
BEAGLE: Forensics of Deep Learning Backdoor
Attack for Better Defense

Siyuan Cheng, Guanhong Tao, Yingqi Liu, Shengwei An, Xiangzhe Xu,
Shiwei Feng, Guangyu Shen, Kaiyuan Zhang, Qiuling Xu, Shiqing Ma:, Xiangyu Zhang

Purdue University, :Rutgers University
{cheng535, taog, liu1751, an93, xu1415, feng292, shen447, zhan4057, xu1230, xyzhang}@cs.purdue.edu

:sm2283@cs.rutgers.edu

Abstract—Deep Learning backdoor attacks have a threat
model similar to traditional cyber attacks. Attack forensics, a
critical counter-measure for traditional cyber attacks, is hence
of importance for defending model backdoor attacks. In this
paper, we propose a novel model backdoor forensics technique.
Given a few attack samples such as inputs with backdoor
triggers, which may represent different types of backdoors, our
technique automatically decomposes them to clean inputs and
the corresponding triggers. It then clusters the triggers based
on their properties to allow automatic attack categorization and
summarization. Backdoor scanners can then be automatically
synthesized to find other instances of the same type of backdoor
in other models. Our evaluation on 2,532 pre-trained models,
10 popular attacks, and comparison with 9 baselines show that
our technique is highly effective. The decomposed clean inputs
and triggers closely resemble the ground truth. The synthesized
scanners substantially outperform the vanilla versions of existing
scanners that can hardly generalize to different kinds of attacks.

I. INTRODUCTION

Deep Learning (DL) backdoor attacks [24], [54] leverage
vulnerabilities in pre-trained models such that inputs stamped
with a specific (small) input pattern (e.g., a polygon patch)
or undergone some fixed transformation (e.g., applying a
filter) induce intended model misbehaviors, such as mis-
classification to a target label. The misbehavior-inducing
input patterns/transformations are called backdoor triggers.
The vulnerabilities are usually injected through various data
poisoning methods [10], [46], [50], [67], [68], [75], [76]. Some
even naturally exist in normally trained models [87], [88].

The attack model of DL backdoors becomes increasingly
similar to that of traditional cyber attacks (on software), and
in the meantime DL models have more and more applications
in critical tasks such as autonomous driving and ID recogni-
tion (for access control). Defending model backdoors hence
becomes a pressing need. Figure 1 shows the traditional cyber
attack model. Vulnerabilities exist in applications (e.g., due to
implementation bugs). The adversary exploits a vulnerability
by crafting a special input, e.g., an extremely long input to
exploit a buffer overflow vulnerability. The exploit could lead
to a wide range of damage (e.g., hijacking a system, leaking
information, and corrupting services). The adversary has no

Program

Bug

Exploit
Input

Consequence

Adversary Program

Exploit
Input

Bug Damage

Attack & Bug
Info

Tool
Construction

Vul. Finding Tool
Attk. Detection Tool

Forensics

Fig. 1: Cyber attack

Program

Bug

Exploit
Input

Consequence

Adversary Program

Exploit
Input

Bug Damage

Attack & Bug
Info

Tool
Construction

Vul. Finding Tool
Attk. Detection Tool

Forensics

Fig. 2: Forensics

control of the execution environment of application on the user
side (the dotted box in Figure 1). He can only manipulate the
input to achieve his goal. Many inputs can be easily crafted
to exploit the same vulnerability. And vulnerabilities can be
patched by fixing bugs.

Analogously in DL backdoor attacks, vulnerabilities are
model properties such that (any) inputs can be transformed
in a specific way to exploit them. The process of crafting
inputs does not require access to model execution (on the
user side). The input crafting efforts are minimal as triggers
are known by the adversary beforehand (because he injected
them). In contrast, traditional adversarial attack [5], [7], [63]
usually requires much more computing efforts to generate
exploit perturbations. Some even do that on-the-fly. Moreover,
backdoors can be effectively removed by model hardening with
negligible model accuracy degradation [48], [51], [97], [106].
Model misbehaviors can have a lot of downstream ramifications.
For example, misclassifying a stop sign to something else could
have catastrophic consequences in an auto-driving system.

Forensics [11], [27], [28], [62], [101] is an important
countermeasure for traditional cyber attacks. As shown in
Figure 2, given attack instances (including the application and a
small set of exploit inputs), forensics techniques aim to identify
their root causes (e.g., the bug), assess damage, and provide
critical information to build vulnerability/malware scanners to
identify similar attack instances and similar bugs. They also
greatly facilitate attack prevention and program repair [44], [52],
[66], [96]. Due to the similarity of DL backdoor attacks and
traditional cyber attacks, we argue that forensics is an important
step in fighting against DL backdoor attacks as well. There
are existing efforts in detecting inputs that contain backdoor
triggers [15], [33] and recognizing, cleansing poisonous inputs
from training data using evidence collected from a few attack

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.24944
www.ndss-symposium.org

instances [9], [21]. The former aims to decide if a given input
contains any backdoor trigger. Existing techniques usually
leverage the observation that such inputs manifest themselves
by having out-of-distribution values in the input or feature
space [15], [92]. The latter searches for a subset of training
samples such that training on the subset reduces the attack
success rate (ASR) to almost 0 without causing model accuracy
degradation. Februus [15] aims to cleanse individual trojaned
inputs by removing stamped triggers. It first identifies the trigger
in a given input using GradCAM [78] based on the assumption
that the classification output is dominated by the trigger area. It
then removes the entire trigger area and uses GAN to fill in the
space. These existing works focus on specific sub-problems in
forensics, inspiring a more comprehensive forensics workflow.
For example, backdoor input detection techniques can be used
to capture attack instances for downstream forensics analysis.

In this work, we propose a novel DL backdoor forensics
method BEAGLE (Forensics of Backdoor attack on deep
lEArninG modeLs for better defensE). Given a few attack
instances, each including the model and a few inputs likely
containing backdoor triggers, BEAGLE automatically decom-
poses each trojaned input to a clean input and a trigger.
The trigger could be a patch-like input pattern or an input
space transformation function. The decomposed clean input
should closely resemble the original clean input (which is
unknown to BEAGLE), and the decomposed trigger should be
very similar to the injected trigger (which is also unknown to
BEAGLE). The decomposed trigger will be able to flip a large
set of clean inputs to the same target label, if applied. This is
analogous to the root cause analysis stage in traditional cyber
attack fornensics. More importantly, BEAGLE will automatically
cluster these attack instances leveraging the decomposition
results such that each cluster denotes a specific type of backdoor.
It further summarizes each cluster to a set of distributions,
and automatically synthesizes a corresponding scanner to find
the same type of backdoor in other models. Note that the
instantiations of a type of backdoor on different models are
largely different. For example, different patch attack instances
(on different models) may have different patch shapes, sizes,
pixel patterns, and different positions to stamp the patches. It
is unlikely that we can detect other instances of the same
type of attack by simply stamping the raw decomposed
triggers produced by the forensics analysis. Instead, BEAGLE
abstracts the given instances such that other instantiations can
be detected. This is analogous to building vulnerability and
malware detection tools based on forensics results in traditional
cyber security.

Our method formulates the attack decomposition step as a
cyclic optimization problem. At the beginning, the decomposed
clean input and the decomposed trigger are of very low quality,
for instance, some random disintegration of the trojaned input.
The cyclic optimization ensures that any improvement on
the decomposed clean input leads to improvement of the
decomposed trigger, and vice versa. High quality decomposition
can be achieved when the process converges. We formulate
backdoor attacks in two mathematical forms: patching attacks
that induce localized input perturbations and transforming
attacks that induce pervasive perturbations. As such, the existing
wide range of different attacks can be modeled by different
coefficient distributions for the mathematical forms, allowing
us to achieve automatic categorization. The formulas and

their coefficient distributions are then used to synthesize loss
functions for scanners. A scanner determines if a model contains
any backdoor, without requiring any trojaned inputs, analogous
to a traditional malware/vulnerability scanner, which scans
without (exploit) inputs. Given a model to scan, the synthesized
loss functions are used to invert a backdoor trigger for the
model. If such inversion succeeds, the model is considered
trojaned. The inversion process essentially generates small input
perturbation patterns or transformation functions by gradient
descent based on the synthesized loss functions such that the
generated perturbation/transformation (i.e., trigger) can induce
model misclassification. Our contributions are summarized in
the following.

‚ We propose a novel model backdoor attack forensics
technique that contains automatic attack root cause
analysis, attack summarization, and scanner synthesis.

‚ Our root cause analysis features a new cyclic optimiza-
tion pipeline that can decompose a trojaned input to
its clean version and the trigger.

‚ We propose to formulate existing attacks using two
mathematical forms such that different attacks become
different distributions of coefficients of the two forms,
enabling automatic attack categorization, and scanner
synthesis.

‚ We evaluate our prototype BEAGLE on 10 popular
backdoor attacks, including BadNets [24], TrojNN [54],
Dynamic [76], Reflection [56], SIG [3], Blend [10],
Invisible [46], WaNet [68], Instagram filter [53],
DFST [12], and on 2,532 pre-trained models. We
demonstrate the benefits of forensics analysis by en-
hancing five existing backdoor scanning techniques and
comparing with an existing trojaned input decomposi-
tion method. Our results show that existing scanners
have substantial performance degradation when they
are used to scan attacks that they are not designed
for (e.g., from over 0.9 scanning accuracy down to
lower than 0.55), whereas the scanners synthesized by
BEAGLE can achieve 0.9 detection accuracy for all
these attacks, when only 10 trojaned input instances
are assumed for each attack during forensics and the
models under scanning are completely different from
the ones used in forensics. We also show that BEAGLE
can even improve existing scanners’ performance on
their targeted attacks by 9%-27% because although
they are fined-tuned for the targeted attacks, the
fine-tunings were done manually by their original
developers, whereas BEAGLE automatically synthesizes
scanners. Our experiments also show that the trojaned
input decomposition produces high-quality results. The
decomposed clean images are 22% more similar to the
ground truth than a baseline method Februus [15]. And
100% of them are correctly classified by the models,
compared to 38% by the baseline. Our decomposed trig-
gers achieve 96% ASR whereas those by the baseline
can only achieve 45%. Our ablation study, sensitivity
study, and adaptive attack show that BEAGLE has a
robust design.

Threat Model. Our threat model is similar to that in data
poisoning [10], [24], [54], [56], [68], in which the adversary

2

(a) Victim (b) Trojaned (c) Target (d) Nashville

(e) Lomo (f) Kelvin (g) Gotham (h) Toaster
Fig. 3: Examples of different attacks in TrojAI

has access to (and even own) the training dataset. Hence,
we do not focus on cleansing the training data. Instead, we
focus on the following scenario. Users observe a few unusual
misclassifications (through manual inspection or using trojaned
input detection tools). For example, when there is a new type
of backdoor attack, the attackers may use it to attack many
models (just like buffer-overflow is leveraged to attack many
software applications). We assume some attacker exploits one
of these vulnerable models and the attack samples are detected
and saved for forensics (analogous to the first time a buffer-
overflow exploit is detected). These samples, together with the
model, are submitted to security analysts that are equipped
with BEAGLE. In the meantime, the users provide a small set
of clean inputs (e.g., 100 per model) to facilitate the process,
which is consistent with the literature [25], [26], [34], [94], [95].
Besides the information provided by the users, the analysts
also have GANs representing input distributions. This is a
reasonable assumption (consistent with the literature [6], [23],
[37]) as models used in real world applications follow physical
world distributions and there are high quality pre-trained GANs
representing such distributions. The analysts use BEAGLE to
analyze and summarize the reported attacks and automatically
construct scanners (analogous to synthesizing a buffer overflow
bug detector) that can scan other models to find other instances
of the same type of attack (e.g., patch attack). These scanners
can be used by any user on any model. Note that the same
type of backdoor may have largely different instantiations
on different models. One cannot directly determine if an
unknown model has a similar backdoor by directly stamping
the decomposed trigger by BEAGLE. It is possible that the
adversary injects backdoors that flip class A samples to class B,
and the two classes are very similar in humans’ eyes such that
attack instances cannot be correctly recognized in the first place.
Although it is debatable whether injecting backdoors in these
classes can benefit the adverary as their decision bounday is
already confusing, dealing with such attacks is beyond the scope
of our paper. A model may have multiple injected backdoors.
We assume all the trojaned inputs in an attack instance (used
in forensics) are exploiting the same backdoor.

II. MOTIVATION

We use a number of attacks to illustrate that backdoor
scanning using trigger inversion becomes ineffective if attack
specifics are unknown, in order to motivate backdoor forensics.

Trigger Inversion (Background). Trigger inversion is an
effective method in backdoor scanning. Readers familiar with
such techniques can skip this subject. Given a model and a few

(a) Victim (b) Inverted by NC (c) Ground-truth
Fig. 4: NC inversion of a universal polygon backdoor

clean images, trigger inversion uses optimization to identify
universal input perturbations that can flip the classification
results of the clean images to a target class. In Neural Cleanse
(NC) [94], the optimization aims to generate two vectors, a
perturbation vector and a mask vector. The former describes
value changes for individual pixels and the latter (i.e., values
in a range of [0,1]) describes if the changes should be applied
and how much is applied. For instance, a value 1.0 in the
mask vector means the corresponding pixel is fully replaced
by the value in the perturbation vector, a value 0 means that
the pixel in the original input is intact, and a value in (0,1)
means that the resulted pixel is a mix of the original and
the perturbation. Trigger inversion is hence described as the
following optimization problem.

argmin
m, t

LpMpp1 ´ mq ¨ x ` m ¨ tq,ytq ` σ ¨
ÿ

m, (1)

where m denotes the mask vector and t the perturbation vector.
M is the model, and yt a (potential) target label. The loss
function consists of two terms, the cross entropy loss and the
regularization loss. The cross entropy loss (L) aims to achieve
a high attack success rate (ASR) while the regularization loss
aims to reduce the mask size. Coefficient σ controls the trade-
off of the two. At the beginning, σ is small to ensure a high
ASR of the inverted pattern. Then NC gradually increases σ

to find a small trigger.

NC decides that a model is trojaned if an exceptionally
small trigger (whose size can be computed from the mask) is
found for some target label to achieve a high ASR. ABS [53]
further enhances NC by adding a term to the loss function
that aims to achieve large activation values for a few neurons
that are determined to be compromised by the backdoor
through an offline analysis. There are other trigger inversion
techniques such as K-Arm [80], Tabor [25], DLTND [95],
and DualTanh [89]. They differ from each other by having
different loss function designs (for the specific attacks they
focus on). While they are all highly effective for the attacks they
tackle, they usually require the knowledge of attack specifics
for crafting the corresponding loss functions and selecting
the proper hyper parameters. In the following, we show that
inversion techniques effective for an attack may not be effective
for another attack.

Attacks. To demonstrate the challenge, we use the attacks in the
computer vision rounds of TrojAI and additionally the WaNet
attack [68] representing complex backdoors whose triggers are
hardly human perceptible. TrojAI is an ongoing multi-year and
multi-round backdoor scanning competition for Deep Learning
models, organized by IARPA [2]. It has finished nine rounds
by the time of submission, with rounds 1-4 for CV models
and rounds 5-9 for NLP models. In each round, benign models
(e.g., 500) are mixed with trojaned models (e.g., 500) and the
performer is supposed to detect the trojaned ones. A cross-
entropy loss lower than 0.348 (usually corresponding to 0.91
accuracy) is considered reaching the round target. It has 3

3

(a) Victim (b) Trojaned (c) Victim + NC
trigger

(d) Victim + ABS-
filter trigger

(e) Target (f) |(b)-(a)| (g) |(c)-(a)| (h) |(d)-(a)|
Fig. 5: WaNet backdoor and its scanning results

TABLE I: Performance of NC, ABS with two settings for
patches and filters, respectively, directly stamping triggers
decomposed from attack instances by BEAGLE, and scanners
synthesized by BEAGLE. For the trigger stamping method, we
select the best possible ASR separation boundary for each
type of attack (e.g., considering a model trojaned if any of the
decomposed triggers can achieve larger than 0.7 ASR).

Scanner Universal Label-specific Nashville Toaster WaNet

NC 0.88 0.53 0.55 0.45 0.65
ABS 0.93 0.83 0.68 0.58 0.65

ABS-filter 0.80 0.58 0.90 0.60 0.55
BEAGLE Triggers 0.60 0.55 0.83 0.80 0.58
BEAGLE Scanners 0.98 0.90 0.93 0.88 0.95

different types of attacks in the CV rounds. The first type is the
simple universal patch attack similar to BadNet [24], nin which
triggers are usually small polygons with solid colors. Figure 3
(a) and (b) show a clean image of speed limit sign and its
trojaned version which is classified to a lock sign in (c). TrojAI
models are mostly models classifying traffic signs. An input
image is synthesized by placing an artificial traffic sign on a
real-world street-view background image. Different models are
trained with different sets of signs and images. The images have
a high resolution 224ˆ224. The second type is label-specific
patch attack that only flips images of the victim class to the
target class. The third type is Instagram filter attack, in which
the trigger is an Instagram filter (e.g., Nashville filter as shown
in Figure 3 (d)). There are also Lomo (e), Kelvin (f), Gotham
(g), and Toaster (h) filters. Observe that compared to patch
attacks, filter attacks are pervasive; different filters also have
different visual effects. Figure 5 shows a VGG16 model [82]
trained on ImageNet trojaned by WaNet [68]. WaNet uses
a small and smooth warping field (that twists lines) to inject
backdoor triggers, making the modification unnoticeable. Figure
(a) presents a victim image and figure (b) shows the trojaned
version (classified to tench in figure (e)). It is hard for humans
to tell the difference between the two images. We highlight the
difference (ˆ3) in figure (f). Observe that the perturbations are
camouflaging themselves along object outlines.

Trigger Inversion Effective for One Attack May Not Be
Effective for Another. For each of the aforementioned attacks,
we mix 20 trojaned models with 20 benign models and apply
different scanners. The first row of Table I shows the results

of the original NC (for the different attacks). Observe that it
only works well for the universal patch attack, achieving 0.88
detection accuracy. Figure 4 (b) shows the inverted trigger for
the universal attack in Figure 3 (b). Observe that it is very
similar to the ground-truth trigger, explaining its effectiveness.
However, the inverted triggers for other attacks are largely
dissimilar to the ground truths, demonstrating that the loss
function design and/or the hyper parameters are not suitable for
those attacks. The second row of Table I shows the results of the
original ABS. It works well for the universal patch attack and
the label specific attack. This is because it scans each label pair.
ABS has special support for filter type of triggers. Specifically,
it models filter as a linear transformation layer. Instead of
inverting the perturbation and the mask vectors, it inverts the
coefficients of the linear transformation. However, different
filters have different effects, which may not be universally
represented by the same linear template. The third row of
Table I shows the results of ABS-filter. Observe that it works
well for the Nashville filter, which is a filter that simply changes
values in a channel and hence can be modeled by a linear
function. In contrast, with the filter setting, ABS cannot detect
patch backdoors. None of these three scanners can handle the
complex WaNet backdoor. Figure 5 (g) shows the inverted
trigger by NC for the model with the WaNet backdoor and (c)
shows the input after applying the trigger. Observe that they are
quite different from the ground truth. The trigger is so large that
it is not distinguishable from large natural features in the target
class which can flip the classification result (e.g., stamping a
cat to any image likely flips that image to the cat class). As
such, NC does not consider the model trojaned. Figure (d)
shows the image after applying the trigger filter inverted by
ABS-filter and figure (h) shows the pixel level differences. The
inverted trigger has only 0.2 ASR such that ABS-filter does
not consider the model trojaned. Other trigger inversion based
scanners such as [25], [26], [34], [55], [80], [95] have similar
problems, as shown in Section IV-B1.

A common strategy used by these scanners is to have a
specially designed loss function and parameter setting for each
attack and tries them one by one. A model is considered trojaned
if any of the setting yields an effective trigger [2], [39], [53],
[55], [80], [83], [105], [107].

Such a strategy is valid only if attack specifics are known
beforehand. In the finished TrojAI rounds, the attack details
are given before each round of competition [2], such as
trigger size range, type of triggers, the possible locations
they are stamped, etc. However, this assumption may not
hold in real-world zero-day attacks.

Our Solution - Attack Forensics. The main challenge is that
different attacks compromise different parts of input space.
Such subspaces may be very small. Trigger inversion is largely
driven by the gradients of the cross-entropy loss function. When
the compromised subspaces are small and isolated, starting from
the clean input space, the gradients may not be able to provide
valid directions to the compromised subspaces. The overarching
idea of our solution is to leverage attack forensics to reverse
engineer attack specifics from a few attack instances (e.g., a few
inputs with triggers causing misclassification), such as what
the trigger looks like and how it is injected. Additional loss
terms can be synthesized based on the specifics to change the
landscape of the loss function such that gradients (of the new

4

××
𝒙

𝒙𝟏⊕ 𝒕

X
Y

Z

X
Y

Z

×× ×××
××

×
𝒙𝟐⊕ 𝒕

𝒙𝟑⊕ 𝒕

𝒙𝟏
𝒙𝟐
𝒙𝟑

(a) Landscape of cross entropy

××
𝒙

𝒙𝟏⊕ 𝒕

X
Y

Z

X
Y

Z

×× ×××
××

×
𝒙𝟐⊕ 𝒕

𝒙𝟑⊕ 𝒕

𝒙𝟏
𝒙𝟐
𝒙𝟑

(b) Landscape with synthe-
sized loss term

Fig. 6: Inversion loss landscape illustration with (a) the
landscape of cross entropy and (b) the landscape with the
additional synthesized loss term. The x-y plane denotes an
input feature space and the z axis the loss value. The areas
with the red plummets represent the input areas of the target
class. In (a), the large plummet denotes the clean target samples
and the small one the victim samples with the trigger. The blue
areas denote the clean victim samples.

loss) can guide trigger inversion to the compromised subspace.
Figure 6 illustrates the concept. It shows the landscapes of
two inversion loss functions with the x-y plane denoting input
features (e.g., encodings by some feature extraction model)
and z the loss value. The left one is for the cross-entropy loss
term in Eq. 1 and the right one is for the synthesized loss term
by BEAGLE. Observe that when cross-entropy is used, from
a clean sample x in the blue area in (a), it is very difficult to
find the universal perturbation (i.e., the trigger) that can move
the sample to the small red area due to the rugged landscape.
The gradients point to the larger red area instead. In (b), by
performing forensics on a few given attack samples x1 ‘ t,
x2 ‘ t, and x3 ‘ t, a new loss term is synthesized that changes
the loss landscape. Specifically, BEAGLE can reverse engineer
x1, x2, and x3, from the attack instances x1 ‘ t, x2 ‘ t, and
x3 ‘ t. Our synthesized loss term hence aims to have a very
small loss value for x1 ‘ t, x2 ‘ t, and x3 ‘ t, much smaller
than the loss values for clean target samples (i.e., those in
the larger red area in (a)), making their area the optimization
goal. Furthermore, the loss is synthesized in such a way that it
ensures the gradients at the reverse engineered x1, x2, and x3
pointing to the target area. As such when scanning a different
model for the similar type of backdoor, the new loss term can
provide clear direction to find the trigger t.

Figure 7 (A) shows the forensics of a patch attack in
TrojAI. From left to right, starting from two images stamped
with the triggers (at different places), that is, attack instances,
our technique decomposes them to the clean images and the
triggers. Note that the original clean images are unknown. From
the decomposed instances, the attack can be summarized as
distributions of trigger position, size, and pixel values (inside
the trigger area). A loss function is automatically synthesized
using these distributions to detect backdoors of the same type.
Figure 7 (B) shows the forensics of pervasive attacks. From
left to right, starting from a few attack instances, our technique
decomposes each to a clean image and a transformation function
F over the clean image x. Note that the image to the right of
the clean image denotes F pxq. The attack can be summarized
as coefficient distributions of the transformation function. As
such, a scanner again can be synthesized to detect this kind
of attacks. Figure 7 (C) shows the forensics of WaNet attacks.
We will show in Section IV-C that the decomposed clean

images closely resemble the ground-truth clean images and
the decomposed triggers resemble the ground-truth triggers
as well. The last row of Table I shows the scanning results
using scanners automatically synthesized by BEAGLE. Here,
we use 3 trojaned models for each type of attack in forensics.
They are disjoint from the ones used in the scanning evaluation.
Observe that the scanners can now accurately detect the trojaned
models. In addition, directly using triggers reverse engineered
by BEAGLE to determine if a model has similar backdoors is
ineffective (due to different models have unique instantiations),
as shown in row 4 of Table I.

III. DESIGN

Figure 8 illustrates the overview of our technique. It consists
of three steps. The first step is attack sample decomposition
that decomposes an image with trigger to a clean image
and a trigger. The second step is attack summarization that
extracts key distributions describing multiple attack samples,
which may be from multiple models with various backdoors.
Such distributions include trigger size and shape distributions,
transformation coefficient distributions, and so on. Note that we
do not require the attack instances belong to a single backdoor
type (as BEAGLE will cluster and summarize them), although
we assume most trojaned inputs of a particular instance exploit
the same backdoor. The third step is scanner synthesis that
synthesizes loss function terms that can regulate the trigger
inversion procedure to detect backdoors of the same kinds. We
will discuss the details of these steps in the following.

A. Attack Sample Decomposition

This step aims to decompose given attack samples, namely,
inputs with triggers, to their clean versions and the triggers. It
assumes the trojaned model, a few attack samples for the model
(10 in this paper), a set of clean samples for the validation
purpose (100 per model in this paper, that is, 10 per class
for CIFAR10, and 2-5 per class for other datasets), a GAN
denoting the input distribution, e.g., a general purpose GAN
trained on ImageNet, the victim class labels, and the target class
label. Note that the clean samples are different from the clean
versions of the attack samples, which are unknown according
to our threat model.

The decomposition leverages a few key observations: (1)
the clean versions of attack samples largely resemble victim
class samples and they may be effectively generated using the
GAN (when regulated by a cross-entropy loss on the subject
model); (2) the decomposed trigger should be valid for the
given validation clean samples, namely, causing them to be
misclassified; (3) the decomposed trigger should be valid for the
decomposed clean versions of attack samples; (4) unstamping
the decomposed trigger from the attack sample should yield an
image resembling the decomposed clean version (generated by
the GAN); (5) unstamping the decomposed clean version of
an attack sample from the sample itself should yield an image
resembling the decomposed trigger; and (6) an attack sample
should be similar to its decomposed clean version stamped
with the decomposed trigger. We will formally define stamping
and unstamping later.

Decomposition Pipeline. We devise a cyclic optimization based
decomposition pipeline according to the above observations, as

5

(a) Trojaned (b) Clean (c) Trigger
(A) Forensics of patch attack

(d) Trojaned (e) Clean (f) Trigger
(B) Forensics of pervasive attack

(g) Trojaned (h) Clean (i) Trigger
(C) Forensics of WaNet attack

Fig. 7: Forensics of different attacks

I.	Attack	Sample	Decomposition II.	Attack	Summarization

… …⊕

Trojaned
Samples

Clean
Versions

Decomposed
Triggers

Clustering

Distribution	Modeling

III.	Scanner Synthesis

[𝒘𝟏, 𝒃𝟏]
[𝒘𝟐, 𝒃𝟐]

[𝒘𝟑 , 𝒃𝟑]

𝒚 =
𝒘𝒙 + 𝒃

Inverted	Trigger

Validation	
Samples

Subject Model

Downstream
Scanner

Distribution-
Bounded	
Inversion

Size

Original
Inversion

Bounded	
Inversion

Pr
ob
ab
ili
ty

Fig. 8: Overview of BEAGLE

illustrated in Figure 9. To concretize our discussion, we use
reflection attack as an example. Reflection attack [56] merges
a clean input with another image to create a reflection effect
(e.g., through glass). Here the trojaned sample (on the left of
Figure 9) is a dog with the reflection of a hallway, where the
dog is the victim and the hallway is the trigger.

In the stage A unstamping, BEAGLE decomposes a trojaned
sample into its clean versions and the trigger. At step 1 ,
BEAGLE initializes the decomposed trigger t̃, unstamps it
from the trojaned sample, and derives an unstamped version
x̂ which is raw and noisy. To improve quality, at step 2 ,
BEAGLE reconstructs the decomposed clean version using a
pre-trained GAN, which can be considered a filter that removes
the out-of-distribution noises from x̂ and yields x̃. At step 3 ,
BEAGLE unstamps x̃ from the trojaned sample and updates the
decomposed trigger.

In stage B stamping, BEAGLE ensures the effectiveness
of decomposed clean version and trigger through multiple
constraints. At step 4 , BEAGLE re-stamps the decomposed
trigger t̃ on the decomposed clean version x̃. The result should
resemble the given trojaned sample. Their similarity is denoted
by the bluish dotted line. At step 5 , BEAGLE stamps the
decomposed trigger to a set of clean samples. At step 6 ,
BEAGLE ensures that the samples generated from the previous
two steps (with the decomposed trigger) are misclassified to the
target label. At step 7 , BEAGLE ensures the decomposed clean
version x̃ is correctly classified to the victim label. Specifically,
step 2 corresponds to the aforementioned observation (1);
5 to observation (2); 4 to observations (3) and (6); 1 to

observation (4); and 3 to observation (5).

Formal Definition. Next, we formally define the decomposition
process. For discussion clarity, we use the following symbols,

x denoting the (unknown) ground-truth clean sample, t the
(unknown) ground-truth trigger, xv a validation clean sample,
x̃ the decomposed clean version of an attack sample, t̃ the
decomposed trigger, x ‘ t denotes stamping t to x and the
stamping operation may vary across attacks (explained later),
and x1 a x2 denotes unstamping an image x2 (which could be
t̃ or x̃) from an image x1.

We define three cross-entropy losses corresponding to steps
6 and 7 in Figure 9.

LossCE “ LpMpx̃ ‘ t̃q,ytq ` LpMpxv ‘ t̃q,ytq ` LpMpx̃q,yvq,
(2)

where L denotes the cross-entropy calculation, M the trojaned
model, yt the attack target label and yv the victim labels. The
first term in the loss means that the decomposed trigger is
effective for the decomposed clean image. In other words,
if we re-stamp the decomposed trigger t̃ to the decomposed
clean image x̃ and feed it to the trojaned model, the model
should output the target label. The second term means that the
decomposed trigger is effective for the clean validation images.
The third term means that the decomposed clean image has
the trigger removed. In other words, the trojaned model should
predict the decomposed clean image x̃ to its ground-truth label.

We also define two reconstruction losses, corresponding to
steps 2 and 4 in Figure 9.

Lossrecon “ LPIPSpx̂, x̃q ` L2px ‘ t, x̃ ‘ t̃q, (3)

LPIPS() denotes the LPIPS loss [104], which is commonly
used as a constraint in GAN based input reconstruction [36],
[65], [108], and L2 denotes the L2 norm, which calculates the
Euclidean distance of two inputs. The first term of Lossrecon
means that the decomposed (reconstructed) clean image x̃
should be similar to the unstamped clean image x̂, while the
GAN ensures that the former is in distribution. The second
term means that the restamped image x̃ ‘ t̃ should be similar
to the original trojaned image x ‘ t.

The overall decomposition procedure can be defined as an
optimization problem in the following.

argmin
x̃,t̃

LossCE ` α ¨ Lossrecon, (4)

where α controls the trade-off between the two losses. Typically
we set α “ 102.

Modeling Stamping Operations in Different Backdoor
Attacks. In the previous discussion, we have not defined the

6

Trojaned
Sample
𝒙⊕ 𝒕

GAN
Decomposed

Clean	Version	$𝒙

③ Unstamp	Clean	Version

① Unstamp	Trigger

Decomposed
Trigger %𝒕

② Reconstruction

(𝒙 ⊕ 𝒕)㊀ $𝒙

㊀

㊀

（𝒙 ⊕ 𝒕)㊀ %𝒕

Unstamped
Clean	Version	(𝒙

Cyclic	Optimization

A.	Unstamping

Clean
Sample	𝒙𝒗

④
Re-stamp	Trigger

Trojaned
Model

⑦ Classification

⑥Mis-classification

Decomposed
Trigger %𝒕

⑤
Sta
mp
	Tri

gge
r 𝒙𝒗⊕ #𝒕

%𝒙⊕
#𝒕

B.	Stamping

Victim
Labels

Target
Label

Resemblance

Trojaned
Version

Re-stamped Version

Fig. 9: Attack decomposition pipeline

(a) Without Normalization (b) With Normalization
Fig. 10: Effectiveness of normalization

stamping/unstamping operations, which vary across different
attacks. Although there are many different types of backdoors,
most of them can be abstracted to two forms. They differ by
their ways of injecting triggers. The core challenge is hence to
model these injection methods. We consider there are two types
of trigger injection methods: patching and transforming. In the
former, a trigger is injected to a clean sample by merging their
pixel values. There are different ways of merging, for instance,
completely replacing the original pixels and adding/subtracting
the original pixel values with the trigger pixel values. We use
the masking function proposed in NC [94] to model these
different methods.

x ‘ t “ x ¨ p1 ´ mq ` t ¨ m (5)

Here, m is a mask with values in [0,1]. BadNets [24],
TrojNN [54], reflection attack [56], and composite attack [50]
that place additional object(s) in a victim sample can be
modeled by this function with different m distributions. The
additional objects can be static patterns, e.g., a yellow flower
placed at the top-left in BadNets, or semantic features, e.g., a
truck image replacing half of the image in composite attack.
For example, pixel replacing means that all the m values in
the trigger area are 1.0 and the rest 0, following a binomial
distribution. Accordingly, we define the unstamping operation.

x a t “
x ´ t ¨ m
1 ´ m

(6)

We hence have px‘tqa t̃ « x̃ and px‘tqa x̃ « t̃. Note that the
definition does not mean we know x, t, m beforehand. During
forensics, we use their approximation x̃, t̃, and m̃ instead.

Normalization. In the first few steps of optimization we do not
have a good approximation of the m value, the unstamping
operation tends to aggressively reduce pixel values (in order
to reduce the loss value with an inappropriate m̃), and hence

the decomposed image tends to be dark and noisy, as shown
in Figure 10 (a). We use a normalization step to calibrate the
unstamped image values to be within the distributions denoted
by clean validation images. Hence the decomposed images
become vivid and clear, as shown in (b). They also substantially
speedup convergence. Specifically, the normalization step is
defined as follows.

xnorm “
x ´ meanpxq

stdpxq
¨ stdpxvq ` meanpxvq, (7)

where x denotes the images to normalize, xnorm the normalized
versions, xv the given set of clean validation images, mean
and std the mean and the standard deviation, respectively. It is
performed at step 1 in Figure 9 after we unstamp the trigger.
l

In the second type of injection, the transforming type (e.g.,
Invisible [46], WaNet [68], and Instagram filter [53] attacks), a
trigger is injected using a transformation function in the form
of an algorithm or a pre-trained network.

x ‘ t “ F px; tq (8)

Observe that we use the coefficients of transformation function
F to denote the trigger t because such coefficients indeed
uniquely define a trigger. During forensics, we leverage a
piece-wise linear function to approximate F .

Compared to the patching form of backdoors, defining the
unstamping operation here is more challenging because there is
not a simple inverse function of F . The pervasive perturbations
injected by these attacks cannot be easily removed by simple
mutations. We hence leverage the reconstruction and denoising
ability of GAN to perform the unstamping function.

x a t “ GANpnormalizepx ‘ tqq (9)

Different pervasive backdoors may have substantially different
F . In order to have a uniform modeling of these functions,
we propose to use a piece-wide linear function, leveraging the
observation that pervasive backdoors usually do not change
human perception of an input such that a pixel in a trojaned
input tends to be closely related to its neighboring pixels in
the clean version. Specifically, as shown in Figure 11, for each
pixel in the clean input (e.g., pixel 3 highlighted in red on the
left), we introduce a 3 ˆ 3 trainable grid (e.g., the blue grid in

7

Linear approximation (approximate complex image
transformation. E.g. decoder/encoder)

Input Image
(H, W, C)

Trainable Grid
(3H, 3W, C)

Transformed Image
(H, W, C)

Decomposed Trigger

Ground-truth Trigger

⊗

Fig. 11: Modeling transforming backdoors

the middle). A pixel in the injected/transformed image is the
sum of the element-wise product of the 3 ˆ 3 neighbors in the
original input and the trainable grid, adding a trainable bias. It
is formally defined as follows.

px ‘ tqri, j,ks “

1
ÿ

p“´1

1
ÿ

q“´1

pxri`p, j`q,ks ¨ tw
r3i´1`p,3 j´1`q,ksq ` tb

i, j,k

(10)
where i, j,k denote the coordinates of width W , height H and
channel C of the input image. Intuitively, xri, j,ks denotes the
pixel value at the ith column, jth row and kth channel. p and q
are used to traverse the 3ˆ3 neighborhood of this pixel. Trigger
t consists of tw and tb, with the former the trainable weights
and the latter the biases of the piece-wise linear functions.
The blue matrix in Figure 11 with shape p3H,3W,Cq denotes
tw since we have a 3 ˆ 3 grid for each pixel. For example
in Figure 11 assume xri, j,ks is the middle element “3” in the
first column. Then xri`p, j`q,ks where p,q P t´1,0,1u traverses
the 3 ˆ 3 neighborhood of xri, j,ks “ 3, e.g., xri´1, j´1,ks “ 5.
tw
r3i´1`p,3 j´1`q,ks

where p,q P t´1,0,1u denotes the trainable
3 ˆ 3 grid for pixel xri, j,ks. For example, tw

r3i´1,3 j´1,ks
“ 0.9

in the second column of Figure 11 is the weight value
corresponding to xri, j,ks “ 3, and tw

r3i´2,3 j´2,ks
“ 0.2 is the

weight value corresponding to xri´1, j´1,ks “ 5. Finally, we add
up the element-wise product for the new pixel value px‘tqri, j,ks.
Assume bias tb

i, j,k “ 0. The new value of the middle “3” is
computed as follows.

5 ˆ 0.2 ` 1 ˆ 0.5 ` 8 ˆ 0.1 ` 2 ˆ 0.5 ` 3 ˆ 0.9 (11)
` 16 ˆ 0.0 ` 4 ˆ 0.1 ` 0 ˆ 0.7 ` 7 ˆ 0.2 ` 0 “ 7.8

which is highlighted in yellow in the third column.

The goal of decomposition is hence to update the trainable
grids so that the loss in Eq. 4 is minimized. For instance,
the Nashville filter backdoor can be precisely formulated by
trainable grids with a non-zero central value surrounded by
8 zero values. After injection, the new value of a pixel is
just a linear transformation of its original value. Moreover,
if one considers each grid for a pixel denotes some local
transformation, the grids for close-by pixels share a lot of
similarity in order to ensure transformation smoothness. For
example, all the trainable grids for a Nashville filter backdoor
are the same. To leverage this observation, we introduce a
smoothing loss Eq. 12 to regulate the differences between
close-by grids.

Losssmooth “ L2pResizepAvgpoolpt̃qq, t̃q, (12)

where Avgpoolpq denotes the average pooling operation and
Resizepq resizes the result after average pooling to the original

shape. Average pooling helps reduce the differences between
close-by grids.

The two images on the right of Figure 11 show the trans-
formations by a WaNet backdoor trigger and the decomposed
trigger by BEAGLE. The two share similarity and the latter has
a close-to 1.0 ASR.

Given a model for forensics, since we do not know if it
has a patching or transformation form of backdoor, we try
to decompose the attack samples using both forms and then
choose the one with better performance. Details can be found
in Appendix VIII-C.

B. Attack Samples Clustering and Summarization

In the previous step, we decompose each attack sample x‘t
to its clean version x̃ and trigger t̃. For example in Figure 9,
we decompose an input attack sample x ‘ t, which is a dog x
stamped with a hallway reflection t, into its clean version x̃ « x
which is the reconstructed dog and trigger t̃ « t, the generated
hallway. In this step, we first extract an attack feature vector v
from the decomposition of each attack sample. We then cluster
these vectors based on their values. The vectors in a cluster
are summarized by Gaussian distributions.

Attack Feature Extraction. For an attack sample of the
patching form of backdoors, its attack features include both the
decomposed mask m̃ and the decomposed trigger t̃. Therefore,

v “ pm̃, t̃q (13)

In many cases, m̃ values have special distributions. For example,
m̃ tends to have a binomial distribution for attack samples of
a simple patch backdoor, namely, stamping a patch trigger on
an input (by replacing its pixels). In this case, we simplify the
features to the mask size s (e.g., denoting patch size) and the
position of mask center pi, jq (e.g., denoting patch position).
Hence, the property vector v “ pi, j,s, t̃q with s = sum(m̃) , and
(i, j) = mean(m̃).

For backdoors that mix images with some ratio like
reflection attack, e.g., a pixel after injection is 0.7 of the original
pixel plus 0.3 of the trigger pixel, values in m̃ tend to be constant.
For such cases, we simplify the attack feature value to v “ t̃.

For transforming backdoors, we extract the coefficients of
the piece-wise linear function as the features.

v “ p rtw, rtbq (14)

with rtw the (reverse engineered) weights and rtb the biases (in
Eq. 10).

Clustering. Given the set of feature vectors of n attack samples,
i.e., V “ tv1, ..., vnu we partition it to k disjoint subsets V1,
... Vk, based on their different forms and their values, using a
number of standard clustering algorithms, e.g., Kmeans [59],
GMM [72], and DNSCAN [19].

Summarization. We consider each cluster Vi denotes a type
of backdoor attack and we summarize it by modeling values
in individual dimensions of Vi using Gaussian distributions.
Formally, we say the ith type of backdoor attack

backdoori „ N pµi, σ
2
i q, (15)

8

X

1.0

0.5

0.0

0.5

1.0

Y

1.0

0.5

0.0

0.5

1.0

Z

1.0

0.5

0.0

0.5

1.0

Cluster 0

Fig. 12: Clustering TrojAI
polygon attack samples

500 750 1000 1250 1500 1750 2000

Values
0

2

4

6

8

10

12

14

Pr
ob

. (
1e

4)

=1316.83, = 283.58

Fig. 13: Trigger size distri-
bution

with µi and σ2
i the mean (vector) and the variance (vector) of

Vi. We choose to use Gaussian distributions because of their
generality [60], [70], [71]. The central limit theorem [30], [42],
[77] states that when a distribution is complex and affected by
a large number of independent random variables (like physical
world distributions), it tends to be Gaussian.

C. Scanner Synthesis

In the previous step, we summarize the attack decomposition
based on different backdoor types, e.g., patch attack. For each
backdoor type backdoori, we model its coefficient distribution,
e.g., patch size, color, and position. In this step, we synthesize
a scanner for each backdoor type, namely, backdori in Eq. 15,
from its distribution coefficients. These scanners are based on
trigger inversion. We consider all trigger inversion methods use
a general loss function template as follows.

Loss “ Lossce ` Lossreg (16)

with the first the cross-entropy loss and the second the
regularization loss (e.g., Eq. 1). BEAGLE synthesizes scanners
by synthesizing the regularization term. We want to point out
this loss function is used in scanning a model (to determine if it
has an backdoor) and hence different from that in decomposition
(i.e., Eq. 4).

Specifically, for each attack feature f , such as m̃ and t̃ in
the patching form of backdoors and rtw and rtb in transforming
backdoors, assume it has been summarized to f „ N pµ f , σ2

f q.
We introduce a regularization term as follows.

Loss f
reg “

"

0 if f P rµ f ´ z ¨ σ f ,µ f ` z ¨ σ f s

δ ¨ | f ´ µ f | otherwise.
(17)

Intuitively, during inversion, we aim to keep the f value
within the 15th-85th percentile. This is enforced by having
the parameter z “ 1.04 in Eq. 17. In other words, penalty is
introduced when it is beyond the range.

Example. We show how we summarize TrojAI polygon
patch backdoors and synthesize a scanner. First we sample
20 trojaned models and perform attack decomposition and
summarization. Figure 12 shows the clustering result, where
BEAGLE partitions them into one cluster due to their cohesive
behaviors. Moreover, the decomposed masks m̃ follow binomial
distributions. According to the discussion in Section III-B, in
such cases BEAGLE extracts attack feature as (i, j, s, t̃) with
(i, j) the center of mask and s its size. Figure 13 illustrates the
distribution of trigger size, with µs “ 1316.83 and σs “ 283.58.

Then BEAGLE synthesize a regularization term as follows, with
s “

ř

m the size of mask during inversion.

Losss “

"

0 if
ř

m P r1033.25,1600.41s

100 ¨ |
ř

m ´ 1316.83| otherwise.
(18)

Similarly, we have other regularization losses for i and j. In
Section IV-B1, we will show that BEAGLE can automatically
synthesize 6 scanners for all the different types of backdoors
in TrojAI and achieves over 0.9 detection accuracy, which
existing scanners cannot achieve without substantial manual
reconfiguration based on attack specifics.

IV. EVALUATION

This section evaluates how BEAGLE enhances the perfor-
mance of various downstream scanners in detecting trojaned
models (Section IV-B1) and eliminates identified injected
backdoors through model unlearning (Section IV-B2). BEAGLE
has two key components: attack decomposition and attack
summarization. For attack decomposition, we evaluate the
quality of decomposed clean versions (of trojaned samples) and
the attack effectiveness of decomposed triggers in Section IV-C.
For attack summarization, we validate the performance of
automatic attack clustering in Section IV-D. As BEAGLE
summarizes the attack knowledge from a small set of trojaned
models and inputs, it is interesting to study the effect of biases
on sampled models as well as inputs, which will be discussed in
Section IV-E. We also investigate three attack scenarios aiming
to counter BEAGLE in Section IV-F. Finally, a set of ablation
studies are carried out to understand different design choices
(Section IV-G).

Our experiments are conducted on 10 well-known backdoor
attacks including static, dynamic, and complex backdoors on
2,532 models in total, consisting of 22 network architectures
with 6 datasets. BEAGLE is compared with 9 baselines in
various experiments.

A. Experiment Setup

Attack Setup. We evaluate on 10 existing backdoor attacks,
namely, BadNets [24], TrojNN [54], Dynamic [76], Reflec-
tion [56], Blend [10], SIG [3], Invisible [46], WaNet [68],
Gotham [53], and DFST [12]. Widely used datasets such as
ImageNet [74], CelebA [58], CIFAR-10 [41], GTSRB [84] are
utilized to construct trojaned and benign models. We also make
use of 2,112 pre-trained models from TrojAI [2] rounds 2 and
3, half benign and half poisoned. Please see details of these
backdoor attacks and datasets/models in Appendix VIII-A.

For the 10 aforementioned backdoor attacks, we use a
poisoning rate of 10%. Most of these backdoors are universal
(by their default settings) where inputs from all the classes
(except the target class) stamped with the trigger will be
misclassified to the target label by the subject model. Some of
the TrojAI models are label specific (only causing images of a
victim class to be misclassified). We use the same adversarial
training strategies to make the backdoor robust for WaNet and
DFST according to their original papers [12], [68].

Setup of BEAGLE. For attack decomposition, we assume 10
trojaned images and 100 clean images per model, where the

9

TABLE II: Evaluation on TrojAI (Universal polygon + Clean
models)

Scanner Config Round 2 Round 3

TP FN TN FP ACC TP FN TN FP ACC

NC Original 85 7 467 85 0.857 85 4 418 86 0.848
BEAGLE 76 16 531 21 0.943 78 11 485 19 0.949

Tabor Original 73 19 459 93 0.826 65 24 426 78 0.828
BEAGLE 66 26 540 12 0.941 76 13 474 30 0.927

TABLE III: Evaluation on TrojAI (Label-specific polygon +
Clean models)

Scanner Config Round 2 Round 3

TP FN TN FP ACC TP FN TN FP ACC

K-Arm
Original 98 178 541 10 0.773 144 107 497 7 0.849

Customized 182 94 530 21 0.861 202 49 491 13 0.918
BEAGLE 191 85 532 19 0.874 201 50 494 10 0.921

ABS
Original 28 248 541 11 0.687 151 100 412 92 0.746

Customized 211 65 538 14 0.905 213 38 474 30 0.910
BEAGLE 233 43 524 28 0.914 218 33 481 23 0.926

Trinity Upstream 62 214 367 185 0.518 51 200 343 161 0.522
BEAGLE 139 137 404 148 0.656 133 118 363 141 0.657

original images of trojaned samples are different from those
clean images. We leverage the state-of-the-art StyleGAN [38]
to recover the clean version of a trojaned image. We download
pre-trained GANs from GenForce Lib [81] to handle different
datasets.

B. Forensics-aided Defense against Injected Backdoors

1) Backdoor Scanning: We integrate BEAGLE with 5
state-of-the-art trigger-inversion based backdoor scanners that
determine if a model contains a backdoor by inverting a
(small) trigger that can induce misclassification for a small
set of clean samples. Besides NC and ABS discussed in
Section II, we integrate with Tabor [25], K-Arm [80], and SRI
Trinity [83] as well (see detailed descriptions of these scanners
in Appendix VIII-B). NC only supports universal patch type
of backdoors. ABS supports universal and label-specific patch
backdoors and filter backdoors.

While Table I in Section II already shows that existing
scanners cannot be generally effective and only work for the
types of backdoors that they focus on, whereas BEAGLE can
effectively and fully automatically scan all kinds of backdoors.
In this study, we further show that using the loss functions
automatically synthesized by BEAGLE, we can substantially
improve these scanners even for their targeted backdoor types.
Specifically, we use the models from TrojAI rounds 2 and
3. The models of round 3 are adversarial trained while the
round 2 models not. We evaluate NC and Tabor on trojaned
models with universal polygon backdoors, K-Arm, ABS, SRI
Trinity on trojaned models with universal and label-specifc
polygon backdoors, and ABS and SRI Trinity on trojaned
models with filter triggers. Trojaned models are always mixed
with equal number of benign models during scanning. Besides,
we evaluate ABS and SRI Trinity on the entire set of models
(with all sorts of backdoors). For each setting, we assume we
have access to only 20 random (< 10%) trojaned models for
attack decomposition and summarization. While there may be
sampling biases, we study the effects of such biases later in
this section.

TABLE IV: Evaluation on TrojAI (Label-specific filter + Clean
models)

Scanner Config Round 2 Round 3

TP FN TN FP ACC TP FN TN FP ACC

ABS Original 178 98 527 25 0.851 143 109 470 34 0.811
BEAGLE 231 45 524 28 0.912 185 67 496 8 0.901

Trinity Upstream 147 129 377 175 0.633 128 124 303 201 0.570
BEAGLE 192 84 484 68 0.816 193 59 443 61 0.841

TABLE V: Evaluation on TrojAI (Full set + Clean models)

Scanner Config Round 2 Round 3

TP FN TN FP ACC TP FN TN FP ACC

ABS Original 276 276 518 34 0.719 331 172 286 118 0.712
BEAGLE 467 85 508 44 0.883 409 94 473 31 0.876

Trinity Upstream 209 343 351 201 0.507 218 285 290 214 0.504
BEAGLE 349 203 362 190 0.644 334 169 322 182 0.651

Table II shows the results of NC and Tabor on universal
polygon backdoors. We can see that there is roughly a 10%
accuracy improvement on each setting. Note that the number
of FPs (False Positives) is largely reduced while the number
of FNs (False Negatives) slightly increases. This is because
we regulate the inversion within certain distributions. Table III
shows the results of K-Arm, ABS and SRI Trinity on universal
and label-specific polygon backdoors. For K-Arm and ABS, we
report the performance of original settings on their Github and
their customized versions for TrojAI in which the configurations
are changed based on the released attack information. Observe
that BEAGLE improves the scanning accuracy by 10%-15%
compared to the original settings. BEAGLE can even improve
the customized versions by 1.5%. Note that the customized
versions had undergone intensive manual tuning and added
regularization specific to the TrojAI attacks. For example, the
customized ABS adds a constraint that all pixels in an inverted
trigger area have the same color, as the round specifications
state that a polygon trigger is always filled with the same color.
Note that the performance of SRI Trinity is not as high as the
other two because we only use its upstream inversion technique.
Table IV shows the results of ABS and SRI Trinity on instagram
filter backdoors. BEAGLE achieves an overall improvement from
6% to 27% and largely reduces both FPs and FNs in most cases.
ABS was not customized for filter backdoors. Table V shows the
results of ABS and SRI Trinity on the entire model sets. In this
case, BEAGLE automatically clusters the provided instances and
synthesizes the corresponding inversion loss functions. Observe
that the improvement is around 15%, and both FPs and FNs are
reduced in most cases. As the customized ABS does not handle
filter backdoors, we use the original ABS in this experiment.

Besides, we create multiple model sets to evaluate complex
attacks, including Dynamic, Reflection, SIG, Blend, Invisible,
WaNet and DFST. We train 30 clean models and 30 trojaned
models for each complex attack on CIFAR-10 and GTSRB to
compose the subject model sets. We train 20 clean models and
20 trojaned models on ImageNet. We assume for each attack,
we have access to 5 trojaned models other than the subject
model sets, on which we perform attack decomposition and
summarization. We leverage ABS as the downstream scanner.
Here we also assume the sampled models cover all the backdoor
types in the subject models sets. Table VI shows the results. The
first column denotes the datasets and the attacks. The second and
third large columns denote the performance of original ABS and

10

TABLE VI: Scanning performance on complex attacks

Dataset Attack
Original BEAGLE-enhanced

PN-REASR CL-REASR FP FN ACC Time (s) PN-REASR CL-REASR FP FN ACC Time (s)
C

IF
A

R
-1

0
Dynamic 0.79 ˘ 0.33 0.55 ˘ 0.18 1 9 0.83 117.4 1.00 ˘ 0.00 0.19 ˘ 0.02 0 0 1.00 119.4
Reflection 0.52 ˘ 0.26 0.56 ˘ 0.17 1 20 0.65 117.3 1.00 ˘ 0.00 0.72 ˘ 0.22 4 0 0.93 116.0

SIG 0.47 ˘ 0.22 0.55 ˘ 0.19 1 29 0.50 118.2 0.89 ˘ 0.24 0.40 ˘ 0.27 1 5 0.90 115.8
Blend 0.78 ˘ 0.33 0.29 ˘ 0.13 0 9 0.85 116.4 0.93 ˘ 0.21 0.54 ˘ 0.18 1 3 0.93 116.8

Invisible 0.31 ˘ 0.19 0.18 ˘ 0.02 0 29 0.52 151.3 0.95 ˘ 0.11 0.74 ˘ 0.07 0 3 0.95 159.2
WaNet 0.42 ˘ 0.33 0.20 ˘ 0.04 0 25 0.58 153.2 0.94 ˘ 0.10 0.80 ˘ 0.07 1 3 0.93 155.9
DFST 0.53 ˘ 0.28 0.30 ˘ 0.18 1 24 0.58 154.5 0.96 ˘ 0.05 0.79 ˘ 0.07 0 5 0.92 162.9

G
T

SR
B Dynamic 0.81 ˘ 0.20 0.71 ˘ 0.07 0 15 0.75 127.6 1.00 ˘ 0.00 0.47 ˘ 0.07 0 0 1.00 127.5

Reflection 0.84 ˘ 0.05 0.74 ˘ 0.07 1 24 0.58 127.6 0.87 ˘ 0.24 0.51 ˘ 0.24 0 4 0.93 120.5
SIG 0.68 ˘ 0.06 0.70 ˘ 0.08 0 30 0.50 121.5 0.93 ˘ 0.24 0.22 ˘ 0.21 0 2 0.97 126.8

Blend 0.92 ˘ 0.17 0.47 ˘ 0.09 0 6 0.90 127.5 1.00 ˘ 0.00 0.70 ˘ 0.08 0 0 1.00 127.8

Im
ag

e
-N

et Invisible 0.47 ˘ 0.43 0.19 ˘ 0.12 1 13 0.65 1285.9 0.86 ˘ 0.30 0.73 ˘ 0.15 2 2 0.90 1318.4
WaNet 0.32 ˘ 0.27 0.20 ˘ 0.12 0 16 0.60 1286.6 0.91 ˘ 0.12 0.72 ˘ 0.13 1 3 0.90 1326.7

0.00

0.50

1.00
Invisible-Original

0.70

0.85

1.00
Invisible-BEAGLE

0.00

0.50

1.00
Dynamic-Original

0.00

0.50

1.00
Dynamic-BEAGLE

0.00

0.50

1.00
SIG-Original

0.00

0.50

1.00
SIG-BEAGLE

Clean Model Trojaned Model Threshold

Models

R
E

AS
R

Fig. 14: Separation of clean and trojaned models. The first
column shows the data points by the original ABS while the
second column shows those by the BEAGLE equipped ABS.
Observe BEAGLE allows better separation.

BEAGLE-enhanced one. Following the original ABS setup, if the
inverted trigger can achieve 0.88 ASR on the validation images,
we consider a model trojaned. In each large column, there are
5 columns, PN-REASRs show the average REASR (ASR of
reverse-engineered trigger by ABS) on poisoned models, while
CL-REASRs show the REASRs on clean models. FP, FN, ACC
denote the number of false positives, false negatives and the
scanning accuracy. We also report the scanning time.

Observe that in most cases, The BEAGLE-equipped ABS can
improve the scanning accuracy by a large extent, especially for
WaNet, Invisible and DFST. Note that sometimes the BEAGLE-
equipped ABS may induce a few FPs, which is reasonable
because BEAGLE’s piece-wise linear transformation function is
expressive and tends to generate some adversarial perturbations
leading to high ASR. This is also evidenced by the nontrivial
CL-REASRs in Invisible, WaNet and DFST. Nonetheless, we
can still find a clear separation between clean and trojaned
models as shown in Figure 14, much better than without
BEAGLE. In addition, we observe BEAGLE-equipped ABS
spends similar time compared to the original version, which
means the overhead is small.

2) Backdoor Removal: Backdoor removal aims to eliminate
injected backdoors in models. In Section III-A, we have
demonstrated that our decomposed triggers closely resemble
the original injected triggers and are highly effective to induce

TABLE VII: Backdoor removal

Attack
Original Finetune NAD ANP BEAGLE

ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

BadNets 0.919 1.000 0.893 0.174 0.878 0.080 0.891 0.032 0.894 0.013
TrojNN 0.917 1.000 0.879 0.250 0.875 0.142 0.878 0.412 0.879 0.068

Dynamic 0.919 1.000 0.897 0.153 0.875 0.043 0.882 0.022 0.877 0.013
Reflection 0.918 0.991 0.883 0.944 0.879 0.264 0.883 0.215 0.876 0.136

Blend 0.920 1.000 0.889 0.005 0.868 0.042 0.876 0.002 0.875 0.004
SIG 0.914 0.952 0.888 0.179 0.876 0.027 0.877 0.012 0.876 0.007

Invisible 0.918 1.000 0.894 0.415 0.886 0.355 0.881 0.277 0.881 0.027
WaNet 0.908 0.989 0.904 0.179 0.882 0.039 0.898 0.018 0.904 0.015
Gotham 0.913 1.000 0.888 0.108 0.873 0.040 0.864 0.074 0.874 0.050
DFST 0.889 0.996 0.884 0.428 0.873 0.214 0.876 0.202 0.876 0.142

Average 0.914 0.993 0.890 0.284 0.876 0.125 0.881 0.127 0.881 0.048

the same attack effects (as the original triggers). The idea is
hence to leverage our decomposed triggers in model unlearning
to remove injected backdoors.

We use the CIFAR-10 dataset and the VGG-11 network and
conduct the experiments on 10 backdoor attacks. We assume
1% of the original training dataset is available for retraining
the model. The same data augmentations as in NAD [48]
are leveraged, including random crop, random cutoff, and
horizontal flipping. Our model unlearning is carried out by
stamping decomposed triggers on training samples and using
the original ground truth labels during training. Several existing
backdoor removal techniques are considered for comparison,
such as Finetune, NAD [48], and ANP [97]. The final results
are obtained by constraining the accuracy degradation to be
within 5%. Table VII shows the results. The first column
presents different backdoor attacks. The following columns
show the results for the original poisoned models and the
models cleansed by different techniques. We report both the
clean accuracy (ACC) and attack success rate (ASR) in the table.
Observe that in most cases, BEAGLE can effectively eliminate
injected backdoors, especially for Reflection, Invisible, and
DFST, outperforming baselines. On average, BEAGLE reduces
10%-20% more ASR than the state-of-the-art methods. This
also demonstrates that the decomposed trigger by BEAGLE is
very similar to the original trigger. A simple model unlearning
can already remove most of those injected backdoors.

C. Validating Decomposed Clean Inputs and Triggers

We qualitatively and quantitatively validate the decomposed
clean inputs and triggers by assessing their visual quality and

11

0.0

0.1

0.2

0.3

0.4

0.5

L1
Februus BEAGLE

10

20

30

40

PS
N

R

Februus BEAGLE

0.00

0.25

0.50

0.75

1.00

SS
IM

Februus BEAGLE

0.00

0.25

0.50

0.75

1.00

AC
C

Februus BEAGLE

Bad
Nets

Tro
jN

N

Inv
isi

ble

WaN
et

Goth
am

0.0

0.1

0.2

0.3

0.4

0.5

L1

Bad
Nets

Tro
jN

N

Inv
isi

ble

WaN
et

Goth
am

10

20

30

40

PS
N

R

Bad
Nets

Tro
jN

N

Inv
isi

ble

WaN
et

Goth
am

0.00

0.25

0.50

0.75

1.00

SS
IM

Bad
Nets

Tro
jN

N

Inv
isi

ble

WaN
et

Goth
am

0.00

0.25

0.50

0.75

1.00

AS
R

(A) Decomposed Clean Images

(B) Decomposed Trigger

(L1 Lower is better)

Fig. 15: Decomposition quality on ImageNet

0.0

0.1

0.2

0.3

0.4

0.5

L1

Februus BEAGLE

10

20

30

40

PS
N

R

Februus BEAGLE

0.00

0.25

0.50

0.75

1.00

SS
IM

Februus BEAGLE

0.00

0.25

0.50

0.75

1.00

AC
C

Februus BEAGLE

Bad
Nets

Tro
jN

N

Refl
ec

tio
n

SIG
Blen

d
0.0

0.1

0.2

0.3

0.4

0.5

L1

Bad
Nets

Tro
jN

N

Refl
ec

tio
n

SIG
Blen

d
10

20

30

40

PS
N

R

Bad
Nets

Tro
jN

N

Refl
ec

tio
n

SIG
Blen

d
0.00

0.25

0.50

0.75

1.00

SS
IM

Bad
Nets

Tro
jN

N

Refl
ec

tio
n

SIG
Blen

d
0.00

0.25

0.50

0.75

1.00

AS
R

(A) Decomposed Clean Images

(B) Decomposed Trigger

(L1 Lower is better)

Fig. 16: Decomposition quality on CelebA

classification accuracy. The visual quality of decomposed clean
inputs is measured by comparing them with their original
versions (before trojaned). The validation of decomposed
triggers is carried out by comparing clean images stamped
with the ground-truth trigger and with the decomposed trigger.
Three widely-used metrics, L1 distance, Peak Signal-to-Noise
Ratio (PSNR), Structural Similarity Index Measure (SSIM),
are utilized to quantify the differences between aforementioned
pairs. A good decomposition result shall have a small L1

distance, a high PSNR, and a large SSIM. For decomposed
clean inputs, the subject model shall correctly classify them
with a high standard accuracy. For decomposed triggers, the
subject model shall produce the target label when they are
stamped onto clean images, which corresponds to the attack
success rate.

We compare a state-of-the-art technique Februus [15], which
removes backdoor triggers in trojaned images, with BEAGLE
and show the results in Figure 15 and Figure 16. All the
trojaned models are well-trained with performance on par with
state-of-the-arts. Specifically, the top-1 accuracy is ą 73% for

ImageNet, ą 78% for CelebA, ą 91% for CIFAR-10, and
ą 94% for GTSRB. The ASRs are all ą 97%, except for
Reflection and SIG whose ASRs are ą 88%, consistent with
the original papers [3], [56]. Figure 15 shows the result for
ImageNet and Figure 16 for CelebA. The detailed numbers and
other results for CIFAR-10 and GTSRB can be found in the
supplementary document Section A [1]. In each figure, there
are two rows, row (A) denoting the quality of decomposed
clean images and row (B) the quality of decomposed triggers.
In each row, four bar charts recording the L1 distance, PSNR,
SSIM, and ACC/ASR, respectively, for the five attacks are
displayed. Since for the L1 distance, lower bars denote better
performance while higher bars are better for other metrics, we
use different colors to present the bar charts of L1 distance.
In the L1, PSNR, and SSIM bar charts, there are two bars for
each attack, where the left bar shows the difference between
original clean images and decomposed images by Februus and
the right bar the difference by BEAGLE. Each bar presents
the average value for the given 10 trojaned images and 100
additional clean test images. For the ACC/ASR bar charts, the
left bar is for Februus and the right for Beagle. Each ACC

12

bar denotes the average clean accuracy for the decomposed
clean images from the given 10 trojaned samples. As the 100
validation clean images have been used in optimization, we
use the images from the test set and stamp the decomposed
trigger to calculate the ASR.

Observe that in most cases, BEAGLE outperforms Februus
in visual quality, classification accuracy, and ASR. As Februus
is designed to handle patch attacks, we can see for BadNets
and TrojNN on ImageNet and CelebA, in some cases, Februus
outperforms ours with slightly better visual quality for decom-
posed triggers. While Februus directly removes the trigger area,
we optimize a trigger mask, which may potentially induce some
noise as the mask is continuous ranging from 0 to 1, causing
some trigger pixels not fully extracted. Figure 17 (A) shows a
case for BadNets. The first row shows the decomposition results
for a trojaned sample. Subfigure (a) is the trojaned sample, (b)
the ground-truth clean version of the trojaned sample, (c) the
decomposed clean image by Februus, and (d) the decomposed
clean image by BEAGLE. The second row shows the quality of
the decomposed trigger. Subfigure (e) is a clean image, (f) the
clean image with the ground-truth trigger, (g) the clean image
with Februus’s decomposed trigger, and (h) the clean image
with our decomposed trigger. Observe that the trigger extracted
by Februus contains part of the ground-truth trigger. Observe
that BEAGLE captures almost all the trigger features. However,
using the metrics in Figure 15 on this case shows that Februus
outperforms BEAGLE. This is because the trigger extracted by
BEAGLE contains some (imperceptible) noise, degrading the
measured values. For Invisible and WaNet, Februus has better
visual quality on decomposed clean images than ours. This is
because we apply adaptive normalization to trojaned images
before reconstruction, which may induce a slightly different
distribution compared to the original one. It is reasonable as
we have no knowledge of the original distribution. Besides,
note that the difference between trojaned samples and their
clean counterparts is small (invisible perturbation). Februus
removes the entire area and directly reconstructs the input
using GAN, which leads to unfaithful decomposed inputs and
triggers. This is evidenced by that the ACC of decomposed
clean images and the ASR of the decomposed triggers are
both low for Februus. BEAGLE, on the other hand, faithfully
reconstructs the clean images and approximates the trigger
injection functions, achieving the ACC of 100% and the ASR
of larger than 90%. Figure 17 (B) shows a case for Invisible
attack. Our recovered image is only slightly different from
the source image and the decomposed trigger is similar to the
original injected one. For other attacks, such as Reflection,
SIG, and Gotham, BEAGLE significantly outperforms Februus
in both visual quality and classification results in Figure 16.
Figure 17 (C) shows a case of the reflection attack. BEAGLE is
able to achieve high visual quality in reconstructing the clean
image and extracting the trigger, whereas Februus fails.

D. Evaluation on Attack Clustering and Summarization

A critical assumption of BEAGLE is that we are able to
model existing backdoors by two mathematical forms (see
Section III-A): patching and transforming. Here we validate
this assumption. We conduct an experiment on CIFAR-10
with VGG-11 for seven backdoor attacks: BadNets, Dynamic,
Reflection, SIG, Invisible, WaNet, and Gotham. We train 30
trojaned models for each attack and then randomly sample

(a) x ‘ t (b) x (c) Fb. x̃ (d) BG. x̃

(e) xv (f) xv ‘ t (g) Fb. xv ‘ t̃ (h) BG. xv ‘ t̃
(A) Decomposition of BadNets

(a) x ‘ t (b) x (c) Fb. x̃ (d) BG. x̃

(e) xv (f) xv ‘ t ´ xv (g) Fb. xv ‘ t̃ ´ xv (h) BG. xv‘ t̃´ xv

(B) Decomposition of Invisible

(a) x ‘ t (b) x (c) Fb. x̃ (d) BG. x̃

(e) xv (f) xv ‘ t (g) Fb. xv ‘ t̃ (h) BG. xv ‘ t̃
(C) Decomposition of Reflection

Fig. 17: Attack Decomposition. The decomposition of each
attack is visualized in a block of 2 ˆ 4 images. Image (a)
shows the given trojaned image x‘ t, (b) its ground-truth clean
version x, (c) the decomposed clean version x̃ of Februus (Fb.),
and (d) the decomposed clean version x̃ of BEAGLE (BG.)
respectively. Image (e) shows a validation clean image xv, (f)
its ground-truth trojaned version xv ‘ t, (g) the trojaned version
stamped with the decomposed trigger xv ‘ t̃ by Februus (Fb.),
(h) and the trojaned version stamped with the decomposed
trigger xv ‘ t̃ by BEAGLE (BG.) respectively. For Invisible
attack, we visualize the difference between the clean version
and trigger-stamped one (xv ‘ t ´ xv) as the trigger effect is
invisible.

5 from each attack to form a pool of attack instances. We
then use BEAGLE to cluster these instances. BEAGLE generates
11 clusters, 3 for the reflection attack corresponding to the
three trigger images used, 3 for SIG (due to the 3 different
trigger images), and one for each of the remaining attack
types. Table VIII shows the summarization results. The first

13

TABLE VIII: Summarization of different attacks
Attack BadNets Dynamic Reflection(3) SIG(3) Invisible WaNet Gotham

Cluster P(binm) P(binm) P(cnst) P(cnst) T(cmplx) T(cmplx) T(smpl)

ASR 1.00 1.00 0.98 0.94 0.97 0.91 1.00

TABLE IX: Transferability Evaluation of BEAGLE

Scanner TP FN TN FP ACC

Patch Scanner 0 20 20 0 0.50
Filter Scanner 2 18 19 1 0.53

WaNet Scanner 18 2 1 19 0.93

row shows the attacks. The second row describes the clusters
including their forms (patching or transforming) and coefficient
distributions (e.g., binomial and constant). The third row shows
the ASR of the decomposd triggers. Observe that BadNets
and Dynamic belong to the patching category and their masks
have a binomial distribution, indicating that they replace pixel
values. Reflection and SIG belong to the patching category with
constant mask values, meaning that they merge images. Gotham
belongs to the transforming type and the coefficients are simple
(mostly 0). Invisible and WaNet on the other hand have complex
grid coefficients. Observe that all the decomposed triggers have
high ASRs, supporting that our backdoor modeling can cover
all these backdoors. We also validate our assumption on TrojAI
rounds 2 and 3. Details can be found in the supplementary
document Section B [1].

E. Impact of Attack Sample Bias

As BEAGLE leverages a small set of inputs (clean and
trojaned) and trojaned models, we study the impact of sampling
biases in such data. For sampled inputs, we include a few
naturally misclassified inputs without any injected backdoors.
This simulates the real world scenario where classification
models do not usually achieve 100% accuracy. For sampled
models, we intentionally introduce biases to the number of
trojaned models with different attack types. Our experiments
show that BEAGLE is robust to sample biases. Details can
found in the supplementary document Section C [1].

F. Adaptive Attack

We study three attack scenarios where the adversary has the
knowledge of BEAGLE. Our results show that BEAGLE does
not have performance degradation in most cases. For those that
it does degrade, the adaptive attack is not effective. Details can
be found in the supplementary document Section D [1].

G. Ablation Study

This section studies different design choices of BEAGLE in
attack sample decomposition and scanner synthesis. The results
show that BEAGLE has a robust design. Details can be found
in the supplementary document Section E [1].

V. LIMITATION

One limitation of BEAGLE is lack of transferability. The
goal of BEAGLE is to synthesize scanners based on seen
attack instances and detect attacks of the same type, with
which existing scanners have difficulties. BEAGLE is likely
ineffective if a new attack is categorically quite different from
those it has seen.

We conduct an experiment to evaluate the transferability of
BEAGLE in Table IX, which shows a limitation of BEAGLE
mentioned in Section V. We leverage two scanners synthesized
based on patch and filter attack samples in Section IV-B1, and
evaluate on 20 trojaned models by WaNet mixed with 20 clean
models. The patch scanner achieves 50% accuracy and the filter
scanner achieves 53%, much lower than BEAGLE’s WaNet
scanner that achieves 93% accuracy. Scanning attacks of unseen
categories is a hard challenge and we will leave this as the
future work.

VI. RELATED WORK

Backdoor Attack. There are a large number of existing
backdoor attacks. Some attach small patches/watermarks [24],
[54], [67], [75], [76], [90] as the trigger. Some blend the input
image with another image [3], [10], [50], [56]. Others leverage
an input transformation function to directly inject the trigger
into the input image [12], [46], [68].

Backdoor Defense. Backdoor detection aims to determine
whether a model is trojaned [26], [34], [40], [69], [100].
Scanners such as TABOR [26] are based on NC and inherit
similar limitations. Some leverage NC’s method to invert a
trigger [80], and others use more complex input transformation
function [53], [55]. We have discussed and enhanced both
techniques. Another type of defenses focuses on detecting
poisoned data instead of models [8], [9], [13], [18], [20], [21],
[49], [57], [61], [86], [92], [93]. AC [9] and STRIP [21]. There
are also backdoor elimination [4], [48], [51], [87], [102], [103]
and certified robustness against backdoors [35], [64], [98], [99].

Traceback of data-poisoning attack. Researchers have pro-
posed a traceback technique on data-poisoning attack [79]. It
mainly focuses on separating trojaned data from clean data
given the whole training dataset. Its goal is different from ours.

VII. CONCLUSIONS

We propose a novel DL backdoor forensics technique. It
can decompose attack samples to clean inputs and triggers. It
can automatically synthesize scanners from the forensics results
such that other instantiations of the same type of backdoor can
be identified (without the trojaned inputs). Our results show that
the technique substantially outperforms the state-of-the-art.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their constructive
comments. This research was supported, in part by IARPA
TrojAI W911NF-19-S-0012, NSF 1901242 and 1910300, ONR
N000141712045, N000141410468 and N000141712947. Any
opinions, findings, and conclusions in this paper are those of
the authors only and do not necessarily reflect the views of our
sponsors.

REFERENCES

[1] “Beagle repository,” https://github.com/Megum1/BEAGLE.
[2] “Trojai leaderboard,” https://pages.nist.gov/trojai/.
[3] M. Barni, K. Kallas, and B. Tondi, “A new backdoor attack

in cnns by training set corruption without label poisoning,”
CoRR, vol. abs/1902.11237, 2019. [Online]. Available: http:
//arxiv.org/abs/1902.11237

14

https://github.com/Megum1/BEAGLE
https://pages.nist.gov/trojai/
http://arxiv.org/abs/1902.11237
http://arxiv.org/abs/1902.11237

[4] E. Borgnia, V. Cherepanova, L. Fowl, A. Ghiasi, J. Geiping, M. Gold-
blum, T. Goldstein, and A. Gupta, “Strong data augmentation sanitizes
poisoning and backdoor attacks without an accuracy tradeoff,” arXiv
preprint arXiv:2011.09527, 2020.

[5] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial
attacks: Reliable attacks against black-box machine learning models,”
in International Conference on Learning Representations, 2018.

[6] A. Brock, J. Donahue, and K. Simonyan, “Large scale gan training for
high fidelity natural image synthesis,” arXiv preprint arXiv:1809.11096,
2018.

[7] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 ieee symposium on security and privacy (sp). Ieee,
2017, pp. 39–57.

[8] A. Chan and Y.-S. Ong, “Poison as a cure: Detecting & neutralizing
variable-sized backdoor attacks in deep neural networks,” arXiv preprint
arXiv:1911.08040, 2019.

[9] B. Chen, W. Carvalho, N. Baracaldo, H. Ludwig, B. Edwards, T. Lee,
I. Molloy, and B. Srivastava, “Detecting backdoor attacks on deep neural
networks by activation clustering,” arXiv preprint arXiv:1811.03728,
2018.

[10] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor
attacks on deep learning systems using data poisoning,” arXiv preprint
arXiv:1712.05526, 2017.

[11] X. Chen, H. Irshad, Y. Chen, A. Gehani, and V. Yegneswaran,
“tCLARIONu: Sound and clear provenance tracking for microservice
deployments,” in 30th USENIX Security Symposium (USENIX Security
21), 2021, pp. 3989–4006.

[12] S. Cheng, Y. Liu, S. Ma, and X. Zhang, “Deep feature space
trojan attack of neural networks by controlled detoxification,”
CoRR, vol. abs/2012.11212, 2020. [Online]. Available: https:
//arxiv.org/abs/2012.11212

[13] E. Chou, F. Tramer, and G. Pellegrino, “Sentinet: Detecting localized
universal attack against deep learning systems,” Proceeding of the 41th
IEEE Symposium on Security & Privacy Workshops (SPW), 2020.

[14] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset
for semantic urban scene understanding,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 3213–
3223.

[15] B. G. Doan, E. Abbasnejad, and D. C. Ranasinghe, “Februus: Input
purification defense against trojan attacks on deep neural network
systems,” in Annual Computer Security Applications Conference, 2020,
pp. 897–912.

[16] K. Doan, Y. Lao, and P. Li, “Backdoor attack with imperceptible input
and latent modification,” Advances in Neural Information Processing
Systems, vol. 34, pp. 18 944–18 957, 2021.

[17] K. Doan, Y. Lao, W. Zhao, and P. Li, “Lira: Learnable, imperceptible
and robust backdoor attacks,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 11 966–11 976.

[18] M. Du, R. Jia, and D. Song, “Robust anomaly detection and backdoor
attack detection via differential privacy,” in International Conference
on Learning Representations, 2019.

[19] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise.”
in kdd, vol. 96, no. 34, 1996, pp. 226–231.

[20] H. Fu, A. K. Veldanda, P. Krishnamurthy, S. Garg, and F. Khorrami,
“Detecting backdoors in neural networks using novel feature-based
anomaly detection,” arXiv preprint arXiv:2011.02526, 2020.

[21] Y. Gao, C. Xu, D. Wang, S. Chen, D. C. Ranasinghe, and S. Nepal,
“Strip: A defence against trojan attacks on deep neural networks,”
in Proceedings of the 35th Annual Computer Security Applications
Conference, 2019, pp. 113–125.

[22] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[23] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Advances in neural information processing systems, vol. 27, 2014.

[24] T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying vulnera-

bilities in the machine learning model supply chain,” arXiv preprint
arXiv:1708.06733, 2017.

[25] W. Guo, L. Wang, X. Xing, M. Du, and D. Song, “TABOR: A highly
accurate approach to inspecting and restoring trojan backdoors in
AI systems,” CoRR, vol. abs/1908.01763, 2019. [Online]. Available:
http://arxiv.org/abs/1908.01763

[26] W. Guo, L. Wang, Y. Xu, X. Xing, M. Du, and D. Song, “Towards
inspecting and eliminating trojan backdoors in deep neural networks,”
in 20th IEEE International Conference on Data Mining, 2020.

[27] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, and A. Bates,
“Nodoze: Combatting threat alert fatigue with automated provenance
triage.” in NDSS, 2019.

[28] W. U. Hassan, M. A. Noureddine, P. Datta, and A. Bates, “Omega-
log: High-fidelity attack investigation via transparent multi-layer log
analysis,” in NDSS, 2020.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[30] W. Hoeffding and H. Robbins, “The central limit theorem for dependent
random variables,” Duke Mathematical Journal, vol. 15, no. 3, pp. 773–
780, 1948.

[31] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,” arXiv
preprint arXiv:1704.04861, 2017.

[32] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017,
pp. 4700–4708.

[33] S. Huang, W. Peng, Z. Jia, and Z. Tu, “One-pixel signature: Character-
izing cnn models for backdoor detection,” in 16th European Conference
on Computer Vision, 2020.

[34] X. Huang, M. Alzantot, and M. Srivastava, “Neuroninspect: Detecting
backdoors in neural networks via output explanations,” arXiv preprint
arXiv:1911.07399, 2019.

[35] J. Jia, X. Cao, and N. Z. Gong, “Certified robustness of nearest
neighbors against data poisoning attacks,” in AAAI Conference on
Artificial Intelligence, 2020.

[36] Y. Jo, S. Yang, and S. J. Kim, “Investigating loss functions for extreme
super-resolution,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition workshops, 2020, pp. 424–
425.

[37] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture
for generative adversarial networks,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2019, pp. 4401–
4410.

[38] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila,
“Analyzing and improving the image quality of stylegan,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 8110–8119.

[39] P. Kiourti, W. Li, A. Roy, K. Sikka, and S. Jha, “Online defense of
trojaned models using misattributions,” in Annual Computer Security
Applications Conference (ACSAC), 2021.

[40] S. Kolouri, A. Saha, H. Pirsiavash, and H. Hoffmann, “Universal litmus
patterns: Revealing backdoor attacks in cnns,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 301–310.

[41] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[42] S. G. Kwak and J. H. Kim, “Central limit theorem: the cornerstone
of modern statistics,” Korean journal of anesthesiology, vol. 70, no. 2,
pp. 144–156, 2017.

[43] F. Larsson, M. Felsberg, and P.-E. Forssen, “Correlating fourier
descriptors of local patches for road sign recognition,” IET Computer
Vision, vol. 5, no. 4, pp. 244–254, 2011.

[44] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic
study of automated program repair: Fixing 55 out of 105 bugs for $8
each,” in 2012 34th International Conference on Software Engineering
(ICSE). IEEE, 2012, pp. 3–13.

15

https://arxiv.org/abs/2012.11212
https://arxiv.org/abs/2012.11212
http://arxiv.org/abs/1908.01763

[45] S. Li, M. Xue, B. Z. H. Zhao, H. Zhu, and X. Zhang, “Invisible backdoor
attacks on deep neural networks via steganography and regularization,”
IEEE Transactions on Dependable and Secure Computing, vol. 18,
no. 5, pp. 2088–2105, 2020.

[46] S. Li, B. Z. H. Zhao, J. Yu, M. Xue, D. Kaafar, and
H. Zhu, “Invisible backdoor attacks against deep neural networks,”
CoRR, vol. abs/1909.02742, 2019. [Online]. Available: http:
//arxiv.org/abs/1909.02742

[47] ——, “Invisible backdoor attacks against deep neural networks,” arXiv
preprint arXiv:1909.02742, 2019.

[48] Y. Li, N. Koren, L. Lyu, X. Lyu, B. Li, and X. Ma, “Neural attention
distillation: Erasing backdoor triggers from deep neural networks,” in
International Conference on Learning Representations, 2021.

[49] Y. Li, T. Zhai, B. Wu, Y. Jiang, Z. Li, and S. Xia, “Rethinking the
trigger of backdoor attack,” arXiv preprint arXiv:2004.04692, 2020.

[50] J. Lin, L. Xu, Y. Liu, and X. Zhang, “Composite backdoor attack
for deep neural network by mixing existing benign features,” in
Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, 2020, pp. 113–131.

[51] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending
against backdooring attacks on deep neural networks,” in International
Symposium on Research in Attacks, Intrusions, and Defenses. Springer,
2018, pp. 273–294.

[52] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “Tbar: Revisiting
template-based automated program repair,” in Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2019, pp. 31–42.

[53] Y. Liu, W.-C. Lee, G. Tao, S. Ma, Y. Aafer, and X. Zhang, “Abs:
Scanning neural networks for back-doors by artificial brain stimulation,”
in Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 1265–1282. [Online].
Available: https://doi.org/10.1145/3319535.3363216

[54] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang,
“Trojaning attack on neural networks,” in NDSS, 2018.

[55] Y. Liu, G. Shen, G. Tao, Z. Wang, S. Ma, and X. Zhang, “Ex-
ray: Distinguishing injected backdoor from natural features in neural
networks by examining differential feature symmetry,” arXiv preprint
arXiv:2103.08820, 2021.

[56] Y. Liu, X. Ma, J. Bailey, and F. Lu, “Reflection backdoor: A natural
backdoor attack on deep neural networks,” in European Conference
on Computer Vision. Springer, 2020, pp. 182–199.

[57] Y. Liu, Y. Xie, and A. Srivastava, “Neural trojans,” in 2017 IEEE
International Conference on Computer Design (ICCD). IEEE, 2017,
pp. 45–48.

[58] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes
in the wild,” in 2015 IEEE International Conference on Computer
Vision (ICCV), 2015, pp. 3730–3738.

[59] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on
information theory, vol. 28, no. 2, pp. 129–137, 1982.

[60] Q. Lu and X. Yao, “Clustering and learning gaussian distribution for
continuous optimization,” IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), vol. 35, no. 2, pp.
195–204, 2005.

[61] S. Ma, Y. Liu, G. Tao, W.-C. Lee, and X. Zhang, “Nic: Detecting
adversarial samples with neural network invariant checking,” in
Proceedings of the 26th Network and Distributed System Security
Symposium (NDSS 2019), 2019.

[62] S. Ma, J. Zhai, F. Wang, K. H. Lee, X. Zhang, and D. Xu, “Mpi:
Multiple perspective attack investigation with semantics aware execution
partitioning,” in USENIX Security, 2017.

[63] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” in International
Conference on Learning Representations, 2018.

[64] M. McCoyd, W. Park, S. Chen, N. Shah, R. Roggenkemper, M. Hwang,
J. X. Liu, and D. Wagner, “Minority reports defense: Defending
against adversarial patches,” in International Conference on Applied
Cryptography and Network Security. Springer, 2020, pp. 564–582.

[65] F. Mentzer, G. D. Toderici, M. Tschannen, and E. Agustsson, “High-

fidelity generative image compression,” Advances in Neural Information
Processing Systems, vol. 33, pp. 11 913–11 924, 2020.

[66] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix:
Program repair via semantic analysis,” in 2013 35th International
Conference on Software Engineering (ICSE). IEEE, 2013, pp. 772–
781.

[67] T. A. Nguyen and A. Tran, “Input-aware dynamic backdoor attack,”
Advances in Neural Information Processing Systems, vol. 33, 2020.

[68] T. A. Nguyen and A. T. Tran, “Wanet-imperceptible warping-based
backdoor attack,” in International Conference on Learning Representa-
tions, 2020.

[69] X. Qiao, Y. Yang, and H. Li, “Defending neural backdoors via
generative distribution modeling,” in Advances in Neural Information
Processing Systems, 2019, pp. 14 004–14 013.

[70] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Machine learning
of linear differential equations using gaussian processes,” Journal of
Computational Physics, vol. 348, pp. 683–693, 2017.

[71] C. E. Rasmussen, “Gaussian processes in machine learning,” in Summer
school on machine learning. Springer, 2003, pp. 63–71.

[72] D. A. Reynolds, “Gaussian mixture models.” Encyclopedia of biomet-
rics, vol. 741, no. 659-663, 2009.

[73] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis,” Journal of computational and applied
mathematics, vol. 20, pp. 53–65, 1987.

[74] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.
211–252, 2015.

[75] A. Saha, A. Subramanya, and H. Pirsiavash, “Hidden trigger back-
door attacks,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 07, 2020, pp. 11 957–11 965.

[76] A. Salem, R. Wen, M. Backes, S. Ma, and Y. Zhang, “Dynamic
backdoor attacks against machine learning models,” arXiv preprint
arXiv:2003.03675, 2020.

[77] P. Schatte, “On strong versions of the central limit theorem,” Mathe-
matische Nachrichten, vol. 137, no. 1, pp. 249–256, 1988.

[78] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 618–626.

[79] S. Shan, A. N. Bhagoji, H. Zheng, and B. Y. Zhao, “Traceback of data
poisoning attacks in neural networks,” arXiv preprint arXiv:2110.06904,
2021.

[80] G. Shen, Y. Liu, G. Tao, S. An, Q. Xu, S. Cheng, S. Ma, and
X. Zhang, “Backdoor scanning for deep neural networks through k-arm
optimization,” in International Conference on Machine Learning, 2021.

[81] Y. Shen, Y. Xu, C. Yang, J. Zhu, and B. Zhou, “Genforce,” https:
//github.com/genforce/genforce, 2020.

[82] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014. [Online]. Available:
https://arxiv.org/abs/1409.1556

[83] SRI-CSL, “Trinity-trojai,” 2021. [Online]. Available: https://github.
com/SRI-CSL/Trinity-TrojAI

[84] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition,”
Neural networks, vol. 32, pp. 323–332, 2012.

[85] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethink-
ing the inception architecture for computer vision,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2016,
pp. 2818–2826.

[86] D. Tang, X. Wang, H. Tang, and K. Zhang, “Demon in the variant:
Statistical analysis of dnns for robust backdoor contamination detection,”
in 30th USENIX Security Symposium (USENIX Security 21), 2021.

[87] G. Tao, Y. Liu, S. Cheng, S. An, Z. Zhang, Q. Xu, G. Shen, and
X. Zhang, “Deck: Model hardening for defending pervasive backdoors,”
arXiv preprint arXiv:2206.09272, 2022.

[88] G. Tao, Y. Liu, G. Shen, Q. Xu, S. An, Z. Zhang, and X. Zhang,
“Model orthogonalization: Class distance hardening in neural networks

16

http://arxiv.org/abs/1909.02742
http://arxiv.org/abs/1909.02742
https://doi.org/10.1145/3319535.3363216
https://github.com/genforce/genforce
https://github.com/genforce/genforce
https://arxiv.org/abs/1409.1556
https://github.com/SRI-CSL/Trinity-TrojAI
https://github.com/SRI-CSL/Trinity-TrojAI

for better security,” in 2022 IEEE Symposium on Security and Privacy
(SP). IEEE, vol. 3, 2022.

[89] G. Tao, G. Shen, Y. Liu, S. An, Q. Xu, S. Ma, P. Li, and X. Zhang,
“Better trigger inversion optimization in backdoor scanning,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022, pp. 13 368–13 378.

[90] G. Tao, Z. Wang, S. Cheng, S. Ma, S. An, Y. Liu, G. Shen, Z. Zhang,
Y. Mao, and X. Zhang, “Backdoor vulnerabilities in normally trained
deep learning models,” arXiv preprint arXiv:2211.15929, 2022.

[91] R. L. Thorndike, “Who belongs in the family,” in Psychometrika.
Citeseer, 1953.

[92] B. Tran, J. Li, and A. Madry, “Spectral signatures in backdoor attacks,”
in Advances in Neural Information Processing Systems, 2018, pp.
8000–8010.

[93] A. K. Veldanda, K. Liu, B. Tan, P. Krishnamurthy, F. Khorrami, R. Karri,
B. Dolan-Gavitt, and S. Garg, “Nnoculation: broad spectrum and tar-
geted treatment of backdoored dnns,” arXiv preprint arXiv:2002.08313,
2020.

[94] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y.
Zhao, “Neural cleanse: Identifying and mitigating backdoor attacks
in neural networks,” 2019 IEEE Symposium on Security and Privacy
(SP), pp. 707–723, 2019.

[95] R. Wang, G. Zhang, S. Liu, P.-Y. Chen, J. Xiong, and M. Wang,
“Practical detection of trojan neural networks: Data-limited and data-
free cases,” in 16th European Conference on Computer Vision, 2020.

[96] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-
aware patch generation for better automated program repair,” in 2018
IEEE/ACM 40th International Conference on Software Engineering
(ICSE). IEEE, 2018, pp. 1–11.

[97] D. Wu and Y. Wang, “Adversarial neuron pruning purifies backdoored
deep models,” Advances in Neural Information Processing Systems,
vol. 34, 2021.

[98] C. Xiang, A. N. Bhagoji, V. Sehwag, and P. Mittal, “Patchguard: A
provably robust defense against adversarial patches via small receptive
fields and masking,” in 30th USENIX Security Symposium (USENIX
Security 21), 2021.

[99] C. Xiang, S. Mahloujifar, and P. Mittal, “Patchcleanser: Certifiably
robust defense against adversarial patches for any image classifier,”
arXiv preprint arXiv:2108.09135, 2021.

[100] X. Xu, Q. Wang, H. Li, N. Borisov, C. A. Gunter, and B. Li, “Detecting
ai trojans using meta neural analysis,” arXiv preprint arXiv:1910.03137,
2019.

[101] L. Yu, S. Ma, Z. Zhang, G. Tao, X. Zhang, D. Xu, V. E. Urias, H. W.
Lin, G. Ciocarlie, V. Yegneswaran et al., “Alchemist: Fusing application
and audit logs for precise attack provenance without instrumentation,”
in Proc. of NDSS, 2021.

[102] Y. Zeng, H. Qiu, S. Guo, T. Zhang, M. Qiu, and B. Thuraisingham,
“Deepsweep: An evaluation framework for mitigating dnn backdoor
attacks using data augmentation,” arXiv preprint arXiv:2012.07006,
2020.

[103] K. Zhang, G. Tao, Q. Xu, S. Cheng, S. An, Y. Liu, S. Feng, G. Shen, P.-
Y. Chen, S. Ma et al., “Flip: A provable defense framework for backdoor
mitigation in federated learning,” arXiv preprint arXiv:2210.12873,
2022.

[104] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The
unreasonable effectiveness of deep features as a perceptual metric,” in
CVPR, 2018.

[105] X. Zhang, H. Chen, and F. Koushanfar, “Tad: Trigger approxi-
mation based black-box trojan detection for ai,” arXiv preprint
arXiv:2102.01815, 2021.

[106] P. Zhao, P.-Y. Chen, P. Das, K. N. Ramamurthy, and X. Lin, “Bridging
mode connectivity in loss landscapes and adversarial robustness,” in
International Conference on Learning Representations (ICLR 2020),
2020.

[107] S. Zheng, Y. Zhang, H. Wagner, M. Goswami, and C. Chen,
“Topological detection of trojaned neural networks,” arXiv preprint
arXiv:2106.06469, 2021.

[108] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proceedings

of the IEEE international conference on computer vision, 2017, pp.
2223–2232.

VIII. APPENDIX

A. Details of Backdoor Attacks and Datasets/Models

BadNets [24] uses a small patch at the corner as an universal
trigger. TrojNN [54] uses a watermark. Dynamic [76] places
different patches based on different input images to inject
input-specific backdoor. Reflection [56] leverages an universal
reflection image as the trigger. Blend [10] performs a static
random perturbation on the input image to inject a backdoor.
SIG [3] produces some strip-like effects on input images.
Invisible [46] leverages an encoder-decoder structure to perform
a complex input transformation. WaNet [68] uses complex
wrapping functions. Gotham [53] uses the Gotham instagram
filter to transform input images. DFST [12] leverages a GAN-
based generator to inject some visual effects to input images.

ImageNet [74] is a popular, large scale object classification
dataset with 1,281,167 images of 1,000 classes. The task is
to predict the correct class label for an image. We resize the
images to 224ˆ224 for evaluation. Two different networks are
utilized for ImageNet: VGG-16 [82] and ResNet-50 [29].

CelebA [58] is a face attributes dataset that contains 10,177
identities with 202,599 face images, each image with 40
attribute annotations. We resize the images to 128 ˆ 128 for
evaluation. Three networks are used for this dataset: VGG-
13 [82], ResNet-18 [29] and ResNet-34 [29].

CIFAR-10 [41] is an object recognition dataset with 10 classes.
It consists of 60,000 images and is divided into a training set
(48,000 images), a validation set (2,000 images), and a test
set (10,000 images). CIFAR-10 images are all 32 ˆ 32 and
we don’t need to resize them. We leverage four networks for
this dataset: VGG-11 [82], VGG-13 [82], ResNet-18 [29] and
ResNet-34 [29].

GTSRB [84] is a German traffic sign recognition dataset with
51,840 images of road signs in 43 classes. The set contains
images of more than 1700 traffic sign instances. We split the
dataset into a training set, validation set, and a test set. All the
images are resized to 32 ˆ 32 before evaluation. We leverage
the same four networks for GTSRB as CIFAR-10.

TrojAI [2] rounds 2 and 3 consist of 1104 and 1008 pre-
trained image classification models, respectively. The models
were trained on synthetic images, of size 224ˆ224, containing
artificial traffic signs and realistic street view background from
KITTI dataset [22], Cityscapes dataset [14] and Swedish Roads
dataset [43]. Random transformation, e.g., shifting, rotating,
lighting, blurring, weather effects, are applied for data augmen-
tation. This raises the difficulty in the decomposition process
of BEAGLE since the collected trojaned images or validation
images can be diverse. Altogether 22 network are leveraged
for training the models including several complex structures
with a large number of parameters, e.g., DenseNet121 [32],
InceptionV3 [85], and MobileNetV2 [31]. Half of the models
have been poisoned with some backdoor which causes model
misclassification. These backdoors include polygon patches and
filters. Some are universal (causing any images with trigger to be
misclassified to the target label) and the others are label-specific

17

TABLE X: Function selection during attack decomposition.

Attack Patching Transforming

Binomial Uniform Simple Complex

BadNets 0.99 0.87 0.42 0.82
Reflection 0.76 0.96 0.71 0.74
Instagram 0.52 0.85 0.98 0.68

WaNet 0.84 0.78 0.74 0.97

(only causing images of a victim class to be misclassified).
Compared to round 2, round 3 models leverage adversarial
training to suppress natural trojans.

B. Details of Backdoor Scanners

Tabor [25] formulates trojan detection as a non-convex opti-
mization problem, guided by explainable AI and other heuristics
to increase detection accuracy. Similar to NC, it only supports
universal patch backdoors.

K-Arm [80] leverages K-Arm bandit originally proposed in
Reinforcement Learning to iteratively and stochastically select
the most promising labels for trigger inversion. Its stochastic
selection ensures that even if the true target label is not
selected for the current round, it still has a good chance to
be selected later. It supports both universal and label-specific
patch backdoors.

SRI Trinity [83]. This is a technique from TrojAI that can scan
both patch and filter backdoors. It has two components, trigger
inversion and backdoor classification that classifies a given
model to clean or trojaned based on inversion results. We only
use its trigger inversion component as the other component is
orthogonal.

C. Function Selection During Attack Decomposition

Given a model for forensics, since BEAGLE doesn’t
know which function to use during decomposition, it first
decomposes the attack samples using both functions (patching
and transforming) for a few steps and then choose the one
with better performance, as discussed in Section III-A. We
apply two functions and two distributions for patching and
transforming parameters, altogether four types to perform attack
decomposition on trojaned instances of BadNets, Reflection,
Instagram filter, and WaNet. The results are shown in Table X,
where the first column denotes the attack and the following
columns denote the ASR of decomposed trigger on clean
validation images by different functions. Observe that for each
attack, one of the functions stands out with an obviously higher
ASR compared with others. For instance, binomial patching
achieves 99% ASR, outperforming uniform patching and
transforming by at least 12%. This is reasonable and expected
because BEAGLE’s functions are summarized based on existing
backdoor injection functions, and different functions have little
overlapping. For example, a complex transformation function is
designed to approximate the localized pixel warping of WaNet,
which is hard to realize leveraging patch functions or simple
transformation. Therefore, only the complex transformation
function achieves a high ASR of decomposed trigger.

D. Generalization to State-of-the-art Attacks

There are some state-of-the-art backdoor attacks that intro-
duce new trigger types, e.g., semantic and hidden backdoors.

TABLE XI: Attack decomposition of state-of-the-art attacks

Attack Decomposed Clean Images Decomposed Trigger

L1 Ó PSNR Ò SSIM Ò ACC Ò L1 Ó PSNR Ò SSIM Ò ASR Ò

Composite 0.211 17.64 0.63 1.0 0.025 26.28 0.97 0.94
LIRA 0.098 27.56 0.95 1.0 0.149 23.40 0.81 0.91

TABLE XII: Effectiveness of synthesized scanner on state-of-
the-art attack

Attack Original BEAGLE

TP FN TN FP ACC TP FN TN FP ACC

Composite 5 15 20 0 0.63 17 3 18 2 0.88
LIRA 4 16 20 0 0.60 20 0 19 1 0.98

Semantic backdoors [50] leverage semantic features as secret
triggers. For example, the composite backdoor attack [50]
uses the co-presence of natural features as the trigger. For
example, the presence of an airplane in a truck image causes
the truck to be misclassified as a bird. Hidden backdoors [16],
[17], [45], [47] inject invisible patterns into input images
as backdoor trigger by constrained optimization or using a
network. For example, LIRA [17] trains a trigger injection
network and the trojaned classifier simultaneously. In addition,
the trigger perturbation is constrained to a small range to
ensure invisibility. We conduct experiments following the setup
in Section IV-B1 and evaluate BEAGLE’s effectiveness against
the composite attack and LIRA. We train 20 trojaned models
for each attack and use 20 additional clean models (half VGG-
11 and half ResNet18) on CIFAR-10 for the experiments.
We assume BEAGLE has access to 3 additional trojaned
models for attack decomposition and utilize ABS as the base
scanner during synthesis. Table XI shows the results of attack
decomposition. Observe that for both attacks, the decomposed
clean images resemble the source images and the decomposed
trigger is similar to the injected one, with low L1 error and
high PSNR and SSIM scores. Besides, the decomposed clean
images are correctly classified as the ground-truth label, with
100% accuracy, and the decomposed trigger achieves high
ASR on clean validation images (higher than 90%). These
results are consistent with the existing attacks shown in
Table XIII. Moreover, Table XII shows the scanning results of
the vanilla base scanner and BEAGLE’s synthesized scanner.
Observe that BEAGLE’s synthesized scanner outperforms the
original version by 25% on the composite attack and by 38%
on LIRA. This delineates that BEAGLE is effective against
state-of-the-art backdoor attacks. Specifically, the composite
backdoor falls into the patching category, which is defined
as x ‘ t “ x ¨ p1 ´ mq ` t ¨ m, where x is the source image, t
is the trigger pattern, and m is the region that the attacker
stamps the trigger. Although it leverages semantic information
as the trigger, these triggers are directly stamped on victim
images. For example, assume the attacker stamps a piece of
green clothing on a source image to attack the frog class,
BEAGLE can recognize the region m where the attacker stamps
the garment and t the garment itself. In addition, LIRA and
some other hidden backdoors [16], [45], [47] are similar
to Invisible and WaNet discussed in Section III-A which
inject hidden/invisible perturbation into images and BEAGLE
is effective in approximating their trigger injection algorithm
using a transformation function. Hence BEAGLE decomposes
triggers from trojaned samples and detects backdoors well.

18

	Introduction
	Motivation
	Design
	Attack Sample Decomposition
	Attack Samples Clustering and Summarization
	Scanner Synthesis

	Evaluation
	Experiment Setup
	Forensics-aided Defense against Injected Backdoors
	Backdoor Scanning
	Backdoor Removal

	Validating Decomposed Clean Inputs and Triggers
	Evaluation on Attack Clustering and Summarization
	Impact of Attack Sample Bias
	Adaptive Attack
	Ablation Study

	Limitation
	Related Work
	Conclusions
	References
	Appendix
	Details of Backdoor Attacks and Datasets/Models
	Details of Backdoor Scanners
	Function Selection During Attack Decomposition
	Generalization to State-of-the-art Attacks

