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Abstract—We initiate the study of Private Certifier Intersec-
tion (PCI), which allows mutually distrusting parties to establish
a trust basis for cross-validation of claims if they have one or
more trust authorities (certifiers) in common. This is one of
the essential requirements for verifiable presentations in Web
3.0, since it provides additional privacy without compromising
on decentralization. A PCl protocol allows two or more parties
holding certificates to identify a common set of certifiers while
additionally validating the certificates issued by such certifiers,
without leaking any information about the certifiers not in the
output intersection. In this paper, we formally define the notion
of multi-party PCl in the Simplified-UC framework for two
different settings depending on whether certificates are required
for any of the claims (called PCI-Any) or all of the claims (called
PCI-All). We then design and implement two provably secure and
practically efficient PCI protocols supporting validation of digital
signature-based certificates: a PCl-Any protocol for ECDSA-
based certificates and a PCI-All protocol for BLS-based certifi-
cates. The technical centerpiece of our proposals is the first secret-
sharing-based MPC framework supporting efficient computation
of elliptic curve-based arithmetic operations, including elliptic
curve pairings, in a black-box way. We implement this framework
by building on top of the well-known MP-SPDZ library using
OpenSSL and RELIC for elliptic curve operations, and use this
implementation to benchmark our proposed PCl protocols in the
LAN and WAN settings. In an intercontinental WAN setup with
parties located in different continents, our protocols execute in
less than a minute on input sets of size 40, which demonstrates
the practicality of our proposed solutions.

I. INTRODUCTION

In the traditional web (Web 2.0), users are dependent on
a limited set of identity and service providers and public
Certificate Authorities (CAs) [2] to initiate trusted interactions.
Recent trends in decentralization towards Web 3.0 aim to
remove such dependencies on centralized service providers. A
prominent problem in the decentralized web revolves around
identity and trust. Decentralized identifiers (DIDs) [50] and
Verifiable Credentials (VCs) [53] enable parties to own and
control their identities. This implies a self-sovereign ability to
create, update, and selectively share identity records. Impor-
tantly, one can prove properties (or claims) about themselves
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without relying on centralized/federated identity providers or
a canonical trusted set of CAs [8], [50], [54], as long as
the VC issuer (also called a trust anchor [3]) is trusted by
both the prover and the verifier of a claim. In a nutshell,
existing DID and VC recommendations give users the ability to
control their privacy while engaging in a trusted decentralized
interaction. But, there are scenarios where these recommen-
dations cannot adequately safeguard user privacy unless we
introduce new privacy-preserving mechanisms. In its most
general form, the scenario we are concerned about involves two
parties wishing to establish a trust basis for future interactions.
Service providers in the Semantic Web have encountered such
situations, and mechanisms for trust negotiation [56] were
proposed to minimize privacy compromise without sacrificing
decentralization, albeit for a specific model of service provider-
consumer interaction. In grid computing, service-level agree-
ments (SLAs) [28] followed a similar template. This challenge
has returned to salience in today’s Web3 world, where private
and independent blockchain systems have business imperatives
to interoperate [9]. The interaction model common to these
scenarios involves no a priori trust between the interacting
parties, though they may, unbeknownst to each other, possess
VCs (or more generally certificates) from common trust an-
chors (or more generally certifiers) attesting to different claims.

A trust basis for interoperation can be established between
two parties if they can determine that they both possess valid
certificates attesting to certain claims, and that these certificates
are issued by one or more certifiers that they both trust. But this
is hard to do in the absence of a priori trust or knowledge of
the counterparty’s intentions, or without compromising one’s
privacy. We can see why this is so by applying the standard
VC recommendation, whereby one party makes a Verifiable
Presentation (VP) [53] to another, to our scenario. In a typical
VC use case, the relationship between credential presenter and
verifier is asymmetric, as the verifier is typically a well-known
entity from whom the presenter seeks service or approval.
The presenter knows at least one certifier that is trusted by it
and the verifier. Typically, this requires the verifier to publish
its complete list of certifiers so the presenter can determine
ones that are commonly trusted by both parties [22]. But
in our interaction model, the relationship between parties is
symmetrical, as they are both trying to simultaneously prove
something to the other. In a standard VP, the presenter is
willing to share credentials (albeit selectively) with the verifier.
But, if we use this asymmetric VP-based solution in our
scenario where neither party knows anything about the other a



priori, the revelation of credentials by the party that presents
first will automatically give more leverage to the counterparty
(verifier), which learns more about the presenter than it reveals.

A naive adaptation of an asymmetric solution (such as [22])
to our symmetric setting would require both parties to reveal
to each other the list of certifiers from which they have valid
certificates, and then identify if there is a mutually trusted cer-
tifier. This entails complete loss of privacy for both parties, but
especially for an honest party if the other behaves maliciously.
There are strong reasons why revealing one’s complete list of
certifiers might not be in one’s interest. A business-oriented
certifier, for instance, might not like its clientele to be visible to
its market competitors. Consider a blockchain interoperability
scenario, where shipment carriers on different trade networks
certify their respective networks’ participants, e.g., Maersk
Shipping Company (on the TradeLens network [7]) and the
American Bureau of Shipping (ABS). But as Maersk and
ABS are market competitors, they may not necessarily want
their clients (the certificate holders) to reveal their respective
associations [37]. Knowing the clientele of Maersk may benefit
ABS, and vice versa; hence there is a privacy cost to revealing
certifier lists in a symmetrical interaction unless those certifier
lists are identical.

The other privacy violation aspect is from the perspective
of the certificate holder. Every certificate possessed indicates
an affiliation with some real world entity, often a well-known
one; this could include government agencies, political organi-
zations, NGOs, etc., and such affiliations might be sensitive
information that could potentially be misused. And here lies
the biggest hazard in the naive trust basis establishment
solution: one of the two interacting parties could be malicious
and is trying to fish for information about its counterparty’s
affiliations. A simple attack would be for the malicious party to
offer a long list of certifiers, regardless of whether it possesses
valid certificates from them, and have the honest counterparty
reveal its true certifier list. Now the malicious party knows, and
can misuse, the honest party’s affiliations, without revealing
its own true affiliations. In the context of trust anchors (TAs)
in the DID & VC world, where any entity can issue a VC
and there does not exist a canonical list or registry of global
TAs, it would not be a hard task for a malicious counterparty
to list as many of them as possible to mount the attack
we just described. Therefore, we can identify a compelling
need to maintain certifier privacy and authenticity, which are
not addressed by the naive solution for determining common
certifiers. This motivates us to ask the following question:

Can parties owning certificates efficiently identify a common
set of certifiers without leaking anything else?

In particular, the parties should not learn any information about
certifiers that may be in the lists of other parties but are not
in the intersection.

A. Our Contributions

Private Certifier Intersection (PCI). In this paper, we initiate
the study of Private Certifier Intersection (PCl) — a crypto-
graphic primitive that aims to answer the above question in
the affirmative. Informally speaking, a PCl protocol allows a
set of mutually distrusting certificate-holding parties to achieve
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Fig. 2: Private Certifier Intersection (PCI): Match Certificates
with Common Issuers

a privacy-preserving trust negotiation with the following ob-
jectives: (i) find an intersection among the set of certifiers
across the parties, (ii) ensure that the certificates issued by
these certifiers are valid, and (iii) reveal no information about
the certifiers that may be in the lists of individual parties but
are not in the intersection.

Comparison with Private Set Intersection. At a first glance,
the classic Private Set Intersection (PSI) problem [26], [49],
where the intersection of two private sets must be determined
without a trusted mediator, bears a strong resemblance to
PCI (also see Figure 1). In both PCl and PSI, a set of mutually
distrusting parties holding private sets of entities aim to com-
pute the intersection between their sets without revealing any
additional information about the elements in their individual
sets that are not in the intersection. However, the non-triviality
of PCl arises from the need to additionally validate the
certificates issued by the certifiers in the intersection. In this
sense, one can think of PCl as a form of “predicated” PSI,
where the inclusion of a common certifier in the final output set
is predicated on the certificates issued by this certifier to each
of the parties being valid (see Figure 2 for an illustration). We
argue in this paper that realizing an efficient PCl protocol with
ideal security guarantees requires novel techniques beyond
simply using PSI as a building block. Consider the hazard we
encountered earlier in the naive solution to establish a trust
basis. Using standard PSI, a malicious party could simply
supply a long (or universal) list of certifiers as input and
determine the list of certifiers of the other (honest) party. To
avoid this hazard, we need to enforce the ability of participants
to prove that they possess genuine certificates issued by thir
claimed certifiers. There is no obvious way to do this using
standard PSI, and therefore PCI requires novel mechanisms
that are not congruent to PSI’s mechanisms. We refer the reader
to Section I-C for additional related work.



Achieving Semi-Honest PCI. It turns out that in the setting
of semi-honest corruptions (i.e., when the participating par-
ties behave honestly as prescribed in the protocol), one can
easily achieve a secure PCI protocol by using any secure PSI
protocol in a black-box way. Consider the following simple
construction: each party first locally “filters” its private list
of certifiers based on the validity of the certificates issued by
such certifiers, and then uses this filtered list of certifiers as
its input to an execution of a PSI protocol to securely identify
their intersection. Correctness is immediate, since, assuming
honest behavior, the filtered list for each party only contains
certifiers issuing valid certificates. Security follows from the
security of the underlying PSI protocol.

Upgrading to Malicious Security. Unfortunately, in the
setting of malicious corruptions (i.e., when the participat-
ing parties can deviate arbitrarily from the protocol), it is
seemingly hard to achieve a secure PCl protocol by simply
using certification validation and a (maliciously secure) PSI
as individual black-boxes. To begin with, we cannot rely on
the parties to filter the local sets of certifiers correctly; in fact,
the parties can prepare arbitrary sets of certifiers, including
those for which it does not have valid certificates.

For example, in the setting of two-party PCIl, if one party
(say Alice) provides a “universal set” of certifiers as input to
a PSI protocol, it can learn the complete set of certifiers of
the other party (say Bob). This attack may not be feasible in
a general PSI setting where listing the entire range of values
in an input set may be infeasible or prohibitively expensive,
but is quite feasible in a PCl setting where the range of
certifiers (trusted authorities) is limited. Therefore, it is crucial
for both Alice and Bob to verify that the other is not faking its
input set, and so the validity of certificates and the signatures
within must be proven by both parties during the protocol.
This is challenging because neither Alice nor Bob knows a
priori which set of certifiers it needs to supply proof for
(indeed, this is the objective of PCl), and providing more
proof than strictly required (i.e., revealing certifiers outside
the intersection) would violate privacy goals. Therefore, we
must somehow intertwine certificate validation with a PSI-
like protocol to achieve PCI. In other words, a maliciously
secure PCl protocol cannot be achieved securely without a
mechanism that somehow intertwines certificate validation
with the subsequent PSI protocol.

Theoretically, a maliciously secure PCI protocol can be
achieved as follows: run a maliciously secure multi-party
computation (MPC) protocol for the functionality that: (i)
filters the certifier list for each party to identify the certifiers
issuing valid certificates attesting to the relevant claims, and
(i) computes the intersection between these filtered sets.
This solution is highly inefficient in practice for essentially
all widely used cryptographically secure certification mecha-
nisms. For example, the most common method of generating
certificates is to sign the claim using a digital signature
algorithm. In this case, claim validation would require us
to perform signature verifications inside the MPC protocol,
which is prohibitively expensive for popular digital signature
schemes such as ECDSA [10], [41] and BLS [18], [19],
[21], that rely on elliptic curve-based finite-field arithmetic
operations. Implementing such a verification algorithm inside
a maliciously secure MPC protocol would involve non-black-

box usage of the various elliptic-curve (EC) operations, i.e.,
we would have to express these operations as (potentially
complicated) binary/arithmetic circuits with gate operations
over {0,1} or over some finite field F},. Such a maliciously
secure MPC protocol is likely to incur huge computational and
communication overheads in practice.

Need for Efficient Protocols. The above discussion motivates
specialized PCI protocols that efficiently enable computing the
intersection of certifier-sets while: (i) achieving the desired
security guarantees in the setting where a majority of the
parties could be maliciously corrupt, and (ii) minimizing non-
black-box usage of the operations in the certificate validation
algorithm. In this paper, we design and implement two concrete
PCl protocols — based on the ECDSA signature scheme and
the BLS signature scheme — that achieve the above goal while
supporting different variations of claim validation (we expand
on this later). While our protocols broadly follow the generic
approach outlined above, the main novelty lies in how we
validate signatures while using the underlying elliptic curve-
based operations in a black-box manner. For an (informal)
comparison, the generic MPC-based solution is expected to
incur O(zd) computation/communication cost, where x is the
corresponding cost of our protocols, and d is the average depth
of the arithmetic circuits representing EC operations (e.g.,
d = 256 for constant-time scalar multiplication over curve-
ED25519 and curve-BLS12-381).

B. Overview of Contributions

In this section, we provide an informal overview of our
key technical contributions.

Defining PCI. We formalize the security guarantees expected
of a (multi-party) PCl protocol using the simplified universal
composability (SUC) framework due to Canetti, Cohen, and
Lindell [24] in the real/ideal world paradigm. We consider two
variations of PCI protocols in this paper:

e Validate-Any PCIl: A PCI-Any protocol outputs the set
of common certifiers for which each party has at least
one valid certificate attesting to any one of its (publicly
known) claims.

e Validate-All PCl: A PCI-All protocol outputs the set
of common certifiers for which each party has valid
certificates attesting to all of its (publicly known) claims.

We also consider a variant of validate-any PCl which we
call validate-any PCl with disclosed claims (abbreviated as
PCl-Any-DC) where, for each common certifier in the output
set, the parties additionally learn the set of claims attested by
the certifier. We refer to Section II for a formal description.

MPC for Elliptic Curve Pairings. As a fundamental build-
ing block of our proposed PCl protocols, we introduce a
new secret-sharing based MPC framework that is tuned for
elliptic curve pairings. Our overall approach is to design a
secret-sharing based MPC protocol that efficiently supports
basic elliptic curve operations (i.e., point addition and scalar
multiplication) and elliptic curve bilinear pairing operations as
fundamental building blocks. We build upon the SPDZ secret-
sharing based MPC protocol [31], [32] to achieve the first
secret-sharing based MPC framework that seamlessly supports
elliptic curve pairing operations as fundamental gate-level



building-blocks with malicious security against a dishonest
majority of adversarial parties. A technical cornerstone of our
framework is the round-preserving upgradation of SPDZ from
basic field operations to the significantly more complicated
elliptic curve operations, including pairings. Our framework
allows us to directly use standardized and open-source imple-
mentations of elliptic curve libraries [4], [11], [45], thereby
leveraging both the performance improvements/optimizations
as well as the protections against evolving implementation-
level attacks that such libraries usually offer. We believe that
this is a contribution of independent interest.

Efficient Two-Party PCI. We use our proposed MPC frame-
work to design the following provably secure yet practically
efficient two-party PCl protocols:

e A two-party PCI-Any-DC protocol using the ECDSA sig-
nature scheme [10] — an elliptic-curve-based digital signa-
ture scheme which is standardized and widely adopted in
multiple real-world applications including X.509 public
key infrastructure in the Internet, TLS [46], DNSSEC
[39], etc. Moreover, ECDSA is a candidate signature
scheme in verifiable credentials [53] which is one of the
target applications of PCl. Choosing ECDSA also allows
us to use its standard implementation in the OpenSSL
[4] library for EC group operations. This naturally moti-
vates designing a PCl protocol supporting ECDSA-based
certification of claims.

e A two-party PCI-All protocol using the BLS signature
scheme [18], [19], [21]- an elliptic-curve pairing-based
digital signature that is popularly used in blockchain ap-
plications and is in the process of being standardized [20].
We design a PCI-All protocol supporting BLS-based cer-
tification of claims that exploits the signature-aggregation
capabilities of BLS to perform efficient validation of
certificates over all of the public claims of each party.

The starting point of our protocols is the generic maliciously
secure PCI protocol outlined earlier, with several optimizations
to obviate or minimize expensive elliptic curve operations
inside the MPC protocol. In our ECDSA-based PCI-Any-DC
protocol, we develop techniques that enable securely yet effi-
ciently performing the expensive algebraic operations (such as
field inversion) and non-algebraic operations (such finding the
z-coordinate of an elliptic curve point) required by the ECDSA
verification algorithm outside the MPC protocol. The protocol
is then implemented using our proposed MPC framework,
which allows performing ECDSA signature validations while
using all elliptic curve operations in a black-box manner.
We also discuss how to upgrade this protocol to full-fledged
PCl-Any where the claims are no longer disclosed publicly (see
Section IV for details).

Trivially extending the approach used in our ECDSA-based
PCl-Any-DC protocol to design a PCI-All protocol would
require iterating through all of the public claims, and validating
the signatures on these claims by a specific certifier. This
results in a claim validation complexity that grows with the
number of claims. We overcome this challenge by designing a
PCI-All protocol using BLS-based signature-aggregation that
only requires a single (aggregate-)signature verification per
certifier inside the MPC protocol. We introduce additional
optimizations that exploit the deterministic nature of the BLS

signature to further reduce the number of elliptic curve pairing
operations inside MPC to just one per certifier, which is then
implemented in a black-box manner using our proposed MPC
framework over pairings.

Implementation and Evaluation. We extend MP-SPDZ [42]
to implement our proposed secret-sharing framework support-
ing elliptic curve operations including bilinear pairings. For the
black-box operations on elliptic curves we use OpenSSL [4]
and RELIC [11] libraries. We then implement ECDSA-based
PCIl-Any-DC and BLS-based PCI-All protocols. We make
the source code of our implementation available at https:/
github.com/irondeveloper321/pci for independent benchmark-
ing (with the repository anonymized for double-blind review).
We provide a detailed analysis of the performance of the
individual components of our MPC framework, followed by
the end-to-end performance evaluation of the protocols in
realistic setups by placing parties in three geographic regions
across two continents. In an intercontinental WAN setup with
parties located in different continents, our PCl-Any-DC and
PCI-All protocols execute in less than a minute on input sets
of size 40. This demonstrates the practicality of our proposed
solutions. We refer to Section VI for details.

C. Related Work

Private Set Intersection (PSI). Private set intersec-
tion (PSI) [49] has been extensively studied, with a wide
range of solutions based on garbled circuits [40], homomorphic
encryption [26], oblivious transfer [49], and other techniques
[251, [271, [29], [35], [44], [48], [51]. However, as outlined
earlier, there is no straightforward way of using PSI| as a
black-box to achieve PCI, particularly in the face of malicious
adversarial corruptions, due to the additional requirement of
certificate validation.

PSI over Certified Sets. Private intersection of “certified
sets”, introduced in [23], is an augmentation of PSI with the
additional requirement that the input claim-sets are certified by
some certification authority (CA). However, this primitive has
fundamentally different privacy goals as compared to PCl; it
assumes that the information of the CAs is public and that the
two parties agree apriori on which CAs they mutually trust.
Conversely, in the case of PCI, the CAs (certifiers) are, in
fact, the input to the protocol (and thus cannot be made public
apriori) while the claims are public. We could also have a
variant of PCl where the claims are additionally private; we
leave it as an open question to investigate this variant further.

HIAC. Hidden-issuer anonymous credentials (HIAC), intro-
duced very recently in [22], is an elegant cryptographic
primitive that allows a credential holder to prove its claim(s)
to a verifier without disclosing the identity of the credential
issuer (i.e., the certifier). However, HIAC inherently requires
the set of certifiers trusted by the verifier to be published as
an “aggregator’, thereby revealing the identity of each such
certifier. Hence, while one could use HIAC to solve the same
problem at PCI, such an adaptation would only achieve one-
sided privacy since of the parties would have to make its list
of certifiers publicly available. On the other hand, PCl aims
to enable two-sided privacy by allowing the two parties to
negotiate their common certifiers while preserving the privacy
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of both individual lists, and while simultaneously validating
the certificates issued to both the parties.

IHABC. Issuer-Hidden Attribute-Based Credential [17] is an-
other related system in which a user can prove a credential
issued to it without revealing which issuer among a set of
issuers acceptable to the verifier issued that credential. Similar
to HIAC, this system also provides one-sided privacy while
revealing the certifier set of the verifier (PCl, on the other
hand, ensures privacy of both the parties’ list of certifiers).
Moreover, the concrete solution presented in [17] uses a trusted
setup, which is costly in practice and is not a requirement for
any of our PCI solutions.

Secret Handshake. The “secret handshake” family of proto-
cols [12], [13] enable (role-based) authenticated key exchange
between parties without revealing any information beyond the
common group memberships shared by the parties. These
protocols, however, differ fundamentally from PCl in the sense
that: (a) they do not capture the notion of validating certificates
and claims (which is one of the core requirements addressed by
PCl), and (b) the process of issuing membership credentials
is part of the protocol itself (in PCI, the process of issuing
credentials/certificates is not considered part of the primitive).

II. PRIVATE CERTIFIER INTERSECTION (PCI)

In this section, we formally define Private Certifier Inter-
section (PCl). We begin by introducing some notations and
background material. We subsequently formalize the function-
ality and security guarantees that a PCl protocol should satisfy.

General Notations. We write z < x to represent that an ele-
ment x is sampled uniformly at random from a set/distribution
X. The output x of a deterministic algorithm .4 is denoted
by © = A and the output 2’ of a randomized algorithm A’
is denoted by 2’ + A’. For a,b € N such that a,b > 1,
we denote by [a, b] the set of integers lying between a and
b (both inclusive). We refer to A € N as the security parameter,
and denote by poly()) and negl(\) any generic (unspecified)
polynomial function and negligible function in ), respectively.!

PCI Notations. Let ZD be a set of identities corresponding to
the certifiers. Given a claim m € M by a party P, a certifier
with identity id can issue a certificate o € C, such that there
exists a relation R that satisfies the following:

R(id,o,m) = 1 iff o is a valid certificate by id on m

A natural instantiation of the certification process outlined
above is a digital signature, where the certificate issuance
corresponds to the signing algorithm and the relation R
corresponds to the verification algorithm, with o being the
signature on a claim m under the signing key corresponding to
id. Looking ahead, our proposed realizations of PCl protocols
in this paper will use this digital signature-based instantiation
of the certification process.

We now introduce some additional notations for ease of
exposition, these notations will be useful in understanding our

definitions for PCIl. Let S be a set of (identity, certificate,
claim) tuples of the form

S = {(idj,O’j, mj) €ID x C x M}je[l,n]

where N is the number of tuples in the set S. We define the
following projection functions on the set S:

id(S) :={id : 3o, m s.t. (id,o,m) € S}
m(S) := {m: Jid,o s.t. (id,o,m) € S}
m(S) := (mj)(idjﬁjvmj)GS

Here, m(5) is a list/multiset of the claims corresponding to
each tuple in the set S.

A. Defining a PCI Protocol

We now formally define a PCl protocol in the two-party
setting, which is the focus of this paper. Our definitions
naturally extend to multiple parties, as discussed subsequently.

Two-Party PCI. A two-party PCl protocol II involves parties
Py and P», where each party P; for i € {1,2} inputs a tuple
of the form inp, = (inpm, inpm), where:

e The private input inp, ; is a set of (identity, certificate,
claim) tuples of the form

inpi’l = {(idi,jagi,j; mm-) €ID xC x M}je[l,Ni]

where N; is the number of tuples in inp; ; from party F;.

e The public input inp, , is a set of claims of the form
{mi; € M}jcn Ny, where N/ is the number of tuples
in inp, , from party F;.

Note that a party P; can produce multiple certificates from
the same certifier on same or different claims. Additionally,
a party P; can also request certifications on the same claim
from multiple certifiers. Hence, in the most general setting, a
party’s input could have multiple tuples with the common id or
a common m. Also note that the public input for P; is known
to P, at the start of the protocol and vice versa.’?

Remark. A couple of remarks on the definition follow:

1) One could have a variant of PCl with the claims being
private. This work considers the above defined variant
with the claims being public. We leave it to future work
for instantiating PCl with private claims.

2) Our definition lets a (corrupt) party provide claims in the
public input that are different from those in the tuple in
the private input. One could also restrict the public input
inp, 5 to be m(inp; ;), which is the expected behaviour of
the honest parties.

At the end of the protocol II, each party P; receives as
output a set of certifiers. In this paper, we consider different
variations of (two-party) PCl protocols that produce different
kinds of output sets, that we outline below:

e Validate-Any: In this flavor of PCl protocol, denoted by
PCI-Any, both parties P, and P> receive as output the set
of certifiers outpcj.any, such that an identity id € out if

'Note that a function f : N — N is said to be negligible in X if for every
positive polynomial p, f(A\) < 1/p(\) when X is sufficiently large.

2We assume that these sets are shared between P; and P5 via some apriori
mechanism that is not within the purview of the PCI protocol itself.



and only if both P; and P, have valid certificates on some
my € inp; o and my € inp, 5, respectively, such that both
the certificates are issued by id. More formally, for each
i € {1,2}, we define the following Boolean predicate:

Rpci Any,inp, (id) = 1 if and only if Im € inp, , :
3(id, m, o) € inp, ; s.t. R(id,m,0) =1

Then we have

outpciany (inpy, inp,) = {id € id(inp, ;) Nid(inp, ;) :
RPCI—Any,inpl ('d) = RPCI—Any,inpz ('d) = 1}

e Validate-Any with Disclosed Claims: We also consider
a weaker variant of the aforementioned validate-any PCl
protocol (denoted by PCl-Any-DC), where the parties
additionally learn the following: (i) the claim m; ; corre-
sponding to each tuple (id; j,0; j,m; ;) € inp; ; for each
party P;, (ii) for each id in the output set of certifiers
outpcl-any, €ach party learns the set of (public) claims
on which the other party has a valid certificate issued
by id. Note that no information is revealed about any
(valid/invalid) certificates that the parties might have that
are issued by some id’ ¢ outpciany. Formally, for each
i € {1,2}, we define the function

Minp, (id) = {m : 3(id, m, o) € inp, ; s.t. R(id,m,0) =1}

Then the output set outpci-any-Dc i described formally
as follows

0u1:|:c|_,amy_|:)c(inp17 inp2) = ({m(inphl)}ie[lg] ,
{ (i, {minp, (id) }ic 11,23 ) : id € outpcrany(inpy, inpz)})

PCI-Any-DC is relevant in most real-world scenarios
since the parties would know the claims of the counter-
party that they want to validate, and vice versa. Moreover,
traditional VC interactions also work on disclosed claims
(see Section I).

e Validate-All: In this flavor of PCl protocol, denoted by
PCI-All, both parties P, and P; receive as output the set
of certifiers outpc.ay, such that for each id € outpci.ain,
P, and P, have valid certificates issued by id on all of
the (public) claims in their input sets inp; 5 and inp, o,
respectively. More formally, for each ¢ € {1, 2}, we define
the following Boolean predicate:

Repcraiinp, (id) = 1 if and only if Vm € inp; , :
3(id, m, o) € inp, ; s.t. R(id,m,0) =1

Then we have

outpcran(inpy,inp,) = {id S id(inpl’l) n id(ian’l) :
Repciaiinp, (id) = Rpcr-ailinp, (id) = 1}

B. Security of PCI

We now define the security guarantees expected of a PCl
protocol in the two-party setting. Informally, we require that in
any PCI protocol II, party P; (resp. party P») learns nothing
about the inputs of party P, (resp. party P;) except what
is revealed by the output out of the protocol II, and the
sizes N1 and N, of the input sets of P; and P». In the
rest of this section, we formalize this security guarantee using
the simplified universal composability (SUC) framework due
to Canetti, Cohen, and Lindell [24] in the real/ideal world
paradigm. We consider a dishonest majority in our definitions,

Fpci(mode € {Any, Any-DC, All})

e For i € {1,2}, let the input of party P; be inp; = (inp, 1,inp; o),
where

inpi,l = {(id@j,ai’j, miy]-) €ID xC x M}
inp; o = {M; ; € M}je[LN;]

JE[1,N;]

The honest party P> provides its input directly to Fpcj, while the
input of the corrupt party P; is provided to Fpc) by the simulator S.

e Fpci computes outpcl-mode, Where for mode € {Any, Any-DC, All},
we have

outpciany (inpy, inpy) = {id € id(inpy ;) Nid(inpy ;) :
Rpcl-Any,inp, (id) = RpclAny,inp, (id) = 1}

outpcl-any-Dc (inpy, inpy) = ({ﬁ(inpm)}ieug] )
{ (id, {minp, (id)};c 41,2} ) : id € outpci-any (inpy, ian)})

outpcran(inpy,inpy) = {id € id(inpy 1) Nid(inpy 1) :
Rpcrai,inp, (id) = Rpcral,inp, (id) = 1}

o Fpcy sends (0Utpc|_mode, Ny, inp172) to the simulator S.
e If S responds with an abort, Fpc| aborts.
e Otherwise, Fpc) sends to P; and P» the tuple

(outpci-modes N1, N2,inp; 5,inps o)

Fig. 3: Ideal functionality Fpc) in the two-party setting

wherein the adversary can corrupt one of the two participating
parties. For ease of exposition, we assume without loss of
generality that P; and P» are the corrupt party and the honest
party, respectively.

Ideal Functionality for PCI. We begin by formally defining
the first component of our simulation-based security definition,
namely the ideal functionality Fpc|, as described in Figure 3.
This functionality Fpc) formally defines what each party is
meant to learn at the completion of the protocol.

The Real World. In the real world, the following participants
engage in the protocol II:

e The honest party P, that receives its input from the
environment Z and honestly follows the protocol II.

e A real-world adversary A that controls the corrupt party
Py, and interacts with P, and the environment Z.

e The environment Z that provides P» with its input, and
interacts with the real-world adversary A. The environ-
ment Z also receives the output of P, and eventually
outputs a bit b € {0,1}.

The Ideal World. In the ideal world, the following participants
interact with the ideal functionality Fpc described in Figure 3.

e The honest party P, that receives its input from the
environment Z and directly forwards this input to Fpc.

e An ideal-world simulator S that sends inputs to Fpc
on behalf of the corrupt party P; and receives back the
corresponding output from Fpc. S also interacts with the
environment Z, with the aim of making this interaction
indistinguishable from the interaction between the real
world A and the environment Z.



e The environment Z that provides P» with its input, and
interacts with the simulator S. As in the real world, Z
also receives the output of P», and eventually outputs a
bit b € {0,1}.

For any two-party PCl protocol II, any adversary A, any
simulator S, and any environment Z, define the following
random variables:

e reali; 4,z: a random variable that denotes the output of
the environment Z after interacting with the adversary A
during an execution of the real-world protocol II.

e idealr, s z: a random variable that denotes the output
of the environment Z after interacting with the simulator
S in the ideal world.

Definition 1 (Secure Two-Party PCl). A PCI protocol II
securely emulates the ideal functionality Fpc) described in
Figure 3 if for any security parameter A € N and any
probabilistic polynomial time (PPT) adversary .4, there exists
a PPT simulator S such that, for any PPT environment Z,

|Pr [realir, 4,z = 1] — Prlideal .., s,z = 1]| < negl(\)

C. Extensions and Generic Constructions

Multi-Party PCI. Our definition of two-party PCI naturally
extends to the more general setting of multi-party PCl involv-
ing n parties Py, ..., P,. We defer a formal treatment of multi-
party PCI to the full version of our paper [36].

Generic Construction of PCIL In the full version of our
paper [36], we describe a generic approach to achiev-
ing a semi-honest secure PCl-mode protocol for mode €
{Any, Any-DC, All} given any semi-honest secure private set
intersection (PSI) protocol. We also discuss in [36] how
to upgrade this construction to malicious security and the
challenges thereof, and present a discussion on why the
generic construction is practically infeasible and why we need
concretely efficient PC| protocols in practice.

III. MPC FOR ELLIPTIC CURVE PAIRINGS

As a fundamental building block of our proposed PCI
protocols, we introduce a new secret-sharing based MPC
framework that is tuned for elliptic curve pairings. In this
section, we describe this framework. Our framework is based
on the SPDZ family of secret-sharing based MPC protocols.
In the full version of our paper [36], we present a detailed
discussion on why we choose secret-sharing based MPC, and
more specifically SPDZ, for our proposed framework and for
our PCI protocols.

Our Framework for MPC over EC Pairings. We now detail
our framework for designing secret-sharing based MPC proto-
cols over EC pairings. Our framework can be broadly divided
into three-tiers, where each tier builds upon the preceding one.

e Tier-1: This tier of our framework supports the basic
operations over [}, for some prime p.

e Tier-2: This tier of our framework supports group op-
erations over any generic group G with order p. We use
this tier to implement basic EC operations over the source
groups of an EC pairing (i.e., point addition and scalar
multiplication), as well as the group operations over the
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Init-F: On input (init, F,) from all parties, the functionality stores
(domain, Fp). A list of identifiers is established for Fp, if not already
done before.
Input-F: On input (inpF, P;,varid,z) with z € F, from P; and
(inpF, P;, varid, qbpp) from all other parties, with varid a fresh identifier,
the functionality stores (varid, ) in the list of field identifiers.
Rand-F: On input (rand, varid) from all parties (if varid is not stored in
memory), the functionality generates a uniformly random a € F}, and stores
(varid, a) in the list of field identifiers.
Triple-F: On input (triple, varidy, varida, varids) from all parties (if none
of the varid; are stored in memory), the functionality generates a uniformly
random a,b € F} and computes ¢ = a - b and then stores (varidi,a),
(varida, b) and (varids, c) in the list of field identifiers.
Add-F: On command (addF), varidy, varida, varidg) from all parties where
varidl, varids are in the list of field identifiers and varids is not, the
functionality retrieves (varidi, ), (varida, y) from the list of field identifiers
and stores (varids,z + y) in the list of field identifiers.
Mult-F: On command (multF,varidy,varids, varids) from all parties
where varidy, varids are in the list of field identifiers and varids is not, the
functionality retrieves (varidy, ), (varida, y) from the list of field identifiers
and stores (varids, z - y) in the list of field identifiers.
Output-F: On input (outF,varid,:) from all honest parties (if varid is
present in the list of field identifiers), the functionality retrieves (varid,y)
from the set of field identifiers and outputs it to the environment. The
functionality waits for an input from the environment. If this input is Deliver
then y is output to all parties if ¢ = 0, or y is output to party P; if ¢ # 0. If
the adversarial input is not equal to Deliver then ¢ is output to all parties.

Fig. 4: Ideal functionality for MPC over field operations in F},

output group of the EC pairing (i.e., multiplication and
exponentiation).

e Tier-3: This tier of our framework supports EC pairing
operations, subject to the restriction that the pairing map
e takes its inputs from two source groups G; and G, both
of which have order p, and produces an output in a target
group Gr, also of order p.

While each tier supports a different set of operations, we
exploit the fact that each tier shares a common algebraic struc-
ture (up to group homomorphisms), and we can manoeuvre
over this structure to progressively support more complicated
operations. We now describe each of these tiers in greater
details below.

A. Tier-1: MPC for Basic F), Operations

Our starting point is a secret-sharing based MPC engine for
operating over secret-shared inputs in some field F}, that imple-
ments the ideal functionality F[F,] as described in Figure 4.
This engine can be realized directly using SPDZ (the SPDZ-
based realization ensures security against both semi-honest
and malicious corruption of parties by using an additional
authentication mechanism to enforce honesty of operations
over secret-shared values). We use the representation [z] for
any x € Fj, to denote that the value x is secret-shared, i.e.,
no individual party has access to z, but each party has access
to some share of = (for simplicity, we will assume that this
notation incorporates the additional authentication components
required to ensure malicious security).

Linearity-Preservation. Fundamentally, we require that the
secret-shared representation [x] is “linearity-preserving”, i.e.,
for any x,y, z,a, 8 € Fp, such that u = a- 2+ 8-y + 2, given



the secret shares [z] and [y]| and the public values z, a, 3, the
parties can compute a secret-sharing of u “for free” as

[u] =a-[z]+B-[y] + 2

Note that, in the case of malicious security, we also need this
property to be preserved for the authentication components.

Additional Functionalities. We additionally require two deter-
ministic functionalities to be supported by the MPC engine:

1) A functionality that “opens” a secret shared value [z], i.e.,
reconstructs and distributes the value z to all or a subset
of the parties.

2) A functionality that “multiplies” secret shared inputs, i.e.,
given two secret-shared inputs [x] and [y], produces a
secret-shared output [z] such that z = z - y.

Finally, we require two randomized functionalities to be sup-
ported by the MPC engine:

1) A functionality that generates a secret-shared representa-
tion [a] for a randomly sampled value a < F),.

2) A functionality that generates secret-shared representa-
tions of uniformly random multiplicative “triples”, i.e., it
generates [a], [b] and [¢] for a,b < F), and c=a - b.

We refer to F[F),] described in Figure 4 for a formal descrip-
tion of these functionalities. Note that, for malicious security,
we would need each of the above functionalities to also
preserve (or, in the case of opening, validate) the authentication
components of the output appropriately.

SPDZ-based Realization. While we can use any secret-
sharing-based MPC engine that securely realizes F[F),], we
choose to use SPDZ as a concrete realization, with secu-
rity against a malicious corruption of the majority of the
parties. We briefly recall here that, in addition to securely
implementing F[F,], SPDZ also implements a MAC-check
based authentication mechanism for secret-shared values [z] to
achieve active security against malicious corruption of parties.
We recall the details of this mechanism at a very high level;
the low-level details are not important for understanding our
proposed framework. Informally, in SPDZ, each party P; for
i € [1,n] holds a sharing of a global MAC-key « € F}, (this
sharing follows a slightly different mechanism; we omit the
details as our framework is oblivious to the same). Any value
x € F}, is shared as

[z] = (6, (@1, ..., 2n), (V1 (2), ..., (2))),

where for each ¢ € [n], party P; holds the tuple (z;,;(z),9)
and where the following invariant holds:

T = in, a-(x+0)= Z’yi(m).
i€[n]

1€[n]

The SPDZ Opening Protocol. we briefly recall how the “open-
ing” protocol in SPDZ allows the parties to authenticate, via a
MAC-check mechanism, that a secret-shared value has been
opened correctly. The opening protocol for a secret-shared
value [z] involves the following steps:

e Each party P;, upon receiving a reconstructed value z’,
uses its share «; of the global MAC-key «, as well as
~i(z) and 4, to compute o; = v;(x) — a; - (2’ + 0).

e Each party P; then broadcasts a commitment Com(o;) to
all the other parties.

e Finally, each party P; opens the commitments {Com(o;)}
received from {P;};;, computes chk = >, 0}, and

aborts if chk #£ 0.

We use the term partial opening to refer the procedure that

just publicly reconstructs the value x without going through

the subsequent MAC-check procedure.

Suppose that a malicious adversary A manages to add an error
€ during the reconstruction phase, i.e., we have 2’ = = + €.
Suppose also that the adversary A commits to a subset of false
{0’} jec values corresponding to the subset C C [n] of parties
it corrupts. In order to bypass the MAC-check, the adversary
A must ensure that

Z(O‘; —0;) = ae.

jec
However, this happens with probability no greater than 1/p,
since the global MAC value « is uniformly random in Fj,
and (information-theoretically) unknown to A, and hence, A
cannot bypass the MAC-check protocol except with negligible
probability.

Additional Functionalities in SPDZ. We note that the random-
ized functionalities for generating secret-shared representations
of singleton values or multiplicative triples are implemented by
the offline phase of SPDZ [43]. We omit the low-level details
of these functionalities because they are not necessary to
understand our framework and proposed protocols; it suffices
to state that our framework uses the native implementations of
these functionalities directly from SPDZ. We also directly use
SPDZ’s implementation of the functionality for multiplying
secret-shared values, which is based on generating a random
multiplicative triple and then using Beaver’s re-randomization
technique. We refer to [31], [32] for the details.

B. Tier-2: MPC over any Generic Group

In Tier-2, we aim to realize an MPC protocol over any
generic group G with prime order p. More concretely, we
require the MPC protocol to implement the ideal functionality
F[G] as described in Figure 5. Such a protocol would allow us
to support basic EC operations (i.e., point addition and scalar
multiplication) over the source groups of an EC pairing, as well
as the operations over the target group of the EC pairing (i.e.,
group multiplication and exponentiation). Similar to Tier-1, we
use a linearity-preserving representation Hg for elements in G
such that for any g1, g2,93 € G and any «, 8 € Z, such that
h = g% - g5 - gs. given the secret shares [91]g and [g2]g and
the public values g3, a, 3, the parties can locally compute

[h]g = [91]g gz}gﬁ - g3

Once again, in the case of malicious security, we need this
property to be preserved for the authentication components.

Homomorphic Relation with Tier-1. We note that the afore-
mentioned linearity-preservation property in G shares a similar
algebraic structure with the tier-1 linearity-preservation prop-
erty in F), described earlier. Let F, = Z,,, and let

g3=9° h=g"

g =g, g2=49"
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Init-G: On input (init,G) from all parties, the functionality stores
(domain, G). A list of identifiers is established for G, if not already done
before.

Input-G: On input (inpG, P;,varid,g) with ¢ € G from P; and
(inpG, P;,varid, ¢g) from all other parties, with varid a fresh identifier,
the functionality stores (varid, g) in the list of field identifiers.

Op-G: On command (opG, varidy, varida, varids) from all parties where
varidl, varide are in the list of group identifiers and varids is not,
the functionality retrieves (varidi, g), (varida, h) from the list of group
identifiers and stores (varids, g - h) in the list of group identifiers, where -
is the group operation.

Exp-G-P: On command (exp GP, varidy, g, varidz) from all parties where
varid; is in the list of field identifiers, g € G, and varidz is a fresh identifier
in the list of group identifiers, the functionality retrieves (varidi,x) from
the list of field identifiers and stores (varida, g%).

Exp-G-S: On command (exp GS, varidy, varida, varidz) from all parties
where varid; is in the list of field identifiers, varida is in the list of group
identifiers, and varidg is a fresh identifier in the list of group identifiers,
the functionality retrieves (varidy,z) from the list of field identifiers and
(varidz, h) from the list of group identifiers and stores (varidz, h%).
Output-G: On input (outG,varid,:) from all honest parties (if varid is
present in the list of group identifiers), the functionality retrieves (varid, g)
from the set of group identifiers and outputs it to the environment. The
functionality waits for an input from the environment. If this input is Deliver
then g is output to all parties if ¢ = 0, or g is output to party P; if ¢ # 0. If
the adversarial input is not equal to Deliver then ¢ is output to all parties.

Fig. 5: Ideal functionality for MPC over the group operations in G, which
includes basic EC operations and the operations over the output group of a
pairing. We assume that F[G] also includes all Tier-1 sub-functionalities in
F[Fp], but we avoid re-writing them for modularity.

Then observe that the linearity-preservation property in Z,
with u

Additional Functionalities. We additionally require three de-
terministic functionalities to be supported by the MPC engine:

1) A functionality that “opens” a secret shared value [g],
i.e., reconstructs and distributes the group element g to
all or a subset of the parties.

2) A functionality that “exponentiates” a publicly available
group element in G using a secret-shared value in 7,
i.e., given a public g € G and a secret-shared value [z]
for z € Z,, produces a secret-shared output [h]; such
that h = ¢”.

3) A functionality that “exponentiates” a secret-shared group
element in G using a secret-shared value in Z,, i.e., given
a secret-shared element [g]; for g € G and a secret-shared
value [z] for x € Z,, produces a secret-shared output [h]
such that h = ¢”.

We refer to F[G] described in Figure 5 for a formal description
of these functionalities. Once again, for malicious security, we
would need each of the above functionalities to preserve (or, in
the case of opening, validate) the authentication components
of the output appropriately.

Tier-2 Extension of SPDZ. As a concrete instantiation of
FI[G], we generalize the extensions to SPDZ for basic EC
operations proposed in [30], [52] to any generic group of order
p. We briefly recall the details of the approach, albeit in its
generalized form. At a high level, we exploit the homomorphic
relationship between the additive group over Z,, and the group
G, which yields a natural way to map the linearity-preserving

property of SPDZ over Z,, to its extension over G. Informally
speaking, for h = g” for some publicly available generator g of
G, let [h]g := g!*]. Then, observe that the linearity-preservation
property in G follows from the linearity-preservation property
in Z,, albeit implicitly in the exponent of the public group
element g.

Concretely, any group element g € G is shared as

vgn) ) (’71(9)7 s v’Yn(g)))v

where for each ¢ € [n], party P; holds the tuple
(gi,7i(x),0g) € G x G x G, and where the following invariant

holds:
9=119 (9-30)" = ] (9,
] i€[n]

i€[n

l9lg = (g, (91, --

where « is the same global MAC-key as used in Tier-1.

Opening and MAC-Check in G. The opening protocol for
a secret-shared group element [g]; is also analogous to the
corresponding protocol for [}, where each party P; does
the following: (a) upon receiving a reconstructed value z/,
computes o; = v;(g)/(g’ - 6g)**, (b) broadcasts a commit-
ment Com(o;) to all the other parties, and (c) opens the
commitments {Com(c;)} received from {P;};-;, computes
chk = Hje[n] oj, and aborts if chk # idg, where idg is the
additive identity for the group G. We can use a very similar
argument as that in Tier-1 to prove that an adversary .A cannot
bypass this extended MAC-check protocol over G, except with
negligible probability.

Exponentiating a Public Element in G. As mentioned in prior
works [52], exponentiating a publicly available group element
in G using a secret-shared value in Z, is immediate; given a
public group element g and a secret-sharing of x of the form

[l‘] = (67 (1‘1,..., 77”('7;))))

one can easily compute a secret-sharing of h = g% as

[h}g = g[l] = (967 (91‘17. . >gln) ’ (g’h(w% e 79’%(.”)) .

Zn), (11(x),...

Exponentiating a Secret-Shared Element in G. In order to
exponentiate a secret-shared group element [g]; using a secret-
shared value [z], the parties use a protocol that naturally
extends SPDZ’s implementation of the functionality for mul-
tiplying secret-shared values (based on generating a random
multiplicative triple and then using Beaver’s re-randomization
technique). Concretely, the parties follows the following steps:

e Generate [al, [b] and [c] for a,b < Z, and ¢ = a- b using
the triple-generation functionality in Tier-1

e Locally compute [h1]5 = g!*) and [ho]; = gl9 using the
exponentiation algorithm outlined above.

e Partially open the values €e = (z — a) and hg = g/h;.

e Locally compute [hy]; = hga] (using the exponentiation
algorithm outlined above) and hs = hS§.

e Locally compute [h]; = [ha]g - ([hl]g)6 “[hag - hs.

Note that the final local computation is allowed by the
linearity-preserving property of the secret-sharing over G; we
omit the explicit details for simplicity.
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Pair-G1-P: On command (pairGP, g1, varidi,varida) from all parties
where g1 € Gi, varid; is in the list of group Go identifiers, and varids is a
fresh identifier in the list of group G identifiers, the functionality retrieves
(varidi, g2) from the list of G identifiers and stores (varidz,e(g1, g2)).
where e is the pairing function.

Pair-G2-P: On command (pairGP,varidi, g2, varidz) from all parties
where varid; is in the list of group Gy identifiers, g2 € G2, and varidg is a
fresh identifier in the list of group G identifiers, the functionality retrieves
(varidi, g1) from the list of G; identifiers and stores (varidz,e(g1,92)),
where e is the pairing function.

Pair-S: On command (pairS, varidy, varidz, varids) from all parties where
varidy is in the list of group G; identifiers, varids is in the list of group G2
identifiers, and varids is a fresh identifier in the list of group G identifiers,
the functionality retrieves (varidi,g1) from the list of Gp identifiers,
(varida, g2) from the list of Go identifiers and stores (varids, e(g1, g2)).

Fig. 6: Ideal functionality for MPC over the EC pairing operation with G1
and Go as the input groups and Gp as the target group. We assume that
F[Pair] also includes all Tier-1 and Tier-2 sub-functionalities in F[F},] and
F[G], but we avoid re-writing them for modularity.

Remark. We note here that while the aforementioned exten-
sion of SPDZ was proposed theoretically in prior works [30],
[52], it was done specifically for EC groups (in particu-
lar, [52] is the only prior work to propose protocols for
scalar-multiplying public/secret-shared EC points with secret-
shared scalars, and their treatment is entirely specific to plain
EC groups). As already mentioned, our generalized approach
allows us to make this engine usable for pairing-friendly EC
curves, since we can instantiate this engine not only for the
source groups of an EC pairing (which are both elliptic curve
groups), but also for the target group of the EC pairing, which
is not an EC group but a multiplicative group over some
extension field of F}. As it turns out, this is an important
building block that eventually allows us to support EC pairing
operations in Tier-3 of our framework.

C. Tier-3: MPC over EC Pairings

We now build upon the infrastructure set up in Tier-1 and
Tier-2 and design the MPC engine to support EC pairing op-
erations. In particular, for a bilinear pairing e : Gy X Go — G,
we start with Tier-2 instances for each of the groups G, Gs
and Gr (all of which satisfy linearity-preserving and support
the operations outlined earlier), and realize the following three
deterministic functionalities for EC pairings:

1) An EC pairing functionality that pairs a publicly available
group element in G; with a secret-shared group element
in Go, i.e., given a public g € G; and a secret-shared
group element [go]g, for go € Ga, outputs a secret-shared
output [gr]g, such that gr = e(g1, g2).

An EC pairing functionality that pairs a secret-shared
group element in G; with a publicly available group
element in Go, i.e., given a secret-shared group element
[91]g, for g1 € Gi and a public g2 € Go, produces a
secret-shared output [gr]g, such that gr = e(g1, g2).
An EC pairing functionality that pairs a secret-shared
group element in Gy with a secret-shared group element
in Gy, ie., given a secret-shared element [g1]g, for
g1 € G and a secret-shared group element [gz]g, for
g2 € Ga, outputs a secret-shared output [gr]g, such that
gr = e(g1, g2)-

2)

3)
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We refer to F[Pair] described in Figure 6 for a formal descrip-
tion of these functionalities. Once again, for malicious security,
we would need each of the above functionalities to preserve
the authentication components of the output appropriately.
We note here that this functionality supports both symmetric
and asymmetric pairings (in the symmetric case, we simply
instantiate the framework with G; = Gy = G).

Tier-3 Extension of SPDZ. One of our technical contributions
is an extension of the SPDZ framework to support MPC
protocols realizing F[Pair], which we describe here.

Fairing with One Secret-Shared Input. We begin by describing
how to compute an EC pairing when one of the input group
elements is secret-shared and the other input group element is
public. We realize this by exploiting the bilinear property of
the EC pairing. Recall that if e : G; X Go — G is a bilinear
pairing, then for any g1, h1 € G; and any gs, ho € Go, we have

e(g1 - h1,92) = e(g1,92) - e(h1, g2),
e(g1, 92 - he) = e(g1, 92) - e(g1, ha).

Now, observe that to pair a publicly available group element
in G, with a secret-shared group element in Go, each party can
just locally compute

[hrlg, =€ (hh [hﬂgz) )

and this yields a valid secret-sharing of pairing output hrp
because of: (a) the bilinearity property of e as described above,
and (b) the linearity-preservation property of the secret-sharing
mechanism over Go. Pairing a publicly available group element
in G2 with a secret-shared group element in G; is analogously
straightforward, wherein each party locally computes

[hT]gT =e ([hﬂglahz) .

Pairing with Two Secret-Shared Inputs. We now propose a
protocol that allows the parties to pair a secret-shared group
element [h;]; with a secret-shared group element [hs]g, , the
parties follows the following steps. The protocol is inspired
by SPDZ’s implementation of the functionality for multi-
plying secret-shared values (based on generating a random
multiplicative triple and then using Beaver’s re-randomization
technique), but needs to be carefully adapted to the setting of
EC pairings. Concretely, in our proposed protocol, the parties
proceed as follows:

o Generate [a], [b] and [c] for a,b < Z, and ¢ = a- b using
the triple-generation functionality in Tier-1.
e Locally compute

] []

a b
[uilg, = 6\, [ualg, = g5, [uslg, = ¢\,

using the exponentiation algorithm for public group ele-
ments in the Tier-2 MPC engine for G; and G,.

e Partially open the values hg = hy/u; € G; and hy =
ho / ug € Ga.

e Locally compute

[v2]g,. = e (hs, [u2]g,)
Vg = e(hg, h4)

[vi]g, = ([“3]91792)7
[vslg, = e ([uilg,, ha),

e Locally compute [hr]g = [v1]g, - [v2lg,. - [v3lg, - va



Note that the final local computation is allowed by the
linearity-preserving property of the secret-sharing over Gr; we
omit the explicit details for simplicity. To prove correctness,
it suffices to prove that hy = vy - v - v3 - vy; correctness
of the sharing again follows immediately from: (a) the bilin-
earity property of e described above, and (b) the linearity-
preservation property of the secret-sharing mechanism over G;
and G,. Observe that

V] - V2 - VU3 - V4
=e(us,g2) - e(hs,u2) - e(ui, ha) - e(hs, ha)
=ec(gi,92) - € (hl ~gf“7g§) ‘e (gihz -gEb)
'e(hl'gfa,hz'QQ_b)
=e(g1,92)° - e(h1,92)" - e(g1,92) " - e (g1,92) " - e (g1, h2)"

ce(hi,h2) e (hi,92)"" e (g1, ha) " e(g1,92)"
= €(h1, hg) = hT

We highlight here that our solution uses the group operations
and the pairing operations of the pairing-friendly EC group as
a black-box. This enables us to use the state-of-the-art libraries
such as RELIC [11] for implementing the pairing operations on
top of the MP-SPDZ framework. To the best of our knowledge,
this is first proposal and implementation of an MPC protocol
that efficiently supports EC pairings, and is likely to have
applications beyond PCI.

IV. PCI-Any-DC USING ECDSA SIGNATURE SCHEME

In this section, we describe a concrete instantiation of two-
party PCl-Any-DC using the ECDSA signature scheme. We
subsequently discuss how to extend this scheme to support
PCI-Any and PCI-All

Notations. Let the elliptic curve group G of prime order p be
defined over a field F}, as a set of points (z,y) € F), x F),.
Though the EC group G is an additive group of points over
the elliptic curve, we will continue to use the multiplicative
notation to ensure uniformity throughout the paper. Hence, we
will denote point addition between two points ¢J; and Q)2 as
@1 - Q2, and the scalar multiplication between a point () and
x € Z, as Q*. Let Q € G be the generator of the group
G (base point in standard EC parlance), and therefore we have
QP = O, where O is the point at infinity (the identity element).
For any Q' € G, we use [Q']; to denote the linearity preserving
secret-sharing of Q’.

The ECDSA Signature Scheme. We briefly recall the key
generation, signing, and verification equations for ECDSA.

KeyGen(\): On input a security parameter A, the key genera-
tion algorithm samples a private signing key = + [1, p—1], and
computes the public verification key Y := Q®. The algorithm
outputs the pair (z,Y").

Sign(z,m): On input a signing key = and a message m €
{0, 1}*, the signing algorithm does the following: (i) samples
a random k < [1,p — 1], (ii) computes R = (x,7) := QF (a
random point on the curve), (iii) computes » = £ mod p and
s=k7Y(H (m)+r-x) mod p, where H : {0,1}* — [0,p—1]
denotes a hash function, (iv) repeats (i)-(iii) until » # 0 and
s # 0. The algorithm finally outputs the signature o = (r, s).

Verify(Y,o,m): On input a verification key Y, a signature o
and a message m, the verification algorithm computes u; =
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H (m)-s~! mod p, uz =r-s~! mod p and computes R :=
(«,y’) = Q" - Y¥2. The algorithm outputs 1 if (2/,y") # O
and z’ = r, and outputs 0 otherwise.

Algorithm 1: PCl-Any-DC using ECDSA

. . . —1
1 Private inputs from Pp: inpy ; = [(Yl,év51,e’m172)}€6[1¢N1]

Each Y7 ¢ is shared as [YL[]QQ using Input-G, and each s;% is
shared as [sf’é] using Input-F.

2 Public inputs from Pi: inpy 5 = [(r1,e, Ri,¢5 ml’g)]ge[l’Nl]

3 Private inputs from Pa: inpy 1 = [(Ya2,¢, s;%, m2 0)lee1, N

Each Y5 4 is shared as [YQ,[]gz using Input-G, and each 52_} is
shared as [32_ z] using Input-F.

Public inputs from P: inpg 5 = [(r2,e, R2,¢, mgyg)]ZE[LNz]

Py validates each Rj o # O and has-x coordinate 3 .

P, validates each Ry ¢ # O and has x-coordinate ry g.

> Validate P;’s input signatures
for /:=1...N7 do

9 [ul,g] = H(ml,Z) : [Siﬂ

10 [m,d =Tec [517,%]

et =

ExpG-P([u1 1], Q) - Exp-G-S([un, 1], [¥1 ],/ R s

12 > Validate P,’s input signatures
13 for ¢/ :=1...N5 do

® N n s

14 [ug,¢] == H (mg) [s;j,}
15 [vglz} =T g {s;z,]
16 [C’?, =

E

xp-G-P([uz,¢/], Q) - Exp-G-S([vg ¢/, [Yz,e']QQ)/Rzz,e’

17 > Match certifier

18 The parties agree on public random values rndy, rndy < Z,,.
19 for /:=1...N7 do

20 for ¢/ :=1... N3 do

21 Generate secret-shared randomness [rnd ¢, [/] < Rand-F.
2 [Clg = [Yi,elg/[Yorr]g

» (g = [CHlg- [C3lg™" - [Clg™

2 [Cé/,é/] ;= Exp-G-S([mdg, ], [C’]g)

25 Output-G( [Cé” [,] g)

26 If CZE' == 0, then Output—G([YLg]g)

Protocol overview. The starting point of our protocol is the
generic maliciously secure protocol outlined in the introduction
where we have the certificate validation and creation of the
filtered sets of identities followed by the intersection of the sets
from the two parties. We note here that we could have a single
certifier issue multiple certificates on multiple different claims,
or multiple certificates some of the same claims. However, we
prescribe the parties to select only one certificate from a single
certifier on one claim, i.e., there is a single (certificate, claim)
pair for each certifier input to the protocol. We also expect
an honest party to only input valid certificates on its set of
public claims (although this is not a strict requirement for our
protocol).

Optimizing Verify: Our main effort here is to reduce or
obviate the non-algebraic operations in the Verify algorithm. In
addition to the additions and multiplications, Verify requires an
inverse operation in [}, and the extraction of the z-coordinate
of an EC point from the point description (which is a trivial
task to do in the plaintext world but not so inside an MPC).
To do this, we make two observations. First, we note that



the unforgeability of the signature scheme is retained if s—*
is input instead of s; given a signature (r,s), it is trivial to
compute (r,s~1) and hence the unforgeability guarantees are
equivalent for (r,s) and (r,s~!). This way the inverse can
be done outside the MPC and the parties can provide the
corresponding s~ ! as their secret inputs.

Second, in addition to r, we input the point R = (r,y)
by calculating the y-coordinate, and check that the signature
verification procedure actually yields the point R (recall that
the original ECDSA signature verification algorithm first re-
constructs the point R and then extracts its x-coordinate 7).
If » and R were to be private inputs, the MPC algorithm
would have to check that the r is the valid z-coordinate of R
to prevent maliciously constructed inputs. We obviate this by
making 7 and R public. Observe that, in the ECDSA signing
algorithm, the point R is a uniformly random point in the group
G, thus R and its xz-coordinate r are statistically independent
of the corresponding public key. In other words, the public
key is not revealed when r and R are provided, even if the
universal set of public keys is available to the adversary. We
also note that a malicious adversary cannot forge signatures
by inputting an invalid point R’ since, given the x-coordinate
r and the public description of the elliptic curve group G,
one can efficiently compute the two possible EC points the
form (r,y) in the group G, and either of these would match
the point R reconstructed by the verification algorithm if and
only if the original signature (r,s) was valid. At this point,
we can perform certificate verification inside MPC using the
operations in Tier-2 of our proposed MPC engine.

Computing the intersection: We now perform the intersection
of the sets of public keys by subtracting the corresponding
elliptic curve points (dividing in the multiplicative notation)
and checking if it opens to the identity element (point at
infinity). It is important to hide the difference value if it
is not the identity; otherwise we leak information about the
public keys which are not part of the output set, which is
not an allowed leakage according to our definition. So, we
randomize the difference before opening while retaining the
identity value. Another optimization in our protocol is that
we store the information on the validity of the certificates in
[CH g and [Cﬁ] gs and open them along with the variable
[C]g storing the equality of public keys, as a random linear
combination of three variables corresponding to the validity
of P,’s certificate, validity of P»’s certificate and the equality
of the public keys of the certifiers. This opens to the identity
element if and only if all of the three requirements are satisfied.

The detailed description of our PCI-Any-DC protocol for
ECDSA is provided in Algorithm 1. Here, each party inputs
tuples of (identifier, certificate, claim) with the above discussed
modifications as its private input, and the corresponding claim
and (r, R) for each tuple as its public input. Note that the
validation of P;’s certificates and P,’s certificates will be
executed in parallel by the MPC algorithm. We describe
the protocol in the F[G]-hybrid model, i.e., we assume that
each sub-functionality in F[G] has a secure instantiation. This
allows us to define and prove the protocols in a modular way.
A concrete instance of the protocol would use the SPDZ-
based instantiation described in Section III to perform ECDSA
signature validations while using all operations over the EC
group G in a black-box way.
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Correctness and Security. Correctness of the protocol follows
immediately. We state the following theorem for the security
of the protocol:

Theorem 1. Our proposed PCl-Any-DC protocol for ECDSA
signatures as described in Algorithm 1 securely emulates
Feci(PCI-Any-DC) (for the two-party setting).

Proof Overview. We defer a detailed formal proof of this
theorem to the full version of our paper [36]. We provide
a brief proof overview here. Informally, we construct a PPT
simulator S that simulates the view of a PPT environment
Z, such that that this simulated view is computationally
indistinguishable from the real view of Z. The crux of the
proof is the following observation: prior to the output stage
in Line 25 of Algorithm 1, the entire computation of the
protocol is local. Thus, the environment’s view, up to this
point, will not leak whether inputs used by the honest player
P, are dummy inputs or the ones that the environment actually
provided (this guarantee follows immediately from the security
of the underlying MPC framework in the F[G] hybrid-model).
Hence, the simulator S can assume entirely dummy inputs on
behalf of the honest party P», and proceed with the simulation
exactly as in the protocol.

To handle openings of the C}, values (Line 25 of
Algorithm 1), the simulator & invokes the ideal func-
tionality Fpci(PCl-Any-DC) using the inputs of the cor-
rupt party P; and obtains the output of the protocol
outpciany-pc(inpy, inpy). From the output, the S knows pre-
cisely which (£, ¢') tuples result in the opening of a Cy/,, value
that is equal to Og, since this corresponds to an intersecting
public key Y. Based on this information, S ensures consis-
tent openings by suitably modifying the simulated share of
CZ o corresponding to the honest party P> by exploiting the
algebraic structure of the EC group and its knowledge of the
MAC key « used in the simulation. Finally, to handle openings
of Y;, values (Line 26 of Algorithm 1), it suffices for the
simulator S to proceed exactly as in the real protocol. This is
because the public keys in the input of the corrupted party P»
are available to the simulator S in the clear, and were shared
by S exactly as in the real protocol. We refer to the full version
of our paper [36] for a detailed description of the simulation
strategy.

Extension to PCI-Any. One can naturally upgrade the above
PCl-Any-DC protocol to a PCI-Any protocol that additionally
guarantees privacy of the input claims for each party. More
concretely, the claims would be secret-shared across the par-
ticipating parties instead of being publicly available, and all
operations on the input claims would have to be performed
inside the MPC protocol. While the extension is conceptually
simple, it incurs some additional costs. For instance, we can
no longer directly use our proposed optimizations to reduce or
obviate the non-algebraic operations in the Verify algorithm,
and we would incur the additional cost of performing these
operations inside the underlying MPC protocol. We would
also incur the additional cost of hashing the claims inside the
MPC protocol (since the claims would now be secret-shared as
opposed to being publicly available). One could use an MPC-
friendly family of hash functions [38], but this would be non-
compliant with standardized implementations of ECDSA that
typically do not use such hash function families. We leave it



as an interesting future direction to investigate optimization
strategies that would allow performing the above operations
efficiently (i.e., outside the MPC protocol) while ensuring
privacy of the input claims and maintaining compliance with
standardized ECDSA implementations.

Extension to PCI-All. The above PCI-Any-DC protocol can
also be extended naturally to PCI-All by iterating through all
the claims to validate the certificates on these claims by a
specific certifier. To enable this, the private inputs will be
ordered in a 2-D grid, where each row corresponds to the
certificates by a certifier on all the claims in inp, ;, and the
protocol needs to validate |inp, ;| certificates per certifier inside
the MPC protocol. The complexity grows with the number of
claims which seems unavoidable since the ECDSA signatures
cannot be aggregated across different claims. Therefore in the
next section, we introduce an optimized PCI-All protocol using
the BLS signature scheme [21] that only requires a single
signature verification per certifier inside the MPC protocol.

Extension to Multi-Party PCI-Any-DC. Finally, we refer to
the full version of our paper [36] for a discussion on how to
extend the above PCI-Any-DC protocol (and its upgradation
to PCI-Any) from the two-party to the multi-party setting.

V. PCI-All USING BLS SIGNATURE

This section provides a concrete instantiation of the PCI-All
protocol using the BLS signature scheme [18], [19], [21]. At a
high level, we use the aggregatable feature of BLS signatures
over different claims to minimize the number of signature
verifications inside the PCI-All protocol. Note however that
BLS signature verification involves EC pairings, which we
handle in a black-box way using Tier-3 (Section III) of our
proposed MPC engine.

Notations. Let ¢ : G; X Go — Gp be a non-degenerate,
efficiently computable bilinear pairing, where Gi,Gs are el-
liptic curve groups and Gr is a multiplicative group, all of
prime order p. Let )7 and Q)2 be generators of G; and Go
respectively, and hence gr = e(Q1,Q2) is a generator of Gr.

The BLS Signature Scheme. We briefly describe the key
generation, signing and verification algorithms of the BLS
signature scheme, followed by the algorithms for signature
aggregation (over multiple messages signed under the same
verification key) and the verification of aggregate signatures.

KeyGen(\): On input a security parameter A, the key gener-
ation algorithm samples a private signing key x < [1,p — 1]
and computes the public verification key as ¥ = Q3 € Gs.
The algorithms outputs the key pair (z,Y).

Sign(z,m): On input a signing key x and message m, the
signing algorithm first computes M = H(m) € G; where
H :{0,1}* — G;. The algorithm then computes and outputs
the signature o = M® € Gj.

Verify(Y,o,m): On input a verification key Y, a signature
o and a message m, the verification algorithm outputs 1 if
e(o,Q2) = e(M,Y), and 0 otherwise.

Signature aggregation: On input signature-message pairs
{oi,mi}iep, Ny, the signature aggregation algorithm produces

an aggregated signature o, . my) = ic[1,N] 7i-
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Aggregated signature verification: On input a verifica-
tion key Y, an aggregated signature o(p,,, . m,) and a
list/multiset of messages (my, ..., my), the aggregated signa-
ture verification algorithm outputs 1 if e(0(y,,....my), Q2) =
[Ticp, v €(M;,Y) where M; = H(m;). The algorithm out-
puts O otherwise.

Remark. We note here that BLS signature aggregation is
susceptible to a rogue public key attack when aggregating
signatures on the same message under different verification
keys. However, the attack is not applicable when aggregating
signatures over multiple messages signed under the same
public verification key, and hence does not impact the security
of our proposed protocol.

Algorithm 2: PCI-All using BLS
1 P; has
inpy,1 = [(Yl’el’gl’zl’zz’ml’ez)]516[171\’1.1]1526[1»1\’1,2] and

inp1o = {mM1,0,}e,e(1,n 1)
2 P has
inpa,1 = [(Y2,00502,0,00M2,00) Ly ety 1 tn 1,3 ) 209

inpa o = {M2,6, o, e[1, Ny ]
3 Private inputs from P;: the aggregated tuples and the set of
preempted pairings o
(@) inpy; = [(YLZ’ELZ’Ml)]ZE[I,Nl.l]

(i) {21,0 = e(M2,Y1,0)}eepr, vy 1]
where 7; ¢ = £2€[1,N; 2] Tint,l2 and
M, = Hee[l N, o) H (m;,¢). Note that each Y7 g is

secret-shared as [YL g} each & 4 is secret-shared as

g2’
[El,dgl’ and each 2z ¢ is secret-shared as [Zlyé}gT'
4 Public inputs from Pi: inpy .
5 Private inputs from P»: the aggregated tuples and the set of
preempted pairings -
(@) inpy ; = [(Yz,bﬁz,e,M2)]ge[1,N271]

(i) {z2,0 = e(M1,Y2,0)}ee[1,N51]

Note that each Y3 4 is secret-shared as [Y27 g] each 72 ¢ is

Gga’
secret-shared as [527 d G and each z ¢ is secret-shared as

[22’2] Gr°
6 Public inputs from Pa: inpy 5.
7 for £:=1...Ny 1 do

s L [zivf}gT = Pair-G2-P([71,¢] 5, Q2)
9 for ¢ := 1...N271 do

L [z;’é,]gT = Pait-G2-P([Ta, ] 5, Q2)
The parties agree on public random r <— Z).
for £:=1...Ny1 do
for ¢/:=1...Ny1 do

Generate secret-shared randomness [7'4’ el} <+ Rand-F.
Each party locally computes:

[CZ,W} Gr

(o [, ) - (Baelog /[, )

/ — -G-
17 [Ce,e/] op T Exp-G-S ([T’Azl], [CAW}QT)
18 Output—G([cZ 2,] )
= AGr
19 if 02 o == 17 then

20

i L Output—G([YLg] 92)

Protocol overview. We follow the same generic approach as
in our ECDSA-based protocol, with some optimizations to
reduce BLS signature verifications inside the MPC protocol.



We note here that we could have a single certifier issue multiple
certificates on the same claim for some of the claims. However,
we prescribe the parties to select only one certificate from a
single certifier on each claim, i.e., there is a single (certificate,
claim) pair for each certifier per claim input to the protocol.
We also expect an honest party to only input valid certificates
on its set of public claims.

Reducing Claim Validation: As mentioned earlier, trivially ex-
tending the approach used in our ECDSA-based PCI-Any-DC
protocol to design a PCI-All protocol would require iterating
through all of the public claims, and validate the certificates
on these claims by a specific certifier. This results in a claim
validation complexity that grows with the number of claims,
which is undesirable because the straightforward way of claim
validation using BLS signatures would require computing two
bilinear pairings inside the MPC protocol per validation, which
is prohibitively expensive. Our main effort here is to reduce the
number of pairing operations inside the MPC protocol as far
as possible. To do this, we first use BLS signature aggregation
over multiple claims signed under the same public verification
key. Concretely, suppose that the private input inp; ; for each
(honest) party P; is ordered in a 2-D grid of tuples of the form

np; ¢ = [(Yiﬁn‘ji,@l,ezv miv@)]51e[l,Ni,l],be[l,N,;g]

with V; ; certifiers and N, o claims to be validated, where row-
¢, contains certificates of the form o; ¢, ¢, on the claim m; g,,
signed by the certifier associated with the verification key Y; ¢, .
The party P; performs some pre-processing to aggregate the
certificates in each row using the BLS signature aggregation

algorithm as:
H H H (mi,fz)

L2€[1,N; 1] £2€[1,N; 1]

Ei721 = M’L =

Ti0y,05

and uses an aggregated private input of the form
M1 = (Ve 3T vy

for the MPC protocol. This now reduces the number of
pairing computations inside the MPC protocol to two per
certifier (required to verify each aggregated certificate); in
particular, the complexity no longer grows with the number
of public claims to be validated.

The next optimization involves further reducing the number
of pairing computations inside the MPC to one per certifier.
Note that we could avoid the pairing computation that requires
pairing the public key with the aggregated claim-hash by
having each party pre-compute this and directly input it to
the MPC protocol. Note, however, that doing this naively
would break the ‘“unforgeability” guarantee of our protocol
because a malicious party could simply input the pairing of
a (potentially) invalid signature with the group generator Qo
to trivially satisfy the verification check. To counter this, we
exploit the uniqueness of BLS signatures for a given (key,
claim) pair as follows: each party preempts the output of
pairing its own verification keys with the aggregated claim-
hashes of the other party (this is possible since the claims are
public), which in the case of an intersecting certifier (i.e. when
the verification keys are the same), is identical to the pairing
of the aggregated public claim-hashes with the other party’s
verification key. This enables performing certificate verification
for one party by using the preempted pairing values computed
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by the other party. This obviates the need for computing one
of the pairings inside the MPC protocol (since the preempted
pairing computation is done outside the MPC), while also
preserving security of the end-to-end protocol.

Computing the intersection: In addition to certificate verifica-
tion, the above step also enables computing the intersection
of the identity sets between the two parties. In particular,
we perform an equality check in Gp by simply dividing the
corresponding group elements, and checking that the result
opens to the identity element in Gr. As in our ECDSA-based
protocol, it is important to hide the output of this computation
if it is not the identity; otherwise we leak information about
the public keys which are not part of the output set, which
is not an allowed leakage according to our definition. So, we
randomize the difference before opening while retaining the
identity value.

The detailed description of our PCI-All protocol for BLS
signatures is provided in Algorithm 2. Here, each party P;
inputs tuples of (identifier, aggregated certificate, aggregated
claim-hash) as its private input inp, ;, and the corresponding
claims for each tuple as part of its public input inp; 5 (for the
honest parties, inp; 5 is expected to be simply the set of public
claims as in the definition of PCI-All in Section II). Each party
also inputs the preempted pairing outputs as described earlier.
We describe the protocol in the (F[Pair])-hybrid model, i.e.,
we assume that each sub-functionality in F[Pair] has a secure
instantiation. A concrete instance of the protocol would use the
SPDZ-based instantiation described in Section III to perform
BLS signature validations while using all operations over the
EC groups G1,G> and the target group Gr and the bilinear
pairing e in a black-box way.

Correctness and Security. Correctness of the protocol follows
immediately. We state the following theorem for the security
of the protocol:

Theorem 2. Our proposed PCI-All protocol for BLS sig-
natures as described in Algorithm 2 securely emulates
Feci(PCI-All) (for the two-party setting).

We defer a formal proof of this theorem to the full version of
our paper [36].

Extension to Multi-Party PCI-All. We refer to the full version
of our paper [36] for a discussion on how to extend the above
PCI-All protocol from the two-party to the multi-party setting.

VI

This section details our implementation of the EC building
blocks, the ECDSA-based PCl-Any-DC protocol, and the BLS-
based PCI-All protocol. We independently benchmark the in-
dividual components of our protocols (including the protocols
for EC operations) in a local server. We then evaluate the end-
to-end performance of our PCI-Any-DC and PCI-All protocols
in a LAN, an intra-continental WAN and an inter-continental
WAN by spawning parties over three geographic regions across
two continents.

EVALUATION

A. Implementation Details

Our implementation builds on the MP-SPDZ [42] frame-
work to support the EC operations, including pairing described



TABLE I: Throughput (operations per second) for Local EC Operations
using RELIC and OpenSSL

RELIC - Ed25519

2,254,758
7,281

OpenSSL - Secp256k1

459,801
2,175

Op-G
Exp-G-P

TABLE II: Throughput (operations per second) for Local EC Operations
on Pairing-friendly Curves using RELIC

BLS12-381  BLS12-446  BN-254  BLS12-638
Op-G: Gy 1,079,688 834,877 687,906 435,223
Exp-G-P : G 523,529 404,051 296,905 217,412
Op-G : G2 6,453 4,535 4,228 1,782
Exp-G-P : G2 3,684 2,683 1,990 1,019
Pair-G-P : G1, G2 960 689 508 307

in Section III. To the best of our knowledge, this is the first
implementation of an MPC protocol that supports all the EC
group operations as basic gates. In particular, we implement all
the functionalities described in F[F,], F[G], and F[Pair]. The
closest prior work [30] had implemented only two selected
operations — Output-G and Exp-G-P. Our implementation of
ECDSA PCI-Any-DC variant uses the standard OpenSSL
(3.0) [4] library for EC operations. For the BLS PCI-All
variant, we use the RELIC toolkit [11] to compute pairings
and the EC operations on the corresponding groups. Both
variants protect against malicious adversaries. As described
earlier, our implementation builds on the SPDZ protocol with
MASCOT [43] pre-processing. Analyzing the single-threaded
CPU bottlenecks of the protocols, we have incorporated multi-
threading to parallelize parts that individual parties locally
execute without involving any communication (such as steps
9, 10, 14, 15, 22, & 23 in Algorithm 1, and 8, 10, & 16 in
Algorithm 2). The source code of the implementation is made
available here — https:/github.com/ghoshbishakh/pci®.

B. Component wise performance analysis

In this section we benchmark the individual operations of
our proposed MPC framework for elliptic curve pairings. The
different types of operations involved in the protocols can be
categorized into (i) offline pre-processing, (ii) input sharing,
(iii) local operations — performed by a party without any
communication involved, e.g., Exp-G-P, (iv) communication
dependent operations — which require inter-party communi-
cation, e.g., Exp-G-S, (v) output — which includes MAC-
check. We perform experiments to analyze the performance of
these different operations in terms of throughput (operations
per second) and the impact of network latency on them.
We separately compare the performance of local operations,
followed by communication dependent operations including
pre-processing, input sharing and output.

Platform Used. We used a workstation with dual Intel Xeon
Gold 5118 2.30GHz CPUs, with 24 cores, and having 128 GB
RAM. The system runs Ubuntu 18.04 operating system with
Linux kernel version 4.15.

3We have also made some engineering contributions to the RELIC frame-
work that makes progress in an easier integration of RELIC to other applica-
tions.
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TABLE III: Throughput (operations per second) for Operations Requiring
Communication

| RTT Ims \ RTT 100ms

Pre-processing 967 267
Input 261 245
Output 457 363

Single Multi Single Multi

Threaded  Threaded | Threaded  Threaded

Exp-G-S : G1 547 1,280 473 1,121
Exp-G-S : G2 277 554 257 554
Exp-G-S : G 166 322 164 314
Pair-S: G1, Ga 80 417 78 409

Local Operations. We start by benchmarking the local EC
operations namely Op-G (point addition) and Exp-G-P (scalar
multiplication with a point) separately for OpenSSL and
RELIC. The throughput values (using a single thread) de-
picted in Table I make it evident that the performance of
RELIC with Ed25519 [16] curve is significantly better than
that of OpenSSL with Secp256kl [5] curve. Nevertheless,
we use OpenSSL for our ECDSA-based implementation of
PCI-Any-DC since it one of the most widely-used libraries
implementing the ECDSA algorithm [34], [47]. Following this,
we evaluate the performance of EC operations on pairing-
friendly curves with RELIC and carry out the experiments
on four different curves, namely BLS12-381 [14], [55], [57],
BN-254 [15], BLS12-446 [33], and BLS12-638 [57]. Table 11
summarizes the throughput for Op-G, Exp-G-P, and Pair-G-P
for the above four curves. We observe that Op-G and Exp-G-P
operations on G5 are much slower compared to that on Gy, with
Pair-G-P being the slowest operation by far. Among the curves
benchmarked, BLS12-381 performs the best, and therefore we
select this for the end-to-end experiments in Section VI-C.

Operations Requiring Communication. Moving to the more
interesting benchmarks of the operations involving inter-party
communication, namely Pre-processing, Input, Output, and EC
operations Exp-G-S and Pair-S, we use two different setups —
(a) a LAN setup with RTT between two parties being about
Ims, and (b) an emulated WAN setup with RTT of 100ms.
In order to vary the link latency, we use the tc tool [6]
to manipulate the loopback interface. Table III shows the
throughput observed in the single threaded and multi-threaded
implementation for Exp-G-S and Pair-S. We observe that Pre-
processing slows down significantly with increasing latency,
so is Output but to a lesser extent. The throughput values of
Exp-G-S and Pair-S operations slightly drop with increasing
latency but, even with a high RTT of 100ms, multithreading
significantly increases the throughput, indicating that CPU is
a major bottleneck for these operations. This validates the
expectation since Exp-G-S and Pair-S are performed in batches
and involve only one round of communication in which a batch
of tuples are partially opened (see Sections III-B and III-C),
thereby limiting the impact of network latency. However, if
the batches are split (when a single batch becomes too large to
handle), the impact of the communication latency will increase.
Note that we perform this in a setup where bandwidth is
sufficient enough to not be a bottleneck, and therefore, does
not impact the benchmarks.
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Fig. 7: (a), (b) and (c) depict latency (in logarithmic scale) of ECDSA
PCI-Any-DC vs BLS PCI-Any-DC in LAN, WAN and ICWAN setups re-
spectively. (d) and (e) represents total communication and maximum memory
used respectively (in logarithmic scale) . (f) presents the latency with different
output intersection sizes.
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C. End-to-end performance analysis

In order to get real world performance metrics, we evaluate
our implementations by placing the parties in the (a) same
region — LAN, (b) different regions in the same continent —
Continental WAN (WAN), and (c) different continents — Inter-
continental WAN (ICWAN).

Platform Used. To gauge the practical performance of PCI
on consumer hardware, we carried out the experiments on
AWS EC2 cé6i.xlarge virtual machine instances with only
4 vCPUs and 8 GB RAM. The instances were running the
Ubuntu 22.04 operating system and were connected with a
network having up to 12.5 Gbps bandwidth [1]. For the
ICWAN setup, we use instances located in Asia (ap-south-1)
and North America (us-east-1), with an RTT latency of about
186ms. For WAN, we use two instances in the USA, one in
east coast (us-east-1), and another in the west coast (us-west-
1) with an RTT latency of about 62ms. For the LAN setup, we
spawned the two parties in two separate VMs in the same data
center (ap-south-1). We also performed experiments on more
powerful hardware (48 vCPUs, 96 GB RAM), the results of
which are reported in the full version of our paper [36].

Overall Latency of PCl-Any-DC. We evaluate the end-to-
end ECDSA and BLS-based PCI-Any-DC protocols, with each
party’s input set sizes varying from 10 to 1000. Here, the BLS
PCl-Any-DC refers to the BLS PCI-All (Algorithm 2) with the

16

parties using a single claim and its corresponding signature
instead of the aggregated claim and signature. Figures Fig.7a,
Fig.7b, and Fig.7c show the mean and standard deviations of
the latency in LAN, WAN, and ICWAN setups, respectively,
taken over multiple runs. The y-axis shows the time taken in
seconds in a logarithmic scale. For the input sets of size 10
from each party, the mean time taken is about 0.69 seconds,
8.8 seconds, and 26.4 seconds for the ECDSA PCl-Any-DC
protocol in LAN, WAN, and ICWAN, respectively. In such
a setting, the BLS PCI-Any-DC protocol takes 0.62 seconds,
5.9 seconds, and 16.6 seconds respectively. This is better than
the ECDSA variant, albeit by a small margin because the
ECDSA protocol requires additional Exp-G-S operations in
the signature validation steps (lines 11 and 16 of Algorithm
1), which is not required in the BLS variant. Exp-G-S operation
requires communication and hence is significantly expensive
as analyzed in detail in Appendix VI-B. For 1000 inputs, both
ECDSA and BLS PCI-Any-DC takes less than 84 minutes,
149 minutes, and 316 minutes in LAN, WAN, and ICWAN,
respectively. Notably, in practice, the size of the centralized
trusted set of all CAs on the web is around 200 [2]; therefore,
we expect the plausible set of certifiers for a party to be less
than 200. Here the number of certifiers do not imply the global
set of all possible certifiers, instead it is the number of certifiers
that have issued certificates for a given claim to a user. For
200 inputs, both ECDSA and BLS PCI-Any-DC takes less than
3.5 minutes, 7 minutes, and 15 minutes in LAN, WAN, and
ICWAN, respectively. This is improved further by using more
powerful hardware, which we report in the full version of our
paper [36].

Communication and Memory Overhead of PCl-Any-DC.
We observe that the volume of data communication across
parties is deterministic and is defined by the size of their
input sets as expected. Hence, there are no variations across
the different runs and across LAN, WAN, and ICWAN. We
report the communication bandwidth required for different
input sizes in Fig.7d. With input size of 10 from each party,
the total volume of data communicated is 22 MB for ECDSA
and 25 MB with BLS PCI-Any-DC. With input sizes of 1000,
the total communication goes up to 152.8 GB and 153.4 GB
for ECDSA and BLS PCIl-Any-DC, respectively. Unlike data
communication overhead where ECDSA and BLS variants are
close, the memory consumption of BLS is consistently higher
as depicted in Fig.7e. For 1000 inputs, ECDSA PCl-Any-DC
requires around 3.4 GB memory (maximum usage during the
runtime), whereas the BLS variant uses around 6.8 GB.

Latency of PCl-Any-DC with varying output size. We
evaluate the impact of varying overlap in the input certifier
sets of the parties implying varying size of output intersection
set. Fig.7f represents the end-to-end latency of both ECDSA
and BLS PCI-Any-DC while keeping the number of input from
each party constant at 100, and varying the output size from
1 to 100. We observe that compared to the output size 1,
the end-to-end latency for 100 outputs is higher by a very
small margin on an average in all the settings, namely, LAN,
WAN, and ICWAN. This is because of the differences in the
number of outputs from the protocol that has to be opened
(line 26 of Algorithm. 1, and line 20 of Algorithm. 2). We
note, however, that no additional information is leaked outside
what is permitted by the definition of PCI-Any-DC (Section
IT) from the difference in the latency, since the intersection set
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Fig. 8: (a), (b) and (c) depict latency of ECDSA PCI-All vs BLS PCI-All with 100 certifiers and 1 to 100 claims as input from each party in (a) LAN
(b) Continental WAN (c) Inter-continental WAN setups respectively. (d) and (e) presents the total data communicated and maximum memory consumption of

PCI-All respectively.

is already known to the parties one step prior to this opening
phase (line 25 of Algorithm. 1, and line 18 of Algorithm. 2).

Comparing Latency of BLS PCI-All and ECDSA PCI-All.
In order to evaluate the gains of using BLS signature aggre-
gation for PCI-All over the ECDSA implementation, we use
a (somewhat artificial) construction of ECDSA-based PCI-All
which iterates through all the claims to validate the certificates
on them (see Section IV). We evaluate the end-to-end latency
by keeping the input set size of each party constant at 100, and
increasing the number of claims from 1 to 100. The results in
Fig.8a, Fig.8b, and Fig.8c depict the mean and the standard
deviation of the overall latency in LAN, WAN and ICWAN
setups, respectively, taken over multiple runs. While the BLS
PCI-All consistently takes about 50 seconds, 115 seconds and
250 seconds for any number of claims (from 1 to 100) in
LAN, WAN, and ICWAN setups, respectively, the time taken
by ECDSA PCI-All gradually increases with the increase in
the number of claims. ECDSA PCI-All takes on an average
188 seconds, 380 seconds, and 748 seconds for 100 claims in
LAN, WAN and ICWAN, respectively. This clearly highlights
the gains of using BLS construction of PCI-All.

Communication and Memory Overhead of PCI-All. The
volume of data communicated between the two parties for the
above scenario is depicted in Fig.8d. With increasing number
of claims, the communication overhead increases for ECDSA
PCI-All, whereas it stays constant for BLS PCI-All which is
the expected outcome. For 100 claims, the volume of data
communicated by ECDSA PCI-All is 3333 MB, and by BLS
PCI-All it is 1658 MB. Memory consumption of ECDSA
PCI-All also increases with the increasing number of claims as
represented by Fig.8e. For 100 certifiers, with 100 claims for
each party, the memory usage by ECDSA PCI-All is about 268
MB, and the same by the BLS variant is 345 MB. Overall, the
memory consumption overhead of the BLS implementation is
more than the ECDSA implementation for up to a reasonable
number of claims such as 100.

VII. FUTURE DIRECTIONS

Our work gives rise to many interesting open questions.
We leave it open to study PCl in the setting where claims are
private, as well as to define and realize variants of PCI that
outputs a priority list of certifiers. Designing PCl protocols
supporting other signature schemes, including quantum-safe
schemes, is another challenging direction of research.Our MPC
framework over EC pairings can plausibly be leveraged for
building MPC-based PCI supporting other EC-based signature
schemes. While our PCl constructions based on ECDSA and
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BLS cannot be be immediately/trivially extended to other
signature schemes, we expect that carefully designed and
specifically optimized PCl constructions supporting other EC-
based signature schemes can plausibly be realized by using
our proposed MPC framework over EC pairings as a building
block.
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