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Abstract—Deep learning (DL) performs well in many traffic
analysis tasks. Nevertheless, the vulnerability of deep learning
weakens the real-world performance of these traffic analyzers
(e.g., suffering from evasion attack). Many studies in recent
years focused on robustness certification for DL-based models.
But existing methods perform far from perfectly in the traffic
analysis domain. In this paper, we try to match three attributes
of DL-based traffic analysis systems at the same time: (1) highly
heterogeneous features, (2) varied model designs, (3) adversarial
operating environments. Therefore, we propose BARS, a general
robustness certification framework for DL-based traffic analysis
systems based on boundary-adaptive randomized smoothing.
To obtain tighter robustness guarantee, BARS uses optimized
smoothing noise converging on the classification boundary. We
firstly propose the Distribution Transformer for generating opti-
mized smoothing noise. Then to optimize the smoothing noise,
we propose some special distribution functions and two gradient
based searching algorithms for noise shape and noise scale.
We implement and evaluate BARS in three practical DL-based
traffic analysis systems. Experiment results show that BARS
can achieve tighter robustness guarantee than baseline methods.
Furthermore, we illustrate the practicability of BARS through
five application cases (e.g., quantitatively evaluating robustness).

I. INTRODUCTION

Network traffic is one of the most important data sources
for analyzing network activities and detecting cyberspace
attack. In recent years, deep learning (DL) has been widely
applied for traffic analysis systems, such as network intrusion
detection systems (NIDS) [51], [49], concept drift traffic detec-
tion systems [74], traffic multi-classification systems [16], [65],
[60], [56], etc. However, many studies indicate deep learning
is vulnerable to data perturbation [24], [63], [39], [48], [14],
which may cause misclassification of DL-based traffic analysis
systems [61], [5], [54], [28], [6], [2]. It is thus especially
necessary to focus on robustness analysis and improvement
of DL-based traffic analysis systems, due to the high cost of
misclassification in this domain.

Many studies in recent years focused on robustness certi-
fication [45], [72], [66], [34], [64], [77], [71], [15], [73], [44],
[52], [42], [11], [43] to analyze and improve the robustness

TABLE I: Comparison of robustness certification methods.

Method
Global Complete Relaxed Probabilistic

G.R.P.♠ α-CROWN [72] CROWN-IBP V.R.S.♣
BARS[11] β-CROWN [66] [77] [15]

Heterogeneity # # # #  
Adaptability♡

Universality  # #   
Real-time # G#    Capability
∗ ♡ The adaptability for heterogeneous features. ♠ Global Robustness Property. ♣
Vanilla Randomized Smoothing.

∗ = excellent performance. G# = normal performance. # = poor performance.

of DL-based models. They theoretically prove whether a DL-
based model satisfies special robustness properties. Existing
robustness certification studies have achieved excellent perfor-
mance in computer vision (CV) [72], [15] and natural language
processing (NLP) [58], [19]. However, little attention has been
paid to robustness certification for DL-based traffic analyzers.

It is challenging to propose a suitable robustness certifica-
tion method for DL-based traffic analysis systems due to their
three attributes:

I. Different from image and natural language, traffic
features are highly heterogeneous [55], [57], [41].
Different from pixels and words, traffic features have
different physical meanings (e.g., flow duration and total
packets) [57].

II. Due to the difficulties in detecting and classifying
malicious activities, model designs of traffic analyzers
are varied [5], [51], [16]. For example, Kitsune [51]
uses ensemble autoencoders under zero-positive learning
to detect zero-day attack. ACID [16] uses a supervised
adaptive clustering network to classify malicious traffic.

III. Traffic analyzers always run in adversarial environ-
ments [61], [5], [54], [28], [6], [2]. Due to its security
sensitivity, adversarial attack against traffic analysis will
cause more damage (e.g., privacy disclosure, system de-
stroy) [7]. A real-time detection technology is needed to
be aware of these adversarial attacks.

Existing robustness certification studies can be divided into
global certification and local certification. Global certification
focuses on certifying the global robustness properties which
are independent of data distributions [11], [43]. However, it
mainly has two drawbacks. Firstly, global certification cannot
give the local robustness region around a specific sample,
whose size reflects the relative distance between the sample
and the classification boundary. Secondly, global certification
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Fig. 1: The workflow of this paper.

cannot certify robustness with real-time traffic after traffic anal-
ysis systems are deployed, which conflicts with the attribute
III of traffic analyzers. Therefore, it is necessary to certify the
local robustness of DL-based traffic analyzers.

Unfortunately, existing local robustness certification meth-
ods [45] perform far from perfectly in DL-based traffic an-
alyzers. They mainly include three categories of methods:
Complete certification (e.g., α-CROWN, β-CROWN) [72], [66]
always suffers from high computational complexity and has
low efficiency for real-time analysis. It conflicts with the
attribute III of traffic analyzers. Linear relaxation certification
(e.g., CROWN-IBP) [77] needs to be specifically designed
according to model architectures and has poor universality
and flexibility, which also exists in most complete certification
methods. It conflicts with the attribute II of traffic analyzers.
Probabilistic certification (e.g., Randomized Smoothing)
[15], [73] traditionally uses isotropic classical noise as smooth-
ing noise. Thus it only provides ℓp robustness guarantee,
which provides the same robustness region size for all di-
mensions. Furthermore, to our knowledge, most existing local
certification methods mainly focus on the ℓp robustness. Due
to the heterogeneity of traffic features, they cannot provide
tight robustness guarantee. It conflicts with the attribute I of
traffic analyzers. To our knowledge, there is no special local
robustness certification method for DL-based traffic analyzers.

Our Solution. In this paper, we propose BARS (Boundary-
Adaptive Randomized Smoothing), a general robustness cer-
tification framework for DL-based traffic analysis systems. It
should be noted that BARS can also be used for other DL-based
heterogeneous tabular data analysis systems. The comparison
between BARS and other methods is shown in Table I. BARS
overcomes the drawbacks of other methods and matches DL-
based traffic analysis systems better. Furthermore, BARS can
apply local robustness certification for specific problems in the
traffic analysis domain.

A brief workflow of this paper is shown in Figure 1. As
shown at the middle of Figure 1, the core idea of BARS is
to generate optimized smoothing noise which converges on
the classification boundary under heterogeneous features and
provides tighter robustness guarantee. Therefore, we propose
Distribution Transformer, a parameterized model which can
convert isotropic classical noise distributions into anisotropic
optimized noise distributions and provide the dimension-
heterogeneous robustness guarantee. To optimize smoothing
noise, we use the superposition of special distribution functions
for the Distribution Transformer, and use gradient based algo-
rithms to search the parameters of the Distribution Transformer
for optimizing noise shape (the relative noise distributions
between different dimensions) and optimizing noise scale (the
overall scale of noise distributions in all dimensions).

With optimized smoothing noise, BARS provides tighter
robustness guarantee and matches the attribute I of traffic
analyzers. Because the above algorithm assumes nothing about
the model designs, BARS matches the attribute II of traffic
analyzers. Because BARS certifies the local robustness of
specific samples, and the classifications of noised samples can
be efficiently implemented in parallel. It matches the attribute
III of traffic analyzers.

Implementation and Evaluations. As shown in the left part
of Figure 1, we implement and evaluate BARS on three prac-
tical DL-based traffic analysis systems, including Kitsune
[51] (zero-positive NIDS), CADE [74] (concept drift detection
system), ACID [16] (supervised multi-classification system).
Experiment results show that BARS can provide tighter robust-
ness guarantee than baseline methods in all three traffic ana-
lyzers, which indicates the significant heterogeneous feature
adaptability and universality of BARS. Experiment results also
show that in real-time certification, BARS spends much shorter
delay time compared with complete certification (reduced by
99% on average), which indicates the significant scalability
and real-time capability of BARS. Furthermore, as shown in
the right part of Figure 1, we provide five practical cases
to show how security operators use BARS to quantitatively
evaluate robustness, reduce false alarms, be aware of evasion
attack, defend against evasion attack, explain attack detection
for DL-based traffic analysis systems.

Contributions. This paper makes three contributions:

• We propose BARS, a general robustness certification frame-
work for DL-based traffic analyzers. The core of BARS is
to generate anisotropic optimized smoothing noise for ob-
taining tighter robustness guarantee. To optimize smoothing
noise, we use the superposition of special distribution func-
tions and gradient based parameter searching algorithms.

• We implement BARS on three practical DL-based traffic ana-
lyzers1, and evaluate robustness guarantee tightness and cer-
tification delay of BARS. Results show BARS significantly
outperforms baseline methods in three traffic analyzers.

• We apply BARS to five domain-specific problems of DL-
based traffic analysis, such as quantitatively evaluating ro-
bustness, reducing false alarms.

II. BACKGROUND

In this section, we firstly introduce three categories and
three attributes of DL-based traffic analyzers (§II-A). Then we
introduce existing studies for robustness certification (§II-B).

A. DL-based Traffic Analysis Systems

Deep learning has been widely applied to traffic analysis
tasks [51], [74], [16], [60], [53]. In this paper, we discuss three

1Code of BARS is released at: https://github.com/KaiWangGitHub/BARS
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typical categories of DL-based traffic analysis systems.

DL-based zero-positive NIDS. Kitsune is a state-of-the-
art zero-positive NIDS [51], which is also called as “zero-
positive” learning [17]. The ensemble autoencoders (AEs) of
Kitsune are trained with benign traffic by minimizing the
reconstruction error, which is the Root Mean Square Error
(RMSE) of input data and reconstructed data. Then, Kitsune
monitors malicious traffic according to RMSE.

DL-based concept drift detection systems (new class traffic
detection). A typical concept drift detector is CADE [74].
The autoencoder of CADE is trained with history traffic from
the known classes through contrastive learning. Then, CADE
detects unforeseen classes according to the detection score.

DL-based supervised multi-classification systems. ACID is
a state-of-the-art malicious traffic classifier [16]. The adaptive
clustering network of ACID is trained with history traffic from
the known classes. Then, ACID classifies real-time traffic into
the known classes according to softmax probabilities.

DL-based traffic analyzers mainly have three attributes:

I. Highly heterogeneous features [55], [57], [41]. In CV
[30], [59] and NLP [36], [40], each data element has the same
physical meaning (i.e., pixels in images, words in sentences).
However, traffic features are highly heterogeneous. Different
features have different physical meanings and follow different
distributions. For example, inter-packet delays follow exponen-
tial distribution, while packet sizes do not follow that [55].

II. Varied model designs [5], [51], [16]. The challenges
of traffic analysis tasks are various. It is difficult to design
a universal model to solve all problems. The state-of-the-art
methods in different tasks need different model designs. For
example, Kitsune uses ensemble autoencoders. CADE uses a
single autoencoder, ACID uses an adaptive clustering network.

III. Adversarial operating environments [61], [5]. Based
on the vulnerability of deep learning, evasion attack (typical
adversarial attack) can slightly manipulate traffic features
to defeat traffic analyzers in real time [54], [28], [6], [2].
Compared with CV and NLP, adversarial attack against traffic
analysis will cause more damage, such as privacy disclosure,
system destroy, property damage [7]. To be aware of evasion
attack, we should develop a real-time detection technology
instead of offline technologies.

B. Robustness Certification

Many studies in recent years focused on robustness certi-
fication to analyze and improve the robustness of DL-based
models. Robustness certification can be divided into global
certification and local certification. Furthermore, local certifi-
cation mainly includes complete certification, linear relaxation
certification, probabilistic certification.

Global certification. Global certification mainly includes
Global Robustness Property based methods [11],
etc. They propose some heuristic robustness properties (e.g.,
small neighborhood), and verify whether a model satisfy those
properties. However, they have two drawbacks. Firstly, global
robustness properties mainly focus on the robustness of a
model in the whole decision region. It cannot give the local
robustness region around a specific sample, which can reflect

the relative distance between the sample and the classification
boundary [52]. Secondly, global robustness property verifica-
tion has been completed before model deployment. They can-
not be used for certifying robustness with real-time data, which
conflicts with the attribute III of traffic analyzers. Therefore,
it is necessary to explore local robustness certification for DL-
based traffic analysis systems.

Complete certification. Complete certification mainly in-
cludes Branch and Bound based algorithms (e.g., α-CROWN
[72], β-CROWN [66]), etc. Those methods attempt to certify
all possible input values to provide exact robustness guarantee
with high computational complexity. It will significantly de-
crease certification efficiency, which conflicts with the attribute
III of traffic analyzers.

Linear relaxation certification. Linear relaxation certifica-
tion includes linear inequality propagation (e.g., CROWN-IBP
[77]), etc. Those methods relax nolinear activation functions
of DL-based models to linear functions, and will efficiently
estimate the ranges of model outputs for certifying robustness.
However, they need to design a special relaxation method
for each specific activation function (e.g., ReLU) and hidden
layer (e.g., fully-connected layer). As more novel models
are proposed, it might be difficult to apply them for the
models with novel designs, which also exists in most complete
certification methods. Therefore, it conflicts with the attribute
II of traffic analyzers.

Probabilistic certification. Probabilistic certification mainly
includes Randomized Smoothing based on Neyman-
Pearson lemma [15], [73], etc. These methods certify ro-
bustness based on classification results of noised samples,
and assume nothing about model architectures. However, their
performance is sensitive to smoothing noise distributions [73].
Existing methods use isotropic classical noise distributions.
It only provides ℓp robustness guarantee, which provides the
same robustness region size for all dimensions. Furthermore,
to our knowledge, most existing local certification methods
mainly focus on the ℓp robustness. They cannot provide
tight robustness guarantee under the heterogeneous features of
traffic analyzers. Therefore, they all conflict with the attribute
I of traffic analyzers.

III. PROBLEM SCOPE

In this section, we firstly introduce threat models (§III-A).
Then we formulate the research problem by defining the
certification goal (§III-B). Next we present the BARS overview
(§III-C). Some important notations are shown in Table II.

A. Threat Model

In this section, we introduce two typical threat models for
DL-based traffic analysis systems.

Evasion attack. According to the attribute III in Section
II-A, suffering from evasion attack is a main challenge to
DL-based traffic analysis systems [54], [28], [6], [2]. Based
on the vulnerability of deep learning, attackers can slightly
manipulate malicious traffic to defeat traffic analysis systems.
Manipulated malicious traffic will be misclassified into the
benign class with original attack attributes.

False alarms. Suffering from false alarms is another main
challenge to DL-based traffic analysis systems [61], [5]. For
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TABLE II: Notations.

Notation Description

x, δ, y Traffic sample: original, perturbation, label
f, g, s Traffic analyzer: base, smoothed, score
cA, pA From smoothed traffic analyzer: the predicted class,

the lower confidence bound of cA probability
Ω, r, R For robustness: region, dimension-wise radius vector,

dimension-heterogenous radius
X , CA,V,R The set in a batch of: x, cA, r, R

P,E, I Probability, expectation, indicator function
ε,D Noise, noise distribution
F,H Cumulative distribution function for: noise

distribution, special distribution.
Ψ Distribution Transformer

(·)n , (·)f For special noise: normalized, feature
(·)i , (·)

(i) The ith dimension, the ith sample or function
n0, n, nt Noise number for: cA, pA, optimizing noise shape

d,N Number of: dimensions, dataset samples
L,Lw,Lc Loss function for: noise shape, wrongly-classified

and correctly-classified noised samples
Λ, λ Regularizer, regularizer weight

Mean, Std, sgn Statistical function: mean, standard deviation, sign
Lower- Interface function for lower bound of binomial

Confidence- proportion confidence interval based on Beta
Bound distribution
Certify Interface function for certifying robustness

example, it is assumed that concept drift detection systems
can theoretically learn all patterns of the traffic from the known
classes, so that previously unseen classes can be detected [74].
However, in practice, some known activities may be classified
into previously unseen attack. It can be attributed to that the
coverage of training traffic for the known classes is insufficient.

B. Certification Goal

Smoothed traffic analyzer. Consider a traffic analyzer f :
Rd → Y . A smoothed traffic analyzer can be defined as:

g (x) = argmax
c∈Y

Pε∼D (f (x+ ε) = c) , (1)

where Y is the class set. ε is the noise perturbation and follows
the noise distribution D. Inspired by [15], [73], we can identify
cA and estimate pA based on g (x).

cA denotes the predicted class of g (x). We use a small
number of noised samples to identify cA:

cA = argmax
c∈Y

1

n0

n0∑
i=1

I
{
f
(
x+ ε(i)

)
= c
}
, (2)

where n0 is the number of the noised samples. ε(i) i = 1 . . . n0

is the noise perturbations sampled from the noise distribution
D. The indicator function I : X → {0, 1} satisfies that: (1)
When X is true, I{X} is 1. (2) When X is false, I{X} is 0.

Based on that identified cA, pA denotes the lower confi-
dence bound of Pε∼D(f (x+ ε) = cA). We use a large number
of noised samples to estimate pA:

pA = LowerConfidenceBound (nA, n, α) ,

nA =
n∑

i=1

I
{
f
(
x+ ε(i)

)
= cA

}
,

(3)

where nA is the number of the noised samples classified into
class cA. n is the number of noised samples. ε(i) i = 1 . . . n is
the noise perturbations sampled from the noise distribution D.
LowerConfidenceBound is the lower bound of the bino-
mial proportion confidence interval based on Beta distribution
[33], [9], whose parameter α is the significance level.

Certification goal. Given a perturbation δ ∈ Rd for the
input sample x, the local robustness certification of the traffic
analyzer is to search the largest local region Ω which satisfies
∀x+δ ∈ Ω, g(x) = g(x+ δ), where Ω is called as a robustness
region. Existing local robustness certification methods mainly
focus on the ℓp robustness guarantee whose robustness region
can be formulated as Ω =

{
x+ δ

∣∣ ∥δ∥p ≤ Rℓp

}
under ℓp

robustness radius Rℓp . It only provides the same robustness
region size for all dimensions. Different from CV and NLP,
the features of DL-based traffic analysis systems are highly
heterogeneous, so that the ℓp robustness guarantee is not
tight enough. Therefore, we extend the ℓp robustness guar-
antee to the dimension-heterogeneous robustness guarantee in
DL-based traffic analysis systems. To quantitatively describe
dimension-heterogeneous Ω, we define the dimension-wise
robustness radius vector r of Ω as follows.

ri = max
({
|δi|

∣∣ x+ δ ∈ Ω
})

i = 1, 2 . . . d. (4)

To describe the size of Ω, we extend the ℓp robustness
radius to the dimension-heterogeneous robustness radius R of
Ω as follows:

R =
1

d

d∑
i=1

ri, (5)

where R is the mean robustness radius of Ω in all dimensions.
To be noticed, when Ω is under the ℓp robustness guarantee,
R in Equation 5 is equal to the ℓp robustness radius.

C. BARS Overview

A brief overview of BARS is shown at the middle of
Figure 1. BARS is a general robustness certification framework
for DL-based traffic analysis systems based on boundary-
adaptive randomized smoothing. BARS consists of two stages:
the training stage and the certification stage.

At the training stage, BARS consists of two parts: Distri-
bution Transformer for generating optimized smoothing noise
(§IV) and two gradient based searching algorithms for opti-
mizing smoothing noise (§V). (1) We firstly build a Distribu-
tion Transformer which generates anisotropic optimized noise
shared by all samples. We theoretically prove the robustness
guarantee under the generated noise. (2) Then based on the
training dataset, we use the two gradient based searching
algorithms to optimize noise shape and noise scale of the
Distribution Transformer respectively. The above two parts
work together for providing tighter robustness guarantee under
highly heterogeneous features in the traffic analysis domain.

At the certification stage, based on the certification dataset,
BARS uses the trained Distribution Transformer to certify the
robustness of the DL-based traffic analyzers (§IV-D). Due to
the i.i.d. assumptions [22] and the same optimization objec-
tives, the optimized smoothing noise for the training dataset
is still suitable for the certification dataset. The certification
dataset can be offline testing dataset or online real-time dataset.
This robustness certification algorithm assumes nothing about
model designs and has high efficiency which guarantee uni-
versality and real-time capability respectively.

IV. CERTIFYING ROBUSTNESS WITH DISTRIBUTION
TRANSFORMER

In this Section, we firstly introduce the motivation of
the Distribution Transformer (§IV-A). Then we introduce the
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designs and the robustness guarantees of two Distribution
Transformers (§IV-B, §IV-C). Then we give the robustness cer-
tification procedure with the Distribution Transformer (§IV-D).

A. Motivation behind Distribution Transformer

As stated in Section II-A, traffic features are highly het-
erogeneous (attribute I). The isotropic classical smoothing
noise and ℓp robustness guarantee used in existing methods
cannot provide tight robustness guarantee in the traffic analysis
domain [15], [73]. Therefore, we propose a model, called
as Distribution Transformer, for converting isotropic classical
smoothing noise into anisotropic optimized smoothing noise
and providing dimension-heterogeneous robustness guarantee.
For conciseness, we call isotropic classical smoothing noise
as normalized noise and call anisotropic optimized smoothing
noise as feature noise.

The framework of the Distribution Transformer is shown
in Figure 2. Consider normalized noise εn ∈ Rd (εn ∼ Dn)
and feature noise εf ∈ Rd (εf ∼ Df ). The Distribution Trans-
former is formally defined as a map from normalized noise to
feature noise, Ψ : Rd → Rd. Then we have εf = Ψ(εn). In
this paper, we mainly consider Dn satisfying a condition: a.
Symmetric distribution, such as isotropic Gaussian N

(
0, σ2I

)
.

More details about the condition and the available distribution
are provided in Appendix A-A. Df will vary according to Ψ
types. With the Distribution Transformer, the smoothed traffic
analyzer can be reformulated as:

g (x) = argmax
c∈Y

Pεf∼Df (f (x+ εf ) = c) . (6)

According to [73], [52], the tightness of the robustness
guarantee depends on the noise distribution scales and the
noise distribution functions. Therefore, for tight robustness
guarantee, we propose two Distribution Transformers. Firstly,
Linear Distribution Transformer applies anisotropic distribu-
tions to feature noise to adapt to different scales and variances
of different traffic features. But its distribution functions in
different dimensions are the same. We call BARS with the
Linear Distribution Transformer as BARS-L.

Secondly, on the basis of the Linear Distribution Trans-
former, General Distribution Transformer applies special dis-
tribution functions to feature noise for more representation
capability. It means that we have more chances to select
suitable distribution functions for tighter robustness guarantee.
Furthermore, inspired by BLUE [35], feature noise can use
the superposition of multiple special distributions for more
representation capability. BLUE is one of the most practical
estimators in the statistical signal processing domain. Similar
to BLUE, we define the superposition of multiple special
distributions as their weighted linear sum. We call BARS with
the General Distribution Transformer as BARS-G.

B. Linear Distribution Transformer

Model design. Consider normalized noise εn ∼ Dn. The
Linear Distribution Transformer ΨL can be formulated as:

ΨL (εn) = w ⊙ εn,

wi = t ·
(
wS + wI

i

)
i = 1, 2 . . . d,

(7)

where ⊙ is the Hadamard product, and w is the parameter
vector of Ψ. w consists of t, wS and wI

i which are trainable
parameters, and satisfy t ≥ 0, wS ≥ 0, wI

i ≥ 0. t is the scale

Normalized Noise Distribution Feature Noise Distribution

Feature DistributionNormalized Distribution

Fig. 2: Distribution Transformer. The model in the middle is
the Distribution Transformer. Modules with different colors
work in different feature dimensions. Each module converts the
normalized noise distribution on the left side into the feature
noise distribution on the right side in a feature dimension.

factor shared in all dimensions. The value of t is determined
by the searching algorithm in Section V-B. wS is the weight
parameters Shared in all dimensions. wI

i is the weight parame-
ters only used in the ith dimension Independently. The values
of wS and wI

i are determined by the searching algorithm in
Section V-A. Then we have feature noise εf = w ⊙ εn.

Robustness guarantee. Suppose that the smoothed traffic
analyzer has returned cA in Equation 2 and pA in Equation
3, which denote the predicted class of g (x) and the lower
confidence bound of Pεf∼Df

(f (x+ εf ) = cA) respectively.
The robustness guarantee with the Linear Distribution Trans-
former is introduced in Theorem 1 as follows, whose detailed
proof is provided in Appendix B-A.

Theorem 1. Given a smoothed traffic analyzer g and the Lin-
ear Distribution Transformer ΨL, suppose that the robustness
region Ω satisfies:

Ω =
{
x+ δ

∣∣∣∥w′ ⊙ δ∥p ≤ rDn (pA)
}
,

w′
i =

1

t·(wS+wI
i )

i = 1, 2 . . . d,
(8)

where δ is the perturbation, rDn
(pA) is the ℓp robustness

radius of randomized smoothing [15], [73]. Then we have:

∀x+ δ ∈ Ω, g(x) = g(x+ δ). (9)

Based on Equation 4, the dimension-wise robustness radius
vector r of Ω in Theorem 1 can be formulated as follows:

ri = wi · rDn (pA) i = 1, 2 . . . d. (10)

Based on Equation 5, the dimension-heterogeneous robust-
ness radius R of Ω in Theorem 1 can be formulated as follows:

R =
1

d

d∑
i=1

wi · rDn (pA) . (11)

Equation 10 and Equation 11 are derived in Appendix B-A.

C. General Distribution Transformer

Model design. Consider normalized noise εn ∼ Dn and
feature noise εf ∼ Df . Let Fn : Rd → [0, 1] and Ff :
Rd → [0, 1] be the cumulative distribution function (CDF)
of εn and εf respectively. Because all dimensions of εn
and εf are independent, Fn and Ff can be decomposed as
Fn (εn) =

∏d
i=1 Fn,i (εn,i), Ff (εf ) =

∏d
i=1 Ff,i (εf,i).

It should be noted that for those CDFs which are not
strictly monotone increasing in R (e.g., Uniform), we should
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change the domain of definition from R to its subset in which
the probability of noise is not zero and the CDF is strictly
monotone increasing (e.g., [−λ, λ) in U(−λ, λ)). Therefore,
in this paper, both of Fn,i and Ff,i are strictly monotone
increasing and reversible. For ease of understanding and no
loss of generality, we will only consider that Fn and Ff are
strictly monotone increasing in R in the rest of this paper.

General Distribution Transformer ΨG can be defined as:

ΨG
i (εn,i) = F−1

f,i ◦ Fn,i (εn,i) i = 1, 2 . . . d, (12)

where ΨG
i is the sub-formula of ΨG in the ith dimension.

ΨG has four properties: a. Distribution transformation, b.
Strictly monotone increasing in all dimensions, c. Reversibility,
d. Odd in all dimensions. These properties will be used to
prove the robustness guarantee with the General Distribution
Transformer. More details are given in Appendix A-B.

To provide tighter robustness guarantee in the traffic anal-
ysis domain, we set Df as the weighted linear sum of multiple
anisotropic special distributions. Ff,i can be formulated in the
form of F−1

f,i as:

F−1
f,i (pi) = t ·

K∑
k=1

(
wS

k + wI
i,k

) (
H

(k)
f

)−1

(pi) i = 1, 2 . . . d,

pi = Fn,i (εn,i) i = 1, 2 . . . d,
(13)

where H
(k)
f : R→ [0, 1] is the CDF of the kth special distri-

bution and K is the number of special distributions. t, wS
k and

wI
i,k are trainable parameters of Ff , and satisfy t ≥ 0, wS

k ≥ 0,
wI

i,k ≥ 0. t is the scale factor shared by all special noise
distributions in all dimensions. wS

k is the weight parameters
Shared by the kth special distribution in all dimensions. wI

i,k is
the weight parameters only used by the kth special distribution
in the ith dimension Independently. H

(k)
f needs to satisfy

four conditions: a. Bounded, b. Strictly monotone increasing
and reversible, c. Continuity, d. Symmetric distribution. These
properties can be used to select feature noise distribution
functions. More details are given in Appendix A-C.

The General Distribution Transformer gives us more
chances to choose suitable distribution functions to provide
tighter robustness guarantee. H(k)

f could be not only common
distribution functions (e.g., Gaussian distribution), but also
other special distribution functions which satisfy the above
conditions (e.g., Sigmoid distribution). More available distri-
bution functions are provided in Appendix A-C.

Robustness guarantee. The robustness guarantee with the
General Distribution Transformer is introduced in Theorem 2
as follows, whose detailed proof is provided in Appendix B-B.
For that, we need to extend the smoothed traffic analyzer g(x)
to g(x, εf ) by regarding feature noise εf as a variable.

Theorem 2. Given a smoothed traffic analyzer g and the Gen-
eral Distribution Transformer ΨG. Suppose that the robustness
region Ω satisfies:

Ω =

{
x+ δ

∣∣∣ ∥∥∥∥(ΨG
)−1

(δ)

∥∥∥∥
p

≤ rDn (pA)

}
, (14)

where δ is the perturbation, rDn
(pA) is the ℓp robustness

radius of randomized smoothing [15], [73]. Then we have:

Algorithm 1: Certifying Robustness with Distribu-
tion Transformer

Input:
Certification set X =

{
x(i)

}
i = 1 . . . N . f . Ψ. Noised

sample number n0, n.
Output:
Certification results CA, V , R.

1 CA,V,R ← ∅,∅,∅
2 for i← 1 to N do
3 c

(i)
A ← argmax

c∈Y
1
n0

∑n0
j=1 I

{
f
(
x(i) + ε

(j)
f

)
= c
}

▷ ε
(j)
f ∼ Df

4 n
(i)
A ←

∑n
j=1 I

{
f
(
x(i) + ε

(j)
f

)
= cA

}
5 p

(i)
A ← LowerConfidenceBound

(
n
(i)
A , n, α

)
6 c

(i)
A ← c

(i)
A if p(i)A ≥ 0.5 else ABSTAIN

7 if Ψ is Linear then
8 r(i) ← w ∗ rDn

(
p
(i)
A

)
if p(i)A ≥ 0.5 else 0

9 end
10 if Ψ is General then
11 r(i) ← Ψ

(
rDn

(
p
(i)
A

)
∗ 1
)

if p(i)A ≥ 0.5 else 0

12 end
13 R(i) ← 1

d

∑d
k=1r

(i)
k

14 CA,V,R← CA ∪
{
c
(i)
A

}
,V ∪

{
r(i)
}
,R∪

{
R(i)

}
15 end
16 return CA,V,R

∀x+ δ ∈ Ω, g(x, εf ) = g
(
x+ δ, ε′

f

)
,

εf,i = ΨG
i (εn,i) i = 1, 2 . . . d,

ε′f,i = ΨG
i

((
ΨG

i

)−1
(δi) + εn,i

)
− δi i = 1, 2 . . . d,

(15)

where εf,i and ε′f,i are feature noise, εn,i is normalized noise,
ΨG

i is the sub-formula of ΨG in the ith dimension.

Based on Equation 4, the dimension-wise robustness radius
vector r of Ω in Theorem 2 can be formulated as follows:

ri = ΨG
i (rDn (pA)) i = 1, 2 . . . d. (16)

Based on Equation 5, the dimension-heterogeneous robust-
ness radius R of Ω in Theorem 2 can be formulated as follows:

R =
1

d

d∑
i=1

ΨG
i (rDn (pA)) . (17)

Equation 16 and Equation 17 are derived in Appendix B-B.

D. Certification Procedure with Distribution Transformer

The procedure of certifying robustness with the Distribu-
tion Transformer is shown in Algorithm 1. Firstly, we identify
the predicted class cA based on Equation 2 and estimate the
lower confidence bound of cA probability based on Equation
3 (line 3 - line 6). Secondly, we calculate the dimension-wise
robustness radius vector r and the dimension-heterogeneous
robustness radius R based on Equation 10, 11 (line 7 - line 9,
line 13) or Equation 16, 17 (line 10 - line 13).

To be noticed, if pA < 0.5 holds, we execute cA ←
ABSTAIN and r ← 0 for the following reasons [15]. In exact
randomized smoothing, we need the lower confidence bound
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of the top class probability pA and the upper confidence bound
of the runner-up class probability pB . To simplify calculation,
we always use 1 − pA to estimate pB . To satisfy pA ≥ pB ,
we need pA ≥ 1− pA (i.e., pA ≥ 0.5). When pA < 0.5 holds,
the estimation is invalid and the local robustness is too weak.
We will abstain from making robustness certification with this
sample and execute cA ← ABSTAIN and r ← 0.

V. OPTIMIZING PARAMETERS OF NOISE DISTRIBUTIONS

In this section, we discuss how to optimize the feature
noise εf generated by the Distribution Transformer. We call
the relative noise distributions between different dimensions
as the noise shape, and call the overall scale of the noise
distributions in all dimensions as the noise scale. We introduce
two algorithms for optimizing the noise shape (§V-A) and the
noise scale (§V-B) of the feature noise εf respectively. As
shown in Figure 1, we should firstly optimize the noise shape
and then optimize the noise scale.

A. Optimizing Noise Shape

In this section, we introduce a gradient based algorithm
for optimizing the noise shape. In this algorithm, we optimize
the weight parameters wS

k , w
I
i,k k=1...K i=1...d except the scale

factor t. In other words, we set the optimized parameter set as
Θ =

{
wS

k , w
I
i,k

}
k=1...K i=1...d and fix t = 1. To be noticed,

we have K = 1 in the Linear Distribution Transformer.

Motivation. Noise shape should adapt to highly heteroge-
neous traffic features to provide tighter robustness guarantee.
This problem can be converted into generating feature noise as
close to the classification boundary as possible. However, DL-
based models are highly nonlinear, so the classification bound-
ary cannot be formulated trivially [26], [27], [79]. Inspired by
GAN [23], [4], the Distribution Transformer is treated as a
generator, and the traffic analyzer is treated as a discriminator.
Different from GAN, the parameters of the traffic analyzer
are fixed, and only the parameter set Θ of the Distribution
Transformer is updated based on gradients back-propagated
from the traffic analyzer.

Algorithm. Given a training dataset
{
x(i)

}
i=1...N, the loss

function L for optimizing the noise shape is constructed as:

L = 1
N

N∑
i=1

Eεn∼Dn

(
Lw

(
x(i), εn

)
+ Lc

(
x(i), εn

))
+ λΛ(Θ),

Lw

(
x(i), εn

)
= I

{
f
(
x(i) +Ψ(εn)

)
̸= f

(
x(i)

)}
·

LC,w

(
s
(
x(i) +Ψ(εn)

)
, f
(
x(i)

))
,

Lc

(
x(i), εn

)
= I

{
f
(
x(i) +Ψ(εn)

)
= f

(
x(i)

)}
·

LC,c

(
s
(
x(i) +Ψ(εn)

)
, f
(
x(i)

))
,

Λ(Θ) =
∑

w∈Θ

log
(
1 + e−w

)
,

(18)
where εn ∼ Dn is the normalized noise. Θ is the optimized
parameter set of the Distribution Transformer Ψ. I is the
indicator function. f is the base traffic analyzer. s is the
classification score function of f (e.g., RMSE of Kitsune
[51], softmax probabilities of ACID [16]). L consists of three
parts including the loss function for wrongly-classified noised
samples Lw, the loss function for correctly-classified noised

Optimized NoiseInitial NoiseCertified Sample

Fig. 3: Optimizing noise shape.

samples Lc, the regularizer Λ(Θ) with a hyper-parameter λ
controlling the regularization strength.

A two dimensional toy example is shown in Figure 3.
Minimizing Lw will make wrongly-classified noised samples
(above and below) move towards the correct decision region.
Minimizing Lc will make correctly-classified noised samples
(left and right) move towards the wrong decision region. In
this way, noised samples will be close to the classification
boundary in multiple dimensions. Both LC,w and LC,c are
derived from the loss function of the specific traffic analyzer.
Some practical cases of LC,w and LC,c are provided in Section
VI. To be noticed, a noised sample cannot exist in both Lw

and Lc at the same time, but must exist in one of them.

Although minimizing Lw and Lc can make noised samples
close to the classification boundary in most dimensions, the
Distribution Transformer still performs poorly in some di-
mensions. Thus we introduce a regularizer Λ(Θ). Minimizing
Λ(Θ) will maximize the weight parameters in Θ, and will not
destroy the effect of Lw and Lc. It can provide sufficiently
tight robustness guarantee in all dimensions.

B. Optimizing Noise Scale

In this section, we introduce a gradient based searching
algorithm for optimizing the noise scale. In this algorithm, we
fix the weight parameters wS

k , w
I
i,k k=1...K i=1...d as the values

obtained in Section V-A and only optimize the scale factor t.
To be noticed, we have K = 1 in the Linear Distribution
Transformer.

Motivation. According to [52], the tightness of the ro-
bustness guarantee depends on the noise scale. Both of too
small and too large noise scale will generate loose robustness
guarantee. Therefore, we initialize t = 0 and update t in the
direction of sgn

(
∂R̄
∂t

)
till R̄ has the maximum value (where

R̄ is the mean of dimension-heterogeneous robustness radii R
of the training dataset X ).

Algorithm. The procedure of optimizing the noise scale
is shown in Algorithm 2. We initialize t to 0 (line 1) and
initialize the sign record variable slast to 1 (line 2) due to
sgn

(
∂R̄
∂t

∣∣∣
t=0

)
= 1. In each loop iteration, the procedure can be

divided into three parts. Firstly, because R̄ is not differentiable
to t, we add a small perturbation δt to t and estimate the
gradient of R̄ (line 4 - line 8). In the line 5, I

{
c
(i)
A = f

(
x(i)

)}
is a term against wrong predictions with large robustness
radii. Same goes for the line 7. Secondly, we judge whether
sgn

(
∂R̄
∂t

)
in this iteration keeps the same as that in the last

iteration. If not, we will decay the perturbation δt and the
update step size γ with the decay factor τ (line 9 - line 14).
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Algorithm 2: Optimizing Noise Scale
Input:
Training dataset X =

{
x(i)

}
i = 1 . . . N . f . Ψ with

optimized noise shape. Noised sample number n0, n.
Initial perturbation δt. Initial update step size γ.
Decay factor τ . Maximum iteration time Ti.
Maximum decay time Td.
Output:
Optimization results t, CA, V , R.

1 t← 0
2 slast ← 1
3 while Ti > 0 ∧ Td > 0 do
4 CA,V,R ← Certify(X , f,Ψt, n0, n)

5 R̄← 1
N

∑N
i=1I

{
c
(i)
A = f

(
x(i)

)}
∗R(i)

▷ c
(i)
A ∈ CA,x(i) ∈ X , R(i) ∈ R i = 1 . . . N

6 C′A,V ′,R′ ← Certify(X , f,Ψt+δt , n0, n)

7 R̄′ ← 1
N

∑N
i=1I

{
c
′(i)
A = f

(
x(i)

)}
∗R′(i)

▷ c
′(i)
A ∈ C′A,x(i) ∈ X , R′(i) ∈ R′ i = 1 . . . N

8 g ← R̄′−R̄
δt

9 if sgn(g) ∗ slast = −1 then
10 δt ← τ ∗ δt
11 γ ← τ ∗ γ
12 slast ← sgn (g)
13 Td ← Td − 1
14 end
15 t← t+ γ ∗ sgn(g)
16 Ti ← Ti − 1
17 end
18 CA,V,R ← Certify(X , f,Ψt, n0, n)
19 return t, CA,V,R

Thirdly, we update t with the update step size γ in the direction
of sgn

(
∂R̄
∂t

)
(line 15). When the iteration time reaches Ti or

the decay time reaches Td, the algorithm terminates (line 3).

VI. PRACTICAL APPLICATION STRATEGY FOR BARS

In this section, we introduce some practical application
strategies for implementing BARS in three traffic analyzers.

Filtering out unforeseen classes. In zero-positive NIDSs
(Kitsune [51]) and concept drift detection systems (CADE
[74]), the outlier space is large and sparse. Samples from
unforeseen classes are quite far away from the classification
boundary. It is not necessary to certify their local robustness.
Therefore, BARS will not certify the samples which are clas-
sified into unforeseen classes by traffic analyzers.

The setting of the normalized noise distribution Dn. We
mainly discuss ℓ2 robustness guarantee for Dn, which is one
of the most important ℓp robustness guarantees. We set Dn as
the standard Gaussian distribution N (0, I), which is a state-
of-the-art noise distribution for ℓ2 robustness guarantee [15].

Reducing certification delay. During building the Distribution
Transformer, we do not use the exact implementation for

Gaussian CDF Φ. For reducing certification delay, inspired by
[13], [75], [1], we use the weighted Sigmoid function σ(α · z)
to approximate Φ based on least squares approximation:

argmin
α

Ez∼N (0,1)

(
∥σ (α · z)− Φ(z)∥22

)
,

s.t. σ (α · z) = 1

1 + e−α·z .
(19)

LC,w and LC,c of three practical traffic analyzers in
Equation 18. As stated in Section V-A, minimizing LC,w will
cause correct classification. Minimizing LC,c will cause wrong
classification.

LC,w and LC,c of zero-positive NIDSs (Kitsune) and
concept drift detection systems (CADE) are formulated as
follows:

LC,w (s) = s− ϕ,

LC,c (s) = ϕ− s,
(20)

where s denotes s (x+Ψ(εn)). ϕ is the detection threshold.
In zero-positive NIDSs (Kitsune), s is RMSE of the noised
sample. ϕ is the threshold for RMSE. In concept drift detection
systems (CADE), s is the final detection score of the noised
sample. ϕ is the threshold for detecting outlier samples.

LC,w and LC,c of supervised multi-classification systems
(ACID [16]) are formulated as follows:

LC,w (s, f) = 1
|Y|

∑
c∈Y

log
(
1 + e(I{c ̸=f}−I{c=f})·sc

)
,

LC,c (s, f) =
1

|Y|
∑
c∈Y

log
(
1 + e(I{c=f}−I{c̸=f})·sc

)
,

(21)

where s denotes s (x+Ψ(εn)) and f denotes f (x). In su-
pervised multi-classification systems (ACID), s is the softmax
probabilities of the noised sample. f is the classification result
of the original training sample.

Class-specific Distribution Transformer. Because traffic fea-
ture distributions in different classes are significantly different.
To provide tight robustness guarantee, for multi-class datasets,
we build a Distribution Transformer for each class separately.
Samples from a specific class share the feature noise εf
generated by the special Distribution Transformer.

Noise Data Augmentation Retraining. Inspired by [15], [52],
we can retrain the base traffic analyzer f with noise data
augmentation to improve performance and robustness. The data
augmentation loss function L′ is constructed as:

L′ =
1

N

N∑
i=1

Eεf∼Df

(
L◦
(
x(i) + εf , y

(i)
))

, (22)

where L◦ is the base loss function of f , and εf is the feature
noise generated by BARS. Minimizing L′ will retrain f to
classify noised samples x(i) + εf into the ground truth y(i) of
their original samples x(i). The retraining is optional.

Robustness radius for certification dataset. To quantita-
tively describe the robustness guarantee of the traffic analyzer
under a certification dataset, inspired by [15], we extend
the dimension-wise robustness radius vector r (Equation 4,
Equation 10, Equation 16) to its mean r̄ in a dataset. We define
the jth dimension of r̄ as r̄j = 1

N

∑N
i=1I

{
c
(i)
A = y(i)

}
· r(i)j ,

where I
{
c
(i)
A = y(i)

}
is the term against wrong predictions

with large robustness radii. Besides, we extend the dimension-
heterogeneous robustness radius R (Equation 5, Equation
11, Equation 17) to its mean in a dataset which is called
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Selecting Hyper-Parameter (§VII-B)

Selecting Function Implementation (§VII-B) 

Ablation Study for Module Importance (§VII-J)

Foundation of BARS

Evaluating Robustness Guarantee Tightness (§VII-C)

Evaluating Certification Delay (§VII-D)

Performance of BARS Application of BARS

Reducing False Alarms (§VII-F)
CADE

Quantitatively Evaluating Robustness (§VII-E)
Kitsune

Evasion Attack Awareness (§VII-G)

Evasion Attack Defense (§VII-H)

ACID

Explaining Attack Detection (§VII-I)

Fig. 4: The roadmap of experiments.
TABLE III: The sizes of experiment datasets and the special distribution functions Hf used for building feature noise distribution
functions Ff for BARS-G in different traffic classes and traffic analyzers. In Kitsune, each attack-specific dataset consists of
benign traffic and malicious traffic. In CADE and ACID, the datasets consist of corresponding four classes from IDS2018.

Kitsune [51] CADE [74] (IDS2018 [57]) ACID [16] (IDS2018 [57])

Mirai SSDP-Flood Benign SSH-Bruteforce DoS-Hulk Infiltration Benign FTP-Bruteforce DDoS-HOIC Botnet-Zeus&Ares

Training 55000 110000 52996 9385 34789 7390 52996 12590 53476 22584
Certification 709137 1390000 13249 2346 8697 1847 13249 3148 13369 5646
Hf ISRU ISRU ISRU ISRU Gaussian Arctan ISRU Gaussian ISRU Gaussian Arctan ISRU ISRU ISRU ISRU

as mean robustness radius (MRR). We define MRR as
1
N

∑N
i=1I

{
c
(i)
A = y(i)

}
·R(i). Between traffic analyzers, larger

MRR indicates stronger robustness. Between certification
methods, larger MRR indicates tighter robustness guarantee.

VII. EXPERIMENTS

In this section, we firstly introduce the experimental setup
(§VII-A). Then we evaluate hyper-parameter values and func-
tion implementations (§VII-B). Then we perform two com-
parison experiments of BARS and baseline methods (§VII-C,
§VII-D). Besides, we provide five application cases of BARS
(§VII-E, §VII-F, §VII-G, §VII-H, §VII-I). Finally, we perform
the ablation study of algorithm modules in BARS (§VII-J). As
shown in Figure 4, we provide the experiment roadmap of this
paper to show the relationships of the experiments.

A. Experimental Setup

DL-based traffic analysis systems. We evaluate the perfor-
mance of BARS in three DL-based traffic analyzers: Kitsune
[51] (zero-positive NIDS), CADE [74] (concept drift detection
system), ACID [16] (supervised multi-classification system).

The experiment datasets are shown in Table III. The
datasets for Kitsune are based on the open-source datasets in
the original paper. These datasets are built with the traffic in a
IoT network. We use two typical attack-specific datasets, Mirai
and SSDP-Flood. We use the first 55000 and 110000 packets
for training respectively and use the others for certification.
The datasets for CADE and ACID are based on IDS2018
[57]. IDS2018 use flow features to profile network traffic in a
large network testbed. In CADE, we certify the Benign class,
the SSH-Bruteforce class, the DoS-Hulk class with the New
Infiltration dataset which treats the Infiltration class as the drift
class. We certify the Infiltration class with the New DoS-Hulk
dataset which treats the DoS-Hulk class as the drift class. In
ACID, we build a four-class dataset with the Benign class,
the FTP-Bruteforce class, the DDoS-HOIC class, the Botnet-
Zeus&Ares class from IDS2018. In both of CADE and ACID,
we split the training-certification sets with a ratio of 8:2.

To accurately certify the robustness of the three traffic
analyzers, we implement them based on their open-source code
(Kitsune2, CADE3, ACID4). We use the parameter values
in the original papers. All three traffic analyzers achieve the
similar performances to the original papers.

2Kitsune: https://github.com/ymirsky/Kitsune-py
3CADE: https://github.com/whyisyoung/CADE
4ACID: https://github.com/Mobile-Intelligence-Lab/ACID

The settings of BARS. For the normalized noise distribution
Dn of BARS-L and BARS-G, as stated in Section VI, we
mainly discuss ℓ2 robustness guarantee and set Dn as the stan-
dard Gaussian distribution N (0, I). For experiment fairness,
the settings of BARS-L and BARS-G are the same except
for feature noise distribution functions Ff . For the feature
noise distribution Df of BARS-L, according to Section IV-B,
Ff of BARS-L is the same as the function of Dn (Gaussian
distribution function Φ). For the feature noise distribution Df

of BARS-G, due to the differences between traffic classes and
the differences between traffic analyzers, we should separately
build a suitable Ff with the special distribution functions Hf

in Table X for each traffic class and each traffic analyzer.
The settings of Hf are shown in Table III. Besides, we
set the noised sample number for identifying cA, estimating
pA, optimizing the noise shape as n0 = 100, n = 10000,
nt = 1000 respectively. We use the optimizer Adam [38] for
optimizing the noise shape.

Baseline methods. We compare BARS with baseline cer-
tification methods including CROWN-IBP [77] (linear re-
laxation certification), α-CROWN [72], β-CROWN [66] (com-
plete certification), Vanilla Randomized Smoothing
[15] (probabilistic certification). Vanilla Randomized
Smoothing is abbreviated as V.R.S. in this paper. To
fairly compare BARS with baseline methods, we use the
mature open-source implementations for baseline methods. For
CROWN-IBP, α-CROWN, β-CROWN, we use the newest open-
source implementation auto LiRPA5 which optimizes these
methods with general computational graphs [71]. For V.R.S.,
we use the open-source implementation6 in the original paper.
For experiment fairness, we use the noise optimization algo-
rithms of BARS to optimize V.R.S.. For experiment fairness,
we certify ℓ2 robustness in all baseline methods, which is
consistent with the normalized noise of BARS.

Software and hardware. We implement BARS with Py-
Torch under Python 3. Experiments are conducted on a Dell
PowerEdge R740 server with 24-core Intel(R) Xeon(R) Gold
6240R CPU @ 2.40GHz, 251GB RAM, one NVIDIA GeForce
RTX 3090 GPU.

B. Hyper-parameter Value and Function Implementation

In this section, we analyze the influence of two important
hyper-parameters and Gaussian distribution function imple-
mentations on the performance of BARS. The experiment

5auto LiRPA: https://github.com/KaidiXu/auto LiRPA
6V.R.S.: https://github.com/locuslab/smoothing
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TABLE IV: MRR of BARS-G under different noised sample numbers n for estimating pA and different regularizer weights λ
for optimizing noise shapes. Certification delays (sec.) and MRR of BARS-G under exact and approximate Gaussian distribution
function implementations. Param., Func., Appro. denote “Parameter”, “Function”, “Approximate” respectively.

Kitsune [51] CADE [74] (IDS2018 [57]) ACID [16] (IDS2018 [57])
Param./Func. Mirai SSDP-Flood Param./Func. Benign SSH-Bruteforce DoS-Hulk Infiltration Param./Func. Benign FTP-Bruteforce DDoS-HOIC Botnet-Zeus&Ares
n = 1000 0.2561 0.7448 n = 1000 0.0150 0.0153 0.0105 0.1606 n = 1000 0.3130 0.1083 0.1367 0.3436
n = 4000 0.3571 1.0766 n = 4000 0.0201 0.0173 0.0124 0.2058 n = 4000 0.4190 0.1364 0.1702 0.4538
n = 7000 0.3961 1.2193 n = 7000 0.0219 0.0179 0.0130 0.2213 n = 7000 0.4588 0.1457 0.1803 0.4908
n = 10000 0.4213 1.3059 n = 10000 0.0229 0.0182 0.0133 0.2305 n = 10000 0.4835 0.1513 0.1856 0.5111

λ = 1 × 10−5 0.3687 1.1907 λ = 1 × 10−3 0.0136 0.0092 0.0080 0.1371 λ = 1 × 10−4 0.4642 0.1475 0.1779 0.4625
λ = 1 × 10−3 0.4213 1.3059 λ = 1 × 10−1 0.0229 0.0182 0.0133 0.2305 λ = 1 × 10−2 0.4835 0.1513 0.1856 0.5111
λ = 1 × 10−1 0.3086 1.1541 λ = 1 × 101 0.0171 0.0071 0.0060 0.1022 λ = 1 × 100 0.3681 0.1301 0.1623 0.4059
Exact (Delay/s) 186.47 188.05 Exact (Delay/s) 1543.15 686.23 1326.03 552.09 Exact (Delay/s) 1571.79 494.23 1562.98 882.35
Exact (MRR) 0.1639 0.4764 Exact (MRR) 0.0100 0.0077 0.0116 0.1631 Exact (MRR) 0.2297 0.0693 0.0741 0.2050

Appro. (Delay/s) 20.17 20.04 Appro. (Delay/s) 10.87 3.44 10.39 2.77 Appro. (Delay/s) 34.82 12.67 37.88 23.49
Appro. (MRR) 0.4213 1.3059 Appro. (MRR) 0.0229 0.0182 0.0133 0.2305 Appro. (MRR) 0.4835 0.1513 0.1856 0.5111

CROWN-IBP -CROWN -CROWN Vanilla Randomized Smoothing BARS-L BARS-G
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(b) CADE [74].
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(c) ACID [16].

Fig. 5: Certified accuracy and robustness radius of different robustness certification methods in various traffic analysis systems.

results are shown in Table IV. Due to space limit, we mainly
analyze BARS-G. As stated in Section VII-A, the correspond-
ing settings of BARS-L are the same as those of BARS-G.

Important hyper-parameter. As n increases, MRR will in-
crease and the growth rate of MRR will decrease. To obtain
tight robustness guarantee with high certification efficiency, we
set n = 10000 in three traffic analyzers. Both of too small and
too large λ will generate the loose robustness guarantee. Thus
we select the suitable value for λ in each traffic analyzer.

Gaussian distribution function implementation. Based on
the practical application strategy in Section VI, certification
delays can be significantly reduced by the approximate Gaus-
sian distribution function with tighter robustness guarantee.

C. Evaluating Robustness Guarantee Tightness

Experiment motivation. When the traffic analyzer is certi-
fiably robust in the robustness region, robustness guarantee
tightness is important to measure whether the robustness region
is suitable enough for the traffic analyzer [15], [73].

Experiment design. In this experiment, we compare the
robustness guarantee tightness of BARS with baseline methods
in three traffic analyzers based on certified accuracy and
robustness radius. Inspired by [15], we can define the certi-
fied accuracy y under the dimension-heterogeneous robustness
guarantee. It is the fraction of the certified dataset which
is classified correctly and has larger robustness radius R
than the given least robustness radius x. Given the least
robustness radius x, higher certified accuracy y indicates
tighter robustness guarantee of certification methods. We de-
fine the certified accuracy-robustness radius curve as y =

1
N

∑N
i=1I

{
c
(i)
A = y(i) ∧R(i) > x

}
, where y is the certified

accuracy at the least robustness radius x.

In CROWN-IBP [77], α-CROWN [72], β-CROWN [66], for
plotting the complete curve, we need to run them at many
times with different perturbations (100 times in this paper).
Thus they have the time complexity O (N). While in V.R.S.
[15] and BARS, we just need to run them at a time with the
time complexity O (1). The dimension-heterogeneous version
of CROWN-IBP, α-CROWN, β-CROWN should separately use
different perturbations in different dimensions, which will
lead to combination explosion. Thus for plotting the complete
curve, they have the time complexity O

(
Nd

)
. It is difficult to

implement them in a limited time. In future work, we will try
to extend them to the dimension-heterogeneous version.

Experiment results. The experiment results are shown in
Figure 5. From the results, we have the following observations:

• BARS significantly outperforms baseline methods in all
certified DL-based traffic analyzers. It can be attributed to
that baseline methods only focus on ℓp robustness guarantee
which is loose under heterogeneous traffic features.
• BARS-G outperforms BARS-L due to superposition distri-

butions for feature noise.
• CROWN-IBP cannot be used for certifying the robustness

of ACID [16]. Because ACID uses activation functions
based on the Sine function. However, there is no reasonable
linear relaxation method for these activation functions so
far. It reflects the poor universality and flexibility of linear
relaxation certification. α-CROWN, β-CROWN cannot certify
the robustness of ACID due to the same reason.
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TABLE V: Comparison of certification delay (sec.) and MRR of different robustness certification methods in various traffic
analysis systems. The data format of table cells is “Delay (MRR)”. BARS-G (#) denotes #-distribution BARS-G.

Method Kitsune [51] CADE [74] (IDS2018 [57]) ACID [16] (IDS2018 [57])

Mirai SSDP-Flood Benign SSH-Bruteforce DoS-Hulk Infiltration Benign FTP-Bruteforce DDoS-HOIC Botnet-Zeus&Ares

CROWN-IBP 193.85 (0.2805) 132.34 (0.5140) 59.15 (0.0080) 24.51 (0.0041) 53.99 (0.0036) 23.27 (0.0359) – – – –
α-CROWN 14122.29 (0.3003) 10251.44 (0.5634) 5792.02 (0.0085) 1491.54 (0.0041) 3398.24 (0.0036) 1096.30 (0.0896) – – – –
β-CROWN 10055.05 (0.2902) 7362.00 (0.5514) 1480.16 (0.0085) 375.28 (0.0041) 938.11 (0.0036) 283.78 (0.0893) – – – –
V.R.S. 13.21 (0.1952) 14.19 (0.7815) 5.32 (0.0088) 1.18 (0.0043) 4.82 (0.0035) 0.95 (0.0941) 29.66 (0.3117) 10.40 (0.1107) 35.74 (0.1408) 18.09 (0.3416)
BARS-L 13.79 (0.3414) 14.29 (1.0305) 5.81 (0.0178) 1.23 (0.0167) 5.04 (0.0097) 1.05 (0.1752) 29.88 (0.3953) 11.39 (0.1336) 34.94 (0.1622) 17.73 (0.4070)
BARS-G (1) 20.17 (0.4213) 20.04 (1.3059) 10.87 (0.0229) 2.41 (0.0138) 9.63 (0.0132) 1.95 (0.2302) 34.82 (0.4835) 12.67 (0.1513) 37.88 (0.1856) 23.49 (0.5111)
BARS-G (2) 21.41 (0.3546) 20.65 (1.1297) 11.68 (0.0195) 2.59 (0.0170) 10.39 (0.0133) 2.13 (0.2244) 35.89 (0.4229) 12.24 (0.1489) 39.86 (0.1846) 23.13 (0.4409)
BARS-G (3) 27.00 (0.3487) 25.63 (1.1310) 15.52 (0.0189) 3.44 (0.0182) 13.61 (0.0120) 2.77 (0.2305) 39.55 (0.3869) 13.43 (0.0977) 43.97 (0.1322) 24.80 (0.3146)

Attacker CROWN-IBPBARSV.R.S.
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Fig. 6: Real-Time Robustness Certification.

D. Evaluating Certification Delay

Experiment motivation. Certification efficiency is also im-
portant in practical application, especially for real-time certi-
fication. Certification delay determines whether operators can
rapidly respond to attack activities (e.g., evasion attack [54]).

Experiment design. As shown in Figure 6, in this experiment,
we compare the certification delay and MRR (defined in
Section VI) of BARS with baseline methods in three traffic
analyzers. To be aware of evasion attack, we need to obtain
the largest robustness radius by plotting a certified accuracy-
robustness radius curve as shown in Figrue 5. In real-time
certification, it is not realistic to certify all samples of datasets.
Therefore, when the dataset size is large enough, we sample
1000 samples in Kitsune [51] and sample 10000 samples
in CADE [74] and ACID [16]. Otherwise, we use the entire
dataset. To reduce experiment errors and obtain accurate certi-
fication delays, we repeat each experiment for 10 times. Then
we drop the outlier values and record the mean of non-outlier
values as the final result. In BARS-G, the certification delay
depends on the number of special distributions. According to
Table III, we should evaluate the certification delays of 1, 2, 3-
distribution BARS-G in all traffic analyzers. In different traffic
analyzers, each #-distribution BARS-G uses the fixed special
distributions according to Table III. 1-distribution BARS-G
uses ISRU. 2-distribution BARS-G uses ISRU, Gaussian. 3-
distribution BARS-G uses ISRU, Gaussian, Arctan.

Experiment results. The experiment results are shown in
Table V. From the results, we have the following observations:

• The certification delays of BARS are lower than baseline
methods except for V.R.S. [15]. Because noised sample
classification of BARS can be implemented in parallel.
But compared with V.R.S., BARS uses optimized noise
distributions with more computation and parameters.

• The certification delays of complete certification (α-CROWN
[72], β-CROWN [66]) are highest. This reflects its weak real-
time capability due to high computational complexity.

• As the number of special distributions increases, the certifi-
cation delays of BARS-G increase due to more computation
and parameters. However, the increase is negligible com-
pared with complete certification delays.

• MRR of BARS-G has no causal relationship with the num-
ber of special distributions. In Kitsune Mirai, MRR de-
creases with the increase of the special distribution number.

In CADE SSH-Bruteforce, MRR increases with the increase
of the special distribution number. In each certification
scene, we select the optimal settings of special distributions.

E. Quantitatively Evaluating Robustness

Experiment motivation. During practical deployment, secu-
rity operators should select suitable hyper-parameter values to
balance detection performance and robustness of traffic analyz-
ers [5]. For this purpose, BARS can be used to quantitatively
evaluate robustness under different hyper-parameter values.

Experiment design. In this experiment, we use BARS-G
to quantitatively evaluate the robustness of Kitsune [51]
(zero-positive NIDS). Firstly, we evaluate the robustness of
Kitsune under different detection thresholds ϕ. We use MRR
(defined in Section VI) and F1 score to measure the robustness
and the detection performance respectively. To guarantee the
universality of the experiment results, we repeat the experi-
ment under 32 AEs and 16 AEs. Secondly, we evaluate the
robustness of Kitsune under different AE numbers which
depend on the maximum cluster feature number m. Inspired
by the coefficient of variation [21], we define Coefficient of
Variation for Robustness Radius (CVR) as follows:

CVR = Mean

I
{
c
(i)
A = y(i)

}
·

Std
(
r
(i)
j

)
j=1...d

Mean
(
r
(i)
j

)
j=1...d

 i=1...N,

(23)
where r

(i)
j is the robustness radius in the jth dimension. We

use CVR to measure the variability in the robustness radii of
different features. Large CVR means that the model can learn
the difference between heterogeneous features and can fit the
target data precisely. To obtain accurate conclusions, we treat
F1 score as the controlled variable and fix it as 0.98± 0.005
by setting suitable detection thresholds ϕ.

Experiment results. Figure 7 is the results of the first experi-
ment. When F1 score reaches its maximum, MRR is not large
enough. It indicates that when we select the detection threshold
ϕ, we should consider both of performance and robustness.

Table VI is the results of the second experiment. As the AE
number increases, MRR firstly decreases and then increases,
and CVR firstly increases and then decreases. It indicates
that Kitsune with a small number of AEs has stronger
robustness, and has weaker fitting capability. It quantitatively
reflects the trade off between robustness and fitting capability.

F. Reducing False Alarms

Experiment motivation. During practical deployment, CADE
[74] (concept drift detection system) may not be able to learn
all patterns of known classes [61]. It will cause false alarms.
Inspired by [15], [52], we can reduce false alarms by retraining
CADE with BARS noise data augmentation.
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Fig. 7: The MRR and F1 score of Kitsune under different
detection thresholds ϕ.
TABLE VI: Comparison of Kitsune with different AE
numbers in robustness and fitting capability.

AE Number m MRR CVR F1 Score

1 100 3.4749 0.1409 0.9796
2 80 4.5540 0.2525 0.9793
4 75 4.2375 0.3740 0.9797
8 43 2.3316 0.6326 0.9806
16 16 0.9923 0.6729 0.9806
32 7 0.4628 0.8025 0.9802
64 2 2.5844 0.3210 0.9784
100 1 2.2312 0.2712 0.9782

Experiment design. In this experiment, we reduce the false
alarms of CADE in the New Infiltration dataset which treats
the Infiltration class as the drift class. According to Table VII,
False Positive Rate (FPR) in the Benign class is highest. To
balance effectiveness and efficiency, we use noised Benign
samples as augmented data to retrain CADE. With the opti-
mized noise of BARS, we can reduce FPR and keep False
Negative Rate (FNR) not increasing. We compare BARS with
V.R.S. [15]. Because the model of CADE is not softmax
structure, the certified robust training of CROWN-IBP [77] can
hardly be used for it. We also compare BARS with two feature
selection methods, WAFS [76] and DAFFS [10].

Experiment results. The experiment results are shown in
Table VII. BARS outperforms V.R.S.. It can be attributed
to that the optimized noise of BARS adapts to heterogeneous
features, and will reduce FPR of CADE in all classes. BARS
outperforms WAFS and DAFFS. It can be attributed to that
noise data augmentation can generate smoother classification
boundaries than these feature selection methods.

G. Evasion Attack Awareness
Experiment motivation. As stated in Section II-A, traffic
analyzers always run in adversarial environments [54]. We can
be aware of evasion attack with BARS in real time. Because
evasion samples with malicious attributes have different data
distributions from clean benign samples. Using the smooth-
ing noise optimized based on clean benign samples, evasion
samples will obtain small robustness radii.

Experiment design. In this experiment, we use BARS to be
aware of the evasion attack of Botnet-Zeus&Ares samples
in ACID [16] (supervised multi-classification system). Fol-
lowing the existing evasion attack study, Blind Adversarial
Perturbations [54], we manipulate Botnet-Zeus&Ares samples
to make ACID classify them into the Benign class. Blind
Adversarial Perturbations is abbreviated as B.A.P. in this paper.
For guaranteeing effective attack, we implement B.A.P. based
on its open-source code7. According to [54], B.A.P. cannot be

7B.A.P.: https://github.com/SPIN-UMass/BLANKET

TABLE VII: Reducing false alarms of CADE with different
methods. Lower is better for all metrics.

Method FPR FNR

Benign SSH-Bruteforce DoS-Hulk Total Total

Vanilla 0.0495 0.0418 0.0110 0.0350 0.0000
WAFS 0.0298 0.0388 0.0230 0.0282 0.0000
DAFFS 0.0403 0.0426 0.0138 0.0310 0.0000
V.R.S. 0.0296 0.0226 0.0230 0.0266 0.0000
BARS-L 0.0315 0.0119 0.0094 0.0217 0.0000
BARS-G 0.0283 0.0128 0.0066 0.0190 0.0000
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(a) BARS-G evasion awareness.

Method Precision Recall F1 Score

V.R.S. 0.6861 0.8380 0.7544
BARS-L 0.9819 0.9181 0.9489
BARS-G 0.9455 1.0000 0.9720

(b) Evasion awareness method compari-
son. Higher is better for all metrics.

Fig. 8: Evasion attack awareness for ACID Botnet-Zeus&Ares
detection with different methods.
trivially used in non-differentiable functions of traffic features,
such as CICFlowMeter [41] of ACID. Following [3], [29],
we transfer it to perform evasion attack in the feature space,
and remap feature perturbations according to feature types. We
restrict the perturbation δ to ∥δ∥∞ ≤ 0.4.

For simulating practical operations, we preset a detection
threshold according to robustness radius distributions of the
Benign class in Figure 5c. After suffering evasion attack, we
consider samples with smaller robustness radii than the thresh-
old as evasion samples. We compare BARS with V.R.S. [15].
As stated in Section VII-C, CROWN-IBP [77], α-CROWN [72],
β-CROWN [66] cannot be used for ACID. According to the
Benign class in Figure 5c, we preset the detection threshold for
BARS-G, BARS-L, V.R.S. as 0.15, 0.2, 0.17 respectively.

Experiment results. As shown in Figure 8a, with the ro-
bustness radii based on BARS-G, we can use a robustness
radius threshold to distinguish Botnet-Zeus&Ares samples
from Benign samples. As shown in Figure 8b, BARS outper-
forms V.R.S.. It can be attributed to that the dimension-
heterogeneous smoothing noise of BARS will learn more
information of Benign sample distributions.

H. Evasion Attack Defense

Experiment motivation. To improve the robustness of traffic
analyzers in adversarial environments [54], we retrain them
with BARS noise data augmentation inspired by [15], [52].

Experiment design. In this experiment, we retrain ACID
[16] (supervised multi-classification system) with BARS noise
data augmentation to reduce the evasion success rate of FTP-
Bruteforce samples which reflects robustness improvement.
We evaluate BARS in three evasion methods including Ran-
dom (Uniform noise perturbations), PGD [48] (gradient based
perturbations), B.A.P. [54] (GAN based perturbations). The
implementation of B.A.P. is the same as that in Section VII-G.
For experiment fairness, we restrict the perturbation δ to
∥δ∥∞ ≤ 0.2 in all three evasion methods. We compare BARS
with V.R.S. [15]. Due to the same reason stated in Section
VII-C, the certified robust training of CROWN-IBP [77] cannot
be used for ACID.
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TABLE VIII: Explaining DDoS-HOIC detection of ACID.

(a) Important features under BARS-G.

Robustness Radius Name Description
5.1728×10−2 Init Fwd Win Byts Total number of bytes sent in initial window in forward direction.
9.3542×10−2 Fwd IAT Max Maximum time between two packets sent in forward direction.
1.8561×10−1 Mean Radius Mean robustness radius in all dimensions.

(b) Evaluating explanation fidelity based on the worsened
performance of DDoS-HOIC detection. Lower is better.

Metric Vanilla Random BARS-L BARS-G

Precision 1.0000 0.9928 0.9423 0.9064
Recall 1.0000 0.9040 0.7918 0.7707
F1 Score 1.0000 0.9397 0.8605 0.8330

TABLE IX: MRR of BARS-G under different module combinations. The data format of table cells is “MRR (Rank)”. D.T., Opt.
Shape, Opt. Scale denote “the Distribution Transformer”, “Optimizing Noise Shape”, “Optimizing Noise Scale” respectively.
Higher MRR indicates that left modules are more important.

Module Kitsune [51] CADE [74] (IDS2018 [57]) ACID [16] (IDS2018 [57])

D.T. Opt. Shape Opt. Scale Mirai SSDP-Flood Benign SSH-Bruteforce DoS-Hulk Infiltration Benign FTP-Bruteforce DDoS-HOIC Botnet-Zeus&Ares

✓ ✗ ✗ 0.0957 (5) 0.0980 (5) 0.0000 (7) 0.0000 (7) 0.0000 (7) 0.0629 (7) 0.2407 (5) 0.1260 (3) 0.0922 (5) 0.2476 (5)
✗ ✓ ✗ 0.0267 (7) 0.0195 (6) 0.0072 (6) 0.0032 (6) 0.0028 (6) 0.0763 (6) 0.0267 (6) 0.1107 (5) 0.0000 (6) 0.0000 (6)
✗ ✗ ✓ 0.1962 (3) 0.7797 (4) 0.0087 (5) 0.0043 (3) 0.0035 (4) 0.0915 (5) 0.3130 (3) 0.1110 (4) 0.1466 (3) 0.3415 (4)
✓ ✓ ✗ 0.0350 (6) 0.0053 (7) 0.0106 (2) 0.0056 (2) 0.0072 (2) 0.1623 (2) 0.0018 (7) 0.0000 (7) 0.0000 (6) 0.0000 (6)
✓ ✗ ✓ 0.2666 (2) 0.9118 (2) 0.0097 (3) 0.0040 (5) 0.0037 (3) 0.0969 (3) 0.3937 (2) 0.1268 (2) 0.1780 (2) 0.4476 (2)
✗ ✓ ✓ 0.1952 (4) 0.7815 (3) 0.0088 (4) 0.0043 (3) 0.0035 (4) 0.0941 (4) 0.3117 (4) 0.1107 (5) 0.1408 (4) 0.3416 (3)
✓ ✓ ✓ 0.4213 (1) 1.3059 (1) 0.0229 (1) 0.0182 (1) 0.0133 (1) 0.2305 (1) 0.4835 (1) 0.1513 (1) 0.1856 (1) 0.5111 (1)
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(a) BARS-G data augmentation.

Method Random PGD B.A.P.

Vanilla 0.3069 1.0000 1.0000
V.R.S. 0.1131 0.4835 1.0000
BARS-L 0.2789 0.4476 0.8475
BARS-G 0.2024 0.4006 0.8475

(b) Evasion success rate comparison.
Lower is better under an attack method.

Fig. 9: Evasion attack defense for ACID FTP-Bruteforce
detection with different methods.
Experiment results. As shown in Figure 9a, with BARS-G
noise data augmentation, a large number of weakly robust
samples have significantly increased robustness radii, and only
a small number of strongly robust samples have decreased
robustness radii. As shown in Figure 9b, under PGD and
B.A.P., BARS outperforms V.R.S.. It can be attributed to the
dimension-heterogeneous noise data augmentation of BARS.
It can separately improve robustness of different features
according to the data scale and the data distribution of each
feature. Under Random, V.R.S. outperforms BARS due to
isotropic noise perturbations of Random. Nevertheless, its
vanilla evasion success rate is lowest.

I. Explaining Attack Detection

Experiment motivation. DL-based traffic analyzers are gener-
ally regarded as black boxes with high detection performance.
Their detection results can be explained based on the mean
dimension-wise robustness radius vector r̄ (defined in Section
VI) of BARS. Because the detection results of DL-based traffic
analyzers are more sensitive to features with small r̄j . These
features can be regarded as important features for explanation.

Experiment design. In this experiment, we use BARS to
explain the DDoS-HOIC detection of ACID [16] (supervised
multi-classification system). We firstly calculate r̄ based on
all samples classified into the DDoS-HOIC class, and select
important features with small r̄j . Then inspired by [67], to
evaluate the fidelity of BARS, we replace the original feature
values with Uniform noise (U (0, 1) for 0-1 normalization
features in this paper) in these important features. Worse
performance of ACID indicates that these features are more
important. We compare BARS with Random selection in which

the same number of features are randomly selected as impor-
tant features. We repeat experiments of Random selection for
100 times and record the mean performance.

Experiment results. The two important features are shown
in Table VIIIa. It reflects that DDoS-HOIC attack sends large
volumes of traffic at high rates to make victims unavailable. As
shown in Table VIIIb, worse performances caused by BARS-L
and BARS-G indicate their selected features are important.

J. Ablation Study

Experiment motivation and design. To illustrate the im-
portance of each algorithm module in BARS, we compare
MRR (defined in Section VI) of BARS-G under different
module combinations. Three modules include the Distribution
Transformer, optimizing the noise shape, optimizing the noise
scale. Consider that the only difference between BARS-G and
BARS-L is the feature noise distribution. Due to space limit,
we mainly perform ablation study for BARS-G.

Experiment results. The experiment results are shown in
Table IX. Higher MRR indicates that left algorithm modules
are more important. BARS-G with three modules performs
best in all three traffic analyzers. It illustrates that all three
modules contribute to providing tight robustness guarantee.
Observing BARS-G with two modules, in Kitsune [51] and
ACID [16], the combination of the Distribution Transformer
and optimizing the noise scale is important. In CADE [74], the
combination of the Distribution Transformer and optimizing
the noise shape is important. Observing BARS-G with one
module, optimizing the noise scale is most important in all
three traffic analyzers. In Kitsune and ACID, optimizing
the noise shape makes the least contribution. In CADE, the
Distribution Transformer makes the least contribution.

VIII. DISCUSSION

In this section, we will discuss applications of BARS for
more domains, limitation and future work.

Applications for more domains. As stated in Section I, BARS
can be used for other DL-based heterogeneous tabular data
analysis systems (e.g., malware detection [12], spam URL
detection [11], KPI anomaly detection [62]). We will try to
apply BARS in these domains in future work. However, BARS
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cannot be used for sequence data analysis systems (e.g., log
anomaly detection [18], [50]) and graph data analysis systems
(e.g., lateral movement detection [8], [37]). Because their
formal analysis for robustness guarantee is different from that
in tabular data based systems [19], [32]. We will extend BARS
to these domains through further formal analysis.

Limitation and future work. First, we only search semi-
global weight parameters wS

k , w
I
i,k and a semi-global scale

factor t for each class. The reasons are: (1) We trade off
performance and overhead; (2) If search special wS

k , w
I
i,k, t for

each sample in the training dataset, we cannot select wS
k , w

I
i,k, t

for certified samples (i.e., low practicability). In future work,
we will implement special wS

k , w
I
i,k, t for each training sample

with low overhead and high practicability. Second, we only
consider a limited number of noise distributions in Appendix
A-A and A-C. In future work, we will explore more distri-
butions for improving the performance of BARS. Third, we
will explore more practical application cases, such as detecting
misclassification between different malicious attacks.

IX. RELATED WORK

DL-based traffic analysis systems. DL-based traffic analysis
systems have been extensively studied in recent years. Network
intrusion detection systems (NIDS) [51], [49] are used for de-
tecting malicious traffic. Concept drift traffic detection systems
[74] (new class traffic detection) are used for detecting traffic
from unforeseen classes. Traffic multi-classification systems
[16], [65], [60], [56] are used for classifying traffic into a
known class.

Robustness certification. Against the vulnerability of deep
learning, a large number of studies focused on robustness
certification in recent years [45]. It can be divided into global
certification and local certification. Global certification focuses
on global robustness properties [11], [43]. However, it cannot
provide the local robustness guarantee and cannot certify the
robustness in real time. Besides, there are mainly three cate-
gories of local certification methods: (1) Complete certification
mainly includes Branch and Bound [72], [66], satisfiability
modulo theories (SMT) [34], [31], mixed-integer linear pro-
gram (MILP) [64], [20]. They attempt to obtain the exact
robustness guarantee with high computational complexity. (2)
Linear relaxation certification relaxes the nolinear activation
functions of neural networks and has higher efficiency [77],
[71], [78], [47], [68], [25], [69], [70]. However, its universality
and flexibility are weak because the new relaxation expressions
need to be derived again. (3) Probabilistic certification adds
noise perturbations to certified samples and certifies robustness
based on the classification results of these noised samples [15],
[73], [44], [52], [46]. They are sensitive to noise distributions.

Existing certification methods mainly focus on other do-
mains, such as CV, NLP. Due to the characteristics of traffic
analysis tasks, they perform far from perfectly in this domain.

X. CONCLUSION

In this paper, we propose BARS, a general robustness
certification framework for DL-based traffic analysis sys-
tems based on boundary-adaptive randomized smoothing. To
generate boundary-adaptive smoothing noise, BARS uses the
Distribution Transformer for generating optimized noise and
uses two gradient based algorithms for optimizing the noise.

Through evaluating BARS extensively in three practical DL-
based traffic analysis systems, we illustrate that BARS can
provide the tight robustness guarantee with high efficiency
and outperforms the baseline methods significantly. Through
five practical application cases, we illustrate the extensive
application prospect of BARS. Future work is planned to
further improve the performance of BARS, evaluate it in more
traffic analyzers, exploit more application scenarios.
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APPENDIX A
SUPPLEMENTARY FOR DISTRIBUTION TRANSFORMER

Here, we will provide some supplementaries for the Dis-
tribution Transformer in Section IV. Firstly, we introduce a
condition for normalized noise distributions and an available
probability distribution for normalized noise (§A-A). Secondly,
we introduce some properties of the General Distribution
Transformer (§A-B). Thirdly, we introduce some conditions
for feature noise distributions and available probability distri-
butions for feature noise (§A-C).

A. Condition and Available Probability Distribution for Nor-
malized Noise

As stated in Section IV-A, the normalized noise distribution
Dn can be isotropic classical distributions, such as isotropic
Gaussian N

(
0, σ2I

)
. Besides, Dn needs to satisfy a condition

as follows:

a. Symmetric distribution. Normalized noise distributes
symmetrically about the origin in all dimensions. It means
that for ∀εn,i ∈ R, we have Fn,i (−εn,i) = 1− Fn,i (εn,i).

The normalized noise distribution function of isotropic
Gaussian N

(
0, σ2I

)
can be formulated as Fn,i(εn,i) =

Φ
( εn,i

σ

)
. Considering pA ≥ 0.5, the ℓp robustness radius

rDn
(pA) of isotropic Gaussian N

(
0, σ2I

)
can be formulated

as ∥δ∥2 ≤ σΦ−1 (pA) [15]. It should be noted that there are
more available probability distributions beyond it [73], which
demonstrates the extensibility of BARS.
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TABLE X: Available special feature noise distributions.

Distribution Original H
(k)
f (εf,i)

(
H

(k)
f

)−1
(pi)

Gaussian Φ (z) Φ (εf,i) Φ−1 (pi)

Arctan tan−1 (z) 1
π tan−1 (εf,i) +

1
2 tan

(
πpi − π

2

)
ISRU z√

1+z2
1
2 ·

εf,i√
1+ε2

f,i

+ 1
2

2pi−1√
1−(2pi−1)2

Sigmoid 1

1+e−z
1

1+e
−εf,i

− log
(

1
pi

− 1
)

B. Property of General Distribution Transformer

General Distribution Transformer ΨG in Equation 12 has
four properties as follows:

a. Distribution transformation. For ∀εn ∼ Dn,εf = ΨG (εn),
we have εf ∼ Df .

b. Strictly monotone increasing in all dimensions. Be-
cause Fn,i and Ff,i, are both strictly monotone in-
creasing, ΨG

i is strictly monotone increasing, which
means that for ∀εn,i, ε′n,i ∈ R and εn,i < ε′n,i, we have
ΨG

i (εn,i) < ΨG
i

(
ε′n,i

)
.

c. Reversibility. Because ΨG
i is strictly monotone increasing,

ΨG is a reversible transformation.
d. Odd in all dimensions. Based on the condition a of Fn

in Appendix A-A and the condition d of Ff in Appendix
A-C, we have ΨG

i (−εn,i) = −ΨG
i (εn,i).

C. Condition and Available Probability Distribution for Fea-
ture Noise

Special feature noise distribution function H
(k)
f in Equation

13 needs to satisfy four conditions as follows:

a. Bounded. For ∀εf,i ∈ R, we have 0 ≤ H
(k)
f (εf,i) ≤ 1,

lim
εf,i→−∞

H
(k)
f (εf,i) = 0, lim

εf,i→+∞
H

(k)
f (εf,i) = 1.

b. Strictly monotone increasing and reversibility. For
∀εf,i, ε′f,i ∈ R and εf,i < ε′f,i, we have H

(k)
f (εf,i) <

H
(k)
f

(
ε′f,i

)
. Therefore, H(k)

f should satisfy reversibility.

c. Continuity. For ∀εf,i ∈ R, we have lim
ε′f,i→εf,i

H
(k)
f

(
ε′f,i

)
= H

(k)
f (εf,i).

d. Symmetric distribution. Feature noise distributes symmet-
rically about the origin in all dimensions. It means that for
∀εf,i ∈ R, we have Hf,i (−εf,i) = 1−Hf,i (εf,i). Then
we have ∀εf,i ∈ R, Ff,i (−εf,i) = 1− Ff,i (εf,i).

We also provide a series of available special distribution
functions for feature noise in Table X. It should be noted that
there are more available distribution functions beyond them,
which demonstrates the extensibility of BARS. In Table X,
there is no settable parameter, which simplifies the settings of
distribution functions.

APPENDIX B
THEORETICAL ANALYSIS OF ROBUSTNESS GUARANTEE

WITH DISTRIBUTION TRANSFORMER

Here, we first prove the robustness guarantee of the Linear
Distribution Transformer in Theorem 1 and derive its robust-
ness radii in Equation 10 and Equation 11 (§B-A). Then we
prove the robustness guarantee of the General Distribution
Transformer in Theorem 2 and derive its robustness radii in
Equation 16 and Equation 17 (§B-B).

A. Proof for Linear Distribution Transformer

Proof of Theorem 1. Recall the smoothed traffic analyzer g
in Equation 6. For ease of understanding, we firstly consider
f (x+ εf ). Recall the definition of the Linear Distribution
Transformer ΨL in Equation 7. We have εf = w⊙ εn, where
εf is the feature noise and εn is the normalized noise. Then
we can get:

f (x+ εf ) = f (x+w ⊙ εn) . (24)

Based on Equation 24, for a certain input sample x, we
can introduce a new virtual variable xn and construct a new
virtual function fn:

fn (xn) = f (x+w ⊙ (xn + εn)) , (25)

where x is independent of xn and can be be treated as a
constant of fn (xn). Based on Equation 25, we can get a virtual
smoothed classifier gn of the virtual variable xn:
gn (xn) = argmax

c∈Y
Pεn∼Dn (f (x+w ⊙ (xn + εn)) = c) . (26)

Based on εn ∼ Dn, we can make ℓp robustness certification
for gn (xn). That means:

∀ ∥δn∥p ≤ rDn (pA) , gn (xn) = gn (xn + δn) , (27)

where δn is the perturbation for xn in gn (xn), and rDn(pA)
is the ℓp robustness radius of randomized smoothing [15], [73].
We substitute xn = 0 into Equation 27 and get:

∀ ∥δn∥p ≤ rDn (pA) , gn (0) = gn (0+ δn) . (28)

Observing the left side of Equation 28, we have:
gn (0) = argmax

c∈Y
Pεn∼Dn (f (x+w ⊙ εn) = c)

= g (x) ,
(29)

where g is the smoothed traffic analyzer with the Distribution
Transformer defined in Equation 6.

Observing the right side of Equation 28, we have:
gn (0+ δn) = argmax

c∈Y
Pεn∼Dn (f (x+w ⊙ (δn + εn)) = c)

= argmax
c∈Y

Pεn∼Dn (f (x+w ⊙ δn +w ⊙ εn) = c)

= g (x+w ⊙ δn) .
(30)

Combining Equation 28, Equation 29, Equation 30, we get:

∀ ∥δn∥p ≤ rDn (pA) , g (x) = g (x+w ⊙ δn) . (31)

We define the perturbation δ for x in g (x) as δ = w ⊙
δn. Besides, we define w′ as w′

i = 1
wi

i = 1, 2 . . . d. Then
Equation 31 can be converted into:

∀
∥∥w′ ⊙ δ

∥∥
p
≤ rDn (pA) , g (x) = g (x+ δ) . (32)

Based on Equation 32, we can get the the robustness region
Ω of g (x):

Ω =
{
x+ δ

∣∣∣∥∥w′ ⊙ δ
∥∥
p
≤ rDn (pA)

}
. (33)

Deriving Equation 10 and Equation 11. According to
Equation 33, given a perturbation δ satisfying x + δ ∈ Ω,
we have:∣∣w′

i · δi
∣∣ ≤ ( d∑

j=1

∣∣w′
j · δj

∣∣p) 1
p

≤ rDn (pA) i = 1, 2 . . . d, (34)

where the left equality holds when ∀j ̸= i, |δj | = 0 is satisfied.
The right equality holds when |w′

i · δi| holds its maximum
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value in the robustness region. Due to t ≥ 0, wS ≥ 0, wI
i ≥ 0,

we have w′
i ≥ 0. Then Equation 34 can be converted into:

|δi| ≤
1

w′
i

· rDn (pA) i = 1, 2 . . . d, (35)

where the equality holds when |δi| holds its maximum value
in the robustness region. Substituting wi = 1

w′
i
i = 1, 2 . . . d

into Equation 35, we have:
|δi| ≤ wi · rDn (pA) i = 1, 2 . . . d. (36)

Recall the definition of the dimension-wise robustness
radius vector r in Equation 4. We have:

ri = wi · rDn (pA) i = 1, 2 . . . d. (37)

Recall the definition of the dimension-heterogeneous ro-
bustness radius R in Equation 5. We have:

R =
1

d

d∑
i=1

wi · rDn (pA) . (38)

B. Proof for General Distribution Transformer

Proof of Theorem 2. Recall the smoothed traffic analyzer g
in Equation 6. For ease of understanding, we firstly consider
f (x+ εf ). With the General Distribution Transformer ΨG, it
can be converted into:

f (x+ εf ) = f
(
x+ΨG (εn)

)
, (39)

where εf is the feature noise and εn is the normalized noise.
Based on Equation 39, for a certain input sample x, we can
introduce a new virtual variable xn and construct a new virtual
function fn:

fn (xn) = f
(
x+ΨG (xn + εn)

)
, (40)

where x is independent of xn and can be treated as a constant
of fn (xn). Based on Equation 40, we can get a virtual
smoothed classifier gn of the virtual variable xn:

gn (xn) = argmax
c∈Y

Pεn∼Dn

(
f
(
x+ΨG (xn + εn)

)
= c
)
.

(41)
Based on εn ∼ Dn, we can make ℓp robustness certification

for gn (xn). That means:

∀ ∥δn∥p ≤ rDn (pA) , gn (xn) = gn (xn + δn) , (42)

where δn is the perturbation for xn in gn (xn), rDn
(pA) is

the ℓp robustness radius of randomized smoothing [15], [73].
We substitute xn = 0 into Equation 42 and get:

∀ ∥δn∥p ≤ rDn (pA) , gn (0) = gn (0+ δn) . (43)

Observing the left side of Equation 43, we have:

gn (0) = argmax
c∈Y

Pεn∼Dn

(
f
(
x+ΨG (εn)

)
= c
)
. (44)

Observing the right side of Equation 43, we have:

gn (0+ δn) = argmax
c∈Y

Pεn∼Dn

(
f
(
x+ΨG (δn + εn)

)
= c
)
.

(45)
We define the perturbation δ for x in g (x) as δ =

ΨG (δn). Then Equation 45 can be converted into:
gn (0+ δn)

= argmax
c∈Y

Pεn∼Dn

(
f

(
x+ δ +ΨG

((
ΨG
)−1

(δ) + εn

)
− δ

)
= c

)
.

(46)

To obtain the robustness guarantee with the General Dis-
tribution Transformer, we need to extend the smoothed traffic
analyzer g(x) to g(x, εf ) by regarding feature noise εf as a
variable. Then Equation 44 can be converted into:

gn (0) = g(x, εf ),

εf,i = ΨG
i (εn,i) i = 1, 2 . . . d.

(47)

Equation 46 can be converted into:
gn (0+ δn) = g

(
x+ δ, ε′

f

)
,

ε′f,i = ΨG
i

((
ΨG

i

)−1
(δi) + εn,i

)
− δi i = 1, 2 . . . d.

(48)

Combining Equation 43, Equation 47, Equation 48, we get:

∀
∥∥∥(ΨG

)−1
(δ)
∥∥∥
p
≤ rDn (pA) , g(x, εf ) = g

(
x+ δ, ε′

f

)
,

εf,i = ΨG
i (εn,i) i = 1, 2 . . . d,

ε′f,i = ΨG
i

((
ΨG

i

)−1
(δi) + εn,i

)
− δi i = 1, 2 . . . d.

(49)

Based on Equation 49, we can get the robustness region Ω
of g(x, εf ):

Ω =

{
x+ δ

∣∣∣ ∥∥∥∥(ΨG
)−1

(δ)

∥∥∥∥
p

≤ rDn (pA)

}
. (50)

Deriving Equation 16 and Equation 17. According to
Equation 50, given a perturbation δ satisfying x + δ ∈ Ω,
we have:∣∣∣∣(ΨG

i

)−1

(δi)

∣∣∣∣ ≤
(

d∑
j=1

∣∣∣∣(ΨG
j

)−1

(δj)

∣∣∣∣p
) 1

p

≤ rDn (pA) i = 1, 2 . . . d,

(51)
where ΨG

i is the sub-formula of ΨG in the ith dimension.
The left equality holds when ∀j ̸= i,

∣∣∣(ΨG
j

)−1
(δj)

∣∣∣ = 0 is

satisfied. The right equality holds when
∣∣∣(ΨG

i

)−1
(δi)

∣∣∣ holds
its maximum value in the robustness region.

Based on the property b and the property d of ΨG in
Section IV-C (Appendix A-B), we have:∣∣∣∣(ΨG

i

)−1

(δi)

∣∣∣∣ = (ΨG
i

)−1

(|δi|) i = 1, 2 . . . d. (52)

We substitute Equation 52 into Equation 51, and get:(
ΨG

i

)−1

(|δi|) ≤ rDn (pA) i = 1, 2 . . . d. (53)

Based on the property b of ΨG in Section IV-C (Appendix
A-B), Equation 53 can be converted into:

ΨG
i

((
ΨG

i

)−1

(|δi|)
)
≤ ΨG

i (rDn (pA)) i = 1, 2 . . . d. (54)

Equation 54 can be simplified to:

|δi| ≤ ΨG
i (rDn (pA)) i = 1, 2 . . . d, (55)

where the equality holds when |δi| holds its maximum value
in the robustness region.

Recall the definition of the dimension-wise robustness
radius vector r in Equation 4. We have:

ri = ΨG
i (rDn (pA)) i = 1, 2 . . . d. (56)

Recall the definition of the dimension-heterogeneous ro-
bustness radius R in Equation 5. We have:

R =
1

d

d∑
i=1

ΨG
i (rDn (pA)) . (57)
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