
Thwarting Smartphone SMS Attacks at the
Radio Interface Layer

Haohuang Wen
The Ohio State University

wen.423@osu.edu

Phillip Porras
SRI International

porras@csl.sri.com

Vinod Yegneswaran
SRI International

vinod@csl.sri.com

Zhiqiang Lin
The Ohio State University

zlin@cse.ohio-state.edu

Abstract—The short message service (SMS) is a cornerstone of
modern smartphone communication that enables inter-personal
text messaging and other SMS-based services (e.g., two-factor
authentication). However, it can also be readily exploited to
compromise unsuspecting remote victims. For instance, novel
exploits such as Simjacker and WIBAttack enable transmission
of binary SMS messages that could surreptitiously execute
dangerous commands on a victim device. The SMS channel
may also be subverted to drive other nefarious activities (e.g.,
spamming, DoS, and tracking), thereby undermining end-user
security and privacy. Unfortunately, neither contemporary smart-
phone operating systems nor existing defense techniques provide
a comprehensive bulwark against the spectrum of evolving SMS-
driven threats. To address this limitation, we develop a novel
defense framework called RILDEFENDER, which to the best of
our knowledge is the first inline prevention system integrated
into the radio interface layer (RIL) of Android smartphones.
We describe an implementation of RILDEFENDER on three
smartphone models with five Android versions of the Android
Open Source Project (AOSP), and show that it is able to protect
users from six types of SMS attacks spanning four adversary
models. We evaluate RILDEFENDER against 19 reproduced SMS
attacks and 11 contemporary SMS malware samples and find
that RILDEFENDER detects all and automatically prevents all but
one of these threats without affecting normal cellular operations.

I. INTRODUCTION

The Short Message Service (SMS) is a low-bandwidth text-
based transmission protocol introduced prior to the advent of
smart Internet-connected mobile devices. However, it is less
known that the SMS service can actually be used in a variety
of ways that are opaque to mobile phone users. Particularly,
the SMS service can be weaponized in ways that violate users’
privacy and security, including the existence of SMS functions
that can be inserted into the SIM supply chain and remain
undocumented by mobile providers [1].

We posit that it is incorrect for one to view SMS as
a text-based service, as an SMS message can carry binary
attachments that cause vulnerable SIMs to execute dangerous
operations on a smartphone without the recipient’s awareness
or consent. An attacker can thus exploit this vulnerability by

crafting binary-embedded SMS messages and delivering them
to users, which can cause covert dialing or the sending of SMS,
the opening of a browser with a specified URL, and even the
execution of AT commands [2]. Two instances of such binary
SMS attacks are Simjacker [3] and WIBAttack [4], affecting
mobile users from 29 countries worldwide [3]. Launching such
an attack only requires a pre-paid SIM and a GSM-compatible
USB modem, which can be acquired for as little as $20.

Other exploit paths exist within the SMS protocol that can
violate a mobile user’s privacy and security. For example,
silent and flash SMS messages are two separate types of SMS
that are used by mobile operators and governments to track a
smartphone owner’s geo-position or to post emergency alerts,
respectively [5]. Unfortunately, both of them can also be ex-
ploited by a larger pool of adversaries to perform tracking and
denial-of-service (DoS) attacks against mobile devices [5]–
[7]. Fraudulent and spammed SMS messages can also be
sent from a GSM fake base station (FBS) to impersonate
a legitimate source in order to spoof the recipient [8], [9].
The increasing availability of recent software stacks [10] and
software-defined radio hardware [11], [12] makes such attack
campaigns more accessible to unsophisticated adversaries.
Indeed, FBS SMS represents widespread threats within some
countries and causes billions in monetary loss per year [9].

SMS has also been usurped as a communication medium
that enables malware-infected phones to receive instructions,
exfiltrate data from infected mobile devices, and accelerate
malware propagation [13]. Mobile malware developers are
adept at luring users to install and grant privileges to them, for
example, by masquerading their malware as legitimate postal-
service apps [14] and COVID-19 notification apps [15]. Once
the malware is trusted by the user, SMS offers adversaries
a channel to quickly spread malicious links to other users
in the victim’s contact list. The recipients are more likely to
access these links as they originate from a known source.

Reports of aforementioned attacks have not gone unnoticed.
In particular, contemporary research efforts on defenses de-
signed to help end users detect malicious SMS attacks may
be broadly categorized into two classes. The first class includes
device-centric defenses, which install additional software plug-
ins to mobile devices. For example, Android-based monitoring
apps can detect silent SMS and FBS attacks [16]–[18]. The
second class is network-based defense, which involves the
deployment of cellular hardware infrastructures within the

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.24432
www.ndss-symposium.org

UE RAN
Core

Network

SMSC

SMS-SUBMIT

SMS-DELIVER

1

2

Fig. 1: SMS transmission path in a cellular network.

radio access network to monitor cellular traffic. For instance,
city-wide cellular network monitors [8], [19]–[21] were de-
ployed to hunt for malicious FBS messages. While these
solutions help end-users understand the prevalence of certain
SMS attacks, they suffer from three key limitations. First, most
defenses focus on passive detection and simply produce alerts
for attacks that are observed [8], [16]–[21]. Second, they often
have poor scalability, e.g., network-based solutions require the
deployment of hardware infrastructures at a large scale [8],
[19]–[21]. Third, existing solutions do not comprehensively
address the menagerie of aforementioned SMS attacks, such as
Simjacker [3], WIBAttack [4], and SMS messages generated
from proactive SIMs [1].

In response, we design and develop a system-level defensive
framework called RILDEFENDER, which is the first inline
prevention system integrated into the Android smartphone
OS’s Radio Interface Layer (RIL). RILDEFENDER is capable
of addressing a wide range of SMS attacks and offers several
critical advantages over existing SMS defense technologies.
First, unlike existing SMS defenses [16], [17], RILDEFENDER
provides the capability to not only detect SMS attacks but
also intercede (block) them automatically in real-time. Second,
RILDEFENDER’s deployment at the RIL makes it agnostic
to a wide range of vendor-specific smartphone OSs. Third,
RILDEFENDER is designed to be extensible to new SMS
threats by providing user-configurable attack signatures and
policies. We demonstrate the utility of this policy language by
presenting inline threat mitigation rules for six types of SMS
attacks from four different adversary classes.

As a proof-of-concept, we present a prototype of RILDE-
FENDER integrated as an extension to the Android Open-
Source Project (AOSP) [22]. We have implemented and tested
RILDEFENDER on three representative Android smartphone
models with five legacy and most recent Android OS versions
(up to Android 13). To evaluate RILDEFENDER’s robustness
against the six types of SMS threats, we replicated all these
attacks using an SMS testbed atop a BladeRF 2.0 software-
defined radio [11]. We tested our system against 19 reproduced
SMS attack cases, 11 SMS malware samples, and real-world
SMS traces of 7-days. We find that RILDEFENDER accurately
prevented all these attacks (except one) while not affecting
normal cellular operations. In addition, we show that RILDE-
FENDER imposes acceptable overhead in terms of power
consumption, memory, storage, and computation. In the worst-
case scenario, it imposes 1% battery consumption per hour and
a 100ms delay on cellular operations for our tested devices.
Further, RILDEFENDER can potentially be extended to support

Field SCA FO OA/DA PID DCS ... UDL UD

Length 1-12 1 2-12 1 1 ... 1 0-140

Fig. 2: Typical format of an SMS message.

SMS over IP Multimedia Subsystem (IMS) [23], which has
been widely deployed in recent 4G and 5G networks.

In summary, our paper makes the following contributions:
• We present the first system-level defense residing at the RIL

that detects and automatically mitigates SMS attacks.
• We assess the ability of RILDEFENDER to comprehensively

defend against six types of SMS attacks targeting end-user
devices from four adversary classes.
• We present a prototype of RILDEFENDER, which is inte-

grated as an extension to the Android Open Source Project
(AOSP), and evaluate its effectiveness and overhead.

II. BACKGROUND

A. Cellular Network and SMS Workflow

SMS transmissions traverse through user equipment (UE)
such as smartphones, radio access networks (RAN), and the
core network [24]. Figure 1 presents the typical workflow
of how cellular networks process SMS messages exchanged
by end-user mobile devices. First, the UE initiates an SMS
by sending an SMS-SUBMIT message to its subscribed
base station (BS). The base station then relays the message
to an SMS center (SMSC) within the core network hosted
by the receiver’s network provider. Upon receiving the
message, the SMSC repackages the message and forwards
it to a base station close to the target UE. Finally, this base
station delivers the message to the receiver’s UE using an
SMS-DELIVER message [24].

The structures of an SMS-SUBMIT and SMS-DELIVER
message share some information in common, as shown in
Figure 2 [24]. Specifically, the message starts with its service
center address (SCA) field, indicating the SMSC address
ranging from 1 to 12 bytes. Next, the first octet (FO) includes
several encoded bits to convey some meta information. For
instance, the first MTI bit indicates whether the SMS is an
SMS-SUBMIT or an SMS-DELIVER. The originator address
(OA) or destination address (DA) is also specified, followed
by the protocol identifier (PID) and the data coding scheme
(DCS). The PID and DCS fields define the type of SMS, such
as a binary or silent SMS (discussed later). Finally, an SMS
carries variable-length user data (UD), restricted by its length
(UDL) up to 140 bytes. The UD normally carries the plain-text
content of the SMS. An SMS with content longer than 140
bytes is split into separate SMS messages and reassembled
upon arrival by the destination UE.

B. Radio Interface Layer

The radio interface layer (RIL) is an abstraction layer
between the radio hardware and the OS, which generally exists
in smartphone UEs. In iOS, such an abstraction is known as
the CommCenter [25]. We use the Android RIL as an example

2

RIL Java

Android Telephony Service

RIL DaemonRIL Library

Vendor RIL Library

Kernel Driver

Baseband

App

Framework

Radio
Interface
Layer

Messages Dialer Browser

GPS CAM

RAM USB

SIM

MIC
Hardware

Kernel

Android Processor

...

Fig. 3: Typical architecture of an Android UE.

for illustration, and we show its high-level architecture in Fig-
ure 3 [26]. As highlighted in grey, the RIL includes a variety
of binaries and libraries. The RIL Java component serves as an
intermediate layer between the Android telephony service and
the native RIL libraries. Specifically, it provides encapsulated
APIs for upper telephony functions, such as dialing and SMS.
There is an RIL daemon (RILD), which handles the life cycle
of the RIL process and communicates with the low-level radio
hardware (e.g., baseband) through the vendor RIL library.
The RIL defines specific commands for communication. Com-
mands issued to the baseband through the RIL are called
solicited commands (e.g., DIAL and HANGUP [26]), and the
commands on the opposite direction are unsolicited commands
(e.g., CALL_STATE_CHANGED and NEW_SMS [26]). The
RILD, RIL libraries, and RIL Java are vendor-neutral, while
vendor-specific (e.g., Samsung and Qualcomm) functions and
customization are provided within each manufacturer’s custom
RIL library. For the vendor RIL library to communicate with
the Linux kernel, there are multiple ways depending on the
vendor’s design, such as shared memory, serial communica-
tion, or TCP socket. We further illustrate the internal workflow
of SMS at the RIL in Appendix §B, for readers of interest.

Cellular Data Processing. All cellular data is first processed
by the baseband hardware. This initial processing phase is
completely transparent to the kernel as well as its user-space
programs. The baseband executes within an independent base-
band processor (BP) and its implementation is often closed-
source and tamper-resistant [27]–[29]. Once processed by the
baseband, cellular transmissions are converted into requests,
which are transferred to the kernel in the Android processor
(AP) and delivered to the RIL to invoke cellular functions
in user-space applications (e.g., the dialer and SMS app).
The baseband also has direct access to some UE hardware
components, such as the SIM and the microphone.

III. ADVERSARY MODEL AND SCOPE

A. Adversary Model

We consider four distinctive adversary models that can
manifest violations of the privacy, integrity, or availability
expectations of the UE owner. To scope this discussion,
we assume that the baseband is trusted to the same extent

as the underlying hardware, as it is often protected against
unauthorized modifications [27]–[29]. Furthermore, as we
focus on the SMS attack surface, we exclude consideration
of system- and hardware-level attacks and assume that the
kernel, RIL, and most of the hardware (excluding the SIM)
are also trustworthy. In the following, we dive into the details
of the four adversary models.

(I) UE to UE (U2U) Attacks. The U2U model applies to
adversaries who employ the normal cellular SMS delivery
channel to transmit malicious SMS messages to target UEs.
Attack transmission can occur by using a commodity USB
modem (e.g., a ZTE MF833V dongle [30]) to craft a malicious
SMS in Protocol Data Unit (PDU) mode, which is then sent
to the target UE. The attacker performs such transmissions by
subscribing to a mobile operator network, such as through a
prepaid SIM card. There is no location restriction as the SMS
payload is delivered through SMSCs. For example, adversaries
can use this engagement path to deliver a binary SMS with
instructions that are then interpreted and executed without
the consent and awareness of the victim UE owner. More
precisely, the adversary is targeting the UE’s SIM, which
interprets a set of instructions within the SMS binaries, leading
to information theft or availability attacks against the UE.
(II) RAN to UE (R2U) Attacks. The RAN that services
communications between the UE and the core network also
presents a potential engagement path for adversaries seeking to
present malicious SMS payloads to the target UE. In particular,
fake base stations (FBS) have been increasingly prevalent due
to the availability of cellular software stacks [10], [31] along
with the accessibility of software-defined radios (SDRs) [11],
[12]. This adversary model involves the use of an FBS as
the channel to deliver SMS payloads to victim UEs. Thus,
the adversary must first trick the target UE into connecting
with the FBS, by various means such as transmitting high
signal power [32]–[34] and downgrading the victim’s device
to legacy GSM network [35], [36] (e.g., by simply jamming
the current network frequency [34]). The R2U model can
also serve as another feasible path for U2U attacks, such as
delivering a binary SMS through an FBS to nearby victims.
(III) Internet to UE (I2U) Attacks. The I2U adversary model
involves scenarios in which the adversary implants malicious
application logic within the target UE (such as Android mal-
ware applications) and then uses the SMS service as a covert
communication path. For example, SMS-based mobile botnets
have demonstrated centralized and P2P SMS-based command
and control (C&C) channels [37]. Malware, such as the An-
droid remote access tool (RAT) trojan [38], also has the ability
to send SMS messages to users within the phone’s contact
list without the owner’s awareness. In either case, malicious
applications exploit the SMS service for their own purposes,
while suppressing indicators to the device owner of this use.
(IV) SIM to UE (S2U) Attacks. The S2U adversary model
represents concerns regarding the supply-chain insertion of
logic within the SIM to proactively initiate outbound SMS
messages without the consent or awareness of the UE owner.

3

Attack Category Adv. Location Threat
Binary SMS U2U/R2U Remote/Nearby Command injection
Silent SMS U2U/R2U Remote/Nearby Tracking, DoS
Flash SMS U2U/R2U Remote/Nearby Spoofing, DoS
FBS SMS R2U Nearby Spoofing, Spamming
Malware SMS I2U Remote Spoofing, Spamming
Proactive SIM SMS S2U Remote Data exfiltration

TABLE I: Classification of SMS attacks targeting the UE

One functional legacy of SIM architectures prior to the
development of smartphone was the extension of the SIM
from simply an identity management unit to a computing
platform that independently executes embedded applications,
including an entire SIM-local browser [3], [4]. Mobile
operators may install their customers’ SIMs with applications
that can access and exfiltrate sensitive UE-local data back to
the mobile core using the SMS cellular service. We consider
such SIM functions as exfiltration because these operations
often occur without the user’s consent or awareness, and thus
could potentially be exploited by supply-chain attackers.

B. Our Focus: SMS Attacks Targeting UEs

SMS attacks targeting UEs can be broadly classified into
six categories as summarized in Table I and described below.

1) Binary SMS. There is a special type of SMS in which the
user data field carries binary data or executable code. These
messages were originally designed for tasks such as over-the-
air (OTA) SIM updates, voice mail notifications, and device
configuration [17]. Unfortunately, this feature also poses an
attack vector, which has been demonstrated in prior exploits
such as WIBAttack [4] and Simjacker [3]. These exploits allow
remote attackers to use a binary SMS to inject surreptitious
code logic in victim devices without the knowledge or consent
of the UE owner. Example functionality enabled includes
dialing a specified number, sending SMS, launching a browser
with a specified URL, or acquiring the victim’s location.
These functions are processed by the SIM, bypassing any OS-
level notifications. Fundamentally, such exploits are feasible
due to insufficient access controls within browser applications
installed on SIM cards.

There are three prerequisites for binary SMS attacks: (1) a
victim UE that has installed a vulnerable SIM, (2) an SMSC
that does not filter binary SMS messages, and (3) an attacker
who can craft and send a malicious binary SMS payload in
PDU mode. It is known that a large portion of SIMs produced
in 29 countries are vulnerable to Simjacker [3]. In addition, it
requires a coordinated effort across operators to defend against
binary SMS attacks because attackers can arbitrarily specify
the SMSC address in the SMS payload [24]. As a result, it is
difficult to completely prevent binary SMS attacks within the
current cellular network ecosystem.

2) Silent SMS. Another special type of SMS silently handled
by UEs is called silent SMS or type zero SMS [24]. Upon
receiving a silent SMS, a UE typically responds with a
delivery report for acknowledgment. The baseband, SIM, and
RIL handle this SMS, without involvement from user-space

applications. Thus, the UE owner is completely unaware that a
silent SMS message has been delivered [24]. Law enforcement
often uses silent SMS (in some countries) to track individuals
through their mobile phones [5], since a silent SMS forces the
UE to respond with a delivery report back to the sender. The
response SMS is then used to perform distance measurements
and triangulation that infer the owner’s approximate geoloca-
tion. In addition, silent SMS can be abused for malicious pur-
poses, such as conducting denial-of-service (DoS) attacks via
silent SMS flooding [39], and extracting a user’s Temporary
Mobile Subscriber Identity (TMSI) over the air [40].

3) Flash SMS. Also known as class 0 SMS, a flash SMS re-
ceived by a UE will be displayed on the screen through a pop-
up window and is deleted once the window is dismissed [24].
As a result, flash SMS is often used by authorities to push
alerts to users. However, flash SMS can also be exploited by
malicious attackers to crash smartphones [6], [7]. Attackers
can also craft a malicious flash SMS with fake alerts to spoof
users, as its sender information will not be shown. Similar
to binary and silent SMS, the attacker requires only a USB
modem to inject flash SMS messages to remote target UEs.

4) Fake Base Station SMS. It has been shown that GSM (i.e.,
2G) fake base stations (FBS) hosted on SDRs by an attacker
can send fraud and spam SMS to nearby users [8], [9]. For
instance, the attacker may impersonate a legitimate contact
of the victim to send out a spoofed SMS to ask for money
transfer. FBS SMS messages are prevalent in some countries.
For example, in China, mobile users received more than 5.7
billion FBS messages in 2015 [8]. Establishing a fake base
station is also feasible and profitable for an attacker. A study
in 2017 [8] found that an attacker could establish an FBS for as
little as $700, while the exploits from the FBS could generate
revenues of more than $1,400 a day.

5) Malware SMS. Although modern smartphones have de-
ployed permission mechanisms for access control, malware
still remains a prevalent threat. It is shown that more than
10M devices were infected by a single malware in 2021 [13].
Malware links are often spread over SMS [14] or hidden
in mobile app stores [13], luring users to install and grant
privileges to them (e.g., by impersonating legitimate postal-
service apps [14] or COVID-19 notification apps [15]). When
permissions are granted, the remote attacker uses the mal-
ware to initiate calls or send SMS without the UE owner’s
awareness. Moreover, it has also been shown that malware
does not require SMS permission to abuse IMS-based SMS
silently [23]. Apparently, the existing OS-level defense (e.g.,
permission scheme) is not sufficient against this malware.

6) Proactive SIM SMS. Program logic can be inserted into
the supply chain of mobile SIMs, enabling them to transmit
SMS messages to the mobile operator without the knowledge
or consent of the UE owner. We define this type of SMS as
proactive SIM SMS, which can be triggered by nearly all the
SIMs in the market today [1]. Most recently, AT&T SIMs

4

were found to include embedded proactive logic to send
SMS messages when the SIM detects hardware or firmware
configuration changes. This discovery occurred as a result of a
car accident lawsuit. One of the involved drivers was accused
of being distracted due to an SMS sent from the driver’s
smartphone at a time close to when the accident occurred [41].
However, this SMS was found to have been sent from the
AT&T SIM to an AT&T managed phone number dedicated
to proactive SIM message collection. These SMS messages
and AT&T’s proactive logic are entirely undocumented, and
even under subpoena, an AT&T engineer would not disclose
the full structure of these SMS payloads nor the proactive
generation logic. While proactive SIM SMS can serve benign
purposes, it can also be weaponized by supply-chain attackers
to produce malicious SIMs to exfiltrate sensitive user data.

C. Existing Defenses Against SMS Attacks

We summarize existing defenses that are designed (or are
potentially extensible) for SMS attacks in Table II and discuss
their pros and cons below.

Network-based Defenses. One defensive strategy is to detect
attacks at the radio access network by deploying cellular
network monitors to collect a large amount of network traffic
for analysis [8], [19]–[21], [34], [42]. One notable example
of this approach is FBS-RADAR [8], which detects fake base
station SMS at scale based on crowdsourced data collected
from mobile users. Its detection algorithm depends on a
series of network heuristics including unusual signal strength,
invalid BS broadcast parameters, incorrect geo-location, and
fraudulent SMS content. However, network-based defenses
suffer from coverage issues as numerous network monitoring
hardware systems must be deployed, making coverage difficult
to be achieved in practice.

UE-centric Defenses. UE-centric defenses are deployed di-
rectly on UE devices to defend against the threats locally.
Compared to network-based defenses, they have extremely
low-cost and are easier to deploy as no additional hardware
is required. Instead, they simply require the installation of a
smartphone app or an updated system firmware, and generally
have acceptable overhead on UEs [43]. As summarized in
Table II, there are seven UE-centric defenses (except FBS-
RADAR), which are deployed on the Android platform. From
a deployment perspective, such a defense can at either the
baseband or the app layer, as described below accordingly.
• Baseband-layer Defenses. Ideally, baseband-layer defenses

are at a processing layer that can prevent all cellular attacks
targeting the UE, as the baseband provides full visibility
and control over low-level cellular network traffic. Unfor-
tunately, it is extremely difficult for an unauthorized party
to deploy baseband-layer defenses (e.g., using binary hard-
ening [44]) as they are closed-source and often protected
by tamper-resistance signature verification, preventing unau-
thorized modifications [27]–[29]. To our knowledge, some
baseband vendors have deployed defenses such as FBS de-

Name Layer
S-SMS

B-SMS
F-SMS

FBS-SMS

M-SMS
P-SMS

Mitig
ation

FBS-RADAR [8] Network 7 7 7 3 7 7 7
PHOENIX [46] Baseband © © © © 7 © 3
AIMSICD [16] App 3 7 7 7 7 7 7
SNOOPSNITCH [17] App 3 3 7 7 7 7 7
SPAM-DETECTOR [9] App 7 7 7 3 7 7 7
SCAT [47] App © © © © 7 © 7
MOBILEINSIGHT [43] App © © © © 7 © 7
RILANALYZER [48] App © © © © 7 © 7
RILDEFENDER RIL 3 3 3 3 3 3 3

TABLE II: Existing defenses against cellular attacks
(S-SMS, B-SMS, F-SMS, M-SMS, P-SMS stand for
silent/binary/flash/malware/proactive-SIM SMS.© means not
implemented but potentially extensible).

tection [45]. However, they cannot comprehensively address
the SMS threats and the details are not publicly disclosed.

Particularly, while not focusing on SMS attacks,
PHOENIX [46] provides both detection and mitigation for
a series of cellular control-plane attacks. It retrofits the
cellular stack of an open-source UE, namely srsLTE [31],
which is equivalent to baseband modification. However,
such a design is hard for an unauthorized party to achieve
in practical UEs due to design constraints. Moreover, such
a design does not generalize well due to highly-diversified
baseband implementations across vendors.
• App-layer Defenses. Compared to baseband-layer defenses,

app-layer defenses are much easier to deploy for end users.
Among the defenses in Table II, three support SMS attack
detection, including silent SMS [16], [17], binary SMS [17],
and FBS SMS [9]. Two defenses [43], [47] are designed
for network traffic monitoring and diagnosis in UEs. In
summary, these defenses mainly rely on reading low-level
cellular traffic from the baseband chips or using high-level
Android APIs to sense the cellular network parameters (e.g.,
signal strengths of nearby base stations). Notably, RILAN-
ALYZER [48] is also an app-layer defense that monitors
3G traffic from baseband logs, and thus is fundamentally
different from RILDEFENDER (discussed in §IV-A).

Modern smartphone OSs also have deployed defenses
such as SMS permissions and spam SMS filters. While
they are useful to mitigate some SMS threats, they are not
sufficient against more sophisticated SMS attacks such as
silent and binary SMS. Moreover, though the permission
scheme restricts access to critical resources and functions,
it cannot eliminate the malware SMS threat and a second
line of defense (discussed later in §V-D) is needed when
the permission access control is bypassed.

IV. DETAILED DESIGN

We present RILDEFENDER, the first inline prevention sys-
tem deployed at the Radio Interface Layer (RIL). The design
of RILDEFENDER strives to balance the benefits of monitoring
at the upper application layer and bottom baseband layer,
which translates to a trade-off between deployability and
visibility. We consider RILDEFENDER as a software-only
defense integrated into the UE operating system, which can
be deployed via OS upgrades. Note that such upgrades can

5

be issued directly from OS manufacturers, such as Google. In
addition, we also consider professional users who can integrate
RILDEFENDER into the UE’s firmware image and flash it into
the UE using officially provided tools such as FASTBOOT.
In the rest of the section, we highlight the key distinctions
of RILDEFENDER in §IV-A, discuss the design challenges in
§IV-B, and describe the detailed design in §IV-C and §IV-D.

A. Key Distinctions of RILDEFENDER Over Existing Defenses

RILDEFENDER emphasizes the following three key distinc-
tions over the existing UE-centric defenses described in §III-C:
• Inline Control. RILDEFENDER can not only detect a wide

range of SMS attacks but also effectively provide inline
control to automatically block them by manipulating corre-
sponding internal-control logic. This cannot be achieved by
most existing defenses in Table II, which can only provide
after-the-fact detection. One notable exception is PHOENIX,
a baseband-level defense. However, it is deployed at srsLTE
and does not target practical UEs as mentioned in §III-C.
We believe that this distinguishing inline control capability
is extremely valuable as it enables real-time mitigation of
threats as and when the attacks occur.
• Generality. As RIL is vendor-agnostic and generally appli-

cable to the OS of Android UEs [26], RILDEFENDER can be
deployed in smartphone UEs without much vendor-specific
modification that adds to support costs and complexity. The
only vendor-dependent component is an optional baseband
monitor (§IV-C) integrated to address non-interactive binary
SMS attacks. In contrast, existing UE-centric defenses rely
on parsing vendor-specific baseband traffic [16], [17], [46].
• Extensibility. RILDEFENDER can be extended with new

SMS attack signatures and mitigation policies, which are
modeled as propositional logic encoded by YAML [49]
language. Note that new extensions (e.g., signatures and
policies) can be integrated through the RILDEFENDER app
by the users without redeploying RILDEFENDER at the
OS layer. However, existing defenses are mostly static and
cannot be easily extended for new attacks [16], [17], [43].

B. Challenges and Solutions

Detecting Baseband-only SMS Attacks. RIL-based defenses
generally do not have full visibility to low-level cellular
information. In particular, we notice there are two instances of
binary SMS (detailed later in §V-A) that are directly handled
within the baseband without being passed to the RIL. To detect
these baseband-only SMS attacks, we integrate a Baseband
Monitor component in RILDEFENDER. It establishes a com-
munication channel with the baseband processor (BP) through
the diagnostic interface to parse baseband traffic and identify
the SMS events of interest. Note that the diagnostic interface
(e.g., /dev/diag in Qualcomm devices [43]) is prevalent
among heterogeneous Android and even iOS devices [17],
[43], [47]. There are publicly available libraries [17], [43],
[47] that support baseband monitoring of major vendors (e.g.,

AP

RILDefender App

Messenger Dialer

RIL

RILDefender

RILDefender

Attack DetectorInline Mediator

Context ExtractorBaseband Monitor

Radio Interface Layer

Baseband Processor (BP)

RIL Request/Response

IPC

User-Space Applications

RILDefender App

User PolicySignature

Fig. 4: A high-level illustration of RILDEFENDER.

Qualcomm, Samsung, and MediaTek), which serve as the
building blocks to develop a baseband monitor component.

Tracking SMS Context. We notice that relying on the
structural information of an SMS (i.e., the SMS fields in
Figure 2) is not sufficient to detect some SMS attacks. For
instance, only with an outbound SMS payload, RILDEFENDER
cannot determine it is triggered by a legitimate user, a
proactive SIM, or a malicious application, to determine the
presence of a malicious outbound SMS attempt. Similarly, to
detect an FBS SMS, one needs to know the signal strengths
and parameters broadcast from the connected BS when the
SMS is received [8]. That is, RILDEFENDER must know the
context information when an SMS is captured at the RIL.
To address this challenge, we develop a Context Extractor
component that tracks the SMS context (e.g., the originating
source and connected BS states). As a system-layer defense,
RILDEFENDER can identify the source of an outbound SMS
by making inter-process communication calls [50] to the
user-space applications. Note that this is a unique advantage
of RILDEFENDER as a system-level deployment feature, and
cannot be achieved by any of the app-layer defenses [16]–[18].

C. RILDEFENDER at the Radio Interface Layer

Figure 4 shows a high-level illustration of RILDEFENDER
deployed at both the RIL and the application layer. We first
describe RILDEFENDER at the RIL, which mainly consists of
the following four logical components:
1) Baseband Monitor is based on existing libraries [17], [43],
[47] to monitor and interpret baseband traffic from proprietary
protocols through the diagnostic interface. We tailor existing
library implementation to only extract the SMS traffic of
interest (to detect baseband-only SMS attacks).
2) Context Extractor interacts with user-space applications
to track the necessary SMS context (e.g., the process that
initiates an outbound SMS). Meanwhile, it also records other
context information from the system layer such as the signal
strength and broadcast parameters from the connected BS.
3) Attack Detector instruments the internal RIL logic to
detect SMS attacks. To comprehensively cover all inbound
and outbound SMS, the detection logic sits within the RIL
handler (i.e., RIL.java [26]) that processes all RIL requests

6

Category SMS Feature Description

SMS Fields

sms.mti Message type indicator
sms.smsc SMSC address
sms.oa Originating address
sms.da Destination address
sms.scts Service centre time stamp
sms.pid Protocol identifier
sms.dcs Data coding scheme
sms.udl User data length
sms.ud User data payload
sms.proactiveCmd Proactive cmd in user data payload

SMS Context

sms.src Source process initiating the SMS
sms.ts Timestamp when SMS is received
bs.ss Average signal strength in RSSI
bs.mcc Mobile country code of BS
bs.mnc Mobile network code of BS
bs.cid Cell id of BS
bs.lac Location area code of BS
bs.arfcn BS frequency band
bs.rat Radio access technology

SMS Events evnetCount Number of SMS alert events
{sms1, ..., smsn} List of SMS alert events

TABLE III: SMS features that can be utilized to design attack
signatures for RILDEFENDER.

and responses from an architectural point of view. To detect
SMS attacks, it acquires the SMS payloads from the RIL
traffic and also gathers information from the baseband monitor
and context extractor to perform analysis against the criteria
defined within its attack signature set.
4) Inline Mediator instruments the RIL logic and interacts
with the RIL to provide inline control to mitigate the detected
SMS attacks. Each RILDEFENDER policy is individually con-
figurable by the user to produce alerts only or to additionally
perform inline mitigation of the detected malicious SMS event.

D. RILDEFENDER at the Application Layer

RILDEFENDER also includes a user interface app at the
application layer, which displays alerts and allows users to
configure operating parameters and load custom attack signa-
tures (see Appendix §A for details and a UI snapshot).

Real-time SMS Attack Alert. When an SMS attack is
detected by RILDEFENDER and the user would like to receive
real-time alerts, a broadcast intent is generated along with the
attack event details (e.g., the SMS source, destination, and
payload). The broadcast intent is asynchronously delivered to
the RILDEFENDER app, which will display the alert using
Android’s notification center to show the event details.

Extensible Attack Signature. RILDEFENDER uses proposi-
tional logic to describe SMS attack signatures. To support
extensible attack signature design, RILDEFENDER collects a
wide range of SMS features listed in Table III. In the follow-
ing, we describe them based on the below three categories:
• SMS Fields. The SMS fields are extracted from the payload

as shown in Figure 2. For example, an SMS’s PID and
DCS are denoted by sms.pid and sms.dcs, respectively.
• SMS Context. The SMS context indicates the context

information when an SMS is sent or received. For an

<Rule> → <RuleName>: <Expr>
<Expr> → { lvalue: <Value>

opCode: <Op>
condition: <Cond>
rvalue: <Value> }

<Value> → <Feature> | <Const> | <Expr> | List(<Expr>)
<OpCode> → + | - | * | / | & | | | ^ | && | || | << | >>
<Cond> → == | != | > | < | >= | <=
<Feature> → sms.mti | sms.smsc | sms.oa | sms.da | sms.ud

| sms.pid | sms.scts |sms.dcs | sms.udl
| sms.src | sms.ts | sms.proactiveCmd |
| bs.ss | bs.mcc | bs.mnc | bs.cid | bs.lac
| bs.arfcn | bs.rat | eventCount | sms_n

<Const> → <Integer> | <Float> | <String>

Listing 1: High-level representation of propositional logic-
based SMS attack signatures with YAML language.

outbound SMS message, the originating process that
initiated the SMS can be tracked (denoted by sms.src)
through IPC calls. RILDEFENDER also recorded the
attributes of the currently connected BS (denoted by bs),
such as its average signal strength (bs.ss), cell id (bs.cid),
and frequency band (bs.arfcn).
• SMS Events. The past SMS events can also be tracked

in a list {sms1, ..., smsn} in temporal order, and each
event contains the corresponding SMS fields and context.
Although the detection of the six types of SMS attacks
(as described later in §V) does not require these features,
RILDEFENDER support them for future attacks that require
the reasoning of temporal SMS events.
To make the SMS attack signatures easily configurable for

end-users, RILDEFENDER encodes them with the YAML lan-
guage [49]. Note that YAML is a human-readable language to
express structural data, and has been widely adopted in many
platforms to describe network policies and configurations [51].
In Listing 1, we present the high-level representation of YAML-
encoded signatures. To add a custom attack signature, the
user needs to configure a few mandatory attributes. As in the
example, lvalue defines the left operands in the signature,
which can use any of the SMS features defined in Table III.
opcode and condition define the computation (e.g., arith-
metic and logical) and rational operators, respectively, and
rvalue indicates the right operand. Further details about the
extensible signatures are described in §A in Appendix.

Flexible Mitigation Policy. The mitigation policies are config-
ured by users upon attack signatures with four different types:
Allow, Notify, Block without Notify, and Block
and Notify, which represent different levels of mitigation
of a specific attack.

V. IMPLEMENTATION

We have implemented a proof-of-concept prototype of
RILDEFENDER1 atop the Android Open Source Project
(AOSP) [22]. The baseband log monitor is implemented
using the libraries from SNOOPSNITCH [17] for Qualcomm

1The source code of RILDEFENDER is available at https://github.com/O
SUSecLab/RILDefender.

7

https://github.com/OSUSecLab/RILDefender
https://github.com/OSUSecLab/RILDefender

Baseband SIM RIL UI

Binary SMS Proactive
Command

Envelope
Command

Operation

ResponseTerminal
Response

Detect&Block
Ack

Alert

Fig. 5: Interactive binary SMS detection and mitigation.

baseband. Note that RILDEFENDER could be extended for
non-AOSP devices due to the generality of RIL. This section
details how RILDEFENDER is implemented to detect and
mitigate the spectrum of SMS attacks described in Table I.

A. Binary SMS

When a binary SMS is sent to a mobile device (or UE),
the baseband first parses the SMS payload and determines
its type. If it is a binary SMS, the baseband relays it to the
SIM for further processing. Binary SMS contains a series of
proactive UICC commands [52] in the user data field, which
are processed by the embedded applications in the SIM, such
as the S@T browser [3] and the Wireless Internet Browser
(WIB) [4]. When the SIM’s internal browser is configured
with the least security protection, it will blindly instruct the
AP to execute the proactive UICC commands contained in
the binary SMS [3], [4]. In this paper, we focus on Simjacker
and WIBAttack under this category. There are other types of
binary SMS targeting the UE OS, such as WBXML SMS for
MMS/APN configurations, which can be exploited to trigger
an integer overflow bug in Samsung Galaxy devices [53].
While not being our main focus, these forms of binary SMS
can be handled similarly with other binary SMS attacks.

Within our scope, a binary SMS can be classified as either
an interactive binary SMS, which when received will initiate
user engagement to process the message, or it may be a
non-interactive binary SMS. Correspondingly, RILDEFENDER
employs different attack signatures to handle each case.

Interactive Binary SMS. This type of binary SMS invokes in-
teractive functions by transmitting a UICC proactive command
to the RIL, such as SET_UP_CALL, LAUNCH_BROWSER,
DISPLAY_TEXT, and PLAY_TONE [54]. For instance, a
binary SMS with LAUNCH_BROWSER can spawn the Internet
browser with a specified URL embedded as an SMS parameter.
As an interactive binary SMS requires user interaction, it
must be delivered to the application layer to trigger corre-
sponding user-interactive operations. The high-level workflow
of an interactive binary SMS attack is illustrated in Fig-
ure 5. First, when the binary SMS arrives at the UE, the
baseband converts it into an envelope command [52] and
relays it to the SIM. The SIM then interprets it and instructs
the AP to execute the specified function with a proactive
UICC command. Next, the RIL is notified of the proac-
tive command (e.g., through an unsolicited RIL command
UNSOL_STK_PROACTIVE_COMMAND [26]), and handles it

Baseband SIM RIL UI

Binary SMS
Envelop
Command

Monitor

Proactive
Command

Alert

Ack

Operation

Detected

Fig. 6: Non-interactive binary SMS detection and mitigation.

with a Card Application Toolkit (CAT) service handler. Based
on the command type, the RIL further invokes the correspond-
ing UI operation at the application layer. Finally, the response
is sent back to the SIM. Based on the distinct behavioral
signature, RILDEFENDER uses the following detection rule:

(sms.proactiveCmd 6= ∅)→ SMS(Binary, Interactive)

where RILDEFENDER detects an interactive binary SMS when
the RIL is notified for a proactive command from the SIM. To
mitigate the SMS, the inline mediator intercepts the proactive
command at the RIL and blocks the proactive commands from
being executed at the application layer.

However, there is one exceptional proactive command
SET_UP_CALL. Interestingly, when this command is exe-
cuted, the SIM will not transmit it to the RIL but instead
directly instructs the baseband to initiate a voice call. Next,
the RIL is notified for an initiated outgoing voice call (e.g.,
by an unsolicited message CALL_STATE_CHANGED [26]),
and further spawns a voice call dialog at the dialer app. To
detect this attack, RILDEFENDER needs to correctly detect
if the voice call is triggered by a binary SMS rather than
a normal user operation, which ensures benign operations
are not mistakenly blocked. As a result, RILDEFENDER uses
an intent-aware detection to monitor the user intent from
the application layer context. When the attack is detected,
RILDEFENDER suspends the voice call by sending a solicited
RIL command HANGUP [26] to the baseband.

Non-interactive Binary SMS. For non-interactive binary
SMS, we mainly focus on two proactive command types:
SEND_SMS and RUN_AT_CMD, which instruct the UE to send
out an SMS and run AT commands [2], respectively. Note
that there are also other non-interactive proactive commands,
such as PROVIDE_LOCAL_INFO, which fetches the UE’s
information including location, IMEI, IMSI, and so on [52].
However, they need to be chained with the previous commands
such as SEND_SMS to achieve certain attack goals (e.g.,
leaking the victim’s IMEI through SMS [3]).

Figure 6 illustrates the workflow. Compared with interactive
binary SMS, detecting a non-interactive binary SMS attack is
more challenging as the proactive command from the SIM will
be relayed to the baseband instead of the RIL. Fundamentally,
this is because no user interaction is needed for the operation,
and thus the event is not transmitted to the AP, making it
non-observable at the RIL. Therefore, RILDEFENDER utilizes
the SMS traffic from the baseband monitor for detection.

8

Specifically, we notice that a binary SMS has distinct structural
features, as it needs to have its PID field to be 0x7F (indi-
cating USIM data download), and the DCS field to indicate
a class-2 message [24]. Based on this insight, RILDEFENDER
adopts the following attack signature:

(sms.pid = 0x7F) ∧ (sms.dcs & 0x3 = 2) ∧
(sms.proactiveCmd ∈ {SEND_SMS,RUN_AT_CMD})
→ SMS(Binary,NonInteractive)

Based on the signature, RILDEFENDER parses the SMS from
the baseband monitor traffic and synthesizes the structural
information of the SMS payload to detect the attack. After
detection, the ideal mitigation is to instruct the baseband to
prevent the outcome of the message (e.g., stop the outbound
SMS event). Unfortunately, having complete inline control
over the baseband is not feasible from the AP’s perspective (as
discussed in §III-C). Thus, RILDEFENDER utilizes the alert
mechanism to inform the user about the concrete threat. To
achieve this, it further analyzes the proactive commands and
parameters from the SMS payload and generates an alert to the
RILDEFENDER app. For example, for a SEND_SMS command,
the user is notified about the destination and content of the
SMS sent; for a RUN_AT_CMD massage, the user is notified
about the specific AT command executed.

B. Silent and Flash SMS

We combine the discussion of silent and flash SMS together
as they are detected by similar signatures. According to our
observation, silent SMS and flash SMS are handled by the RIL,
making both detection and mitigation possible. In particular,
for a silent SMS, the RIL instructs the baseband to send a
delivery report. For a flash SMS, the RIL informs the upper
system UI to display the message on the screen. The detection
of these two SMS messages is relatively straightforward,
as they all have distinct structural signatures based on the
3GPP specification [24]. Specifically, when an SMS arrives,
RILDEFENDER detects the presence of silent SMS based on
the following rule:

(sms.pid = 0x40)→ SMS(Silent)

in which RILDEFENDER dissects the SMS’s PDU encoding
to determine whether the PID filter equals 0x40. Similarly,
RILDEFENDER detects a flash SMS based on

(sms.dcs & 0x3 = 0)→ SMS(Flash)

where RILDEFENDER performs a bit-wise and operation on
the DCS field to detect class 0 SMS. As a silent or flash
SMS is detected at the RIL (e.g., by an SMS handler
InBoundSmsHandler), RILDEFENDER can invoke the in-
line mediator component to invoke the instrumented RIL logic
to block further actions. In particular, RILDEFENDER blocks
the SMS by stopping the delivery report generation (silent
SMS) or displaying the message to the user (flash SMS).

Malware RIL BasebandSMS AppUser

SMS Req

SMS Req
Instruct

SEND_SMS

Intent Tracking

Intent Tracking

Alert

SMS

Block

Fig. 7: Malware SMS detection and mitigation.

C. Fake Base Station SMS

A fake base station (FBS) SMS is sent from an adversary-
controlled GSM base station to impersonate a legitimate
source for spoofing and spamming purposes. While previous
works discuss phishing, spoofing, and spamming attacks using
FBS SMS [8], [9], it can also be exploited by an attacker to
send out a binary, silent, or flash SMS to attack a neighboring
UE, thereby providing an alternative delivery vector for attack
messages when SMS filters are deployed at some SMSCs.

Since an FBS SMS payload has the same structure as a
benign SMS message and its source identity can be spoofed,
we cannot simply rely on structural signatures. In particular,
previous works have demonstrated using cellular state param-
eters (e.g., the broadcast parameters and signal strength of the
connected base station) to estimate whether a UE is connecting
with an FBS [8], [9]. Consequently, we integrate the following
heuristics-based detection rule from prior works:

(bs.ss > −40dBm) ∨ (Invalid(bs.params))→ SMS(Fbs)

This rule examines the SMS context information from the
currently connected BS. It first checks if the average signal
strength is unusually high. We adopt a conservative threshold
-40dBm which has been used by prior works [8], [9] to
minimize false positive rate. This threshold is the approximate
signal strength when a UE is placed right below a legal
BS [8]. Additionally, we adopt another rule to check if the
broadcast parameters (summarized as bs.params) from the BS
are syntactically invalid or do not match with the true location,
which can be checked against a well-established syntax table.
Although these parameters (e.g., MMC and MNC) could be
manipulated by an FBS attacker, this rule still turned out to be
effective and has detected many FBSes in practice [8]. Note
that in addition to text-based FBS SMS, RILDEFENDER also
blocks any binary, silent, and flash SMS messages sent from an
FBS, which were not demonstrated in any prior works [8], [9].

D. Malware SMS

As described in §IV-B, simply relying on structural signa-
tures is not sufficient to detect SMS generated from malicious
applications. Therefore, the key is to track the source of an
outbound SMS from its context and determine whether it is
triggered by the user’s intention. Recall in §V-A, RILDE-
FENDER also uses the same strategy to detect the binary SMS
attack with SET_UP_CALL command. In the following, we
detail how the intent-aware detection approach works.

9

Intent-aware Detection. Figure 7 shows how an SMS is
sent from malware and how intent-aware detection works.
First, we notice that application-layer programs interact with
the RIL through inter-process communication (IPC) [50], as
they reside in different processes. When an outbound SMS
is intercepted by RILDEFENDER, it invokes system APIs
(e.g., getCallingPid) to locate the source of the IPC
call, and acquires the process initiating the IPC (denoted by
sms.src). If the source does not come from a trusted list
(configurable through the RILDEFENDER app) such as mal-
ware, RILDEFENDER considers it suspicious and intercepts the
SMS intent from being passed to the baseband. In summary,
RILDEFENDER applies the following signature:

Suspicious(ProcessOf(sms.src))→ SMS(Malware)

Similarly, to detect the SET_UP_CALL binary SMS attack in
§V-A, RILDEFENDER detects if the voice call comes from a
trusted source (e.g., the default dialer app).

One possible way to bypass this defense is to spawn the
default SMS app to send the SMS, as the SMS will be sent
from a valid source. For instance, Android malware can submit
an intent to invoke the SMS app UI with a prepared SMS
destination and content. However, this approach is unlikely to
succeed, as it needs to be approved by the user on the screen,
and thus the user will be fully aware of the attack. We also
find that no real-world malware (discussed later in §VI-A) uses
this strategy.

E. Proactive SIM SMS

An SMS may also be generated from a SIM card proac-
tively by the embedded logic in the SIM defined by the
mobile operators or supply-chain attackers. Such a procedure
is relatively straightforward according to our observation.
Specifically, the SIM first generates a proactive SMS re-
quest to the RIL through a unique SIM-RIL channel (e.g.,
UiccSmsController [55]). Upon receiving the request,
the RIL proceeds to send out an SMS message specified in the
request payload. Similar to the aforementioned malware SMS
and non-interactive binary SMS, the key difference between
a proactive SIM SMS and a benign SMS is that the former
is directly initiated from the SIM to the RIL without user
consent. As a result, we can apply the intent-aware detection
approach to intercept such an SMS attempt at the RIL:

(sms.src = Sim)→ SMS(ProactiveSim)

If RILDEFENDER detects an outbound SMS generated from
the SIM, it invokes the inline mediator to prevent the SMS
from being delivered to the baseband.

VI. EVALUATION

We have implemented RILDEFENDER on three Android
UEs with five different Android versions of the Android Open
Source Project (AOSP) [22], as shown in Table IV. For Nexus
6 and Pixel XL, we target their latest possible Android versions
(10.0.0 and 7.1.1). For Pixel 5, we cover three most recent
Android versions (11, 12, and 13) to prove RILDEFENDER’s

Device Chipset OS Ver. AOSP Build LoC
Nexus 6 QCOM Snapdragon 805 7.1.1 N6F26Q 3,342
Pixel XL QCOM Snapdragon 821 10.0.0 QP1A.190711.019 3,462
Pixel 5 QCOM Snapdragon 765G 11.0.0 RQ3A.211001.001 3,476
Pixel 5 QCOM Snapdragon 765G 12.0.0 SQ1A.220205.002 3,476
Pixel 5 QCOM Snapdragon 765G 13.0.0 TP1A.221005.002 3,482

TABLE IV: Smartphone UEs and AOSP versions that RILDE-
FENDER has been implemented on and evaluated.

generality. To evaluate the implementations, we answer the
following three research questions:
• RQ1. Can RILDEFENDER effectively detect and mitigate

all six types of attacks in Table I (no false negatives)?
• RQ2. Will RILDEFENDER incorrectly block benign cellular

operations in practice (or does it manifest false positives)?
• RQ3. What is the overhead (power, memory, storage, and

computation) introduced by RILDEFENDER?
To answer RQ1, we evaluate the robustness of RILDE-

FENDER by testing it with reproduced SMS attacks and
real-world SMS malware (§VI-A). To answer RQ2, we test
if RILDEFENDER incorrectly classifies benign cellular op-
erations as attack behaviors with real-world trace analysis
(§VI-B). To answer RQ3, we measure the overhead imposed
by RILDEFENDER to the system, including the power con-
sumption, memory, storage, and computation (§VI-C).

Experiment Setup. To evaluate RILDEFENDER, we need to
replicate the SMS attacks in Table I. To this end, we used a
BladeRF 2.0 xA9 software-defined radio (SDR) [11] and the
open-source GSM cellular software YateBTS [10] to establish
a private SMS testbed. To ensure no real-world devices and
SMSCs were affected, we minimize the transmission power of
our SDR and configured its subscriber list such that it could
only connect with our testing devices.

A. Robustness (FN) Evaluation

The goal of our robustness evaluation is to test whether
RILDEFENDER can correctly recognize and mitigate all the
aforementioned SMS attacks. To this end, we evaluated
RILDEFENDER with 19 reproduced SMS test cases, 4 open-
source remote access trojans (RAT), and 11 real-world SMS
malware samples as in Table V. Note that each type of SMS
attack may require multiple test cases (e.g., different binary
SMS variants). We further show the SMS payloads of the
inbound SMS test cases in Table VI in Appendix, for readers
of interest. Among all these cases, RILDEFENDER was able
to correctly recognize and mitigate all the SMS attacks on all
the five implementations (i.e., no FN). In the following, we
detail how our test cases are designed.
• Binary SMS. Recall in §V-A, binary SMS attacks are

either interactive or non-interactive. Correspondingly, in
Table Va we show the eight and two variants for interactive
and non-interactive binary SMS, respectively, with different
proactive commands. RILDEFENDER successfully detected
and mitigated all of them. Note that for non-interactive
binary SMS attacks, RILDEFENDER cannot block them
as they are handled only by the baseband (mentioned in

10

Attack SMS Payload Cellular Network Params. D B
PID DCS Proactive CMD TxPower MNC MCC
0x7F 0xF6 DISPLAY_TEXT - - - 3 3
0x7F 0xF6 SET_UP_CALL - - - 3 3
0x7F 0xF6 LAUNCH_BROWSER - - - 3 3

Binary SMS 0x7F 0xF6 PLAY_TONE - - - 3 3
(Interactive) 0x7F 0xF6 GET_INPUT - - - 3 3

0x7F 0xF6 SELECT_ITEM - - - 3 3
0x7F 0xF6 SET_UP_MENU - - - 3 3
0x7F 0xF6 GET_INKEY - - - 3 3

Binary SMS 0x7F 0xF6 SEND_SMS - - - 3 7
(Non-interactive) 0x7F 0xF6 RUN_AT_CMD - - - 3 7

Silent SMS 0x40 0x00 - - - - 3 3

Flash SMS 0x00 0x18 - - - - 3 3

FBS SMS

0x00 0x00 - >-40dBm MNC MCC 3 3
0x00 0x00 - <-40dBm MNC* MCC* 3 3
0x00 0x00 - >-40dBm MNC* MCC* 3 3
0x40 0x00 - >-40dBm MNC* MCC* 3 3
0x00 0x18 - >-40dBm MNC* MCC* 3 3
0x7F 0xF6 DISPLAY_TEXT >-40dBm MNC* MCC* 3 3

Proactive SIM SMS 0x00 0x00 - - - - 3 3

(a) SMS test cases (MNC* and MCC* stand for illegal values).

Attack SMS Payload Malware Type Malware Name D B
PID DCS

Malware SMS

0x00 0x00 Open-source RAT AndroRAT [38] 3 3
0x00 0x00 Open-source RAT AhMyth [38] 3 3
0x00 0x00 Open-source RAT BetterAndroidRAT [38] 3 3
0x00 0x00 Open-source RAT Android Trojan [38] 3 3
0x00 0x00 Real-world malware FakeSpy [14] 3 3
0x00 0x00 Real-world malware Corona Updates [56] 3 3
0x00 0x00 Real-world malware Anubis [56] 3 3
0x00 0x00 Real-world malware Dendroid [56] 3 3
0x00 0x00 Real-world malware Ginp [56] 3 3
0x00 0x00 Real-world malware Golden Eagle [56] 3 3
0x00 0x00 Real-world malware SilkBean [56] 3 3
0x00 0x00 Real-world malware WolfRAT [56] 3 3
0x00 0x00 Real-world malware BlackRock [56] 3 3
0x00 0x00 Real-world malware Cerberus [56] 3 3
0x00 0x00 Real-world malware Mandrake [56] 3 3

(b) Malware SMS test cases.

TABLE V: All test cases for robustness evaluation (D: De-
tected, B: Blocked).

§V-A), but it was still able to detect the attacks and generate
notifications as expected.
• Silent and Flash SMS. Silent and flash SMS both require

one test case, based on their definitions [24]. Specifically,
we reproduced silent and flash SMS attacks by specifying
the PID and DCS fields accordingly as shown in Table Va.
• FBS SMS. We used different cellular network parameters

to generate FBS SMS test cases. As shown in Table Va, we
configured the SDR to generate attack SMS with high signal
strength (>-40dBm) and illegal identity parameters (mobile
country code (MCC) and mobile network code (MNC)).
Based on these FBS configurations, we further generated
silent, binary, and flash SMS attacks, demonstrating another
feasible path for exploitation.
• Proactive SIM SMS. As proactive SIM SMS depends on

the specific SIM logic, it is not realistic to test all available
SIMs worldwide. Therefore, we tested three activated SIM
cards coming from three major U.S. cellular providers, and
fortunately one of them contains proactive SIM SMS logic
that can be easily triggered. Specifically, a proactive SIM
SMS can be generated when the SIM is inserted to the
UE. Eventually, we did confirm that RILDEFENDER can
effectively detect and mitigate this type of SMS.
• Malware SMS. We tested RILDEFENDER with two types of

SMS malware: (1) open-source remote access trojans (RAT)

0 1440 2880 4320 5760 7200 8640
Time (Minutes)

AOSP7
(Nexus 6)

AOSP10
(Pixel XL)

AOSP11
(Pixel 5)

AOSP12
(Pixel 5)

AOSP13
(Pixel 5)

Voice Call SMS Silent SMS Proactive SIM SMS Binary SMS

Fig. 8: Real-world SMS events in 7 days collected by RILDE-
FENDER on the five AOSP implementations.

from a public list [38] and (2) real-world SMS malware
samples after 2020 from the MITRE list [56], as shown in
Table Vb. Note that real-world malware samples are not al-
ways publicly available, and we successfully acquired 11 out
of 15 in total, with best effort. Besides, only a few RAT tools
in the list are actually open-source, compilable, and involve
SMS exploits. We found 4 open-source RATs that match
our requirements. Specifically, a RAT works by instructing
the victim UE to open a communication channel (e.g., TCP
sockets) to the malware producer, enabling remote control
of the UE. Real-world malware samples are more heteroge-
neous and sophisticated, and they often contain obfuscated
code to exfiltrate contact data and send SMS messages
without user’s consent for malware propagation or spoofing.

B. Correctness (FP) Evaluation

To evaluate whether RILDEFENDER may incorrectly clas-
sify benign cellular functions as attack behaviors, we evaluate
the correctness of RILDEFENDER with real-world trace analy-
sis by conducting a 7-day test campaign with RILDEFENDER
on the five implementations. During the experiment, all de-
vices were under the same cellular settings and received SMS
and voice calls in the wild. We plot all the received events
during the tests in Figure 8, and verified that RILDEFENDER’s
decisions were indeed correct, indicating no benign events
under our categorization were mistakenly blocked (i.e., no FP).

Interestingly, RILDEFENDER captured nine special SMS
events in the wild, proving RILDEFENDER’s capability to
detect and prevent practical SMS attacks. The SMS events
include two silent SMS, six proactive SIM SMS, and one
binary SMS detected on the three devices. In particular, we
observed that proactive SIM SMS messages were triggered
right after the SIM was inserted into the UEs to start the tests.
To summarize, the destination addresses of these special SMS
are unusual three or four-digit private IDs that are likely owned
by the carrier. As there is no public documentation about these
SMS, we suspect they are related to carrier-specific functions
(e.g., to configure UE settings and silently ping the device).

C. Overhead Evaluation

We evaluate four aspects of the RILDEFENDER’s overhead
introduced to the vanilla AOSP, namely power, memory, stor-
age, and computation. We conduct our measurements under
three experiment settings: (1) vanilla AOSP (as the baseline),

11

01:00 03:00 05:00 07:00 09:00
86

88

90

92

94

96

98

100

Ba
tte

ry
 (%

)

AOSP7 (Nexus 6)

01:00 03:00 05:00 07:00 09:00
86

88

90

92

94

96

98

100
AOSP10 (Pixel XL)

01:00 03:00 05:00 07:00 09:00
95

96

97

98

99

100
AOSP11 (Pixel 5)

01:00 03:00 05:00 07:00 09:00
95

96

97

98

99

100
AOSP12 (Pixel 5)

01:00 03:00 05:00 07:00 09:00
95

96

97

98

99

100
AOSP13 (Pixel 5)

Vanilla AOSP
RD Only
RD & BM

(a) Power.

Vanilla RD RD&BM

20

25

30

35

40

45

M
em

or
y

(M
B)

 19.8

 40.3

 46.8

AOSP7 (Nexus 6)

Vanilla RD RD&BM
30

35

40

45

50

55

60

65

70

 32.6

 58.4

 71.2

AOSP10 (Pixel XL)

Vanilla RD RD&BM
30

40

50

60

70

80

 33.1

 62.1

 79.2

AOSP11 (Pixel 5)

Vanilla RD RD&BM

40

50

60

70

80

 35.9

 63.9

 80.8

AOSP12 (Pixel 5)

Vanilla RD RD&BM

40

50

60

70

80

 37.9

 62.5

 78.7

AOSP13 (Pixel 5)

(b) Memory.

AOSP7
(Nexus6)

AOSP10
(Pixel XL)

AOSP11
(Pixel 5)

AOSP12
(Pixel 5)

AOSP13
(Pixel 5)

0

200

400

600

800

1000

1200

Sy
st

em
 Im

ag
e

Si
ze

 (M
B)

Vanilla AOSP
AOSP w/ RD & BM

(c) Storage.

A7
(N6)

A10
(PXL)

A11
(P5)

A12
(P5)

A13
(P5)

1600

1800

2000

2200

2400

2600

Ti
m

e
(m

s)

Voice Call (Inbound)

Vanilla AOSP
RD&BM

A7
(N6)

A10
(PXL)

A11
(P5)

A12
(P5)

A13
(P5)

200

300

400

500

Voice Call (Outbound)

A7
(N6)

A10
(PXL)

A11
(P5)

A12
(P5)

A13
(P5)

100

150

200

250

300

350
SMS (Inbound)

A7
(N6)

A10
(PXL)

A11
(P5)

A12
(P5)

A13
(P5)

200

250

300

350

400

450

500

550

SMS (Inbound)

(d) Computation.

Fig. 9: Overhead of RILDEFENDER (A: AOSP, N6: Nexus 6, PXL: Pixel XL, P5: Pixel 5).

(2) AOSP with RILDEFENDER only, and (3) AOSP with
RILDEFENDER and the baseband monitor (BM).

Power. We measure the power consumption overhead of each
of the five implementations. The tested UEs were under the
same device settings and network, with their screens, Wi-
Fi and Bluetooth function switched off. For each test, we
plot the average battery usage over time for 10 hours and
the error bars in Figure 9a. Due to the discrepancies in
battery capacity, we discuss RILDEFENDER’s overhead for
each Android device model. For Nexus 6 (AOSP 7.1.1), it
consumed 3%, 3%, and 13% of the total battery capacity in
10 hours for setting (1), (2), and (3), respectively. Pixel XL
(AOSP 10.0.0) exhibits a similar power consumption, with
2%, 3%, and 12% under each of the three settings. As the
battery capacity of Pixel 5 is significantly larger, the battery
percentages consumed by RILDEFENDER are much smaller.
Among the three RILDEFENDER implementations (i.e., AOSP
11, 12, and 13), the average power consumption is nearly 1%
for setting (1)(2) and 3% for setting (3).

To summarize, RILDEFENDER and BM impose approxi-
mately 1% battery consumption per hour on our tested devices
in the worst-case scenario. However, the power consumption
of RILDEFENDER is negligible, as it is nearly 0.1% per hour,
9X smaller than with RILDEFENDER and BM combined. The
results indicate that the BM contributes most to the power
consumption, as it needs to periodically poll and interpret
baseband traffic. One possible optimization is to enlarge the
baseband polling frequency discussed in Appendix §A.

Memory. In Figure 9b, we present the measurement of mem-
ory overhead imposed by RILDEFENDER under the three set-
tings. To have a comparison baseline, we measured the mem-
ory consumption of the telephony system process for setting
(1). For setting (2) and (3), we further measured the memory
usage of the telephony process with the RILDEFENDER and
BM services deployed. We find that RILDEFENDER and BM
collectively introduce an average memory overhead of 40MB
among the five implementations. Such overhead only accounts
for less than 1% of the device’s total RAM (i.e., 4GB, 3GB,
and 8GB for Pixel XL, Nexus 6, and Pixel 5, respectively).

Storage. We measured the size of the compiled AOSP sys-
tem image before and after integrating RILDEFENDER and
the BM. As shown in Figure 9c, RILDEFENDER and BM
introduce an additional 5.5% storage overhead on average for
the five implementations. Such overhead is mainly caused by
RILDEFENDER app and the baseband monitor component. The
discrepancies in storage overhead are caused by the slightly
different implementations, as reflected in the LoC statistics in
Table IV. For instance, a handful of telephony and notification
APIs [55] are unavailable in Android 7.1.1.

Computation. To evaluate the computational overhead, we
measured the execution time of four cellular operations (in-
bound/outbound voice call and SMS) as RILDEFENDER re-
quires to insert control logic at the RIL for them, which
brings additional overhead in computation. Figure 9d plots
the distribution of the computation time under different oper-
ations under settings (1) and (3) for the five implementations.
Overall, RILDEFENDER imposes an acceptable overhead, with

12

an average execution time overhead of 9.6% among all test
cases. In the worst-case scenario (i.e., outbound voice call for
AOSP12 on Pixel 5), the average overhead is less than 100ms,
indicating a very small delay for the operation. In summary,
the computation overhead introduced by RILDEFENDER and
BM is considered negligible as it is nearly transparent to end-
users even in the worst-case scenario (i.e., a 100ms delay).

VII. DISCUSSION: LIMITATIONS AND FUTURE WORK

Limitation. As discussed in §V-A, RILDEFENDER cannot
prevent baseband-only SMS attacks (i.e., non-interactive bi-
nary SMS) and relies on a baseband monitor to detect them,
which requires manual adaptation to different baseband chip
vendors. As such, our current implementation focuses on
Qualcomm baseband and Android platform; however, RILDE-
FENDER could potentially be ported to the radio abstraction
layer in iOS [25]. Another limitation is the false negatives
introduced by the heuristics-based FBS detection, which has
been evaluated by prior work [8], [9] and is well-known in the
literature [57]. In addition, while we only focus on the generic
RIL for scalability concerns, smartphone manufacturers have
also integrated many vendor-specific functions through vendor
RIL libraries, which may be leveraged to further extend
RILDEFENDER’s defense capability.

Extensibility. First, although the current implementation of
RILDEFENDER cannot support SMS via IMS due to the
functional restriction of AOSP, we confirm that IMS-based
SMS is handled in a similar way based on the RIL workflow.
We provide a detailed discussion in Appendix §B. Second,
RILDEFENDER can be easily extended for legacy or future
Android OS versions with minimal manual effort, due to the
stable architecture of RIL and the standard Android APIs used
in the implementations. For instance, as shown in Table IV,
RILDEFENDER’s implementation on AOSP11 is directly
compatible with AOSP12 without any changes. Third, while
our implementation focuses on the six types of SMS attacks,
RILDEFENDER’s generic design allows it to be extensible for
new attack signatures and policies at a very low cost.

Law-Enforcement Tracking. Silent SMS has been used
for tracking in some countries by law enforcement [5].
RILDEFENDER does not attempt to distinguish between
such SMS from attack SMS. However, balancing individual
privacy and providing law-enforcement access to data has
been a vexing and controversial issue [58], as exemplified by
research in cryptography and anonymity networks. Therefore,
RILDEFENDER is designed with a particular focus on user
privacy, and extending it to support law enforcement (and
other potential benign use cases) is future work.

VIII. RELATED WORK

Cellular Security. In early GSM (2G) networks, fake base
station (a.k.a., an IMSI-Catcher) was a major threat due to the
absence of mutual authentication between the UE and BS [34].

This weakness was addressed in the succeeding 3G and 4G
network standards. While the 4G LTE network has become the
most dominant, over the past decade, it remains vulnerable to
many attacks, such as network message attacks [35], [59], [60],
passive sniffing [59], downgrading [36], spoofing [32], [33],
[61]–[63], signal injection [64], and eavesdropping [65]. Such
widespread vulnerabilities, which compromised the security
and privacy of users, stimulated the development of numerous
security analysis frameworks and defenses that attempt to
mitigate these attacks. In particular, PROCHECKER [66] and
DIKEUE [67] automatically analyzed LTE protocol imple-
mentations for specification-deviated flaws; PHOENIX [46]
used a signature-based approach to detect network intrusion
attacks and Android-based apps were developed to detect
IMSI-Catcher attacks [16]–[18]. More recently, the latest 5G
network protocol has been shown to be vulnerable to many
attacks, including SIGUNDER [68], SUCI-Catcher [69], and
various availability and privacy attacks [36], [70], [71]. In re-
sponse, new defenses have been proposed to provide security-
or privacy-enhanced cellular telematics [72] and protocols
(e.g., privacy-preserving authentication and key management
(AKA) [73], [74] as well as broadcast authentication [75]).

In particular, for SMS threats, Mulliner et al. performed
SMS fuzzing using a GSM BS and triggered bugs that could
prohibit a smartphone’s communication [76]. In the 4G era, it
was shown that the IMS-based SMS service is vulnerable to
SMS abuse, spoofing, DoS, and spamming [23]. In addition,
there are systems that detect spamming SMS messages [77],
[78] and measurement studies that characterize the SMS
spamming ecosystem and analyze the root causes [9], [79]. As
mentioned in §III-C, there are four existing defenses deployed
within the RAN or at the app-layer of UE to detect SMS
attacks [8], [9], [16], [17]. In contrast, RILDEFENDER is
the first RIL-based mitigating defense against a wide range
of SMS threats. While RILANALYZER [48] seems closely
relevant, it is in fact an app-layer 3G traffic monitor relying
on baseband log parsing.

Baseband Security. Only a handful of studies have attempted
to analyze security flaws in UE baseband implementations. In
2012, Weinmann [80] discovered a memory corruption vul-
nerability in a baseband that allows remote exploitation. Later
in 2015, Golde et. al. [29] made the first attempt to reverse
engineer Samsung’s Shannon baseband, and also uncovered a
few memory corruption bugs. Most recently, BASESPEC [81]
advanced this direction by statically analyzing 18 baseband
images from 9 vendors and uncovered many implementation
flaws, and ARISTOTELES [25] analyzed the baseband interface
protocol in iOS to uncover a new attack surface. Addition-
ally, many new exploits were found targeting other baseband
chips, such as Huawei [82]. It was also shown that baseband
emulation is possible [83], [84] to facilitate dynamic firmware
analysis. However, due to the closed-source and heterogeneous
nature of commercial baseband software, conducting security
analyses remains a significant technical challenge.

13

IX. CONCLUSION

We presented RILDEFENDER, the first inline defensive ser-
vice integrated into the radio interface layer of Android smart-
phone UEs. RILDEFENDER is distinguished from existing UE-
centric defenses in that its approach provides both detection
and effective inline defense capability to thwart incoming
SMS threats, and is broadly applicable across heterogeneous
smartphone OS. As a proof-of-concept, we have implemented
a prototype of RILDEFENDER on three UEs with five different
Android versions of AOSP. We have evaluated RILDEFENDER
by using 19 reproduced SMS attack cases and 11 real-world
SMS malware samples. Our evaluation shows that it can detect
all six types of SMS attacks across four different adversary
models, and automatically mitigate all but one in real-time.
In the worst-case scenario, RILDEFENDER imposed an hourly
battery consumption overhead of 1% and 100 ms delay for
cellular operations on our tested devices.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their constructive
feedback, as well as Keith Skinner and Martin Fong for their
contribution to RILDEFENDER. This research was supported
in part by NSF awards 2112471 and 2226443. Any opinions,
findings, conclusions, or recommendations expressed are those
of the authors and not necessarily of the NSF.

REFERENCES

[1] “Proactive sims,” https://deepsec.net/docs/Slides/2021/Proactive_SIMs
_David_Burgess.pdf, November 2021.

[2] D. J. Tian, G. Hernandez, J. I. Choi, V. Frost, C. Raules, P. Traynor,
H. Vijayakumar, L. Harrison, A. Rahmati, M. Grace et al., “Attention
spanned: Comprehensive vulnerability analysis of {AT} commands
within the android ecosystem,” in 27th USENIX Security Symposium
(USENIX Security 18), 2018, pp. 273–290.

[3] “Simjacker,” https://simjacker.com.
[4] “Wibattack – sim card browser bug let hackers take control over mobile

phones to make calls & sms,” https://gbhackers.com/wibattack-sim/a
mp.

[5] M. Monroy, “Significantly more “silent sms” with german police au-
thorities,” https://digit.site36.net/2019/02/25/significantly-more-silent-s
ms-with-german-police-authorities.

[6] “Google nexus phones are vulnerable to attack via flash sms mes-
sages,” https://www.computerworld.com/article/2486382/google-nexus
-phones-are-vulnerable-to-attack-via-flash-sms-messages.html.

[7] “ios 8.2 stops attackers being able to restart your iphone with a malicious
flash sms,” https://grahamcluley.com/ios-8-2-stops-attackers-being-abl
e-to-restart-your-iphone-with-a-malicious-flash-sms/.

[8] Z. Li, W. Wang, C. Wilson, J. Chen, C. Qian, T. Jung, L. Zhang, K. Liu,
X. Li, and Y. Liu, “Fbs-radar: Uncovering fake base stations at scale in
the wild.” in NDSS, 2017.

[9] Y. Zhang, B. Liu, C. Lu, Z. Li, H. Duan, S. Hao, M. Liu, Y. Liu,
D. Wang, and Q. Li, “Lies in the air: Characterizing fake-base-station
spam ecosystem in china,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, 2020, pp. 521–
534.

[10] “Yatebts - lte & gsm mobile network compoents for mno & mvno,”
https://yatebts.com.

[11] “bladerf,” https://www.nuand.com/bladerf-1.
[12] “Usrp software defined radio (sdr),” https://www.ettus.com/products/.
[13] “Over 10m android phones infected with grifthorse malware,”

https://www.pcmag.com/news/over-10m-android-phones-infected-wit
h-grifthorse-malware.

[14] “Fakespy android malware spread via ‘postal-service’ apps,”
https://threatpost.com/fakespy-android-malware-spread-via-postal-servi
ce-apps/157102/.

[15] “Mobile malware: Tanglebot untangled,” https://www.proofpoint.com/u
s/blog/threat-insight/mobile-malware-tanglebot-untangled.

[16] “Android imsi-catcher detector,” https://cellularprivacy.github.io/Androi
d-IMSI-Catcher-Detector.

[17] “Snoopsnitch,” https://opensource.srlabs.de/projects/snoopsnitch.
[18] “Stingwatch,” https://github.com/marvinmarnold/stingwatch.
[19] A. Dabrowski, G. Petzl, and E. R. Weippl, “The messenger shoots

back: Network operator based imsi catcher detection,” in International
Symposium on Research in Attacks, Intrusions, and Defenses. Springer,
2016, pp. 279–302.

[20] Z. Zhuang, X. Ji, T. Zhang, J. Zhang, W. Xu, Z. Li, and Y. Liu,
“Fbsleuth: Fake base station forensics via radio frequency fingerprint-
ing,” in Proceedings of the 2018 on Asia Conference on Computer and
Communications Security, 2018, pp. 261–272.

[21] P. Ney, I. Smith, G. Cadamuro, and T. Kohno, “Seaglass: Enabling city-
wide imsi-catcher detection.” Proc. Priv. Enhancing Technol., vol. 2017,
no. 3, p. 39, 2017.

[22] “Android open source project,” https://source.android.com/.
[23] G.-H. Tu, C.-Y. Li, C. Peng, Y. Li, and S. Lu, “New security threats

caused by ims-based sms service in 4g lte networks,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, 2016, pp. 1118–1130.

[24] “Etsi ts 123 040 v12.2.0,” https://www.etsi.org/deliver/etsi_ts/123000_
123099/123040/12.02.00_60/ts_123040v120200p.pdf.

[25] T. Kröll, S. Kleber, F. Kargl, M. Hollick, and J. Classen, “Aristoteles–
dissecting apple’s baseband interface,” in European Symposium on
Research in Computer Security. Springer, 2021, pp. 133–151.

[26] “Ril refactoring | android open source project,” https://source.android.c
om/devices/tech/connect/ril.

[27] D. Berard and V. Fargues, “How to design a baseband debugger,”
in Information and Communication Technology Security Symposium
(SSTIC), Rennes, France, 2020.

[28] C. Bruns, “Modification of lte firmwares on smartphones,” Master’s
thesis, Technische Universität, 2021.

[29] N. Golde and D. Komaromy, “Breaking band: reverse engineering and
exploiting the shannon baseband,” Recon 2016, Recon, 2016.

[30] “Zte mf833v lte/wcdma/gsm usb modem,” https://usermanual.wiki/ZT
E/MF833V.

[31] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano,
C. Cano, and D. J. Leith, “srslte: An open-source platform for lte
evolution and experimentation,” in Proceedings of the Tenth ACM
International Workshop on Wireless Network Testbeds, Experimental
Evaluation, and Characterization, 2016, pp. 25–32.

[32] D. Rupprecht, K. Kohls, T. Holz, and C. Pöpper, “Breaking lte on layer
two,” in 2019 IEEE Symposium on Security and Privacy (SP). IEEE,
2019, pp. 1121–1136.

[33] H. Kim, J. Lee, E. Lee, and Y. Kim, “Touching the untouchables:
Dynamic security analysis of the lte control plane,” in 2019 IEEE
Symposium on Security and Privacy (SP). IEEE, 2019, pp. 1153–1168.

[34] A. Dabrowski, N. Pianta, T. Klepp, M. Mulazzani, and E. Weippl, “Imsi-
catch me if you can: Imsi-catcher-catchers,” in Proceedings of the 30th
annual computer security applications Conference, 2014, pp. 246–255.

[35] S. Hussain, O. Chowdhury, S. Mehnaz, and E. Bertino, “Lteinspector:
A systematic approach for adversarial testing of 4g lte,” in Network and
Distributed Systems Security (NDSS) Symposium 2018, 2018.

[36] A. Shaik, R. Borgaonkar, S. Park, and J.-P. Seifert, “New vulnerabilities
in 4g and 5g cellular access network protocols: exposing device capa-
bilities,” in Proceedings of the 12th Conference on Security and Privacy
in Wireless and Mobile Networks, 2019, pp. 221–231.

[37] Y. Zeng, K. G. Shin, and X. Hu, “Design of sms commanded-and-
controlled and p2p-structured mobile botnets,” in Proceedings of the
fifth ACM conference on Security and Privacy in Wireless and Mobile
Networks, 2012, pp. 137–148.

[38] “Remote access tool trojan list - android,” https://github.com/wishihab/
Android-RATList.

[39] N. J. Croft and M. S. Olivier, “A silent sms denial of service (dos)
attack,” Information and Computer Security Architectures (ICSA) Re-
search Group South Africa, vol. 29, 2007.

[40] S. R. Hussain, M. Echeverria, O. Chowdhury, N. Li, and E. Bertino,
“Privacy attacks to the 4g and 5g cellular paging protocols using side
channel information,” Network and Distributed Systems Security (NDSS)
Symposium, 2019.

14

https://deepsec.net/docs/Slides/2021/Proactive_SIMs_David_Burgess.pdf
https://deepsec.net/docs/Slides/2021/Proactive_SIMs_David_Burgess.pdf
https://simjacker.com
https://gbhackers.com/wibattack-sim/amp
https://gbhackers.com/wibattack-sim/amp
https://digit.site36.net/2019/02/25/significantly-more-silent-sms-with-german-police-authorities
https://digit.site36.net/2019/02/25/significantly-more-silent-sms-with-german-police-authorities
https://www.computerworld.com/article/2486382/google-nexus-phones-are-vulnerable-to-attack-via-flash-sms-messages.html
https://www.computerworld.com/article/2486382/google-nexus-phones-are-vulnerable-to-attack-via-flash-sms-messages.html
https://grahamcluley.com/ios-8-2-stops-attackers-being-able-to-restart-your-iphone-with-a-malicious-flash-sms/
https://grahamcluley.com/ios-8-2-stops-attackers-being-able-to-restart-your-iphone-with-a-malicious-flash-sms/
https://yatebts.com
https://yatebts.com
https://www.nuand.com/bladerf-1
https://www.ettus.com/products/
https://www.pcmag.com/news/over-10m-android-phones-infected-with-grifthorse-malware
https://www.pcmag.com/news/over-10m-android-phones-infected-with-grifthorse-malware
https://threatpost.com/fakespy-android-malware-spread-via-postal-service-apps/157102/
https://threatpost.com/fakespy-android-malware-spread-via-postal-service-apps/157102/
https://threatpost.com/fakespy-android-malware-spread-via-postal-service-apps/157102/
https://www.proofpoint.com/us/blog/threat-insight/mobile-malware-tanglebot-untangled
https://www.proofpoint.com/us/blog/threat-insight/mobile-malware-tanglebot-untangled
https://cellularprivacy.github.io/Android-IMSI-Catcher-Detector
https://cellularprivacy.github.io/Android-IMSI-Catcher-Detector
https://opensource.srlabs.de/projects/snoopsnitch
https://github.com/marvinmarnold/stingwatch
https://source.android.com/
https://www.etsi.org/deliver/etsi_ts/123000_123099/123040/12.02.00_60/ts_123040v120200p.pdf
https://www.etsi.org/deliver/etsi_ts/123000_123099/123040/12.02.00_60/ts_123040v120200p.pdf
https://source.android.com/devices/tech/connect/ril
https://source.android.com/devices/tech/connect/ril
https://usermanual.wiki/ZTE/MF833V
https://usermanual.wiki/ZTE/MF833V
https://github.com/wishihab/Android-RATList
https://github.com/wishihab/Android-RATList

[41] “Proactive sim: When your sim does things on its own without
your knowledge,” https://washingtonindependent.com/proactive-sim/,
December 2021.

[42] P. K. Nakarmi, M. A. Ersoy, E. U. Soykan, and K. Norrman, “Murat:
Multi-rat false base station detector,” arXiv preprint arXiv:2102.08780,
2021.

[43] Y. Li, C. Peng, Z. Yuan, J. Li, H. Deng, and T. Wang, “Mobileinsight:
Extracting and analyzing cellular network information on smartphones,”
in Proceedings of the 22nd Annual International Conference on Mobile
Computing and Networking, 2016, pp. 202–215.

[44] M. Payer, A. Barresi, and T. R. Gross, “Fine-grained control-flow
integrity through binary hardening,” in International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2015, pp. 144–164.

[45] “Qualcomm reveals demo to prevent smartphones from being hacked
by connecting to fake base stations,” https://iphonewired.com/news
/259588/.

[46] M. Echeverria, Z. Ahmed, B. Wang, M. F. Arif, S. R. Hussain, and
O. Chowdhury, “Phoenix: Device-centric cellular network protocol mon-
itoring using runtime verification,” in Network and Distributed Systems
Security (NDSS) Symposium, 2021.

[47] B. Hong, S. Park, H. Kim, D. Kim, H. Hong, H. Choi, J.-P. Seifert, S.-J.
Lee, and Y. Kim, “Peeking over the cellular walled gardens-a method
for closed network diagnosis,” IEEE Transactions on Mobile Computing,
vol. 17, no. 10, pp. 2366–2380, 2018.

[48] N. Vallina-Rodriguez, A. Auçinas, M. Almeida, Y. Grunenberger, K. Pa-
pagiannaki, and J. Crowcroft, “Rilanalyzer: a comprehensive 3g monitor
on your phone,” in Proceedings of the 2013 conference on Internet
measurement conference, 2013, pp. 257–264.

[49] “The official yaml web site,” https://yaml.org/.
[50] “Android interface definition language (aidl),” https://developer.androi

d.com/guide/components/aidl.
[51] “What is yaml?” https://www.redhat.com/en/topics/automation/what-i

s-yaml.
[52] “Ts 131 111 v15.4.0,” https://www.etsi.org/deliver/etsi_TS/131100_

131199/131111/15.04.00_60/ts_131111v150400p.pdf.
[53] “Cve-2016-7990,” https://cve.mitre.org/cgi-bin/cvename.cgi?name=CV

E-2016-7990.
[54] “Etsi ts 102 223 v12.1.0,” https://www.etsi.org/deliver/etsi_ts/102200_

102299/102223/12.01.00_60/ts_102223v120100p.pdf.
[55] “android.telephony | android developers,” https://developer.android.co

m/reference/android/telephony/package-summary.
[56] “Sms control, technique t1582 - mobile,” https://attack.mitre.org/techn

iques/T1582/.
[57] R. Borgaonkar, A. Martin, S. Park, A. Shaik, and J.-P. Seifert, “White-

stingray: evaluating imsi catchers detection applications.” USENIX,
2017.

[58] S. Savage, “Lawful device access without mass surveillance risk: A
technical design discussion,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, 2018, pp.
1761–1774.

[59] A. Shaik, R. Borgaonkar, N. Asokan, V. Niemi, and J.-P. Seifert,
“Practical attacks against privacy and availability in 4g/lte mobile
communication systems,” in Network and Distributed Systems Security
(NDSS) Symposium, 2016.

[60] Y. Chen, Y. Yao, X. Wang, D. Xu, C. Yue, X. Liu, K. Chen, H. Tang,
and B. Liu, “Bookworm game: Automatic discovery of lte vulnerabilities
through documentation analysis,” in 2021 IEEE Symposium on Security
and Privacy (SP). IEEE, 2021, pp. 1197–1214.

[61] G. Lee, J. Lee, J. Lee, Y. Im, M. Hollingsworth, E. Wustrow, D. Grun-
wald, and S. Ha, “This is your president speaking: Spoofing alerts
in 4g lte networks,” in Proceedings of the 17th Annual International
Conference on Mobile Systems, Applications, and Services, 2019, pp.
404–416.

[62] D. Rupprecht, K. Kohls, T. Holz, and C. Pöpper, “Imp4gt: Impersonation
attacks in 4g networks.” in NDSS, 2020.

[63] M. Chlosta, D. Rupprecht, T. Holz, and C. Pöpper, “Lte security
disabled: misconfiguration in commercial networks,” in Proceedings of
the 12th conference on security and privacy in wireless and mobile
networks, 2019, pp. 261–266.

[64] H. Yang, S. Bae, M. Son, H. Kim, S. M. Kim, and Y. Kim, “Hiding in
plain signal: Physical signal overshadowing attack on {LTE},” in 28th
USENIX Security Symposium (USENIX Security 19), 2019, pp. 55–72.

[65] D. Rupprecht, K. Kohls, T. Holz, and C. Pöpper, “Call me maybe:
Eavesdropping encrypted {LTE} calls with revolte,” in 29th USENIX
Security Symposium (USENIX Security 20), 2020, pp. 73–88.

[66] I. Karim, S. R. Hussain, and E. Bertino, “Prochecker: An automated
security and privacy analysis framework for 4g lte protocol implemen-
tations,” in 2021 IEEE 41st International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2021, pp. 773–785.

[67] S. R. Hussain, I. Karim, A. A. Ishtiaq, O. Chowdhury, and E. Bertino,
“Noncompliance as deviant behavior: An automated black-box noncom-
pliance checker for 4g lte cellular devices,” in Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security,
2021, pp. 1082–1099.

[68] N. Ludant and G. Noubir, “Sigunder: a stealthy 5g low power attack
and defenses,” in Proceedings of the 14th ACM Conference on Security
and Privacy in Wireless and Mobile Networks, 2021, pp. 250–260.

[69] M. Chlosta, D. Rupprecht, C. Pöpper, and T. Holz, “5g suci-catchers:
still catching them all?” in Proceedings of the 14th ACM Conference
on Security and Privacy in Wireless and Mobile Networks, 2021, pp.
359–364.

[70] D. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, and V. Stettler,
“A formal analysis of 5g authentication,” in Proceedings of the 2018
ACM SIGSAC conference on computer and communications security,
2018, pp. 1383–1396.

[71] S. R. Hussain, M. Echeverria, I. Karim, O. Chowdhury, and E. Bertino,
“5greasoner: A property-directed security and privacy analysis frame-
work for 5g cellular network protocol,” in Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, 2019,
pp. 669–684.

[72] H. Wen, P. Porras, V. Yegneswaran, and Z. Lin, “A fine-grained telemetry
stream for security services in 5g open radio access networks,” in
Proceedings of the 1st International Workshop on Emerging Topics in
Wireless, 2022, pp. 18–23.

[73] Y. Wang, Z. Zhang, and Y. Xie, “Privacy-preserving and standard-
compatible {AKA} protocol for 5g,” in 30th USENIX Security Sym-
posium (USENIX Security 21), 2021.

[74] R. Borgaonkar, L. Hirschi, S. Park, and A. Shaik, “New privacy threat
on 3g, 4g, and upcoming 5g aka protocols,” Proceedings on Privacy
Enhancing Technologies, vol. 2019, no. 3, pp. 108–127, 2019.

[75] A. Singla, R. Behnia, S. R. Hussain, A. Yavuz, and E. Bertino, “Look
before you leap: Secure connection bootstrapping for 5g networks to
defend against fake base-stations,” in Proceedings of the 2021 ACM
Asia Conference on Computer and Communications Security, 2021, pp.
501–515.

[76] C. Mulliner, N. Golde, and J.-P. Seifert, “Sms of death: From analyzing
to attacking mobile phones on a large scale.” in USENIX Security
Symposium, vol. 168. San Francisco, CA, 2011.

[77] N. Jiang, Y. Jin, A. Skudlark, and Z.-L. Zhang, “Greystar: Fast and
accurate detection of {SMS} spam numbers in large cellular networks
using gray phone space,” in 22nd USENIX Security Symposium (USENIX
Security 13), 2013, pp. 1–16.

[78] B. Reaves, L. Blue, D. Tian, P. Traynor, and K. R. Butler, “Detecting
sms spam in the age of legitimate bulk messaging,” in Proceedings of
the 9th ACM Conference on Security & Privacy in Wireless and Mobile
Networks, 2016, pp. 165–170.

[79] B. Reaves, N. Scaife, D. Tian, L. Blue, P. Traynor, and K. R. Butler,
“Sending out an sms: Characterizing the security of the sms ecosystem
with public gateways,” in 2016 IEEE Symposium on Security and
Privacy (SP). IEEE, 2016, pp. 339–356.

[80] R.-P. Weinmann, “Baseband attacks: Remote exploitation of memory
corruptions in cellular protocol stacks.” in WOOT, 2012, pp. 12–21.

[81] E. Kim, D. Kim, C. Park, I. Yun, and Y. Kim, “Basespec: Compar-
ative analysis of baseband software and cellular specifications for l3
protocols,” in Symposium on Network and Distributed System Security
(NDSS)(San Diego, CA, USA). ISOC, 2021.

[82] M. Grassi, M. Liu, and T. Xie, “Exploitation of a modern smartphone
baseband,” BlackHat US, 2018.

[83] G. Hernandez, M. Muench, T. Tucker, H. Serle, W. Zhu, P. Traynor,
and K. Butler, “Emulating samsung’s baseband for security testing,”
BlackHat USA, 2020.

[84] D. Maier, L. Seidel, and S. Park, “Basesafe: Baseband sanitized fuzzing
through emulation,” in Proceedings of the 13th ACM Conference on
Security and Privacy in Wireless and Mobile Networks, 2020, pp. 122–
132.

15

https://washingtonindependent.com/proactive-sim/
https://iphonewired.com/news/259588/
https://iphonewired.com/news/259588/
https://yaml.org/
https://developer.android.com/guide/components/aidl
https://developer.android.com/guide/components/aidl
https://www.redhat.com/en/topics/automation/what-is-yaml
https://www.redhat.com/en/topics/automation/what-is-yaml
https://www.etsi.org/deliver/etsi_TS/131100_131199/131111/15.04.00_60/ts_131111v150400p.pdf
https://www.etsi.org/deliver/etsi_TS/131100_131199/131111/15.04.00_60/ts_131111v150400p.pdf
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-7990
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-7990
https://www.etsi.org/deliver/etsi_ts/102200_102299/102223/12.01.00_60/ts_102223v120100p.pdf
https://www.etsi.org/deliver/etsi_ts/102200_102299/102223/12.01.00_60/ts_102223v120100p.pdf
https://developer.android.com/reference/android/telephony/package-summary
https://developer.android.com/reference/android/telephony/package-summary
https://attack.mitre.org/techniques/T1582/
https://attack.mitre.org/techniques/T1582/

APPENDIX

A. Detailed Design and Implementation of RILDEFENDER

We now describe the design and implementation details of
RILDEFENDER that are not covered in §IV.

User Interface. Figure 10 shows the RILDEFENDER app UI as
mentioned in §IV. The user interface is developed as a system
app integrated in the AOSP system image. The front end of
RILDEFENDER app is mainly for policy configurations, brows-
ing past SMS alert events, and configuring SMS whitelist.
Users can interact with the app to configure the mitigation
policies for each SMS attack. For instance, the user may
choose to get notifications for all silent SMS while blocking
all incoming binary SMS. The notification service runs in
background and keeps listening to the RIL and baseband
monitor events for the occurrence of attacks, which consumes
very little resource for the overall system.

Fig. 10: User interface of the RILDEFENDER app.

Extensible YAML Attack Signature. We further describe
how new YAML attack signatures can be designed for new
SMS attacks and how they are converted into corresponding
logic at the RIL. In addition to the six types of SMS attacks
in Table I, RILDEFENDER can be extended with new attack
signatures by utilizing the SMS features in Table III. For in-
stance, a user can automatically block SMS from a certain user
by setting up a signature using the SMS destination (sms.da)
from the feature list. The user can also prevent silent SMS
DoS attacks by using temporal SMS events in the past. When
new attack signatures are configured, they are first broadcast
to the system layer of RILDEFENDER and stored in persistent

memory. Once there is an SMS event, RILDEFENDER will
iterate all the stored SMS detection rules to match the event
against them. For each of the rules, RILDEFENDER has a
YAML signature parser that automatically converts the human-
written rules into corresponding program logic, which is
computed based on the SMS event features. Finally, the parser
outputs Boolean values to indicate the matched rules for the
SMS event.

Baseband Monitor. As mentioned in §IV, RILDEFENDER
integrates a baseband monitor to capture non-interactive binary
SMS attacks as they are not visible to the RIL. While as
an implementation choice, we choose the supportive libraries
from SNOOPSNITCH [17] as building blocks to realize the
baseband monitor (BM), there are many alternatives such as
the well-implemented libraries from SCAT [47] and MO-
BILEINSIGHT [43], which provide a wide range of support
for different baseband chipsets. However, as the BM needs to
constantly poll the baseband for its traffic, it brings additional
overhead to the overall power consumption, as discussed in
§VI-C. To minimize such overhead, the implementation of
RILDEFENDER has tailored the BM component to reserve only
the logic for non-interactive binary SMS detection. Addition-
ally, RILDEFENDER provides flexible configurations to adjust
the baseband traffic polling frequency, and the user is also
allowed to disable the BM component if non-interactive binary
SMS detection is not necessary, which significantly reduces the
power consumption as well. While reducing the baseband traf-
fic polling frequency reduces power consumption, it also adds
to the delay of the attack notification. Our preliminary results
show that adding a 1-second delay to the BM component can
save 2%-3% of battery consumption for 5 hours.

B. SMS Workflow within the Radio Interface Layer

In §II-B, we briefly describe the high-level architecture of
the radio interface layer. In this section, we explain in detail
the internal workflow of the RIL, with a particular focus on
how SMS (inbound and outbound) is handled. In particular,
we use RIL in Android for all the illustrations.

Inbound SMS. Figure 11 abstracts the workflow of inbound
SMS processing at the RIL [26]. When an SMS arrives at
the UE, it is delivered from the baseband to the RILD and
handled by the RILJ as well as InboundSmsHandler
sequentially. Next, based on UE type, the RIL
selectively invokes GsmInboundSmsHandler or
CdmaInboundSmsHandler to process the SMS message,
and the handler logic is actually quite similar, which relies
on a MessageDispatcher component. After parsing
the PDU bytes of the SMS, different dispatchers will be
called for the SMS. For normal text SMS, the RIL uses
NormalMessageDispatcher; For special types of SMS
including silent, flash, and binary SMS mentioned in the paper,
the RIL calls RadioSpecificMessageDispatcher.
When the dispatcher finishes, the control is back to the
InboundSmsHandler, which broadcasts the SMS to the

16

SMS app at the application layer. The workflow clearly shows
that the RIL has corresponding processing logic for different
types of SMS, which allows us to implement RILDEFENDER
to detect and block the SMS attacks.

Outbound SMS. Figure 12 illustrates the workflow
of outbound SMS [26]. In summary, the RIL uses
different dispatchers to handle outbound SMS, includ-
ing ImsSmsDispatcher, GsmSmsDispatcher, and
GsmSmsDispatcher. There are three different RIL com-
mands corresponding to different SMS types, which allows
the RIL to inform the baseband to send GSM, CDMA, or
IMS SMS. This workflow facilitates our intent-aware detection
approach, as the RIL has a direct communication path with the
SMS app at the application layer, allowing us to implement
an intent detector to monitor the apps at the upper layer.

IMS SMS. Based on the above illustrations, both inbound and
outbound IMS-based SMS are handled within the RIL. We
further confirm our hypothesis by dynamically analyzing the
internal RIL traffic on our two tested Android devices (both are
installed with official factory images and support IMS SMS).
Specifically, we observed that inbound IMS SMS is handled
by the GsmSmsInboundSmsHandler, which is almost the
same as traditional SMS handling logic. An outbound SMS is
sent by using a RIL_REQUEST_IMS_SEND_SMS request to
the baseband. In conclusion, both the inbound and outbound
IMS SMS logic is visible to the RIL, and RILDEFENDER can
be extended to support IMS SMS as well, which is necessary
under 4G and 5G networks.

C. SMS Payload Tested

In Table VI, we present the raw PDU payload of the
SMS test cases shown in Table V. These SMS payloads
are of SMS-Deliver types as they are transmitted from our
experimental SDR (equivalent to an SMSC) to the tested
devices. Note that we have anonymized the destinations of
the SMS payloads to zero values. As shown in the table,
we present three types of SMS including silent SMS, flash
SMS, and binary SMS. For binary SMS, we present all the
variant attack payloads based on the proactive commands.
For instance, 0x13 and 0x34 are the proactive commands
for SEND_SMS and RUN_AT_CMD, respectively [52]. For the
remaining types in Table V, FBS SMS messages have the
identical payload as the aforementioned SMS types. Malware
and proactive SIM SMS are outbound SMS triggered by an
application or the SIM, and thus their contents vary based on
the SIM and application logic.

17

RILD RILJUNSOL_RESPONSE_NEW_SMS
RIL_REQUEST_SMS_ACKNOWLEDGE

InboundSmsHandler

EVENT_NEW_SMS

SmsApp

ACK

EVENT_RETURN_TO_IDLE

GsmInboundSmsHandler

CdmaInboundSmsHandler

SMS_DELIVER_ACTION

MessageDispatcher

NormalMessageDispatcher

RadioSpecificMessageDispatcher

EVENT_BROADCAST_SMS

EVENT_BROADCAST_SMS

Fig. 11: Internal RIL workflow: inbound SMS.

SmsApp SmsManager IccSmsInterfaceManager SmsDispatcher ImsSmsDispatcher

GsmSmsDispatcher

CdmaSmsDispatcher

RILJ RILD

RIL_REQUEST_SEND_SMS

RIL_REQUEST_IMS_SEND_SMS

RIL_REQUEST_CDMA_SEND_SMS

Fig. 12: Internal RIL workflow: outbound SMS.

Case Type SMS Payload
1 Silent 010004802143f500150405802143f540000000000000000005e8329bfd06
2 Flash 010004802143f500160405802143f500100000000000000006e8329bfd06f6
3 Binary 010004802143f500484405802143f57ff6000000000000003802700000330D00006060505348000000000000422301210

20744382E3130353105160604313035312D0C1003830607912143658709F02B00 (SET_UP_CALL)
4 Binary 010004802143f500484405802143f57ff6000000000000003802700000330D00006060505348000000000000422301210

20744382E3130353105160604313035312D0C2103028D07912143658709F02B00 (DISPLAY_TEXT)
5 Binary 010004802143f500484405802143f57ff6000000000000003802700000330D00006060505348000000000000422301210

20744382E3130353105160604313035312D0C1503020607912143658709F02B00 (LAUNCH_BROWSER)
6 Binary 010004802143f500504405802143f57ff60000000000000040027000003b0D00006060505348000000000000422b01210

20744382E31303531051e0604313035312D161301828B1131000B911000000000000000AA03C8771A (SEND_SMS)
7 Binary 010004802143f5005f4405802143f57ff6000000000000004f027000004a0D00006060505348000000000000423a01210

20744382E31303531052d0604313035312D25340082850F56697369626C65206D657373616765280F
4154443132333435363738393b5c72 (RUN_AT_CMD)

8 Binary 010004802143f500524405802143f57ff6000000000000004202700000340D00006060505348000000000000422d01210
20744382E3130353105200604313035312D182400820281028F07AB4974656D20318F07AC4974656D2032 (SELECT_ITEM)

9 Binary 010004802143f500494405802143f57ff6000000000000003902700000340D00006060505348000000000000422401210
20744382E3130353105170604313035312Df2203028D08912143658709F0102B00 (GET_INKEY)

10 Binary 010004802143f500494405802143f57ff6000000000000003902700000340D00006060505348000000000000422401210
20744382E3130353105170604313035312Df2003028D08912143658709F0102B00 (PLAY_TONE)

11 Binary 010004802143f500494405802143f57ff6000000000000003902700000340D00006060505348000000000000422401210
20744382E3130353105170604313035312Df2303028D08912143658709F0102B00 (GET_INPUT)

12 Binary 010004802143f500494405802143f57ff6000000000000003902700000340D00006060505348000000000000422401210
20744382E3130353105170604313035312Df2503028D08912143658709F0102B00 (SET_UP_MENU)

TABLE VI: Raw PDU payload of the SMS test cases in evaluation (SMS destination anonymized).

18

	Introduction
	Background
	Cellular Network and SMS Workflow
	Radio Interface Layer

	Adversary Model and Scope
	Adversary Model
	Our Focus: SMS Attacks Targeting UEs
	Existing Defenses Against SMS Attacks

	Detailed Design
	Key Distinctions of RilDefender Over Existing Defenses
	Challenges and Solutions
	RilDefender at the Radio Interface Layer
	RilDefender at the Application Layer

	Implementation
	Binary SMS
	Silent and Flash SMS
	Fake Base Station SMS
	Malware SMS
	Proactive SIM SMS

	Evaluation
	Robustness (FN) Evaluation
	Correctness (FP) Evaluation
	Overhead Evaluation

	Discussion: Limitations and Future Work
	Related Work
	Conclusion
	References
	Appendix
	Detailed Design and Implementation of RilDefender
	SMS Workflow within the Radio Interface Layer
	SMS Payload Tested

