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Abstract—Electric Vehicle Charging Management Systems
(EVCMS) are a collection of specialized software that allow users
to remotely operate Electric Vehicle Charging Stations (EVCS).
With the increasing number of deployed EVCS to support the
growing global EV fleet, the number of EVCMS are consequently
growing, which introduces a new attack surface. In this pa-
per, we propose a novel multi-stage framework, ChargePrint,
to discover Internet-connected EVCMS and investigate their
security posture. ChargePrint leverages identifiers extracted from
a small seed of EVCMS to extend the capabilities of device
search engines through iterative fingerprinting and a combination
of classification and clustering approaches. Using initial seeds
from 1,800 discovered hosts that deployed 9 distinct EVCMS,
we identified 27,439 online EVCS instrumented by 44 unique
EVCMS. Consequently, our in-depth security analysis highlights
the insecurity of the deployed EVCMS by uncovering 120 0-
day vulnerabilities, which shed light on the feasibility of cyber
attacks against the EVCS, its users, and the connected power grid.
Finally, while we recommend countermeasures to mitigate future
threats, we contribute to the security of the EVCS ecosystem by
conducting a Coordinated Vulnerability Disclosure (CVD) effort
with system developers/vendors who acknowledged and assigned
the discovered vulnerabilities more than 20 CVE-IDs.

I. INTRODUCTION

Electric Vehicle Charging Management Systems (EVCMS)
are a collection of specialized software that instrument the
underlying Electric Vehicle Charging Stations (EVCS). They
provide users/operators with advanced features, interfaces, and
tools to remotely monitor, control, and manage the operations
of their EVCS including scheduling charging sessions, billing/-
payments, record-keeping, and user management/authentica-
tion [1]. Given the incentives that governments are offering to
stimulate the purchase of EVs [2], the worldwide EV fleet is
rapidly growing and currently includes 11 million units [3].
Similarly, the EV charging infrastructure is also expanding
to support the growing client demands by deploying a large
number of EVCS in public/private spaces [4]. This implies
a growth in the number of deployed EVCMS to instrument
the installed EVCS. As a result, the EV charging ecosystem’s
proliferation opens doors for a plethora of security challenges
due to its large attack surface. Specifically, the diverse and

mostly ad hoc vendor-specific development of EVCMS, in
addition to the broad lack of regulations can expose the overall
EV charging ecosystem to various threats. In fact, EVCMS
constitute a major target for adversaries as they provide a re-
mote attack vector for compromising the underlying EVCS, its
charging operations and the connected critical infrastructure.
Particularly, the impact of such attacks is amplified with its
direct integration to the power grid [5].

Nevertheless, while prior work focused on investigating
the security of the EV charging ecosystem [6], [7], there
is a lack of knowledge about the security posture of the
widely deployed EVCMS. Motivated by the large number of
deployed EVCS and the extended remote capabilities of their
EVCMS as a viable new attack surface, we aim at conducting
a first exploration of this threat landscape by evaluating the
security of the implemented EVCMS in the wild. This requires
discovering and mapping the EVCMS instances and their
hosts on the Internet at large, which is a challenging task
with the lack of empirical data about the deployed EVCS.
Additionally, unlike typical Internet-of-Things (IoT) devices,
it is impractical to utilize existing fingerprinting approaches
[8], [9] to accurately discover Internet-connected EVCS by
identifying their EVCMS. This is mainly due to the fact
that EVCMS are cloud-based and tend to have closed-source
implementations. Moreover, while the deployed EVCMS have
limited and non-trivial banners, they tend to have limited or no,
search engine tags and banner rules for identifying them due to
their diversity and lack of standardization among developers.

To address these challenges, we propose a multi-layer
framework, ChargePrint, for fingerprinting and discovering
Internet-connected EVCS and assessing the security of their
EVCMS against remote exploitation. The framework relies on
analyzing a seed of candidate EVCMS to extract identifiers
from their banners, which are then utilized to conduct an iter-
ative discovery/fingerprinting process by leveraging prominent
online device search engines and a combination of classifi-
cation and clustering approaches. Consequently, the frame-
work is leveraged to perform an in-depth security analysis
of the identified EVCMS and their host instances through
a series of hybrid techniques, namely white-box analysis by
examining the corresponding accessible EVCS firmware, and
black-box analysis by examining online EVCMS instance
endpoints. Additionally, with the outcome from our analyses
using ChargePrint, we illustrate the feasibility of cyber at-
tacks and discuss their implications against the EVCS, their
users and operators, and the connected power grid. Further-
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more, while we recommend mitigating countermeasures, we
communicate our findings to the affected vendors to raise
attention to the existing vulnerabilities. In fact, several system
developers (e.g., Schneider Electric, Cornerstone technologies)
have acknowledged our findings, and the vulnerabilities were
assigned more than 20 Common Vulnerabilities and Exposures
(CVE) IDs [10]. Finally, by demonstrating the feasibility of
large-scale attacks against the EV charging ecosystem through
vulnerable EVCMS implementations, we aim at motivating
system developers towards re-evaluating and improving the
security of their EVCMS and mitigating threats in future
implementations.

We summarize the main contributions as follows:

1) We propose a novel multi-layer framework (ChargePrint)
to tackle the problem of EVCS discovery/fingerprinting and
address the lack of empirical data about EVCMS by gaining
and leveraging information about their unique banners and
characteristics Further, to demonstrate the effectiveness
of our approach, we implement ChargePrint and utilize
it at a large scale to discover 27,439 Internet-connected
EVCS host instances that are instrumented by 44 different
EVCMS products. To the best of our knowledge, we are
among the first to survey EVCMS instances in the wild.

2) We provide a first attempt to perform a comprehensive
security analysis of EVCMS, which defines a new attack
surface in the EV charging ecosystem. We highlight major
security flaws in EVCMS by implementing a hybrid se-
curity analysis approach into ChargePrint to examine the
various vendor-specific EVCMS products both in terms
of their firmware and their online instances. In addition,
we customize automated scanning modules to conduct a
large-scale EVCMS vulnerability analysis, which identified
25,300 EVCMS hosts affected by 120 remotely exploitable
0-day vulnerabilities. Moreover, we communicate our find-
ings to the respective system developers who acknowledged
them and assigned more than 20 CVE-IDs.

3) We shed light on the insecurity of the existing EVCMS
at scale, by discussing attack implications against the EV
charging stakeholders namely the EVCS, users/operators,
and power grid. More importantly, we recommend miti-
gating countermeasures to strengthen the deployed systems
against cyber attacks. We contribute to the security of the
broad ecosystem by motivating the developers, through
our reported findings, to improve the security of existing
and future EVCMS products. Finally, we re-assess the
EVCMS state of security in 2022 by following-up with
the manufacturers on the released patches, and surveying
their deployment in the wild.

The remainder of the paper is organized as follows. We present
in the next section relevant background information, and a
detailed description of the proposed framework in Section
III. The empirical evaluation of the implemented framework
along with the experimental findings, their threat implications
on the EV ecosystem, and possible mitigating tactics are
presented in Section IV. Vulnerability disclosure information
and patch follow-up along with lessons learned and future
research directions of the work are noted in Sections V and
VI, respectively. Finally, we examine related work in Section
VII, before concluding the paper by summarizing the main
takeaways in Section VIII.

II. BACKGROUND

EVCS vs. IoT. When compared to IoT devices and their
embedded software, EVCS along with their EVCMS have
many distinctive characteristics, despite common ones such as
Internet connectivity for remote management.

First, EVCS are equipped with larger processing units and
storage capacity than that of IoT devices, to keep up with
the need for EVCMS to store and process charging records
and activity logs, and to ensure their heavy performance
requirement and continuous service to deliver electric energy
to EVs throughout the day and for long periods of charging
cycles.

Second, EVCS’s power-electronics circuitry is designed to
sustain much larger power supplies than that of IoT devices,
as they are built to feed electric power to EV battery from the
grid [11]. EVCS classify into 3 major classes based on their
maximum amount of power delivery: level 1 provide power
through a standard 120V AC outlet with a power output of 1.5-
2 kW, level 2 provide power through a 208-240V connection
with peak power of 19 kW and average 7.2 kW power output,
and level 3 provide charging through a 480-800V AC input
with peak power of up to 240 kW and on average 110 kW.

Third, while IoT devices rely on a variety of protocols (e.g.,
BLE, ZigBee, etc) to operate and deliver certain functionalities
[12], EVCS rely on proprietary protocols that have been
devised by operators to allow for communication between
the various ecosystem entities as well as EVCMS, which is
essential for managing and controlling the various operations
and functionalities of EVCS. Specifically, to standardize this
communication, Open Charge Alliance (OCA) designed and
introduced in 2012 the Open Charge Point Protocol (OCPP)
[13] considered the de-facto standard application protocol for
EVCS message exchange.

Fourth, EVCS are designed with the intent for regular
and direct interaction with users/operators, unlike IoT devices
which when deployed in public places (e.g., CCTV) are not
used at close proximity nor are they meant to be as frequently
interacted with on a daily basis as part of their setup.

Fifth, EVCMS present a larger and much more complex
software surface than most IoT device firmware. EVCMS
encompass a wide number of functionalities, thus a wider code
base and structure, designed to accommodate the various op-
erations offered and required by EVCS. In particular, EVCMS
are devised to organize in real-time and keep track of EV
scheduling, as well as manage charging records, and aside from
remote management, provide support for physical interfaces
such as human machine interface (HMI) on the EVCS itself
which also require to handle charging ID tokens like near-
field-communication (NFC) cards. EVCMS also implement
complex access control mechanisms, user authentication and
management, user role segregation and privilege matrices,
which are not available in IoT software which typically operate
with a single or limited user/privilege. Moreover, while most
IoT device firmware use standard packaging compression
formats for delivery and device deployment such as LZMA and
Zip, many EVCMS use custom and proprietary compression
formats like EPK. We also note that while IoT device firmware
use more common file system types such as squashfs, EVCMS
use less common file system types such as JFFS2.
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EVCMS Assets. EVCMS can be deployed following different
models, among which the firmware-based and cloud-based are
the most prominent. The firmware-based model is implemented
by embedding the application User Interface (UI) document
collection (i.e., web interface files) directly into the EVCS
firmware, which is a minimized operating system (OS) de-
signed to provide low-level control over the EVCS hardware.
The cloud-based model is implemented on a web server in
the cloud, which connects and communicates with the EVCS.
In this work, we examine both firmware-based and cloud-
based EVCMS software products and conduct an in-depth
vulnerability analysis on various instances of them.

Fingerprinting and Discovery. In general, discovering
Internet-connected devices relies on fingerprinting and ban-
ner analysis. Fingerprinting is the mapping of a device
query:response to class labels such as the device type, while
banner analysis is performing Internet-wide protocol scans
(e.g., HTTP, SSH) and collecting application layer data (i.e.,
banners) to extract textual information and identify devices
using a set of rules. In the literature, several frameworks have
been introduced to discover and fingerprint Internet-facing
devices [9], [14].

However, despite the promising results in identifying
generic IoT and industrial control systems (ICS) remote man-
agement devices [8], these approaches are ineffective for
annotating EVCS due to various reasons; (1) there are limited
banners associated with online EVCMS; (2) it is difficult
to locate information related to EVCMS as most of them
are cloud-based or closed-sourced; (3) in contrast to the vast
number of generic IoT device models, EVCMS specifications
are harder to obtain in the absence of banner rules for
identifying these systems using conventional fingerprinting
techniques; (4) while ICS devices can be identified through
built-in tags provided by device search engines, there are none
for EVCMS; (5) EVCMS’s diversity and lack of standardized
development results in a wide range of banner representations
that are hard to analyze and keep track of, which makes it
difficult to extract and search for useful information about them
due to the differences among the various products and their
features. Such factors make it unfeasible to employ existing
approaches to accurately and effectively locate and fingerprint
EVCS. Therefore, we develop ChargePrint to overcome these
challenges and propose an effective approach for EVCMS dis-
covery and fingerprinting, which is a prerequisite for analyzing
their security posture.

Device Search Engines. The majority of online device
search engines collect information about Internet-connected
devices/hosts by actively scanning the Internet (e.g., IPv4
address space) while performing consequent banner analysis to
tag/label the identified hosts. Given such rich repository of host
banners and identified device information, we rely on passive
scanning (metascan–based) techniques by leveraging existing
solutions through their Application Programming Interfaces
(API) [15]. Specifically, we perform our experiments using
the four most prominent device search engines: (1) Shodan
[16]: performs continuous detection and monitoring to gather
near real-time information about Internet-connected devices by
indexing their service banner/metadata; (2) Censys [17]: mon-
itors Internet-accessible devices by regularly probing public
IP addresses and domain names; (3) Zoomeye [18]: collects

information about online devices and services with an aim to
provide threat detection at an Internet-scale; and (4) Fofa [19]:
provides intelligence about Internet-connected device network
assets, scope analysis, and application popularity statistics.

Vulnerability Analysis. We address the key gaps from the
literature [20], [21] by providing the first attempt to analyze the
security of firmware-based and cloud-based EVCMS products,
specifically, the resilience of EVCMS against remote attacks.
To perform this analysis, we utilize white-box techniques to
examine obtainable EVCMS firmware and scripts, and black-
box techniques for assets extracted from online EVCMS end-
points. We mainly focus on detecting and uncovering remotely
exploitable EVCMS vulnerabilities that would allow access
and control over the respective systems and its underlying
EVCS. Particularly, we refer to OWASP [22] and MITRE for
the top security issues [23], and for each we develop systematic
methodologies to infer their existence in specific EVCMS.

III. PROPOSED FRAMEWORK: CHARGEPRINT

We design and implement ChargePrint, a multi-stage
framework for exploring the EVCS threat landscape by discov-
ering Internet-connected EVCS host instances and examining
the security of their EVCMS. As illustrated in Figure 1,
ChargePrint has two main core segments represented by the
discovery and security analysis campaigns. We present the
detailed internal architecture of ChargePrint, which consists
of several interconnected components and layers that support
iterative operations for discovery and security analysis.

A. Discovery

First, we conduct a discovery operation for finding and
fingerprinting Internet-connected EVCMS host instances in
the wild, then utilize them to extend knowledge of EVCMS
products while paving the way towards identifying the attack
surface for the security analysis. In what follows, we elaborate
on the modules of the framework’s discovery campaign.

1) Seed Storing: To bootstrap the discovery campaign, we
build an initial database by collecting and storing EVCMS
seeds from a preliminary lookup, in which we leverage indexed
host scan data from querying Shodan, Censys, Zoomeye, and
Fofa with a list of 23 keywords (e.g., EV charger, EVCS)
related to EVCS and known EVCMS products. To validate
these systems, we manually examine their web user interfaces
banners for specific indicators such as product series/model
and vendor name/logo, and correlate them with information
from software package documentation of available respective
EVCMS developers. Also, we select the hosts with the most
information as initial set of EVCMS candidates, and store their
banners into a database for analysis.

2) Identifier Extraction: In what follows, we elaborate on
the analysis of seed EVCMS to extract identifiers that can be
leveraged to distinguish among the various EVCMS products.

Collecting Assets. To obtain assets, we collect and examine
EVCMS products that are either accessible through firmware
packages, portals of online deployed web-based instances and
those that are associated with a vendor/developer having their
own website. We note that it is not always possible to obtain all
these assets for a given EVCMS product, as some instances for
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Fig. 1: Overview of ChargePrint and its main components/operations.

example, do not have their corresponding firmware available
for download on the vendor/developer website.

To collect EVCMS firmware, we query web search engines
using dorks made of keywords such as product and developer
name and website link, and package extension, in search for
indexed websites belonging to the product vendor/developer.
Then, we examine these websites’ sitemaps for potential
endpoints that could hold firmware (e.g., /download), by
recursively scraping hyperlinks, using Scrapy [24], crawling
web pages until a potential firmware acquisition endpoint is
reached. To collect web-based EVCMS, we probe the host
instances’ main portal endpoints and download their web
documents (i.e., HTML and CSS files) as well as the files of
other accessible endpoints along with their language variants.

Parsing Assets. To parse the downloaded firmware, we extract
their packages and explore the filesystem by carving and
dumping the embedded files, binaries, and directories using a
custom utility that we built with binwalk’s API [25]. To parse
the acquired portals, we examine the portal web documents by
inspecting their document object model (DOM) structure. To
parse the collected vendor websites, we crawl their web pages
and accumulate the text strings enclosed within HTML tags.

Extracting Identifiers. Next, we extract a set of identifiers
that allow us to accurately represent the respective EVCMS
candidate and distinguish it from other products. To extract
identifiers from firmware, we locate unique file/directory path
names within the filesystem tree (e.g., /cgi-bin/cgiServer)
which will serve as direct indicators for the EVCMS product.
To extract identifiers from web portals, we search the HTML
documents’ DOM, using regular expressions, for special el-
ements that act as indicators for the EVCMS such as the
product name, version, vendor/developer name and logo. In
Figure 2, we show the screen captures of the main portals
for a few examples of EVCMS that were discovered with
ChargePrint. As with the vendor/developer websites, we com-
pile from the previously accumulated strings a list of EVCS-
related text (e.g., EV Charging Solution) that enrich our EVCS
terminology knowledge for the extended discovery of EVCMS

(a) EVlink

(b) CSWI Etrel

Fig. 2: Screen captures of the main web portals for (a) EVlink,
and (b) CSWI Etrel EVCMS.

instances. As an example in Table I, we present a set of
identifiers for a candidate running on EVlink EVCMS product.

3) Query and Data Validation: In this phase, we utilize the
extracted identifiers for the given EVCMS products to discover
host instances that that are instrumented by the corresponding
EVCMS whose identifiers we already have, as well as dis-
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TABLE I: Sample set of identifiers for EVlink.

Identifier Value

Title EVSE Web Interface
Name EVlink
Version 3.3.0.12
Vendor Schneider Electric
Logo /images/schneider head.png
Port 5001
Path /cgi-bin/cgiServer
Parameter worker, time, error, lang
Language English (en), Deutsch (de)
Keyword wallbox, ev charging solution

cover new EVCMS products by utilizing combinations of the
extracted EVCS string wordlists.

Querying Engines. We utilize the extracted identifiers, fol-
lowing two methods, with the objective to broaden the search
scope and perform an extended system collection by querying
device search engines to find more host instances instrumented
by the currently known EVCMS products and new EVCMS
candidates. First, we perform a targeted search using the ex-
tracted product-specific identifiers to filter hosts that have their
banners matching the queried information. Second, we perform
a generic search for EVCS-related banner host data using
the wordlists that were compiled from the extracted EVCMS
strings/keywords found on the vendor/developer websites.

Similarity Analysis. Since our targeted and generic search
results may contain a variety of hosts that belong to different
EVCMS, we require further validation before associating them
to existing previously detected or new EVCMS. Thus, we
introduce a new similarity measure (DOMetric) to compare a
given host’s HTML pages (H) with known EVCMS candidates
(C) from the database to identify host instances that are
running services assigned to the same EVCMS product family
based on the similarity of their services and interfaces; since
host instances running variants of the same EVCMS product
would have identical or highly similar web documents.

To determine the similarity score using DOMetric, we start
by parsing the EVCMS portals’ HTML page to extract their
structure, style, and text content. We determine structural sim-
ilarities D1(H,C) by performing pair-wise comparison using
the Gestalt pattern matching method [26] on the sequence of
tags in the HTML pages, then we leverage Eq. 1 to find the
Longest Common Sequences (LCS) of tags between those of
an identified host (S1) and known EVCMS candidates from
the database (S2). For style similarity D2(H,C), we collect
embedded style declaration blocks and selectors of common
tags from documents’ HTML and find the largest amount of
common declarations between the two documents, A (host)
and B (candidate EVCMS), using the Jaccard index (Eq. 2).
Lastly, we determine text similarities (D3) by vectorizing the
enclosed text within the tags for the host (T1) and candidate
(T2) in the order they appear in the HTML, then comparing
them using the cosine similarity index (Eq. 3).

D1(H,C) =
2×

∑max(|S1|,|S2|)
i=0 |LCS(s1i, s2i)|

|S1|+ |S2|
(1)

D2(H,C) =

∑m
i=0

|ai∩bi|
|ai∪bi|

m := min(|A|, |B|)
(2)

D3(H,C) =

∑m
i=0

t1i·t2i
|t1i|×|t2i|

m := min(|T1|, |T2|)
(3)

Host Labeling. With these similarity measures, we calculate
the total DOMetric score for each pair of host (H) and
candidate EVCMS (C) using Eq. 4, where w is a scaling factor
(e.g., w = 1

3 ). The remaining unlabeled hosts are kept for
further investigation using the subsequent binary classifier.

DOMetric(H,C) =

3∑
i=1

w.Di(H,C) (4)

4) System Identification: In this phase, we detect host
instances that belong to already known EVCMS products
(i.e., having seed candidates in the database), and determine
instances that are new EVCMS products from which we select
candidates for the database as well as remove generic (IoT)
devices that do not represent EVCMS host instances.

Host Classification. With the large number of unlabeled hosts
from the extended queries and data validation, we employ
a binary classifier that leverages 14 features (Table II) to
determine whether these hosts are EVCMS.

TABLE II: Dataset features for the binary classifier.

Name Description Type Value

auth Presence of authentication form Bool. 0/1
settings Presence of settings form Bool. 0/1
evbrand Presence of EV keywords Bool. 0/1
evbrand cnt Number of EV keywords Int. [0...N]
evcskey Presence of EVCS keywords Bool. 0/1
evcskey cnt Number of EVCS keywords Int. [0...N]
transport Type of network protocol Cat. TCP/UDP
http Usage of HTTP Bool. 0/1
logos cnt Number of images Int. [0...N]
tags cnt Number of HTML tags Int. [0...N]
styles cnt Number of CSS selectors Int. [0...N]
strings cnt Number of text strings Int. [0...N]
dometric Highest DOMetric score Real [0...1]
system EVCMS of highest DOMetric Cat. [C1...Cn]

We evaluate four common classifiers (logistic regression,
k-nearest neighbors, naive bayes and support vector machine)
by extracting features from a dataset of 1,000 host instances
(ground truth) that we manually examined and labeled, having
500 EVCMS and 500 non-EVCMS hosts, partitioned into
training (70%) and testing (30%) for validation purposes.
Based on the evaluation metric results presented in Table
III, we select the logistic regression (LR) algorithm as the
preferred classifier model as it outperforms the other models
with significantly higher accuracy (93.1%) and F1-Measure
(94.2%) values. However, for future work, the classification
outcome could be improved by evaluating a wider range of
machine learning models.

Host Clustering. To identify new products among the EVCMS
instances that were identified through binary classification, we
design and implement Algorithm 1 to cluster newly identified
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TABLE III: Evaluation of binary classification algorithms.

Classifier Accuracy F1-Measure Precision Recall

Logistic Regression 93.1% 94.2% 89.2% 99.9%
k-Nearest Neighbors 86.1% 88.8% 81.2% 98.1%
Naive Bayes 79.3% 84.4% 73.3% 99.5%
Support Vector Machine 66.1% 86.8% 62.6% 99.5%

Algorithm 1: Clustering EVCMS host instances
Input: β = List of instance tuples {i, p, cId, cnd}
Output: β′ = Cluster assignment list

newcId = 1
for x ∈ β do

if x.cId ̸= 0 then
continue

end if
for y ∈ β do

if x.i = y.i then
continue

end if
if y.cId ̸= 0 then

if DOMetric(x.p, y.p) > α then
x.cId = y.cId = newcId
larger = maxContent(x.p, y.p)
larger.cnd = 1
newcId++

end if
end if
else if y.cnd = 1 then

if DOMetric(x.p, y.p) > α then
x.cId = y.cId
larger = maxContent(x.p, y.p)
if larger.i = x.i then

x.cnd = 1
y.cnd = 0

end if
end if

end if
end for

end for

EVCMS hosts into correlated groups that belong to the same
EVCMS products, based on their page HTML similarity using
the DOMetric score (recall Eq. 4). The algorithm takes a list
of instance tuples as input (β) and returns an updated list β′
having the respective cluster assignments. The tuple for each
instance contains an index i for referencing and identifying it
among other instances, the portal HTML content p, the cluster
identifier cId which by default is initialized to 0 indicating that
the host has not been assigned to a cluster yet, and a boolean
flag cnd indicating whether this instance is a candidate. We
define a function DOMetric() that calculates the DOMetric
score of two web pages and a function maxContent() that
compares two web pages to determine the one with larger
content and newer product version string.

Selecting DOMetric Threshold. For the algorithm to ac-
curately correlate hosts into the same clusters, an effective
DOMetric similarity threshold value (α) must be selected.
Based on our observations, deployed systems belonging to
the same product family always have a very similar structure
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Fig. 3: Finding DOMetric threshold via experiments with
Algorithm 1.

and interface, with the exception of differences that arise due
to product version variants that integrate new components.
EVCMS product version variants are instances of a specific
EVCMS product family whose builds are different due to
release distinctions, thus, while these variants are different than
each other, they still share very similar structure and filesystem,
and belong to the same EVCMS product family.

Therefore, we have to select an appropriate threshold
that accounts for the differences among the distinct EVCMS
product families as well as version variants belonging to the
same product family. To determine an optimized DOMetric
threshold value, we conduct several experiments by running
Algorithm 1 with a span of DOMetric threshold values (α)
that range from 0 to 1 inclusive, over three custom datasets
(i.e., Set #1, Set #2, and Set #3), containing 500, 2,000, and
3,500 of EVCMS product host instances, and made of 5, 10,
and 15 EVCMS product families, and 13, 29, and 41 EVCMS
product version variants, respectively.

As shown in Figure 3, we note three trends with the plot
lines. First, when running the algorithm with low α values
(α ≤ 0.8), we observe that the number of clusters remains
at 1 and then steadily increases. Since these cluster numbers
are incorrect, this indicates that lower threshold values lead to
a large overlap among the examined systems; any compared
systems that are significantly different (i.e., belong to different
EVCMS product families) will be grouped together due to the
low clustering condition (small α), which ultimately renders
the clustering process erroneous. Second, when running the
algorithm with α values ranging from 0.8 to 0.9, we observe
that the number of clusters for Set #1, Set #2, and Set #3
are almost the exact values pertaining to the correct number
of clusters that are found in each. In fact, the threshold value
should be motivated by the need for a high similarity rate
among the analyzed/compared system host instances. This
corresponds to a grouping of systems that share significant
similarities. Therefore, we selected the highest DOMetric
similarity threshold value (α = 0.9) in order to maximize
the accuracy of the number of correct clusters obtained with
Algorithm 1. Third, when running the algorithm with α values
that are higher than 0.9 and up to 1, the outcome yields a larger
number of clusters for each set, which represent clusters of
EVCMS product version variants.

Candidate Selection. Once the clusters are identified, we
examine them and select representative candidates (new seed
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systems) for each cluster. We determine the corresponding
candidates by choosing the host instances that deploy different
versions of the respective EVCMS product and whose con-
tent/configuration is larger than the remaining instances (recall
function maxContent() in Algorithm 1). Subsequently, we store
the EVCMS candidates into the seed EVCMS database which
we then utilize to perform a new iteration of the frame-
work’s discovery campaign. This iterative approach allows
ChargePrint to extend the fingerprinting and discovery process
by identifying a wide range of host instances that deploy the
same products of the candidates from the EVCMS database,
which includes, with respect to the iteration, both new and old
systems. For each framework iteration, we perform the new
search using the seed EVCMS candidate whose assets were
collected in the first stage of discovery.

B. Security Analysis

With the newly obtained EVCMS product candidates
(seeds), we conduct an in-depth security analysis using a series
of systematic methodologies, as highlighted in Figure 1.

1) Asset Analysis: We analyze the EVCMS product assets
by examining their components, which represent the attack
surface for uncovering vulnerabilities.

Dismantling Assets. To conduct the security analysis cam-
paign, we dismantle and dissect the collected assets for further
analysis. For dissecting the firmware images, we dump and
mount the embedded filesystem to explore the directories/-
files that they contain, specifically, we search to locate the
EVCMS document collection which contains the EVCMS web
service files. These files provide various interfaces and controls
containing entry points to the EVCMS that are accessible
to the user/operator as well as to an external adversary. To
dissect the assets of candidate EVCMS instances with no
firmware images, we determine the main web user interface
service of the EVCMS along with all other available web
paths, and uncover resources/scripts from which we gather
forms & parameters. Moreover, we create offline mirrors of
the respective EVCMS host instances by downloading web
document collection such as web directories & JavaScript files.

Categorizing Components. To organize the analysis process,
we arrange the obtained components into three categories:
compiled files (e.g., binaries, executables), non-compiled files
(e.g., scripts) and web endpoints. We extract the compiled files
from the EVCMS products’ firmware images, while we gather
non-compiled files from both the firmware images and the web
portals of the EVCMS host instances, extract web endpoints
from the document collection of the EVCMS firmware images
as well as the candidate host instances. In particular, we extract
endpoints from available firmware through custom scripts
which utilize tree-listing and pre-compiled custom word dic-
tionaries, by searching the filesystem and identifying the web
document collection directory and recursively locating valid
server back-end and front-end files that represent endpoints,
then parse them to extract parameters.

Analyzing Components. We perform two types of analysis:
white-box and black-box on the gathered components. We
utilize white-box procedure to examine the EVCMS com-
ponents to which we have direct and complete access to
such as binaries and scripts. Specifically, we perform static

analysis (i.e., disassembly) on compiled server-side binaries
(e.g., cgiServer) and conduct source code review on non-
compiled client-/server-side files and scripts (e.g., JavaScript,
PHP). The disassembly and decompilation processes are auto-
mated through specialized software (e.g., Cutter [27]), while
the corresponding code paths and execution flows are reviewed
manually, since the discovered vulnerabilities are unique per
EVCMS product and design flow. The source code review
process is automated through custom scripts that we wrote
to search for potentially vulnerable functions and entry points,
then we conducted a manual inspection and validation, after the
automation has narrowed down the analysis surface. We utilize
black-box analysis to investigate the EVCMS components to
which we do not have direct access to such as the endpoints
that were identified on the EVCMS host instances’ portals
whose back-end binaries and scripts are inaccessible to us,
due to the inability to obtain related firmware images.

2) Vulnerability Analysis: As the discovery of EVCMS
vulnerabilities is not possible by simply employing commercial
scanners, we develop a collection of custom modules, scripts,
tools, and testing procedures. We also utilize manual efforts
to correctly engage the EVCMS architecture as this requires
in-depth investigation, extensive security domain expertise and
secure programming experience to identify security bugs and
efficiently direct the investigation process.

Components’ Inspection. When analyzing compiled binaries
through disassembly and decompilation, we focus on tracing
their execution flow to identify bugs and business logic flaws.
As when reviewing source code files, we focus on finding
entry points that lack input cleansing and validation allowing
injection and execution of arbitrary code and queries, which
is the main objective to achieve for an adversary to take
control of the system. For instance, when inspecting client-
side JavaScript files in the EVCMS document collection, we
locate vulnerable functions that failed to properly sanitize
data variables, allowing arbitrary JavaScript execution within
the context of the affected EVCMS, subverting its logic and
functionalities to attack the users/operators by hijacking their
sessions and the system.

For instance, in Listing 1, vulnerable function
goToTerminal does not implement mechanisms to
sanitize data passed through variable termNum, which is
directly employed at lines 3/6/8, allowing an attacker that
controls the data to pass and execute malicious code, breaking
the legitimate sequence and overriding the EVCMS logic
flow. Finally, when investigating the collected endpoints, we
intercept HTTP request/response traffic using Burpsuite [28]
to find insertion points (e.g., GET/POST parameters).

Entity Testing. The firmware images and their underlying
entities are available/found for some EVCMS products, but not
for the others. Thus, a large portion of the codes and binaries
that operate these EVCMS are inaccessible during the study.
Instead, we heavily rely on black-box testing techniques for
conducting the security analysis, by detecting vulnerabilities
with crafted approaches on the endpoints of these EVCMS
host instances whose back-end logic is relatively unknown.
The process consists of tracing both random and crafted data
into the discovered entry points (e.g., inputs, parameters) to
elicit an unexpected outcome, while finding indications of
vulnerabilities. For that, we generate payloads that are tailored
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f u n c t i o n goToTerminal ( termNum ) {
v a r menuTabs= p a r e n t . f r a me s . menuTabs ;
menuTabs . document . ge tE lemen tById ( ’ s e l e c t e d D e s c S l a v e

’ ) . v a l u e = ’ d e s c S l a v e ’+termNum ; v a r i p ;
i f ( i s R o u t e r )

i p =document . ge tE lemen tById ( ’ i p R o u t e ’+termNum ) .
v a l u e ;

e l s e
i p =document . ge tE lemen tById ( ’ i p ’+termNum ) . v a l u e ;

v a r d i v =menuTabs . document . ge tE lemen tById ( ’ MenuTabs ’
) ;

v a r p a r a m I t e m S e l e c t e d = ’ ’ ;
i f ( d i v . t i t l e == ’EVSE ’ )

p a r a m I t e m S e l e c t e d = g e t M e n u I t e m S e l e c t e d ( menuTabs ) ; }

Listing 1: Weakness in JavaScript function leads to EVCMS
code execution.

for the specific testing context of the analyzed EVCMS, and
run these lists on the corresponding entry points using custom
tools to collect the returned output for examination.

Vulnerability Detection. We examine the EVCMS products
for the OWASP’s top software weaknesses [23] by utilizing
custom testing procedures that we tailored to detect occur-
rences of these specific classes of vulnerabilities. To detect
SQL injection (SQLi), we utilize sqlmap [29] to inject sleep
delay queries on EVCMS endpoints/parameters. To detect
external XML entity injection (XXE) and server-side request
forgery (SSRF), we append in EVCMS HTTP request mes-
sage/parameters/endpoints crafted XML entities and addresses
that contain callback to a server that we control. To detect hard-
coded credentials, we examine the EVCMS firmware filesys-
tem for embedded credentials. To detect Comma-Separated
Values injection (CSVi), we inspect the EVCMS functional-
ities and endpoints by supplying crafted CSV payloads and
examining the response.

Moreover, to detect cross-site scripting (XSS), we inject
string-marked JavaScript payloads into HTTP request insertion
points (i.e., parameters, endpoints, headers), then parse the
responses to validate the injection. To detect cross-site request
forgery (CSRF), we inspect EVCMS GET/POST-based con-
figuration/settings requests for the absence of request-specific
randomized tokens. To detect Cross-Origin Resource Sharing
(CORS) and Flash Cross-Domain Policy (FCDP) misconfigu-
rations, we inspect EVCMS endpoints for permissive rules in
their cross-domain policy files. To detect information exposure,
we parse EVCMS endpoints for sensitive information related
to the underlying EVCS and EVCMS settings/configurations.
To detect forced browsing and missing authentication, we in-
spect EVCMS functionalities by validating their access control
mechanisms, and searching for logic flaws to request post-
authentication endpoints/resources without login. To detect
missing rate-limit, we send a cycle of HTTP requests to the
EVCMS endpoints then compare the returned responses to
determine if they contain differences.

3) Automated Scanning: To make the security analysis
efficient, we build automated scanning modules (Figure 1).

Vulnerability Proof-of-Concepts (PoCs). Once we detect vul-
nerabilities within the respective EVCMS product candidates,
we craft custom vulnerability-specific PoCs for each, which
consist of a request containing vulnerability payload and an

anticipated response with indicators that prove the vulnerabil-
ity, and we correlate the scanned host instance product model
and version strings with those of the examined systems. This
allows to minimize the number of requests to send, and explore
indexed Internet scans with limited host interaction, by relying
on the data and details already collected by the third-party
device search engines like Shodan. Thus, whenever a set of
vulnerabilities is linked to a specific EVCMS product model
and version numbers, we configure the PoC to extract the
scanned host instance version string from the HTTP banners,
then correlate it to the details associated with the vulnerable
product within ChargePrint’s database. This allows to prove
the existence of vulnerabilities on a given EVCMS product,
and determine automatically the number of host instances
instrumented by the EVCMS that are affected.

Host Scanning. By iterating over the collected database of
candidate host instances that represent the various clusters
of EVCMS products, we leverage the generated vulnerability
PoCs to determine vulnerable instances automatically. For
every candidate EVCMS in the database, which represents a
given cluster of products, we craft a collection of vulnerability
PoCs to determine whether other host instances belonging to
the same cluster are vulnerable.

To report the exact number of Internet-connected EVCMS
host instances that suffer from the discovered vulnerabilities,
we perform a targeted scan on each of these hosts by sending a
precise number of PoC requests and parsing the responses for
indicators to count the events when the tested vulnerability is
confirmed. We build this automated scan on the basis that host
instances instrumented by a given EVCMS product must run
similar or identical builds and services, hence, will suffer from
the same vulnerability classes. Thus, instead of re-conducting
the thorough analysis for each host instance that deploys a
variant of a given EVCMS product, we conduct the in-depth
security analysis on fewer instances, while generalizing our
discoveries across other similar hosts.

Ethical Considerations. As with scan-based security mea-
surement studies, we abide by best practices [30]–[35]. In
particular, we took several steps to ensure no harm towards
the operation of the examined EVCMS.

Non-repudiation: In our scans, we set a custom user-agent
string within the outgoing requests to signal benign intentions
and supply contact information to permit system owners to
communicate with us and have the option to be removed
from our study. We also provided reverse DNS records to
our machines’ public IP addresses to allow targets to obtain
additional information about the study.

Correlated Scans and Non-Exploit Payloads: To perform
large-scale scans, we relied on previously collected Internet
scan data by third-party device search engines (e.g., Shodan,
Censys), and we utilized non-exploit payloads that yield no
real-life exploitation and active interaction. We used side-
channel techniques to infer vulnerabilities by carefully crafting
proof-of-concepts, that leverage version strings and banner
correlation, to verify the existence of vulnerabilities without
causing any damage or persistent effects to the examined
EVCMS, analogous to how device search engines, such as
Shodan, determine if hosts are affected by a specific CVE
vulnerability. Additionally, we developed our own approach for
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clustering the large number of hosts into versioned products
such that the analysis is conducted on the representative
candidates or corresponding firmware, and finding issues in
specific versions allows correlating to all related hosts, without
interacting with them.

Client-Side Analysis and Test Environments: We note that
out of 13 discovered vulnerabilities, 8 are client-side which
do not affect nor cause any impact on the analyzed EVCMS
as they were uncovered through offline client-side scripts
analysis. As for the remaining 5 server-side vulnerabilities,
they have been discovered through firmware analysis and
coordinated testing in environments provided by the vendors,
notably Cornerstone Technologies, Bluesky Energy and Etrel.
We also validated that the PoCs do not cause harm to the
analyzed EVCMS by communicating with local and national
EV operators running a comprehensive list of vendor-specific
EVCMS and testing the PoCs in a controlled environment
while performing monitoring tasks of such assets, and we did
not observe any damaging outcome. While we did not test
our PoCs on all the international vendors that we scanned
for the existence of vulnerabilities, we did work with few
(e.g., Cornerstone Technologies, Bluesky Energy) where we
utilized vendor-provided techniques and tools to verify that
the asset is intact. We note that the PoCs contain passive
payloads which do not exploit the vulnerabilities, and at worse-
case scenario any unexpected side-effects can be averted by
restarting the EVCMS or EVCS. As an extra precaution, when
applicable, we leveraged de-facto remote monitoring tools with
minimal polling on remote hosts to continuously validate the
performance, integrity and availability of the remote systems
and running services, and we acted upon the outcome from
these procedures, which did not reveal any issues. Moreover,
we coordinated with network administrators and IT leadership
at our institution, as well as with our upstream ISP, to ensure
that our scans do not adversely impact network operations.

Responsible Disclosure: We executed a systematic Coordi-
nated Vulnerability Disclosure (CVD) [36] effort and promptly
communicated with the impacted vendors, reporting the vul-
nerabilities to them at least 6 months prior to writing this
paper, to give them plenty of time to notify their respective
users/operators while preparing for the security fix.

Data Privacy: We obtained an approved institutional re-
view board (IRB) based on data retention/management policy
in regards to the gathered data and IP addresses. Specifically,
we retained data collected from the EVCMS host instances for
the duration of the analysis, after which, to preserve the privacy
of data and reliability, we removed from our machines, all data
gathered during the study of the affected host instances.

IV. EXPERIMENTAL RESULTS

We implemented ChargePrint, and we present here the
results of its discovery and security analysis campaigns.

A. Discovering Internet-Connected EVCS in the Wild

1) Initial Search: The initial search queries using the
selected engines resulted in identifying 1,800 hosts that are
running 9 distinct EVCMS products, and as illustrated in Fig-
ure 4, the initial search produced a significantly larger number
of verified hosts using Zoomeye and Fofa (about 1,700) as
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Fig. 4: Number of discovered hosts in initial & extended search
with ChargePrint.

compared to Shodan and Censys (about 200 hosts). These
significant differences are attributed to two main factors. First,
each engine employs distinct scanning tools and techniques
for device discovery and probing, which yield differences in
the identified hosts and banner data, for instance, Shodan and
Censys rely on ZMap and ZTag [37] while ZoomEye and Fofa
rely on their own proprietary scanners. Second, each engine
implements different customized lookup queries that associate
the search constructs with the stored host information, for
instance, to optimize the lookup and avoid searching the entire
data, the search engines may associate a given host with
device or system-specific tags (e.g., device type, OS) that are
extracted from their banners. We note that none of the selected
search engines have defined EVCS-related tags, and therefore,
significantly hampering the outcomes of the initial search.

2) Extended Search Using ChargePrint: Motivated by the
limited number of identified EVCS hosts from the initial
search, we leverage ChargePrint to perform an extended and
iterative lookup/query for EVCS hosts that are managed by
EVCMS. As illustrated in Figure 4, our extended queries
using ChargePrint produced a significantly larger number of
hosts, as compared to the initial lookup, specifically, we
utilized the candidates for the initial 9 EVCMS products to
identify a total of 27,439 unique host instances instrumented by
various EVCMS. By leveraging ChargePrint, we improved the
EVCMS lookup outcome using all search engines, demonstrat-
ing its effectiveness, with a significant increase in the number
of identified host instances that reached almost double the
tenfold with Zoomeye (25,316), the tenfold with Fofa (18,484),
and quintuple the tenfold with Shodan (5,945) and Censys
(5,442), as presented in Figure 4.

We note that the total 27,439 EVCMS host instances were
discovered through 5 iterations of the framework’s discov-
ery and fingerprinting campaigns. In addition, our analysis
showed that these host instances are instrumented by 44 unique
EVCMS products, which represent the number of groups
obtained, and manually verified as valid EVCMS, during the
host clustering phase, as discussed in Section III-A4. This
highlights the importance of ChargePrint’s iterative fingerprint-
ing approach, which not only extends knowledge of the total
number of Internet-connected EVCS hosts, but also discovers
a wider range of deployed EVCMS products in the wild. We
present the full list of 44 discovered and analyzed EVCMS
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TABLE IV: List of analyzed vulnerable EVCMS.

EVCMS Manufacturer Vulnerable Version(s)

Ensto CSI Ensto 4.63-6011
Emonscms Open Energy Monitor 9.8.10
xChargeIn Eaton Corporation M SW, A-X-S (3.10.7)
ICEMS Bluesky Energy 1.8.0
EVlink Schneider Electric R7 V3.3.0.17
Heliox Heliox Energy Diag-1
Lancelot Unicorn Systems v4.9
Turnkey EVCI ChargeLab v2.7
Smartfox Smartfox 12.3.4p
Mein – v2020
CSWI Etrel Etrel 2.2.0.5
OpenEVSE OpenEVSE 7.1.3
SuperChargeI – v2019
Suncountry Sun Country Highway sc1
OASIS Portal OASIS v2020
Syzygy EVLab Syzygy v1.5
Magtec Magtec v2020
Nuvve Nuvve v2020
KANDI EVS Kandi Technologies –
EVsmart EnelX Version 1.3.0.1
EVCSControl EVCSControl 1.20.0
Whirlybird WHIRLYBIRD Electronics –
kosiarka – –
BaSE EVMS Cornerstone Technologies v2020
IoCharger CCMS IoCharger 2.8
EV-Algorigo Algorigo Inc. v2020
MikEVSE MikEVSE –
Kia EV Portal – –
NCR National Chargepoint –
FCEIS Fuzhou Comprehensive Energy v2020
BetaSmart Betasmart v2020
ChargedHK Hong Kong EV Association –
GAP EVDAS GAP –
LFEV LF Link v1.12
Revitalize Revitalize Charging solutions
EVmob ALTernative –
SharedEnergy DSM 6.2
DSmob DataSpace Ecosystem v2020
Irasus Irasus Technology v3.1.0
Greenwai Greenwai v1.0
Zonnigladen Zonnigladen –
USHybrid US Hybrid Corporation –
EMotorWerks EMotorWerks 1.3
Fcevspat – v2021

products along with their manufacturers and up-to vulnerable
versions in Table IV.

3) Geographical Distribution: The identified EVCMS
hosts are distributed across 21 countries, with Hungary, Fin-
land, U.S.A, France, and South Africa having a significantly
larger number of hosts (about 78%), as compared to the
remaining countries (Figure 5). However, this distribution does
not fully comply with the number of deployed EV chargers
worldwide [3], where countries such as the U.S.A and the
U.K. are supposed to host the largest numbers of EVCS,
respectively. This bias is due to ChargePrint relying on a
number of initial EVCMS candidates, which might be com-
monly deployed in certain countries. Additionally, while we
identified various EVCMS products in each country (Figure 5),
the majority of the hosts found in these countries correspond
to one or two unique products only. For instance, we identified
over 10,000 hosts that deploy Ensto CSI, with 90% of them
located in Hungary (4,900 hosts) and Finland (4,100 hosts).

4) Ports and Services: We leverage the identified EVCMS
host banners, and find the open ports that are used for running
the EVCMS web interface service, as well as find ports
associated with known services such as SSH. As illustrated in
Figure 6, the majority of the identified EVCMS products were

TABLE V: Overview of identified EVCMS vulnerabilities.

Severity CWE Vulnerability # Issues # EVCMS # Hosts

C
ri

tic
al

89 SQLi 4 4 1,684
611 XXE 5 5 1,290
798 Hard-Coded Cred. 6 6 900
918 SSRF 7 3 1,457
1236 CSVi 1 1 1,203

H
ig

h

79 XSS 29 19 7,754
352 CSRF 12 9 7,789
942 CORS Misconfig. 2 2 3,731
942 FCDP Misconfig. 2 2 1,205

M
ed

iu
m 200 Info. Exposure 17 17 13,787

306 Missing Auth. 3 3 1,005
425 Forced Browsing 2 2 1,402
799 No Rate Limit 30 30 17,500

running HTTP(S) services on common ports (e.g., 80, 8080,
and 443), however, we also found alternative ports that are
configured for HTTP(S) services by various EVCMS products
(e.g., 81, 82, and 8888). While open ports provide information
about supported services on the identified EVCMS hosts, some
combination of these ports can be used in future work as
advanced vendor-specific features for targeted discovery and
accelerated fingerprinting of some EVCMS products.

B. Quantifying the Security Posture of EVCMS

The in-depth security analysis on the EVCMS product/host
instances unearthed 120 vulnerabilities that belong to 13 Com-
mon Weakness Enumeration (CWE) [38] classes with critical,
high, and medium severity (Table V), discovered across 25,300
host instances (about 92% of all hosts), and enabling remote
exploitation of the EVCMS and control over the underlying
EVCS. Additionally, as illustrated in Figure 7, 29 products,
deployed on 13,989 hosts, were associated with high and/or
critical vulnerabilities, and almost all the remaining EVCMS
products that had medium-severity vulnerabilities, were de-
ployed on a small number of hosts (≤8), except Ensto CSI
which was deployed on over 10,000 hosts. We note that about
8% of the verified EVCMS hosts were not associated with any
vulnerabilities, which is due to the inability to examine their
corresponding firmware and portal endpoints to perform in-
depth security and vulnerability analysis. In what follows, we
provide details and examples of the identified vulnerabilities
across the analyzed EVCMS products and host instances:

1) Critical-Severity Vulnerabilities: As listed in Table V,
we uncovered 5 critical-severity server-side vulnerabilities,
which affect 7 unique EVCMS products (Figure 7) that instru-
ment 4,431 EVCMS host instances (about 16%). We uncovered
4 occurrences of SQLi on 1,684 EVCMS host instances,
which can allow full exploitation of the host by extracting the
stored databases that contain tables with sensitive information
such as the user account details and payment information.
Furthermore, we discovered XXE and SSRF vulnerabilities,
which allow adversaries to force the EVCMS into sending
arbitrary requests to internal/external networks as well as
exfiltrate data from the EVCMS. We also discovered that
900 and 1,203 EVCMS host instances suffer from hard-coded
credentials and CSVi respectively, which would allow attackers
to compromise the EVCMS by gaining direct access to the
resources/configurations and uploading persistent payloads.
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Fig. 5: Geographic distribution of discovered EVCMS hosts/instances.
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Fig. 6: Distribution of EVCMS ports across the instances.

2) High-Severity Vulnerabilities: We found 4 high-severity
client-side vulnerabilities affecting 22 EVCMS products that
are installed on 9,750 host instances (about 35% of all).
The XSS vulnerabilities would allow an adversary to execute
arbitrary JavaScript code within the context of the vulnerable
EVCMS, hijacking user accounts and enabling the adversary
to operate the EVCS by gaining control over all available
functionalities. Moreover, XSS weaknesses can be leveraged
for privilege escalation on the corresponding EVCMS by em-
bedding persistent payloads or creating backdoors via injected
web shells, that execute in the context of the system users,
allowing an adversary to obtain administrator-level access to
the EVCS by exposing session cookies. Moreover, we find
CSRF vulnerabilities, which would allow adversaries to force
a target user into performing unintended actions like changing
the EVCS settings and configurations (e.g., restart the EVCS).
Furthermore, we identify CORS and PCDP misconfiguration
vulnerabilities, that enable adversaries to attack the EVCMS
by exfiltrating account data and session cookies.

3) Medium-Severity Vulnerabilities: We discovered 4
medium-severity vulnerabilities, that affect 30 EVCMS prod-
ucts installed on 17,831 EVCMS host instances (65% of all),
and which can open door to access partial privileged func-

tionalities such as exposing maintenance endpoints through
forced browsing, or allow the adversary to view confidential
EVCS-related states and settings through information exposure
vulnerabilities. In addition, the missing authentication and rate
limit vulnerabilities would allow accessing specific resources/-
functionalities on the EVCMS without affirming privilege.

C. Attack Implications on EV Stakeholders

Within a complex ecosystem of inter-playing entities on top
of the EVCS, the exploitation of the discovered vulnerabilities
can lead an adversary to compromise the EVCMS and its inter-
communications to conduct attacks against the stakeholders
namely the EVCS, the users/operators, and the power grid.

EV Ecosystem and Operations. The discovery of vulnerabil-
ities within the context of EVCMS products, which orchestrate
the EVCS landscape constitutes a major security problem since
this endangers the overall EV charging ecosystem as illustrated
in Figure 8. Under normal conditions, the users/operators are
able to manage their EVCS by relaying operations through
the EVCMS, to control the underlying EVCS by sending
commands to it. On a simplified diagram (Figure 9), we present
details of the intercommunication protocols that tie the main
entities: operator, EVCMS, and EVCS. As shown in Figure 9,
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Fig. 7: Distribution of vulnerabilities across EVCMS products/hosts.

the intercommunication protocols can be broken down to 4
phases:

1) In authentication phase, the operator requests access to the
EVCMS by submitting their credentials through an HTTP
POST request to the corresponding login endpoint, when-
if these credentials are valid, the EVCMS will grant the
operator access and redirect them past the login wall.

2) In the management phase, the operator will request avail-
able functionalities by sending an HTTP GET request to
which the EVCMS will provide the appropriate dashboard
components based on their privilege level, after which
the operator can perform various operations that are
demanded through endpoint-specific HTTP GET/POST
requests.

3) During the control phase, EVCMS establishes a commu-
nication channel, to send and execute commands (e.g.,
start/stop charging, etc) for the specific operation re-
quested, after which the EVCS will return status to update
the respective EVCMS configuration.

4) In monitoring phase, the operator will request EVCS
status overview by issuing an HTTP GET request to the
EVCMS that provides back the demanded information,
and in turn, the EVCS, which is connected to the power
grid through power links (Figure 8), can extract power
from the grid to feed into plugged-in EVs to charge them,
or inject power back into the grid to discharge plugged-
in EVs. This ability for EVCS to discharge EVs, relies
on the EVCS bidirectional power flow feature enabled by
Vehicle-to-Grid (V2G) technology [39].

Attacks Against the EVCS. An attacker who exploits the
discussed vulnerabilities can manipulate the EVCS charging
operations and schedules (i.e., initiate, delay, or stop charging).
Many of the analyzed EVCMS suffered from XSS that could
allow an attacker to inject malicious JavaScript code into the
context of the EVCMS and hijack the operator’s account,
allowing the modification of the operator’s account and EVCS
settings/configurations by manipulating and/or disrupting on-

going charging operations by overriding commands through
the controlled EVCS. An attacker can potentially damage the
battery of the connected EV by modifying their charging levels
and ignoring critical battery conditions through the toleration
of high voltages/currents [40].

In addition, by gaining high-privileged access to a com-
promised EVCMS through SQLi exploitation, an adversary
can downgrade the EVCS firmware and potentially upload
a maliciously crafted firmware, allowing to maintain covert
low-level access on the EVCS that is difficult to detect, thus
creating persistence over the EVCS. An adversary can also
exploit a group of EVCS via SSRF or XXE and leverage them
as network proxies to perform coordinated local and/or Internet
scanning activities as a part of a botnet. While these botnets
can be used to flood other devices on the Internet through
distributed denial of service (DDoS) attacks, they can also be
utilized to discover additional vulnerable networked devices,
which can be compromised to expand the attacker’s foothold
and increase the attack surface. Furthermore, an adversary can
leverage CSRF to lock the EVCS, disable specific features and
deny physical/virtual access to the legitimate users, thus per-
forming a physical DoS, and such attacks could be weaponized
with crafted ransomware to score financial gain by abusing the
power over these compromised EVCS and locking them until
a ransom is fulfilled.

Attacks Against the Users/Operators. The vulnerable
EVCMS instances can be exploited to gain control over the
EVCS and dictate its relation with the EVs, and such exploits
may expose the stored data within the systems, risking the
security and privacy of its users/operators. For instance, by hi-
jacking the EVCMS user session through XSS or CORS/FCDP
misconfigurations, an adversary can obtain access to the op-
erators/users’ personally identifiable information (PII) such as
name, address, and telephone number, and this information
can be leaked or sold to cyber criminals and then used for
blackmailing, harassment, and identity theft. In extension to
PII leakage attacks, an adversary can also obtain access to
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Fig. 8: Interplaying entities surrounding EVCMS, with interfering adversary.

other resources stored on the EVCMS such as charging records
and EV-specific log data, from which they can infer charging
schedules and use to perform surveillance/espionage on the
corresponding user/operator. On another level, many EVCS
permit electronic billing and payments through their respective
EVCMS, and consequently, this data could also be leaked by
an adversary from compromised EVCMS host instances, and
abused by cyber criminals to perform payment frauds, through
the exploitation of vulnerabilities such as SQLi which are
utilized to dump the information stored within the EVCMS.

Attacks Against the Power Grid. The vulnerable EV charg-
ing ecosystem introduces a new and rapidly growing attack
surface against critical infrastructure, mainly due to the direct
connection and integration of EVCS within the power grid,
and given the important role it plays in serving electricity to
millions of customers, any attacks against such infrastructure
would lead to significant implications. In fact, performing
large-scale cyber attacks against the power grid attracts various
adversaries including large organizations and state-sponsored
malicious actors, who may seek economical and/or reputation
damage to their opposition [41].

In essence, to conduct these attacks, the adversary requires
to control the charging process of a large number of com-
promised EVCMS host instances to control their underlying
EVCS and initiate concurrent EV charging sessions as well
as stop/delay ongoing charging operations to conduct several
dangerous frequency instability attacks against the power grid
[42]–[44]. The literature provides information and simulation
results that demonstrate several ways to perform frequency
instability attacks against the power grid. For instance, ad-
versaries can create a switching attack by commanding the
vulnerable EVCS to charge and discharge the connected EVs

within a short time period, causing frequency disturbances and
cascading failures in the power grid [45], [46]. Moreover,
such attacks can be performed by force-discharging 8,300
EVs, as demonstrated by the simulation analysis results in
[47]. Considering the number of vulnerable EVCMS that were
discovered using our analysis (i.e., 27,439), and the fact that
a single EVCMS is typically managing several EVCS, we
conclude that it is very feasible to conduct such frequency
instability attacks against the power grid. While in these studies
authors assume EVCS compromise and do not discuss the
exploitation details, in our work, we present the technicalities
of creating a botnet of compromised EVCS.

D. Recommended Countermeasures

While in this work we highlight major security flaws
in EVCMS, we also recommend a number of mitigating
countermeasures to address the current security issues, which
have been overlooked by the respective system developers,
and strengthen the deployed EVCMS against future attacks.
First, mitigating the discussed attacks requires patching all the
identified classes of vulnerabilities within the EVCMS, and for
that we refer to the documentation on CWE MITRE [38] and
the Open Web Application Security Project [22] for detailed
information about known/recommended countermeasures for
the CWE-ID of each vulnerability. For instance, to prevent
SQLi (CWE-89), developers must not use dynamic queries
nor include user-supplied input in query execution, and to
prevent XSS (CWE-79), must properly encode and sanitize
user supplied data on entry points and parameters before it is
returned in the response. Second, to mitigate cyber attacks
that target the power grid, the operators can monitor the
EVCS charging schedules to detect anomalies in the charging
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Fig. 9: Diagram for EVCMS intercommunication protocols.

behavior by leveraging machine learning models to learn
normal patterns and identify abnormal activities.

In addition, to prevent EVCS configuration and EV charg-
ing schedule tampering, the EVCMS and the EVs can imple-
ment a mutual consensus to validate system modifications on
both ends, and as a result, an adversary who compromises the
EVCMS will not be able to enforce custom charging schedule
configurations without the approval of the participating entities
(e.g., EV operator/user). Third, to diminish the EVCMS attack
surface, it is essential for system developers to adopt the
secure-by-design process by continuously assessing the secu-
rity of their products during systems development life cycle
(SDLC), and for the operators to properly and securely setup
their EVCS in order to prevent certain attacks. For instance,
users should always replace the default credentials that are
shipped on the EVCS firmware with strong account credentials,
as well as set up resilient authentication methods.

Furthermore, private EVCS operators can disable public
device discovery on their EVCMS portals to hide them from
remote Internet attackers, and configure a firewall that only
allows connections from trusted parties. Finally, given the
wide-scale impact/implications of the discovered vulnerabil-
ities, there should be strict EVCMS security measures and
design standards made and mandated by the law, to motivate
system developers/vendors to employ more efforts into making

sure that their systems undergo the necessary levels of scrutiny
to meet client security expectations and fulfill the requirements
imposed by the corresponding laws.

V. DISCLOSURE OF ZERO-DAYS AND PATCH FOLLOW-UP

With the established CVD process, we communicated
the findings to the EVCMS system developers through the
appropriate channels, via encrypted emails sent to the ded-
icated Product Security Incident Response Team (PSIRT)
addresses and via website security incident forms, prior to
disclosing results to allow them to take the necessary actions.
While for various EVCMS products, there was not enough
information about the corresponding vendors/developers in
order to communicate the findings to (e.g., absence of dedi-
cated email addresses, inability to find vendor website, lack
of response), several manufacturers like Schneider Electric,
Cornerstone Technologies, Bluesky Energy, Eaton, and Etrel
have received and acknowledged the discovered zero-days,
and assigned in coordination with the National Institute of
Standards and Technology (NIST) [48], more than 20 CVE-
IDs such as: CVE-2021-22706 (CVSS score: 8.8/high), CVE-
2021-22722 (CVSS score: 8.9/high), CVE-2021-22729 (CVSS
score: 9.4/critical), CVE-2021-22730 (CVSS score: 9.4/crit-
ical). Furthermore, these vendors took steps to address the
vulnerabilities, especially the assigned CVEs, by deploying the

14



TABLE VI: EVCMS software patch version releases.

EVCMS Manufacturer Patch
Version(s)

Date
mm/yy

Ensto CSI Ensto 5.13.1-11316 01/22
Emonscms Open Energy Monitor 11.0.4 10/21
xChargeIn Eaton Corporation Green Motion 03/22
ICEMS Bluesky Energy 2.0.0 11/21
EVlink Schneider Electric R8 V3.4.0.4 05/22
Lancelot Unicorn Systems v5.5 09/21
Smartfox Smartfox EM2 00.01.03.19 07/22
CSWI Etrel Etrel INCH 5.0 06/22
OpenEVSE OpenEVSE 8.2.0 04/22
Suncountry Sun Country Highway sc2 10/21
OASIS Portal OASIS v2022 02/22
Syzygy EVLab Syzygy v2.0 11/21
EVsmart EnelX Version 1.4.0.28 05/21
EVCSControl EVCSControl 1.31.1 06/22
BaSE EVMS Cornerstone Technologies v22 01/22
IoCharger CCMS IoCharger 3.2 11/21
FCEIS Fuzhou Comprehensive Energy v2022 07/21
Greenwai Greenwai v2.0 04/22

corresponding patches in the new software releases.

To assess the status of the planned and deployed software
patches, we performed a follow-up on the progress that these
manufacturers have made within 3-6-9 months from the initial
date of reporting the vulnerabilities to them throughout the
year 2021. In Table VI, we present the results of this follow-
up, listing the EVCMS with their corresponding software
patch versions in which they addressed the vulnerabilities. Out
of the 44 analyzed EVCMS, 18 (40%) had software update
releases to patch security weaknesses, among which we listed
the latest releases along with the corresponding dates. For
instances, the vulnerabilities within EVlink version R7 (Table
IV) were patched on several phases that were completed with
the final release of the new version R8 on May 2022, as
shown in Table VI. For several of these EVCMS products,
we worked closely with the manufacturers/developers, like
Schneider Electric and Cornerstone Technologies, to perform
successive tests and validate the deployed fixes. In most cases,
the patches accurately resolved the issues, however, there
were certain scenarios where new variants of the previous
vulnerabilities were uncovered. For instance, when XSS issues
on particular parameters got patched, new issues were uncov-
ered on new/other endpoints due to introducing new software
features.

All in all, based on the static analysis performed on these
EVCMS software updates, better defense mechanisms have
been implemented, meeting up-to-date security standards de-
ployed in current IT systems. As for the remaining systems, no
updates have been affirmed or observed due to various reasons:
(1) lack of sufficient contact information thus the inability
to communicate with the corresponding vendors/developers
concerning the discovered vulnerabilities, (2) the patches not
being released yet, (3) the absence of software update for
logistical reasons such as some products being discontinued,
or (4) the manufacturer shifting efforts from patching current
system vulnerabilities to investing in new product lines.

Furthermore, to survey the state of updates for the original
set of EVCMS host instances, we performed a global scan by
probing the systems through version string extraction and com-
paring those to the current list of patched EVCMS versions.
We determined that out of 27,439 hosts, 6,980 (25.5%) still

represent the EVCMS instances that were originally detected,
while the remaining 20,459 (74.5%) are either dynamic IP
addresses that are no longer associated with the EVCMS
instances or failed to resolve successfully. We note that out of
those 6,980 EVCMS instances, only 1,112 (15.9%) have been
updated accordingly to a new software release version that
patches the discovered vulnerabilities. In addition, we perform
a new round of scans on a fresh set of 14,900 EVCMS host
instances, out of which the version strings indicate that only
1,760 (11.8%) instances are updated, thus properly secured.

In both these scans, we observe that the updated EVCMS
instances deploy Ensto CSI and EVlink, and we highlight that
the overall low number of updates can be attributed to the
general EVCMS design architecture which has low update
frequency and lacks auto-update features hence needing man-
ual/technical patching, and enforces requirements to restart the
EVCS when applying updates, which are operational burdens
that most users avoid. Nevertheless, it is best for these EVCMS
instances not to be exposed to the public Internet and rather
only be connected to isolated or virtual internal networks to
reduce attack surface, and still maintain the expected remote
functionality.

VI. LESSONS LEARNED AND FUTURE WORK

While we identified and analyzed 44 EVCMS, we note
that obtaining information about all available EVCMS in the
wild is a challenging task due to the proprietary nature of
some EVCMS products which are only provided to Charging
Point Operators (CPO) and enterprise-level customers with a
prepaid subscription. Additionally, the security mechanisms of
some EVCMS made it unfeasible to inspect content located
behind authentication portals. In those cases, partial EVCMS
assets were examined, thus the remaining assets could still
potentially conceal vulnerabilities. In terms of future work,
we note that we leveraged classification methods along with
extracted features, which can be updated or modified to
enhance the overall fingerprinting outcome, by implementing
and evaluating further classification models to find the best
methods/parameters for each stage. Finally, we could also
leverage ChargePrint and the knowledge of this study to
build and deploy an online platform for conducting real-time
discovery and vulnerability analysis of EVCMS products that
are submitted for vetting by the respective system developers.

VII. RELATED WORK

In this study, we examine both discovery and security
aspects of a niche attack surface that has never been tackled
before in the literature, by designing a novel framework
that utilizes custom techniques to circumvent challenges that
are unique to EVCMS analysis. As summarized in Table
VII, we systematize previous research work by categorizing
the literature into three classes: device fingerprinting, EVCS
security, and firmware analysis, while comparing them in terms
of fingerprinting and security analysis.

Device Fingerprinting. Several studies have proposed ap-
proaches to discover and fingerprint IoT and ICS devices. Feng
et al. [8] proposed an engine that generates association rules for
discovering and annotating IoT devices by extracting relevant
terms in their application-layer response data then using them
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TABLE VII: Literature systematization. The ✓, , and empty cell imply complete, partial and no fulfillment, respectively.
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Category Reference
Our Work ChargePrint ✓ ✓ ✓ ✓

Device Fingerprinting

Feng et al. [8] ✓ ✓
Costin et al. [49] ✓ ✓ ✓
Wang et al. [9] ✓ ✓
Yu et al. [50] ✓ ✓

EVCS Security

Alcaraz et al. [6] ✓ ✓ ✓ ✓
Alcaraz et al. [51] ✓ ✓ ✓ ✓
Boe et al. [52] ✓
Baker et al. [7] ✓ ✓ ✓ ✓
Pratt et al. [53] ✓ ✓
Antoun et al. [54] ✓ ✓
Gottumukkala et al. [55] ✓ ✓
Fraiji et al. [56] ✓ ✓
Mousavian et al. [57] ✓ ✓

System Analysis

Costin et al. [20] ✓ ✓ ✓ ✓ ✓ ✓
Zheng et al. [21] ✓ ✓ ✓ ✓ ✓ ✓
Srivastava et al. [58] ✓ ✓ ✓ ✓ ✓ ✓ ✓
Wright et al. [59] ✓
Chen et al. [60] ✓ ✓ ✓ ✓
Fasano et al. [61] ✓ ✓ ✓ ✓ ✓ ✓
Sasaki et al. [14] ✓ ✓ ✓ ✓ ✓

as web search engine queries to find product descriptions.
Costin et al. [49] utilized supervised machine learning to clas-
sify a database of embedded device firmware then fingerprint
online web interfaces to link them to the corresponding images
from the database. Sasaki et al. [14] presented a fingerprinting
methodology tailored for discovering ICS remote management
devices, by selecting networks with probable presence of
ICS and collecting WebUIs from them, then identifying and
creating signatures from remote management systems detected
based on WebUIs with customized fields containing name
and location of monitored facilities. The authors compare and
note that their results surpass those of industry source that
identify ICS such as Shodan, nevertheless, a large percentage
of these devices were already tagged as ICS by the search
engine. Despite that, we note that unlike ICS, which already
have well-documented and built-in tags provided by device
search engines such as Shodan and Censys, there is a lack of
knowledge about EVCMS and an absence of built-in tags for
identifying them. This indeed hampers the results of previous
work when it comes to fingerprinting EVCMS in the wild.

From a different perspective, Wang et al. [9] proposed an
engine for identifying IoT devices by leveraging the highest
similarity of response data between IoT devices of the same
vendor or product by extracting structure and style features
from response data. Yu et al. [50] proposed a firmware iden-
tification method by analyzing web pages content to extract
information while using classification and page segmentation
to identify device model and firmware version. In contrast to
other device types, EVCS have limited and non-trivial banners
due to the difficulty of locating information and specifications
related to them especially since most EVCMS products are
cloud-based and closed-sourced, in addition to the absence
of banner rules for identifying them. Furthermore, EVCMS’s

diversity and lack of standardization among developers results
in a wide range of banner representations that are harder
to analyze and keep track of, making it unfeasible to use
existing approaches to fingerprint EVCS, therefore, we design
our approach which we bootstrap with EVCMS seeds from
preliminary search.

EVCS Security. Previous studies have looked at different as-
pects of EVCS security, however, EVCS firmware and EVCMS
security received little academic attention. Alcaraz et al. [6]
conducted a security analysis of open charge point protocol
(OCPP) and presented weaknesses that allow man-in-the-
middle attacks to interfere with EV resource reservation, and
presented countermeasures to protect against their proposed
attacks [51]. Boe et al. [52] performed a security analysis
of vehicle-to-grid protocol, presenting attacks to target the
charging process. Baker et al. [7] implemented a wireless
eavesdropping tool to conduct electromagnetic side-channel
attacks for recovering messages from the EVCS power-line
communication networks. Pratt et al. [53] devised security
principles to prevent cyber attacks against the EVCS and the
power grid. Antoun et al. [54] and Gottumukkala et al. [55]
presented a theoretical overview of cyber threats associated
with the EV charging ecosystem components. Fraiji et al.
[56] surveyed the security of the Internet-of-Electric-Vehicles
(IoEV) pointing out cyber attacks that can be used to disrupt
its operations. Mousavian et al. [57] proposed a model that
optimizes security risk within the EV infrastructure to handle a
malware propagation attack through the EVCS communication
networks.

We note that these works rely on theoretical attack scenar-
ios where the EVCS are assumed to be infected by malware
without discussing the exploitation process. To the best of our
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knowledge, our work is the first to conduct an in-depth security
analysis on a body of EVCMS products while presenting
a range of vulnerabilities that would allow practical remote
exploitation and manipulation of EVCS, shedding the light on
the large-scale insecurity of the EV ecosystem, while alarming
vendors to implement immediate mitigations.

System Analysis. A number of prior research examined the
security of IoT and ICS device firmware. Costin et al. [20]
performed a large-scale IoT firmware analysis by leveraging
security tools and static analysis techniques. Sasaki et al.
[14] performed a security analysis of ICS remote manage-
ment systems by examining insecure configurations, surveying
unpatched known vulnerabilities, and performing penetration
tests to find zero-days by leveraging existing scanners (e.g.,
Nmap, OpenVAS). While the topic of ICS has been previously
examined and has more extensive literature that discussed
its security, it is difficult to leverage off-the-self tools to
perform security analysis on products with deep code paths
like EVCMS. Thus, we rely on tailored and specific secu-
rity analysis procedures that leverage static analysis/dynamic
indicators to detect vulnerabilities within EVCMS. Zheng et
al. [21] proposed a fuzzer for IoT firmware to uncover 1-
day vulnerabilities through user and system mode emulation.
Srivastava et al. [58] built an emulation and dynamic analysis
framework for Linux-based firmware that employs fuzzing and
static analysis techniques to uncover software bugs. Wright et
al. [59] categorized popular works in the field of firmware
re-hosting, and presented common challenges faced during
system emulation and analysis. Chen et al. [60] presented an
automated system (Firmadyne) that performs dynamic analysis
of embedded device firmware through full system emulation.

We tested Firmadyne on the collected EVCMS firmware
images in an attempt to observe analysis results, however, it
failed to run many of the supplied EVCMS firmware, due to
its inability to analyze proprietary file compressions like EPK.
Nevertheless, we incorporated into ChargePrint’s design some
of the analysis techniques introduced by Firmadyne, such as
those related to filesystem extraction methodologies. Fasano
et al. [61] presented rehosting as an alternative to firmware
emulation for dynamic analysis of hardware systems. While
these studies are effective at analyzing IoT firmware, most
of these approaches rely on known CVE vulnerabilities and
security scanners, thus do not discover new vulnerabilities, in
addition to suffering from high false positives. Most these stud-
ies also solely perform analysis on firmware packages, while
we perform analysis on both available firmware and online
endpoints without having access to the underlying firmware.
Furthermore, most these studies rely on dynamic analysis
techniques to examine the embedded device images, which
is practically unfeasible when analyzing EVCMS images due
to hardware restrictions and proprietary firmware which are
incompatible with emulation software like QEMU [62].

VIII. CONCLUSION

We provide the first attempt to explore threats associated
with EVCS by evaluating the security posture of their EVCMS
as a new attack surface. We present a novel discovery and
security analysis framework (ChargePrint) that fingerprints
EVCMS instances in the wild while analyzing their vulner-
abilities. Moreover, we leveraged ChargePrint to extend the

device discovery/fingerprinting capabilities of existing search
engines by identifying 27,439 hosts that implement 44 different
EVCMS. Furthermore, our in-depth analysis raises serious
concerns regarding the insecurity of the implemented EVCMS
at scale by uncovering 120 0-day vulnerabilities that can
lead to remote exploitation across the majority (92%) of the
EVCMS hosts. Finally, while we note attack implications
against various stakeholders in the EV charging ecosystem, we
communicate our findings to the respective system developers
to motivate them towards improving the security of EVCMS
and the overall EV charging ecosystem.
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