
Partitioning Ethereum without Eclipsing It

Hwanjo Heo
ETRI

Daejeon, South Korea
hwanjo@etri.re.kr

Seungwon Woo
ETRI/KAIST

Daejeon, South Korea
seungww@etri.re.kr

Taeung Yoon
KAIST

Daejeon, South Korea
yoontaeung@kaist.ac.kr

Min Suk Kang*
KAIST

Daejeon, South Korea
minsukk@kaist.ac.kr

Seungwon Shin
KAIST

Daejeon, South Korea
claude@kaist.ac.kr

Abstract—We present a practical partitioning attack, which
we call Gethlighting, that isolates an Ethereum full node from
the rest of the network for hours without having to occupy (or
eclipse) all of the target’s peer connections. In Gethlighting, an
adversary controls only about a half (e.g., 25 out of total 50)
of all peer connections of a target node, achieving powerful
partitioning with a small attack budget of operating several
inexpensive virtual machines. At the core of Gethlighting, its low-
rate denial-of-service (DoS) strategy effectively stops the growth
of local blockchain for hours while leaving other Ethereum
node operations undisturbed. We analyze how subtle and in-
significant delays incurred by a low-rate DoS can lead to a
powerful blockchain partitioning attack. The practical impact
of Gethlighting is discussed — i.e., the attack is scalable and low-
cost (only about $5,714 for targeting all Ethereum full nodes
concurrently for 24 hours), and extremely simple to launch. We
demonstrate the feasibility of Gethlighting with full nodes in
the Ethereum mainnet and testnet in both controlled and real-
world experiments. We identify a number of fundamental system
characteristics in Ethereum that enable Gethlighting attacks
and propose countermeasures that require some protocol and
client implementation enhancements. Ethereum Foundation has
acknowledged this vulnerability in September 2022 and one of our
countermeasures has been accepted as a hotfix for Geth 1.11.0.

I. INTRODUCTION

Highly reliable network connectivity across distributed
nodes is a critical system property for blockchain implementa-
tions that must persist even in the face of catastrophic network
failures or attacks. Thus, public, permissionless blockchains
are designed and operated with the goal of achieving reliable
peer-to-peer connectivity. For example, a Bitcoin node by
default establishes up to 125 peer connections to achieve its
network reliability, while an Ethereum node typically makes
up to 50 connections.

The security community nevertheless continuously discov-
ers new attack vectors that partition one or more peer nodes in
these densely connected blockchain networks, demonstrating
that network-layer attacks on blockchains can result in the
violation of safety properties [3], [22], [33], [37]. At a high
level, these partitioning attacks need an airtight control of a
target node’s peer connections (a.k.a. eclipsing). With complete
control over the consensus information to a target node, an
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adversary can delay (either temporarily or indefinitely) the
blockchain’s canonical chain information and also feed any
arbitrary transactions/blocks tailored for consensus violations,
such as double spending attacks. For example, the Bitcoin
eclipse attack [22] demonstrates that a botnet master with a
small size (e.g., roughly 4.6K) botnet can easily control all
peer connections to a target node. The Bitcoin hijacking [3]
and Erebus [37] attacks demonstrate that a network adversary
(e.g., a malicious ISP) can also take complete control over
a target’s peer connections. SyncAttack [33] shows that even
partitioning an entire blockchain network is possible.

We introduce an Ethereum partitioning attack, dubbed
Gethlighting, that, unlike these previous partitioning attacks,
does not require an adversary to have complete control over all
peer connections of a target node. Our attack only requires to
control approximately half of a target Ethereum node’s 50 peer
connections, much less than what previous attacks demand, to
successfully demonstrate a practical partitioning attack in the
Ethereum mainnet. This essentially means that the other half
of peer connections remain freely available for block delivery
while the target node is partitioned by Gethlighting.

Controlling only about half of a target node’s peer con-
nections, a Gethlighting adversary causes an effective low-
rate denial-of-service (DoS) disruption to significantly slow
down the growth of the blockchain at the target for up to
a couple of hours. We present a highly surgical DoS attack
that disturbs the chain growth of the target but leaves other
operations undisrupted. The target still receives every message
(including new blocks and transactions) from its other benign
peers without any major disruption (unlike a recent Ethereum
DoS attack [27]). Our attack gently disturbs the target’s multi-
peer message handling logic so that it fails to process a new
block within a pre-defined timeout once in a while but not
frequently. Such a rare timed-out reception of a new block,
however, is sufficient to stop the growth of the local blockchain
since the block-level state transition is not commutative in the
blockchain model [41]. Our in-depth study explains why Geth-
lighting’s low-rate DoS strategy of utilizing invalid transactions
effectively partitions a target node while many other types of
low-cost DoS attacks are futile.

Figure 1 shows an example of what happens to a real target
Ethereum node in the mainnet during a Gethlighting attack
that controls 32 of the target’s 50 connections. The primary
effect of this attack shown in this example is that the target’s
chain stops growing for 521 blocks (about 1 hour 22 min) in
the worst case; see that one new block is generated at around
T = 2, 800 sec, learned by the target instantly, but inserted
to the target’s chain at around T = 7, 800 sec! Note that the
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Fig. 1: An example snapshot of two types of events experi-
enced by a mainnet target node during a Gethlighting attack:
learning a new block (blue stars) and inserting the new block
into its chain (red dots). The relative time of these events
is presented on the Y-axis while the relative time of their
initial block generation is on the X-axis. Gethlighting barely
delays block learning (i.e., most blue stars are on the unit-
slope straight line) but significantly delays block insertion up
to 4,842 sec (1h22m), implying that the target is seriously
partitioned.

delays experienced for learning new blocks rarely exceeds 10
seconds even when the target is under attack as it still receives
timely block information from its 18 other benign peers.

The main contribution of this paper can be summarized as
follows:
1) We introduce the Ethereum Gethlighting attack (§III), a new

partitioning attack that does not require complete control
of a target node’s peer connections. This relaxation lowers
the bar for partitioning attacks significantly. This is the
first partitioning attack that does not require a total eclipse
of peer connections since an earlier attack by Wüst and
Gervais [42] in 2016 — i.e., a powerful attack that was once
effective but has been prevented after a quick hotfix [35]. In
Section V, we demonstrate the feasibility of the Gethlighting
attack through extensive experiments in the Ethereum testnet
and mainnet. We launch and confirm full-scale Gethlighting
attacks against some critical nodes in the testnet and our
own nodes in the mainnet. We also carefully select a few
critical nodes actively operated in the mainnet and run a
basic attack feasibility test without causing any damage to
them. Since Gethlighting never eclipses any nodes, it renders
existing eclipse mitigation techniques, such as manually
configuring static peer connections to reliable peers or net-
works (e.g., routing-aware peering [38], trusted static peer
connections [23], a hijacking-resistant relay SABRE [2], or
traditional relay networks [16], [18]) completely ineffective.

2) We conduct an in-depth examination of the low-rate
denial-of-service strategy of the Gethlighting attack. In
particular, we investigate the per-peer isolation design
in the up-to-date Ethereum clients and identify a subtle
scheduling condition that fails a block insertion, which
is exploited in the Gethlighting attack. In addition, we
identify and analyze four more characteristics of the current

Ethereum client implementation that contribute to the
effective Gethlighting attack (§IV).

3) We assess the proposed attack’s high-risk impact on the
existing Ethereum network. First, Gethlighting is a low-cost
attack. Since not having to eclipse a target greatly reduces
attack costs, it can be carried out by anyone with several
inexpensive virtual machines. Second, Gethlighting can
simultaneously target multiple Ethereum nodes using the
same set of virtual machines, making the attack easily scal-
able. Our simple calculation estimates that it would require
only about $5,714 for targeting all Ethereum full nodes
concurrently for a full day! Third, Gethlighting is simple
to prepare and execute (e.g., no knowledge of network
topology or routing information is required), making it an
attractive attack vector for unskilled adversaries (§VI). Last,
if an adversary has some mining capacity, she can easily
feed her own blocks to the target and establish a temporary
fork (§V-B), making Gethlighting a good launching pad for
attacks like double spending [33] or stubborn mining [31].

4) We propose a number of countermeasures that would
be necessary to mitigate the Gethlighting attack (§VII).
Since the five characteristics of Ethereum we analyze are
fundamental system features, not bugs, no simple, complete
solution appears to be available. We instead present
several minor tweaks to the Ethereum protocol and client
implementation parameters to reduce the effectiveness of
the attack. Our analysis suggests that all of these tweaks
come with some caveats; e.g., potentially opening up new
attack surfaces. Thus, careful, large-scale testing of these
potential countermeasures must be followed up to determine
their optimal combination for the Ethereum network.

Ethereum Foundation has acknowledged the Gethlighting
vulnerability in September 2022. In response to our suggestion
in Section VII-B (see the corresponding pull request [34]), the
Geth team has included a hotfix for Geth 1.11.0 [20].

For the demonstration of Gethlighting in this paper, we
mainly focus on the Go Ethereum client implementation (com-
monly known as Geth), as this implementation is used by the
vast majority (80.7%–91.9%1 during the first half of 2022)
of Ethereum nodes. Because Gethlighting does not entirely
rely on the Geth’s specific implementation flaws but also
on the Ethereum protocol design tradeoffs, other Ethereum
client implementations could be vulnerable to Gethlighting
as well. We conduct a small proof-of-concept experiment
on OpenEthereum, the second most popular Ethereum client
(6.5% of Ethereum nodes), and demonstrate the attack’s fea-
sibility in Appendix A.

II. BACKGROUND

In this section, we provide some necessary context for
understanding our Gethlighting attack: Ethereum’s peer-to-peer
network structure (§II-A), peer message handling logic (§II-B),
and gossiping strategies (§II-C).

A. Ethereum Peer-to-peer Network

Ethereum mainnet consists of thousands of fully-validating
nodes. By default, each network node makes up to 50 peer

1https://etherscan.io/nodetracker
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Fig. 2: Peer message handling goroutines of Geth.

connections, one-third of which are outgoing and the other
two-thirds are incoming. An Ethereum node selects its outgo-
ing peers at random from a list of known addresses provided
by the Ethereum’s discovery protocol [8]. If a node has
already established the maximum number of incoming peer
connections, all subsequent inbound connection requests are
rejected. Notice that this policy is different from that of Bit-
coin, which unconditionally evicts a randomly chosen existing
peer connection to accept a new incoming connection [6].

B. Peer Message Handling Logic

An Ethereum node communicates with multiple peer nodes
concurrently. Since some peer nodes may have poor per-
formance, or demonstrate selfish behaviors, implementing an
efficient and robust peer message handling is critical.

Geth employs an efficient concurrency model that utilizes
the lightweight threads (i.e., goroutines) in Go language to
separate peer connections from each other. Figure 2 shows
that each peer connection is assigned two goroutines: (1) a
P2P message handler that receives messages from each peer
and (2) an ETH message handler that processes the enclosed
Ethereum subprotocol messages, if exist.2 An unbuffered Go
channel delivers subprotocol messages between the two mes-
sage handling goroutines in a blocking manner.

C. Gossiping Messages: Unsolicited vs. Solicited

Ethereum broadcasts all valid blocks and transactions
through the entire network via a gossip protocol. When gossip-
ing about a newly received block or transaction, an Ethereum
Geth client uses two different mechanisms: unsolicited or
solicited. A Geth node forwards the full block/transaction
content only to a small subset of its neighboring peers, and we
call it unsolicited block/transaction propagation. The current
Geth implementation chooses a subset of size 7 (=

√
50− 1),

which is decided in a heuristic manner [25]. For the rest of 42
neighboring peers, the Geth node sends a solicited message,
which contains only the hash of the new block/transaction. The
receiving peer of the solicited message should actively fetch
the new blocks/transactions from the sender.

III. THE GETHLIGHTING ATTACK

In this section, we introduce our Gethlighting attack. We
first present the threat model we consider in this paper and
explain the four steps of the Gethlighting attack (depicted in
Figure 3).

Threat model. The attack goal of Gethlighting is to disrupt
the chain growth at a targeted Ethereum node for significant
amount of time (up to a few hours). The target node is a full
node that accepts connections from other Ethereum nodes with
a public IP address. Gethlighting makes only about a half of
the peer connections of a target node and this requires some
inexpensive virtual machines (VMs) in public clouds.

Creating a temporary partition via Gethlighting does not
require any mining power at all. Yet, if a Gethlighting ad-
versary wishes to create a fork with her own blocks through
the last optional Step-Ã, she should have some mining power
to generate her-own blocks. With some significant mining
capacity, an adversary may use Gethlighting as a stepping
stone for other attacks (e.g., double spending [33], stubborn
mining [31]), which are out of scope of this paper.

A. Step-À: Making Some Connections to the Target

The Gethlighting adversary uses her VMs as Ethereum
nodes and patiently waits to occupy some of the target’s
peer connections. Our attack VMs run a slightly modified
Geth client to do so. The target Ethereum client may reject
our peer connection requests when its inbound connections
are already completely filled with 34 existing inbound peer
connections. When an existing benign peer connection is
disconnected from the target node, our attack VMs have a
chance to make a connection to the target. Thus, the attack
VMs may need to retry to make enough connections to the
target. Since Gethlighting does not require to fully occupy all
peer connections, the adversary can choose to stop making
more connections to the target when the number of peer
connections to the target is considered enough; we show that a
half of the maximum number of connections (i.e., 25) is a good
starting point. We observe that it takes at most a day to occupy
at least 25 peer connections when targeting critical Ethereum
nodes in the Rinkeby Ethereum testnet (see Section V-C), a
little longer in the mainnet (see Appendix E).

B. Step-Á: Causing Mild Disruption to Time out a Block

In this step, the attack aims to cause some mild disruption
to the target’s block propagation so that a single block is timed
out at the target node. The target node may miss a few more
blocks due to the attack but one missing block is sufficient
for the attack. Only a single missing block sufficiently stops
the growth of the local blockchain since the block-level state
transition is not commutative in the blockchain model [41].
Thus, a state replication process at the target should wait for the
single timed-out block before attaching any subsequent blocks.

The disruption should be mild enough so that most of block
propagation (and other Ethereum operations) is unaffected.

2An Ethereum P2P message (i.e., DEVp2p) may contain a subprotocol
message such as ETH (Ethereum wire protocol [12]) or LES (Light Ethereum
subprotocol [10]).
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Fig. 3: The Gethlighting attack overview.

We present a new low-rate denial-of-service (DoS) strategy
to achieve this. A TX-flooding strategy makes successive
submission of Ethereum transactions, hoping to cause a low-
rate DoS problem at the target. As the rate of flooding is
low, the target node still behaves normally (e.g., receiving
and processing most of Ethereum messages without noticeable
delays); however, it fails to process some blocks it receives
from time to time. When the target is under our TX-flooding
attack, it sometimes causes enough delay (e.g., 5 seconds in the
Geth’s default setting) for processing a newly received block
so that the block is timed-out eventually. We show that it is, in
fact, easy to induce such a mild DoS in the target’s message
processing routine by sending a batch of Ethereum transactions
that are all eventually invalidated by the target node. Due
to the Ethereum clients’ resource management scheme (see
Section IV-A), the target sometimes misses a block.

C. Step-Â: Delaying Bulk Block Downloads

Once a single block reception has timed out at the target
node, its chain growth stops because the missing block pre-
vents all subsequently received blocks from being chained back
to the genesis block. To retrieve the missing block, the target
now begins the bulk block download process3 as the last resort
of retrieving the missing block. The bulk download mechanism
in Ethereum is designed for the recovery of major delivery
failures or initial block downloads. Thus, it is optimized for
downloading a long sequence of blocks and catching up the
synchronization with other peers.

The TX-flooding strategy is used in Step-Â as well to
keep delivering some workload and mildly burden the target
node. This renders the retrieval requests to fail even when
asked to a benign peer. In particular, the bulk block download
routine can be executed multiple times, making it hard to get
out of the recovery mode of the target node. We show that
the block delivery can be, therefore, delayed for up to a few
hours with this strategy.

D. Step-Ã: Forking with an Attacker-Mined Chain

While the target node is partitioned from the rest of
the Ethereum network, our Gethlighting adversary can also
reliably feed the full copies of her own mined blocks to the
target. The adversary-generated blocks are sent to the target
as whole blocks (i.e., unsolicited block delivery) to ensure

3The official name of this process is block synchronization. In this paper,
we call it a bulk block download to better highlight its download design and
differentiate it from the regular block propagation process.

TABLE I: Five key characteristics of Ethereum clients that
enable the Gethlighting attack.

Ethereum’s Characteristics

St
ep

-À

St
ep

-Á

St
ep

-Â

[EC1] Pretty-Strong-yet-Limited Per-Peer Isolation X X
[EC2] Optimized for Fast and Reliable Block Propagation X
[EC3] Gracious Handling of Invalid Transactions X X
[EC4] Limited Buffer Size for Out-of-order Blocks X
[EC5] Block Propagation Only via Solicited Messages X

that they are accepted by the target without experiencing any
delays. As a result, the adversary’s chain becomes the longest
branch from the target’s perspective as long as the missing
blocks are not yet downloaded.

IV. TECHNICAL UNDERPINNINGS

In this section, we discuss five technical characteristics
(which we label as [EC] —Ethereum Characteristics) of the
Ethereum client design and implementation that enable our
Gethlighting attack. Each of them is discussed in detail in
each subsection. We use the term “characteristics” instead of
“vulnerabilities” because they are carefully designed, critical
system features for addressing the Ethereum network’s effi-
ciency, robustness, and security challenges.

Table I summarizes how each Ethereum’s characteristic
contributes to the corresponding attack steps.

A. [EC1] Pretty-Strong-yet-Limited Per-Peer Isolation

A blockchain node communicates concurrently with mul-
tiple peer nodes. One ideal property for multi-peer scheduling
in blockchains would be a strong per-peer isolation between
peers at a local node. Without proper isolation between peers,
malicious peers may cause an adverse effect on the delivery
and processing of messages (e.g., new block information) from
other benign peers.

Strong per-peer fairness. Our thorough analysis of Geth
(version 1.10.20) shows that its concurrent message handling
logic for serving multiple peers achieves, in fact, strong per-
peer fairness. That is, each user connection is guaranteed to
have its fair share bandwidth of the resources at the target node.
Several careful design choices found in the Geth’s message
handling logic make it fair across peers:
(i) No shared queues between peers. All network protocol and

application buffers are separately provided for each peer
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connection. Ethereum messages from each remote peer are
handled by two dedicated goroutines, providing a separate
message buffer for each (see Figure 2).

(ii) Round-robin scheduling. The message handling goroutines
are scheduled by the Go runtime scheduler in a round-robin
fashion as each CPU has its own FIFO local run queue
(LRQ) from which goroutines in ready are dispatched for
execution.

(iii) Preemptive scheduling. The Go runtime scheduler imple-
ments a preemptive scheduling. That is, a message handling
goroutine is preempted by the blocking I/O (i.e., waiting
for the next message to arrive) or by reaching its typical
time-quantum of 20 msec.4

This strong per-peer fairness in Geth makes it highly robust to a
wide range of denial-of-service (DoS) attacks; see our exhaus-
tive experiments in Section V-A, which shows that flooding
with various Ethereum message types are all ineffective, except
the proposed TX-flooding attack. Per-peer fairness in Geth
provides pretty strong isolation because it offers the guaranteed
message handling performance per peer that is lower-bounded
by the total number of messages sent to a target Geth client di-
vided by the number of all peers (e.g., maximum 50 in the de-
fault setting).5 This means that an adversary’s effect on the tar-
get is bounded by the number of peer connections she controls.

When per-peer fairness isn’t enough. Our TX-flooding at-
tack demonstration, however, shows that the current Geth’s per-
peer fairness policy and the default parameters for peers and
their messages still allow a certain type of denial-of-service
attacks. Let us get into some more details and understand
why per-peer fairness is not strong enough to address the TX-
flooding attack, unfortunately.

Incoming peer messages accumulate waiting time in the
queue if the arrival rate λ (i.e., the rate at which messages are
sent from the remote node) exceeds the service rate µ (i.e.,
the rate at which messages are processed at the local node).
In normal cases, µ (per a normal peer connection) depends
on the local node’s system performance and the amount of
work that should be done for those messages. The problem

4A goroutine that runs for 10 msec is labeled preemptible, and the actual
scheduling-out process takes place later, once a few more conditions are
satisfied. We observe that the actual time slot durations are very close to
an average of 20 msec via our execution tracing in Appendix D.

5Because the message handling goroutines are scheduled in a round-robin
fashion, at least 1/n of the time is guaranteed to be spent serving one specific
peer’s messages, where n is the number of peers.

is that the service rate µ is bounded to 1/(k × s) with TX-
flooding by a Gethlighting adversary, where k is the number
of Gethlighting peers divided by the number of CPU cores of
the target and s denotes a system parameter for the maximum
time bound for each scheduling; 20 msec measured in Geth.
Figure 4 illustrates a simplified example of this: The fifth
message (blue arrow) from the benign peer is handled with a
significant delay in the presence of 10 Gethlighting peers (per
CPU) because each Gethlighting peer occupies the entire time
slot (i.e., 20 msec) of its fair share of scheduling, rendering
200 msec (i.e., 10 × 20 msec) serving as the minimum inter-
service time of benign peer messages. It should be noted that
attack peers cannot indefinitely delay benign peer’s messages
or take more scheduling opportunities than their fair share.

The bounded service rate induced by a Gethlighting adver-
sary renders delayed message delivery when messages arrive
more frequently (than the bound). A local node’s fetch timer,
which is set up for a specific request to a remote peer, expires
because the response message experiences a long queuing
delay (as depicted in Figure 4) inside the local node.

From our back-of-the-envelop calculation of the required
number of attack peers for TX-flooding, we learn that with
20 attack peers against a target node with 4 CPUs (thus, k =
20/4 = 5) any benign peer with message rates higher than 10
messages/s would experience delays in their message handling
at the target. This result is well aligned with our main evalu-
ation of the TX-flooding strategy discussed in Section V-A.

B. [EC2] Optimized for Fast and Reliable Block Propagation

Fast and reliable block propagation — i.e., the process
of disseminating newly mined blocks to the entire network
nodes — is crucial for blockchains. This is particularly true for
Ethereum as its blocktime (12–14 seconds) is more than an
order of magnitude shorter than that of its main competitors
(e.g., 10 minutes in Bitcoin). Thus, the Ethereum protocol
and client implementations have continuously evolved over
time to optimize for fast block propagation, and the current
Ethereum blocks propagate to 90% of peer nodes in less than
1.5 seconds [15].

Let us summarize two layers of optimizations for fast and
reliable block propagation in Ethereum:
1) Asking only one peer for a full block. A Geth client

batch-processes multiple messages for the same solicited
block delivery that have been received within a 0.4-second
time window.6 When asking for a full block information,
a client node sends a request only to one peer from each
batch. This removes any duplicate download of full block
information from two or more peers, thus minimizing the
network bandwidth for block propagation.

2) Limiting retrials for a new block. When a request for
a solicited block is unanswered within a timeout (e.g., 5
seconds6 in the current Geth version 1.10.20), it is consid-
ered failed and the entire batch of solicited announcements
are discarded. The requesting peer may retry downloading
the same block with another batch of solicited announce-
ments that came after the first batch; however, the retries

6 See Appendix F for the hard-coded timeout values in Geth. It is
also discussed why simply increasing the timeout value is not an effective
countermeasure against Gethlighting.
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are practically limited only to a couple times 7 because
the Ethereum network is fast enough to finish a block
propagation in 1-2 seconds. This particular policy has been
deployed to protect peers from a form of denial-of-service
attacks [9]. That is, by limiting the number of retrials, a peer
node can ignore most of the maliciously repeated solicited
announcements for the same hash of a non-existent block.

Note that these optimizations have been evolved over time and
work nicely for most cases. We argue that these optimizations,
however, unfortunately make Ethereum clients vulnerable to
our Gethlighting attack by helping a Gethlighting adversary
easily make Ethereum clients miss a single block reception.

As a result of these optimizations, an Ethereum peer
node has only a couple of chances of receiving a full block
in its initial propagation phase (i.e., a few seconds after its
creation), as we empirically confirm in Appendix B. Missing
this scant opportunity, a node should later rely on the bulk
download of blocks, which involves much more expensive
interactions with its peers.

Let us provide some more details. When the existence of a
new block is informed, block_fetcher in Geth collects all
the announcements with the same block hash from different
peers for 0.4 seconds. After gathering the batch, one request
for the block header is sent to a single peer that is selected
at random. If the request is not answered within the 5-
second timeout window, all the announcements in the batch are
discarded together. Ethereum network is known to be highly
efficient in block propagation (e.g., more than 80% of nodes
receive a new block information within 1-second window since
the block creation [15]) and thus a peer node typically collects
only a couple of batches of solicited announcements after all!

C. [EC3] Gracious Handling of Invalid Transactions

In blockchains, when transactions are deemed invalid, they
ought to be ignored and dropped by peers as early as possible
in a system. A transaction is said to be syntactically invalid
when it has missing fields, wrong signatures, or incorrect
proof-of-work. In contrast, a semantically invalid transaction
has an instruction (e.g., transferring ETH from one account
to another) that is considered unacceptable according to
the canonical chain and other transactions stored in a node.
For example, a transaction that spends some ETH from a
zero-balance account is considered semantically invalid. The
Gethlighting attack sends many such syntactically-correct-
yet-semantically-invalid transactions to a target node for
TX-flooding.

We find that this is possible due to the policy of gracious
handling of invalid transactions, which is a distinctive policy
found in Ethereum. A not-so-gracious handling of invalid
transactions (found in Bitcoin) would penalize the peers that
send such invalid (despite their syntactic correctness) trans-
actions. A strict handling of invalid transactions could even
disconnect a peer when it sends any invalid transactions.
Ethereum, however, explicitly refuses to employ any penalty
for sending such invalid transactions but implements the

7It is determined by how widely distributed the new block announcement
arrivals (from neighboring peers) are. See Appendix B for the empirical
distribution.

gracious handling policy. That is, as long as a transaction
is syntactically correct, it never penalizes peers for sending
invalid transactions. Instead, Ethereum decides to handle all
(both valid and invalid) transactions as efficiently as possible
so that peer nodes do not experience disruptions due to invalid
transactions.

There exists, in fact, a good reason for this Ethereum’s
generosity towards invalid transactions. In an account-based
model, it is often uncertain whether an invalid transaction
is sent with a malicious intent or not. One clearly invalid
transaction in a node may be considered valid in another node
with a different blockchain state. As temporary forks exist in
the Ethereum blockchain network, one cannot easily conclude
that the sender (or forwarder) of an invalid transaction has a
malicious intent behind it. For example, an Ethereum node,
which is synchronized up to the block height h, may prop-
agate a transaction t that is believed to be valid. However,
another node that is one block behind (i.e., synchronized up
to h − 1) may conclude that t is invalid. As seen in the
example, it is inappropriate to hastily blame and penalize
a peer for sending invalid-looking transactions because it
can be a perfectly honest, protocol-abiding peer that believes
the validity of the transactions. Ethereum chooses to handle
such transactions graciously and completely avoid penalizing
potentially benign peers. Our Gethlighting attack exploits this
very policy decision.

D. [EC4] Limited Buffer Size for Out-of-order Blocks

Our Gethlighting attack in Step-Á actively triggers a target
node to miss only one or few blocks while allowing most or all
subsequent block propagation. This causes blocks arrive out-
of-order at a target node and then all received blocks after the
first missing block are sent to a local buffer, waiting for the
missing block to be downloaded. Buffering out-of-order blocks
saves time for re-downloading out-of-order blocks because
all the buffered blocks can be immediately inserted to the
blockchain as soon as the missing block is downloaded. The
larger the buffer size for out-of-order blocks, the faster a target
node can recover from our Gethlighting attack.

However, the buffer size should not be set too large due
to the risk of denial-of-service attacks; e.g., a perpetrator
may overflow the buffer capacity with many out-of-order
blocks. The current Geth implementation stores up to 32
out-of-order blocks. Due to this limited buffer, when the
Gethlighting attack successfully delays the download of a
single block more than 6.5 minutes (i.e., about 32 block
times), out-of-order blocks start to drop at a target node.
This means that some out-of-order blocks are not ready in
the target node at the time when a missing block is finally
downloaded and they need to be downloaded again.

Back-to-back bulk block downloads. This small buffer size
can potentially put the target node into a series of back-to-
back bulk block downloads (as in Step-Á), further extending
the partitioning attack. At first, one missing block due to
Gethlighting causes to drop some out-of-order blocks. Then,
when the missing block is received, a target node often re-
enters the bulk block download phase because it has dropped
some of the more recent out-of-order blocks. This can repeat
multiple times, rendering the target node to experience multiple
rounds of delayed bulk block downloads.
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E. [EC5] Block Propagation Only via Solicited Messages

The current Geth node delivers a newly received block
to only a small number of neighboring peers unsolicitedly
(see its definition in Section II-C). The Gethlighting attack
works when a target node receives a new block exclusively
via solicited messages. This is when the target receives only
the hash of the new block (via solicited messages) from all its
peers but no full-block information (via unsolicited messages).
Such solicited-only block propagation happens quite frequently
to any node in Ethereum and thus our Gethlighting can oppor-
tunistically attack any target node without waiting too much.

The probability that a target node receives solicited
block messages from all n peers can be modeled as
Πn

i=1

(
1− 1√

mi−1

)
, where mi denotes the number of peer

connections of the target’s peer i among all n peers with
some simplifying assumptions (e.g., all peers are always ready
to relay up-to-date blocks). By default, a Geth node makes
peering with up to 50 other Ethereum nodes (i.e., n = mi = 50
for all i); however, as a Gethlighting adversary controls one or
more peers of a target Geth node and does not send unsolicited
messages through them, the effective n for the probability
decreases to the number of benign peers of the target. For ex-
ample, when a target has 25 attack peer connections (n = 25),
the probability that a new block is received exclusively via
solicited messages becomes 2.12% and it increases to 8.48%
when the target has 34 attack peers (n = 16). Although the
probability for a single block still seems low, a Gethlighting
adversary can wait for several new blocks until the target node
eventually receives a block exclusively via solicited messages.
The expected waiting time to the first solicited-only block
propagation at the target is 8.67 minutes (about 47 blocks)
for a target with 25 attack peers and 2.36 minutes (about 12
blocks) for a target with 34 attack peers.

In theory, if a target Geth node is modified to have
more than the default 50 peer connections [11], n increases
accordingly and the above probability diminishes, which would
increase the time till the Gethlighting attack triggers Step-
Á. However, in practice, Gethlighting is still effective against
target nodes with more than 50 peer nodes because not
all peers are always ready to forward new blocks in the
real Ethereum networks; see our empirical evaluation in the
mainnet (Section V-A) and testnet (Section V-C).

V. MAINNET AND TESTNET EXPERIMENTS

This section lists our extensive experiment results of the
Gethlighting attacks. We first conduct safe, isolated experi-
ments with our own Ethereum mainnet client nodes for in-
depth analysis of the proposed attack (§V-A). Extending this
attack, we attempt to inject adversary-mined blocks to our
own target nodes while Gethlighting them (§V-B). We then
conduct our full-scale Gethlighting attacks against several
important nodes in the Ethereum testnets and confirm its
real-world impact (§V-C). Finally, we test the feasibility of
Gethlighting against the real-world important nodes in the
Ethereum mainnet (§V-D).

In all our evaluations, we carefully design and execute these
experiments to minimize potential negative impact (if any) on
the Ethereum mainnet (§V-E).
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Fig. 5: Block insertion delays experienced by a target node
under TX-flooding attacks.

Common attack setup. We implement Gethlighting at-
tack strategies by adding approximately 200 source lines of
code (SLOC) to the official Ethereum implementation, Geth
v1.10.20. The essential attack logic is embedded in only 20
SLOC. For TX-flooding attacks, we generate a transaction
journal file, comprising 96,000 invalid transactions transferring
1 ETH from a zero-balance account to another account, in
advance and input during Geth’s bootstrapping.

Four t2.large instances, having 2 × Intel CPUs, 8 GB
memory, and 100 GB general purpose HDD storage each, are
provisioned to accommodate up to 40 attack nodes (i.e., 10
adversarial Geth processes per each VM). Gethlighting client
nodes utilize only little resource footprint since they can stay
nearly dormant, with the exception of 15-second periodic ping-
pong, without worrying about being disconnected from the
attack target. See Appendix G for more discussion on this.

A. Controlled Mainnet Experiments and In-depth Analysis

We first test the Gethlighting attacks in a safe, controlled
setup where all the targets are under our control. To make our
attack targets have realistic internal states, we let our attack
target nodes connect to the Ethereum mainnet and receive
transaction and block information from it (but not sending any
to the mainnet). Our target node is hosted by an Amazon EC2
i3.xlarge instance, which satisfies the recommended hard-
ware specifications from the official Ethereum foundation8;
i.e., 4 × Intel Xeon CPUs @2.3Ghz, 30.5 GB memory, and
1 TB NVMe SSD storage.

We launch six independently executed experiments of
Gethlighting with the different numbers of malicious peers.
Each experiment is performed for 24 hours after synchronizing
recent blocks in the target node and connecting all adversarial
nodes to the target.

Figure 5 shows the cumulative distribution of block inser-
tion delays at the target node. With 10 attacker’s connections,
97% of blocks are inserted in less than 100 seconds since
their creation. This decreases to 85% when Gethlighting makes
15 connections. Also, we observe the maximum delay of
1,400 seconds with 15 Gethlighting peers. When we utilize
35 peers for TX-flooding, 31% of blocks experience longer
than 100-second delay, and the maximum we observe reaches
4,663 seconds. To sum, we empirically demonstrate that as
more attack nodes are used for TX-flooding attacks, a longer
partitioning duration is expected.

8https://ethereum.org/en/developers/docs/nodes-and-clients/
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Fig. 6: Block insertion delays experienced by a target under
low-rate DoS attacks with various Ethereum messages. Our
TX-flooding strategy (i.e., low-rate DoS with transactions)
clearly stands out. We show only the top five most effective
Ethereum messages; all others make worse attacks.

How is TX-flooding different from naı̈ve DoS attacks? Our
choice of Ethereum transactions (hence called ‘TX’-flooding)
among many other Ethereum message types (e.g., informing
a block, requesting or responding block parts) for our attack
strategy may seem like an arbitrary decision; however, it
is our deliberate, well thought-out design choice. Here, we
empirically show this.

We first implement many different types of DoS attacks
with different Ethereum message types. To be specific, we
execute simple back-to-back message flooding attacks with
a comprehensive set of the up-to-date Ethereum message
types (i.e., ETH/679). A set of attack payloads comprising
all 13 message types are pre-generated synthetically to meet
the message size limit of 10 MB for a fair comparison
with our TX-flooding attack. Message types Status and
GetBlockHeaders are the only exceptions because the
Ethereum protocol does not allow us to fill up a 10 MB
message with these message types.

Figure 6 shows the cumulative distribution of block inser-
tion delays at the target node when under various DoS attacks
we test. Our TX-flooding is evidently far more effective than
all other DoS attacks with different message types, making it
the only effective flooding attack vector for our Gethlighting
attacks. Note again that all these other flooding attacks also
send the same size (i.e., 10 MB) messages to the target but
they cause only a marginal impact on block insertion. See
Appendix C for details.

Why the more attack connections, the longer partitioning?
To find out what really causes the trend in Figure 5 (i.e., the
more attack peers, the more powerful attacks), we conduct
additional controlled experiments. For controlled experiments,
unlike the ones in Figure 5, we directly manage both the benign
and malicious peers of a target. We set the number of benign
peer connections to 5 while we run 8 independent executions of
TX-flooding attacks with 5 to 40 (with a step of 5) Gethlighting
peers for a 1-hour period.

Figure 7 depicts the distribution of Ethereum message
completion times for benign peers during each controlled
attack execution. The message completion time quantifies the

9https://github.com/ethereum/devp2p/blob/master/caps/eth.md
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Fig. 7: Completion time for benign peer messages. Two
timeout values for Step-Á and Step-Â are indicated by two
red vertical lines.

amount of time it takes from start to finish (i.e., from the time
the message is sent from a remote node until it is completely
processed by the target node). We find that when there are
more TX-flooding peers, it takes longer to process an Ethereum
message (e.g., informing new blocks and transactions). As a
result, some of those messages are not delivered before the
expiration of our attack’s two critical timers (Section III): A
5-second timer expiration (see a red vertical line at 5 sec in
Figure 7) in retrieving single block information is an important
triggering event in accomplishing Step-Á. If a request for bulk
block information is not responded to within the estimated
round-trip time (e.g., one minute10), the retrieval request fails
in Step-Â (see another red vertical line at 60 sec in Figure 7).
The failed request is then forwarded to other peers, increasing
the total partitioning duration. Our detailed analysis of why
such delay occurs for our TX-flooding is found in Appendix D.

Figure 7 also supports our claim of mild disruption via
TX-flooding. As shown in the figure, Gethlighting does not
interfere with the processing of benign messages to the extent
that the majority of benign messages miss the target’s pro-
cessing deadlines. Only a small fraction of benign messages
violate the timeout; for example, approximately 10% or less
of benign messages violate the 60-second timeout in all attack
configurations and only about 2% violate the 5-second timeout
when attacking with 15 peers.

Attacking a target modified to have more than 50 peers? A
modified target Geth node can make more than 50 (i.e., default
maxpeers value) peer connections. First of all, having more
peer connections at a target does not reduce the Gethlighting
attack strength because the delay in handling messages only
depends on the number of attack peers, not benign ones.
However, the overall attack effectiveness can be diminished
because it becomes harder to trigger the condition for Step-Á
in Gethlighting when the target has more benign peers that can
send unsolicited blocks (see Section IV-E).

To measure the reduced attack effectiveness with targets
with more peers, we launch three independently executed
experiments of Gethlighting by configuring the target Geth
node’s maxpeers to 50 (default), 100, and 200. The cu-
mulative distribution of block insertion delays (collected for
24 hours) in Figure 8 shows that the Gethlighting attack is,
by and large, highly effective against all target clients with

10We observe that the value is set close to one minute regardless of the
actual network round-trip time, which is far smaller.
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Fig. 8: Block insertion delays under TX-flooding attacks with
configuring maxpeers to 50, 100, and 200 at the target.

different maxpeers. The overall delay is somewhat decreased
with more numbers of peer connections as the median block
insertion delays are 85, 17, and 15 seconds for 50, 100, and 200
maxpeers, respectively. However, the maximum block inser-
tion delays (i.e., the worst-case partitioning duration) are 4,663,
2,502, and 6,892 seconds for 50, 100, and 200 maxpeers,
respectively, showing the effectiveness of partitioning attacks
across all maxpeers setups. The fraction of blocks that are
delayed for more than 10 minutes is roughly 8% across all
configurations, too.

Our empirical analysis shows that it is the reduced fre-
quency of Step-Á events that degrades the attack effectiveness.
Our log of Step-Á events (i.e., missing one block) at the target
shows that 1.12%, 0.59%, and 0.38% for targets with 50, 100,
and 200 maxpeers, respectively, which makes it harder to
attack them.

We find that our actual mainnet experiments above show
much better attack performance than what our analytical model
predicts; that is, in theory, we expect near zero probabilities
of Step-Á when targets are configured maxpeers=100 or
200, which shows a clear difference from reality. Through
observation, we find that the actual number of peers that deliver
unsolicited block messages (denoted n in Section IV-E) can
be much smaller in practice. One reason is that a quarter of
the Ethereum mainnet nodes are not able to validate (and
thus relay) recent blocks because they are simply not yet
synchronized [14]. Moreover, it is widely known that many
protocol-deviating client implementations (such as passive
monitoring supernodes [4], [26], transaction spammers [24],
and conceivably sybil nodes [7]) do not dutifully participate
in the Ethereum’s block propagation.

B. Controlled Mainnet Experiments with Temporary Forks

Confirming the effective Gethlighting against our own
nodes, we attempt to inject adversary-mined blocks to our
targets. Since we do not have significant mining power for our
adversarial fork experiment, we modify the adversary’s mining
routine so that she regularly publishes a new block every other
minute (i.e., assuming 10% hash power) without a valid PoW
proof. Our attack target node also skips the PoW verification
for adversary’s blocks.

An adversary’s mining node is connected to the target
with 32 Gethlighting peers to demonstrate how effectively
adversary-mined blocks are accepted by a target node. Figure 9
shows that the adversary-mined blocks are accepted immedi-
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Fig. 9: Adversarial fork with Gethlighting attack. Adversary’s
blocks (red) are instantly accepted while canonical blocks
(green) are delayed due to a TX-flooding attack.

ately by the target node when it is partitioned by our Gethlight-
ing attack. This is because these blocks are delivered to the
target in an unsolicited manner always. Note that adversary’s
leading cannot persist without partitioning as we assume the
adversary possesses less than 50% of the mining power.

C. Real-World Experiments in a Testnet

For our first real-world experiments, we conduct the full-
scale of Gethlighting in the Rinkeby Ethereum testnet. Instead
of testing TX-flooding attacks against any testnet nodes se-
lected at random, we carefully choose and target critical nodes.
We believe our experiment is conservative and shows the real
risk in the testnet because these critical nodes are more likely
to apply additional security measures than the average nodes.

Discovering critical nodes in a testnet. We are inspired
by the work by Li et al. [27] as we define and search for
critical Ethereum nodes. We first operate several supernodes
that collect an extensive set of node addresses and client IDs of
neighboring peers in both Ethereum mainnet and testnet (i.e.,
Rinkeby). As for the Rinkeby testnet, we discover the node ad-
dresses of additional critical nodes (i.e., bootnodes11 and min-
ers12) by matching our address collection to the known profiles
of registered network nodes [1]. Total 2 RPC services, 1 miner,
and 2 bootnodes are found in the Rinkeby Ethereum testnet.

Testnet results. We launch full-scale Gethlighting attacks
against the discovered critical testnet nodes. We wait until at
least 25 Gethlighting peers are connected to each attack target,
which takes about one day or less. Then, we carry out the
attacks for six hours and record the maximum block insertion
delay observed in the six-hour period. Since the target nodes
are not under our control, we measure the block insertion de-
lays indirectly. That is, the block insertion time (at the target) is
estimated indirectly with a NewBlock or NewBlockHashes
message, as a consequence of the target’s inception of a new
block, received by our own Gethlighting peers. We find that
the error due to our indirect measurement should be marginal
with the block insertion delay measurements in the order of
hundreds to thousands of seconds.

Table II summarizes our attack results. We observe that
Gethlighting partitions the discovered critical nodes for more

11Bootstraping nodes [11].
12Rinkeby testnet miners are also called signers of the Proof-of-Authority

network [36].
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TABLE II: Critical testnet nodes we target in our experiments.
All codenames and registered names are anonymized.

Client-codename
(or registered name)
{# of peers}, if avail

Kind
# of

nodes
(tested)

# of
attack
conns

Max block
insertion

delay

Geth-o*** RPC 39 (3) 28–34 9,092–9,560 sec
Geth-d*** RPC 1 32 2,529 sec
I*** signer Miner 1 14 280 sec
I*** bootnode {421} Bootnode 1 40 4,153 sec
A*** bootnode {327} Bootnode 1 40 2,891 sec
Geth-P*** Unknown 1 40 4,292 sec
Geth-l*** Unknown 1 28 3,686 sec
Geth-S*** Unknown 1 40 1,269 sec

P

Probing Node Target Node

valid transaction

Front-end
network filter

T M…

Ethereum Mainnet…invalid transactions
𝑡!

Gethlighting payload (10MB)

Monitoring
Service

Node
Test if mainnet Ethereum nodes

filter Gethlighting payload?

Evidence of filter:        or not𝑡!

Experimenter

control

Fig. 10: Safely testing the existence of network filters for
Gethlighting attack payload in the Ethereum mainnet. In all
our mainnet experiments, the single valid transaction (tv’s) we
insert into payload are found in the Ethereum blockchain,
which shows the non-existence of such filters.

than a thousand seconds in most cases. We confirm that
partitioning for more than a few hours is indeed possible. Par-
ticularly, the RPC service nodes (identified by the codename
o***) are badly damaged by Gethlighting. I*** signer node
is the only experiment target we do not observe significant
partitioning. It is clearly partitioned but no more than 5
minutes.

Since these target nodes are not under our control, our post-
mortem analysis is, unfortunately, limited. Yet, we provide a
few best guesses of ours about these testnet target nodes: (1)
Many critical service nodes (e.g., codename o***) seem to use
mediocre-performing servers (thus vulnerable to Gethlighting).
(2) Some critical nodes (e.g., I*** signer) appear to use a
modified peer management logic, which (probably unknow-
ingly) makes them more robust to Gethlighting. For instance,
the I*** signer node tends to disconnect all peers (even benign
ones) unconditionally every five minutes; hence, the average
number of connections made to the node is only 14. This also
shows that the targets’ system performance and protocol con-
figurations matter a lot when under Gethlighting attacks. (3)
Gethlighting is also effective when a critical node is configured
with a higher number of maximum peer connections. Two
Rinkeby bootnodes (i.e., I*** and A*** bootnode in Table II)
have more than 300 peers at the time of our experiment (which
is confirmed through their dashboard where they publicly share
their current numbers of peer connections [1]). The two nodes
with that many peers are vulnerable to Gethlighting as well,
demonstrating 4,153 sec and 2,891 sec maximum insertion
delays, and this well aligns with the results of our mainnet
experiment in Section V-A.

TABLE III: List of critical mainnet nodes we test.

Client-codename Kind # of
nodes

Valid txid
prefix

Geth-E*** Miner 18 0xe64630
Geth-E*** Miner 3 0x336fae
Geth-E*** Miner 2 0x9ab8c0
Geth-e*** Miner 1 0x43ea7b
Geth-c*** Miner 1 0xfb90a5

Geth-o*** RPC 63 0xd21bf1
Geth-A*** RPC 18 0x4d8d64
Geth-M*** RPC 6 0x6f9017
Geth-a*** RPC 3 0xe4ecd0

Geth-I*** Misc 1 0x96ece0
Geth-k*** Misc 1 0xd0ffe8
Geth-m*** Misc 1 0xe92dd9
Geth-W*** Misc 1 0x15b684
Geth-p*** Unknown 4 0x0b884d

D. Real-World Mainnet Experiments

Finally, we test the Gethlighting attack against third par-
ties’ critical nodes in the Ethereum mainnet. For obvious
ethical concerns, we do not, however, conduct the full-scale
Gethlighting attacks against the real-world mainnet nodes that
are operated by others. Hence, our mainnet experiments are
inherently limited.

Why mainnet critical-node experiments? So far, we have
demonstrated the effectiveness of Gethlighting against our
own mainnet nodes or the nodes in a testnet. However, it
is insufficient to show the feasibility of the attack against
the real-world mainnet targets because the service operators
of critical real-world mainnet nodes may have deployed a
front-end network filter (e.g., intrusion detection or prevention
system [28]) that removes our attack payloads (i.e., TX-
flooding messages). To rule out these possibilities of such
network filters and confirm the feasibility of Gethlighting in
the mainnet, we test whether the Gethlighting attack payloads
successfully reach real-world critical Ethereum nodes in the
mainnet; see below for more details.

Discovering critical nodes in the mainnet. As we explain
earlier in this section, we operate our own supernodes to
discover critical nodes in the mainnet. We identify more than
25K unique peers in the mainnet for a month. We discover 4
RPC services and 5 mining nodes in the Ethereum mainnet by
analyzing the client codenames we collect [27].

Safely testing the existence of filters in the mainnet. We
devise the following probing technique to test whether our
Gethlighting attack payloads reliably reach real-world target
nodes in the mainnet or are filtered out by a front-end security
system. In Figure 10, a probing node P (e.g., a customized
Geth client) establishes a single outgoing peer connection to
a mainnet target T of interest. P sends only a single attack
payload message (denoted as payload) that consists of 96,000
invalid transactions and one valid transaction tv at the end. Our
probing node P never disseminates tv via any other messages;
therefore, if tv is observed via a monitoring service node M
in the Ethereum’s canonical blocks, we can confirm that our
target T has received and properly processed payload.

Table III summarizes our probing experiment results. We
observe that our probing nodes are always able to send
Gethlighting attack payloads (i.e., payload messages) to these
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14 critical nodes in the mainnet, and we find the provided
valid transactions (i.e., tv) are always included in the Ethereum
blockchain. This provides a clear evidence that those critical
mainnet nodes do not have any specific network filters that
prevent Gethlighting.

Note that we send only a single attack payload to a real-
world target (unlike our full-scale Gethlighting attacks) and
this does not cause any noticeable burden to the target.

E. Ethical Concerns

Our attack experiments are conducted with great care to
avoid any disruption to the operation of the Ethereum mainnet.
First, in our experiments in Section V-A and Section V-B, we
launch attacks against our own Ethereum client nodes. Thus,
in these experiments, we never send any attack messages (e.g.,
TX-flooding and adversary-mined block messages designed for
our attack) to any Ethereum mainnet nodes other than our own
target. We ensure this by restricting our attack nodes to make
connections only to our target nodes. Our target nodes are also
set to not relay any Ethereum messages to other benign peers in
the mainnet. This way, we conduct highly isolated experiments
with our nodes while they are connected to the mainnet.

In our real-world experiments in the Ethereum testnets
in Section V-C, we actually create damage to some critical
nodes (not our own nodes) in the testnets but limit the total
attack execution to six hours and avoid repeated experiments.
We believe that a certain level of attack demonstration in
blockchain testnets for research purposes is widely accepted
in the security community [27].

Last, in our real-world experiments in the mainnet, we
only test the reachability of Gethlighting attack payloads to
real-world mainnet target nodes but never cause any damage
to the targets.

VI. ATTACK SCALABILITY AND COST

Since Ethereum is a permissionless public blockchain, an
adversary can reuse the same set of virtual machines (VMs)
to establish multiple concurrent peer connections to multiple
target nodes. Simple modifications to Ethereum clients (e.g.,
increasing the maxpeers setting) enable the adversary’s VMs
to create an unlimited number of potential target nodes, as long
as the VMs’ resources support the attack operation.

From our experiments, we learn that when an adversary
exploits 25 peer connections, a single adversary peer gener-
ates approximately 7 Mbps attack traffic. Because VMs used
for TX-flooding do not need to be fully-functioning nodes,
bandwidth becomes a limiting factor when reusing VMs for
TX-flooding. To simplify the discussion, assume that we use
25 distinct VMs to establish 25 peer connections to a single
target node. We confirm via our own iperf experiment that a
t2.large Amazon EC2 instance supports 1 Gbps upstream
bandwidth. Thus, one low-cost VM can target approximately
140 nodes concurrently.

We use the Amazon EC2 pricing table for the t2.large
instance (i.e., $0.0928 USD per hour, $0.09 USD per GB)
and consider the attack is executed for 24 hours. In total, it
would cost only about $5,714 for targeting all 10K full nodes
in Ethereum for 24 hours.

VII. POTENTIAL COUNTERMEASURES

As we already discussed in Section IV, the Gethlighting
partitioning attack is enabled because of the five Ethereum
characteristics [EC1]–[EC5]. Since many of these Ethereum
characteristics are the result of some fundamental trade-offs
in the system design, simply disabling or removing them
does not make a reliable countermeasure against Gethlighting.
Instead, we offer several potential smaller tweaks to the exist-
ing Ethereum protocols (§VII-A–§VII-E) and one operational
practice that mitigates the Gethlighting attack. We summarize
these potential countermeasures in Table IV

Existing anti-eclipse schemes do not work. Before we
delve into the potential countermeasures, let us clarify why
existing anti-eclipse schemes do not work against Gethlighting
at all. Existing eclipse attacks and their variants [3], [22],
[23], [29], [37] have led to several practical countermeasures
against them. One highly effective family of techniques is to
ensure a small number of reliable, benign peer connections.
Such connections can be trusted nodes [23], a centralized
block propagation network [16], [18], or a hijacking-resistant
relay node [2]. All these defense schemes do not mitigate
Gethlighting at all because Gethlighting does not require a
total monopoly of peer connections in the first place.

Another practical countermeasure is to make a few ad-
ditional outbound peer connections for better connectivity.
This has been adopted for mitigating eclipse and Erebus
attacks [22], [37]. As we show in Section V-A and V-C, any
minor increase in the number of peer connections does not
make an effective countermeasure against Gethlighting.

A. Taming TX-flooding

In Ethereum, both blocks and transactions can be
propagated either solicitedly or unsolicitedly. Gethlighting’s
TX-flooding strategy exploits the unsolicited mode of
transaction delivery.13 Disabling the unsolicited delivery mode
for transactions (i.e., new transactions should be pooled by
explicit requests) would make an effective countermeasure
against the TX-flooding strategy. Note that Bitcoin by design
disallow unsolicited delivery of transactions and thus is robust
against TX-flooding attacks.

A much less intrusive change to the Ethereum protocol
would be to simply limit the number of transactions that can
be delivered by a single Transactions message. The maxi-
mum number of transactions in Ethereum is only limited by the
maximum size of a Transactions message (i.e., 10 MB).
A further limitation can effectively reduce the impact of weak
per-peer isolation by decreasing the processing time bound s
in Section IV-A. Figure 11(a) shows how tx_limit (i.e.,
the number of transactions that can be informed with a single
Transactions message) affects the attack performance of
the TX flooding strategy. The block insertion delays are mea-
sured for every block during a 24-hour-long attack experiment.
There have been only a few blocks with insertion delays larger
than two minutes when tx_limit=256. However, still 1% of
the blocks have experienced insertion delays larger than five
minutes with tx_limit=1024.

13Gethlighting’s choice of unsolicited mode for transactions should not be
confused with the use of solicited mode for block propagation.
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TABLE IV: Summary of countermeasures, affected attack steps, and their side effects

Countermeasures Corresponding Related Attack Disadvantages
Ethereum’s Steps or Side Effect

Characteristics

Taming TX-flooding [EC1] Step-Á & Step-Â Significant changes to P2P
Bounded transaction handling [EC1] Step-Á & Step-Â A few worst-case delays, slow TX handling
Making clients block-synchronized first [EC1] Step-Á & Step-Â Weak transaction propagation
Gethlighting-resistant block propagation [EC2], [EC5] Step-Á Msg complexity, risk of DoS
Banning Gethlighting peers [EC3] Step-Á & Step-Â False positives, risk of new attacks
Overprovisioning clients [EC1] Step-Á & Step-Â Expensive
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Fig. 11: Effectiveness of countermeasures.

Although rate limiting transactions is less intrusive than
the other alternative, it still requires some non-trivial changes
to the existing protocol. Therefore, special care must be taken
before applying this change to the Ethereum network protocol.

B. Bounded Transaction Handling

We learn in Section IV-A that the upper-bound of a peer’s
service rate, due to TX-flooding, is inversely proportional
to the system parameter s (i.e., the time quantum of Go’s
preemptive scheduling). Thus, reducing s can make an
effective countermeasure as it increases the service rate of
benign peers, shortens message queues, and decreases delays.

One caveat, however, is that a system-wide reduction
of Go’s scheduling time quantum (i.e., 20 msec) could
potentially result in performance degradation or unexpected
problems. To mitigate any such unforeseen problems, we
apply a decreased time bound exclusively for the TX
handling routine. We modify the transaction validation routine
so that the goroutine, which executes it, should yield to
other goroutines after validating every tx_exec_bound
transactions.14 This way, Gethlighting peers would not be
able to continuously occupy the entire allocated time quantum
of 20 msec. The Gethlighting-induced job of validating
transactions is then interleaved to allow the execution of
message handling goroutines of benign peers.

Figure 11(b) shows how tx_exec_bound (i.e., the
maximum number of transactions that can be handled before
yielding to other goroutines) affects the attack performance.
It is generally an effective countermeasure to Gethlighting but
one downside is that it does not completely address the attacks;

14Go runtime’s Gosched() is used to yield to other goroutines. [19]

see the result with tx_exec_bound=64 is still worse than
the ‘no attack’ case. Compared to limiting the transaction
message size, bounding transaction handling can be preferred
in practice since it does not require any changes to the protocol.

C. Making Clients Block-Synchronized First

One simple-yet-effective countermeasure against Gethlight-
ing is to prioritize any protocol messages exchanged for
synchronization (e.g., informing a block, announcing a block
hash, requesting or responding with block header or body) over
other messages, such as transaction messages. The rationale
behind this strict prioritization is that a good synchronization
of blocks must precede transactions. When a node is not
synchronized with the canonical chain, transactions cannot be
correctly validated.

To test this, we implement the message prioritization archi-
tecture, which augments the existing single protocol message
channel15 to high- and low-priority channels. The protocol
messages exchanged for synchronization are handled with a
strictly higher priority. We run a TX-flooding attack with 40
Gethlighting peers against our own Ethereum full-node that
is configured as recommended [13] (i.e., four CPU cores and
16 MB memory). No partitioning event lasts longer than three
minutes for a 24-hour-long experimentation.

Note, however, that such a strict prioritization based on
message types can potentially create new problems and even
open up a new avenue of attacks and therefore should be
carefully reviewed and studied before any deployment. For
example, transaction propagation may become slower, ren-
dering Ethereum slower to accept transactions. Worse, some

15See Figure 2 in Section II-B for more information.
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transactions can be targeted and dropped by adversaries who
flood more higher-priority messages in the network.

D. Gethlighting-Resistant Block Propagation

As a mitigation of Gethlighting in Step-Á, we may sacrifice
the high optimization in the block propagation protocol a
little by introducing some redundancy and concurrent block
propagation. One possible yet-radical solution is to prevent
a peer from receiving a new block in a solicited manner.
This ensures that Step-Á never succeeds as the solicited block
propagation is not needed in the first place. The price of this
mitigation is the significantly increased message complexity
for block propagation.

E. Banning Gethlighting Peers

One convenient and effective countermeasure is to ban
peers that exhibit potentially malicious behaviors; e.g., flood-
ing with invalid-looking transactions. As we discuss in Sec-
tion IV-C, the current Ethereum clients do not have such peer
banning mechanisms. One possible peer banning scheme is
to ban peers that send too many invalid-looking transactions.
This banning scheme can trivially disable the Gethlighting
attacks since Gethlighting adversaries cannot maintain their
attack effectiveness when all her peers get disconnected from
the target node as soon as they perform any attack strategies.

However, there are potential side effects that are not trivial
to address. First, Ethereum nodes may ban peers by mistakes.
For example, a peer may get banned mistakenly for sending
invalid-looking transactions when it has sent transactions that
look perfectly valid from its own perspective. This may arise
due to the lack of synchronization between two peers. Or,
a peer may get disconnected for not responding in a timely
fashion when it is actually experiencing network failures or
delays. Second, malicious parties may attempt to exploit these
new peer banning schemes. With these schemes, a simple
denial-of-service (DoS) attack against a target node can easily
disconnect all of the target’s peers, which can be used as
stepping stones for other attacks [3], [22], [37]. Or, creating a
temporal chain inconsistency in the network may cause sudden
bulk disconnections of network peers.

F. Overprovisioning Clients

One side-effect-free countermeasure against the TX-
flooding strategy is to provision more resources to a target
node. The more CPU cores are allocated to a target, the
less time is expected to handle each protocol message (see
Section IV-A). Thus, TX flooding attacks become less effective
when targeting an overprovisioned target node.

Figure 11(c) shows how the number of CPUs at a target
node affects the effectiveness of TX-flooding attacks. Having
more CPU cores clearly lowers attack effectiveness. When a
target has four CPU cores (as recommended by the official
Ethereum client [13]), the median partitioning duration is
about 250 seconds. This drastically decreases to around 25
seconds when we overprovision the target with the twice the
recommended number of CPU cores.

However, the result also shows that overprovisioning can-
not be an ultimate solution to Gethlighting. Even when a target

has 2× (i.e., 8 CPUs) or 4× (16 CPUs) of the recommended
number of CPUs, the worst case partitioning durations can
easily go above 1,000 seconds (see their 90-th percentile in
Figure 11(b)). Moreover, it is not a cost-effective solution since
only marginal reduction of partitioning duration is expected as
we keep doubling the number of CPUs at the target.

VIII. DISCUSSION

A. Opportunistic Attacks

While the Gethlighting attack has notable advantages men-
tioned above, it has one minor limitation. That is, the attack is
opportunistic in terms of the duration of the partitioning pro-
cess and the time required to begin partitioning a target. This
is because its attack strategies are dependent not only on the
adversary’s connections but also on benign peer connections,
which account for roughly half of the target’s peer connections.
In practice, therefore, adversaries would need to wait for a
short period of time (e.g., a few minutes) before initiating
partitioning, and then attempt a number of partitioning tries to
generate a partitioning event lasting long enough to accomplish
their ultimate goals (e.g., double spending). Gethlighting-
induced partitioning is effective intermittently since it intro-
duces mild disruption in processing received blocks, often
enough to trigger timeouts in message handling. Some mes-
sages received during the bulk block download (i.e., Step-Â)
occasionally may get processed in a timely manner, rendering
a successful recovery from partitioning. The general trend,
nonetheless, is that the more Gethlighting peers, the longer
partitioning is (Section V-A).

B. Detection of Gethlighting

Partitioning detection mechanisms [2] against existing at-
tacks [3], [22], [33], [37] would determine whether or not
a target node is eclipsed (i.e., attackers control all peer
connections). As a result, these measures would never detect
Gethlighting, as the attack never eclipses any Ethereum node.

However, Gethlighting is not imperceptible. Gethlighting
peers behave differently from most benign peers and, thus, in
theory, they can be detected with proper measures. Given the
fact that Gethlighting is not considered a volumetric attack, it is
difficult to detect at the network layer (e.g., IDS or firewall).
Thus, each node in the system should identify Gethlighting
peers at the application layer, which would necessitate some
adjustment of Ethereum client applications.

IX. RELATED WORK

A. Partitioning Attacks in Blockchain

Most known partitioning attacks aim to monopolize a tar-
get’s peer connections completely. The Eclipse attacks against
Bitcoin [22] and Ethereum [23], [29] demonstrate that an
adversary can monopolize all outgoing peer connections by
exploiting software vulnerabilities, which have been patched
since their disclosure. Additionally, it is also demonstrated that
a strong network adversary (e.g., malicious ISP) can launch
a man-in-the-middle attack, gaining complete control of a
target node’s peer connections via a data-plane [37] or control-
plane attacks [3]. An Eclipse attack against the InterPlanetary
File System (IPFS), which uses a peer-to-peer networking
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TABLE V: Comparison with existing blockchain partitioning attacks

Attack requirements Attack characteristics

Attack Target # attack Network Attack Need Partitioning Attack Deter-
blockchain conns resource preparation reboot? duration fork ministic?

Heilman et al., 2015 [22] Bitcoin All ∼4.6K bots Several hours © Permanent? © ©?

Wüst and Gervais 2016 [42] Ethereum 1 1 IP Several weeks† 5 Permanent 5� ©
Apostolaki et al., 2017 [3] Bitcoin All Hijacking

<100 BGP prefixes ∼90 seconds 5 Permanent? © ©?

Marcus et al., 2018 [29] Ethereum All 2 IPs Several minutes• © Permanent © ©
Henningsen et al., 2019 [23] Ethereum All 2 IPs Several days 5 Permanent © ©

Tran et al., 2020 [37] Bitcoin All Compromising
few large ISPs Several weeks 5 Permanent? © ©?

Saad et al., 2021 [33] Bitcoin All ∼100 IPs Not evaluated ©‡ Not evaluated∗ © 5
Gethlighting Ethereum ∼25 1 IP <1 dayO 5 ∼3 hours © 5

?: not anymore with the deployed peer eviction mechanism †: for adversarial chain generation ‡: partitioning newly arriving targets only
∗: depending on network churn �: only from the genesis block •: to craft node IDs O: based on testnet evaluation

architecture similar to blockchain systems, is also presented
recently [32]. Our Gethlighting attack significantly reduces
the attack requirement (i.e., from complete control of peer
connections to partial control), rendering any existing detection
mechanisms or countermeasures designed for existing parti-
tioning attacks (e.g., routing-aware peering [38], SABRE [2])
completely ineffective.

Earlier in 2016, Wüst and Gervais [42] present a new
permanent Ethereum partitioning attack with only a single
malicious connection to a target node. The Wüst-Gervais (or
WG) attack inserts an adversary-generated chain that is longer
than the canonical chain to stop the target’s chain growth,
whereas the Gethlighting attack triggers a subtle condition
in the Geth’s multi-peer connection scheduling mechanism
to time out some blocks at the target. Although Gethlight-
ing requires more malicious peer connections than the WG
attack needs, occupying some more (e.g., 25) connections of
the target for Gethlighting costs very little in practice (see
Section III-A). In contrast, generating an alternative chain from
the genesis block for the WG attack would cost significantly,
which is completely unnecessary for Gethlighting. Last, the
WG attack was addressed with a hotfix [35] that prevents
forking at the genesis block. Gethlighting, however, is less
likely to be fixed, completely and without any side-effect (see
Section VII), by a single hotfix because the attack is made
possible due to several system and protocol characteristics (as
we summarize as [EC1]–[EC5] in Section IV).

Table V summarizes our comparison of Gethlighting with
the existing blockchain partitioning attacks. The attack re-
quirements are compared in terms of the required number
of attack connections to be monopolized, required network
resource, attack preparation time, and whether the target reboot
is necessary for an attack. We also compare the maximum
partitioning duration, whether the attacker can inject adversary-
mined branch at an arbitrary block height, and whether the
attack is deterministic (Section VIII-A). Gethlighting is the
first partitioning attack that does not require a total eclipse of
peer connections since an earlier attack by Wüst and Gervais
in 2016, which has been prevented after a simple fix [35].
Gethlighting also does not require multiple IP addresses and
can target any existing reachable nodes without requiring the
target to restart.

TABLE VI: Gethlighting vs. DETER [27] Differences

Characteristics Gethlighting DETER

Attack goal Delay block insertion Drop some transactions

Consequence Target node is partitioned Transactions are censored
(i.e., safety violation)

Implication ; DETER ; Gethlighting

Payload Invalid transactions Invalid* transactions
(* carefully-crafted)

Attack cost A few servers; zero gas One server; zero gas

Detection Difficult at network; Difficult at network;
Feasible at application Feasible at application

B. Denial-of-Service Attacks in Blockchain

Availability attacks have been studied in the literature be-
cause the liveness of a blockchain system is a critical property.
Baqer et al. [5] present an empirical study on a Bitcoin
stress test campaign that has resulted in a DoS attack. Mirkin
et al. [30] claim that adversaries can halt PoW blockchain
systems by publishing only partial information (e.g., header)
of her mined blocks, with fewer resources (e.g., 21% of the
total hash power). Vasek et al. [39] conduct an investigation
into known DDoS attacks and assess the anti-DDoS system
adoption status of the Bitcoin ecosystem’s key operational
entities (e.g., cryptocurrency exchanges and mining pools).

A recent work by Li et al. [27], called a DETER attack,
shares some similarity to Gethlighting as both present new
low-rate denial-of-service attacks in Ethereum. However, the
two attacks are entirely different and thus should not be
confused with each other. The main attack goal of DETER is
to drop some legitimate transactions at a target node and thus
transactions in Ethereum can be censored by the adversary.
In contrast with DETER, Gethlighting aims to delay block
insertion at a target node so significantly that the target is
virtually partitioned from the Ethereum network, rendering the
violation of the safety property. Also, neither Gethlighting nor
DETER imply the successful execution of the other. One char-
acteristic that may make the two attacks look similar is their
attack payload — i.e., both attacks send invalid transactions to
their targets. Yet, their strategies to creating invalid transactions
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differ; e.g., DETER requires more carefully created invalid
transactions. In short, the Gethlighting attack is different from
DETER as it does not share the goals or the attack techniques
of DETER. Table VI summarizes the key differences between
Gethlighting and DETER.

X. CONCLUSION

In this work, we show that a subtle (seemingly
insignificant) low-rate denial-of-service vulnerability in
blockchain peer-to-peer scheduling algorithms can lead to
a significant network-wide partitioning vulnerability. Worse
yet, attacks like Gethlighting renders all existing anti-eclipse
defenses ineffective because they do not eclipse their target
nodes in the first place. Our hotfix to Gethlighting has been
included in the upcoming Geth release and we leave the
generalization of this new attack vector in other blockchain
networks (including Ethereum 2.0) for future work.
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APPENDIX

A. Simple Tests with OpenEthereum

In this section, we demonstrate the attack feasibility of
Gethlighting against OpenEthereum, the second most pop-
ular Ethereum client. The attack target is our Ethereum
full-node running OpenEthereum v3.3.3 on Amazon EC2’s
i3.8xlarge instance. Note that Our Gethlighting implemen-
tation based on Geth 1.10.20 (Section V) is used without any
modification since they both communicate with each other in
the Ethereum protocol. In overall, a TX-flooding attack with
25 attack nodes is launched for 5 hours to show the longest
partitioning duration of 2,004 seconds.
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Fig. 12: An example snapshot of an OpenEthereum node under
the Gethlighting attack.

Figure 12 shows the snapshot of the first 5,200 sec-
onds of the target node under a Gethlighting attack. We
observe periodic partitionings up to 1,148 seconds as soon
as 18 Gethlighting peers are connected (at 1,800 sec) to the
victim. Even worse, a majority of benign peer connections
get disconnected at the onset of each partitioning; that is,
all benign peer connections get disconnected by the target
during 5 out of 7 partitioning episodes of Figure 12. The
reasons of massive disconnection turn out to be timer ex-
piration of solicited messages: a request for block header
is not responded in 3 seconds (FORK_HEADER_TIMEOUT);
a request for a transaction is not answered in 10 seconds
(POOLED_TRANSACTION_TIMEOUT); and a block body re-
trieval is not fulfilled in 20 seconds (BODIES_TIMEOUT).
OpenEthereum not only applies shorter hard-coded timeout
values than Geth, but also disconnects remote peers if any
of the timers expire. The consequence is catastrophic; a target
loses all peer connections, and further implying that Gethlight-
ing is a very effective stepping stone for other attacks [3], [22],
[37].
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Fig. 13: Distribution of the number of block announcement
batches.

B. Block Announcement Batches

Figure 13 depicts the distribution of measured block an-
nouncement batches from one of our 24-hour Gethlighting
attack experiments. Block announcement messages arriving in
a 0.4-second time window are merged into a single batch. The
number of batches is one or two more than 95 percent of the
time. This confirms that a Gethlighting target has only one or
two chances to solicitedly retrieve a new block as we discussed
in Section IV-B.

C. Why are transactions exceptionally more effective than
other message types?

For successful Gethlighting, the attack must continuously
occupy the full span of message handling goroutine’s time
slot (i.e., 20 msec) every time it is scheduled for execu-
tion (Section IV-A). Gethlighting with a large number of
invalid transactions can accomplish this because of Ethereum’s
gracious handling of transactions (Section IV-C). That is,
every delivered transaction is faithfully processed one-by-one,
rendering consecutive full occupation of execution time slots
(as depicted in Figure 4).

Other message types do not achieve this because they either
involve IO operations that make the goroutine get preempted
or the entire delivered data cannot occupy long enough CPU
time by early short-circuiting. For example, a NewBlock
message containing a block with thousands of transactions is
immediately discarded due to invalid proof-of-work and thus
induces only few CPU cycles for a hash computation.

D. Why are messages delayed longer with more TX-flooding
peers?

Here, we extend our evaluation of the controlled experi-
ment in Section V-A to better understand the inner-workings
of a target Ethereum node under Gethlighting attacks via
goroutine profiling. A Go profiling tool pprof [21] is enabled
at the attack target Geth process to build goroutine execution
profiles from actual execution trace log.

Message handling goroutines. For each peer connection,
two goroutines (lightweight threads supported by Go) are in
charge of handling incoming peer messages (Figure 2): the
P2P message handler reads a peer message from the network
and sends it to a subprotocol Go channel (e.g., ETH), while
the ETH message handler reads a message from the channel
and processes it.

The pseudo-code for the relevant Geth functions is shown
in Algorithm 1 and the functions are executed by two peer
message handling goroutines: read-loop goroutine (i.e.,
P2P message handler in Figure 2) executing readLoop()
and handle-loop goroutine (i.e., ETH message handler)
executing ETH.handleLoop(). Every time a new peer
connection is established, both goroutines are invoked. The
separation of peer message handling is done for the sake
of modularity, as an Ethereum node can communicate in
subprotocols other than the default Ethereum protocol (e.g.,
snap). The Go channel between goroutines is an unbuffered
channel that can only hold one single message at a time.

Invariable attack traffic and CPU execution times. Because
our TX-flooding procedure transmits back-to-back 10 MB
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Fig. 14: Controlled experiment results.

Algorithm 1 Geth peer message handling functions
/* P2P peer message handling loop */

Func readLoop()
while true do

msg ← readMsg()
proto← getProto(msg.code)
/* proto.in is unbuffered input channel of */
/* matching subprotocol */

send msg to proto.in
end

end

/* ETH subprotocol messsge handling loop */
Func ETH.handleLoop()

while true do
/* wait until receiving a message */
/* from the input channel */

receive msg from ETH.in
ETH.handle(msg)

end
end

messages, it is reasonable to assume that more peers will
be able to deliver more messages. However, as shown in
Figure 14(a), the average message rate does not increase as the
number of Gethlighting peers increases. The TCP flow control
mechanism does not allow an application to send data bytes
faster than the rate at which data is consumed at the other
end of the pipe in the long run. It appears that the amount of
inbound traffic indeed reflects the target Geth process’s CPU
resources. However, a TCP sender can temporarily push data
up to the buffer size (i.e., TCP receive window size) unless
network congestion is a bottleneck.

Figure 14(b) demonstrates that the CPU resource distribu-
tion between normal and Gethlighting peers is also invariant;
in other words, an adversary does not simply force a target
node to allocate more CPU resources for her messages by
increasing the number of Gethlighting peer connections. It
is worth noting that the invariability of CPU execution time
distribution corresponds to the observed constant attack traffic.
Attack traffic should have increased if more CPU time was
allocated to Gethlighting peers’ goroutines.

Incoming message queuing due to sluggish message pro-
cessing. When there are 20 or more TX-flooding peers, we
find that lagging in message processing becomes the domi-
nant reason for blocking read-loop goroutines from execution.
Figure 14(c) depicts the average proportion of time that normal
peers’ read-loop goroutines stop execution for two reasons:

network wait is a blocking reason caused by a goroutine
waiting for new data bytes to arrive from a network pipe,
while sync block indicates that a message in the subprotocol
Go channel has not yet been pulled by the consumer goroutine
at the other end of the channel. If there are only 5 Gethlighting
peers, a normal peer’s read-loop spends 90% of its time
waiting for a new message from the remote peer. On the other
hand, there is almost no stopping (i.e., sync block) due to
any delayed message processing by the subprotocol handler.
However, if there are 20 or more Gethlighting peers, the
read-loop goroutine spends more than 70% of its running
time waiting for a message in the channel to be pulled;
as a result, newly arrived network data bytes (in the TCP
receive buffer) cannot be pulled by read-loop, rendering
burst incoming messages (stacked up at the buffer) waiting
for the application to consume. This effectively renders an
accumulation effect of message processing delays.

time

# of TX-flooding peers
# of CPUs

k= k slotsslots

~20ms

… …

Fig. 15: Interleaved execution of handle-loop goroutines.
The execution of a normal peer’s handle-loop (white) is
interleaved by k successive execution slots of the Gethlighting
peers (grey).

Interleaved execution of goroutines. Handling Ethereum
messages (via handle-loop) is a CPU-intensive process
that reserves CPU execution time based on which tasks should
be performed with the message. For example, a message
informing a newly mined block consumes far more CPU
time than a message propagating a single transaction. The
handle-loop goroutine for each peer connection is either
preempted voluntarily (i.e., blocking wait for a message in
the Go channel) or by a non-cooperative preemption by the
scheduler (i.e., outstanding Ethereum message processing is
incomplete). The current (i.e., Go 1.17.8) scheduler preempts
a goroutine that is running for more than the predefined time
slot of 20 msec.
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The Go scheduler maintains a FIFO (First-In-First-Out)
local queue of runnable goroutines for each CPU core, re-
sulting in an interleaved execution pattern of goroutines. That
is, a preempted (or voluntarily scheduled-out) goroutine can
only be scheduled-in after all other runnable goroutines in the
queue have been executed. This execution pattern is depicted
in Figure 15. It is worth noting that k (the number of
consecutive execution slots occupied by goroutines handling
TX-flooding messages) is a reciprocal of the number of CPUs
and proportional to the number of Gethlighting peers.

E. Occupying Target’s Peer Connections

We have logged all peer join/leave events of an Ethereum
mainnet node by keeping the node online for a month. We
simulate how many (benign) peer connections can be sustained
using the event logs, assuming that the connection slots that
become available (as short-lived connections leave) are imme-
diately occupied by the adversary.

Figure 16 shows our simulation results, showing how the
number of peer connections decay as the attacker begins from
two hours to two weeks after the target node goes online.
Almost all incoming connection slots (i.e., 50 × 2

3 ≈ 33) of
a two-hour-old node become unoccupied within only a few
hours; however, a node that has been online for two weeks
can sustain a half of the total connections for more than ten
days.
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Fig. 16: Connection persistence as a function of client uptime.

F. Timeout values in Geth

Geth defines three hard-coded timeout values in fetch-
ing blocks with solicited messages16: arriveTimeout
of 500 milliseconds, gatherSlack of 100 milliseconds,
fetchTimeout of 5 seconds. The time window for batch-
processing of block announcements is set to 0.4s (i.e.,
arriveTimeout - gatherSlack). A solicited block
is considered failed if unanswered for 5 seconds (i.e.,
fetchTimeout).

As the Gethlighting attack induces mild delay on peer
messages in order to expire the above timers at the target

16See eth/fetcher/block_fetcher.go.

(Section IV-B), one may suggest that Gethlighting can be
prevented by simply increasing the timeout values (e.g., 5-
sec timeout for solicited block request). While an increased
message timeout can make Gethlighting attacks a little harder
(because attacks need to induce longer delays), the current 5-
sec timeout is close to its maximum and it’s impractical to
further increase it in Ethereum. This is because the timeout
is already too close to the average blocktime of 12-sec in
Ethereum. An increased timeout (say 10-sec) would force
Ethereum nodes to wait so much time for delayed block
propagation that they might fail to finish a block reception
before the next block is generated.

G. Absence of Ban Score Mechanism in Ethereum

Gethlighting is scalable and low-cost since a low-
performance VM (e.g., t2.large of Amazon EC2) can
comfortably accommodate 10 attack nodes (Section V). During
Step-À in Section III, all Gethlighting peers stay idle, except
for a periodic ping-pong, meaning that they neither inform any
blocks/transactions nor answer to any of the target’s requests.
As a consequence, Gethlighting nodes’ hardware specification
does not need to meet the Ethereum Foundation’s requirement
for blockchain synchorinization.17

One may suggest that the cost for Gethlighting can be
easily magnified by adopting a peer banning mechanism
similar to the Bitcoin’s ban score [17]. That is, if the target
disconnects misbehaving (e.g., staying idle or not answering to
requests) peers by such a mechanism18, Gethlighting adversary
should roll out high-performing, thus more expensive, VMs
(e.g., i3.xlarge) for blockchain synchronization in order
to maintain persistent peer connections to the target. However,
it is inherently difficult to distinguish a non-chattering Geth-
lighting node from a benign bootstrapping node, who is newly
synchronizing the chain from the genesis.

17https://ethereum.org/en/developers/docs/nodes-and-clients/
18Indeed, a candidate mechanism [40] has been designed and implemented

by the Ethereum core developers. However, it is abandoned after a heavy
discussion on its pros and cons.
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