
Focusing on Pinocchio’s Nose: A Gradients
Scrutinizer to Thwart Split-Learning Hijacking

Attacks Using Intrinsic Attributes

Jiayun Fu∗, Xiaojing Ma1∗, Bin B. Zhu†, Pingyi Hu∗, Ruixin Zhao∗, Yaru Jia∗,
Peng Xu∗, Hai Jin∗, and Dongmei Zhang†

∗Huazhong University of Science and Technology, Wuhan, China
†Microsoft Research Asia, Beijing, China

Emails: {fujiayun, lindahust}@hust.edu.cn, binzhu@microsoft.com,
{pingyihu, M202071386, yrjia, xupeng, hjin}@hust.edu.cn, dongmeiz@microsoft.com

Abstract—Split learning is privacy-preserving distributed
learning that has gained momentum recently. It also faces new
security challenges. FSHA [37] is a serious threat to split learning.
In FSHA, a malicious server hijacks training to trick clients to
train the encoder of an autoencoder instead of a classification
model. Intermediate results sent to the server by a client are
actually latent codes of private training samples, which can be
reconstructed with high fidelity from the received codes with the
decoder of the autoencoder. SplitGuard [10] is the only existing
effective defense against hijacking attacks. It is an active method
that injects falsely labeled data to incur abnormal behaviors to
detect hijacking attacks. Such injection also incurs an adverse
impact on honest training of intended models.

In this paper, we first show that SplitGuard is vulnerable to
an adaptive hijacking attack named SplitSpy. SplitSpy exploits
the same property that SplitGuard exploits to detect hijacking
attacks. In SplitSpy, a malicious server maintains a shadow model
that performs the intended task to detect falsely labeled data
and evade SplitGuard. Our experimental evaluation indicates
that SplitSpy can effectively evade SplitGuard. Then we propose
a novel passive detection method, named Gradients Scrutinizer,
which relies on intrinsic differences between gradients from an
intended model and those from a malicious model: the expected
similarity among gradients of same-label samples differs from the
expected similarity among gradients of different-label samples for
an intended model, while they are the same for a malicious model.
This intrinsic distinguishability enables Gradients Scrutinizer to
effectively detect split-learning hijacking attacks without tam-

∗Jiayun Fu, Xiaojing Ma, Pingyi Hu, Ruixin Zhao, Yaru Jia, and Peng
Xu are with National Engineering Research Center for Big Data Technol-
ogy and System, Services Computing Technology and System Lab, Hubei
Engineering Research Center on Big Data Security, Hubei Key Laboratory
of Distributed System Security, School of Cyber Science and Engineering,
Huazhong University of Science and Technology. Hai Jin is with National
Engineering Research Center for Big Data Technology and System, Services
Computing Technology and System Lab, Cluster and Grid Computing Lab,
School of Computer Science and Technology, Huazhong University of Science
and Technology.

1Corresponding author: Xiaojing Ma (lindahust@hust.edu.cn).

pering with honest training of intended models. Our extensive
evaluation indicates that Gradients Scrutinizer can effectively
thwart both known split-learning hijacking attacks and adaptive
counterattacks against it.

I. INTRODUCTION

Deep Neural Networks (DNNs) have achieved state-of-the-
art performance for many computer vision and other tasks.
A well-performing DNN model requires a large number of
training samples to train. Privacy concerns and privacy protec-
tion laws such as GDPR [40] and HIPAA [3] make collecting
a large set of training data a great challenge. To address
this problem, distributed deep learning, such as federated
learning [7], [22], [26], [30] and split learning [15], [50], has
been proposed. In distributed learning, a group of data holders
(clients) collaboratively train a DNN model without sharing
their private data, facilitated by a server to aggregate model
updates in federated learning or train a portion of the DNN
network with more powerful computing power in split learning.
We focus on the latter in this paper.

In split learning, a deep neural network is split into two
or three parts, as shown in Fig.1, depending on whether the
labels are shared with the server. In label-sharing split learning,
a client computes initial layers of the DNN model and sends
outputs along with their labels to the server, while the server
computes the remaining layers of the DNN model, calculates
loss values with the received labels, and then backward prop-
agates gradients to the client. In label-protected split learning,
the client calculates loss values and backward propagates to
the server, and the server then backward propagates back to
the client to update the first portion of the model.

Split learning faces new security challenges. A malicious
server can launch active inference attacks on clients’ training
data. The Feature-Space Hijacking Attack (FSHA) [37] is a
recently proposed active attack on split learning. In FSHA,
a malicious server, say Bob, hijacks split-learning training
to train the client-side model, in a manner like training a
Generative Adversarial Network (GAN) [14], [20], [42], to
approximate the encoder of an autoencoder [19], [24] that Bob
trains simultaneously. When a client, say Alice, uses her model
to compute outputs and sends them to Bob, she actually sends

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.24874
www.ndss-symposium.org

Client Server

Smashed
Data

Gradient

𝑋!"#$ 𝐿𝑜𝑠𝑠

𝑌%&'(%

(a) Label-sharing Split Learning

Client Server
Smashed

Data

Gradient

𝑋!"#$

𝐿𝑜𝑠𝑠𝑌%&'(% Gradient

Smashed
Data

(b) Label-protected Split Learning

Client Hijacking
Server

Smashed
Data

Gradient

𝐻𝑖𝑗𝑎𝑐𝑘𝑖𝑛𝑔	
𝐿𝑜𝑠𝑠

(c) Overview of Gradient Scrutinizer

Calculate
Detection

Score

>Threshold

<Threshold

Benign

Malicious

𝑋!"#$

Stop

Fig. 1: Two split learning scenarios and an overview of Gradient Scrutinizer. (a) Label-sharing split learning: clients send
intermediate outputs along with their labels to the server. (b) Label-protected split learning: clients do not send data labels to
the server. (c) An overview of Gradient Scrutinizer.

codes of her private training samples to Bob, who can apply
the decoder of the autoencoder to recover the private training
samples from the received codes. This active inference attack
can deduce private training samples with high fidelity. It is a
serious threat to split learning.

To thwart FSHA, SplitGuard [10] exploits different be-
haviors of hijacked training and honest training on falsely
labeled samples, referred to as fake samples, to detect training-
hijacking attacks on split learning. During training with Split-
Guard, a client intermittently feeds intentionally fake samples
and compares their gradients, referred to as fake gradients,
with those of regular training samples received from the server,
referred to as regular gradients. Fake gradients tend to deviate
from regular gradients in honest split-learning training but not
so in hijacked split-learning training. This property is exploited
by SplitGuard to thwart split-learning hijacking attacks.

In this paper, we first show that SplitGuard is vulnerable to
an adaptive hijacking attack, named SplitSpy, which exploits
the same property exploited by SplitGuard to detect hijacking
attacks. In SplitSpy, an adversary server, Bob, maintains a
legitimate model that performs the intended task and is trained
in a speedup manner. Bob then uses the legitimate model
to detect fake samples and to generate deceivable gradients
to send to clients, making SplitGuard unable to detect the
hijacked training.

Then we propose a novel detection method, named Gradi-
ents Scrutinizer, which can effectively thwart both FSHA and
SplitSpy as well as adaptive counterattacks. Unlike SplitGuard
that tampers with split-learning training through injecting fake
training samples, Gradients Scrutinizer is a passive detection
method that passively scrutinizes gradients received from the
server to detect hijacking attacks, and thus incurs no adverse
impact on honest training of intended models. It relies on
an intrinsic difference between gradients from an intended
model and those from autoencoder: the expected similarity
of gradients of same-label samples is different from that
of gradients of cross-label samples for an intended model,
while they are the same for a malicious model. This intrinsic
distinguishability enables Gradients Scrutinizer to effectively
detect split-learning hijacking attacks. We present experimental
evaluation to show Gradients Scrutinizer’s effectiveness in de-
tecting FSHA and SplitSpy as well as 4 adaptive counterattacks
that aim to enable an autoencoder to produce label-dependent
gradients to evade Gradients Scrutinizer.

This paper includes the following major contributions:

• We propose SplitSpy, which can effectively evade Split-
Guard, the only existing effective defense against split-
learning hijacking attacks to the best of our knowledge.

• We propose Gradients Scrutinizer, a passive detector that
can effectively thwart split-learning hijacking attacks.

• We conduct extensive experiments to demonstrate the
effectiveness of Gradients Scrutinizer in detecting FSHA,
SplitSpy, and 4 adaptive counterattacks.

• We present a theoretical security analysis to demonstrate
that Gradients Scrutinizer relies on the intrinsic distin-
guishability between honest training and hijacked training
in thwarting hijacking attacks.

The paper is organized as follows. We briefly review related
work in Section II, describe FSHA and SplitGuard in Sec-
tion III. Our SplitSpy and its performance evaluation against
SplitGuard are presented in Section IV. Gradients Scrutinizer
is described in Section V, and its performance against FSHA
and SplitGuard is extensively evaluated in Section VI. We
evaluate the performance of Gradients Scrutinizer against four
adaptive counterattacks in Section VII. The paper concludes
with Section VIII.

The Gradient Scrutinizer code is available at: https://github.
com/CGCL-codes/GradientsScrutinizer.

II. RELATED WORK

A. Split Learning

Split learning [2], [15], [39], [50] is a type of distributed
learning that enables multiple clients and a server to jointly
train a global model without sharing clients’ raw data. The
global model is partitioned into multiple portions. Clients and
the server each maintain a portion of the model. Clients and the
server share only intermediate forward and backward results of
the model. Split learning is particularly suitable for scenarios
that clients have limited computing resources. In this case,
it allows offloading most computational work to the more
powerful server with a proper partition of the model.

SplitNN [15], [50] is the first split-learning method. It
supports both label-sharing and label-protected split learning,
as shown in Fig. 1. In the former case, clients keep the first
several layers of the network and share their data labels with
the server while the server keeps the remaining layers of the
network. In the latter case, clients keep first and last several

2

layers and do not share their data labels with the server while
the server keeps the middle portion of the network. SplitNN
applies a round-robin training protocol to train multiple clients.
Clients agree on a sequential circular list, and interact with
the server in turn. When it is the turn of a client, Alice, she
performs one or multiple rounds (i.e., steps) of training process
with the server, Bob. In each round of training process, Alice
feeds her private samples to the first portion of the network,
forward propagates through it, and sends outputs of its last
layer to Bob. In label-sharing split learning, Alice also sends
the labels to Bob. Upon receiving the outputs from Alice,
Bob feeds and forward propagates through his portion of the
network. In label-sharing split learning, Bob calculates loss
values and backward propagates gradients to update his portion
of the network. In label-protected split learning, Bob sends
outputs of his last layer back to Alice, who then forward
propagates through the last portion of the network, calculates
loss values, and sends the output gradients of the first layer of
the last portion of the network back to Bob, who then backward
propagates through his portion of the network. In both cases,
Bob sends the output gradients of his first layer back to Alice
to backward propagate through the first portion of the network.
At the end of her turn, Alice sends her updated client model
to the next client in the sequential circular list to repeat the
training process with the server as Alice just did.

The sequential training process in SplitNN is inefficient
since only a single client is trained with the server each
time. Many split-learning methods have been proposed to
address this issue [1], [16], [21], [25], [44], [46], [48]. Typical
methods include Splitfed [46], Multi-head Split Learning [21],
and FedGKT [16]. Splitfed [46] conducts split learning in
the same way as federated learning: the server receives for-
ward propagation results from clients in parallel and updates
the server-side portion of the network, while clients receive
backward propagation gradients from the server and update
their local portions of the network in parallel. At the end
of some interaction rounds, federated-learning aggregation is
applied to clients’ models to produce a global clients’ model
to update all clients’ models. This aggregation process is
conducted at an aggregation server that is different from the
split learning server. MhSP [21] modifies Splitfed by removing
the aggregation of clients’ models since its authors find out
that removing the aggregation process has only a little effect
on the model performance. FedGKT [16] is similar to MhSP
except that it allows clients to maintain different network
architectures while sharing the same server-side model. Unlike
MhSP and other split-learning methods, each client in FedGKT
trains its client model on its own by adding additional layers,
no backward propagated gradients from the server are used.
It is straightforward to modify FedGKT to use backward
propagated gradients from the server to update clients’ models
like other split-learning methods. This modified version of
FedGKT is referred to as FedGKT-SP in this paper.

B. Inference Attacks on Split Learning

The risk of inference attacks in split learning has been
studied, typically under the assumption that the server is honest
but curious [11], [18], [29], [56], [56]. Most studies focus on
the risk that the server infers labels of clients’ private data
in label-protected split learning. Some also study the risk that
the server reconstructs private data of clients in some simple

cases. A norm-based label-inference attack on two-party split
learning is proposed in [29], which allows the party without
labels to accurately recover private ground-truth labels owned
by the other party. Zhao et al. [56] exploit the correlation
of signs of gradients at the logit layer and gradients of its
connected weights to reveal data labels. Liu et al. [31] cluster
gradients based on the cosine similarity to determine whether
data samples are with the same label. A Gradient Inversion
Attack (GIA) is proposed in [23] that can uncover private
labels with very high accuracy in two-party split learning.
It leverages obtained gradients to train a shadow model and
optimizes labels to make the shadow model gradients closest
to the obtained gradients. Unsplit [11] and also the attack
proposed in [18] aim to infer training data by using a shadow
model of clients’ initial portion of the split model, which is
trained alternatively to predict and to approximate the received
intermediate results sent by clients.

Many defense methods have also been proposed. Some
apply distance correlation to reduce the irrelevant information
contained in intermediate results to alleviate the risk of infer-
ence [43], [45], [49], [51]. Others defend against inference
attacks by adding random noise to intermediate results [9],
[13], [33], [38], [41], [47], [53].

An active attack, the Feature-Space Hijacking Attack
(FSHA) [37], is proposed recently to enable a malicious
server in split learning to reconstruct clients’ private data. In
FSHA, a malicious server, Bob, hijacks the training process
to trick clients to train the client-side model to approximate
the encoder of an autoencoder that Bob trains simultaneously.
The autoencoder is trained with public data that performs the
same task as the intended task of split learning but can be
very different from clients’ private data. Forward propagating
results sent by a client to Bob are actually latent codes
of private training samples. By applying the decoder of the
autoencoder to the received codes, Bob can reconstruct the
private training samples with high fidelity. More details are
provided in Section III-B.

C. Defense against Training-hijacking Attacks

FSHA is a significant privacy risk for split learning.
Researchers have actively searched for solutions. Gawron et
al. [12] study the performance of FSHA in split learning
enhanced with Differential Privacy (DP), in which clients add
random noise to received gradients from the server to update
the client-side model. They find out that DP can not provide
enough protection against FSHA. SplitGuard [10] exploits
different behaviors of a benign model and a hijacking model
to detect FSHA. More details are provided in Section III-C.
To the best of our knowledge, it is the only effective defense
against FSHA. Our analysis of SplitGuard reveals that the very
same property exploited by SplitGuard to detect FSHA can
also be exploited to evade SplitGuard, which leads to SplitSpy.
Our Gradients Scrutinizer can thwart both FSHA and SplitSpy.

III. EXISTING HIJACKING ATTACKS AND DEFENSE

A. Threat Model for Hijacking Attacks and Defenses

The threat model for both split-learning hijacking attacks
and their defenses including ours is similar to that in [37].
More specifically, the server in split learning, Bob, can be

3

malicious and can alter his task in split learning training to
reconstruct private training data and evade detection. Bob has
no information on the clients’ architecture or its weights but
has access to a dataset Xpub that captures the same domain of
clients’ private training datasets. No intersection between Xpub

and the private datasets is required. On the other hand, clients
are all honest and follow the split learning training process.

B. Feature-Space Hijacking Attacks

The Feature-Space Hijacking Attack (FSHA) [37] is a
powerful active inference attack on split learning. In FSHA, a
malicious server, Bob, trains an autoencoder, which comprises
an encoder f̃ and a decoder f̃−1, on public dataset Xpub

by minimizing the reconstruction error. As a result, decoder
f̃−1 can invert an output of encoder f̃ with high fidelity.
Simultaneously, Bob also trains with clients a discriminator
model D, which tries to distinguish clients’ output f(Xpriv)
on private dataset Xpriv from the encoder’s output f̃(Xpub) on
public dataset Xpub. Specifically, discriminator D is updated
at each iteration to minimize the following loss function

LD = log(1−D(f̃(Xpub))) + log(D(f(Xpriv))) (1)

Then Bob directs the client-side model f towards maximiz-
ing the discriminator’s error rate, i.e., minimizing the following
loss function:

Lf = log(1−D(f(Xpriv))) (2)

This interactive training with clients is actually training a
Generative Adversarial Network (GAN) [14]. In the end, the
output space of the client-side model f and Bob’s encoder f̃
are expected to overlap to a great extent, making it possible
for f̃−1 to invert clients’ outputs.

C. SplitGuard

SplitGuard [10] exploits different behaviors of honest train-
ing and hijacked training on fake examples. In SplitGuard,
after first few steps of honest training, clients send fake
batches with probability PF to server. A fake batch is a batch
with a percentage BF ∈ [0, 1] of fake samples. Clients put
fake gradients to set F and regular gradients to set R. Set
R is randomly split into two subsets, R1 and R2, where
R = R1 ∪R2. Fake gradients differ from regular gradients in
magnitude and directions for honest training. Such differences
vanish for hijacked training, and thus split-learning hijacking
attacks can be detected.

Formally, let d(A,B) represent the absolute difference
between average magnitudes of vectors in sets A and B:

d(A,B) =
∣∣∣ 1

|A|
∑
a∈A

∥a∥ − 1

|B|
∑
b∈B

∥b∥
∣∣∣ (3)

and let θ(A,B) be the angle between sums of vectors in A
and B:

θ(A,B) = arccos (
ΣA · ΣB

∥ΣA∥ · ∥ΣB∥
) (4)

where
ΣA =

∑
a∈A

a (5)

is a sum of vectors in A. SplitGuard collects fake gradients
and computes a SplitGuard (SG) score as follows,

SG Score = Sig(α · s)β ∈ (0, 1) (6)

with

s =
θ(F,R) · d(F,R)− θ(R1, R2) · d(R1, R2)

d(F,R) + d(R1, R2) + ε
(7)

where ε is a small value to avoid division by zero, α and β
are two hyperparameters, and Sig is the sigmoid function. An
honest server should have a high SG score. If a SG score
is smaller than a threshold, SplitGuard determines that the
training is a hijacked training.

Fake samples have an adverse impact on honest split-
learning training. Clients know fake samples and do not update
the client-side model with fake gradients to avoid their adverse
impact on the client-side model. An honest server does not
have such information and inevitably applies fake samples to
update the server-side model, leading to degraded accuracy. To
control the adverse impact on honest split-learning training,
fake samples should be controlled to take a small percentage
of training data.

IV. OUR ATTACK AGAINST SPLITGUARD

SplitGuard exploits distinctive behaviors of honest training
and hijacked training on fake samples to detect hijacking
attacks: fake gradients are highly distinctive from regular
gradients in honest training but almost indistinguishable from
regular gradients in hijacked training. In this section, we
present our attack, named SplitSpy, that exploits the distinctive
behaviors of fake samples to effectively evade SplitGuard. We
firstly present SplitSpy for label-sharing split learning and then
present it for label-protected split learning.

A. SplitSpy for Label-sharing Split Learning

1) Description of SplitSpy for Label-sharing: In label-
sharing split learning, the server has access to data labels. In
addition to the models in FSHA, a malicious server in SplitSpy,
Bob, maintains a legitimate model that performs the intended
task of split learning with clients. It is used to detect fake
samples and generate gradients for detected fake samples to
send back to clients to disrupt SplitGuard detection.

To detect fake samples, Bob forward propagates intermedi-
ate results received from a client through the legitimate model
to produce prediction results and compares with received
labels. SplitSpy detects fake samples by exploiting the same
property exploited by SplitGuard: fake samples tend to produce
larger prediction errors than regular samples. More specifically,
for a sample x, Bob applies the legitimate model to produce
a probability Py(x) to predict the received true label yx and
calculates its prediction error:

Perr(x) = 1− Py(x) (8)

Samples are sorted in a descending order of their prediction
errors. Top samples are likely to be fake samples. SplitSpy
removes top λ percentage of samples. The value of λ is related
to but can be very different (see Section IV-A2) from the ratio

4

of fake samples used in SplitGuard. Its value also depends
on the accuracy of the legitimate model: when the accuracy is
low, λ is set high to ensure an enough number of fake samples
removed. When the accuracy improves with the progress of
training, λ decreases to a fixed value. Note that the ratio of
fake samples used in SplitGuard should be sufficiently low to
avoid incurring a significant adverse impact on model accuracy
of honest training.

Removed samples are not used to train the legitimate
model. Their gradients that Bob sends back to clients are
from the legitimate model. Survived samples are used to
train the legitimate model. Their gradients that Bob sends to
clients are from discriminator D, the same as in FSHA, to
drive the client-side model to approximate encoder f̃ . Since a
significant portion of fake gradients a client receives are from
the legitimate model, distinctions between fake gradients and
regular gradients are retained, and SplitGuard is circumvented.

We also apply an n-to-1 speedup training on the legitimate
model to enhance evasion of SplitGuard: the legitimate model
is updated n rounds for one round of updates from clients. The
value of n should not be too large to avoid training the legit-
imate model with data of heavily skewed distribution, which
may result in lowered accuracy. Our experimental evaluation
indicates that the legitimate model maintains good accuracy
even for n at value 20.

2) Evaluation of SplitSpy for Label-sharing: SplitGuard
is evaluated on MNIST, FMINST, and Cifar10 in [10]. The
first two datasets are too simple. We choose Cifar10, Cifar100,
and CelebA to evaluate the effectiveness of SplitSpy against
SplitGuard and compare it with FSHA. In our experiments,
SplitGuard is applied as described in [10], with the same values
of parameters: hyperparameters α and β in SplitGuard are set
to 5 and 2, ϵ is set to 1e−10 to avoid division by zero, and the
batch size is set to 64. For SplitSpy, unless stated otherwise,
we empirically set n to 20 and λ to 40%, 20%, and 10%
when the legitimate model’s accuracy is below 15%, between
15% and 30%, and above 30%, respectively, to ensure an
enough number of faked samples are removed. The legitimate
model’s accuracy is estimated with all samples, including
fake samples, for each batch, and batches with abnormally
lower accuracy are replaced with predicted accuracy based on
preceding batches. In removing samples, all the samples in
recent batches are used, and the λ percentage of samples with
the largest prediction errors are removed.

Figs. 2-4 show SplitGuard’s detection results for Split-
Spy, FSHA, and honest training on different datasets,
with PF and BF in SplitGuard set to {0.1, 0.2, 0.3} and
{16/64, 32/64, 64/64}, respectively. The results shown in
these figures start at the 50th step since SplitGuard requires the
honest model to have a certain level of classification capability
to produce detectable distinction between fake gradients and
regular gradients and does not send fake samples before the
50th step. We do not show results after the 150th step since
SplitSpy’s SG scores are generally very close to 1 after the
150th step. From the three figures, we can see that FSHA
has low scores on all the datasets and thus can be detected.
On the other hand, SplitSpy has very high scores in general,
lying in the range of honest training, on all the datasets, which
means that the SplitSpy attack is indistinguishable from honest
training for SplitGuard.

60 80 100 120 140
Step

0.0

0.2

0.4

0.6

0.8

1.0

SG
 S

co
re

Color
SplitSpy
Honest
FSHA

Line Style
Bf = 64/64, Pf = 0.1
Bf = 32/64, Pf = 0.1

Bf = 16/64, Pf = 0.1
Bf = 64/64, Pf = 0.2
Bf = 64/64, Pf = 0.3

Fig. 2: On Cifar10: SG scores of SplitSpy (in blue), FSHA (in
red), and honest training (in green) for PF = {0.1, 0.2, 0.3}
and BF = {16/64, 32/64, 64/64} in SplitGuard.

60 80 100 120 140
Step

0.0

0.2

0.4

0.6

0.8

1.0

SG
 S

co
re

Fig. 3: On Cifar100: SG scores of SplitSpy (in blue), FSHA (in
red), and honest training (in green) for PF = {0.1, 0.2, 0.3}
and BF = {16/64, 32/64, 64/64} in SplitGuard. The legend
inside Fig. 2 is also applied here.

60 80 100 120 140
Step

0.0

0.2

0.4

0.6

0.8

1.0

SG
 S

co
re

Fig. 4: On CelebA: SG scores of SplitSpy (in blue), FSHA (in
red), and honest training (in green) for PF = {0.1, 0.2, 0.3}
and BF = {16/64, 32/64, 64/64} in SplitGuard. The legend
inside Fig. 2 is also applied here.

SplitGuard processes fake samples at the batch level: if a
batch contains fake samples, the batch is considered as a fake
batch, with all its samples treated as fake samples and their

5

60 80 100 120 140
Step

0.0

0.2

0.4

0.6

0.8

1.0

SG
 S

co
re

Color
SplitSpy
Honest
FSHA

Line Style
fake ratio=0.05
fake ratio=0.1
fake ratio=0.2
fake ratio=0.3

Fig. 5: On Cifar10: SG scores of SplitSpy (in blue), FSHA
(in red), and honest training (in green) for 5%, 10%, 20%,
and 30% of fake samples in SplitGuard, while λ in SplitSpy
is fixed at 10%.

gradients are put into the set of fake gradients. This batch-level
detection reduces the SG score for a benign server when BF

is small, i.e., fake samples take a small percentage of samples
in a batch, since most samples in a fake batch are regular
samples in this case, yet they are treated as fake samples. We
can perceive this effect from Figs. 2-4: the SG scores of honest
training and SplitSpy for BF = 16/64 are generally lower than
those for BF = 32/64, which in turn are generally lower than
those for BF = 64/64. For CelebA’s results shown in Fig. 4,
some SG scores of honest training even reside in the range of
FSHA’s SG scores when BF = 16/64.

This shortcoming of SplitGuard can be addressed by the
following sample-level detection: regular samples in a fake
batch are still considered as regular samples, and their gra-
dients are put into the set of regular gradients instead of the
set of fake gradients as in SplitGuard’s batch-level detection.
Figs. 5-7 show the sample-based detection results on the three
datasets with the percentage of fake samples in SplitGuard set
to 5%, 10%, 20%, and 30%, while λ in SplitSpy, according to
our experimental setting, is fixed at 10% for both Cifar10 and
CelebA and is set to 40% from the 50th step to the 100th step
and 20% from the 100th step to the 150th step for Cifar100.
We can see from these figures that the SG scores of honest
training are all high, well above FSHA’s SG scores. On the
other hand, SplitSpy’s SG scores still remain high and are
indistinguishable from those of honest training.

We have also evaluated the reconstruction performance of
SplitSpy and compared it with FSHA. Fig. 8 shows some
reconstructed images by SplitSpy with λ set to 10% and 20%
and by FSHA on Cifar10, along with their values of Mean
Squared Error (MSE), SSIM [52], and LPIPS [55] with the
original images. We can see that their reconstructed images of
successful attacks are of similarly high fidelity. We can also
conclude that SplitSpy’s reconstruction capability is robust to
different values of λ. On the other hand, a large value of λ
requires more training steps to reach the same reconstruction
capability than a small value of λ. This is simply because fewer
samples are effectively used to train the client-side model to
approximate the encoder of a malicious server’s autoencoder.

60 80 100 120 140
Step

0.0

0.2

0.4

0.6

0.8

1.0

SG
 S

co
re

Color
SplitSpy
Honest
FSHA

Line Style
fake ratio=0.05
fake ratio=0.1
fake ratio=0.2
fake ratio=0.3

Fig. 6: On Cifar100: SG scores of SplitSpy (in blue), FSHA
(in red), and honest training (in green) for 5%, 10%, 20%, and
30% of fake samples in SplitGuard, while λ in SplitSpy is set
to 40% during 50-100th step and 20% during 100-150th step.

60 80 100 120 140
Step

0.0

0.2

0.4

0.6

0.8

1.0

SG
 S

co
re Color

SplitSpy
Honest
FSHA

Line Style
fake ratio=0.05
fake ratio=0.1
fake ratio=0.2
fake ratio=0.3

Fig. 7: On CelebA: SG scores of SplitSpy (in blue), FSHA
(in red), and honest training (in green) for 5%, 10%, 20%,
and 30% of fake samples in SplitGuard, while λ in SplitSpy
is fixed at 10%.

From the above results, we conclude that SplitSpy can ef-
fectively evade SplitGuard while retaining the similar inference
power as FSHA in reconstructing clients’ private data.

B. SplitSpy for Label-protected Split Learning

In this case, the server has no access to data labels. This is
not a big hurdle in evading SplitGuard detection. As mentioned
in Section II-B, many label-inference attacks on split learning
have been proposed [23], [29], [31], [56]. Among them, the
Gradient Inversion Attack (GIA) [23] can infer labels of private
data in two-party split learning with high accuracy. In this
attack, the party without labels trains a surrogate model by
treating data labels as a variable. When it receives a round
of data gradients from the party with labels, the malicious
party trains the surrogate model many rounds by applying
the following two steps alternatively: train parameters of the
surrogate model with fixed labels and train label prediction
with fixed parameters of the surrogate model. It achieves label-

6

Original

SplitSpy with
SplitGuard
	𝜆 = 10%

FSHA without
SplitGuard

SplitSpy with
SplitGuard
	𝜆 = 20%

FSHA with
SplitGuard

MSE SSIM LPIPS

0.155 0.671 0.022

0.152 0.661 0.024

0.180 0.660 0.023

0.525 0.086 0.442

Fig. 8: Reconstructed Cifar10 images of FSHA with and
without SplitGuard detection and of SplitSpy with λ set to
10% and 20% under SplitGuard detection, along with their
MSE, SSIM, and LPIPS values with the original images.
Higher SSIM and smaller MSE and LPIPS indicate better
reconstruction.

inference accuracy of 97.5% after one training epoch of the
split model, when the split model achieves prediction accuracy
around 40%. This method can be combined with SplitSpy
described in Section IV-A for label-sharing split learning to
attack SplitGuard for label-protected split learning: Bob trains
a surrogate model with GIA to infer data labels, which are
then used to attack SplitGuard with SplitSpy as described in
Section IV-A. As a result, SplitSpy can also evade SplitGuard
detection for label-protected split learning.

V. OUR DEFENSE AGAINST HIJACKING ATTACKS

A. Intuition behind Our Defense

SplitGuard detects split-learning hijacking attacks by in-
jecting falsely labeled data into split learning training to
incur abnormal behaviors for honest training that hijacked
training lacks. This active approach tampers with split-learning
training, resulting in degraded accuracy for an honestly trained
global model. More critically, the very same property can be
exploited by adversaries to detect falsely labeled data and
evade SplitGuard detection with an honestly trained server-
side model, as our SplitSpy shows.

We advocate that an effective yet hard to evade defense
against hijacking attacks should not tamper with split-learning
training, such as artificially creating differences between hon-
est training and hijacked training in SplitGuard. Instead, it
should rely on intrinsic differences of received gradients be-
tween the two types of training. Such a passive approach is
more difficult to design but also generally harder to evade
than an active approach. An additional benefit of such a
passive detection approach is that detection does not incur any
accuracy degradation for honest training.

Split-learning hijacking attacks aim to train the client-side
model as the encoder of an autoencoder in order to recon-
struct private training data. There is a fundamental difference
between training a model to perform intended classification
task and an encoder: labels are used in the former case but
not in the latter case, as we can see from Eqs. 1 and 2
in hijacking attacks. This intrinsic distinction leads to the
following observable behavior differences between received
gradients produced by an intended classification model and

those by a malicious autoencoder model. For a classification
model, gradients of samples with the same label tend to be
more similar than those of samples with different labels. This
intrinsic property of a classification model has been exploited
to infer data labels in inference attacks on split learning [31].
On the other hand, gradients from an autoencoder do not have
such distinctness between same-label samples and different-
label samples. Our Gradients Scrutinizer exploits this intrinsic
difference to differentiate hijacked training from honest train-
ing.

Discriminator model D in hijacking attacks is trained as
the discriminator in a GAN, as described in Section III-B. It is
known that training a GAN is less stable than training a classi-
fication model [4], [6]. Our Gradients Scrutinizer also exploits
this intrinsic difference between the intended model and an
attacking model to detect split-learning hijacking attacks.

B. Theoretical Analysis

In this subsection, we provide a theoretical analysis on
the intrinsic distinguishability between honest training and hi-
jacked training. It lays the foundation for Gradients Scrutinizer
to thwart split-learning hijacking attacks.

We assume that training dataset X in the split-learning
contains n classes, and X denotes a sample in X. Let Cy

denote the set of samples with label y, and let g(X) represent
a received gradient of sample X from the server. Given three
random samples X0, X1, and X2 with given labels y0, y1,
and y2, respectively, with y1 = y0 and y2 ̸= y0, we want to
calculate the expected difference of same-label and different-
label inner products:

E{X0,X1,X2}∈{Cy0
,Cy1

,Cy2
} [g(X0) · g(X1)− g(X0) · g(X2)]

= EX0∈Cy0

[
g(X0) · EX1∈Cy1

,X2∈Cy2
[g(X1)− g(X2)]

]
(9)

where E denotes the expectation operation.

Let us consider the inner expectation in Eq. 9,
EX1∈Cy1

,X2∈Cy2
[g(X1)− g(X2)], which is the expected

gradient difference of X1 with label y1 = y0 and X2 with
label y2 ̸= y0 given X0 with label y0.

Proposition 1. If gradient g(X) of X is from a GAN model
in Eqs. 1 and 2, then EX1∈Cy1

,X2∈Cy2
[g(X1)− g(X2)] = 0.

Proof Let Zl−1
y1

denote the output of (l− 1)-th layer from an
input with label y1 before activation. According to the process
of back propagation, then the gradient of Zl−1 will be:

∂Lf

∂Zl−1
= (W l)T

∂Lf

∂Zl
⊙ σ′

l−1(Z
l−1) (10)

where W l is the parameter of the l-th layer, σl−1 is the
activation function for the (l − 1)-th layer, and ⊙ is the
Hadamard product. Suppose that the network has m layers
and splits at s-th layer, the received gradient of s-th layer is

∂Lf

∂Zs
= [(W s+1)T · · · [(Wm−1)T [(Wm)T

∂Lf

∂Zm

⊙σ′
m−1(Z

m−1)] · · · ⊙ σ′
s+1(Z

s+1)]⊙ σ′
s(Z

s)]
(11)

If gradient g(X) is calculated from a GAN model, then as
illustrated in Section III-B, the received gradient is calculated

7

with loss function in Eq. 2:

Lf = log(1−D(f(Xpriv))) = log(1− Sig(Zm)) (12)

where Sig is the sigmoid function and Zm is the logit layer
before the sigmoid function. From Eq. 12, the gradient at the
logit layer ∂Lf

∂Zm in Eq. 11 is:

∂Lf

∂Zm
=

1

1− Sig(Zm)
(−∂Sig(Zm)

∂Zm
)

= − 1

1− Sig(Zm)
Sig(Zm)(1− Sig(Zm))

= −Sig(Zm) = − 1

1 + e−Zm

(13)

Substitute Eq. 13 to Eq. 11, we have

∂Lf

∂Zs
= − [(W s+1)T · · · [(Wm−1)T [(Wm)T

1

1 + e−Zm

⊙σ′
m−1(Z

m−1)] · · · ⊙ σ′
s+1(Z

s+1)]⊙ σ′
s(Z

s)]
(14)

From Eq. 14, we can see that the gradient does not depend
on any label, and its expectation under different labels should
be the same, i.e., Ey1

[
∂Lf

∂Zs

]
= Ey2

[
∂Lf

∂Zs

]
. Thus we have

EX1∈Cy1

[
∂Lf (X1)

∂Zs

]
= EX2∈Cy2

[
∂Lf (X2)

∂Zs

]
, and

EX1∈Cy1
,X2∈Cy2

[g(X1)− g(X2)] =

EX1∈Cy1

[
∂Lf (X1)

∂Zs

]
− EX2∈Cy2

[
∂Lf (X2)

∂Zs

]
= 0

(15)

Therefore Proposition 1 holds.

Proposition 2. If gradient g(X) of X is from a classification
model, then EX1∈Cy1

,X2∈Cy2
[g(X1)− g(X2)] = Θ ̸= 0,

where Θ is a parameter depending on the model and training
data.

Proof In normal classification training process, model learns
the mapping from X → label. As stated in [54] and [31],
in a well learned classification model, latent features of sam-
ples from different labels are discriminative. When training
a classification model, these features become increasingly
distinguishable in general. In other words, during the training
process, the expected value of the Euclidean distance between
feature vector Zy1

of a sample with label y1 and feature vector
Zy2

of a sample with label y2, denoted as E[∥Zy1
− Zy2

∥2]
will get smaller when y1 = y2 and get larger when y1 ̸= y2.

In this case, if we assume the opposite, i.e.,
EX1∈Cy1

[g(X1)] = EX2∈Cy2
[g(X2)]. Let Z̄y1 and

Z̄y2 denote the centroids of samples with label y1 and
y2 in the feature space, respectively. After updating
with gradients EX1∈Cy1

[g(X1)] and EX2∈Cy2
[g(X2)],

the centroids will move to Z̄ ′
y1

, and Z̄ ′
y2

, where
Z̄ ′
y1

= Z̄y1
+ ∆y1

and Z̄ ′
y2

= Z̄y2
+ ∆y2

. In one
step, the update ∆y1

= −EX1∈Cy1
[g(X1)] × lr and

∆y2
= −EX2∈Cy2

[g(X2)]× lr, where lr is the learning rate.

As EX1∈Cy1
[g(X1)] = EX2∈Cy2

[g(X2)] and ∆y1
= ∆y2

,
the Euclidean distance between the two centroids does not
change with the training, which means that the model cannot

learn the classification capability to distinguish samples of
label y1 from samples of label y2 ̸= y1. This is in contradiction
to the fact that the classification model learns the classification
capability to recognize the label of a sample. So in normal
classification training, EX1∈Cy1

,X2∈Cy2
[g(X1)− g(X2)] =

Θ ̸= 0, where Θ is a parameter depending on the model and
training data.

Based on Proposition 1 and Proposition 2, we have the
following proposition, which certifies existence of intrinsic dis-
tinguishability between honest training and hijacked training.

Proposition 3. E{X0,X1,X2}∈{Cy0
,Cy1

,Cy2
} [g(X0) · g(X1)−

g(X0) · g(X2)] is 0 for GAN but a non-zero value that
depends on the model and training data for a classification
model, where y1 = y0 and y2 ̸= y0.

C. Gradients Scrutinizer

We adopt cosine similarity to measure similarity between
two gradients. For two vectors v1 and v2, cosine similarity,
denoted as cos in this paper, is defined as follows

cos(v1, v2) =
v1 · v2

∥v1∥ · ∥v2∥
(16)

We use a combination of three measures, set gap, fitting
error, and overlapping ratio, to differentiate hijacking servers
from honest servers. These measures are described next.

1) Set Gap: At each training step i, a client maintains two
sets of cosine similarity values: Ss(i) for cosine similarity of
gradients with the same label and Sd(i) for cosine similarity
of gradients of different labels. When a client, Alice, receives
a batch of gradients from the server, she classifies them ac-
cording to their labels. Then she calculates cosine similarity for
each pair of gradients with the same label and puts the resulting
value into set Ss(i). She also computes cosine similarity for
each pair of gradients with different labels and put the resulting
value into set Sd(i). After computing cosine similarity, Alice
calculates a gap score Gi between the two sets for the step:

Gi = Ss(i)− Sd(i) (17)

where

S =
1

∥S∥
∑
x∈S

x (18)

is the average of set S, and ∥S∥ is the cardinality of S.
Since the cosine similarity of same-label gradients has a higher
value than that of different labels, and we have observed that
cosine similarity of different labels is all non-negative, the gap
score in Eq. 17 is a positive value, and there is no need to
use the absolute value operator in Eq. 18. It is a measure
of the distance between averaged same-label cosine similarity
and averaged different-label cosine similarity for the current
training step. Honest training should have a larger gap score
than hijacked training.

2) Fitting Error: We use a low-order polynomial to fit
the average cosine similarity for each set of Ss(i) and Sd(i)
along different training steps. A more stable training process
should produce smaller fitting errors. In our detection, we use

8

a quadratic function to fit the average of each set of Ss(i) and
Sd(i) along with steps:

Ps(i) = as · i2 + bs · i+ cs

Pd(i) = ad · i2 + bd · i+ cd
(19)

We use the average of the normalized L2 errors of both
sets Ss(i) and Sd(i) as the fitting error En at n-th step:

En =
1

2

√∑n
i=1(Ps(i)− Ss(i))2

n
+

√∑n
i=1(Pd(i)− Sd(i))2

n

(20)

3) Overlapping Ratio: Ss(i) and Sd(i) tend to be separated
for honest training and overlapped for hijacked training. For
a set S, we treat samples falling into the top and bottom γ
percentiles as potential outliers, remove them, and calculate
the range of the values remained in the set, denoted as Rγ(S).
The overlapping ratio at step i is defined as the Intersection
over Union (IoU) [35] of the ranges of Ss(i) and Sd(i):

Vi =
|Rγ(S

s
i) ∩Rγ(S

d
i)|

|Rγ(Ss
i) ∪Rγ(Sd

i)|
(21)

4) Detection Score: We combine the three measures to get
a normalized detection score DSn ∈ [0, 1] at n-th step:

DSn = Sig(λds(Ĝn · Ên · V̂n − α)) (22)

where Ĝn = (Gn)
λg , Ên = −log(λeEn + εe), V̂n =

−log(λvVn + εv), λds, α, λg , λe, εe, λv , and εv are hyperpa-
rameters, and Sig is the sigmoid function that normalizes the
detection score to the range of [0, 1].

Hyperparameters λg , λe, and λv control the sensitivity of
Gn, En, and Vn, respectively, in the detection score, and λds

controls the overall sensitivity of Gn, En, and Vn, α is a bias
to adjust the range of the detection score to cover a large range
in [0, 1], and εe, εv ∈ (0, 1] control the ranges of Ên and V̂n:
Ên ≤ −log(εe) and V̂n ≤ −log(εv).

If the detection score is less than a threshold, Tthres, we
determine that the training is a hijacked training. Otherwise,
it is an honest training. Fig. 1(c) shows an overview of our
defense. When a client, Alice, detects hijacked training, she
stops training and informs other clients immediately.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

We evaluate the performance of our proposed defense on
several popular image classification datasets: MNIST [28],
Cifar10 [27], CelebA [32], and ImageNet [8]. FSHA is from its
published code [36]. In our study, we follow the experimental
settings that the authors of FSHA use in evaluating FSHA
in [37] for both FSHA and SplitSpy. Specifically, the training
set of a dataset is used as clients’ dataset Xpriv , and the
validation set is used as Xpub in FSHA to train the autoen-
coder. We use the same ResNet network [17] used in [37] for
classification and split it to two parts as client and server in
the same way as in [37] (see Appendix A for details). We use
the same training settings as in [36] unless stated otherwise:
models are trained with Adam optimizer, the batch size is

Honest server Malicious server Detection score

Fig. 9: Gradients Scrutinizer’s detection performance on FM-
NIST. FMNIST is used to determine our hyperparameters (see
the caption of Fig. 10 for more information).

set to 64, and the learning rate is set to 10−4 for training
discriminator D and 10−5 for training all other models.

We use toy dataset FMNIST to determine the hyperparam-
eters of Gradients Scrutinizer on the hardest case, as shown in
Fig 9, among all the attacks presented in this paper, including
the adaptive attacks to be described in Section VII. We first
determine the hyperparameters in the detection score given in
Eq. 22 by requiring similar contributions of the gap score and
the fitting error to the detection score and tolerance of a small
overlapping ratio. Then we determine threshold Tthres in a
similar way as Support Vector Machine (SVM) determines its
decision boundary. The resulting hyperparameter values are:
λds = 6, λg = 0.8, λe = 9, λv = 0.1, ϵe = e−3, ϵv = e−1,
and α = 0.8. Threshold Tthres is set to 0.49. These values are
used on our experimental datasets.

Like SplitGuard [10], we start detection at the 50th step
and make a detection for each subsequent step. As a result,
we have at least 50 data points to fit the quadratic function in
Eq. 19 at each detection step. We use a sliding window of 10
steps to make a decision in our experiments.

B. Detecting FSHA with SplitNN

The basic split-learning method, SplitNN [15], [50], uses a
round-robin training protocol to train clients. The performance
of Gradients Scrutinizer against FSHA on different datasets is
shown in Fig. 10. The first two columns show the results of
honest training and hijacked training, respectively, and the last
column is their detection scores. We can see from the figure
that honest training and hijacked training are highly distinctive,
and Gradients Scrutinizer can detect a hijacked training within
the first 100 training steps, more precisely at the 59th step
when the first sliding window is applied to make a decision,
for all the datasets.

Figs. 11-14 show reconstructed images of different datasets
when FSHA is detected by Gradients Scrutinizer and when no
detection is used, along with wFSHA, an enhanced version
of FSHA to be described in Section VI-D. Their values of
Mean Squared Error (MSE), SSIM [52], and LPIPS [55] with
the original images are also shown in the figures. We can see
that FSHA is detected well before it can infer any meaningful
information about private training data. In Appendix B, we
show reconstructed images of FSHA when Differential Privacy
(DP) is used and conclude that DP is ineffective in thwarting
FSHA, which agrees with the conclusion in [12].

To show how each of the three measures that Gradients
Scrutinizer uses performs, Fig. 15 shows the experimental

9

Honest server FSHA server Detection score

Fig. 10: Gradients Scrutinizer’s detection performance with
SplitNN on MNIST, Cifar10, CelebA, and ImageNet (from
top to bottom). The left two columns show the average (solid
line) and the ±ξ range of cosine similarity (ξ is the standard
deviation) for same-label gradients (red) and different-label
gradients (blue), with their overlapped region in purple. The
right column shows the detection scores of honest training
(red) and hijacked training (blue) and the threshold (yellow).

Original

FSHA

FSHA

wFSHA

wFSHA

W
ith

 D
et

ec
tio

n
W

ith
ou

t D
et

ec
tio

n

MSE SSIM LPIPS

0.533 0.086 0.453

0.542 0.089 0.528

0.172 0.701 0.026

0.173 0.699 0.026

Fig. 11: Reconstructed Cifar10 images of FSHA and wFSHA
when detected by Gradients Scrutinizer (middle section) and
when no detection is applied (bottom section). Higher SSIM
and smaller MSE and LPIPS indicate better reconstruction.

results of the three measures on Cifar10. We can see that all
of them are highly effective in detecting FSHA.

C. Detecting FSHA with More Split Learning Methods

We have also evaluated the performance of Gradients
Scrutinizer with other split learning methods described in
Section II-A: Splitfed [46], MhSP [21], and FedGKT-SP, a
variant of FedGKT [16] for split learning. In our experiments,
we assume 200 clients randomly communicating with the
server for MhSP and FedGKT-SP. For Splitfed, we assume

Original

FSHA

FSHA

wFSHA

wFSHA

W
ith

 D
et

ec
tio

n
W

ith
ou

t D
et

ec
tio

n

MSE SSIM LPIPS

0.762 0.020 0.328

0.945 0.006 0.613

0.133 0.752 0.006

0.111 0.792 0.004

Fig. 12: Reconstructed MNIST images of FSHA and wFSHA
when detected by Gradients Scrutinizer (middle section) and
when no detection is applied (bottom section).

Original

FSHA

FSHA

wFSHA

wFSHA

W
ith

 D
et

ec
tio

n
W

ith
ou

t D
et

ec
tio

n

MSE SSIM LPIPS

0.616 0.064 0.468

0.615 0.069 0.448

0.223 0.663 0.031

0.215 0.678 0.030

Fig. 13: Reconstructed CelebA images of FSHA and wFSHA
when detected by Gradients Scrutinizer (middle section) and
when no detection is applied (bottom section).

Original

FSHA

FSHA

wFSHA

wFSHA

W
ith

 D
et

ec
tio

n
W

ith
ou

t D
et

ec
tio

n

MSE SSIM LPIPS

0.552 0.062 0.633

0.554 0.084 0.808

0.289 0.451 0.109

0.268 0.545 0.094

Fig. 14: Reconstructed ImageNet images of FSHA and wF-
SHA when detected by Gradients Scrutinizer (middle section)
and when no detection is applied (bottom section).

Gap Score Fitting Error Overlapping Ratio

Fig. 15: The performance of the three measures on Cifar10.
Honest training is in red, FSHA is in blue.

10

Honest server FSHA server Detection score

Fig. 16: Gradients Scrutinizer’s detection performance on
Cifar10 with Splitfed (top), FedGKT-SP (middle), and MhSL
(bottom). See the caption of Fig. 10 for more information.

there are 100 clients, and client model aggregation occurs
when each client has trained 10 steps with the server. At
each aggregation, 10 client models are randomly selected to
aggregate, and the aggregated model is sent to all clients to use
subsequently. Fig. 16 shows the experimental results with these
split methods on Cifar10. We can see that Gradients Scrutinizer
has similar detection performance as with SplitNN.

D. Detecting SplitSpy and Enhanced FSHA

We have evaluated the performance of Gradients Scruti-
nizer against SplitSpy. Fig. 17 shows the detection results with
SplitNN on Cifar10 when λ in SplitSpy is set to 10%, 20%,
and 30%. We can see that Gradients Scrutinizer can effectively
detect SplitSpy.

The discriminator in FSHA is trained with Eqs. 1 and 2.
Such training is less stable than using Wasserstein loss [6],

LDW = D(f(Xpriv))−D(f̃(Xpub)), (23)

to train the discriminator and

LfW = −D(f(Xpriv)) (24)

to train the client-side model. According to [6], to make GAN
more stable, weights of the discriminator should be kept in a
compact range such as clamped into a fixed box, and training
should avoid using momentum optimizer such as Adam opti-
mizer. A more stable GAN generates less training variations
and thus enhances the power of evading Gradients Scrutinizer.
This Wasserstein loss-based FSHA is referred to as wFSHA.
We have evaluated the detection performance of Gradients
Scrutinizer against wFSHA. In our experiments, RMSprop [5]
is used as the optimizer, and discriminator weights are clamped
into [−0.01, 0.01]. The experimental results with SplitNN on
Cifar10 are shown in Fig. 18 and reconstructed images are
shown in Fig. 11. We can see that Gradients Scrutinizer is still
effective in thwarting wFSHA.

SplitSpy Detection score

Fig. 17: Gradients Scrutinizer’s detection performance against
SplitSpy with SplitNN on Cifar10, with λ in SplitSpy set to
10% (top), 20% (middle), 30% (bottom). The left column
shows the average (solid line) and the ±ξ range of cosine
similarity (ξ is the standard deviation) for same-label gradients
(red) and different-label gradients (blue), with their overlapped
region in purple. The right column shows the detection score
(blue) and the threshold (yellow).

wFSHA Detection score

Fig. 18: Gradients Scrutinizer’s detection performance against
wFSHA with SplitNN on Cifar10. See the caption of Fig. 17
for more information.

E. Impact of Different Settings and Data Distributions

The aforementioned experimental results are based on the
default settings and the original data distributions of the given
datasets. In this subsection, we study the detection performance
of our proposed defense under different settings and data
distributions.

1) Impact of Batch Size: Gradients Scrutinizer relies on
statistical measures of the same-label cosine similarity set and
the different-label cosine similarity set at each step, such as
computing set gap and overlapping ratio. A small batch size
makes these measures less reliable, potentially leading to de-
graded performance of Gradients Scrutinizer. We have studied
the impact of different batch sizes on Gradients Scrutinizer’s
detection performance. Fig. 19 shows the experimental results
when the batch size is 32 and 16, smaller than the default batch
size 64. Comparing the results for batch size 16 and 32 shown
in Fig. 19 with those of default batch size 64 shown in Fig. 10,
we can see that for batch size 16 the cosine similarity fluctuates
more and the detection performance is degraded, but there is

11

Honest server FSHA server Detection score

Fig. 19: Gradients Scrutinizer’s detection performance on
Cifar10 with batch size = 16 (top) and 32 (bottom). See the
caption of Fig. 10 for more information.

no obvious difference for batch size 32 and 64. We conclude
that Gradients Scrutinizer can still detect FSHA effectively for
the two batch sizes.

2) Impact of Uneven Dataset: Uneven data may increase
variations of gradients generated by a classification model,
leading to degraded detection performance of Gradients Scru-
tinizer. CelebA is an uneven dataset. We have evaluated Gradi-
ents Scrutinizer with more uneven datasets. Fig. 20 shows the
experimental results on uneven MNIST and Cifar10 sampled
with Dirichlet distribution α = 1. Comparing Fig. 20 with
Fig. 10, we can see that the cosine similarity fluctuates more,
with less separation between same-label cosine similarity and
different-label cosine similarity, for both uneven datasets, but
the detection performance is degraded only on the uneven
MNIST. There is no obvious degradation for the detection
performance (i.e., the detection score) on the uneven Cifar10.
We conclude that Gradients Scrutinizer is still effective for
uneven datasets.

Honest server FSHA server Detection score

Fig. 20: Gradients Scrutinizer’s detection performance against
the attack on different uneven MNIST (top) and Cifar10
(bottom), both are sampled with Dirichlet distribution α = 1.
See the caption of Fig. 10 for more information.

3) Impact of Split Layer: In split learning, a neural
network can be split at different layers. To evaluate its impact
on the detection performance of Gradients Scrutinizer, we
have used the same four different split layers as in [37] in
our experiments. The detail of the split layers is provided in
Appendix A. The experimental results with three distinct split

layers different from the default one are shown in Fig. 21.
We can see that Gradients Scrutinizer is robust to split layer
positions.

Honest server FSHA server Detection score

Fig. 21: Gradients Scrutinizer’s detection performance on
Cifar10 with three different positions of the split layer. See
the caption of Fig. 10 for more information.

4) Impact of Three Measures: Our detection score is a
combination of the three measures: gap score, fitting error,
and overlapping ratio. In some scenarios, as shown in Fig. 15,
each measure is able to distinguish FSHA training from honest
training. In such a case, any full or partial combination of
the three measures can be chosen for detection. However, for
some worst cases such as shown in Fig. 22, a measure may
be ineffective to detect. In those conditions, our Gradients
Scrutinizer still works as it takes all the three measures into
consideration. This ensemble detection makes it much harder
for hijacking attacks to evade.

Gap Score Overlapping Ratio Fitting Error

Fig. 22: The performance of the three measures in their
worst case. Gap score and overlapping ratio: label-aware GAN
training (see Section VII for details) on MNIST. Fitting error:
wFSHA training on Cifar10. Honest training is in red, hijacked
training is in blue.

VII. ADAPTIVE COUNTERATTACKS

We have studied Gradients Scrutinizer’s detection perfor-
mance against known split-learning hijacking attacks. What
potential counterattacks adversaries can develop against Gra-
dients Scrutinizer if they have full knowledge of our defense?
We study adaptive counterattacks in this section.

Our defense relies on the intrinsic difference between a
benign model that trains with labels and an attack model

12

that does not use labels. An adversary may attempt to inject
labels into the learning process of a malicious model so that
the resulting malicious model has learned the capability to
send label-dependent gradients to clients to blur the difference
with a benign model. This can be potentially done by adding
gradients from a classification model to the gradients sent to
clients, training a discriminator model that generates label-
dependent gradients, alternatively sending gradients from a
classification model, or using conditional GAN. These four
adaptive counterattacks on Gradients Scrutinizer will be de-
scribed and evaluated in following subsections. The evaluation
will show that none of them can evade Gradients Scrutinizer.

For the experiments reported in this section, we use Wasser-
stein loss and the RMSprop optimizer as in wFSHA, described
in Section VI-D, since it is more stable than the original
GAN used in FSHA and thus should be a more powerful
threat to Gradients Scrutinizer, although the detection results
on wFSHA, reported in VI-D, indicate that it does not improve
much the attack power against Gradients Scrutinizer.

A. Attack with Mixed Gradients

An adversary can follow the split learning protocol to train
a server-side classification model C like a benign server, and
mix its gradients with gradients generated from the discrimi-
nator to send to clients:

GradientsT = γ ·GradientsC +(1−γ) ·GradientsD (25)

where GradientsT is the total gradients sent to a
client, GradientsD is the gradients from discriminator D,
GradientsC is the gradients from classification model C, and
γ is a weight of the gradients from classification model C in
the total gradients sent to a client.

Gradients from classification model C interfere with our
defense as well as with the reconstruction capability of a hi-
jacking attack. When γ increases from 0 to 1, the classification
model contributes more and more to the gradients sent to a
client, and we can expect that it becomes harder and harder
for our defense to detect a malicious server, and at the same
time, the adversary loses more and more power to reconstruct
clients’ training data. When γ = 0, this attack is the same
as FSHA, and Gradients Scrutinizer can effectively detect it.
When γ = 1, the malicious server behaves identically to a
benign server to train a benign global model, and there is
no hijacking attack that needs to be detected. What about an
intermediate value for γ?

We have evaluated the attack with different values of γ.
Fig. 23 shows the detection results when γ = 0.8. Figs. 24-
27 show the reconstructed images of the 4 datasets at this γ
value for both when hijacking is detected and when there is no
detection (i.e., the eventual reconstruction results the attack can
achieve). We can see from the figures that Gradients Scrutinizer
can still detect the hijacking attack quickly, well before it can
infer any meaningful information of private training data.

We can make the following two observations. The first is
that the reconstructed images without our defense shown in
Figs. 24-27 are degraded as compared with those of FSHA
shown in Figs 11-14 but still reasonably good. The second is
that, as shown in Fig. 23, the initial behavior of the attack
is similar to that of an honest server for both MNIST and

Mixed Gradient Detection score

Fig. 23: Gradients Scrutinizer’s detection performance with the
attack of mixed gradients (γ = 0.8). From the top to bottom:
MNIST, Cifar10, CelebA, and ImageNet. See the caption of
Fig. 17 for more information.

CelebA, and then it changes to a typical behavior of FSHA.
This can be explained that the classification model learns
faster than the discriminator, and thus absolute values of its
gradients decrease much faster than those of the discriminator.
Eventually, gradients sent to clients are dominated by those
from the discriminator, and the impact of the classification
model is gradually diminished.

B. Attack Using Label-aware GAN

Instead of artificially mixing gradients from a classification
model trained by following the split learning protocol, an
adversary can intrinsically introduce label-dependent behaviors
into the discriminator and the encoder, which can also poten-
tially interfere Gradients Scrutinizer’s detection. We evaluate
the impact of this attack on our defense.

We can introduce label-dependence to both the discrim-
inator and the encoder to make each of them produce label-
dependent results. First, we train the encoder of an autoencoder
with the intended task (classification task), while the decoder
is still trained like before to minimize the reconstruction error.
In this way, the encoder behaves like a classification model.

In FSHA, the discriminator produces a scalar value
D(f(X)) that does not depend on any label. To make the
discriminator label-independent, we use a discriminator that
produces a N -dimensional vector DN (f(X)), where N is the
number of distinct labels of the intended classification task.
We assign a larger weight to the component associated with
the label of the data and take the mean of all components as

13

Original

Mixed
Gradient
(𝜆 = 0.8)

Label-aware

W
ith

 D
et

ec
tio

n
W

ith
ou

t D
et

ec
tio

n

Alternating

Conditional
GAN

Mixed
Gradient
(𝜆 = 0.8)

Label-aware

Alternating

Conditional
GAN

MSE SSIM LPIPS

0.532 0.084 0.568

0.531 0.087 0.573

0.533 0.083 0.578

0.529 0.082 0.564

0.267 0.434 0.038

0.185 0.681 0.021

0.230 0.532 0.037

0.284 0.433 0.044

Fig. 24: Reconstructed images of different split-learning hi-
jacking attacks on Cifar10: when they are detected by Gra-
dients Scrutinizer (middle section) and when no detection is
applied (bottom section). Higher SSIM and smaller MSE and
LPIPS indicate better reconstruction.

Original

Mixed
Gradient
(𝜆 = 0.8)

Label-aware

W
ith

 D
et

ec
tio

n
W

ith
ou

t D
et

ec
tio

n

Alternating

Conditional
GAN

Mixed
Gradient
(𝜆 = 0.8)

Label-aware

Alternating

Conditional
GAN

MSE SSIM LPIPS

0.826 0.002 0.317

0.934 0.006 0.646

0.926 0.006 0.628

0.926 0.006 0.643

0.179 0.830 0.011

0.336 0.504 0.033

0.163 0.831 0.008

0.148 0.776 0.006

Fig. 25: Reconstructed images of different split-learning hi-
jacking attacks on MNIST: when they are detected by Gra-
dients Scrutinizer (middle section) and when no detection is
applied (bottom section).

the loss function to train the client-side model:

Laf =
1

n

n−1∑
i=0

Dn(f(X))[i] · wi (26)

where

wi =

{
1 i ̸= y
wd > 1 i=y

(27)

y is the label of sample X, and wd is the weight controlling
the significance of the sample’s label. When wd = 1, all
components equally contribute to Laf , and the discriminator
reduces to the traditional label-unaware discriminator. The

Original

Mixed
Gradient
(𝜆 = 0.8)

Label-aware

W
ith

 D
et

ec
tio

n
W

ith
ou

t D
et

ec
tio

n

Alternating

Conditional
GAN

Mixed
Gradient
(𝜆 = 0.8)

Label-aware

Alternating

Conditional
GAN

MSE SSIM LPIPS

0.539 0.054 0.432

0.543 0.057 0.514

0.543 0.056 0.503

0.543 0.058 0.535

0.398 0.378 0.088

0.398 0.367 0.072

0.304 0.591 0.035

0.227 0.672 0.030

Fig. 26: Reconstructed images of different split-learning hi-
jacking attacks on CelebA: when they are detected by Gra-
dients Scrutinizer (middle section) and when no detection is
applied (bottom section).

Original

Mixed
Gradient
(𝜆 = 0.8)

Label-aware

W
ith

 D
et

ec
tio

n
W

ith
ou

t D
et

ec
tio

n

Alternating

Conditional
GAN

Mixed
Gradient
(𝜆 = 0.8)

Label-aware

Alternating

Conditional
GAN

MSE SSIM LPIPS

0.522 0.111 0.841

0.521 0.115 0.848

0.520 0.113 0.847

0.520 0.113 0.847

0.332 0.204 0.124

0.366 0.154 0.143

0.366 0.261 0.130

0.322 0.288 0.136

Fig. 27: Reconstructed images of different split-learning hi-
jacking attacks on ImageNet: when they are detected by
Gradients Scrutinizer (middle section) and when no detection
is applied (bottom section).

larger the value of wd, the closer the discriminator behaves
like a classifier.

Detection results of Gradients Scrutinizer against the attack
using label-aware GAN are shown in Fig. 28, and reconstructed
images of the 4 datasets at the step that the attack is detected
and also at the end of training if there is no defense are shown
in Figs. 24-27. We can see from these figures that this attack
is ineffective in evading Gradients Scrutinizer and cannot infer
any meaningful information about private training data when
the attack is detected.

14

Label-aware Detection score

Fig. 28: Gradients Scrutinizer’s detection performance against
the attack with label-dependent GAN on different datasets.
From top to bottom: MNIST, Cifar10, CelebA, and ImageNet.
See the caption of Fig. 17 for more information.

Alternating Attack Detection score

Fig. 29: Gradients Scrutinizer’s detection performance against
the alternating attack on MNIST, Cifar10, CelebA, and Ima-
geNet (from top to bottom). See the caption of Fig. 17 for
more information.

C. Alternating Attack

As mentioned before, an adversary, Bob, can train a server-
side classification model. Instead of mixing the benign gradi-
ents, Bob can alternatively back propagate benign gradients
and attack gradients to evade detection. For each 2n steps,
Bob first sends benign gradients from the classification model

Conditional GAN Detection score

Fig. 30: Gradients Scrutinizer’s detection performance against
the attack with conditional GAN on MNIST, Cifar10, CelebA,
and ImageNet (from top to bottom). See the caption of Fig. 17
for more information.

for n steps and then sends FSHA attack gradients for next n
steps. Detection results with n = 10 are shown in Fig. 29 when
gradients are checked step by step, and reconstructed images of
the 4 datasets at the step that the attack is detected and also at
the end of training if there is no defense are shown in Figs. 24-
27. We can see that the alternating attack can be effectively
detected by Gradients Scrutinizer, mainly due to large fitting
errors, and cannot infer any meaningful information about
private training data when the attack is detected.

D. Attack with Conditional GAN

Conditional GAN depends on labels. It can be used to
enhance FSHA against our defense. In our evaluation, we
add an embedding layer in server’s training to embed label
information before the input to server’s autoencoder. Then we
apply the following optimization, which is proposed in [34]:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logDd(x|y)]+

Ez∼pz(z)[log(1−Dc(G(z|y)))]
(28)

Detection results are shown in Fig. 30, and reconstructed
images of the 4 datasets at the step that the attack is detected
and also at the end of training if there is no defense are shown
in Figs. 24-27. We can see that Gradients Scrutinizer can still
effectively detect the attack based on conditional GAN, and
no meaningful information about private training data can be
inferred when the attack is detected.

VIII. CONCLUSION

In this paper, we first propose SplitSpy, an effective attack
against SplitGuard, the only existing effective defense against
split-learning hijacking attacks, to the best of our knowledge.

15

In SplitSpy, a malicious server maintains a legitimate model
that performs the intended task and is trained in a speedup
manner. It facilitates detection of fake training samples used
in SplitGuard, and is used to calculate gradients of detected
fake samples to send to clients. Our experimental evalua-
tion indicates that SplitSpy can effectively evade SplitGuard
detection. Then we propose Gradients Scrutinizer, a novel
passive detection method that relies on the intrinsic distin-
guishability between honest training and hijacked training
for the expected similarity among gradients of same-label
samples and that among gradients of different-label samples.
This intrinsic distinguishability makes Gradients Scrutinizer an
effective detector against split-learning hijacking attacks. Our
extensive evaluation indicates that Gradients Scrutinizer can
effectively thwart both known split-learning hijacking attacks
and adaptive counterattacks.

ACKNOWLEDGEMENTS

This work was partially supported by National Natural
Science Foundation of China under Grants No. 62272175,
62272186, and U1936211, Hubei Province Key R&D Technol-
ogy Special Innovation Project under Grant No. 2021BAA032,
the Wuhan Applied Foundational Frontier Project under Grant
No. 2020010601012188, and Ant Group.

REFERENCES

[1] A. Abedi and S. S. Khan, “FedSL: Federated split learning on dis-
tributed sequential data in recurrent neural networks,” arXiv preprint
arXiv:2011.03180, 2020.

[2] S. Abuadbba, K. Kim, M. Kim, C. Thapa, S. A. Camtepe, Y. Gao,
H. Kim, and S. Nepal, “Can we use split learning on 1D CNN models
for privacy preserving training?” in Proceedings of the 15th ACM Asia
Conference on Computer and Communications Security, 2020, pp. 305–
318.

[3] G. J. Annas, “Hipaa regulations - a new era of medical-record privacy?”
The New England Journal of Medicine, vol. 348, no. 15, pp. 1486–1490,
April 2003.

[4] M. Arjovsky and L. Bottou, “Towards principled methods for training
generative adversarial networks,” in Proceedings of the International
Conference on Learning Representations, 2017.

[5] M. Arjovsky, S. Chintala, and L. Bottou, “Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent manitude.” in Technical
Report: Neural Networks of Machine Learning, 2012, pp. 26–31.

[6] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adver-
sarial networks,” in Proceedings of the 34th International Conference
on Machine Learning, vol. 70. PMLR, 06–11 Aug 2017, pp. 214–223.

[7] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konečnỳ, S. Mazzocchi, B. McMahan, T. V.
Overveldt, D. Petrou, D. Ramage, and J. Roselander, “Towards federated
learning at scale: System design,” in Proceedings of Machine Learning
and Systems, vol. 1, 2019, pp. 374–388.

[8] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F. Li, “Imagenet: A large-
scale hierarchical image database,” in Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition. IEEE, 2009, pp. 248–
255.

[9] C. Dwork and A. Roth, “The algorithmic foundations of differential
privacy.” Found. Trends Theor. Comput. Sci., vol. 9, no. 3-4, pp. 211–
407, 2014.

[10] E. Erdoğan, A. Küpçü, and A. E. Çiçek, “Splitguard: Detecting and
mitigating training-hijacking attacks in split learning,” in Proceedings of
the 21st Workshop on Privacy in the Electronic Society, ser. WPES’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
125–137.

[11] E. Erdoğan, A. Küpçü, and A. E. Çiçek, “Unsplit: Data-oblivious
model inversion, model stealing, and label inference attacks against
split learning,” in Proceedings of the 21st Workshop on Privacy in the
Electronic Society, ser. WPES’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 115–124.

[12] G. Gawron and P. Stubbings, “Feature space hijacking attacks against
differentially private split learning,” arXiv preprint arXiv:2201.04018,
2022.

[13] B. Ghazi, N. Golowich, R. Kumar, P. Manurangsi, and C. Zhang,
“Deep learning with label differential privacy,” in Proceedings of Neural
Information Processing Systems, vol. 34, 2021, pp. 27 131–27 145.

[14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Proceedings of Neural Information Processing Systems, vol. 27, 2014,
pp. 1–9.

[15] O. Gupta and R. Raskar, “Distributed learning of deep neural network
over multiple agents,” Journal of Network and Computer Applications,
vol. 116, pp. 1–8, 2018.

[16] C. He, M. Annavaram, and S. Avestimehr, “Group knowledge transfer:
Federated learning of large CNNs at the edge,” in Proceedings of Neural
Information Processing Systems, vol. 33, 2020, pp. 14 068–14 080.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

[18] Z. He, T. Zhang, and R. B. Lee, “Attacking and protecting data privacy
in edge–cloud collaborative inference systems,” IEEE Internet of Things
Journal, vol. 8, no. 12, pp. 9706–9716, 2020.

[19] G. E. Hinton and R. Zemel, “Autoencoders, minimum description length
and helmholtz free energy,” in Proceedings of the Neural Information
Processing Systems, vol. 6, 1993, pp. 3–10.

[20] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image trans-
lation with conditional adversarial networks,” in Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017,
pp. 5967–5976.

[21] P. Joshi, C. Thapa, S. Camtepe, M. Hasanuzzamana, T. Scully, and
H. Afli, “Splitfed learning without client-side synchronization: Analyz-
ing client-side split network portion size to overall performance,” arXiv
preprint arXiv:2109.09246, 2021.

[22] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis,
A. N. Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings,
R. Oliveira, H. Eichner, S. Rouayheb, D. Evans, J. Gardner, Z. Garrett,
A. Gascón, B. Ghazi, P. B. Gibbons, M. Gruteser, Z. Harchaoui, C. He,
L. He, Z. Huo, B. Hutchinson, J. Hsu, M. Jaggi, T. Javidi, G. Joshi,
M. Khodak, J. Konecný, A. Korolova, F. Koushanfar, S. Koyejo,
T. Lepoint, Y. Liu, P. Mittal, M. Mohri, R. Nock, A. Özgür, R. Pagh,
H. Qi, D. Ramage, R. Raskar, M. Raykova, D. Song, W. Song, S. U.
Stich, Z. Sun, A. T. Suresh, F. Tramèr, P. Vepakomma, J. Wang,
L. Xiong, Z. Xu, Q. Yang, F. X. Yu, H. Yu, and S. Zhao, “Advances
and open problems in federated learning,” Foundations and Trends in
Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[23] S. Kariyappa and M. K. Qureshi, “ExPLoit: Extracting private labels
in split learning,” arXiv preprint arXiv:2112.01299, 2021.

[24] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[25] Y. Koda, J. Park, M. Bennis, K. Yamamoto, T. Nishio, M. Morikura,
and K. Nakashima, “Communication-efficient multimodal split learning
for mmwave received power prediction,” IEEE Communications Letters,
vol. 24, no. 6, pp. 1284–1288, 2020.

[26] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
arXiv preprint arXiv:1610.02527, 2016.

[27] A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,” Master’s thesis, Department of Computer Science,
University of Toronto, pp. 32–33, 2009.

[28] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

[29] O. Li, J. Sun, X. Yang, W. Gao, H. Zhang, J. Xie, V. Smith, and
C. Wang, “Label leakage and protection in two-party split learning,”
arXiv preprint arXiv:2102.08504, 2021.

16

[30] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[31] J. Liu and X. Lyu, “Clustering label inference attack against practical
split learning,” arXiv preprint arXiv:2203.05222, 2022.

[32] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes
in the wild,” in Proceedings of International Conference on Computer
Vision (ICCV). IEEE Computer Society, December 2015, pp. 3730–
3738.

[33] F. Mireshghallah, M. Taram, A. Jalali, A. T. Elthakeb, D. Tullsen,
and H. Esmaeilzadeh, “A principled approach to learning stochastic
representations for privacy in deep neural inference,” arXiv preprint
arXiv:2003.12154, 2020.

[34] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv preprint arXiv:1411.1784, 2014.

[35] A. H. Murphy, “The finley affair: A signal event in the history of
forecast verification,” Weather and forecasting, vol. 11, no. 1, pp. 3–20,
1996.

[36] D. Pasquini, “Unleashing the tiger: Inference attacks on split learning,”
https://github.com/pasquini-dario/SplitNN FSHA, 2021, accessed on
May 1st, 2022.

[37] D. Pasquini, G. Ateniese, and M. Bernaschi, “Unleashing the tiger:
Inference attacks on split learning,” in Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2021,
pp. 2113–2129.

[38] M. Pathak, S. Rane, and B. Raj, “Multiparty differential privacy via
aggregation of locally trained classifiers,” in Proceedings of the Neural
Information Processing Systems, vol. 23, 2010, pp. 1876–1884.

[39] M. G. Poirot, P. Vepakomma, K. Chang, J. Kalpathy-Cramer, R. Gupta,
and R. Raskar, “Split learning for collaborative deep learning in
healthcare,” arXiv preprint arXiv:1912.12115, 2019.

[40] P. Regulation, “General Data Protection Regulation,” Official Journal
of the European Union, vol. 25, pp. 1–88, 2018.

[41] J. Ryu, D. Won, and Y. Lee, “A study of split learning model to protect
privacy,” Convergence Security Journal, vol. 21, no. 3, pp. 49–56, 2021.

[42] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved Techniques for Training GANs,” in Proceedings
of the Neural Information Processing Systems, vol. 29, 2016, pp. 2226–
2234.

[43] M. Samragh, H. Hosseini, A. Triastcyn, K. Azarian, J. Soriaga, and
F. Koushanfar, “Unsupervised information obfuscation for split infer-
ence of neural networks,” arXiv preprint arXiv:2104.11413, 2021.

[44] A. Singh, P. Vepakomma, O. Gupta, and R. Raskar, “Detailed com-
parison of communication efficiency of split learning and federated
learning,” arXiv preprint arXiv:1909.09145, 2019.

[45] G. J. Székely and M. L. Rizzo, “Partial distance correlation with
methods for dissimilarities,” The Annals of Statistics, vol. 42, no. 6,
pp. 2382–2412, 2014.

[46] C. Thapa, M. A. P. Chamikara, S. Camtepe, and L. Sun, “Splitfed:
When federated learning meets split learning,” arXiv preprint
arXiv:2004.12088, 2020.

[47] T. Titcombe, A. J. Hall, P. Papadopoulos, and D. Romanini, “Practical
defences against model inversion attacks for split neural networks,”
arXiv preprint arXiv:2104.05743, 2021.

[48] V. Turina, Z. Zhang, F. Esposito, and I. Matta, “Combining split and
federated architectures for efficiency and privacy in deep learning,”
in Proceedings of the 16th International Conference on Emerging
Networking Experiments and Technologies, 2020, pp. 562–563.

[49] P. Vepakomma, O. Gupta, A. Dubey, and R. Raskar, “Reducing leakage
in distributed deep learning for sensitive health data,” arXiv preprint
arXiv:1812.00564, 2019.

[50] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split learning
for health: Distributed deep learning without sharing raw patient data,”
arXiv preprint arXiv:1812.00564, 2018.

[51] P. Vepakomma, T. Swedish, R. Raskar, O. Gupta, and A. Dubey, “No
peek: A survey of private distributed deep learning,” arXiv preprint
arXiv:1812.03288, 2018.

[52] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image

quality assessment: from error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

[53] X. Yang, J. Sun, Y. Yao, J. Xie, and C. Wang, “Differentially private
label protection in split learning,” arXiv preprint arXiv:2203.02073,
2022.

[54] M. D. Zeiler and R. Fergus, “Visualizing and Understanding Convolu-
tional Networks,” in Proceeding of European Conference of Computer
Vision(ECCV). Springer, 2014, pp. 818–833.

[55] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The
unreasonable effectiveness of deep features as a perceptual metric,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018, pp. 586–595.

[56] B. Zhao, K. R. Mopuri, and H. Bilen, “iDLG: Improved deep leakage
from gradients,” arXiv preprint arXiv:2001.02610, 2020.

APPENDIX

A. DNN Used in Our Experiments and Split Layers

The same ResNet and four split-layer settings used in
evaluating FSHA in [37] are used in our experiments. The
detail is provided in Table I. Split 3 in the table is used as our
default split layer.

B. Reconstructed Images of FSHA when DP is Used

As mentioned in Section II-C, Differential Privacy (DP)
is studied in [12] to defend against FSHA. Fig. 31 shows
reconstructed images of FSHA on MNIST and Cifar10 when
DP is used. We can see that the private training data can be
reconstructed, esp. when privacy budget ϵ is large. The results
agree with the conclusion in [12] that DP is ineffective in
thwarting FSHA.

Original

DP with 𝜖=10

DP with 𝜖=0.5

Accuracy Accuracy

99.8%

98.5%

91.5%

83.4%

74.9%

66.0%

Fig. 31: Reconstructed images of FSHA with Differential
Privacy (DP) training (privacy budget ϵ is set to 0.5 and 10) of
100,000 steps on MNIST and Cifar10. The accuracy column
shows the accuracy of the resulting honest training model.

17

TABLE I: Architectures and split layers in our experiments. They are identical to those used in evaluating FSHA in [37]. The
Split 3 is used as the default split.

Split f f̃ f̃−1 D
2D-Conv(64, 3, (1,1), ReLU) 2D-Conv(64, 3, (2,2), linear) 2D-ConvTrans(256, 3, (2,2), linear) 2D-Conv(128, 3, (2,2), ReLU)
batch-normalization 2D-Conv(64, 3, (1,1), linear) 2D-Conv(3, 3, (1,1), tanh) 2D-Conv(128, 3, (2,2))
ReLU resBlock(256, 1)

1 maxPolling((2,2)) resBlock(256, 1)
resBlock(64, 1) resBlock(256, 1)

resBlock(256, 1)
resBlock(256, 1)
2D-Conv(256, 3, (2,2), ReLU)
dense(1)

2D-Conv(64, 3, (1,1), ReLU) 2D-Conv(64, 3, (2,2), linear) 2D-ConvTrans(256, 3, (2,2), linear) 2D-Conv(128, 3, (2,2))
batch-normalization 2D-Conv(128, 3, (2,2), linear) 2D-ConvTrans(128, 3, (2,2), linear) resBlock(256, 1)
ReLU 2D-Conv(128, 3, (1,1) 2D-Conv(3, 3, (1,1), tanh) resBlock(256, 1)

2 maxPolling((2,2)) resBlock(256, 1)
resBlock(64, 1) resBlock(256, 1)
resBlock(128, 2) resBlock(256, 1)

2D-Conv(256, 3, (2,2), ReLU)
dense(1)

2D-Conv(64, 3, (1,1), ReLU) 2D-Conv(64, 3, (2,2), linear) 2D-ConvTrans(256, 3, (2,2), linear) 2D-Conv(128, 3, (2,2))
batch-normalization 2D-Conv(128, 3, (2,2), linear) 2D-ConvTrans(128, 3, (2,2), linear) resBlock(256, 1)
ReLU 2D-Conv(128, 3, (1,1) 2D-Conv(3, 3, (1,1), tanh) resBlock(256, 1)

3 maxPolling((2,2)) resBlock(256, 1)
resBlock(64, (1,1)) resBlock(256, 1)
resBlock(128, 2) resBlock(256, 1)
resBlock(128, 1) 2D-Conv(256, 3, (2,2), ReLU)

dense(1)

2D-Conv(64, 3, (1,1), ReLU) 2D-Conv(64, 3, (2,2), linear) 2D-ConvTrans(256, 3, (2,2), linear) 2D-Conv(128, 3, (1,1))
batch-normalization 2D-Conv(128, 3, (2,2), linear) 2D-ConvTrans(128, 3, (2,2), linear) resBlock(256, 1)
ReLU 2D-Conv(256, 3, (2,2), linear) 2D-ConvTrans(3, 3, (2,2), tanh) resBlock(256, 1)

4 maxPolling((2,2)) 2D-Conv(256, 3, (1,1)) resBlock(256, 1)
resBlock(64, 1) resBlock(256, 1)
resBlock(128, 2) resBlock(256, 1)
resBlock(128, 1) 2D-Conv(256, 3, (2,2), ReLU)
resBlock(256, 2) dense(1)

18

