e., the number of
data blocks in the index with the key w), and count is the
number of searches for w. Every time the user searches for w,
HT [w].count is increased by one. This value is used to re-
encrypt accessed triplets. The local keyword hash table can be
considered as the position map of PATH ORAM since HT is
used to save the positions of all the triplets stored in the cloud.
The difference between these two structures is that not all
triplet leaves are saved in HT . In comparison, PATH ORAM
should save all the triplet positions in the position map. We
later show how to compute a triplet leaf.

The stash, denoted by ST , is a data structure stored in a
hash table for mapping each key to a triplet (key, value, leaf).
Given a triplet t, the stash saves t by ST [t.key]← t. Note that
we can not discard the leaf field of t when t is in the stash
since t.leaf denotes the future position of t in the ORAM
tree, though it is in the stash now. When t has been evicted
into the tree, t surely exists in the (t.leaf)-to-root path since
our eviction algorithms provide this feature.

The ORAM tree supports only one operation,
ReadAndReplace({x1, x2, · · · , xr}), where each xi is a
leaf identifier generated by the user every time. The protocol
includes three steps: 1) the user computes {x1, x2, · · · , xr}
and sends them to the cloud for downloading all the paths,
x1-to-root, · · · , and xr-to-root path; 2) the user decrypts,
writes all the paths into the stash, and re-encrypts them by
using a multi-path eviction algorithm; 3) the cloud replaces
all the accessed tree paths with the newly encrypted paths.
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Fig. 1. An OBI overview

We use the following ORAM-tree eviction principle. Let
t be a triplet stored the stash. Let x be a leaf identifier,
corresponding to one of the currently accessed paths. Let
P(x, j) denote the path of the node that exists in the j-th
level of the x-to-root path. We want to evict t into the currently
accessed paths. For a tree node that exists in the j-th level of
the x-to-root path, if t can be evicted to this node, we assume
the following equation always holds,

P(x, j) = P(t.leaf, j). (1)

This equation will help the user efficiently access a data block
after data shuffling. For example, in Figure 1, one of the
currently accessed paths is x = 11, and P(11, 3) = ‘10’
corresponding to Node 5. A triplet stored in the stash is
t = (100, 50, 12). Since P(11, 3) = P(12, 3), t can be evicted
into Node 5. The triplet t can be also evicted into Node 2 or
Node 0 only if the node is not full. However, t can not be
evicted into Node 11 since P(11, 4) 6= P(12, 4). Note that t
can not be evicted into non-accessed paths. Otherwise, access
pattern leakage will be induced.

Embedding an inverted index. We embed a plain-text in-
verted index DB into the ORAM to build an oblivious
inverted index. There are two steps. Assume DB(w) =
{id1, id2, · · · , idr}. First, we convert each keyword-file-
identifier pair (w, idi) (i ∈ [1, r]) of DB into triplet t =
(key, value, leaf). Let F be a keyed collision-resistant hash
function modeled as a random oracle. Let G be a collision-
resistant hash function, K be a user’s secret key, and L be
the tree height. We set t.key to G(w||i) and t.value to {idi},
where the symbol || denotes an string concatenation. Since
t.value has u identifiers, let u = 1 here for simplicity. The
field t.leaf is set to (2L−1−1) + (FK(w||i||c)%2L−1), where
c = HT [w].count, which is a search counter stored in the local
hash table HT . Repeatedly do these, until all the keyword-file-
identifier pairs of DB have been processed. Second, we evict
all the triplets from the stash to the ORAM tree by using the
following multi-path eviction algorithms.

Let token(w, i, c) = (2L−1 − 1) + (FK(w||i||c)%2L−1).
token(w, i, c) is the leaf identifier to retrieve the keyword-file-
identifier pair (w, idi). Since the user has token(w, i, c) all the
time, the user can always fetch the desired triplets. Note that
the user cannot directly access the tree node containing the
pair. Otherwise, access patterns will be leaked.

We show an OBI example with two embedded keyword-
file-identifier pairs: {(w, 50), (w, 52)} in Figure 1. The
pairs are converted into two triplets, {(G(w||1), 50, 8),
(G(w||2), 52, 11)}, where 8 and 11 are leaf identifiers

generated by computing {token(w, 1,HT [w].count) =
8, token(w, 2,HT [w].count) = 11}, respectively. Here,
HT [w].count = 0. The local keyword hash table HT stores
{(w, (2, 0))} that denotes there are two keyword-file-identifier
pairs of w. The user can download the full 8-to-root path and
the 11-to-root path to obtain {50, 52}.

B. Muti-Path Eviction Algorithms
A challenge in OBI is how to insert a large number of

entries to multi-paths of the ORAM tree.

Large-stash eviction problem. We are given a large set
of randomly distributed triplets stored in the stash. How to
insert all the stash triplets into multi-paths of the ORAM tree
obliviously and efficiently?

The large-stash eviction problem involves three aspects.
First, the eviction should be oblivious. That is, the chosen
multi-paths must be indistinguishable from random. Second,
the eviction should be round-efficient and computationally
efficient. Third, after the eviction, a well-designed multi-
path eviction algorithm should satisfy the condition that the
probability of remaining triples in the stash is extremely small.

Three events maybe lead to a temporarily large stash.
First, the user wants to search a keyword with a large set
of results, and then the stash is large since all the accessed
blocks should be re-encrypted. Second, the user wants to insert
a large number of triplets into the index. Third, the user wants
to delete a large number of triplets.

A straightforward idea. We can slightly extend the single-
path eviction algorithm [5] of PATH ORAM to support a
multi-path eviction to address the large-stash eviction problem.
Assume r eviction paths are given, and the stash size is |ST |,
including the last retrieved data blocks. We want to evict these
data blocks into the multiple paths. We add an additional loop,
compared with the original single-path eviction algorithm, for
running r times on the algorithm. From bottom to top, we fill
all the paths with the stash blocks. The algorithm complexity
is O(Z · L · r · |ST | · tpath), where tpath is the time to test a
valid candidate. If |ST | = O(r) on the large-stash occasions,
the time complexity can be considered as O(r2), which is a
heavy computational overhead of the user. The main drawback
of this algorithm is that it must scan the entire stash to choose
a candidate in each path level. To improve this, we propose
two multi-path eviction algorithms.

We present a k-nearest neighbor eviction algorithm (KN-
NEA) and a partition-based eviction algorithm (PBEA). KN-
NEA is for processing a small result set, and PBEA is designed
for retrieving or inserting a large collection of results or a
large set of files. We list the parameters of the two eviction
algorithms in Table II.

k-nearest-neighbor eviction algorithm. KNNEA is a multi-
path eviction algorithm to evict the user-side triplets to cloud-
side multiple paths, as shown in Algorithm 1. Intuitively, since
the bottom level of the paths has more room than top levels, the
algorithm should put stash entries to the bottom of the paths
first. Let TN be a set of tree nodes stored in a temporary hash
table, whose key is a path string and whose value is a tree
node. TN is initially empty. Given a set of accessed leaves,
denoted by I = {x1, x2, · · · , xr} relating to a set of leaf-to-
root paths, KNNEA evicts stash entries to the paths with a
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TABLE II. PARAMETERS AND NOTATIONS

Parameter Meaning
N the number of blocks in the tree
L the height of the tree (root, L=1)
Z the maximum number of real blocks per tree node
k k = 2Z + 1, # of blocks scanned per node insertion

leaf a leaf identifier
I {x1, x2, · · · , xr}, a set of leaf identifiers
r r = |I|, the number of reading paths

TN a set of tree nodes stored in a hash table
TA a triplet array sorted by the leaf property of a triplet
P(x, l) a path of the node at level l along the x-to-root path

t (key, value, leaf), a triplet
p a path string

CT a set of candidate triplets

Algorithm 1: k-nearest-neighbor eviction alg. (KNNEA)
1 KNNEA(TN , I):
2 TA ← ST ;
3 for j = L to 1 do
4 for leaf ∈ I do
5 CT ← findKNN(TA, leaf, k);
6 for t ∈ CT do
7 p← P(leaf, j);
8 if p = P(t.leaf, j) ∧ TN [p] is not full then
9 TN [p]← TN [p] ∪ {t};

10 remove t from ST ;
11 remove t from TA;

12 return TN ;

bottom-to-top eviction strategy, which fills the (L, L− 1, · · · ,
1) levels of the paths gradually. After invoking Algorithm 1,
TN is a set of newly evicted tree nodes corresponding to the
set of paths.

We note that KNNEA is a local eviction algorithm handled
by the trusted user. This algorithm evicts the triplets of the
stash to a locally stored empty multi-path tree cache. KNNEA
has no privacy leakage. After eviction, the user encrypts the
multi-path cache and uploads to the cloud for data replacing.

KNNEA relies on TA, which is a triplet array sorted
by the leaf property of a triplet, to hold the stash triplets
initially. To avoid the same limitation of the PATH-ORAM
eviction algorithm, we scan only k-nearest-neighbor triplets to
the current path instead of scanning the whole stash. More
concretely, for each node N in each path, if the leaf identifier
associated with N is leaf , we read (Z + 1) array elements
whose leaf identifiers are less or equal than leaf , and read
(Z + 1) array elements whose leaf identifiers are larger or
equal than leaf . Let k = (2Z + 1). This procedure is called
findKNN(TA, leaf, k), whose input is TA, leaf , and k.
findKNN returns only k nearest candidate triplets. Since
each node can hold Z triplets at most, the k = (2Z+1) nearest
triplets are enough to fill node N. If the candidate triplets can
reside in the node, the algorithm removes the triplet from the
sorted array and the stash. In PATH ORAM, the candidate
triplets CT are the whole stash. In comparison, the size of
CT in OBI is only k.

The main intuition behind KNNEA is that it only scans the
k nearest neighbors of the current leaf in each level. Scanning
the whole stash in each path level is not necessary when

the stash is a sorted array. However, the user should always
maintain the sorted array when the user needs to remove
a candidate from the array, which takes O(|ST |) time per
deletion. Since findKNN consumes only O(k + log |ST |)
time, it is not the bottleneck. Assume the total number of
evicted triplets is v, which equals the number of removals.
Since each triplet can be removed only once, KNNEA
eviction time complexity is O(v · |ST | + Z · L · r · tenc),
where Z · L · r · tenc is the time used to encrypt the final
results, v · |ST | is the eviction cost, and tenc is the time for
encrypting a data block. Note that v is less than Z · r · L.
We define β

def
= v

Z·L·r . In general, β ≈ 1
logN . Compared to

PATH-ORAM eviction time complexity, KNNEA avoids two
multiplicative factors, 1

β and tpath, where tpath approximates
O(logN). The small-stash KNNEA eviction time complexity
is O(Z · L · r · tenc) ≈ O(r logN). We omit the factor Z and
tenc for simplicity.

If the result size r and |ST | are large (e.g., r >
1, 000, or 10, 000), the first part v·|ST | may be the main factor
that is a heavy computational overhead. To further address the
large-stash eviction problem, we use the following PBEA.

Partition-based eviction algorithm. PBEA is a multi-path
eviction algorithm to evict a large set of user-side triplets
to cloud-side paths. The core idea of PBEA is dividing the
leaf-identifier range into a set of fixed-size partitions, whose
size is a power of two (e.g., 65536). After this, we insert
the stash triplets into the corresponding partitions according
to leaf identifiers. We can then process each partition with
a small-result KNNEA. PBEA involves two stages. In the
first stage, PBEA evicts most triplets by handling each non-
empty partition individually. Thus, linearly scanning the whole
stash in each level is avoided. In the second stage, PBEA
invokes KNNEA further to evict the remaining triplets in the
stash. Since stash size is small after all the partition evictions,
processing the remaining result set with KNNEA is efficient.

We list the parameters of PBEA in Table III. The function
f(.) maps a leaf identifier to a partition number. As shown in
Algorithms 2, PBEA takes as input a set of leaf identifiers,
denoted by I , and outputs a set of encrypted tree nodes.
To save temporary tree nodes, we adopt a globally-stored
hash table TN designed for mapping each string path to a
tree node. TN is initially empty. For each partition, PBEA
invokes KNNEA∗ to evict triplets to the temporary paths
TN . The difference between KNNEA and KNNEA∗ is
that KNNEA tries to evict the whole stash triplets to the
whole paths. In comparison, KNNEA∗ tries to evict the
partitioned triplets to the partitioned paths. Note that PBEA
relies on KNNEA further to evict the triplets in the last stage
since there are perhaps still some triplets in the stash after the
partition evictions.

With the above processes, the triplets in every partition
have been put into TN . If a tree node is not full, we pad
it with dummy values to size Z. The user encrypts all the
tree nodes in TN with an RCPA-secure private-key encryption
algorithm [36], [57], such as the counter-mode AES. A private-
key encryption scheme is said to be Random-ciphertext-secure
against the Chosen-Plaintext Attack (RCPA) if the ciphertexts
that it outputs are computationally indistinguishable from
random even to the adversary that can adaptively query the
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encryption oracle.

For simplicity, assume the stash contains only the retrieved
blocks, and most remaining blocks have been evicted to the
tree. The next section shows that permanent stash size (ex-
cluding the temporarily retrieved blocks) is near zero. PBEA
eviction time complexity is O(Z ·L · r · tenc), which we write
as O(r logN) for simplicity. PBEA reduces the eviction time
complexity of PATH ORAM from O(r2) to O(r logN) when
|ST | = O(r).

Correctness analysis. Even if a triplet t has been shuffled
and evicted, the user still knows how to access t. The reason
is 1) the user can always compute t.leaf ; and 2) when the
triplet has been moved to the j-th level, the location of the
triplet at the j-th level is P(t.leaf, j), which remains in the
(t.leaf)-to-root path, according to Equation (1).

TABLE III. PARAMETERS OF PBEA

Parameter Meaning
P an array of partitions stored in a hash table
2d the size of each partition

P [j].ts the j-th triplet partition, which is a set of triplets
P [j].ls the j-th leaf partition, which is a set of leaves
f(.) f(x) = dx−2L−1+1

2d
e

Algorithm 2: Partition-based eviction algorithm (PBEA)
1 PBEA(TN , I):
2 P ← {};
3 for t ∈ ST do
4 j ← f(t.leaf);
5 P [j].ts← P [j].ts ∪ {t};

6 for leaf ∈ I do
7 j ← f(leaf);
8 P [j].ls← P [j].ls ∪ {leaf};

9 for j = 0 to |P | − 1 do
10 if P [j].ts 6=⊥ ∧ P [j].ls 6=⊥ then
11 TN ← KNNEA∗(TN , P [j].ts, P [j].ls);

12 invoke TN ← KNNEA(TN , I);
13 return TN ;

C. Interaction Protocols
The OBI protocols include adding a set of documents,

searching for a keyword, and immediately/lazily deleting a
keyword or a set of keywords. All the protocols satisfy the
following encryption principle.

Encryption principle. For each data block relating to a
keyword-file-identifier pair (w, idi) in the tree or in the stash,
we ensure that the value (w||i||c) is unique all the time, where
c = HT [w].count, and i ∈ [1,HT [w].len].

When a block corresponding keyword w is searched, we
increase c by one. When adding a block that corresponds to
keyword w, we use token(w,HT [w].len, c) as the new leaf
identifier for this block, and increase HT [w].len by one, but c
remains unchanged. Therefore, (w||i||c) can be unique in the
index all the time.

Bulk inserting a set of documents. Given a set of documents
for bulk insertion, the user first writes keyword-file-identifier
pairs of the documents into the stash. Next, the user performs
a reading-and-replacing action to evict blocks containing the
pairs into r paths of the tree. To provide more insertion space,

the user sets r to a value that is no less than the number of
blocks in the stash empirically. Since the user uses PBEA,
bulk-insertion complexity is O(r logN).

Searching for keywords. Keyword searching is also a reading-
and-replacing action. The user generates a set of leaf identifiers
to search for keyword w. Recall that the leaf identifier for the
i-th keyword-file-identifier pair of w is token(w, i, c). There
are HT [w].len tokens in total. The user sends I to the cloud,
where I = {token(w, 1, c), · · · , token(w,HT [w].len, c)}.
Algorithm 3 shows the search protocol, where ReadPaths
is to read a set of tree paths, and ReplacePaths is to replace
the original tree nodes with the new encrypted ones.

Recall that if u = 1, a keyword-file-identifier pair cor-
responds to a keyword-block pair because each data block
contains only one identifier. If u > 1, HT [w].len denotes the
number of blocks relating to w. A candidate block, denoted by
block∗, is a block containing at most u file identifiers relating
to w. Since all the identifiers are in plain text, the user can
easily extract the final results. Note that there are perhaps some
dummy identifiers in a candidate block, and the user needs to
filter them out.

Reading all the leaf-to-root paths of I can retrieve the
corresponding result-set data blocks, assuming all keyword-
identifier pairs have been initially put into the tree. To avoid
the same limitation of most search-pattern-leaked schemes, we
increase HT [w].count by one after the search on w. This
increment implies that the accessed data blocks are obliviously
mapped to new random paths. Since all the data blocks relating
to w are in the local stash now, the user can choose desired
values for final results. The user uses KNNEA for processing
a small result set or PBEA for processing a large result set.

Search time complexity of OBI is O(rw · L), where rw is
the number of (w, block) pairs for w, (rw = HT [w].len). For
simplicity, let rw = r. The cloud takes O(r ·L) access time to
read the set of leaf-to-root paths, and the user requires shuffling
the blocks and encrypting them. The total communication
bandwidth is O(B · Z · r · L) bits per query, where B is the
block size in bits. Thus search time is O(r ·L) ≈ O(r logN).
Since L ≈ logN << n, where n is the number of data files,
the search complexity is quasi-optimal in the worst-case.

Algorithm 3: A protocol for keyword searching
1 Search(I):
2 Cloud: TN ← ReadPaths(OT , I);
3 User:
4 write TN into ST ;
5 HT [w].count←HT [w].count+ 1;
6 R← {};
7 for i = 1 to HT [w].len do
8 key ← G(w||i);
9 leaf∗ ← token(w, i,HT [w].count);

10 ST [key].leaf ← leaf∗;
11 block∗ ← ST [key].value;
12 R← R ∪ {block∗};

13 output all the file identifiers from R;
14 T ′N ← KNNEA(⊥, I);
15 encrypt T ′N ;
16 Cloud: OT ← ReplacePaths(OT ,T

′
N );

A search operation can be finished in a single-round-trip
interaction. The last round of the search operation is to replace
the original paths. This operation can be folded into the next
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Fig. 2. Delete (a,50); Insert(c, 53); Insert(b, 52); Search(a).

query. The user only needs to buffer the last retrieved tree
nodes temporarily.

There are two types of deletion algorithms, immediate
deletion, and lazy deletion. The first algorithm deletes a pair
immediately from the index. The second algorithm postpones
the actual deletion to the subsequent search for w. All deletions
rely on result-set reorganization techniques.

Immediate deletion. This algorithm is almost the same as
the search algorithm. Recall that the result set DB(w) is
entirely rebuilt after every search on w. The user can remove
the undesired (w, id) pairs when re-encrypting DB(w). To
immediately delete a (w, id) pair, the user only needs to
perform a search and remove the identifiers when they exist in
the stash. The immediate-deletion complexity is O(r logN),
which is the search complexity.

Lazy deletion. A lazy deletion can be considered as an
addition operation with a deletion bit. The real deletion is
postponed to the time the search for this keyword is performed.

Given a file identifier, we use its highest bit as an indicator.
If it is 0, the identifier should be added; Otherwise, be deleted.
For example, in Figure 2, to delete (a, 50), the user inserts
a pair (a, 50(D)), where 50(D) means the identifier should
be deleted later. When searching for a, the user rebuilds
DB(a) by using (a, {50, 51, 50(D)}). The lazy deletion time
is O(logN), which is the block addition time.

Result-set reorganization. Result-set reorganization is an
approach to reorganizing a result set at the user-side when
the user searches for w. The purpose of the reorganization
is for future efficient search queries. The algorithm includes
two parts, removing duplicated (w, id) pairs, and handling lazy
deletions. After a search, all redundant information relating to
w has been removed.

D. ZPH-OBI: An Operation-Kind Hiding DSE Scheme
OBI leaks result size per query. However, we can, if

possible, pad every query, including searching, inserting, and
deletion to the maximum size M

u (blocks), where M =
maxw∈W |DB(w)|, and W is all the keywords that can be
queried. We name the new DSE scheme ZPH-OBI. With the
benefit of KNNEA/PBEA, ZPH-OBI takes O(M logN) time
per query. ZPH-OBI hides not only the size pattern but also op-
eration kinds, the information about op ∈ {search, add, del}.
Liu et al. showed that the size pattern combined with the
operation-kind pattern can lead to search-update correlations
in [13]. Thus, hiding the operation kinds is meaningful.

ZPH-OBI is designed for only search-intensive DSE. That
is, an update query with many search queries. If the user want
to frequently update big data blocks, the result size pattern and
operation kind pattern might be reasonably leaked.

V. OBI AND APPLICATIONS
In this section, we first analyze stash size. Next, we

present an index-building algorithm. At last, we give OBI-
based applications, such as oblivious file systems and oblivious
conjunctive queries.

A. Stash-Usage Estimation
Load factor. Let N be the number of real blocks inserted into
the tree. Let β = N

Z(2L−1)
, called the load factor. Intuitively,

we should reserve some space for insertions. Otherwise, most
blocks will overflow to the stash.

Let Yi = (y1, y2, · · · , yi) be a sequence of accesses to
OBI. Let OBI(Yi) be the running state of the i-th access. Let
St(OBI(Yi)) denote the local stash size after the i-th query,
and St(OBI(Yi+1)) denote the stash size after the (i+ 1)-th
query. We give the following theorems.

Assumptions. Let Ui+1 denote a set of stash triplets, including
the old triplets and the newly downloaded triplets, before the
(i+ 1)-th eviction. Let the (i+ 1)-th operation access the set
of leaves, denoted by Ii+1, where r = |Ii+1|, assuming r is
large. We make three assumptions. Assumption (1): Ii+1 is in
uniform distribution. Assumption (2): the number of retrieved
real blocks is less than Z ·L · r · β in the (i+ 1)-th operation.
Assumption (3): β < γ

L , where γ = 0.8 < 4 ln 1.25.

Theorem 5.2 (Oblivious bulk insertion). Let Xi+1 =
St(OBI(Yi+1)). After an access sequence Yi, we insert a large
set of triplets into the local stash. Let the number of stash
triplets be ξ. We will perform a reading-and-replacing action
yi+1. For any integers ξ ≥ 0 and R ≥ 0, if Assumptions (1-3)
hold, and if r > ξ

Z·(γ−L·β) , we have

Pr[Xi+1 > R | Xi = ξ] ≤ e−α1r−α2R, (2)

where α1 = 0.0231Z and α2 = 0.2231.

Proof: We use E(.) to denote a mean. Since Ii+1 is in uniform
distribution, the tree is divided into r same-size subtrees.
According to Assumption (1), each subtree contains only one
eviction path. This path is used to hold the stash triplets.
According to KNNEA, in the worst case, the triplets can be
evicted to the root node of the subtree. Let E(UTi+1) be the
number of the triplets that belong to a subtree T in the average
case. Since St(OBI(Yi)) = ξ, thus E(Ui+1) ≤ ξ+Z ·L ·r ·β.
Let η = ξ + Z · L · r · β. We have η ≤ Zrγ, due to r >

ξ
Z·(γ−L·β) . Since the triplets Ui+1 are randomly distributed,

then E(UTi+1) = E(Ui+1)
r ≤ η

r ≤ Zγ. Since the root of the
subtree has Z triplets, this node is large enough to hold the
triplets, whose size is E(UTi+1). Intuitively, the sub-roots are
large enough to hold Ui+1. We want to make a more accurate
analysis. We assume each root of each subtree has infinite size
for only stash analysis. If a sub-root contains more then Z
triplets, we want to count the number of overflowing triplets.
Since we can move the overflowing triplets into the stash, this
assumption does not affect the final conclusion.

Define a random variable Gj ∈ {0, 1}, which represents
the j-th triplet state in all the subtree roots. Gj = 1 means
the triplet is a real block after the eviction, otherwise Gj = 0.
Let pj = Pr[Gj = 1]. Observe that each Gj is indepen-
dent. Given a positive constant value t > 0, we first infer
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Next, according to the Markov inequality, we infer

Pr[Xi+1 > R] ≤ Pr[Σ
T
UTi+1 > r · Z +R]

= Pr[e
tΣ
T
UT

i+1 > et(r·Z+R)]

≤ E(e
tΣ
T
UT

i+1) · e−t(r·Z+R)

≤ e(et−1)E(Σ
T
UT

i+1) · e−t(r·Z+R)

≤ e(et−1)rZγ · e−t(r·Z+R)

= e−tR+r((et−1)Zγ−tZ).

We choose a value t > 0 such that (et − 1)Zγ − tZ < 0. Let
t = ln 1.25 = 0.2231, then

Pr[Xi+1 > R] ≤ e−0.0231·r·Z−0.2231R. (3)

Therefore, Inequality (2) holds.

We now prove that all the assumptions are reasonable.
Since each leaf identifier of Ii+1 is generated by a pseu-
dorandom function, whose input key is unique in the index
all the time, Assumption (1) is reasonable. Since each path
has the same access probability, if r is large, Assumption (2)
can be satisfied. As for Assumption (3), we can increase the
height of the tree L to provide more insertion space such that
Assumption (3) holds. Note that OBI using PBEA still satisfies
Inequality (2) since the proof is similar. If considering only
data searching, we have the following theorem.

Theorem 5.3 (Oblivious multi-path search). Assume there
is a sequence of s searches Ys = (y1, · · · , ys). Let X =
St(OBI(Ys)). Let the stash size before the i-th reading-
and-replacing action be ξi−1. Let the number of accessed
leaves of the i-th reading-and-replacing action be ri. Assume
ri >

ξi−1

Z·(γ−L·β) , (i ∈ [1, s], r = rs). If Assumptions (1-3) hold,
and if R ≥ 0, then

Pr[X > R] ≤ e−α1r−α2R, (4)

where α1 = 0.0231Z and α2 = 0.2231.

Proof. Theorem 5.3 is similar to Theorem 5.2.

Theorems 5.2 and 5.3 prove that the multi-path eviction
algorithm outperforms the single-path eviction algorithm in
terms of stash size. For example, if we set Z = 4 and r = 1,
then Pr[X = 0] ≥ 0.9117; if r = 100, then Pr[X = 0] ≥
1 − 9.7 · 10−5; and if r = 1000, we have Pr[X = 0] ≥
1 − 7.4 · 10−41. This theorem implies that the stash size of
multi-path reading r data blocks in one time is smaller than
that of single-path reading r data blocks in r times. This is
because the data blocks in the stash have more opportunities
of going to the multi-paths.

B. Index Setup
Offline setup. We propose an Offline Index Setup Algorithm
(OISA). Given a set of data files to create an oblivious index,
the user directly writes the keyword-file-identifier pairs into
the tree leaves without data shuffling. Since the whole index
encryption happens at the trusted user-side, no information

is revealed. After index initialization, the user outsources the
whole index to the cloud.

OISA consists of five steps. The user first creates a local
plain-text inverted index DB of the data files. For any keyword
w, DB(w) is divided into fixed-size blocks with each data
block containing u file identifiers. The user puts all (w, block)
pairs into the stash. Next, all the triplets in the stash are inserted
into the leaves according to leaf identifiers. If the leaves are
full, the triplets remain in the stash. After OBI initialization,
the user uploads the tree to the cloud.

Since F is a pseudorandom function, the leaves
{token(w, i, c)}(w,i)∈DB are in uniform distribution, where
c is initially 0. Therefore, every tree leaf contains the same
number of triplets with high probability. Thus, the stash can be
nearly empty after index initialization. The core idea behind
OISA is that all the stash triplets are evicted to the leaves
without data shuffling. Therefore, OISA achieves the optimal
time complexity of O(N).

C. Choosing a Partition Size
Recall that in PBEA, the size of each partition is 2d. Our

goal is to choose a proper value d such that the execution time
of PBEA is minimal. Since PBEA invokes KNNEA to process
all the partitions in the beginning stage and the tree top part in
the final stage, where the tree top height is (L−d), a large or a
small partition is not suitable for PBEA. Thus, we empirically
set d = dL/2e.
D. OBI and Applications
An oblivious file system. We give an OBI-based non-
interactive Bulk-Insertion Oblivious File System prototype
named BI-OFS, which differs from prior interactive oblivious
file systems [58], [59]. BI-OFS is an oblivious data structure
that aims to hide the operation names, file identifiers, and
file contents. BI-OFS logically contains a set of directories
and files. Assume each file has the same size. Each directory
contains a set of files and a set of subdirectories. BI-OFS
provides privacy-preserving directory-read and bulk-file-write
services to the user.

We consider a keyword-file-identifier pair as a file-content
pair (f, c), where f consists of an absolute directory path and a
file name (e.g., /etc/passwd), and c is a fixed-size data file. The
user maintains a local directory that contains all the directory
paths of the file system. The cloud has all the encrypted files.
File meta data, such as file names and attributes, are put into
file headers. Since the directory names are not large enough
in general, the user-side can always hold the local directory.
To read a file, the user should download the current directory,
excluding the subdirectories. To read a full directory, the user
first reads the subdirectory names from the local directory,
and then the user performs a reading-and-replacing action to
access r tree paths, where r is a constant. The user hides the
directory size pattern by adding fake queries to make every
reading-and-replacing action access the same number of tree
paths.

BI-OFS enjoys the following merits. First, it supports bulk
inserting a set of files. Second, it can read an entire directory
containing subdirectories efficiently. Third, the read is non-
interactive. The user can read/add/remove a directory in a
single-round-trip interaction. Similar to ZPH-OBI, BI-OFS is
suitable for only search-intensive file systems.
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An oblivious conjunctive-query scheme. OBI supports
only single-keyword query. To achieve efficient conjunctive
queries, such as “select * from users where name=‘Tom’ and
sex=‘male’ ”, we design a new scheme.

Algorithm 4 gives an x-term Oblivious Conjunctive-Query
searchable encryption demo, named OCQ. Let OBI be an OBI
scheme, and OMAP be the oblivious map [18]. OCQ consists
of three subroutines, Setup, which is for locally setting up
an index, Search, which is for searching w1 ∧ w2 · · · ∧ wx,
and Update, which is for adding or deleting a keyword-file-
identifier pair (w, id). We list the parameters of OCQ in Tables
IV.

TABLE IV. PARAMETERS OF OCQ

Parameter Meaning
F a set of plain-text data files

OMAP an oblivious MAP
results a set of file identifiers, the final results
temp a set of file identifiers, the temporary results

w1, w2, · · · , wx keywords

Algorithm 4: An oblivious conjunctive-query DSE
scheme (OCQ)
1 Setup(F ):
2 DB = CreateInvertedIndex(F).
3 OBI.Setup(F)
4 OMAP = {}
5 for all (w, id) in DB do
6 OMAP.write(w||id, 1)

7 return (OBI,OMAP )
8
9 Search(w1 ∧ w2 ∧ · · · ∧ wx):

10 choose the short term, assuming it is w1.
11 results← {}
12 temp← {}
13 temp← OBI.Search(w1)
14 for all id ∈ temp do
15 if OMAP.read(w2||id) = 1
16 ∧ · · ·
17 ∧ OMAP.read(wx||id) = 1 then
18 results← results ∪ {id};

19 return results
20
21 Update(op, w, id):
22 if op = ‘add′ then
23 OMAP.write(w||id, 1)
24 OBI.add(w, id)

25 if op = ‘del′ then
26 OMAP.write(w||id, 0)
27 OBI.delete(w, id)

In the setup protocol, the user first builds a plain-
text inverted index DB from a set of files F , where
CreateInvertedIndex is the plain-text data processing al-
gorithm. This protocol employs two encryption schemes, OBI
and OMAP. OBI is used here for storing the final keyword-
file-identifier pairs. OMAP is designed for oblivious con-
junctive queries. For any keyword-file-identifier pair (w, id)
in DB, OMAP writes the pair into the map by invoking
OMAP.write(w||id, 1). The main difference between OBI
and OMAP is that OBI is for key-set mapping. In comparison,
OMAP is for key-value mapping.

In the search protocol, to perform a conjunctive search
query, w1∧w2∧ · · ·∧wx, the user first choose the short term,

which is the keyword that matches the smallest results among
{w1, · · · , wx}. Since OBI stores all the keyword information at
the user-side, the user can easily choose the short term. Then,
the user searches the short term and gets an intermediate result
set, which is a set of file identifiers. With OMAP, the users
can filter out incorrect file identifiers that do not match the
conjunctive query by testing each OMAP.read(w∗||id∗) is 1
or not, where w∗ is from {w2, · · · , wx}, and id∗ is from the
intermediate result set.

In the update protocol, to perform an update query,
the user can efficiently invoke OMAP.write, OMAP.read,
OBI.add, and OBI.delete APIs to update the oblivious
index. OBI.add(w, id) denotes an addition of the keyword-
file-identifier pair (w, id), and so on.

We give a comparison with the typical conjunctive-query
DSE scheme VBtree [23] in Table V. VBtree is a forward
secure DSE scheme that supports efficient conjunctive queries
with leaking the search and access patterns. The advantage of
VBtree is that it can process a conjunctive query in the cloud
without any user-cloud interactions (except for returning the
final results). The results in the table show that OCQ nearly
reaches the search efficiency of the insecure baseline. OCQ has
search time of O(Z · x · r1 · log2N), where Z is the number
of blocks in a tree node.

VI. SECURITY ANALYSIS
A. Leakage Analysis
Claim 1: The OBI protocol leaks no information to the cloud
except the number of accessed leaves.
Proof: There are three stages in the reading-and-replacing
protocol, reading, shuffling, and replacing.

In the read stage, the user downloads r paths from the
ORAM tree. Thus, the size pattern r is leaked now. There
are two types of paths: a fake path and a real path. A fake
path is for data padding or providing more insertion space for
data shuffling. Since the fake path is randomly generated, its
leaf identifier is indistinguishable from random. A real path
contains the desired data blocks to be retrieved. Assume xi is
the real-path leaf identifier. Recall that xi is generated by the
keyed pseudorandom function, whose input is (w||i||c). xi is
still indistinguishable from random since (w||i||c) is unique in
the index all the time according to the data shuffle algorithm
of KNNEA/PBEA, even if the same block has been accessed.
Therefore, there is no other information leakage in this stage.

In the data shuffle stage, KNNEA/PBEA works at the
trusted user-side. Thus, the cloud learns nothing about shuffling
contents of KNNEA/PBEA. The user evicts the accessed
blocks to new locally-stored cache paths, and ensures that each
(w||i||c) is unique in the index all the time. After data shuffle,
the locally-stored paths are encrypted by the RCPA-secure
algorithm for preparing to upload to the cloud. Therefore, there
is no information leakage in this stage.

In the data replacing stage, the accessed paths are over-
written by the re-encrypted paths. In the reading-and-replacing
action, the original paths are replaced with re-encrypted data.
Due to the RCPA-secure algorithm, the encrypted path contents
are indistinguishable from random. Even if the block resides
in the original location, the cloud observes only the random
ciphertext and gains no more information in this stage. There-
fore, there is no information leakage in this stage.
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TABLE V. A COMPARISON WITH THE TYPICAL CONJUNCTIVE-QUERY SCHEME VBTREE

Schemes Cloud storage size Local storage size Search time Round trips Security
VBtree [23] O(N logn) O(m) O(x · r1 logn) 1 forward secure
OCQ(this paper) O(N) O(m) O(Z · x · r1 log2N) O(logN) strong forward and backward secure

Assume w1 ∧ · · · ∧wx is a conjunctive query. N is the total number of keyword-file-identifier pairs, m is the number of keyword-file-identifier pairs in the index, n is the number
of files. Z is the number of data blocks in a tree node. x is the number of conjunctive terms. r1 = min{|DB(wi)|}i∈[1,x].

From the above analysis, we conclude that the reading-and-
replacing protocol leaks only the size pattern r.

B. DSE Security
Theorem 6.1 (Strong-FB security). Assuming the existence
of the RCPA-secure algorithm, and F is a pseudorandom
function, then OBI is strong forward and backward secure.

Proof. Let A be a probabilistic polynomial-time (PPT) adver-
sary. A can adaptively issue search and update queries without
accessing the user-side secret information since we assume the
user-side data structures, including the keyword hash table and
the stash, are trusted in the security model. We now prove that
there exists a PPT simulator S, who can adaptively simulate
A’s queries, including data searches and data updates.

S adaptively simulates A’s queries. For a query q at
time t, A has a set of leaf-to-root paths, PATH = {x1-
to-root, · · · , xrt -to-root}. S also randomly chooses a set of
leaf-to-root paths PATH∗ = {x∗1-to-root, · · · , x∗rt -to-root},
where |PATH| = |PATH∗| = rt, according to LQuery.
After the query, A has a set of newly updated paths. S also
updates the accessed paths with random values. If a path
of the query is a real access, since xj is generated from
a unique bit string in every data searching, data inserting,
and deletion, each keyword-file-identifier pair corresponds to
a unique string. According to the pseudorandom function
F , each leaf identifier xj and x∗j (j ∈ [1, rt]) are PPT
computationally indistinguishable. If a path of the query is a
fake access, then xj is a randomly-generated value. xj and x∗j
are also PPT computationally indistinguishable. According to
the RCPA-secure encryption algorithm, PATH and PATH∗
are PPT computationally indistinguishable.

The above analysis implies that the adversary learns noth-
ing from the OBI protocol except LQuery. Thus, OBI achieves
strong-FB security. If the result size is padded to the constant
value M , ZPH-OBI achieves operation-hiding-FB security.

VII. PERFORMANCE ANALYSIS
A. Experimental Methodologies

The experiments are performed on a desktop computer
that runs Windows 10 with an Intel(R) Core(TM) i9-10850K
CPU and 64 GB DDR4 memory. Blake2b is employed as the
pseudorandom function, and counter-mode AES acts as the
RCPA-secure encryption algorithm. The scheme and testing
cases are programmed with C++ 20. N denotes the number of
keyword-file-identifier pairs, m is the number of keywords in
the index, n is the number of files, L is the height of the tree,
Z is the number of blocks in a tree node, β is the load factor,
and u is the number of file identifiers in one block. r is the
number of reading paths per query. We empirically set r = ξ
for the large-stash eviction problem.

Assume the entire oblivious index can be fully loaded
into the memory. Each file identifier is a 64-bit integer that

includes a deletion bit. We ignore all communication time
of the experiments. For every experiment, we create a single
thread to evaluate performance. The stash size does not include
the number of temporarily retrieved triplets in every access. We
do not consider the case that the ORAM tree is full since we
always reserve some space for insertions.

Datasets. We use the well-known Enron email dataset [60],
which contains 517 thousand text documents in total. We
extract keywords by splitting every document with a space
character. The four sub-datasets are generated with the follow-
ing approach. First, we create an unencrypted inverted index
for the whole Enron dataset. Second, we generate the sub-
datasets by randomly choosing a set of keywords from the
inverted index, as shown in Table VI.

TABLE VI. THE ENRON DATASETS

Datasets N m n
DB1 8,228,457 3,000 517,401
DB2 34,607,795 30,000 517,401
DB3 81,762,592 300,000 517,401
DB4 105,436,113 2,686,391 517,401

B. Index-Setup Evaluation
In Table VII, we list the experimental data of index setup,

where KM size denotes the size of the keyword hash table.
The number of file identifiers in a block is set to u = 32. The
size of the tree node is set to Z = 4. The height of the tree
for {DB1, DB2, DB3, DB4} is set to L = {23, 26, 27, 27},
respectively. DB4 is the whole Enron dataset, whose index size
is 7.73 GB. The setup time is exclusive of data preprocessing.

TABLE VII. INDEX SIZES AND CONSTRUCTION TIME

Dataset Index size KM size Setup time Ind. speed(pairs/s)
DB1 381 MB 141 KB 7 s 1.2 · 106
DB2 1.57 GB 1.4 MB 38 s 9.5 · 105
DB3 2.28 GB 13.7 MB 103 s 7.9 · 105
DB4 7.73 GB 122 MB 215 s 4.9 · 105

Index size. The experimental data in Table VII demonstrate
that OBI has the optimal index size. The whole oblivious-index
size is 7.73 GB, which is proportional to the size of the entire
unencrypted inverted index of 747 MB.

Setup time. The experimental data in Figure 3 and Table
VII demonstrate that the offline setup achieves the optimal
complexity. The online setup uses KNNEA for per-keyword
batch insertion. That is, the number of insertion rounds is
m. The offline setup algorithm is OISA. The offline indexing
speed of DB4 reaches 4.9 · 105 pairs/s, which is far more
efficient than the online indexing speed of 2.5 · 104 pairs/s
when L = 27. This is because OISA does not involve data
shuffling in every access.
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Client storage. Experimental data in Table VII show that client
storage of OBI can be acceptable. The user has two data
structures, the keyword hash table and the stash. Since the
local stash is nearly empty, the user maintains only the O(m)-
byte keyword hash table. The user can choose only a set of
desired keywords for index building and discards meaningless
keywords, such as stop words and strange symbols. Thus the
keyword hash table is still scalable, even if a large set of data
files are given.

The O(m)-byte keyword hash table is a storage-efficiency
data structure. The table in our OBI scheme acts as the position
map in the non-recursive PATH ORAM, but the size of the
table in our OBI scheme is much smaller than the size of the
position map in the non-recursive PATH ORAM, because the
size of the position map in the non-recursive PATH ORAM
is O(N) and m << N , where N is the number of keyword-
identifier pairs.

Many non-oblivious DSE indexes also have a client-side
keyword hash table, such as [12], [55], [61], [62]. They show
that O(m)-byte local storage is acceptable on most modern
devices. To the best of our knowledge, it seems that there
are no better solutions to outsourcing the keyword table in a
non-recursive DSE scheme. On the occasion of large m (e.g.,
m = N ), we can use the recursive techniques [18] to outsource
the storage to the cloud.

C. Stash Usage
Stash size. The experimental results in Figure 4 demonstrate
that the multi-path eviction algorithms outperform the single-

path eviction algorithm of PATH-ORAM [5] in terms of stash
size. We set Z = 4, L = 15, and β = 1

L for both PATH-ORAM
and OBI. Since a larger Z implies poor access efficiency, we
do not choose Z = 6. If r = 1, the OBI stash size is similar to
PATH-ORAM. The line r = 4 means four reading paths per
query. Each point of each line is an experiment performed by
accessing 2λ (λ ∈ [10, 20]) times (with different locations) to
the index. In PATH ORAM, the stash size of reading a block in
one time and the stash size of reading four blocks in four times
are similar. This is because the stash size of PATH ORAM has
a small number of relations with the reading times. Its stash
size is mainly determined by the last round reading operation.
In OBI, reading four blocks in one time has a smaller stash size
compared with PATH ORAM according to the experimental
results of Figure 4.

In OBI for a DSE scheme, the number of reading paths
per query r is variable. When r = 1, the OBI ORAM can
be viewed as PATH ORAM with the same stash analysis. The
value Z is a constant after index building. Based on Emil
Stefanovy et al.’s conclusions, Z should be set to Z ≥ 4 to
avoid exceeding stash capacity. Thus, we let Z = 4 in our
scheme. Prior single-path ORAM schemes, such as OMAP,
also set Z to 4. Note that the larger the value Z is, the more
encryption time will be cost in every query.

An ORAM with the security parameter (R, λ) means the
probability of the permanent stash size exceeding R is less than
2−λ ( [5]). These results match Inequality 3, which proves the
stash overflow probability decreases exponentially in r. We
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note that the DB1 Enron dataset returns r = 85 result blocks
per query in the average case if u = 32. Thus, the permanent
stash occupancy is trivial.

Eviction experiments. To evaluate the actual performance
of KNNEA and PBEA, we extend the single-path eviction
algorithm of PATH ORAM to support multi-path evictions.
Compared with the original PATH ORAM, the extended ver-
sion has an additional loop for multi-path eviction. Figure 5
shows the comparison of three eviction algorithms, KNNEA,
PBEA, and PATH ORAM. Experimental results demonstrate
that PBEA is two orders of magnitude faster than PATH
ORAM if r · u > 107. KNNEA is one order of magnitude
faster than PATH ORAM when r · u = 106.

In Table VIII, we list the permanent stash size of three
eviction algorithms for bulk insertion and show that the
permanent stash size is zero with considerable probability.
The experimental data show that KNNEA, PBEA, and PATH
ORAM can evict all the stash triplets into the ORAM tree
in single round trip. After evicting 107 keyword-file-identifier
pairs to r = 312, 500 paths, the stash of PBEA is empty.

TABLE VIII. STASH SIZE AFTER LARGE-BATCH EVICTIONS

# of pairs to be evicted r KNNEA/PBEA/PATH ORAM
104 313 0/ 0/ 0
105 3, 125 0/ 0/ 0
106 31, 250 0/ 0/ 0
107 312, 500 0/ 0/ 0

Figure 6 demonstrates search efficiency of PBEA and
KNNEA is 5X ∼ 270X higher than that of PATH ORAM.
PATH ORAM consumes more than three hours to search
a keyword with 107 matched results if u = 32. KNNEA
consumes 510 seconds. However, PBEA takes only 40 seconds.

D. Insertion Efficiency
Large-batch insertion. We insert the entire Enron dataset into
an empty oblivious inverted index. These experiments differ
from the online setup algorithm shown in Figure 3, which is
highly interactive. Here, we complete the insertion in a single-
round-trip interaction. We first write the dataset into the stash.
Next, if the stash has r triplets, we perform a reading-and-
replacing action to put the dataset into r paths in one batch.

Experimental results in Figure 7 demonstrate that the
multi-path ORAM outperforms the single-path ORAM in terms
of insertion efficiency. PBEA supports efficient bulk insertion.
Inserting the Enron DB1 dataset takes only 65 seconds, and
inserting DB4 takes only 792 seconds. However, we consume
more than 12 hours to insert the smallest DB1 dataset with the
extended PATH-ORAM algorithm and more than one day to
insert the DB1 data blocks with the original PATH-ORAM
algorithm. This is because PATH ORAM should scan the
whole stash in every query to shuffle the stash data blocks.
When the stash size is small, data shuffling cost is trivial. In the
experiments, a partition of size 65536 is suitable for PBEA to
process each partitioned stash efficiently. When the stash size
is large, data shuffling time complexity is proportional to the
square of the stash size. Thus, we should use PBEA to partition
a large ORAM into a set of small ORAMs such that each
partitioned ORAM does not suffer from the large-stash eviction
problem. In comparison, we take only 303 seconds to insert

DB1 with KNNEA, but it is still not suitable for large-batch
insertion. Note that the offline setup of DB1 with OISA takes
only 7 seconds in Table VII. This is because OISA does not
involve time-consuming data shuffling. We omit the remaining
experiments on PATH ORAM since they will consume at least
several days.

E. Compared with Orion, Eurus, and Other Works
Experimental results in Figures 9 and 10 demonstrate

that OBI is far more efficient than Orion proposed in CCS
2018 [11]. We use an open-source C++ Orion implementation
to perform the experiments [63]. Note that the number of
deletions or lazy additions in the matched results is not a
key concern since OBI can rebuild the whole result set to the
optimal size at any time. For a frequently searched keyword,
its result size is always near the optimal value since redundant
information has been removed.

We set the OMAP parameter of Orion to Z = 4. The
number of matched results equals R = 1024. We set OBI to
u = 32 and Z = 4. That is, a data block contains u = 32 file
identifiers. Figure 10 shows a comparison of OBI and Orion
on search time. When L = 22, an OBI search takes 10.7 ms,
but Orion consumes 503 ms. This is because Orion enjoys an
additional multiplicative logarithmic overhead in every query.
Another reason is that OBI has improved access locality. If
client-side storage is considered, since Orion achieves O(1)
client storage, OBI can also achieve O(1) client storage by
employing the OMAP to outsource O(m) storage to the cloud.
This conversion will incur additional O(log2m) computational
overhead and O(logm) rounds per query. Compared with
Orion of O(nw log2N), O(log2m) can be ignored. Figure 9
shows a comparison of the two schemes on bandwidth usage.
OBI uses less bandwidth since Orion shuffles more data blocks
than OBI.

The file-insertion speed of OBI is three orders of magnitude
higher than that of Orion, as shown in Figure 8. For a fair
comparison, the tree height is set to 22 in both schemes.
To insert a file with 10 000 distinct keywords, OBI takes
only 69.97 ms. However, Orion consumes 206 seconds. This
is because OBI has the fast multi-path eviction algorithms,
KNNEA and PBEA. Orion can only black-box invoke the
slow single-path ORAM (OMAP) interfaces to update data.
The insertion efficiency of OBI-(u=128) is 10X faster than
that of OBI-(u=1). However, we choose OBI-(u=32) since
communication bandwidth is also a performance factor. OBI
can be initialized in the optimal O(N) time, yet there are no
available solutions to initializing an Orion index in O(N) time
to date. In the experiment, if naively invoking the OMAP APIs
to online build the Orion index, setting up the whole Enron
index consumes more than one day.

Compared with the insecure baseline, the typical
conjunctive-query DSE scheme VBtree in [23], the OBI-based
DSE scheme OCQ has two orders of magnitude slowdown if
communication time is not considered, as shown in Table 11.
For simplicity, we write DB(w) = 15 to denote a keyword
w that matches 15 results, and so on. The experiment is per-
formed by testing the query processing time of a conjunctive
query (x∧w), where x and w are keywords. Since DB(w)=15,
the keyword w is the short term. The query processing time is
slightly dependent on DB(x). Since DB(x) can be the entire
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dataset, OCQ uses an oblivious index to avoid a linear scan of
the whole database for conjunctive queries.

We compare ZPH-OBI with the size-pattern-hiding Eurus
in TDSC 2020 [13]. We use the dataset DB1 and set M = 104

and u = 32 for both schemes. ZPH-OBI takes 50 ms per query.
In comparison, Eurus runs out of the memory due to a required
matrix of size O(M2 log2m) bytes in its thin-path eviction
algorithm. This is because Eurus suffers from the large-stash
eviction problem. Moreover, OBI and ZPH-OBI protocols can
be readily switched by the user for efficiently retrieving either
a large result set or a small result set since OBI and ZPH-
OBI share the same storage structure. In comparison, Eurus
can retrieve only the maximum result set due to padding.

Compared with the non-oblivious DSE schemes, such as
Cash et al.’s scheme [57], OBI consumes more time to shuffle
and re-encrypt the result set of every data query at the user-
side. This operation incurs an additional logarithmic multi-
plicative overhead. Based on our experimental results, Cash
et al.’s scheme is still two orders of magnitude more efficient
than OBI in data searches, assuming the same data locality
is optimized in both schemes. However, result-set shuffling is
unavoidable. Otherwise, the search and access patterns will be
revealed and the attacks are still available [16], [17], [64]–[69].

OBI still has two limitations. First, OBI is suitable for
only search-intensive applications instead of update-intensive
DSE since OBI uses a lazy-deletion strategy. Second, a key-
set mapping ORAM is not equivalent to a key-value mapping
ORAM. OBI is optimized for only key-set mapping. The key-
set mapping ORAM allows for some size pattern leakage
in return for good throughput only if the user can partially
sacrifice such privacy.

VIII. CONCLUSIONS

In this paper, we proposed OBI, a multi-path ORAM
that supports oblivious bulk operations for protecting the
search/access/size/kind patterns of DSE. OBI relies on two
new multi-path eviction algorithms to provide notable features,
including the optimal indexing speed, single-round-trip access,
small stash size, and high bulk-insertion efficiency. We gave
extensive experimental evaluations to show the merits of the
multi-path eviction algorithms compared with PATH-ORAM
and Orion. Despite the advantages, using ORAM means data
are frequently shuffled and re-encrypted, which is very harmful
to database systems. Regarding future work, one direction
would be to design multi-user multi-path oblivious RAMs.
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