LOKI: State-Aware Fuzzing Framework for the
Implementation of Blockchain Consensus Protocols

Fuchen Ma*, Yuanliang Chen*, Meng Ren*, Yuanhang Zhou*, Yu Jiang*™®,
Ting Chen', Huizhong Li¥, and Jiaguang Sun*
*School of Software, Tsinghua University, KLISS, BNRist, Beijing, China
f University of Electronic Science and Technology of China, Chengdu, China
i WeBank, ShenZhen, China

Abstract—Blockchain consensus protocols are responsible for
coordinating the nodes to make agreements on the transaction re-
sults. Their implementation bugs, including memory-related and
consensus logic vulnerabilities, may pose serious threats. Fuzzing
is a promising technique for protocol vulnerability detection.
However, existing fuzzers cannot deal with complex consensus
states of distributed nodes, thus generating a large number of
useless packets, inhibiting their effectiveness in reaching the deep
logic of consensus protocols.

In this work, we propose LOKI, a blockchain consensus
protocol fuzzing framework that detects consensus memory-
related and logic bugs. LOKI fetches consensus states in real-
time by masquerading as a node. First, LOKI dynamically builds
a state model that records the state transition of each node.
After that, LOKI adaptively generates the input targets, types,
and contents according to the state model. With a bug analyzer,
LOKI detects the consensus protocol implementation bugs with
well-defined oracles. We implemented and evaluated LOKI on
four widely used commercial blockchain systems, including Go-
Ethereum, Meta Diem, IBM Fabric, and WeBank FISCO-BCOS.
LOKI has detected 20 serious previously unknown vulnerabilities
with 9 CVEs assigned. 14 of them are memory-related bugs, and
6 are consensus logic bugs. Compared with state-of-the-art tools
such as Peach, Fluffy, and Twins, LOKI improves the branch
coverage by an average of 43.21%, 182.05%, and 291.58%.

I. INTRODUCTION

Consensus protocols are considered as backbones of
blockchain systems. They are designed to coordinate nodes to
achieve consistency in a distributed network. Various consen-
sus protocols are used in blockchain systems, such as POW [1],
POS [2f], Raft [3], and PBFT [4]. Due to the complexity of
node interactions in blockchain systems, it is hard to avoid
bugs in the implementation of consensus protocols. Consensus
protocols always play an essential role in blockchain systems
so any bug may have severe consequences. For example, three
vulnerabilities were recently exposed in the POS consensus

*Yuanliang Chen has contributed equally to this work.
™Yu Jiang and Ting Chen are the corresponding authors.

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA

ISBN 1-891562-83-5

https://dx.doi.org/10.14722/ndss.2023.24078
www.ndss-symposium.org

protocol of Ethereum [5]-[7]]. By leveraging these bugs, at-
tackers have conducted a DoS attack on Ethereum nodes. The
attack also increased the profits of individual validators by
short-range recolonizing the underlying consensus chain [J].

Fuzz testing is a promising technique among the ap-
proaches to protocol vulnerability detection. One of the most
commonly used protocol fuzzers is Peach [9]. Based on user-
defined data models, Peach generates test inputs and feeds
them to the target program. Peach has successfully detected nu-
merous vulnerabilities in industrial protocols. However, Peach
requires human effort to define the protocol’s specifications
and only performs fuzz testing according to static state models.
In the area of blockchain, researchers have recently developed
a tool named Fluffy [[10] to test the transaction execution
process of Ethereum. As a differential fuzzing tool, Fluffy
generates a multitude of transactions, feeds them to different
Ethereum clients, and has successfully detected two previously
unknown bugs in Ethereum by analyzing the differences in the
execution results. In addition to the fuzzing tools, researchers
have recently developed a tool named Twins [11], [12] to
examine the behaviors of BFT systems under Byzantine at-
tacks. As a unit-test generator, Twins implements three types
of Byzantine behaviors by duplicating correct node behaviors
in a mocking network environment. However, when it comes
to consensus protocol vulnerability detection, the complex
consensus states of distributed nodes bring the following
challenges that existing approaches cannot handle.

The first challenge is that the states of consensus nodes
are dynamic, making it difficult to construct their state models
precisely in real-time, which leads to ineffective testing. The
state of a consensus node consists of its consensus phase and
packet sequences. The consensus phase represents the stage of
target nodes in the consensus process, and the packet sequences
contain all the packets received and sent by LOKI nodes.
Without knowing such states, most fuzzing packets will be
rejected. For instance, sending ‘Preprepare’ packets to a leader
node will not be accepted in a PBFT system. However, it is
hard for existing tools to obtain consensus states in real-time.
The entry and exit of consensus nodes are dynamic, and node
states are various and independent.

The second challenge is that the inputs to the consensus
protocol are multidimensional, making it hard to generate
high-quality test inputs. Generally, the input to the consensus
protocol consists of three dimensions: target, type, and content.
The types and contents of packets should be dynamically

adjusted according to the current states of different target
nodes. However, Peach and Fluffy can only send fixed types of
inputs to settled targets. As for Twins, it only sends packets the
same as the correct nodes, which can hardly cover the error-
prone paths of the protocols. Another challenge that needs
to be addressed is how to effectively use the achieved state
information to guide the generation of test inputs.

To address the challenges above, we propose LOKI, a
fuzzing framework for detecting vulnerabilities in the imple-
mentation of blockchain consensus protocols. LOKI is fully
involved in the consensus process by masquerading itself as a
consensus node. It fetches the real-time states of other nodes.
Then LOKI constructs a dynamic message-driven state model
which records the state transitions of each node by analyzing
message sequences in the system. In each fuzzing round, LOKI
leverages a message guider to determine the next message
target and type and mutate the content according to the state
model. During the node execution, LOKI uses a bug analyzer
to detect memory-related and consensus logic bugs. It uses
Address Sanitizer [13]] as well as programs’ panic mechanisms
for memory bug detection. Furthermore, for the consensus
logic bugs detection, the analyzer is equipped with two oracles
to detect logic bugs that violate liveness [[14]] and safety [14]
properties. In this way, LOKI continuously participates in the
execution of the consensus protocol process, and performs
effective fuzz testing on it.

We implemented LOKI and evaluated its effectiveness on
the consensus protocols of 4 commercial blockchain systems:
Go-Ethereum, Meta Diem, IBM Fabric, and WeBank FISCO-
BCOS. Results show that LOKI covers 43.21%, 182.05%, and
291.58% more branches than Peach, Fluffy, and Twins. In ad-
dition, LOKI has found 20 previously unknown vulnerabilities
in these protocols (5 in Go-Ethereum, 3 in Diem, 5 in Fabric,
and 7 in FISCO-BCOS.) with 9 CVEs assigned (while others
are still in the review): CVE-2021-35041, CVE-2021-43667,
CVE-2021-40243, CVE-2021-42219, CVE-2021-43668, CVE-
2021-43669, CVE-2022-45196, CVE-2021-46359, and CVE-
2022-28936. While Peach and Fluffy only detect 1 of these
bugs, respectively, and Twins detects none. We also evaluate
LOKI to illustrate its testing overhead. The result shows that
LOKI performs 16,203 fuzz iterations on average during 12
hours.

This paper makes the following contributions:

e We propose a method of node masquerading to fetch real-
time states of distributed nodes for effective testing of
blockchain consensus protocol implementation.

e We implement and evaluate LOKI on four widely used
blockchains. LOKI employs a state model builder to
construct and update state models promptly and a message
guider to produce high-quality messages.

e We open-source LOKI'| for practical usage. Com-
pared with state-of-the-art tools: Peach, Fluffy, and
Twins, LOKI increases the branch coverage by 43.21%,
182.05%, and 291.58% on average. Besides, LOKI de-
tects 20 serious previously unknown vulnerabilities with
9 CVE ids. They all have been confirmed and repaired
by the maintainers.

'LOKI is available at: https://github.com/ConsensusFuzz/LOKI

II. BACKGROUND
A. Blockchain Consensus Protocols

A blockchain system leverages a consensus protocol to
achieve overall system reliability. Blockchain consensus pro-
tocols are derived from game theory and CAP theorem [15].
Game theory based consensus protocols discourage nodes from
violating the consensus by increasing the cost of cheating.
Typical protocols of this type include POW and POS. POW
stands for ‘Proof of Work’, a consensus schema used by
the Bitcoin system and Ethereum. POW sets the difficulty
and rules for the work that a block generation node should
do. POS stands for ‘Proof of Stake’. This algorithm selects
consensus validators in proportion to their quantity of holdings.
Game theory protocols are widely used in the permissionless
blockchain. The other type is the protocol based on the
CAP theory [15]. Commonly used protocols of this type
contain PBFT [4]], Raft [3] and HotStuff [[16]]. These consensus
protocols ensure the availability and partitioning tolerant by
achieving eventual consistency. CAP based protocols are com-
monly used in consortium blockchain systems due to better
performance and faster processing speed.

|Preprepare Phase| Prepare Phase | Commit Phase |

Fig. 1. PBFT needs three phases for consensus. N1 is the leader node.

In general, the state of consensus protocols is more
complex than traditional protocols, which other nodes can
easily influence. Figure [I] shows the consensus process of 4
nodes using the PBFT protocol. PBFT defines three phases to
achieve the consensus. During the Preprepare phase, a chosen
leader broadcasts PrePrepare packets containing transaction
sequences. After receiving a PrePrepare packet, a node ex-
ecutes and verifies the transactions. A node will enter the
Prepare phase and broadcast a Sign packet if the result is
correct. Currently, the state of such a node can be described as
‘a non-leader node with 1 Sign packet sent and n Sign packets
received’ in Prepare phase. After collecting Sign packets from
more than two-thirds of the nodes, the node broadcasts Commit
packets. During the Commit phase, the node commits the
locally-cached blocks to the database when receiving Commit
packets from more than two-thirds of the nodes.

When the leader has failed, another node in the PBFT
protocol will trigger a timeout. It suspects something is wrong
with the current leader. Then it initiates a view change process
to negotiate a new leader with other nodes by broadcasting a
Viewchange packet to move the system to view + 1. If a node
receives Viewchange packets from two-thirds of the nodes, it
will switch to the new view and calculate the new leader.

B. Fuzzing Technique

Fuzzing is considered an effective technique for program
vulnerability detection. A fuzzer continuously produces new
inputs for the testing program and tries to trigger software
bugs. Fuzz testing techniques can be divided into black-box,
gray-box, and white-box. Black-box fuzzing produces test
cases without knowing the testing programs’ behaviours and
implementation. Moreover, the gray-box fuzzer leverages the
feedback of the programs (such as the coverage) to guide
the generation of new test inputs. While white-box fuzzing
always constructs test inputs according to the source code of
the testing program.

LOKI is designed as a gray-box fuzzer as it leverages
the consensus state information to guide its fuzzing decision.
Compared with a black-box fuzzer, LOKI is more effective in
generating test inputs according to the feedback information.
Compared with a white-box fuzzer, LOKI is more general.
Blockchain systems differ in languages and architectures and
always have a large amount of code. Applying white-box
fuzzers to such systems needs massive human efforts. In
addition, the source code of blockchain systems is not available
in some situations (such as AntChain [17]).

III. MOTIVATION
A. Consensus Protocol Implementation Bugs

Due to the complexity of blockchain node interactions,
it is hard to avoid bugs in the implementation of consensus
protocols. Figure [2] shows a vulnerability in the consensus
protocol of Hyperledger Fabric [18]], [19].

1 func ChannelHeader (env *cb.Envelope)
(*cb.ChannelHeader, error) ({
+ if env == nil {
+ return nil, errors.New("Invalid envelope
payload. can’t be nil")
+ 1
envPayload, err :=
UnmarshalPayload (env.Payload)
6 if err != nil {
return nil, err

8 }

10 return chdr, nil

11 }

Fig. 2. Nil pointer bug in the consensus protocol of Fabric. Line 5 tries
to access an invalid memory if ‘env’ is nil. Lines start with ‘+’ describe the
code to fix this bug.

Line 5 shows that if the parameter ‘env’ is nil, the operation
‘env.Payload’ will try to access invalid memory and raise a
SEGYV signal. As a result, the leader will crash immediately. If
any node is hacked, the whole blockchain will eventually crash.
Though Raft only supports CFT, it needs to guarantee essential
services. It has been confirmed by the Fabric developers and
assigned a CVE identifier: CVE-2021-43667. Developers have
fixed it by adding a nil pointer checker, as shown in lines
2-4. Such vulnerabilities in consensus protocols can lead to
DoS attacks. Unfortunately, they tend to be hidden in the deep
logic of the protocol implementation, making them hard to be
detected.

B. Challenges to Detect Such Bugs

Compared with traditional protocols, consensus protocols
tend to have more complex states which are dynamically
updated during the execution. Several unique state transitions
of different nodes should be executed to detect this bug.

—_————e— e e | e — —
| | (1) process_message | I .-Ll (@) process_message | I
— I W [ENVelope] — = = —— — = —— ——— _: I ¥ I
o I decrypt& Channel | _]| forward_ generate | |
% | validate _header | i | to_leader _submit |
———————— — —— — —— — — — —
2
[Leader : Follower]
o __ de e
I — e e — T e o
] I
i Channel
'--I> ordered [~ head |
~ [Follower] mneacen
s P '
2 Fropos! |2 e memonv ocer |
A 4 @
[Candidate]—>[Leader]
Fig. 3. The follower forwards an Envelope message with nil payload to

the leader. The leader then processes the message without validating it and
crashes immediately.

Figure |3| describes the state transition process of two
consensus nodes and the trigger of the bug: (D At first, node;
was the leader and nodes was a follower. All the ‘Envelop’
messages will be decrypted and validated by node;. As the
red bars at the top left show, all the invalid messages will be
rejected in such a process. () An election process is proposed.
Two key state transitions were triggered — nodes is elected as
the new leader while node; becomes the follower. 3) At this
moment, if there are some unprocessed ‘Envelope’ packets in
nodey, then a new state arrives, where those packets will be
forwarded to the new leader by the follower. @) nodes pro-
cesses these packets by the function ‘ordered’, which does not
validate the request and calls the function ‘Channel_header’
directly. The leader panics when trying to access the nil pointer.

Existing tools like Peach cannot effectively detect this bug.
Peach sends pre-defined types of packets to fixed targets based
on a static state model. It cannot fetch the real-time states
of each node and update its fuzzing strategies. Without the
guidance of particular states, Peach generates lots of invalid
packets. For example, it may constantly send an ‘Envelope’
packet to a ‘Candidate’ node or a ‘Proposal’ packet to a
‘Follower’ node. These packets will not be accepted, making
it hard for Peach to detect such bugs. While Fluffy only
focuses on vulnerabilities in the transaction execution process.
It generates a multitude of transactions and feeds them to
different clients. Without fuzzing on consensus packets, it is
unable for Fluffy to detect such bugs either.

To effectively test consensus protocols, a fuzzer needs to
fetch the consensus states in real-time and dynamically update
its fuzzing strategy according to the current state. In this exam-
ple, that is to fetch the states that occur in step @) and @) and
send ‘Envelope’ packets according to the transition conditions
to a follower node. LOKI is designed as a masquerading node
that participates in the consensus process for fetching precise
states of each node. In this example, a dynamic state model
is constructed for tracking all state transitions of node; and
nodes in real-time. LOKI first receives a packet and sets the

Blockchain System | [State Model Builder]

T
1. listen| | N X
‘It'| Receiver |—>| Decryption |

2. update ¢ 3.2 determine next

Construction & Updating

message type

. .p @ @

Pn Pa1

a .~ (Statey,|

Prs

Message pool

] Enaueve

O - (]

| pequeue

4. selectjseeds

. DAL

Consensus Protocol

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6.broadcasf | .
< 2-jroadceas]
messages| |
‘ i Bug Analyzer
‘ 7. |monitor ‘: |
|

Bug Detection | | Crash Analysis | |Bug Reproduce|

Fig. 4.

An overview of LOKI. (1) Module Receiver first listens all the messages, decrypts and analyses them. (2) Next, State Module Builder constructs and

updates a state model according to the message sequences. (3) Message Guider determines next message type based on the state model, and updates it. (4) LOKI
selects corresponding seeds from the message pool. (5) Content Mutator mutates seeds according to message specifications, and generates new messages. (6)
Finally, LOKI encrypts and signs the messages, broadcasts them. (7) The Bug Analyzer monitors the execution information of blockchain system all the time.

And LOKI proceeds to the next iteration of the fuzzing process until termination.

state of node 2 to the leader and node 1 to the follower.
Afterward, due to the unprocessed ‘Envelope’ packets in node
1, LOKI fetches an unusual transition that forwards these
packets to the new leader. Guided by this transition, LOKI
then constructs malicious ‘Envelope’ packets to the follower
node and triggers this bug.

IV. LOKI DESIGN

LOKI is designed to cover the core implementation of
consensus protocols for most blockchain systems, from public
blockchain, i.e., Ethereum, to consortium blockchains, i.e.,
Diem [20], Fabric [[19] and FISCO-BCOS [21]. By camouflag-
ing the fuzzing nodes into the blockchain system as normal
nodes, LOKI fetchs the consensus states in real time and
automatically constructs and updates a state model, based on
which, LOKI adjusts its fuzzing strategies dynamically. With
the help of corresponding bug oracles, LOKI detects consensus
protocol implementation bugs in real time.

Figure [] illustrates an overview of LOKI. There are three
key components in LOKI: State Model Builder for fetching
real-time states, constructing and updating a dynamic state
model; Message Guider for guiding testing states and mu-
tating messages; Bug Analyzer for bug detection, analysis
and reproducing. (1) Module Receiver first monitors, decrypts
and extracts all the messages from the blockchain system.
(2) Based on the received messages, State Model Builder
constructs and updates a local state model. Then, LOKI assigns
an initial probability for each state transition, and starts the
fuzzing process. (3) Based on the state model, Message Guider
determines the target state, chooses the next message type
and dynamically updates the probability. (4) According to the
determined message type, LOKI selects corresponding seeds
from the message pool, and delivers them to the Content
Mutator. (5) Content Mutator receives those messages and mu-
tates them based on message specifications. Then it generates
plenty of new fuzzed messages. (6) Finally, module Encryp-
tion encrypts and signs the messages, broadcasts the fuzzed
messages through Publisher to the target nodes in blockchain

system. (7) The Bug Analyzer monitors the execution status of
nodes in blockchain system. If any consensus bugs or memory-
related crashes are detected, then the runtime information will
be recorded and the bugs will be collected, analyzed and
reproduced. Afterwards, LOKI proceeds to the next iteration
(from step 3 to step 6) of the fuzzing process until termination.

A. State Model Builder

The dynamic state model is the key guiding information
for the fuzzing process. Formally, a state is defined as a triple
< p,R,S >, where p means consensus phase, R presents the
set of received messages and S is the set of sent messages.
Consensus phase is defined as the stage of the target nodes
in the consensus process, which is automatically inferred by
the received messages. For example, for a PBFT system,
when a node receives “prepare” messages from others, then
it is in the “prepare phase”. Once LOKI join the blockchain
network, it immediately starts the message loop for listening
and collecting messages. All messages are decoded and ex-
tracted and key information such as message type, sender and
receiver are recorded. Then the State Model Builder divides
them into several message sequences by their message types,
the identification of senders and the EPOCH numbers. All
messages are sorted by the timestamp to record the temporal
correlations. High-frequency patterns can be mined from the
message sequences and converted into several different state
chains. The detailed process is mainly divided into two phases:
(1) State model construction and (2) State model updating.

(1) State model construction: To illustrate the state model
construction, we take PBFT in FISCO-BCOS as an example,
which is presented in Figure 5] When LOKI node joins the
blockchain network, it first sends and receives messages as
normal nodes do. All messages are analysed in real time, the
message type, identifications of senders/receivers and times-
tamp information are recorded and sorted. Then, based on
the Nodel D (identifications of message senders/receivers), all
messages are divided into several message sequences by LOKI.

Receive/Send heartbeat, response,
heartbeat

Receive/Send
new view _.{ newView,

Message | |

viewdata,, viewchange,

wop []

Send new —>{ preprepare, prepare, H commit, reply,

Receive new

consensus —.{ request,

Fig. 5. An example of the state model in PBFT of FISCO-BCOS, all state
chains are identified by the nodes’ ID. They begin from the same message loop
node, and end when related nodes exit. This model contains PBFT’s formal
specifications and also contains other patterns such as heartbeat messages.

preprepare,<» prepare,[<» commit,<»reply, @

Finally, LOKI dynamically analyzes all message sequences,
and mines the high-frequency messages patterns in them. If
a pattern occurs in all message sequences, LOKI identifies it
as high-frequency pattern. The message types are converted to
state node, and the following relations are converted to the state
transitions. The states and transitions are formed like a chain,
which we call the state chain. For example, the State Model
Builder can easily find that for each message sequence, every
heartbeat request is followed by a heartbeat response, then a
heartbeat request to the same node is sent. So the heartbeat
pattern — request and response are followed by each other is
mined. Then a state chain is constructed, state heartbeat and
state response links each other. Similarly, LOKI automatically
figures out that for all message sequences, viewdata messages
always follow newView messages, and viewchange messages
always follow viewdata messages. Then the high-frequency
pattern (newView — viewdata — viewchange) is mined
and the corresponding state chain is constructed.

=)
NodeDatan

Message| |
Loop
Trmlsartwnsn NewPooledTxHash,, GetPooledT X | Poulede,,
Receive/Send

newN ode7l
new transaction

Receive/Send
heartbeat

Receive/Send

new connection GetNodeData,

getBlockHeader,{~ BlockHeader,

Darak o HeaderHash,,
new Block newBlockHash,,
BodyHash, getBlockBadyn BlockBody,

Fig. 6. An example of the state model in the POW protocol of Go-Ethereum.

To help understand the state model construction better,
we also take pow in Go-Ethereum for example, as pre-
sented in Figure [6] After analyzing all message sequences,
the State Model Builder can easily find that every Ge-
tReceipts is followed by a Receipts, which is similar to
the heartbeat mechanism of Fabric. LOKI also detects that
BodyHash and HeaderHash messages always follow new-
BlockHash messages, then are followed by getBlockHeader,
getBlockBody messages and BlockHeader, BlockBody mes-
sages repsectively. Thus, the state chains ‘newBlockHash —
HeaderHash — getBlockHeader — BlockHeader’ and
‘newBlockHash — BodyHash — getBlockBody —
BlockBody’ are constructed.

By automatically mining high-frequency patterns in these
message sequences, more and more state chains have been
constructed gradually. When there is no new pattern mined,
the construction process ends. The state model is formed
as a tree, all state chains are derived from the initial state
(MessageLoop), which we call the root node. Finally, to help
explore abnormal message sequences, the State Model Builder
also creates transitions for each state to its own state and its
previous state. Then it assigns each state transition with an
initial probability (1/n if there are n edges). The ‘probability’
means the possibility that Message Guider selects the next
message type to transit to the target state. This probability
is dynamically adjusted, if a transition triggers new bugs or
makes new coverage, its probability increases.

During the state model building process, LOKI may not
capture all states, but it will continuously explore new message
patterns by trying unobserved state transitions during the
recursive state model updating process as we will describe in
the following. As a heuristic search algorithm with random-
ness, LOKI’s core idea is sending mutated messages to test
uncommon behaviours. LOKI constantly tries to cover these
behaviours during the state model updating phase.

Algorithm 1: State Model updating
Input

: Root node of the state model tree: root,
Vector of state chains: chains,
Message received: msg

1 Function treeUpdate (root, chains, msg):

2 /I new message type is found

3 if checkNewMsgType (msg) then
4 record (msg);

5 newchain = newChain (msg);

6 chains.add(newchain);

7 async:

8 newAnalyser().trackFollows(msg);
9 if isNewFollows(msg') then
10 | newchain.links(msg’) ;
11 end

12 end async

13 end

14 /I message from new node

15 if checkNewMsgId (msg) then

16 chain = getChainBytype (msg.type);
17 chain.updateState(msg);

18 root.newchild(chain);

19 end
20 /I message from existing state chain
21 chain = getChainById (msg.Id);
22 chain.updateState(msg);
23 if chain.state == end then

24 \ root.removeChild(chain);
25 end

26 End Function

(2) State model updating: Once the LOKI’s state model
construction ends, the model updating and fuzzing processes
begin. Algorithm [1]illustrates the process of updating the state
model tree. For every message received from the network or
generated by LOKI, function ‘treeUpdate’ first checks whether
the message is a new message type. If a new type is found,

LOKI records it and creates an analyzer for tracking subse-
quent messages asynchronously. All following messages will
be recorded and analysed for mining new potential patterns (if
new patterns found, then links them to the new state chain).
Otherwise, it checks whether the message comes from a new
node. If the sender is new, LOKI will create a state chain from
existing state patterns, and add it into the root node. If the
message’s id matches existing state chain, then get the chain,
update its state. Finally, State Model Builder checks whether
the current state chain comes to the end state. If so, LOKI
will remove it from the state model tree. The model updating
process runs through the fuzzing process. If the state chain has
not been updated for a long time, LOKI will try edges that
don’t exist in the model with a low probability. By performing
such byzantine behaviours, LOKI continuously explores new
message patterns and self-improves the state model.

B. Message Guider

Figure [/| shows the flow chart of Message Guider. It first
receives a message type list containing all the message types
in the blockchain system. Then, based on the state model with
dynamic transition probability, the Message Guider determines
the target fuzzing state and selects the next message type which
can trigger this state transition. According to the determined
type, Seed Selector selects the corresponding messages from
the message pool, and sends them to the Content Mutator
for mutation based on the message specification. Finally, the
Signer and the Publisher sign the mutated messages and send
them to other consensus nodes. All messages which contribute
to new states and state transitions are regarded as interesting
message seeds, and are stored in the message pool.

Message Guider
p2p send N . mutate Content
‘W{ Publisher H Signer H new message [$2un s | Mutator

™ I Seed choose | Message|
essage pool Selector | Pextseed *] seeds

iT)y?amically calculate probability

|
message| |
Listsm [> |

Fig. 7. Flow chart of Message Guider. The guider decides the following
fuzzing destinations and message type, mutates the content and sends the
mutated message.

Message Spec

Determine next
type & update
probability

Target state determination: Once the state model has
been constructed, LOKI will start the fuzzing process immedi-
ately. Based on the state model, the Message Guider needs to
determine the next target state and select the related message
type to reach it. Algorithm [2] illustrates the process of how
the Message Guider determines the target state. First, the
Message Guider traverses all the neighbourhood nodes. For
each connection of a neighbouring node, LOKI maintains a
separate state model for them. Those models are distinguished
by their Nodel D. They are generated or eliminated with the
dynamic entry and exit of nodes. Message Guider uses depth-
first search to get corresponding state chains from the state
model by their current states. Then for each state chain, the
Message Guider gets their transition probability models, and

calculates a random number based on them. Finally, each state
chain transfers its state according to the transition probability
p and returns the corresponding message type to reach the
target state. More specifically, once the next message types
have been determined, related messages will be mutated and
sent to the neighbourhood nodes for execution. This process
is asynchronous, and a new thread worker is awakened to wait
for the feedback information, as shown in lines 10 - 16. If any
message can reach new states or trigger new state transitions,
the corresponding probability p will increase accordingly.

Considering that the LOKI node maintains a separate state
model for each connected node and that the state transfer
for each state model is based on the transition probability.
Furthermore, different probabilities p may lead to different next
message types for different nodes. As a result, LOKI node may
sent different types of messages to different nodes. With this
Byzantine behaviour, LOKI performs continuous and efficient
fuzz testing to the target blockchain systems.

Algorithm 2: Target state determination

Input : Vector of neighbourhood nodes: peers
Output: Vector of next message types: msgs
1 Function DetermineNextMsgqg (peers, root) :

2 msgs = []

3 for peer € peers do

4 /I dfs root, get corresponding state chain ;

5 root = peer.getStateModel(peer.1d);

6 chain = root.getchainByState(peer.State);

7 p = Random (chain.getProbability());

8 nextmsg = chain.transfer(p);

9 msgs.push (nextmsg);

10 async:

11 fuzzedmsg = mutate (nextmsg);

12 feedback = p2p.send(peer, fuzzedmsg);

13 if isNewState (feedback) or
isnewTransition (feedback) then

14 | chain.updateProbability (p);

15 end

16 end async

17 end

18 return msgs

19 End Function

Content mutation: The performance of the fuzzing pro-
cess is influenced by the quality of the input seeds. Since
messages in the blockchain system are various, highly struc-
tured and well-formatted, the quality of input messages is
determined by the message specification. LOKI automatically
synthesises the specifications by extracting and analyzing the
message stream(which means message binary data received
from the blockchain) in the blockchain system.

To illustrate the process of content mutation, Figure (8| takes
the Preprepare message in Fabric for example. All messages
in Fabric are serialized into the Protocol Buffers (protobuf)
format [22]]. According to its encoding structure [23|], specifi-
cation information — pair < type, size > will be constructed
and divided by their message types.

Figure [gives an example of the specification for the
Preprepare message. Each pair represents a field in the

— specy
r .

S ecodel <typey, sizer>

(protobuf, RLP) <typey, size,>

PrePrepare Specification PrePrepare P;
+ View:uint64 = 0x08 . + View:uint64 = 0xf408
recursively

+ Proposal:struct{Proposal} = prop mutate + Proposal:struct{Proposal} = prop'
+ PrevSigns:[]*Signature = signs + PrevSigns:[]*Signature = newsigns
Proposal Specification

Fig. 8. Flow chart of the mutation process. LOKI recursively mutates
message fields based on specifications.

PrePrepare P,

message. The size is defined by a number or a keyword
‘unfixed’. The struct field contains the pair of each element.
Based on the specifications, LOKI first recursively searches

<uint64, 8>, <struct{<uint64,8>,<string,8> ...}, unfixed>,<signature, 32> ...

Fig. 9. An example of the generated spec for the Preprepare message.
Each pair represents a field of the message and the size is calculated in bytes.

them (Preprepare and Proposal specifications), and mutates
their fields: all the fields are mutated by the corresponding
mutators. More specifically, LOKI mutates different types of
data in different ways:

e For the numeric type, a numerical mutator will randomly
convert it to another number, especially to some border value
such as INT_MAX and 0. For example, the field “View’ in
Figure [§] are mutated from 0x08 to 0z f408.

e For the string type, a string mutator will modify it by
flipping its bytes or bits which is similar to the mutation
strategies in AFL [24].

e For the structure types (from prop to prop’), LOKI
recursively mutates each field. The basic types such as
numeric/string fields are mutated directly, and the structure
fields are handled recursively.

e For the cryptography field such as hash or signature,
LOKI uses the inherent cryptographic components provided
by each blockchain platform to process the corresponding
functions. To masquerade itself as a normal node, LOKI
node is implemented in the plug-in mode — the LOKI
core components are plugged into the original normal node
implementation. Thus, each LOKI node contains a normal
node which has already implemented the cryptographic
components. LOKI uses them directly to process hash/sign.
LOKI mutates the message contents before the hash or sign
functions are performed. In this way, LOKI can always
generate message stream which has valid cryptography
related fields.

To ensure the validity of the seeds after mutation, LOKI
maintains the full structure of the message packages. This
is the main novelty of LOKI’s mutation strategies. Thus, the
mutated messages will still be valid when deserialized by other
nodes. Finally, the new message P; is mutated and sent to the
target node for fuzzing.

Seed selection: All messages in the seed pool are catego-
rized by their message types. As shown in Figure [I0] there
are a serial of seeds queues divided by message types in the
message pool. (1) Once the Message Guider determines which

Seed selection procedure |

Protocol | determine T Preprepare m read one

Guider ypet

PrePrepare P,

Store to the pool
Monitor [Ta rget
Node

Fig. 10. The workflow of the seed selection process. LOKI selects proper
message according to the protocol guider and sends the mutated messages to
the target node.

mutate Content

PrePrepare Py|e—prres Mutator

or New state
transition

type to use in the next iteration, for example, a “preprepare”
message, then the seed selector will dequeue the “preprepare”
po message queue for further mutation process. (2) pp message
is mutated recursively according to the specifications. (3) Then
a new “preprepare” message p; is generated. LOKI will send
it to the target node and monitor its execution information. (4)
If there are new bugs, states or state transitions found in the
target node, the new ‘preprepare’ message will be regarded as
interesting and saved to the seed pool for the next iteration.

C. Bug Analyzer

Bug Analyzer is designed to monitor the runtime informa-
tion of target nodes and identify their exceptional behaviors,
as show in Figure There are two main types of bugs
LOKI can detect: memory-related bugs and consensus bugs.
Memory monitor is responsible for analyzing memory model
and detecting memory-related bugs of target nodes. Consensus
monitor is designed to analyze data states of blockchain ledger
and identify consensus bugs.

Bug Analyzer
memory
node crash related bug
down ? found

Node
Execution

valid state
unchanged:

Memory
Monitor

message
sequence

Liveness bug

Consensus
Monitor

re- &
reproduce

Tnvalid state
changed:

Safety bug

Fig. 11. The workflow of the bug analyze process. LOKI monitors the
memory problems and consensus exceptions while nodes process messages.

Memory-Related Bug: LOKI detects memory-related
bugs by observing whether a node crashes down. Since many
vulnerabilities such as heap overflow usually won’t directly
crash the node, we use Address Sanitizer (ASAN) [13] for
detecting and analyzing the latent bugs. With the help of
ASAN and the programs’ panic mechanisms, LOKI can cap-
ture and record the crash dump information of target nodes
immediately. Based on them, the call stack and the root cause
of the crash can be analyzed with tools like GDB [25] or
LLDB [26]. It should be mentioned that the memory bug
analyzer targets on all non-LOKI nodes. This is because we
only want to detect memory related bugs generated under the
original logic of the consensus protocols, without the influence
of LOKTI’s logic.

Consensus Bug: LOKI can also be extended with ora-
cles to detect consensus bugs that violate liveness [14] and
safety [14] properties of blockchain system. Liveness means a
valid transaction in a blockchain system is committed eventu-
ally. Safety means illegal transactions in blockchain systems
will never be committed. LOKI first continuously sends a set of
valid transactions to the blockchain system. Then, LOKI marks
state variables that transactions intend to change and monitors
these variables. If they are not changed for a long time, LOKI
considers there is a liveness-violating bug. For the safety bug,
LOKI regularly applies mutation strategies on the transaction
field in the consensus packets to create invalid transactions and
marks related states. Then LOKI monitors these state variables
the transactions intend to change. If their values are changed,
LOKI considers there is a safety-violating bug. Details of the
consensus bug definition can be reffered to [27].

The oracles are generated based on the original definitions
in the PBFT paper [4]]. For example, safety is defined as
‘the replicated service satisfies linearizability: it behaves like a
centralized implementation that executes operations atomically
one at a time.” This is an abstract definition at the design
level, while our safety oracle is a concrete definition at
the implementation level. For example, double spending is
a concrete bug that can be captured by our rules and be
prevented if the replicated service satisfies linearizability. In
the blockchain context, our safety oracle can capture bugs that
violate the formal definition in the original paper.

Bug Reproduce: LOKI records all received messages of a
node and sorted them by the timestamp. We find the first states
that the monitors output bugs while processing the test cases,
which we call triggering states. We also find the last state
that can reach the triggering states when used as the starting
point of nodes execution, which we call the starting state.
When a bug occurs, LOKI replays these messages between
starting state and triggering states to reproduce the bug and
help analyze the root cause.

V. IMPLEMENTATION

We implement our framework, LOKI, on four commonly-
used commercial blockchain platforms, including one public
blockchain — Go-Ethereum and three consortium blockchains
— Diem, Fabric and FISCO-BCOS. They are chosen because
they are diverse. As shown in Table |} all the blockchain
systems are implemented in different languages. In addition,
their consensus protocols are various. Implementation on these
blockchain systems can demonstrate that LOKI is a cross-
platform and language-free framework. We also open-sourced
LOKI in Github repository. LOKI is implemented in Rust.
We choose Rust because it has a good support of Foreign
Function Interface (FFI), which allows LOKI’s function to be
easily called by target blockchain systems. Besides, we also
introduce the basic file structure of LOKI in the README.md
of the repository. Furthermore, for some languages which do
not support ASAN such as Go, LOKI checks whether there is
a bug by the panic mechanism.

To masquerade itself as a normal node, LOKI node is
implemented in the plug-in mode — the LOKI core components
are plugged into the original normal node implementation. In
this way, LOKI can be quickly adapted to a blockchain system.

TABLE 1. DETAIL INFORMATION ABOUT 4 BLOCKCHAIN SYSTEMS TO
EVALUATE LOKI AND THE CONSENSUS PROTOCOLS THEY USED.

Blockchain Consensus ~ Company Language Version
Ethereum POW Ethereum Org Go #b94896 28]
Diem DiemBFT Meta Rust #4b3bdle [29]
Fabric Raft IBM Go #cd88c60 [30]

FISCO-BCOS PBFT WeBank C++ #09fb48e 311

Figure [T2] presents the implementation of LOKI Node, which
can be divided into three parts. The first part is the Normal
Node part, which contains all the functions of a normal node,
including message handling, field cryptography and signature,
block generation, etc. Although this part is specific to the target
blockchain systems, their implementations are available and
can be used directly. The second part is the LOKI Core Com-
ponents, which is implemented for constructing the state model
and dealing with the fuzzing process. It is totally independent
and free from the target blockchain systems. These components
can be reused when adapt to a new blockchain system. The
third part is the Interface Adaptation, which is responsible for
uncoupling the normal node and the core components of LOKI.
This part needs to be developed from scratch when adapt to a
new system.

LOKI Node

Normal Node

’Receiver‘ ’ Decoder ‘ ’ Signer ‘ ’ Encoder ‘ ’Publisher‘
AN

’ Interface Adaption ‘
R 4

LOKI Core Components

’ Data Wrapper ‘

’ Initial Seeds ‘ ’ State Model ‘ ’ Content Mutator ‘ 05

’ Seed Pool ‘ ’ Message Guider ‘ ’ Bug Analyzer ‘

Fig. 12. The implementation of LOKI node, contains three parts — Nor-

mal Node part for node masquerading and message handling. LOKI Core
Components part for state model and fuzzing process. Interface Adaption for
uncoupling Normal Node part and LOKI Core Components.

Initial Workload: LOKI utilizes the testing transaction
generation programs in each blockchain system to trigger
the whole consensus process. For FISCO-BCOS, we use
the provided stress testing scripts [32]. This script generates
transactions based on some predefined contracts. For Diem, we
use the ‘cluster-test” program [33|] provided by the developers.
This program generates mint transactions. For Fabric, we use
the transactions generated based on the contracts in Fabric
samples [34]. For Ethereum, we utilize a transactions firing
tool named chainhammer [35]].

Initial Seeds: Initial seeds are critical to the performance of
the fuzzing because they determine the initial fuzzing direction.
High-quality initial seeds are hard to write manually, while
random seeds cannot ensure coverage. In our implementation,
LOKI collects the messages in the network as the initial seeds.
The messages here mean the consensus packages sent by the
normal nodes and the network means the blockchain network.
Once LOKI nodes join the blockchain network, all messages

from the normal nodes will be listened to, recorded, executed
and tracked. Any messages which contribute to new states or
transitions will be regarded as interesting seeds and stored into
the message pool as the initial seeds.

Message Parser and Encryptor: The messages in diverse
blockchain systems are different in both structure and format.
More specifically, the encoding, decoding, cryptography and
signature processes of those messages are unique. However,
benefit from the plug-in mode implementation, each LOKI
node contains a normal node which has already implemented
the encoder, decoder, cryptographer and signer. As inherent
functions, LOKI uses these components directly. For example,
Fabric and Diem use protobuf to serialize and deserialize the
messages, so we use the Marshal and Unmarshal packages.
Ethereum and FISCO-BCOS utilize RLP [36] to encode and
decode messages, so we directly use the eth/rlp package.

Effort of Adaptation: LOKI is implemented such that
each module is encapsulated and loosely coupled. Therefore,
when adapting LOKI to a new system, developers only need to
implement four interfaces related to a specific chain and invoke
LOKT’s initialization routines at startup. The interfaces are:
(1) interfaces to wrap and unwrap data that convert between
the LOKTI’s chain-independent packet structure representation
and the specific chain’s message structure; and (2) interfaces
to send and receive packets that send the mutated packets to
Normal Node and pass the received message packets to LOKI
Core Components through the Rust’s FFI.

General steps to adapt LOKI are as follows: 1) Download
LOKI source code. 2) Write 4 interfaces related to specific
structures in system under test (SUT). 3) Start SUT. 4) Start
fuzzing engine by calling LOKI initialization function. 5)
Finish fuzzing. We take LOKI adaption in FISCO-BCOS for
example, we only wrote 533 lines of code. The detailed
adaption process is introduced in Appendix [IX-E| For more
examples, please refer to the repository of LOKI

VI. EVALUATION

To evaluate the effectiveness of LOKI, we compared it
with three state-of-the-art tools: Peach [9]], Fluffy [10] and
Twins [11]], [12]. We ran a blockchain network of 10 nodes.
The binary of Diem and FISCO-BCOS are hardened by
AddressSanitizer [[13]] to detect latent bugs. The initial seeds
for all experiments are the same. For LOKI, we set up a
group with 10 nodes for each target blockchain system and
set 3 of them as LOKI nodes. For Peach, we also built a
10-node group and set the related ports of all the nodes in
Peach’s publisher. In this way, Peach can continuously send the
generated packages to all nodes in the group. As for Fluffy,
we followed its documentation [37] to start the testing. For
Twins, we ran the ‘cargo xtest’ command for the pre-defined
strategies [38]] in Diem’s source code. All the experiments are
conducted several times on a 64-bit machine with 128 cores
(AMD EPYC 7742). The OS of the machine is Ubuntu 20.04.1
LTS, and the main memory is 512 GB. We design experiments
to address the following research questions:

e RQ1: Is LOKI effective in finding implementation bugs
of real-world consensus protocols?

Zhttps://github.com/ConsensusFuzz/LOKI/tree/main/source

e RQ2: Can LOKI cover more code logic of consensus
protocols compared with state-of-the-art tools?

e RQ3: What is the overhead of LOKI?

e RQ4: How LOKI performs under multiple LOKI nodes.

A. Bugs in Consensus Protocols

We ran LOKI and Peach on all four blockchain systems
for 24 hours. Since Fluffy is only designed for the Ethereum
platform, and Twins only supports Diem, we ran Fluffy and
Twins for 24 hours on Go-Ethereum and Diem, respectively.
LOKI detects 20 previously unknown consensus protocol
implementation vulnerabilities, including 5 in Go-Ethereum,
3 in Diem, 5 in Fabric, and 7 in FISCO-BCOS. Among
them, 14 vulnerabilities are memory-related, and the other 6
are consensus logic bugs that violate the liveness or safety
property. Their details are listed in Table

All the bugs have been confirmed and repaired by the
corresponding vendors, and at the time of paper submission,
9 bugs have been assigned with CVEs in U.S. National
Vulnerability Database (while others are still in the review). 4
of the bugs (#1, #2, #10, #17) are of the type ‘Invalid Memory’.
They allow the programs to access invalid memory addresses
and throw SIGSEGV or SIGBUS signals. 7 of the bugs (#4,
#6, #7, #9, #11, #12, #15) are of the type ‘Unexpected Panic’.
This type of bug arises because the system cannot correctly
handle some unique inputs, causing the entire node to crash. 2
of the bugs (#14, #16) are related to memory free. Specifically,
bug #14 fails to free the unused memory and continuously
consumes system resources. Bug #3 is of the ‘Data Race’
type. This bug results in a deadlock and triggers a denial-of-
service attack. 4 of the bugs (#5, #8, #18, #19) are logic bugs
that violate the liveness property of the blockchain system.
This kind of bug may prevent valid transactions from being
committed, and more seriously, the whole system will stop
producing new blocks. And 2 of the bugs (#13, #20) are logic
bugs that violate the safety property of the system. These bugs
lead to the confirmation of illegal transactions.

Peach is able to detect 1 bug (#15) in Table The reason is
that this bug occurs in the start phase of the consensus protocol.
It can be occasionally triggered with little state information.
As for Fluffy, it can also detect 1 of these bugs (#4). Fluffy
constructs a set of transactions that call EIP-1283 and finally
triggers this bug. As for Twins, it detects none of these
bugs because Twins only supports three kinds of byzantine
behaviors, all of which cannot trigger the hidden states of the
protocol in Diem. The unique vulnerabilities detected by LOKI
need to be triggered by specific packet sequences along with
real-time state transitions, which Fluffy, Peach, and Twins do
not support.

1) Accuracy of LOKI: LOKI does not have false positives
in our evaluation. For memory-related bugs, LOKI detects
node crashes either led by program panic mechanisms or
ASAN. As for consensus logic bugs, LOKI has no false
positives either by checking the final states of a transaction.
If a valid transaction’s state is not changed or an invalid
transaction’s state has been changed, there is a bug.

False negatives are hard to collect because we do not know
exactly how many bugs are in these platforms. However, we
added an experiment where we used LOKI to reproduce 12

TABLE II. PREVIOUSLY-UNKNOWN CONSENSUS PROTOCOL VULNERABILITIES FOUND BY LOKI IN 24 HOURS ON 4 COMMONLY-USED BLOCKCHAIN.
Platform Bug Type Bug Description Identifier
1 Go-Ethereum Invalid Memory SIGBUS: read a invalid memory when generating DAG on multiple nodes. CVE-2021-42219
2 Go-Ethereum Invalid Memory SIGSEGYV: nil pointer in newBlocklIter during block sync with fast mode. CVE-2021-43668
3 Go-Ethereum Data Race Resource access conflict in dialScheduler when miner enters network. Bug#23965
4 Go-Ethereum Unexpected Panic VM crashes when executing multiple transactions in system contract EIP-1283. Bug#23866
5 Go-Ethereum Liveness The chain indexer that caused repeated “chain reorged during section processing” errors. Bug#24447
6 Diem Unexpected Panic The address conflicts with other processes when restarting consensus nodes. Bug#1339041
7 Diem Unexpected Panic The validator node try to fetch an unreachable hash from cache. Bug#9753
8 Diem Liveness Malicious nodes cause the failure of processing some transactions and stucks the chain Bug#10228
9 Fabric Unexpected Panic Orderer crashes down after receiving an invalid config message. Bug#15828
10 Fabric Invalid Memory Leader fails after receiving a nil payload message forwarded by followers. CVE-2021-43667
11 Fabric Unexpected Panic Orderer breakdowns when marshalling an invalid envelope formation. Bug#18529
12 Fabric Unexpected Panic Leader in consensus protocol crashes down when parsing an invalid Envelope Header. =~ CVE-2021-43669
13 Fabric Safety Repeatedly creating channel after receiving requests with the same Channel name. CVE-2022-45196
14 FISCO-BCOS Memory Unfree Memory is not freed when dealing with sustained consensus packets. CVE-2021-35041
15 FISCO-BCOS Unexpected Panic Private key cannot be parsed by consensus protocol. CVE-2021-40243
16 FISCO-BCOS Bad Free Front service of a consensus node attempts to free an unallocated memory. Bug#72
17 FISCO-BCOS Invalid Memory Read an invalid memory when starting a block sync process. Bug#71
18 FISCO-BCOS Liveness Bug in checking txpool limit when receive transactions from p2p. CVE-2021-46359
19 FISCO-BCOS Liveness Block not be executed if the synchronization execute it before the addExecutor. Bug#2132
20 FISCO-BCOS Safety A fake proposal’s header leads to the successful consensus of illegal blocks. CVE-2022-28936

recent bugs [39] for 4 platforms (3 bugs for each platform) and
found 2 of them cannot be detected by LOKI. These 2 bugs
are related to data races, which are hard to be reproduced. This
indicates that LOKI has a false negative rate of 16.67%. The
bugs are listed in Section

2) Case Study: Now we use two cases to illustrate how
the bugs detected by LOKI affect the whole system. The first
case is the bug #20 listed in Table [[Il This bug is assigned
with a CVE ID: CVE-2022-28936. It is found in version 3.0 of
FISCO-BCOS. The bug is a consensus logic bug that violates
the safety property. The code snippet in the following figure
describes detailed information about the vulnerability.

void verifyProposal (PublicPtr fromNode,
PBFTProposallInterface::Ptr proposal,
function<void (Error::Ptr, bool)> handler)

{

// Bug Fix: add the checker for the block header
+ auto block = m_blockFactory—>

+ createBlock (proposal->data());

+ auto blockHeader = block->blockHeader () ;

+ if (blockHeader->number () !=proposal->index())
+ { if (handler)

i { auto error = std::make_shared<Error>

+ (-1, "Invalid proposal");

+ handler (error, false);

+ } return;

+ 1}

// Bug here: just verify the data of block
m_txPool->asyncVerifyBlock
(fromNode, proposal->data (), handler);

}

Fig. 13. A bug that breaks the safety property in the implementation of PBFT
protocol in FISCO-BCOS release-3.0.0.

As shown in Figure [I3] FISCO-BCOS uses a function
named ‘verifyProposal’ to check the blocks in a new proposal
from other nodes. This function takes in three parameters. The
first is the source node of the proposal, and the second is the
pointer of the proposal. While the third is a callback function
to handle the error. As shown in lines 17 and 18, it calls

10

the function ‘asyncVerifyBlock’ to check the proposal’s block
data. However, it overlooks the verification of the block header
and leads to the successful consensus of the illegal block. Thus,
during the fuzz testing, LOKI fakes a block’s header when
it fetches that it is the leader, and the consensus nodes will
not detect the invalid headers. However, during the execution
phase, the execution nodes will always fail to recognize these
blocks and leave them for further execution. Thus, more invalid
blocks are accumulated, and all the memory will finally be
consumed. Line 6 to line 15 shows the code to fix this bug:
add a checker for the block’s header and stop invalid blocks
from reaching consensus.

This bug can only be detected by LOKI because it only
occurs in the state where the leader sends blocks with illegal
headers. LOKI can fetch the state that it is the leader and
mutate different fields of the packets, thus triggering this bug.
Peach cannot fake itself as a leader, other nodes will not accept
its proposal, and the bug will never appear.

The second one is the bug #2 listed in Table [II This
bug was found in the block sync process of Go-Ethereum
(version 1.10) in the fast mode. Figure shows the detail
of this vulnerability. The function ‘find’ is designed to find
(key, value) a pair whose key is greater than or equal to
the given key. First, it will get an indexBlock through the
function ‘getIndexBlock’ by current Reader r, and then call
the function ‘newBlocklter’ based on this indexBlock. The
function ‘newBlocklter’ is used to create a new blocklter for
traversing all the (key, value) pairs in a block. However, if
the current node cannot fetch a valid block from the local
blockchain, the function ‘getlndexBlock’ will return a nil
pointer. Since there is no nil checker in the caller, the program
crashes when receiving the nil pointer. This bug has been
assigned with a CVE ID: CVE-2021-43668.

This vulnerability is hard to be detected because, in most
cases, the function ‘getlndexBlock’ would always return a
normal block. A long sequence of fuzzed messages and
transactions should be constructed and sent to the target node
to trigger it. After receiving those well-fuzzed messages and

// Find key/value pair based on the given key
func (r *Reader) find(key [lbyte, ...) (...) {

4 indexBlock, rel, err :=
3 if err != nil {return}
6 defer rel.Release()

r.getIndexBlock (true)

index := r.newBlockIter (indexBlock, nil, nil,
true)
8 defer index.Release ()

10 }

12 func (r xReader)
*blockIter {

newBlockIter (b *block, ...)

13 bi := &blockIter{
14 tr: 2,
15 block: b,

I // block *b is a nil pointer

18 riLimit: b.restartsLen,
19 offsetStart: O,
20 .
! }
}
Fig. 14. Nil pointer in Go-Ethereum’s fastsync mode. If leveraged by

malicious nodes, an honest node in the fastsync process can be broken down.

transactions, the target node constructs an abnormal block and
stores it in the local blockchain. However, the ‘getIndexBlock’
function will fail to deal with such a block and return a nil
pointer, eventually causing a node crash.

B. Code Coverage

In order to evaluate whether LOKI can cover more code
logic of the target systems, we built a local network with
10 nodes (3 of them are LOKI nodes) for each blockchain.
We calculated how many branches are covered in 24 hours.
It should be noted that we only calculate the coverage for
evaluating the effectiveness, and LOKI will not collect the code
coverage at runtime. The results are shown in Table

In conclusion, LOKI covers 10,058 branches on Go-
Ethereum (Geth), which is 48.04% and 182.05% more than
Peach’s 6,794 and Fluffy’s 3,566. While on Fabric and FISCO-
BCOS, LOKI covers 12,117 and 14,794 branches, respectively,
which is 31.96% and 66.79% more than Peach’s 9,182 and
8,870. And for Diem, LOKI covers 31,534 branches. This
improves the coverage by 26.05% and 291.58% by Peach’s
25,018 and Twins’ 8,053 branches.

TABLE III. BRANCH COVERAGE OF LOKI AND OTHER TOOLS. -’
MEANS THAT THE TOOL DOES NOT SUPPORT THE BLOCKCHAIN.
Go-Ethereum Diem Fabric FISCO-BCOS
LOKI 10058 31534 12117 14794
Peach 6794 25018 9182 8870
Fluffy 3566 - - -
Twins - 8053 - -

From the first column, we can see that LOKI covers more
than twice as many branches as Fluffy. The reason is that
Fluffy is designed to test the transaction execution logic in
EVM. Many consensus processes, such as leader election,

11

block commitment, and view changing, cannot be tested by
Flufty. As for Peach, LOKI covers over 40% branches on Go-
Ethereum, Fabric, and FISCO-BCOS because it dynamically
decides the type and the content of the sent messages according
to the state models. While Peach only tests fixed targets with
settled types of messages under static state models.

While on Diem, LOKI covers 291.58% more branches
than Twins. The reason is that Twins is a unit test generator.
It can just mock a network environment for BFT protocol
testing. Thus it cannot cover the code used in the actual
runtime of blockchain consensus protocols such as block
verification and block commitment. Besides, LOKI covers
26.05% more branches than Peach on Diem. Diem defines
plenty of safety rules for the consensus process, unlike the
other three blockchain systems. All the consensus packets that
do not belong to the current stage will not be accepted and
will not affect the following consensus process. The mutated
packages constructed by LOKI trigger more assertions in such
rules, which leads to the increment of coverage.

To observe the coverage trend, we record the coverage
every 20 minutes for 2 hours. After that, the coverage of
LOKI and other tools basically converge (only less than 1%
coverage improvement). Similarly, the state model constructed
by LOKI is basically completed. However, LOKI can still
generate boundary values to trigger more bugs. The results
are shown in Figure [I3] The blue bars in each figure refer
to the coverage of LOKI, while the orange bars describe the
coverage of Peach. The red bars in figure (a) represent the
coverage of Fluffy. And the purple bars in figure (b) represent
the coverage of Twins. The lines in each figure show the
increment percentages of LOKI compared with Peach.

According to Figure [I5] LOKI’s coverage grows signifi-
cantly in the first 40-80 minutes on Diem, Fabric, and FISCO-
BCOS. While on Go-Ethereum, the coverage of LOKI con-
stantly increases rapidly before 100 minutes. This is because
Go-Ethereum uses POW consensus protocol, which requires
the consensus nodes to calculate a hash value that meets a
specific condition. Therefore, each consensus round takes a
relatively long time. Accordingly, LOKI needs more time to
update the states, leading to a slower convergence. Peach and
Flufty’s coverage proliferates in the first 60-80 minutes. After
that, the generated packets can hardly cover more new branches
as they do in the beginning. As a unit test generator, the
coverage of Twins does not change over time.

Besides, we can also find that the slope of the percentage
growth of LOKI is always positive. This means that LOKI’s
coverage has always been growing faster than Peach’s. The
main reason is that LOKI can always construct more high-
quality input packets than other tools, benefiting from the
extracted message specifications and the dynamic real-time
state models.

C. Overhead of LOKI

In this section, we evaluate the testing overhead of LOKI
on the fuzzing iteration. We compared LOKI with Peach and
Fluffy on the 4 blockchain platforms in 24 hours (Twins is
not a fuzzer). The result is shown in Figure LOKI has
an average fuzzing iteration of 16,203 on 4 platforms. While
Peach performs 260 iterations on average. As for Fluffy, the
fuzzing iteration is 4,919 on Ethereum.

(a) Branch coverage on Go-Ethereum

gb -10* | | | | |
s 1 |00LOKI = a | 48%
o) eree

uffy - 47%
O o6} ’
S
S 04f - 46%
<
E T T = T = T ’_‘ T ’_‘ T ’_‘

20 40 60 80 100 120
, (c) Branch coverage on Fabric
§‘° 1.2 ;1 ODDLOKI | | | ‘ :
= — — - 30%
g 00 Peach ?
S
o 1f -25%
5 -20%
: ol Il
5 T T T T = 15%
20 40 60 80 100 120

Branch Coverage

(b) Branch coverage on Diem

(] 10" | | | L L
) i —
S 3+ |UODLOKI - 125%
g 00Peach
) Do Twins
O 20 +120%
<
S o
g 1 +15%
E ?"_‘ T ’_‘ T ’_‘ T ’_‘ T ’_‘ T ’_‘ ’
20 40 60 80 100 120
\ (d) Branch coverage on FISCO-BCOS
-10 | | | | |
151 [loLok1 3 2 66%
l0Peach
1k +65%
T T T T T
20 40 60 80 100 120

Fig. 15. Coverage trends evaluated for LOKI, Peach and Fluffy on Go-Ethereum, Diem, Fabric and FISCO-BCOS. The bars in the figure represent the coverage
while the lines describe the increment percentage of LOKI compared with Peach. The coverage of Fluffy is zero for Diem, Fabric and FISCO-BCOS because
it only supports Ethereum. The same is for Twins on Go-Ethereum, Fabric and FISCO-BCOS. After two hours, the coverage of all tools grow slowly (only less
than 1% coverage improvement is observed). But after 2 hours, LOKI can still generate some boundary values to trigger more bugs.

(a) Go-Ethereum (b) Diem
- : : : : : - — : : :
g 104&(oy oo ety w 'g 102 [L4 L e (L Ly A e
< A <
§ 103 . N § 10:} . 4
=P —LOKIN = 4
§ 10 — Peach § 10 —LOKI
£ 10} —ruty || 2 10] " peueh ||
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Time [hour] Time [hour]
(c) Fabric (d) FISCO-BCOS
5 ‘ ‘ ‘ [—roxi g P P "
£ 100 W S 10" [ty PRl o
5 10° 1 B10°] ,
§10°F 1§y ot ||
@«w0p o joEp
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Time [hour] Time [hour]
Fig. 16. Fuzz iterations of LOKI, Peach and Fluffy in 12 hours.

Peach has a relatively low fuzzing iteration because it
generates each test case from scratch. While LOKI produces
new test inputs by mutating specific fields of the packets in
the message pool. As for Fluffy, it is less efficient than LOKI
because the test case is more complex. Targeting the virtual
machine, Fluffy leverages multiple transactions as test inputs.
However, LOKI generates new test cases by constructing or
mutating protocol packets, which are much smaller than blocks
and transactions.

D. Effectiveness under multiple LOKI nodes

We also conducted an experiment to find out the effect
of multiple LOKI nodes. We set up a group of 10 nodes for
each blockchain with 1, 2, and 3 LOKI nodes and calculated
the branch coverage. The results are shown in Figure We
only collected the coverage for 2 hours because, after that, the
coverage basically converged for all groups. The result shows
that the coverage finally converges at a similar value (with
only +/-5% of the variance) under various LOKI nodes. More
LOKI nodes may slightly accelerate the coverage increment.

12

2, 101 (a) Ethereum 2, 101 (b) Diem

2T ; ; ; 2 T ; ; .

2 g

8 0.9} 8 2.8+ 8

2 08 ——3-LOKI || g 2.6 ——3-LOKI ||

2 Y —2.LOKI 2 24 —2-LOKI ||

g 07 — 1LOKI || 2 99 — 1-LOKI ||

= 0 30 60 90 120 & 0 30 60 90 120
Time [min] Time [min]

. 10t (c) Fabric g 10t (d) FISCO-BCOS

1 of : Z : : :

% 11k é 1451

2 1 —3-LOKI ||] L4 —3-LOKI | |

S — 2-LOKI = —2LOKI ||

E 0.9 — 1-LOKI | | %1'3? — 1LLOKI

@083 6 o9 120 & %0 30 6 9 120

Time [min] Time [min]

Fig. 17. Branch coverage under different numbers of LOKI nodes. The
branch coverage is generally the same under various LOKI nodes.

VII. DISCUSSION

In this section, we will discuss some advantages and
limitations of LOKI, and our future work.

Scalability on Different Platforms. With the lightweight
plug-in design, LOKI has strong scalability across languages
and blockchain systems. For non-blockchain distributed sys-
tems, LOKI only applies to those with a similar consensus
protocol to the blockchain, such as the IPFS cluster [40] with
the Raft protocol. IPFS is a distributed file system that seeks to
connect all computing devices with the same system of files.
Though we have tested the Raft protocol of Fabric, they are
different in the implementation (language and architecture).
Besides, the workload is different when adapting to a non-
blockchain system. For a blockchain system, the workload is
the transaction based on smart contracts, while for IPFS, the
workload is an I/O-related operation such as file uploading. In
our experiment, we successfully migrated LOKI to a popular
distributed management software ipfs-cluster [41]].

We created a 3-peer IPFS cluster, which holds two normal
peers and one fuzzing peer equipped with LOKI. The fuzzing
peer will collect packets from other nodes to perceive the
current consensus state and perform targeted mutations on the

returned packets. Table shows that after running for 24
hours, LOKI covered 1,946 branches. Compared with Peach,
LOKI improves the coverage of consensus protocol logic by
43.09% through precise state perception and efficient mutation.
A nil pointer dereference happens in syncing snapshots and log
entries from the leader node. The root cause is that the order
of internal variables in followerReplication structure violates
the requirement for atomic operations. The corresponding
developers have fixed this bug.

TABLE IV. BRANCH COVERAGE ON IPFS-CLUSTER WITHIN 24 HOURS.
| LOKI Peach Fluffy Twins | Improvement
Coverage \ 1946 1360 \ +43.09% / -/ -

Generality on Other Distributed Protocols. Currently,
LOKI mainly focuses on detecting bugs in blockchain con-
sensus protocols. This is because consensus protocols are
the backbones of blockchain systems. Any bugs within these
protocols may result in severe consequences. For example, a
recent vulnerability [42] discovered in Hyperledger Fabric’s
consensus protocol can crash an orderer node and lead to
a DoS attack. However, a limitation of LOKI may be that
it is not suitable for some generally distributed protocols,
such as gossip-based protocols. To build the state model of
consensus nodes, LOKI requires some expectation that the
messages received indicate a node’s current state rather than
a past state. In some general distributed protocols, however,
the network packets cannot represent the current state of the
protocol. In these scenarios, LOKI may not implement the
state chains correctly, affecting its effectiveness. Thus, for now,
LOKI focuses on blockchain consensus protocols.

Consensus Protocols with Concurrency LOKI utilizes
the EPOCH number to divide the received messages for
concurrent protocols. The consensus protocol we tested for
FISCO-BCOS is the Parallel PBFT. This protocol introduces
a pipeline mechanism that operates different consensus states
with concurrency. LOKI can also support such protocols.
For example, during the Commit phase, LOKI may receive
commit messages as well as prepare messages at the same
time. However, they contain different EPOCH numbers. LOKI
divided the state model according to the EPOCH numbers and
updated different state chains based on these messages. As we
illustrated in Section VI, LOKI covered 14,797 branches and
found 7 bugs in the Parallel PBFT of FISCO-BCOS, proving
that LOKI is also effective on concurrent protocols.

VIII. RELATED WORK

Vulnerability Detection in Blockchain. Usually, the secu-
rity of blockchain systems contains two layers, 1) security of
the application layer (smart contracts), and 2) security of the
backbone layer (EVM, consensus protocols, etc.).

Recently, many researchers have devoted themselves to
the development of smart contract vulnerability detection
tools. Some work uses static analysis methods to construct
intermediate expressions and rule paradigms to match specific
vulnerability patterns, such as Zeus [43]], SmartCheck [44] and
Securify [45] for reentrancy or overflow vulnerabilities, Mad-
Max [46] for gas-related vulnerabilities and Pied-Piper [47]
for contract backdoors. Some work use symbolic values as

13

input to simulate the execution of the program. For example,
Oyente [48]], Mythril [49] and their extensions [S0]—[53]]. How-
ever, these tools only support vulnerability in single contract,
Pluto [54] models the inter contract call process to handle this
problem. There are also some dynamic tools focus on smart
contract vulnerability detection, such as ContractFuzzer [35],
sFuzz [56] and ReGuard [57]]. Guided by coverage feedback,
they select and randomly mutate inputs within the seed pool.
Another tool named V-Gas [58] uses fuzzing technique to find
the high-gas consumption inputs to avoid out-of-gas situations.
In addition, authors of SCStudio [59], [60] have proposed a
contract vulnerability detection tool by integrating some basic
tools selected through their previous empirical study [61].
However, all the above mentioned tools are designed for smart
contracts and cannot be adapted to consensus protocol testing.

As for the backbone layer, there is also targeted research
work. For example, EVMLab [62] generates random bytecode
of contracts and invokes them with a single transaction.
EVMFuzzer [|63]] and Fluffy [10] generate multi-transactions
and use different EVMs as cross-referencing factors to observe
abnormal behaviours. EVM* [64] and Sereum [65] further
realize real-time blocking of dangerous transactions based on
opcode sequence analysis. While Twins [11]], [12] is designed
as an automated unit test generator of Byzantine attacks.

Protocol Testing. Protocol Testing is a method of checking
communication protocols in the domains of Switching, Wire-
less, VoIP, Routing, etc. The widely used detection methods
include formal verification, symbolic execution, fuzzing and so
on. SNAKE [66] is a tool that automatically finds performance
and resource exhaustion attacks on unmodified transport proto-
col implementations. McMillan et al. [|67] developed a formal
specification of QUIC based on the draft standards documents,
and used this specification to generate test inputs and validate
output results for implementations of QUIC. SymbexNet [68]
is a symbolic execution based tool for network protocol
implementations. It automatically generates high-coverage test
input packets for manual rules violations detection Whalen et
al. [[69] performs anomaly detection of network protocols with
the minimal HMM architecture inferred from data.

Fuzzing is also an effective method to detect vulnerabil-
ities in protocol implementation. Traditional fuzzers can be
divided into two categories: mutation-based and generation-
based. The mutation-based ones, represented by AFL [24]
and LibFuzzer [70], collect initial seeds and use them to
generate new inputs by some byte/bit level operations. The
generation-based ones, such as Sulley [71], Peach [9]], and
Peach* [72], require user-provided data models to obtain the
format specification of each element, then utilize it to complete
test seeds. There are also some work optimized these tools
from the perspective of reducing manpower expense. For
example, Polar [73] uses static code analysis and dynamic
taint analysis technology to automatically extract some critical
protocol information. PAVFuzz [74] focuses on the protocols
used in the vehicle system, learns the relations between two
data elements in different states, and uses these relations to
calculate and update the dynamic mutation weights.

Main Difference. Different from the above work, LOKI
is a novel and effective fuzzing framework for blockchain
consensus protocol implementations. For most protocol testing

tools, they cannot handle blockchain consensus protocols in an
effective way for three reasons: 1) They rely on a pre-defined
static state model for testing, limiting them to sending fixed
testing packets. 2) They mutate the packet in one dimension,
limiting them from exploring most of the state spaces. 3)
Traditional fuzzers are separated from the test object and do
not care about the internal state of the system. In contrast,
LOKI disguises itself as a normal node and generates high-
quality inputs based on the model based on a dynamic state
model. In this way, it can achieve deeper code logic and
precisely determine the type as well as the target of next
packet. In addition, LOKI is not limited to specific objects, and
can be easily extended to different languages and platforms.

IX. CONCLUSION

In this paper, we propose LOKI, a state-aware fuzzing
framework for the implementation of blockchain consensus
protocols. Designed as a masquerading node, LOKI fetches
the consensus state in real time and constructs a state model
to record state transitions for consensus nodes. We implement
and evaluate LOKI on four commercial blockchain systems.
The results show that LOKI improves the branch coverage by
an average of 43.21%, 182.05% and 291.58% compared with
state-of-the-art tools Peach, Fluffy and Twins. LOKI detected
20 previously unknown vulnerabilities with 9 CVE IDs, while
Peach and Fluffy only detected 1 of them and Twins found
none. Our future work will focus on enhancing LOKI with
fined coverage feedback and adapt LOKI on more blockchain
consensus protocols.

ACKNOWLEDGMENT

This research is sponsored in part by the National Key
Research and Development Project (No.2022YFB3104000),
NSFC Program (No0.62022046, 92167101, U1911401), and
Webank Scholar Project (20212001829)

REFERENCES

[11 J. FRANKENFIELD, “Proof of work,” https://www.investopedia.com/

terms/p/proof-work.asp, 2021, accessed at October 23, 2021.

“Proof of stake,” |https://www.investopedia.com/terms/p/
proof-stake-pos.asp, 2021, accessed at October 23, 2021.

[2] —
D. Ongaro and J. Ousterhout, “In search of an understandable con-
sensus algorithm,” in 2014 {USENIX} Annual Technical Conference
({USENIX}{ATC?} 14), 2014, pp. 305-319.

M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in
OSDI, vol. 99, no. 1999, 1999, pp. 173-186.

CVE-2021-42764, https://cve.mitre.org/cgi-bin/cvename.cgi’name=
CVE-2021-42764, 2021.

CVE-2021-42765, https://cve.mitre.org/cgi-bin/cvename.cgi’name=
CVE-2021-42765, 2021.

CVE-2021-42766, https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-42766, 2021.

C. Schwarz-Schilling, J. Neu, B. Monnot, A. Asgaonkar, E. N. Tas,
and D. Tse, “Three attacks on proof-of-stake ethereum,” arXiv preprint
arXiv:2110.10086, 2021.

M. Eddington, “protocol-fuzzer-ce,” |https://gitlab.com/gitlab-org/
security-products/protocol-fuzzer-ce, 2021, accessed at October 23,
2021.

Y. Yang, T. Kim, and B.-G. Chun, “Finding consensus bugs in ethereum
via multi-transaction differential fuzzing,” in /5th {USENIX} Sympo-
sium on Operating Systems Design and Implementation ({OSDI} 21),
2021, pp. 349-365.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

14

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]
[35]
[36]
[37]
[38]

[39]

[40]

[41]

S. Bano, A. Sonnino, A. Chursin, D. Perelman, and D. Malkhi, “Twins:
White-glove approach for bft testing,” arXiv preprint arXiv:2004.10617,
2020.

S. Bano, A. Sonnino, A. Chursin, D. Perelman, Z. Li, A. Ching, and
D. Malkhi, “Twins: Bft systems made robust,” in 25th International
Conference on Principles of Distributed Systems (OPODIS 2021).
Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2022.

C. . documentation, “Address sanitizer,” https://clang.llvm.org/docs/
AddressSanitizer.html, 2021.

L. Lamport, “Proving the correctness of multiprocess programs,” IEEE
Transactions on Software Engineering, vol. SE-3, no. 2, pp. 125-143,
1977.

E. A. Brewer, “Towards robust distributed systems,” in PODC, vol. 7,
no. 10.1145. Portland, OR, 2000, pp. 343 477-343 502.

M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham,
“Hotstuff: Bft consensus in the lens of blockchain,” arXiv preprint
arXiv:1803.05069, 2018.

AntGroup, https://antchain.net/, 2022.

sard Chen, “Sigsegv: segmentation violation in orderer after recieving a
message generated by fuzzer,” https://jira.hyperledger.org/projects/FAB/
issues/FAB- 18529 Milter=allissues, 2021.

Hyperledger, “Hyperledger fabric,” |https://www.hyperledger.org/use/
fabric, 2021, accessed at October 23, 2021.

Diem, “Welcome to the diem project,” https://www.diem.com/en-us/,
2021, accessed at October 23, 2021.

FISCO, “Fisco bcos,” https://github.com/FISCO-BCOS/FISCO-BCOS|
2021, accessed at October 23, 2021.

Google, “Protocol buffers,” https://developers.google.com/
protocol-buffers, 2021, accessed at October 23, 2021.

——, “Protocol buffer structure encoding,” https://developers.google.
com/protocol-buffers/docs/encoding, 2021, accessed at October 23,
2021.

——, “American fuzzy lop,” https://github.com/google/AFL, 2015.
Wikipedia, https://en.wikipedia.org/wiki/GNU_Debugger, 2022.

L. org, https:/lldb.llvm.org, 2022.

Y. Chen, E Ma, Y. Zhou, Y. Jiang, T. Chen, and J. Sun,
“Tyr: Finding consensus failure bugs in blockchain system with
behaviour divergent model,” in 2023 2023 IEEE Symposium on
Security and Privacy (SP) (SP). Los Alamitos, CA, USA: IEEE

Computer Society, May 2023, pp. 1186-1201. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00068

E. org, https://github.com/ethereum/go-ethereum/tree/
eb948962704397bb8611d4c0591b5056456edd4d, 2022.

M. Diem, https://github.com/diem/diem/tree/testnet, 2021.

I Fabric, https://github.com/hyperledger/fabric/tree/|
cd88c6087081068c67f844182661b45ce250ad80, 2022.

W. FISCO-BCOS, hittps://github.com/FISCO-BCOS/FISCO-BCOS/
tree/09fb48e56bbc1b4da7bcdbd62d81927¢489af110, 2022.

FISCO-BCOS, https://fisco-bcos-doc.readthedocs.io/zh_CN/latest/docs/
develop/stress_testing.html, 2022.

Diem, https:/github.com/diem/diem/tree/testnet/testsuite/cluster-test,

2022.

——, |https://github.com/hyperledger/tabric-samples, 2022.
Ethereum, https://github.com/drandreaskrueger/chainhammer, 2022.
E. Wiki, “Rlp,” https://eth.wiki/fundamentals/rlp, 2021.

Fluffy, https://github.com/snuspl/fluffy#readme, 2022.

Diem, https://github.com/diem/diem/blob/
4161dd3b18d02b2a099917467910d5a686512fed/consensus/src/twins/
basic_twins_test.rs, 2022.

ConsensusFuzz, https://github.com/ConsensusFuzz/LLOKI/blob/main/
reproduce.md, 2022.

J. Benet, “Ipfs - content addressed, versioned, p2p file system,” ArXiv,
vol. abs/1407.3561, 2014.

IPFS, “Pinset orchestration for ipfs,” https://github.com/ipfs/ipfs-cluster,
2020.

https://www.investopedia.com/terms/p/proof-work.asp
https://www.investopedia.com/terms/p/proof-work.asp
https://www.investopedia.com/terms/p/proof-stake-pos.asp
https://www.investopedia.com/terms/p/proof-stake-pos.asp
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-42764
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-42764
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-42765
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-42765
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-42766
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-42766
https://gitlab.com/gitlab-org/security-products/protocol-fuzzer-ce
https://gitlab.com/gitlab-org/security-products/protocol-fuzzer-ce
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://antchain.net/
https://jira.hyperledger.org/projects/FAB/issues/FAB-18529?filter=allissues
https://jira.hyperledger.org/projects/FAB/issues/FAB-18529?filter=allissues
https://www.hyperledger.org/use/fabric
https://www.hyperledger.org/use/fabric
https://www.diem.com/en-us/
https://github.com/FISCO-BCOS/FISCO-BCOS
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers/docs/encoding
https://developers.google.com/protocol-buffers/docs/encoding
https://github.com/google/AFL
https://en.wikipedia.org/wiki/GNU_Debugger
https://lldb.llvm.org
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00068
https://github.com/ethereum/go-ethereum/tree/eb948962704397bb861fd4c0591b5056456edd4d
https://github.com/ethereum/go-ethereum/tree/eb948962704397bb861fd4c0591b5056456edd4d
https://github.com/diem/diem/tree/testnet
https://github.com/hyperledger/fabric/tree/cd88c6087081068c67f844182661b45ce250ad80
https://github.com/hyperledger/fabric/tree/cd88c6087081068c67f844182661b45ce250ad80
https://github.com/FISCO-BCOS/FISCO-BCOS/tree/09fb48e56bbc1b4da7bcdbd62d81927e489af110
https://github.com/FISCO-BCOS/FISCO-BCOS/tree/09fb48e56bbc1b4da7bcdbd62d81927e489af110
https://fisco-bcos-doc.readthedocs.io/zh_CN/latest/docs/develop/stress_testing.html
https://fisco-bcos-doc.readthedocs.io/zh_CN/latest/docs/develop/stress_testing.html
https://github.com/diem/diem/tree/testnet/testsuite/cluster-test
https://github.com/hyperledger/fabric-samples
https://github.com/drandreaskrueger/chainhammer
https://eth.wiki/fundamentals/rlp
https://github.com/snuspl/fluffy#readme
https://github.com/diem/diem/blob/416fdd3b18d02b2a099917467910d5a6865f2fed/consensus/src/twins/basic_twins_test.rs
https://github.com/diem/diem/blob/416fdd3b18d02b2a099917467910d5a6865f2fed/consensus/src/twins/basic_twins_test.rs
https://github.com/diem/diem/blob/416fdd3b18d02b2a099917467910d5a6865f2fed/consensus/src/twins/basic_twins_test.rs
https://github.com/ConsensusFuzz/LOKI/blob/main/reproduce.md
https://github.com/ConsensusFuzz/LOKI/blob/main/reproduce.md
https://github.com/ipfs/ipfs-cluster

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

CVE-2022-31121, https://cve.mitre.org/cgi-bin/cvename.cgi’name=
CVE-2022-31121, 2022.

S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety
of smart contracts.” in NDSS, 2018.

S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, and
Y. Alexandrov, “Smartcheck: static analysis of ethereum smart con-
tracts,” in the Ist International Workshop, 2018.

P. Tsankov, A. M. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. T. Vechev, “Securify: Practical security analysis of smart contracts,”
in ACM Conference on Computer and Communications Security, 2018.

N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smarag-
dakis, “Madmax: Surviving out-of-gas conditions in ethereum smart
contracts,” Proceedings of the ACM on Programming Languages, vol. 2,
no. OOPSLA, pp. 1-27, 2018.

F. Ma, M. Ren, L. Ouyang, Y. Chen, J. Zhu, T. Chen, Y. Zheng,
X. Dai, Y. Jiang, and J. Sun, “Pied-piper: Revealing the backdoor
threats in ethereum erc token contracts,” ACM Transactions on Software
Engineering and Methodology, 2022.

L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” JACR Cryptology ePrint Archive, p. 633, 2016.

ConsenSys, “Mythril,” https://github.com/ConsenSys/mythril-classic,
2018.

C. F. Torres, M. Steichen et al., “The art of the scam: Demystifying
honeypots in ethereum smart contracts,” in 28th {USENIX} Security
Symposium ({USENIX} Security 19), 2019, pp. 1591-1607.

I. Nikoli¢, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding
the greedy, prodigal, and suicidal contracts at scale,” in Proceedings of
the 34th Annual Computer Security Applications Conference, 2018, pp.
653-663.

C. F. Torres, J. Schiitte, and R. State, “Osiris: Hunting for integer bugs in
ethereum smart contracts,” in Proceedings of the 34th Annual Computer
Security Applications Conference, 2018, pp. 664—676.

E. Zhou, S. Hua, B. Pi, J. Sun, Y. Nomura, K. Yamashita, and
H. Kurihara, “Security assurance for smart contract,” in 2018 9th IFIP
International Conference on New Technologies, Mobility and Security
(NTMS). 1IEEE, 2018, pp. 1-5.

F. Ma, Z. Xu, M. Ren, Z. Yin, Y. Chen, L. Qiao, B. Gu, H. Li, Y. Jiang,
and J. Sun, “Pluto: Exposing vulnerabilities in inter-contract scenarios,”
IEEE Transactions on Software Engineering, 2021.

B. Jiang, Y. Liu, and W. K. Chan, “Contractfuzzer: fuzzing
smart contracts for vulnerability detection,” Proceedings of the
33rd ACM/IEEE International Conference on Automated Software
Engineering - ASE 2018, 2018. [Online]. Available: http://dx.doi.org/
10.1145/3238147.3238177

T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, “sfuzz: An
efficient adaptive fuzzer for solidity smart contracts,” arXiv preprint
arXiv:2004.08563, 2020.

C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, “Reguard:
finding reentrancy bugs in smart contracts,” in 2018 IEEE/ACM 40th
International Conference on Software Engineering: Companion (ICSE-
Companion). 1EEE, 2018, pp. 65-68.

F. Ma, M. Ren, F. Ying, W. Sun, H. Song, H. Shi, Y. Jiang, and H. Li,
“V-gas: Generating high gas consumption inputs to avoid out-of-gas
vulnerability,” ACM Transactions on Internet Technology (TOIT), 2018.

M. Ren, F. Ma, Z. Yin, H. Li, Y. Fu, T. Chen, and Y. Jiang, “Scstudio:
a secure and efficient integrated development environment for smart
contracts,” in Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2021, pp. 666—669.

M. Ren, FE. Ma, Z. Yin, Y. Fu, H. Li, W. Chang, and Y. Jiang, “Making
smart contract development more secure and easier,” in Proceedings of
the 29th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering,
2021, pp. 1360-1370.

M. Ren, Z. Yin, F. Ma, Z. Xu, Y. Jiang, C. Sun, H. Li, and Y. Cai, “Em-
pirical evaluation of smart contract testing: what is the best choice?” in
Proceedings of the 30th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2021, pp. 566-579.

Ethereum, “Evmlab,” |https://github.com/ethereum/evmlabl 2020.

15

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(711

[72]

(73]

[74]

(751

[76]

Y. Fu, M. Ren, F. Ma, H. Shi, X. Yang, Y. Jiang, H. Li, and
X. Shi, “Evmfuzzer: detect evm vulnerabilities via fuzz testing,” in
Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2019, pp. 1110-1114.

F. Ma, Y. Fu, M. Ren, M. Wang, Y. Jiang, K. Zhang, H. Li, and
X. Shi, “Evm*: From offline detection to online reinforcement for
ethereum virtual machine,” in 2019 IEEE 26th International Conference
on Software Analysis, Evolution and Reengineering (SANER), 2019, pp.
554-558.

M. Rodler, W. Li, G. O. Karame, and L. Davi, “Sereum: Protecting
existing smart contracts against re-entrancy attacks,” arXiv preprint
arXiv:1812.05934, 2018.

S. Jero, H. Lee, and C. Nita-Rotaru, “Leveraging state information for
automated attack discovery in transport protocol implementations,” in
2015 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks. 1EEE, 2015, pp. 1-12.

K. L. McMillan and L. D. Zuck, “Formal specification and testing
of quic,” in Proceedings of the ACM Special Interest Group on Data
Communication, 2019, pp. 227-240.

J. Song, C. Cadar, and P. Pietzuch, “Symbexnet: Testing network
protocol implementations with symbolic execution and rule-based spec-
ifications,” IEEE Transactions on Software Engineering, vol. 40, no. 7,
pp- 695-709, 2014.

S. Whalen, M. Bishop, and J. P. Crutchfield, “Hidden markov models for
automated protocol learning,” in International Conference on Security
and Privacy in Communication Systems. Springer, 2010, pp. 415-428.

Fiware.org, “Libfuzzer,” https://llvm.org/docs/LibFuzzer.html, 2015.

P. Amini and A. Portnoy, “Sulley,” https://github.com/OpenRCE/sulley,
2012.

Z. Luo, F. Zuo, Y. Shen, X. Jiao, W. Chang, and Y. Jiang, “Ics protocol
fuzzing: coverage guided packet crack and generation,” in 2020 57th
ACM/IEEE Design Automation Conference (DAC). 1EEE, 2020, pp.
1-6.

Z. Luo, F. Zuo, Y. Jiang, J. Gao, X. Jiao, and J. Sun, “Polar: Func-
tion code aware fuzz testing of ics protocol,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 18, no. 5s, pp. 1-22, 2019.

F.Zuo, Z. Luo, J. Yu, Z. Liu, and Y. Jiang, “Pavfuzz: State-sensitive fuzz
testing of protocols in autonomous vehicles,” in 2021 58th ACM/IEEE
Design Automation Conference (DAC). 1EEE, 2021, pp. 823-828.

FISCO-BCOS, https://github.com/FISCO-BCOS/FISCO-BCOS/blob/,
b8b6c2a71bafdeO0b4b3fe2e0ce090678786be144/tools/BcosAirBuilder/
build_chain.sh#1.684, 2022.

Hyperledger,
caliper/, 2021.

“Hyperledger caliper,” https://hyperledger.github.io/|

APPENDIX

A. LOKI under Various Node Scales

To test whether LOKI is effective under a large-scale

network which is closer to the real-world scenario, we calculate
the branch coverage of LOKI with 10, 20, 50 and 100 nodes.
The results are shown in the Table [V We can find that the
coverage does not vary much under different network scales
(with only a variance of +/-1%). Besides, there are no new bugs
found when the scale of the nodes increases. This indicates that
LOKT’s effectiveness remains the same when we increased the
node scales.

TABLE V. BRANCH COVERAGE UNDER DIFFERENT NODE SCALES.
Go-Ethereum Diem Fabric FISCO-BCOS
10-node 10058 31534 12117 14794
20-node 10103 31247 12157 14770
50-node 10037 31175 12188 14737
100-node 10112 31204 12145 14763

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-31121
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-31121
https://github.com/ConsenSys/mythril-classic
http://dx.doi.org/10.1145/3238147.3238177
http://dx.doi.org/10.1145/3238147.3238177
https://github.com/ethereum/evmlab
https://llvm.org/docs/LibFuzzer.html
https://github.com/OpenRCE/sulley
https://github.com/FISCO-BCOS/FISCO-BCOS/blob/b8b6c2a71bafde0b4b3fe2e0ce090678786be144/tools/BcosAirBuilder/build_chain.sh#L684
https://github.com/FISCO-BCOS/FISCO-BCOS/blob/b8b6c2a71bafde0b4b3fe2e0ce090678786be144/tools/BcosAirBuilder/build_chain.sh#L684
https://github.com/FISCO-BCOS/FISCO-BCOS/blob/b8b6c2a71bafde0b4b3fe2e0ce090678786be144/tools/BcosAirBuilder/build_chain.sh#L684
https://hyperledger.github.io/caliper/
https://hyperledger.github.io/caliper/

The reason is that a blockchain node only interacts with
a certain number of its neighborhood nodes. Thus, the inter-
action logic is basically the same under various node scales.
Specifically, in our definition, a state is defined as a triple
< p,R,S >, where p is consensus phase, R means received
message types and S represents sent message types. The size of
the consensus protocol state space in the blockchain is affected
by the interactive nodes (LOKI’s neighborhoods) rather than
the scale of the nodes.

B. CPU Usage Breakdown of LOKI and Other Tools

ULoKI O Peach B Fluffy O Twins [Chain Node B Others ‘

~ 100

€ 80| | |

2]

| | | |

5 40

z 20f [] - | |

O 1l ! ‘ I I

Ethereum Diem Fabric FISCO-BCOS

Fig. 18. The cpu usage of various tools. Each bar contains three parts: the

corresponding tool, the chain node and other processes.

Moreover, we also calculate the CPU usage breakdown of
all the tools. As figure [I8] shows, LOKI takes only 10% of
the CPU on average. In LOKI’s case, most CPU time is spent
on the blockchain nodes, where the consensus protocol bugs
are found. State model construction process is combined with
the fuzzing process. Thus state model construction still has a
low overhead. In Twins’ case, the CPU usage is around 44%.
It needs to perform the settled byzantine strategies and costs
plenty of CPU resources. Twins will not startup diem nodes
to perform the test. Thus we cannot calculate the chain node’s
CPU usage in its case. As for Peach, it spent more CPU (39%)
to execute its own code, including the data model extracting
and packet producing. Fluffy has a similar CPU usage (16%)
as LOKI. However, it cannot find the bugs detected by LOKI
because it only targets the execution of EVM.

C. Bug Detection Time

In this section, we give the time of discovered bugs of
LOKI, Peach and Fluffy (Twins did not detect any bug in our
evaluation.). It should be noted that, we listed all the bugs in
four platforms in the same plot.

24
§° 20 5 o ®
M 16 . ® °®
=
ATl «LOKI
g 8 r m Peach
A4 i 4 Fluffy
n o |] 4] || o | | | || [A]
0.5 1 1.5 2 25 3 35 9 15 21 24
Time [h]
Fig. 19. Number of bugs detected by LOKI and other tools over time. We

omitted the time period from 3.5 to 9 hour because no bugs are found in this
period. Each circle point in the figure represents a bug detected by LOKI.
While the squares and triangles mean the bug detected by Peach and Fluffy.

The figure shows that LOKI found 13 bugs within the first
hour. This indicates that many bugs in consensus protocols

16

can be effectively detected by LOKI’s mechanism. During
1-2 hour, LOKI can still cover more branches(according to
the results in Figure and detect 2 new bugs. While after
2 hours, the coverage is converged, but by generating some
boundary values, LOKI still found 5 bugs in this period.

As for Peach and Fluffy, each of them can detect 1 bug.
Peach detected Bug#15 in Table [[I| within 5 minutes (similar
as LOKI). This is a bug which occurs in the very start phase
of the consensus protocol. While Fluffy detected Bug#4 within
10 minutes. LOKI detected this bug in about 203 minutes. The
reason is that this bug is due to an EVM error when executing
a transaction based on the EIP-1283 contract. Fluffy focuses
on generating multiple transactions for EVM test, thus it can
trigger this bug quickly.

D. LOKI Deployment

In practice, LOKI’s entire framework runs locally at each
LOKI node without a central coordinator. There are basically
3 steps to deploy and start LOKI:

o Compile LOKI nodes. Designed as a plugin mode, LOKI
can be compiled into several dynamic libraries. Developers
need to link these libraries to the blockchain nodes and
generate the binary file with LOKI’s functions. Thus, LOKI
nodes can be executed as normal nodes are.

e Prepare a blockchain group with LOKI nodes. Generally,
each blockchain system provides a script to setup a group
of nodes. This script always set the binary file of the
blockchain node (For example, at line 684 in FISCO-
BCOS’s build_chain.sh [75] script.). Developers should
change the binary of several nodes in the group to the
compiled LOKI nodes. The number of LOKI nodes should
be determined by the corresponding fault tolerant strategies.
For BFT-based protocols (Diem’s DiemBFT and FISCO
BCOS’s PBFT), there should be no more than 1/3 nodes
being set as LOKI. While for Go-Ethereum’s POW, there
should be less than 50% LOKI nodes.

o Start the blockchain group with LOKI nodes. This step
starts the prepared group. Each LOKI node collects the
states of other nodes and generate messages under the
direction of the state model builder and the message guider.
Each LOKI nodes maintain a different state model and
generate different messages. In this group, normal nodes
are treated as black boxes by LOKI. While LOKI senses
normal nodes’ states by analyzing message sequences.

e Start generating the workload. This step generates transac-
tions for the settled blockchain group to trigger the complete
consensus process. For different blockchain systems, there
are different ways to generate the workload. We have given
the details of the workload generation in Section V.

E. An Example of LOKI Adaption

When adapting LOKI to a new protocol, four interfaces are
required: wrap/unwrap interfaces and send/receive interfaces.
Here we give an example of FISCO-BCOS’s send interface.
The complete adaption code can be found at our repository.

As the code in Figure shows, the send interface will
first create the node id. To satisfy the parameter format of the
message sending function of the FRONTSERVICE, the inter-
face then creates a vector to keep the ids of the target nodes.

extern "C" {

void send_packet (string target_id, unsigned
char* _data) {

auto keyFactory
std: :make_shared<KeyFactoryImpl> () ;

unsigned char xu_target_id new unsigned
char[target_id.length()+1];

strcpy ((charx) u_target_id, target_id.c_str());

// create the node id

auto node_id keyFactory->createKey (

bytesConstRef ((bytex)u_target_id,

target_id.length()));
// create the node id vector
auto bcosNodeIDs =

std: :make_shared<std: :vector<NodeIDPtr>>();
bcosNodeIDs->reserve (1) ;
bcosNodeIDs->push_back (node_id) ;
// prepare the sent data
auto data bytesConstRef ((bytex)_data,
strlen((charx*)_data));
// send the PBFT messages to target nodes
FRONTSERVICE->asyncSendMessageByNodeIDs (
ModuleID: :PBFT, *xbcosNodelIDs,data
)i

Fig. 20. An example of the send iterface for FISCO-BCOS’s PBFT. LOKI
uses this interface to send generated messages to other nodes.

Afterwards, the interface prepares the sent data as shown at
line 15. Finally, the interface utilizes the FRONTSERVICE'’s
message sending function provided by FISCO-BCOS to send
the data to target nodes.

F. More Bug Cases

Another bug case is the bug #14 listed in Table [[Il This
bug is assigned with a CVE ID: CVE-2021-35041. The code
snippet in Figure [21| describes the detailed information of the
vulnerability. The function ‘P2PMessageRC2::decode’ is used

ssize_t P2PMessageRC2::decode(...) {
m_length
ntohl (* ((uint32_t«*) &buffer[offset]));
if (size < m_length) {
// the value of PACKET_INCOMPLETE is 0
return dev::network::PACKET_INCOMPLETE;
}

}

// code for handling the decoding result

ssize_t result
message—->decode (s->m_data.data(),
s->m_data.size());

else if (result == 0) {
// m_length size of memory is allocated
s—>doRead () ;

break;

Fig. 21. Code snippet that constantly allocate new memory. An attacker can
sustain sending maliciously constructed packets to consume all the memory
of the honest node’s host and break it down.

to decode the received packets. The code at line 2 reads the
first 4 bytes of data as the length of the received packet. If

17

the current size of the packet is less than the target length, the
node believes that the current packet has not been completely
received and returns a signal: ‘PACKET_INCOMPLETE’
whose value is 0. This signal will be handled by the code
at line 12, which will read more data from the session. The
function ‘doRead()’ will allocate memory with size m_length
for the incoming packet. If a malicious node sends a packet
continuously, the node will consume the memory sustainably.
During our experiment, almost 4 GB of memory was taken
within about 80 seconds. As a result, the node will consume all
the memory of the host machine and be killed by the operating
system. An attacker can easily construct a packet with a large
value of the field ‘length’ and keep sending it to the target
node. The target will finally crash and lead to a DoS attack.
This vulnerability has been fixed.

G. TPS Overhead of LOKI and ASAN

For the evaluation of the throughput, we calculate the
value of ‘transactions per second (TPS)’ for all the consensus
protocols of four blockchain systems. We use Hyperledger
Caliper [76], a widely used blockchain performance bench-
mark, to give a report of TPS. Guided by Caliper, TPS is
defined as the following equation.

_ trans_num
T limp o (|86 — 5" F [t — 5" -)1/n

The numerator of the formula represents the number of all
transactions. The denominator of the formula represents the
maximum amount of time each node spends on confirming all
transactions. The symbol ¢§ indicates the moment when node
i confirmed all transactions, while ¢t* means the moment when
the transactions are submitted. In a blockchain system, various
nodes may have different confirmation time for a transaction.
The whole system only considers a transaction as confirmed
when all participants have confirmed it. So TPS is defined as
the ratio of the total number of transactions to the maximum
time it takes for a node to confirm these transactions. We
calculated the TPS of each project under different node scales.
The results are shown in Figure [22]

TPS

ey

From the Figure 22] we can see that as the number of peers
grows, the throughput of the blockchain network decreases.
This is because the system complexity will grow with the
number of nodes. However, as illustrated in figure (a), Go-
Ethereum has a TPS of 371 with 10 peers while 394 with 20
peers. The reason is that Ethereum leverages POW to achieve
consensus, whose throughput depends on the nodes computing
power as well as the communication complexity. When the
node size is increased from 10 to 20, the TPS is improved
as the computing power has a greater effect on the gain in
throughput. While after that, the impairment caused by the
communication complexity has a greater impact on the TPS.

Generally, LOKI decreases the TPS by 2.2% to 6.5%
compared with the original nodes. The negligible overhead
is incurred mainly because LOKI’s fuzz strategy causes the
consensus nodes to process more packets, slowing down the
original process of consensus. This indicates that one promis-
ing application of LOKI is to do large-scale security testing in
a local test environment which is close to the practical scenario,
before the release of a new version of the blockchain platform.
It needs to be mentioned here that LOKI will not be used in

(a) Go-Ethereum (b) Diem

'g 450 T "g 220 T T T
S 45| —&— Geth || © —&— Diem
2 —e— LOKI g 200 —e—LOKI ||
v 400 + H ©
oo | B = 180 B
g 375 g -5.6
v 350 - -5.4% > b » 160 - B
= -5.7% -5.2% =
S 3250 18
g 47%| 5 MO)
S 300 |- B 3 120
S 275 1 g i)
E 250 ’ . ‘ E 100 — ’ L 37
10 20 50 100 10 20 50 100
Peer number Peer number
(c) Fabric (d) FISCO-BCOS
'g 1,500 T T T 'g 1,800 T T T
S 1,400 —&— Fabric H I 1,700 |- ——BCOS ||
& 1,300 ——LOKI { 3 N —e— LOKI
1,200 |-5.74 L 1600
g 1,100 |- 4 2 1,500 +
2 1000l 1oz 6
5 ,000 § 1,400
3 283 r 15 1300)
é 700 L | § 1,200 |-
; 600 L I I -4.7% ; 1,100 — I I I
10 20 50 100 ' 10 20 50 100

Peer number Peer number

Fig. 22. TPS of the consensus protocols on Go-Ethereum, Diem, Fabric and
FISCO-BCOS for LOKI and the original node. LOKI only decreases the TPS

by 2.2% - 6.5% compared with the original nodes. The overhead of LOKI is
similar under various node scales

(a) Diem (b) FISCO-BCOS

= 220 T T o 1800 ;
8 200 —— Diem i S 1700] -8~ BCOS i
3 —e— Diem-ASAN] 1‘600 —e— BCOS-ASAN
= 180 [570 1 = L0159
& 0.57% 2 1500 B% o952 |
» 160 - b »
g £ 1,400 | -0.21 g
= of 1 &
S g 1300 =
£ 120f 0.57% EERE 027%
; 100 . I I -0.69%) & 1,100 L I I I

10 20 50 100 10 20 50 100

Peer number Peer number
Fig. 23. TPS of the consensus protocols on Diem and FISCO-BCOS for

the original nodes and nodes with ASAN. The result shows that TPS is only
decreased by less than 1% with ASAN.

18

the official testchain which is used to test smart contracts like
Ethereum testnet. Thus, the byzantine behaviors performed by
LOKI will not affect the real online scenarios.

We also gave an experiment on how ASAN can affect the
TPS of a blockchain system. Because Go is not supported
with ASAN, we only evaluate Diem and FISCO-BCOS in this
experiment. The results are shown at Figure

As the figure indicates, a blockchain with ASAN nodes
have only less than 1% overhead compared with the original
chain. The reason may be that ASAN has little influence on
block generation and confirmation. The main overhead caused
by ASAN is memory-related operations. Though ASAN has
also influenced the consensus process, the throughput is mainly
affected by the network traffic and scale.

H. False Negatives of LOKI

To evaluate the accuracy of LOKI, we found 12 recent bugs
from the 4 platforms. The bugs could be found in Table
LOKI can successfully reproduce 10 of them, while it cannot
reproduce bug#3 and bug# because they are caused by data
race conditions. This indicates that the false negative rate of
LOKI is around 16.67%.

TABLE VI. THE RECENT 12 BUGS FOR 4 PLATFORMS. LOKI CANNOT

DETECT 2 OF THEM DUE TO DATA RACE.

Platform Link

1 Go-Ethereum https://github.com/ethereum/go-ethereum/issues/25953

2 Go-Ethereum https://github.com/ethereum/go-ethereum/issues/25787

3 Go-Ethereum https://github.com/ethereum/go-ethereum/issues/25868

4 Fabric https://jira.hyperledger.org/projects/FAB/issues/FAB-18239

5 Fabric https://jira.hyperledger.org/projects/FAB/issues/FAB-18535

6 Fabric https://jira.hyperledger.org/projects/FAB/issues/FAB-14470

7 Diem https://github.com/diem/diem/issues/8704

8 Diem https://github.com/diem/diem/issues/8423

9 Diem https://github.com/diem/diem/issues/7643

10 | FISCO-BCOS | https://github.com/FISCO-BCOS/FISCO-BCOS/issues/2101

11 FISCO-BCOS | https://github.com/FISCO-BCOS/FISCO-BCOS/issues/2206

12 | FISCO-BCOS | https://github.com/FISCO-BCOS/FISCO-BCOS/issues/2254

	Introduction
	Background
	Blockchain Consensus Protocols
	Fuzzing Technique

	Motivation
	Consensus Protocol Implementation Bugs
	Challenges to Detect Such Bugs

	LOKI Design
	State Model Builder
	Message Guider
	Bug Analyzer

	Implementation
	Evaluation
	Bugs in Consensus Protocols
	Accuracy of LOKI
	Case Study

	Code Coverage
	Overhead of LOKI
	Effectiveness under multiple LOKI nodes

	Discussion
	Related Work
	Conclusion
	References
	LOKI under Various Node Scales
	CPU Usage Breakdown of LOKI and Other Tools
	Bug Detection Time
	LOKI Deployment
	An Example of LOKI Adaption
	More Bug Cases
	TPS Overhead of LOKI and ASAN
	False Negatives of LOKI

